
An Architecture for Efficient Hardware Data Mining using
Reconfigurable Computing Systems1

Zachary K. Baker and Viktor K. Prasanna
University of Southern California, Los Angeles, CA, USA

zbaker@halcyon.usc.edu, prasanna@ganges.usc.edu

Abstract

The Apriori algorithm is a fundamental correlation-based
data mining kernel used in a variety of fields. The innova-
tion in this paper is a highly parallel custom architecture
implemented on a reconfigurable computing system. Us-
ing this “bitmapped CAM,” the time and area required for
executing the subset operations fundamental to data min-
ing can be significantly reduced.

The bitmapped CAM architecture implementation on
an FPGA-accelerated high performance workstation pro-
vides a performance acceleration of orders of magnitude
over software-based systems. The bitmapped CAM uti-
lizes redundancy within the candidate data to efficiently
store and process many subset operations simultaneously.
The efficiency of this operation allows 140 units to pro-
cess about 2,240 subset operations simultaneously.

Using industry-standard benchmarking databases, we
have tested the bitmapped CAM architecture and shown
the platform provides a minimum of 24x (and often much
higher) time performance advantage over the fastest soft-
ware Apriori implementations.

1 Introduction

Recent advances in state of the art high performance com-
puting machines [8, 12] with large memories and large
FPGA devices have caused a seismic shift in the way re-
configurable hardware is used. In these machines, the no-
tion of an FPGA is not an afterthought. These machines
are not a card or an add-on device that attempts to provide
acceptable performance and usability, rather, they are a
tightly integrated system.

The development of FPGA-integrated machines with
large, fast SRAM banks and high bandwidth interconnect
has set the stage for orders of magnitude higher efficiency
for highly complex applications. The ability to stream

1Supported by the United States National Science Foundation/ITR
under award No. ACI-0325409 and in part by equipment grants from
the Xilinx and SRC Computers corporations.

data at high speeds from memory to an FPGA with in-
tegrated control and bitstream loading provided by a mi-
croprocessor has made systems such as the SRC MAP
processor architecture [12] or the Cray XD-1 system [8]
potentially very valuable.

Recent advances in storage and data sensing have revo-
lutionized our technological capability for collecting and
storing data. Server logs for popular websites, customer
transaction data, credit card purchases, customer loyalty
cards, etc. produce terabytes of data in the span of a day.
While it is useful as a historical record, effective process-
ing for patterns and trends can make it profitable. There
are various forms of data mining. Much is for commercial
purposes, but other work including clustering for bioinfor-
matics [11] and correlation mining for evolutionary traits
[4]. Correlation-based data mining is the field of algo-
rithms to process this data into more useful forms, in par-
ticular, connections between sets of items. The Apriori al-
gorithm [2] is a popular approach for progressively group-
ing together frequent itemsets in large databases given a
particular cutoff of occurrence frequency.

Software implementations of the Apriori algorithm
[6, 7, 10] utilize various tree structures, hashing methods,
or approaches such as vertical mining [15] that radically
change data structures to handle the support and candidate
generation operations.

This paper demonstrates an efficient structure for com-
puting the support of a set of candidates. The effective-
ness of the architecture has been shown on the SRC FPGA
machine, proving that the integration of FPGA accelera-
tion and software control allows for significant advances
in the design of data mining systems. While the architec-
ture is designed for implementation on an SRC machine,
other reconfigurable computing systems such as the Cray
XD-1 [8] or a custom ASIC-based design would also pro-
vide high performance with few architectural changes.

In various performance studies, it was noted that the
behavior of the Apriori algorithm has certain characteris-
tics that allow for redundancy between candidates to be
extracted for use in hardware. In general, while there may

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

be hundreds of thousands of candidates processed in a
generation, the difference between any two adjacent can-
didates is fairly low. That is, the edit distance between
candidate sets will be low. Through the combination of
Content-Addressable Memories (CAM) implemented on
FPGA and small internal memories, the performance of
the algorithm in hardware can be improved. The results of
tests on various correlation-mining benchmark databases
show that the bitmapped CAM approach is highly effi-
cient in both time and area compared to other hardware
approaches.

In the following sections, the related work in the field
will be introduced, and some background on FPGA archi-
tecture and the Apriori algorithm itself will be provided.
A detailed description of the approach follows, as well as
the rationale behind the approach. Finally, implementa-
tion details and results for the system will be presented.

2 Background on Reconfigurable
Computing Systems

Field Programmable Gate Arrays (FPGA) provide a fabric
upon which applications can be built. FPGAs, in partic-
ular, Static Random-Access Memory (SRAM) based FP-
GAs from Xilinx [14] or Altera [3] are based on a look-
up tables, flip-flops, and multiplexers. In these devices, a
SRAM bank serves as a configuration memory that con-
trols all of the functionality of the device, from the logic
implemented to the signaling standards of the IO pins.
The values in the look-up tables can produce any combi-
national logic functionality necessary, the flip-flops pro-
vide integrated state elements, and the SRAM-controlled
routing direct logic values into the appropriate paths to
produce the desired architecture. The device is composed
of extensive programmable routing and many thousands
of basic logic cells that include the basic logic elements.
Depending on on the device variety, FPGAs can include
fast Application Specific Integrated Circuit (ASIC) multi-
pliers, ethernet controllers, local RAMs, and clock man-
agers. FPGAs started out as prototyping devices, allow-
ing for convenient development of glue-logic-type appli-
cations for connecting ASIC components without high
VLSI design costs or large numbers of discrete standard
logic gates. As the gate density of FGPA devices in-
creased and application specific ASIC blocks were added,
the applications shifted from glue logic to a wide variety
of solutions for signal processing and network problems.
The devices have been deployed in the field as the final,
but still flexible, solution. Because SRAM-based devices
are controlled by the state of the memory bits, the func-
tionality can be changed by changing the memory state.
This can be useful, as logic can be customized for a par-

ticular set of input data.

Figure 1: A general platform model is targeted, composed
of a microprocessor-based host connected via fast inter-
connect with FPGA fabric and several banks of SRAM

FPGA devices provide a surprisingly powerful and con-
venient platform for implementing application accelera-
tors. For some kernel domains, such as data mining, FP-
GAs provide many of the advantages of ASIC design, in-
cluding potential for parallelism, very efficient bit-level
operations, and high bandwidth. Unlike ASICs, though,
reconfigurable hardware can be reprogrammed to suit a
specific set of input data or operating situations, allowing
the flexibility of software with the power of fixed hard-
ware.

The trend for accelerating general computation is a
generic platform shown in Figure 1. By providing a work-
station with an FPGA accelerator combined with banks of
fast memory, machines like the SRC MAPstation [12] or
the Cray XD-1 system [8] can provide significant perfor-
mance increases for scientific and data-intensive comput-
ing. The SRC system uses a reconfigurable device inte-
grated into the DIMM memory slots, allowing the FPGA
to take advantage of the high memory bandwidth as well
as transparently behave as a memory.

3 Related Work in Hardware Data
Mining

As far as we know, the Apriori algorithm has not been
studied in any significant way for efficient hardware im-
plementation by other researchers. Currently, our initial
paper ([5]) on a systolic array architecture for data mining
is the only recent work in this area. However, research
in hardware implementations of related data mining algo-
rithms has been published [9, 13, 16].

In [9] and [13] the k-means clustering algorithm is im-
plemented as an example of a special reconfigurable fab-
ric in the form of a cellular array connected to a host pro-
cessor. K-means clustering is a data mining strategy that

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

groups together elements based on a distance measure.
The distance can be an actual measure of Euclidean dis-
tance or can be mapped from some other data type. Each
item in a set is randomly assigned to a cluster, and the cen-
ters of each group are computed. The elements are then
iteratively moved between clusters to move them closer
to the center of a group. This is related to the Apriori
algorithm as both are dependent on efficient set additions
and computations performed on all elements of those sets.
However, k-means adds the distance computation and sig-
nificantly changes how the sets are built up.

In [16] a system is implemented which attempts to me-
diate the high cost of data transfers for large data sets.
Common databases can easily extend beyond the capac-
ity of the physical memory, and slow tertiary storage, e.g.,
hard drives, are brought into the datapath. The paper pro-
poses the integration of a simple computational structure
for data mining onto the hard drive controller itself. The
data mining proposed by the paper is not Apriori, but
rather the problem of exact and inexact string matching,
a much more computationally regular problem compared
to the Apriori algorithm. However, the work is useful, and
will become more so as FPGA performance scales up and
significantly exceeds the data supply capabilities of hier-
archical memory systems.

In [5], we developed a systolic array architecture for
data mining that allows the time required for all phases
of the apriori algorithm to be significantly reduced. The
array architecture provides a performance improvement
of orders of magnitude over the state-of-the-art software
implementations. The system is easily scalable and in-
troduces an efficient “systolic injection” method for intel-
ligently reporting unpredictably generated mid-array re-
sults to a controller without any chance of collision or
excessive stalling. However, the support operation still
requires an two orders of magnitude more time than the
other stages. We focus on addressing the support problem
in this paper. The architecture we develop in this paper is
entirely distinct from the work in [5].

4 Apriori Algorithm

For the benefit of the reader, we present a brief introduc-
tion to the Apriori algorithm and the challenges of imple-
menting it efficiently in hardware. We divide the Apri-
ori [2] algorithm into three sections, as illustrated in Fig-
ure 2. Initial frequent itemsets are fed into the system, and
the three phases of candidate generation, candidate prun-
ing, and candidate support calculation is executed in turn.
The support information is fed back into the candidate
generator and the cycle continues until the final candidate
set is determined. In the hardware implementation, multi-
ple FPGA configurations are used throughout the various

modes of operation to provide the highest possible per-
formance. In this section, we will first introduce some of
the data mining lexicon and then describe the operational
phases in more detail.

In the literature, an analogy to a shopping cart is used.
A basket is the set of items purchased at one time, checked
out from the library, or otherwise grouped together based
on some criteria such as time, customer, etc. A frequent
item is an item that often occurs in a database. A frequent
itemset, then, is a set of frequent items that often occur
together in the same basket. The cutoff of how often a
set must occur to be included in the candidate set is the
support.

Throughout this paper, we will use the following
variables:
m, the number of items in a candidate list, equal to the
generation number (one item is added to the list per
generation)
|Cm|, the number of total candidates in generation m,
ca, the number of candidate slots available (16 slots per
hardware block)(ca may be less than |Cm|),
|T |, the number of individual transaction baskets in the
database
tt =

∑|T |
k=1

|Tk|, the total number of items in the database,

A researcher can request a particular support value and
find the items which occur together in a basket a minimum
number of times within the database. This guarantees a
minimum confidence in the results.

Figure 2: Process flow of the data mining system

Candidate generation is the process in which one gen-
eration of candidates is built into the next generation. This
building process is from where the Apriori name derives.
Each new candidate is built from candidates that have
been determined apriori (in the previous generation) to
have a high level of support. Thus, they can be confidently
expanded into new potential frequent itemsets. This is ex-
pressed formally as follows:

when m > 1
∀ c1, c2 ∈ Cm do

with c1 = (i1, ..., im−1, im)
and c2 = (i1, ..., im−1, i

∗
m

)
and im < i∗m

c := c1 ∪ c2 = (i1, ..., im−1, im, i∗
m

)

Candidate generation pairs up any candidates that dif-
fer only in their final element to generate the candidate

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

itemsets for the next candidate generation.
The next step of candidate generation guarantees

that each new candidate is not only formed from two
candidates from the previous generation, but that all
subsets that can be created by removing one element are
also present in the previous generation, as follows:

when m > 1
∀c ∈ Cm do

∀i ∈ c : c − {i} ∈ Cm−1

The initial candidate generation proves by design that if
we remove either of the last two items (im, i∗

m
) from the

new candidate, we will get candidates from the previous
generation, namely, c1 and c2. The second step verifies
that if we remove any single item from the new candi-
date, we will find a candidate from the previous genera-
tion. This progressive build-up of candidates is the heart
of the Apriori algorithm.

The third phase of the algorithm is the support calcu-
lation. It is by far the most time consuming and data in-
tensive part of the application, as during this phase the
database is streamed into the system. Each potential can-
didate’s support, or the number of occurrences over the
database set, is determined by comparing each candidate
with each transaction in the database. If the set of items
that form the candidate appear in the transaction, the sup-
port count for that candidate is incremented, as follows:

∀t ∈ T do
∀c ∈ C do

if c ⊂ t

support(c)++

The main time performance bottleneck for the Apri-
ori algorithm is determining if each candidate is a sub-
set of each transaction basket. Each candidate must be
compared against every transaction set, a highly compute-
intensive operation. The focus of this paper is on acceler-
ating the support operation.

The analysis and results are based on two benchmark
databases that are commonly used for testing the per-
formance of implementation of the Apriori algorithm.
The T40I10D100K (15 MB) and T10I4D100k (4 MB)
datasets [1] with various support levels are tested.

5 Architectural Approach

In [5] we observed that the huge amount of data that must
be streamed through the device causes the support oper-
ation to require two orders of magnitude more time than
any other segment of the Apriori algorithm. This work ad-
dressing only the acceleration of the support calculation.

The architecture presented in this paper is based on a sev-
eral observations about the behavior of the algorithm. The
most important is that the output of the candidate genera-
tion phase produces a series of very similar candidates.

For instance, A B C and A B D are both valid candi-
dates, as well as A C D E and A B D E. If we can avoid
replicating the storage resources for the replicated data, a
higher level of efficiency can be achieved. If each hard-
ware block handles a single candidate (as in the earlier ar-
chitecture [5], then A C D E and A B D E will each require
four unique elements, for a total of 8 memory locations
across the two blocks. However, if the hardware block
can be responsible for both candidates, the total number
of unique elements is 5.

There is often a very little change between two succes-
sively generated candidates in the candidate set. A small
extract from the 7th iteration of candidate generation
follows:

249 316 395 482 743 787 819
236 249 395 482 743 787 819
249 316 395 482 743 787 804
236 249 395 482 743 787 804
236 249 316 395 482 743 787
249 319 482 620 743 787 819
249 482 620 743 787 804 819
249 316 482 620 743 787 819
236 249 482 620 743 787 819
249 482 529 620 743 787 819
249 319 482 620 743 787 804

Note that the total number of unique elements is very
low. This is due to the regularity of the generation proce-
dure.
c := c1 ∪ c2 = (i1, ..., im−1, im, i∗m)
As c1(i1, ...im−1) = c2(i1, ...im−1) one can expect large
groupings of very similar candidates.

Searching for subsets in a single unit (as in [5]) is quite
simple. Each transaction is an ordered set (like the can-
didate sets), so finding if the candidate is a subset of the
transaction basket is similar to a merge sort. As each item
arrives, it is compared with the current item. If the items
match, the candidate pointer is incremented. If the item in
the candidate memory is greater than the incoming item,
the counter is not incremented. In this way, a very large
transaction basket can be streamed through, and, if the
counter pointer equals m by the end of the transaction,
the candidate has been determined to be a subset of the
transaction basket.

Handling many candidates in the same block is slightly
more complicated. In the single candidate case, the can-
didate has a candidate pointer that keeps track of the next
item of interest. Through the use of a memory for the

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

candidate item, only a single comparator is required. As
comparators are fairly expensive in terms of hardware re-
sources, this is a good solution. However, in the multiple
candidate situation, many items can require comparison
with the input in any cycle. This either causes stalls in the
pipeline while the various items are compared, or causes
errors as candidate pointers are advanced or stalled incor-
rectly. The transaction must have all elements of a given
candidate in order for the subset property to be satisfied.

The solution is to utilize a CAM linked with a bitmap
memory in order to determine subset satisfaction for a
large number of candidates simultaneously. Figure 3 il-
lustrates the architecture. A CAM is a fully associative,
programmable memory. In a CAM, a user requests the
content of a memory instead of the location of a partic-
ular element. That is, instead of requesting location 4 of
some memory and getting the output 35A3, we request the
35A3 and the memory returns the address 4. These sorts
of memory are commonly used in network applications.
We use the CAM to provide parallel comparisons for the
union of the items present in the candidates sets.

5.1 Bitmapped CAM

In Figure 3, the CAM addresses a line from the bitmap
memory. A set bit in the bitmap memory output corre-
sponds to the presence of an item in the candidate set.
Thus, the vertical line in the RAM corresponds exactly to
the items in the candidate.

Figure 3: Architecture of the bitmapped CAM block.
Each of the items included by the candidates of interest
has its own CAM entry, indexing a RAM that specifies
which of the candidates the item applies to.

The elements in the CAM Sb
cam

is the set of items re-

quired to completely specify the candidate sets contained
within block b, as follows:

b = 0
∀c ∈ Cm do

if(|Sb
cam

| + |(c \ Sb
cam

)| > 32)
b++

else
Sb

cam = Sb
cam ∪ c

Bitmapb for block b is filled as follows:

∀i ∈ Sb
cam do

∀c ∈ Cm do
if i ∈ Ci

bitmap
b
(i,c) = 1

else
bitmap

b
(i,c) = 0

As a transaction is streamed through the system, each
item in the transaction set is presented to the CAM in-
put. If the incoming item matches any of the items in the
CAM, the CAM produces an address that corresponds to
that item in the bitmap, as in Figure 3. If a bit of the
RAM output is set, the corresponding candidate counter
increments. At the end of the transaction, the counters
are inspected. If a counter’s value is equal to the size of
the candidate, all of the candidate’s items were present
in the transaction. This is guaranteed as an item occurs
only once in any transaction, and the counter is only in-
cremented when the bitmap indicates that the candidate
requires the item.

5.2 Implementation of the Bitmapped CAM

The performance of the system is highly dependent on
how quickly the support operation can be executed, and
this is entirely dependent on the speed at which data can
be streamed and the subset operation completed for each
candidate. As the total number of candidates is in the tens
of thousands, and the system can only support a limited
number of candidates at any given time, multiple itera-
tions may be necessary. Thus, it is important to maxi-
mize the total number of candidates that can be processed
in parallel in a given iteration. This is directly related
to the area required per candidate in hardware, and the
frequency of the hardware clock. An appropriate perfor-
mance metric, then, is (time * area).

The elements are connected end-to-end in a one-dimen-
sional array. Data flows in a single direction, and there are
no global connections except for the clock signal. This
allows for a faster clock rate than designs requiring long
wires. The support operation is broken into three steps;

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

...

Figure 4: Architectural detail for the bitmap operation.
Set bits in a row represent the candidates that contain a
given CAM entry. Set bits in a column represent the CAM
entries in a candidate.

namely, programming, streaming of transaction data, and
collection of support results.

The first step is to load the units with candidates. Pro-
gramming information enters at one end of the linear ar-
ray. After the first candidate is stored in the first unit, the
ith candidate set is forwarded along to the ith unit, until
all b CAM blocks and bitmaps for each block in the array
is full. This requires b |Scam|+ m |Cm| cycles. The time,
however, may be split into multiple sections if |Cm| > ca.

The transactions are streamed through the array. All
transaction are sent through, one element per cycle. If the
subset condition is satisfied, the support counter is incre-
mented. If the counter is less than m at the end of the
transaction data, the candidate is not a subset of the trans-
action. In either case, the unit’s counter is reset and the
process begins again for the next transaction basket, until
all transactions pass through all of the units. This requires
tt cycles, and is thus very efficient. If |Cm| > ca, there
is no way to avoid passing the database stream multiple
times through the units. This reduces efficiency, but is
still a faster strategy than software-based sequential algo-
rithms. The time given if multiple passes are required is
as follows: given |Cm| > ca, the total number of passes
p is � |Cm|

ca

�, and thus the time for streaming transactions

is � |Cm|
ca

� (tt + 1). The extra cycle is required to flush the
support data from the linear array.

The support data is collected by the controller and

stored for the various control operations required to main-
tain a minimum support level across all candidates.

The programming information for the systolic array is
generated by the host. As the generation of the CAM table
and bitmap is a simple operation, it can be executed in
minimal time.

5.3 Analysis of the Approach

The efficiency of the bitmapped CAM is based entirely on
the similarity of the candidates processed. Determining
the appropriate ratio number of CAM elements to candi-
dates in a unit is somewhat of a challenge.

Utilizing a sample run from the T40I10D100K
database, we approach the problem as simply as pos-
sible. Each candidate is processed directly from a file
containing all of the candidates for a given generation.
The unique elements from each candidate are added to
the set Scam until there is either no more CAM elements
available or the maximum number of candidates has been
reached. For |Scam|=32 and |C| = 16, the behavior of the
candidate set is as follows:

Generation Max CAM Num blocks Max cand. in
Number elements above 32 max 31 CAM entries

1 16 0 –
2 18 0 –
3 22 0 –
4 31 0 –
5 41 1 12
6 28 0 –
7 41 2 9
8 29 0 –
9 31 0 –

10 41 1 15
11 25 0 –

Table 1: Detailed CAM usage information for each gen-
eration for |Scam|=32 and |c|=16 for the T40I10D100K
dataset at 0.01 support

Table 1 demonstrates a few interesting characteristics.
In this database, the maximum number of unique elements
in the set of 16 candidates is generally below the hard limit
of 32. However, the number of times a the number re-
quired CAM elements is above the hard limit is very rare.
In the 11 generations computed, it only occurs in genera-
tions 5, 7, and 10. And in these generations, the number
of occurrences is 1, 2, and 1, respectively. For these sit-
uations, the solutions is simple: stop adding candidates
to the block when the maximum number of elements has
been reached. The right-most column gives the maximum
number of candidates possible when the CAM has been
exceeded. Again, this is a rare occurrence, handled by a
simple reduction in the number of candidates contained
within a block.

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

This empirical analysis of the behavior of the
bitmapped CAM architecture is extended in Tables 5 and
6. Overall, the vast preponderance of candidate sets fit
easily into the 31 CAM entries per 16 candidate template.

6 Results

The architecture as implemented in VHDL is highly
pipelined, with the CAM, encoders, and datapath requir-
ing roughly 10 cycles per CAM stage. The units are con-
nected end-to-end in a linear array for higher frequency
performance, and are parameterized for item code size,
block dimensions, and number of blocks. We found that
the maximum clock rate was roughly 120 MHz, so the
SRC restriction of 100 MHz did not constrain perfor-
mance by a large factor.

The bitmapped CAM results are compared against
the fastest software results available running bench-
mark databases in standardized formats. The results
are based on a run of the T40I10D100K (15 MB) and
T10I4D100k (4 MB) datasets [1] given various support
levels. The hardware implementation is compared against
the APRIORI-BRAVE, Borgelt, and Goethals implemen-
tation results provided in [6]. These results are based on
program execution on a 2.8 GHz dual Xeon processor ma-
chine with 3GByte RAM.

The synthesis tool for the VHDL designs within Carte
version 2.1 is Synplify Pro version 8.1, and ISE tools ver-
sion 7.1.2 is Synplicity Synplify Pro 8.1 and the place-
and-route tool is Xilinx ISE 7.1.2. The target device is
the Virtex II XC2V6000 with -4 speed grade. The results
are based on the placed-and-routed design. For the VHDL
results, only the systolic array is implemented as the con-
troller requires very little bandwidth and only moderate
interaction with the array and should not significantly af-
fect the performance results.

The linear array of bitmapped CAM units described in
the Section 5 with 70 individual units of 16 candidates
and 31 CAM entries per unit maps to 29,875 of 33,792
slices on the master XC2V6000 device. For symmetry,
70 are placed on the second FPGA device. The design
place-and-routes to 8.3 ns, or 120 MHz, ideal for imple-
mentation on the SRC platform [12]. In terms of unit size,
the architecture requires about one-half of the logic cells
per candidate compared to the earlier systolic array archi-
tecture [5].

Figures 7 and 8 give comparisons to three state-
of-the-art microprocessor-based implementations. The
T40I10D100K (15 MB) and T10I4D100k (4 MB) datasets
have been utilized. The two sets are standard testbench
databases from FIMI [1]. The biggest difference between
the two is the average number of elements in a basket,
T40I10D100K having an average of 40 elements in a bas-

ket over 100,000 entries and the T10I4D100k having an
average of 10 elements over the 100,000 entries. This in-
creased basket size increases the chance that there will be
correlations between the otherwise random data. This can
be seen in the differences in overall timings between Fig-
ure 7 and Figure 8. The results in Figure 8 demonstrate
that the T40I10D100K database has longer average tim-
ings due to the increased number of correlations between
items to process.

Figure 7: Performance comparison against various
microprocessor-based implementations and our FCCM05
architecture [5] for the T10I4D100K dataset. Note that
the time is in log(msec).

7 Conclusion

In conclusion, a novel hardware architecture for data min-
ing operations was developed. The work is based on
“bitmapped CAM” architecture that allows the similari-
ties between candidates to be utilized. While the hardware
was developed for use in the data mining field, it is use-
ful in any fields where large numbers of subset operations
are required and where the elements of the subset under
search are similar. Overall, an FPGA implementations of
the Apriori algorithm can provide significant performance
improvement over software-based approaches.

The ideal architecture, which we plan to implement in
the future, would take advantage of the fast candidate gen-
eration and pruning in our systolic array architecture de-
veloped in [5] and reconfigure the FPGA for the support
phase of operation. Because the architectures are memory
based and do not require changes to the hardware con-

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

Support 0.0015 0.002 0.003 0.005 0.01 0.05
Mean CAM Entries Needed 16.89 16.99 17.1 17 17.01 15.8

Num Exceeding Available CAMs 75 37 12 1 0 0
Mean Num . Candidates When Exceeded 12.4 12.5 12.5 15 0 0

Total CAM fills 18281 16885 14639 10106 4436 56

Figure 5: Measurement of the mean CAM entries needed for a 16 candidate block, the number of occurrences of an
overflowed block, the mean number of candidates when a block overflowed, and the total number of block required
for the T10I4D100K dataset

Support 0.002 0.003 0.005 0.01 0.05
Mean CAM Entries Needed 18.02 18.01 15.98 16.6 17.06

Num Exceeding Available CAMs 0 0 223 8 0
Mean Num. Candidates When Exceeded 0 0 11 12.25 0

Total CAM fills 372396 314517 216382 36658 2879

Figure 6: Measurement of the mean CAM entries needed for a 16 candidate block, the number of occurrences of an
overflowed block, the mean number of candidates when a block overflowed, and the total number of blocks required
for the T40I10D100K dataset

Figure 8: Performance comparison against various
microprocessor-based implementations and our FCCM05
architecture [5] for the T40I10D100 dataset. Note that the
time is in log(msec).

figuration bitstream, they can be swapped in and out of
the FPGA with only the cost of swapping configurations.
The overall execution time of the data mining algorithms
is sufficiently lengthy that the cost of configuration is in-
significant.

References

[1] Frequent Itemset Mining Dataset Repository, 2004.

http://fimi.cs.helsinki.fi/data/.

[2] R. Agrawal and R. Srikant. Fast Algorithms for
Mining Association Rules. In Proceedings of the
International Conference on Very Large Databases,
1994.

[3] Altera, Inc. http://www.altera.com.

[4] D.A. Bader, B.M.E. Moret, T. Warnow, S.K.
Wyman, and M. Yan. High-performance algorithm
engineering for gene-order phylogenies. In Proceed-
ings of the DIMACS Workshop on Whole Genome
Comparison, 2001.

[5] Z. K. Baker and V. K. Prasanna. Efficient Hardware
Data Mining with the Apriori Algorithm on FPGAs.
In Proceedings of the Thirteenth Annual IEEE Sym-
posium on Field Programmable Custom Computing
Machines 2005 (FCCM ’05), 2005.

[6] F. Bodon. A Fast Apriori Implementation. In Pro-
ceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations, 2003.

[7] C. Borgelt and R. Kruse. Induction of Associa-
tion Rules: Apriori Implementation. In Proceedings
of the 15th Conference on Computational Statistics,
2002.

[8] Cray Inc. XD-1. http://www.cray.com/
products/xd1/.

[9] M. Estlick, M. Leeser, J. Szymanski, and J. Theiler.
Algorithmic Transformations in the Implementation

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

of K-means Clustering on Reconfigurable Hard-
ware. In Proceedings of the Ninth Annual IEEE Sym-
posium on Field Programmable Custom Computing
Machines 2001 (FCCM ’01), 2001.

[10] B. Goethals. Survey on frequent pattern mining.
Technical Report: Helsinki Institute for Information
Technology, 2003.

[11] A. Kalyanaraman, S. Kothari, V. Brendel, and
S. Aluru. Efficient clustering of large est data sets on
parallel computers. Nucleic Acids Research, 31(11),
2003.

[12] SRC Computers, Inc. http://www.
srccomputers.com.

[13] C. Wolinski, M. Gokhale, and K. McCabe. A Re-
configurable Computing Fabric. In Proceedings of
the Engineering of Reconfigurable Systems and Al-
gorithms (ERSA ’02, 2004.

[14] Xilinx, Inc. http://www.xilinx.com.

[15] M.J. Zaki and K. Gouda. Fast vertical mining us-
ing diffsets. In KDD ’03: Proceedings of the ninth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 326–335,
New York, NY, USA, 2003. ACM Press.

[16] Q. Zhang, R. D. Chamberlain, R. Indeck, B. M.
West, and J. White. Massively Parallel Data Min-
ing using Reconfigurable Hardware: Approximate
String Matching. In Proceedings of the 18th Annual
IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS ’04), 2004.

14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM'06)
0-7695-2661-6/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

