
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2012, Article ID 271860, 12 pages
doi:10.1155/2012/271860

Research Article

Survey: Discovery in Wireless Sensor Networks

Valerie Galluzzi and Ted Herman

Department of Computer Science, University of Iowa, Iowa City, IA 52242, USA

Correspondence should be addressed to Ted Herman, ted-herman@uiowa.edu

Received 16 July 2011; Revised 7 October 2011; Accepted 13 October 2011

Academic Editor: Yuhang Yang

Copyright © 2012 V. Galluzzi and T. Herman. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Neighbor discovery is a component of communication and access protocols for ad hoc networks. Wireless sensor networks often
must operate under a more severe low-power regimen than do traditional ad hoc networks, notably by turning off radio for ex-
tended periods. Turning off a radio is problematic for neighbor discovery, and a balance is needed between adequate open commu-
nication for discovery and silence to conserve power. This paper surveys recent progress on the problems of neighbor discovery for
wireless sensor networks. The basic ideas behind these protocols are explained, which include deterministic schedules of waking
and sleeping, randomized schedules, and combinatorial methods to ensure discovery.

1. Introduction

In the decade following the introduction of Wireless Sensor
Networks (WSNs) to the lexicon, the technical landscape of
applications, network protocols, and research problems has
shifted somewhat. The early focus on basic communication
issues enabled more applications to be deployed, and the cat-
alog of available WSN platforms increased to include many
types of radio and processor features. Experience with appli-
cations and platforms showed that early perceptions of po-
wer challenges and solutions to power management were
perhaps misinformed. For example, the lifetime of a sensor
node running on battery was not significantly extended by
attenuating transmission power. Rather, the most effective
means of power conservation consists in powering off com-
ponents entirely, including sensors and the radio. The appen-
dix of this paper has a small example illustrating how the
lifetime of a battery-powered sensor node could vary from
days to years depending on effective use of sleep modes.
Scheduling operations across a WSN, for example, selectively
powering on and off nodes, is a problem of distributed
control. Indeed, a fundamental balance is needed to mini-
mize power utilization on one hand, yet facilitate application
data forwarding through the WSN on the other hand. The
situation is yet more challenging if the network topology is
dynamic, nodes are mobile, or nodes depend on harvesting
devices to scavenge sufficient power for radio operation.

This paper surveys the literature of one facet of power
management in sensor network protocols, namely the prob-
lem of neighbor discovery. Informally, the problem is to devise
an efficient protocol whereby sensor nodes learn of the pres-
ence of other nodes within communication range even as
they adhere to low-power operation, with the radio mostly
off. The crux of the problem is as follows.

A sensor node p needs to communicate with some
neighbor q, but that is only possible when both p
and q have their radios powered on at the same
time.

This problem is particularly relevant to ad hoc or mobile
deployments where the set of (communication) neighbors of
a node is unpredictable or dynamic. The parameters of the
problem are many: design choices for power schedules, con-
straints of processor (resources and timing facilities), hard-
ware features of the radio, and application requirements con-
trol what is the set of conceivable solutions. Though several
techniques from the literature on neighbor discovery have
some combinatorial flavor, the dependence on problem pa-
rameters makes framing neighbor discovery as a purely algo-
rithmic problem somewhat difficult. To give the survey con-
text, we examine some related problems, technology and
older results from areas of networks and distributed comput-
ing. The survey then explains prominent techniques for

2 International Journal of Distributed Sensor Networks

(1)

(2)

(3)

(4)

(1) (2) (3) (4)

Figure 1: An uncoordinated node schedule.

neighbor discovery, metrics for analysis, and several impor-
tant results from the literature. We have also simulated rep-
resentative protocols for neighbor discovery, to illustrate for
the reader how different design choices affect performance
metrics.

Organization. For readers unfamiliar with the problem
of neighbor discovery, Section 2 discusses a brief motivating
scenario. The paper then presents historical background,
sensor node and radio platform considerations before
presenting protocols in Section 5 (eager readers may wish to
start with Section 5). After reviewing some background con-
cepts from distributed computing in Section 3, considera-
tions that constrain and affect evaluation of protocols are
discussed in Section 4. Material in Section 5 organizes neigh-
bor discovery protocols thematically, grouping them by their
basic discovery techniques (which mostly repeat historical
themes mentioned in Section 3). Section 6 is devoted to per-
formance metrics for neighbor discovery protocols. Final re-
marks are in Section 7. Some details about hardware and
protocols considerations are deferred to the appendix.

2. Motivating Scenario

Protocols for low-power operation in sensor networks
turn the radio off between communications. Schedules for
turning radio on and off could be periodic, random, or some
hybrid of these approaches. Figure 1 shows a scenario for
four nodes, (1)–(4). The top part of the figure shows the
communication network, which is a linear structure (node
(1) is out of range of node (3)). Each of these nodes uses the
same periodic awake schedule, waking once every five time
intervals. Unfortunately, their schedules are not coordinated
in the figure; hence no two nodes are unable to communicate,
because their radios are not on at the same time. This
unfortunate situation could be the result of improper
initialization, crash and restart events at unpredicted times,
or the normal dynamic arrival of nodes in an ad hoc WSN.

Some MAC protocols arrange to have nodes occasionally
sample radio activity during sleeping periods, with the aim
of learning what other nodes are in the vicinity and what
are their schedules; the appendix cites papers on low-power
MAC protocols for WSNs that use sampling. These sampling
techniques depend on a radio feature for channel sampling
that is fast and consumes very little power. By contrast, the
discovery protocols surveyed in Section 5 do not depend on
extra radio features. If sampled neighboring node schedules

(1)

(2)

(3)

(4)

Figure 2: Node (3) accommodates its neighbors.

(1)

(2)

(3)

(4)

Figure 3: Coordinated node schedule.

are predictable (i.e., periodic), then some additional waking
time can be scheduled. Figure 2 shows a modification to
the scenario of Figure 1 in which node (3) has learned the
schedules of (2) and (4), and then added to its waking times
to facilitate communication. Note that in addition to enlarg-
ing its waking time to accommodate (2) and (4), node (3)
retains its original schedule as well, in case any other nodes
that have learned about (3) depend on its schedule.

Does learning of neighboring nodes then accommodat-
ing their schedules solve the problem of neighbor discovery?
Yes, however, one would hope to have a power-optimal solu-
tion to neighbor discovery rather than adding additional
waking times to accommodate neighbor schedules. Remark-
ably, protocols (surveyed in Section 5), by careful arrange-
ment of their schedules, are able to learn of neighbors with-
out extra sampling of the radio during their sleeping periods.
It should be possible for a WSN to overcome improper ini-
tialization or ad hoc network formation, so that eventually all
schedules are coordinated, as shown in Figure 3. Having all
nodes move to a common, coordinated schedule (analogous
to TDMA) will result in lower power consumption.

For more traditional, mobile ad hoc networks (MANETs)
where power conservation is not so critical, neighbor dis-
covery is the simpler problem of continuously detecting that
mobile stations come into range—converging to a common
schedule like that shown in Figure 3 is not important. Many
WSN applications are either event-driven (and nodes cannot
wait long to transmit data) or the power requirements are not
so stringent. For these applications, learning of and accomm-
odating to neighbor schedules is adequate.

3. Wakeup in Distributed Systems

A sensor node saves power by turning off its radio. While
the radio is off, that sensor neither receives messages nor re-
sponds to queries or commands. It is dormant as far as other
nodes in range of communication are concerned. We thus say
that a node is asleep when its radio is off, and awake when the
radio is on. Two nodes are (communication) neighbors if they
can communicate when both are awake.

International Journal of Distributed Sensor Networks 3

Results from the WSN literature on neighbor discovery
explore arbitrary communication topologies that have bidi-
rectional communication links. That is, if p and q are neigh-
bors, then p can hear q’s messages and vice versa; in reality,
the neighbor relation could be asymmetric, so that p could
hear from q, whereas q would be unable to receive from p
presentation. In WSN deployments, it could be possible that
a link is asymmetric; the papers surveyed in this paper gener-
ally presume bidirectional links. The assumption of symme-
try simplifies analysis and protocol research. In our opinion,
neighbor discovery with unidirectional links is an open prob-
lem. We suggest in Section 7 some considerations regard-
ing unidirectional links in research. Note, however, if a net-
work can be connected using bidirectional links, then unidi-
rectional links could be ignored or discarded for routing or
other applications; whether or not the case of unidirectional
communication really matters depends on empirical proper-
ties of WSNs in practice.

Other simplifying assumptions about timing are intro-
duced later in the article. Generally, we shall ignore the pos-
sibility of failures, including message corruption, radio inter-
ference, and frame collision during transmission. Because
discovery is an ongoing protocol, engineered to cope with dy-
namic, ad hoc WSNs, the consequence of simplyfing assump-
tions is that the latency for discovery is prolonged by commu-
nication failures. So long as communication succeeds with
sufficient probability, discovery eventually occurs. Even when
more realistic models are used, the techniques and themes
surveyed in this article would be valid starting points for
design and implementation of neighbor discovery protocols.

The neighbor discovery problem has a trivial solution if
nodes are given the ability to “wake up” sleeping neighbors.
It is common in wired local area networks to have a special
wakeup command, which causes sleeping nodes to become
awake. This feature turns out to be difficult or prohibitively
expensive for sensor nodes at the current level of technology.
There is one commonly used exception, passive RFID tech-
nology, where nodes receive not only a message but also the
power needed to compute and respond, from an electroma-
gnetic signal. Limitations on range and the power needed for
signaling (plus the cost of extra components) rule this option
out for WSN deployments, so the trivial solution of trans-
mitting a wakeup command and hearing acknowledgments
is not considered to be a satisfactory neighbor discovery pro-
tocol. However, wakeup considered in a broader context is
sufficiently important, yielding many interesting and rele-
vant techniques, as mentioned briefly in the following para-
graphs.

Among the well-studied problems for distributed algo-
rithms are variants of the wakeup problem. Perhaps the
oldest of these is the firing squad problem [1]: a multihop
network is given with all nodes initially asleep; one node is
selected to spontaneously wake up, and the goal is to have all
nodes perform some action only once, and simultaneously.
Algorithms for this task thus rely on the initiator node send-
ing messages to neighbors, which are propagated to their
neighbors, and so on, to wake up the entire network; super-
imposed on this wakeup scheme, there needs to be a timing
strategy so that nodes only perform the desired action at the

same instant all their neighbors do (transitively, the entire
network). Metrics for optimization include the number of
messages, the size of messages, the latency period between
initial activation and the firing of the action, and the over-
head (memory, program size) of the algorithm. Obviously, a
sleeping node cannot know when the initiator will wake up,
and this resembles one of the fundamental difficulties of the
neighbor discovery problem: a node cannot know (except for
very specific deployments) when another node enters into its
neighborhood and is capable of being awake.

Theoretical study of wakeup in a shared communication
medium network starts with [2]. The network there is single-
hop (i.e., a clique topology) and messages are unicast, unlike
the wireless model where a single message can be received by
all neighbors. Despite such differences from the WSN model,
an important observation is relevant to neighbor discovery
in a sensor network: the timing of when a node sends a
message (or engages in some higher-layer multicast protocol)
is important. The schedule of transmitting messages can be
deterministic or random, and the choice of a schedule is
crucial to efficiency. One schedule described in [2] gives each
node in the system a different schedule, based on periodically
transmitting after some silent period. The length of the
period is chosen to be a prime number so that each node has
a different prime, and this turns out to guarantee certain syn-
chronization properties. We will see in Section 5.4 that such
a technique has been exploited in several investigations of the
neighbor discovery problem.

Another perspective on discovery, again from the litera-
ture of distributed computing, is found in [3], which shows
how to match up servers and clients in a distributed, mes-
sage-passing system. With n servers and n clients, it turns
out that O(

√
n) messages suffice to guarantee a fully distrib-

uted rendez-vous between matching parties (a nondistributed
solution would be to have one leader node coordinate all of
the matching, but it then becomes a single point of failure
or contention). The idea is based on an n × n matrix, with
rows representing servers and columns representing clients.
The server of row i tells a set of P(i) nodes about itself,
whereas the client of column j queries a set of Q(j) nodes for
the desired service. Then, by arranging P, Q so that P(i) ∩
Q(j) is nonempty, discovery will occur. It turns out that
|P(i)| = �√n� and |Q(i)| = �√n� effectively load balances
the match-making process: a lower bound of Ω(

√
n) is shown

in [3] on the average message complexity for discovery be-
tween client and server. The view of discovery through a
matrix or table with rows and columns representing different
parties occurs in the WSN neighbor discovery literature (see
intersecting designs in Section 5.3). An earlier reference to
such a problem can also be found in the seminal paper [4] on
replica control in databases; later, a more sophisticated con-
struction [5] was discovered for mutual exclusion, which
achieves O(

√
n) complexity, n being the number of nodes

(incidentally, the initial construction depends on finding a
prime factor to establish the existence of a particular sub-
set of nodes that guarantee rendez-vous). Finding special ar-
rangements of awake times, rather than node locations, turns
out to be similar and useful for neighbor discovery.

4 International Journal of Distributed Sensor Networks

Time
slot 1 2 3 4 k

p

q

· · ·
· · ·

· · ·
· · · · · ·

· · ·

Figure 4: Slots for p and q. ☼ denotes awake.

4. Platform

This section briefly introduces terminology and facts about
sensor nodes used later in descriptions of protocols. More
detail on platform issues can be found in the appendix. Most
of the protocols are based on discrete models of time and
communication, so a slotted model of time is a reasonable
discipline for protocols and a convenient analysis abstrac-
tion. The appendix discusses some of the concerns of the slot
abstraction as well as duty cycle, processor, clock, and radio
facilities relevant to neighbor discovery.

The Slot Model. Before delving into the details of protocols,
it is helpful to explain some terminology found in the
literature of neighbor discovery. Time is modeled in discrete
units called slots, which are supposed to be intervals of real
time of sufficient length to permit communication. A node
can either be awake or asleep in any given slot. Discovery
protocols use schedules of awake and asleep intervals, most
of them based on slots, with the objective of keeping the ratio
of awake slots to total slots to a suitably low duty cycle (see
appendix for details and motivation of duty cycles). During
operation, we can refer to a node’s current slot by some
fictional counter value, so that a protocol or schedule may
be concisely described. For convenience of presentation and
analysis, we further suppose that all nodes commence and
terminate their slots in unison: a trace of a WSN execution
is thereby depicted by a diagram in Figure 4 where rows are
nodes, slot numbers increase left to right, and the starting
points for all slots line up vertically. Given such an ideal
arrangement of slotted time, the basis for neighbor discovery
is easy to define. If p and q are neighbors who have not yet
discovered each other, and if they are awake concurrently in
some slot k, then they discover each other and the fact of this
discovery is retained for slots k + 1 and higher. We call the
event of p and q discovering each other mutual recognition.

Slots are a convenient abstraction, though time on WSN
platforms is not inherently divided into slots. Nodes can
approximate being awake and asleep for intervals that would
approximate multiples of slot length; also, nodes cannot be
expected to have their slots precisely aligned as Figure 4
shows. Assume that a slot is the minimum-length time
interval for two nodes to exchange messages, thus adequate
for mutual recognition; that is, if neighbors are both awake
for the duration of one slot, then each neighbor receives some
message from the other. While it would be ideal for nodes to
discover each other in one slot time, it is quite improbable
in practice that that neighbors would have slots so pre-
cisely aligned, starting their slots simultaneously. Therefore,
implementations of these slotted protocols may stretch the

(1)

(2)

Figure 5: Unaligned slot sequences.

length of the awake interval, aiming for sufficient overlap
even when the slots are not aligned. To see this, consider an
awake interval comprising three slots, that is, three times the
minimum-length time needed for mutual recognition.

Figure 5 shows awake periods for two nodes, (1) and
(2), which do not have aligned slots. Because each interval’s
length comprises three slots, a sufficient condition is that
these two awake intervals satisfy: the center slots of each have
some (even small) overlap. That condition guarantees that
the two intervals overlap by at least the duration of one
slot, indicated, for instance, by the dotted vertical lines in
the figure. The condition suggests an approach to designing
a neighbor discovery protocol. First, assume that slots are
aligned; then design a protocol that guarantees, neighbors
eventually are both awake during some slot (the subject of
Section 5). Second, when implementing this protocol, prefix
any scheduled contiguous sequence of awake slots with one
extra awake slot, and similarly add a suffix of one extra
awake slot to the sequence. The idea from Figure 5 then over-
comes the fact that slots are not aligned in practice. Thus the
consequence of using simplistic model of aligned slots is that
neighbor discovery protocol results, presented in later sec-
tions, will be degraded by some (hopefully constant) factor
in an implementation of the protocol. Further motivations
for extending the awake periods (due to collisions and other
phenomena) are discussed in the appendix. The work of [6]
suggests another way to deal with unaligned slots: at the start
and end of each slot, a beacon is transmitted, which is enough
to trigger discovery. The implementation findings reported
in [6] using the slot abstraction state that only in 2% of
cases did the actual discovery time exceed that predicted by
analysis and simulation based on aligned slots.

5. Protocols

Protocols for neighbor discovery exploit three basic themes,
though a variety of constructions combine the themes and
emphasize them differently. First, a sensor node can use ran-
domness to influence behavior. Random choice of which
slots are awake or sleeping is a probabilistic method of ob-
taining mutual recognition. Second, there are patterns of
awake slots that guarantee neighbor discovery when all nodes
use them. Third, a node can remain awake for a number of
consecutive slots to assure neighbor discovery.

Whatever the technique used for obtaining discovery, an
important question is what should be done after discovery?
Most papers gloss over this question, though it deserves
some explanation. Suppose that neighbors p and q achieve
mutual recognition in some slot at time t. One design choice
would be for both p and q to record the fact of a new
neighbor in local state variables and then continue with

International Journal of Distributed Sensor Networks 5

the discovery protocol after time t, each perhaps discovering
other neighbors. If the discovery protocol also exchanges
some extra information, then with each discovery a node
may also obtain the schedule for each neighbor. Thus, node p
would have a table of its neighbors and their sleeping sched-
ules. A different design choice would be for nodes to change
behavior following the event of neighbor discovery. Thus, at
time t when p and q discover each other, at least one of the
two nodes changes its sleeping schedule so that thereafter p
and q have identical sleeping schedules. We call this a merge
event. If two nodes merge, at least one of them switches
its sleeping schedule (or changes its current slot number
within the schedule). While this may seem simple, it can be
more involved after a history of merge events: perhaps two
connected componentsA and B each contain multiple nodes,
that is, |A| > 1 and |B| > 1. Now if a node in p ∈ A and a
node in q ∈ B discover each other, how should a merge event
proceed? If p is to adopt q’s schedule, then does p “move”
from A to B, or should all nodes of A and B merge into one
schedule? The latter choice would imply some kind of dis-
tributed algorithm to effect the schedule change, which is
problematic for a low duty-cycle WSN application. We leave
the details of merging questions open in this article, due to
the lack of literature on this topic.

Some WSN applications make use of the radio’s local
broadcast ability: with one transmission, a node can send
data to all its neighbors. If this feature is desired, then a
merging protocol is superior to a nonmerging protocol, be-
cause after merging, all neighbors would be awake to receive
a local broadcast (because they would have the same sleeping
and awake schedules). For applications that use only unicast,
a non-merging protocol could be sensible. A hybrid of these
two approaches would be a discovery protocol for single-use
deployments, where nodes engage in non-merging neighbor
discovery for some fixed time period, and then all nodes
switch to a common sleep schedule.

5.1. The Birthday Protocol. The idea of the birthday protocol
is dual to the randomization strategy behind CSMA/CA in
802.15.4 for sensor networks. Recall that for CSMA/CA, a
node delays for some random interval before attempting
transmission. The purpose of delay is to increase the proba-
bility of finding a transmission time that avoids collision, that
is, neighbors do not transmit simultaneously. In contrast,
the goal of the birthday protocol is to use random selection
between awake and sleeping states so that neighbors are
awake simultaneously. The work of [7] proposed the birthday
protocol for low-power communication, based on transi-
tions between three node states. Entering a state amounts to
starting either an asleep or awake interval of fixed duration,
which is effectively a slot. At the start of each slot, a node
chooses with probability ps, pt, and p� whether the state for
that slot is to be sleeping, transmitting, or listening. During
a transmitting slot, a node broadcasts a discovery message.
The work of [7] refines this approach further by arranging
for nodes to have different modes, using timing parameters
tuned for performance, which tune the frequency of entering
a transmitting state.

A notable feature of the birthday protocol is that it does
not require neighbor discovery as such. (Though [7] is or-
iented to neighbor discovery, we observe that it could directly
be used as a MAC protocol in which nodes may sleep.) Nodes
could use this protocol to send and receive messages, with-
out needing any particular sleeping schedule, because the
duration of sleeping is a random variable. An open question
is how nodes should behave in birthday protocol following
discovery—the argument of the authors of [7] is that the
birthday protocol can be memoryless, with no durable con-
sequences of discovering a neighbor. In contrast, other pa-
pers [7] as a discovery mechanism do suggest that discover-
ing a neighbor could modify subsequent protocol behavior.
We thus consider as an open problem how the randomized
technique of the birthday protocol could be used for more
durable discovery and scheduling. It seems that merging
would be possible, though the behavior of a merged set of
nodes should be the same with respect to random choices
after the merge. That is, when nodes merge, they should
adopt a common seed for a pseudorandom number genera-
tor, so that they coordinate sleeping.

Analysis of the essential ideas of the birthday protocol ap-
pears in [8, 9] for a 1-hop network (fully connected) with
application to ad hoc networks. We did not find analytic
results on the birthday protocol for multihop networks.
Analysis in [9] derives a time period after which, with high
probability, all neighbor discovery is completed (this as-
sumes that all nodes start at approximately the same time).
Analysis in [8] compares the energy cost of the simple birth-
day protocol, of the kind outlined here, to a round-robin
birthday protocol.

5.2. Brute Force. The simplest deterministic protocol for
neighbor discovery is the periodic schedule of n slots, with
the first �(n + 1)/2� of these being awake and the remaining
slots for sleeping. This can informally be called the “51%”
solution, since the idea is to remain on for slightly more than
half of a period. No matter how two neighbors are initially
offset in where their periods begin, mutual recognition is
assured because their awake intervals must overlap. Several
papers either explicitly or implicitly use this brute force
technique or similar [10–12]. Let the periodic interval of n
slots be called a round. Clearly, neighbors discover each other
within one round, which is optimal in terms of the latency of
the discovery process. Unfortunately, the duty cycle is at least
50%, which is unacceptable for low-power operation.

A method of reducing the duty cycle below 51% is
proposed in [10, 12]. Let k = �(n + 1)/2� − 1 and consider
a logical division of the initial �(n + 1)/2� awake slots into
the first slot and the k subsequent slots. Suppose that r is a
divisor of k. Now partition the k slots that follow the first
slot of the round into r sequences, labeled f0, f1, . . . , fr−1.
Each interval fi consists of r consecutive slots. With this
terminology, we consider a transformation of the 51%
solution by letting each round begin with one awake slot,
but distributing the intervals fi over r rounds. For example,
if r = 2, there are two intervals f0 and f1, each having k/2
slots, spread over two rounds: in the first round, we have
1 + k/2 awake slots followed by n − (1 + k/2) sleeping slots;

6 International Journal of Distributed Sensor Networks

Slot 1 2 3 4 5 6 7 8 9

Figure 6: Brute force transformed to lower duty cycle.

in the second round, there is one awake slot followed by k/2
sleeping slots, then k/2 awake slots, and n − (1 + k) sleeping
slots. The schedule for a node is to repeat the pattern of
these two rounds. Observe that, except for their first slots,
the awake times of the first and second rounds are disjoint.

Figure 6 illustrates an example where n = 9, k = 4,
and r = 1, which produces a sequence of four rounds.
The figure shows the four rounds as rows of a table, with
columns representing slots. The symbol ☼ indicates that a
slot is awake. The duty cycle for this schedule is less than
half of the 51% approach, 2/9. To get some intuition why
this translation of brute force into multiple rounds is valid,
consider two neighbors p and q that have an offset of six
slots and the following scenario. Node p starts with the first
round at time 0, and node q starts at time 6 with the first
round (time and slot numbers are synonymous here). Thus
p is awake at times 0 and 1, then asleep until time 9, when
its second round begins. Following the patterns of rows for
Figure 6 awake times for p are 0, 1, 9, 11, 18, 20, 27, 31, 36,
and 37. Node q is awake at times 6 and 7, then asleep until
time 15. The awake times for q include 6, 7, 15, 17, 24, 26, 33,
37, 42, and 43. We see that both p and q are awake at time 37,
which suffices for discovery. The rationale for the pattern is
seen from the table. The “union” of relative awake times for
the four rows is the 51% schedule.

The translation of brute force to a scheme that spreads
awake slots over time does reduce duty cycle, but at a cost: the
time needed to guarantee discovery is larger: the discovery
time is in the worst case r times greater (see analysis in
[10]). This translation partitions a consecutive sequence of
slots into an interrupted, irregular pattern of waking and
sleeping. In many of the other discovery protocols we see a
similar idea, where an irregular sleep pattern is used to obtain
low duty cycle. Depending on application constraints, an
irregular sleep pattern may not be useful for the application’s
tasks of sensing, computing, and communicating. At least
the first slot of each round in the transformed brute force
approach occurs periodically. A hybrid adaptation of the
idea, combining the translation and randomized selection,
would be a schedule with two awake slots, one at the start
of each round and the other randomly selected from the
remaining slots in the round.

A different method to reduce the duty cycle, again based
on the brute force technique, is used in [11]. The basis for
their method is to have one awake slot at the start of every
round; however this is augmented by sometimes using the
51% solution in a round. For example, once every n rounds,
a node is awake during �(n + 1)/2� consecutive slots, this
achieves a 2/n duty round, at the cost of increasing the worst-
case discovery time of the protocol. Because a node would

need to be awake for n/2 consecutive slots, this method might
be unsuited to energy-harvesting platforms.

5.3. Intersecting Designs. Finding schedules of awake and
sleeping slots to guarantee neighbor discovery has a combi-
natorial interpretation. The problem is to devise schedules
with minimum duty cycle that are self-intersecting with
respect to any rotation. Suppose that π denotes the indices of
awake slots in an n-slot round. An example of this for n = 16
is π = {0, 3, 4, 12}. A k-rotation of π is obtained by adding k
to each index, modulo n, denoted by πk. Thus the 5-rotation
of the example produces {5, 8, 9, 2}. The combinatorial task
is to find minimum size π such that π ∩ πk /=∅ for 0 ≤
k < n. Finding such a sequence readily provides a schedule
so that no matter how neighbors are offset, a common awake
slot is guaranteed within a complete round.

While self-intersection for any k-rotation yields discovery
within a round, the neighbor discovery problem in general
does not require discovery within one round. Depending
on how important discovery is to the application, weaker
combinatorial problems, perhaps asking for intersection over
a history of rounds, would be satisfactory. The results sur-
veyed in this subsection target guaranteed discovery within
one complete round. Also, note that the problem of finding
self-intersecting sequences need not be restricted to all nodes
using the same sequence. We may distinguish between sym-
metric solutions, where all nodes use the same sequence, and
asymmetric solutions where nodes use different sequences
from a set S of patterns, such that any S ∈ S is guaran-
teed intersection with Tk for T ∈ S. We concentrate first
on symmetric solutions and return in the next subsection to
asymmetric solutions.

Lower bounds on the number of awake slots needed
for self-intersection are explored in [13, 14]. The problem
requires Ω(

√
n) slots to be awake for discovery. In effect, the

solution schedules with O(
√
n) awake slots correspond to the

match-making work cited in Section 3. The schemes pro-
posed in [13] are combinatorial designs, which have other
applications in discrete mathematics. However, the first pa-
per to explore such schedules for discovery is [15], which
used the quorum idea, similar to the work of [5] on mutual
exclusion. The works of [13, 14] improve on the quorum
construction with lower power and considering multihop to-
pologies and investigating randomized schedules with high
probability of self-intersection with rotation.

Designs based on self-intersecting schedules are chiefly
of interest to applications that need to minimize discovery
latency, while also minimizing power usage. Whereas the
brute force approach has a duty cycle of at least 1/2 to minim-
ize latency, the existence of self-intersecting schedules would
argue that power can be substantially reduced. However,
there are some considerations for using these schedules with
low duty cycles. Suppose that a 0.1% duty cycle is needed,
and ignore constants in the O(

√
n) bound, for estima-

tion purposes. To obtain the 0.1% duty cycle, we require√
n/n = 1/1000; hence n = 106. A deterministic self-inter-

secting schedule could impose some complex representation
challenges for software implementation, depending on plat-
form resource. Also, the schedule will be irregular, which may

International Journal of Distributed Sensor Networks 7

not be compatible with desired application behavior. Finally,
the platform typically puts a practical lower bound on the
duration of a slot, typically in tens to hundreds of millisec-
onds: the duration of a round, and therefore worst-case dis-
covery time, will be on the order of several hours. (This last
observation merely illustrates that there is a tradeoff between
low duty cycle and discovery latency.)

5.4. Coprime Schedules. The last type of protocol we survey
is based on periodic rounds that have relatively prime length
with respect to neighbors, reprising an idea mentioned in
Section 3. Thanks to the Chinese Remainder Theorem [16] if
neighbors p and q have rounds in which the first slot is awake
and the rest sleeping, and the two round lengths are relatively
prime, then discovery is guaranteed. Put more formally, let cp
and cq be the respective number of slots in the rounds of p
and q. Numbers cp and cq are coprime if their greatest com-
mon divisor is 1. The latency for mutual recognition is, in the
worst case over any offset between the two rounds, cp · cq.

Several observations concerning coprime schedules affect
its suitability for WSN deployments. First, nodes need indi-
vidualized programs so that each node has a round length co-
prime to all its neighbors. This can be done by assigning each
node its own prime number; however this adds to deploy-
ment cost (and may be error-prone). Second, the duty cycle
for a schedule of cp rounds is 1/cp; if different primes are
used, the asymmetry of different duty-cycle rounds in the
network will depend on the set of primes chosen (though,
after fully merging, all nodes could use a common round).
Third, the schedule’s arrangement of periodic rounds with
one awake slot is a good fit for applications performing peri-
odic sampling, perhaps by extending the one awake slot to an
awake interval of slots. Note that in coprime scheduling we
see a tradeoff between latency and duty cycle: lower latency
is obtained by using smaller primes, but this entails higher
duty cycle.

Several papers propose coprime scheduling for neighbor
discovery [6, 10, 11], using different techniques that deal
with the possibility that neighbors were given the same prime
number for their rounds. The choice of a prime can be dy-
namic, by random selection. That enough does not ensure
that neighbor rounds have coprime length, because there re-
mains the possibility of unlucky random choices that deal
with the same prime to a pair of neighbors. The technique
proposed in [10] is to repeat the random prime selection
process. For example, p may start with a randomly selected
cp, use that for k·cp rounds, and then choose again randomly
another prime value for cp. The value k can be tuned, and
random selection is confined to a set of two coprime num-
bers {z, z + 1} to get an expected discovery latency in O(z2)
slots. Two deterministic approaches are investigated in [6,
11]. The idea of [6] is to assign a pair of primes {cp,dp} to
any node p. The sleeping schedule is modified so that a slot
t is awake when either t mod cp or t mod dp is zero. Because
cp /=dp, even if neighbors have the same pair of primes, dis-
covery is assured. Tuning the selection of primes for a desired
duty cycle, and a refinement using a triple of primes per node
is also proposed in [6]. An advantage of multiple primes is
that duty cycles can be adjusted at finer grain, because the

duty cycle is approximately 1/cp + 1/dp; moreover, different
nodes can have distinct duty cycles, if an asymmetric sched-
ule is useful to the application. The remaining technique,
proposed in [11], to overcome using the same prime at
different nodes is the one mentioned at the end of Section 5.2
proposed (a transform of brute force) where one in every cp
rounds is a round with the 51% solution.

6. Metrics

Two criteria for evaluating a neighbor discovery protocol are
latency and duty cycle. Latency is informally the time taken
to discover a neighbor. Formally, latency can be measured in
several ways: (i) the {mean, median, maximum} times for
two neighbors to mutually recognize, taken over all nodes
and all initial configurations (of offsets and protocol parame-
ters, such as prime number assignments) between the nodes;
(ii) the mean time for a node to discover all its neighbors,
taken over different offsets, nodes, and topologies; and (iii)
the mean and maximum time to “termination”, that is, when
all nodes have discovered all their neighbors, again taken over
all initial conditions and protocol parameters. In addition
to these systemic questions of latency, one could ask about
time taken for a new node added to a network, or a topology
change, to be recognized. We focus on latency in this section,
particularly the worst case and distributions of discovery
times.

The work of [11] starts with the observation that, for
certain worst-case latencies in the class of deterministic pro-
tocols, the characteristics of optimal schedules, with respect
to the number of awake slots, were shown in [13]. An optimal
schedule’s number of awake slots can be used as a bench-
mark for evaluating different protocols. The authors of [11]
propose that a combined metric, the power-latency product,
be a basis for comparison. Their analysis for power-latency
product shows that the quorum protocol [15] and the pair-
of-primes protocol [6] are at least a factor of two greater than
the optimum, whereas the single prime protocol of [11] is a
factor 3/2 greater than the optimum. Another paper [12] sug-
gests that randomizing the choice of which slot is awake (in
the transform at the end of Section 5.2) may have better mean
time to discovery than [11].

Is the power-latency product a good target for optimiza-
tion? When either factor, time to discovery, or duty cycle
is held constant, the other factor indeed should be min-
imized. The attractiveness of the power latency product is
its neutrality with respect to tradeoffs for the several pro-
tocols surveyed: if latency is to be reduced, using several of
the techniques explained in this article, it is at the cost of
increased power utilization (for an optimal protocol), due to
higher frequency of scheduled awake slots. If these two fac-
tors are commensurate, then tuning latency does not change
the metric. Power-latency as a metric is similar to the delay-
power product for design of switching circuits, where higher
power can be necessary for faster response. One aspect
missed in the power-latency comparisons in [11] is the distri-
bution of discovery latency times, rather than comparing by
analysis of the worst-case latency.

8 International Journal of Distributed Sensor Networks

6.1. Simulations. The performance behavior of discovery has
been evaluated in [6, 11] by simulation and implementa-
tions. The Disco paper [6] explores several questions by sim-
ulation, but left open the issue of how discovery times are
distributed. To better understand how protocols surveyed
in Section 5 compare with respect to discovery time distri-
bution, we simulated them. While a number of sensor net-
work simulators are available, for instance, [17, 18], these
tools simulate protocols at a low level. How discovery times
are distributed is a simpler question, readily answered by a
discrete event simulator; we wrote a small simulator in Py-
thon for our investigation.

The simulator was constructed as follows. One iteration
of the simulator runs a given discovery protocol on a fixed
number of immobile nodes from a start state in which
nodes have freshly generated random offsets to an end state
in which all edges have been discovered. Each protocol
evaluated was run through 1000 simulator iterations; the
time at which each edge was discovered was recorded. For
this set of simulations, we fixed the duty cycle to be approxi-
mately 1% on a clique topology of 48 nodes (for those pro-
tocols that could not realize a duty cycle of 1% a slightly
lower approximation was used). For all the protocols, we
chose parameters to get symmetric behavior (the same duty
cycles), meaning that we chose a single prime for all nodes
for protocol [11] and drew each prime randomly from a set
of four candidate primes to simulate Disco [6], following
the authors advice to choose for each node one prime near
the reciprocal of the duty cycle (100 for the 1% duty cycle)
and a second, larger prime to create a duty cycle closer to
1% (e.g., a valid 1% duty cycle prime pair would be (101,
10103)). To achieve the 1% duty cycle for the 51% solution,
we used the transformation of one extra slot per round ex-
plained in Section 5.2. The initial state of a node, that is,
where the node started the simulation with respect to the slot
schedule of awake/asleep, was uniformly random for each
of the 48 nodes. The resulting edge discovery times, totaled
over the 1000 iterations,v were then grouped into buckets
(each representing 100 consecutive slot times); each bucket
is a point in the graph, and lines through the points show
the distribution of discovery counts on the y-axis versus
slot times on the x-axis. Note that these simulations do not
use any kind of merging strategy—each node adheres to its
schedule throughout the simulation.

Figure 7 shows the results. The results show how different
protocols exhibit different discovery time distributions. De-
terministic approaches, quorum and the 51% protocol, end
at a certain slot for all simulation runs (this ending slot
represents the worst case). The Birthday protocol’s distribu-
tion confirms the classical combinatoric distribution one
would expect (which can be analytically predicted by probab-
ility theory). The long tail on Disco is due to the effect of large
primes, explained here in after.

The 51% protocol differs from the other deterministic
protocols by its discovery occurring at a relatively constant
rate. This protocol’s neighbor-discovery time is directly pro-
portional to the relative initial offset between neighbors.
Since the relative offsets are uniformly distributed initially,

0 10000 20000 30000 40000 50000
0

2

4

6

8

10

12

N
u

m
be

r
of

 n
ei

gh
bo

rs
 fo

u
n

d

Time in slots

Birthday protocol
Quorum protocol
51% protocol

Disco protocol
U-connect protocol

×103

Figure 7: Discovery time distributions from simulation.

the discovery times are uniformly distributed (up to the
worst case).

The distribution of [11] is relatively flat because all
nodes use the same prime number for their schedules. Recall
from Section 5 that a node is awake once every p slots
(p being the prime), but after p − 1 such iterations are
awake for p/2 + 1 slots. Hence, a node is awake for short
intervals frequently and long intervals infrequently. Due to
the uniform distribution of initial states and offsets, the long
intervals are uniformly distributed over the simulation. In
such a simulation, discovery only occurs when a long interval
is involved, hence the distribution follows a flat curve. (We
also ran simulations of [11] with many distinct primes,
and the resulting distribution had a pronounced downward
slope, reflecting the diversity of opportunities for discovery,
which reduced over time.)

The Disco distribution [6] shows larger discovery rate in
the beginning; the protocol gives an advantage to neighbors
with distinct smaller primes. Over the course of the sim-
ulation, neighbors with smaller primes are simultaneously
awake in numerous slots; however, we only count the first
such slot for discovery. Hence, we see more discoveries
toward the start of a simulation than later. After the edges
discovered through such intersections (driven by smaller
primes) are exhausted, we then see the distribution drop to a
long tail. In the long tail, neighbors get mutual recognition
during a slot governed by at least one larger prime. The
distribution’s flat long tail is explained by realizing that both
of neighboring node’s prime pairs and offsets are assigned
randomly; once the choice of (large) primes and offset is set
at the initial state, the distribution of meeting times between
distinct large primes tends to be uniform over the simulation.

Note that the Quorum protocol’s distribution is roughly
linear, and the downward slope appears to be the same as
the initial part of the Disco distribution. The explanation
is the same: over the course of the simulation, a given pair

International Journal of Distributed Sensor Networks 9

of neighbors (p, q) are awake simulataneously at numerous
times. The simulation only counts the first intersection of
(p, q) for discovery; the total number of opportunities for
edge discovery diminishes over time until all edges are dis-
covered.

7. Conclusion

This article collected the ideas prevalent in recent literature
on the neighbor discovery problem for wireless sensor
networks. The basic methods of randomization and combi-
natorial sequences appear in several papers, with the most
recent papers beginning deeper, hybrid constructions for
neighbor discovery. One technique not yet fully explored
could be sharing of discovery information with neighbors.
If p and q have discovered each other, and then p discovers
r, there is some probability that r is also a neighbor of q,
and this could be exploited to accelerate a (q, r) discovery.
Generally, heuristics suitable to particular topologies or
neighbor densities have not been explored in the literature.

In Section 3 it was observed that the case of unidirec-
tional links in neighbor discovery is not explicitly researched
in the papers we have surveyed. To give the reader some
idea of the considerations involved, suppose that the simple
linear topology of Figure 1 is unidirectional, where node (1)
cannot receive from any other node, (2) only hears from (1),
(3) only hears from (2), and (4) can only receive from (3).
In principle, it should be possible for each node except (1)
to learn of the upstream neighbor and adapt its schedule
accordingly; as a result, all nodes may eventually adopt the
schedule of (1). The case of a cyclic network topology with
unidirectional links would be more challenging, apparently
requiring some way to break symmetry. These considerations
suggest that complete solutions to the case of unidirectional
communication could be complex and perhaps unsuited to
the simple sensor network platforms.

Though protocols surveyed in Section 5 can work for
multihop WSNs, we did not find analysis or extensive
measurements of behavior for the multihop case. The issue
of merging after discovery, relatively simple for a single-hop
network, becomes more intricate for multihop networks.

Only two of the papers surveyed [6, 11] report empirical
work with implementation. Further practical experience
would be most helpful to prioritize research issues in this
area. The case study reported in [11] implemented neighbor
discovery in the FireFly Badge platform, used in the Sensor
Andrew project [19]. The platform was embedded into a
key-chain form factor and then used to support a social net-
working application.

Appendix

A. Platform and Hardware Considerations

The purpose of this appendix is to provide background
on hardware features and application requirements, which
constrain the implementation of neighbor discovery. Some
sensor networks are temporary, perhaps used for specific and
short-term purposes; others are long-lived, usually requiring

maintenance or manual procedures to set up and modify
the deployment. Additionally, application needs can limit the
range of schedules for awake and sleeping periods. Hence,
some considerations are driven by low-level characteristics
of a particular radio chip, whereas others are dictated by
high-level, use-case scenarios for the WSN. Implementation
issues are driven by engineering issues and by application
requirements or deployment experiences.

A.1. The Slot Model. The assumption of an aligned schedule
of slots is briefly justified in Section 4 under the assumption
that one slot is adequate for mutual recognition. How is
such a slot time established? There are two constraints on
the interval for nodes being awake, a lower bound due to
platform and protocol timing issues, and a bound derived
from power and application requirements. We look first at
the timing issues for a hypothetical case, inspired by figures
from representative hardware in WSNs [20–24].

Suppose that a radio frame (including synchronization
prefix) is 128 bytes and effective transmission rate is
19.2 Kbps; the transmission time for a frame is thus approxi-
mately 53 milliseconds. For mutual recognition, each of two
neighbors needs to transmit to the other, so a slot must be at
least 106 milliseconds long. However such superficial analy-
sis ignores important factors. (1) to compensate for the
lack of alignment, extra radio on time is needed as shown
in Figure 5. (2) If two neighbors transmit first in a slot,
the result is message collision and both attempts fail. (3)
A node cannot count on discovering a particular neighbor
in a slot. There could be more than one neighbor to
discover, exceeding the estimate of 106 milliseconds for
mutual recognition (for a set of neighbors). (4) Awake
slots could be used for other communication purposes than
discovery, so during normal operation discovery is only one
role of communication. (5) WSNs typically use CSMA/CA
to avoid collision by randomized delay before transmission,
and planning for the delay enlarges the awake interval. (6)
Even if slots are aligned (which could occur after neighbor
discovery and adjustment of node schedules), clocks can
drift and the timing of schedules may deviate from the ideal.
Other sources of timing error include device driver nondeter-
minism, perhaps due to interrupts from sensors hosted on
the WSN platform. (7) In realistic deployments, messages
are occasionally corrupted by a variety of noise effects. such
messages are lost.

A realistic estimate of adequate slot time therefore
includes different factors and likely depends on empirical
measurements of protocol properties. At best, an estimated
slot time is probabilistic. With some probability, mutual rec-
ognition will fail to occur when awake slots overlap. The la-
tency for neighbor discovery could thereby be prolonged.

A.2. Duty Cycle. Application requirements as well as plat-
form properties constrain power management in WSNs. A
simple example illustrates power management. Suppose that
a node is powered by a 1200 mAh battery, with the processor
consuming 2 mA under full power, and the radio consuming
20 mA when turned on for listening (events of receiving and
transmitting may use slightly more power). We estimate the

10 International Journal of Distributed Sensor Networks

lifetime of a sensor node to be a little more than two days if
processor and radio are continuously active. However using
sleep modes, the processor’s power consumption drops to
2 μA and the radio’s power draw is 1 μA. The lifetime of a
sensor node is estimated to be decades if always in sleep
mode. If an implementation uses duty cycling, with nodes
at full power 1% of the time and sleep mode 99% of the
time, the estimated lifetime for this hypothetical example
would be half a year, and with full power only 0.1% of the
time, a lifetime estimate is somewhat over five years. Using
0.01% duty cycling puts the lifetime estimate into decades.
Such estimates ignore communication failures, power needs
of sensing, and computation by the application. Nonetheless,
if an application requirement is to run for years in the field
on battery power, then exploiting sleep modes of processor,
radio (and perhaps attached sensors) is crucial.

In the slot model, for a history H of consecutive slots,
a node will generally alternate between sleeping and awake
states. Let Tsleep denote the number of sleeping slots and
Tawake the number of awake slots in H , so |H| = Tsleep +
Tawake. The duty cycle for H is defined as the ratio Tawake/|H|.
In most cases, discovery protocols use similar scheduling pat-
terns for all nodes, so the duty cycle of one node is represen-
tative of the duty cycle for the protocol. Some neighbor dis-
covery protocols have irregular or random sleep schedules,
in which case the duty cycle is evaluated for (asymptotically)
large values of |H|. Duty cycle is a useful metric for protocol
comparison. However, lower duty cycles generally imply
longer discovery times. If rapid neighbor discovery time is
desired, extremely low duty cycles may not be possible.

A.3. Radio. The consensus of papers investigating neighbor
discovery is that the radio uses a single frequency (even radio
chips programmable for multiple frequencies allow only one
to be used at a time), a node can transmit to all neighbors
with a single message, and a MAC layer takes care of collision
avoidance, usually by some random delay mechanism. Some
special considerations of radio chips have influenced the
design of a few neighbor discovery results. A number of low-
level MAC considerations (framing and rate of beaconing)
are studied in [25] especially for neighbor discovery. This
level of attacking the problem is at a deeper layer than we
consider for survey. Nonetheless, some properties of the
radio are described here in after, because they influence the
evaluation of higher layer protocols.

A.4. Warmup Delay. In practice, nodes cannot switch in-
stantly from a sleeping state to a fully awake state. Radio
chips typically need to activate frequency oscillators during
the power upsequence, and this can introduce a delay on the
order of a millisecond for WSN platforms (a typical WiFi
platform’s transition time is on the order of a hundred milli-
seconds). Though the power up sequence can begin during
the last part of a sleeping slot, the timing depends on the
node’s ability to schedule activities in real time, mediate con-
flicts with sensor activities, and so on. Similarly, if the duty
cycle for an application is geared to the duty cycle for neigh-
bor discovery, there can be extra tasks needed to power

up and calibrate sensors, should they have sleep states. The
time needed for radio warmup could make protocols with
contiguous awake slots more attractive than another protocol
with similar duty cycle and latency but more scattered awake
slots.

A.5. Clear Channel Assessment. Some radio chips have a
feature, made available to the device drivers of the system, to
sample radio activity briefly at very low power. This function
is called clear channel assessment (CCA). The power cost of
a CCA sample is negligible compared to the power of ful-
ly operating the radio, and additionally has no significant
warmup delay. This implies that substituting CCA slots for
awake slots in a neighbor discovery protocol can significantly
improve power consumption, an approach used in [11]. Ad-
ditionally, periodic CCA sampling can also be used to deter-
mine when a neighbor is transmitting, at which point the
radio can be powered to receive it, functionality utilized by
protocols like B-MAC [26]. However, B-MAC and similar
protocols require long message preambles to account for the
delay introduced by recipients powering on the radio. De-
pending on application patterns of sending and receiving
messages, B-MAC is able to approach 1% duty cycles without
needing sophisticated neighbor discovery algorithms; some
further refinements using scheduling of transmissions and
lightweight neighbor discovery (but not adapting all nodes
to a common schedule) are surveyed in [27], which can
attain 0.1% duty cycles. The SCP-MAC protocol of [27] is
especially relevant to discovery, since it shows how sampling
using CCA can lead to discovery of neighbors, synchronizing
schedules, and eliminating long preambles; however, at least
some level of transmission is needed to sustain discovery for
a dynamic network (sampling is not enough without trans-
missions). The SCP-MAC protocol may be more complex
for implementation than some platforms can afford. All the
low-power MAC results depend on having CCA, the ability
to wake quickly from sleeping, setting frame preambles or
other similar mechanisms; they also presume all nodes use
the same protocol. The work of [6] points out that higher-
level discovery protocols, of the kind surveyed in this article,
can tolerate greater heterogeneity of MAC protocols (perhaps
some nodes using low-power MAC and others not) and even
permit asymmetric operation where not all nodes use the
same duty cycle.

A.6. Clock. Timing is crucial to neighbor discovery. Proces-
sors typically have at least two clocks, which are essentially
programmable counters that generate interrupts. In sleep
modes, a counter which is based on an external oscillator
(outside of the processor chip) continues to run at extremely
low power, generating an interrupt when a designated value
is obtained. Using the processor clocks, a virtual clock service
can be programmed, supplying alarm signals and query
functions to applications. Further, through messaging, the
clock services of all the WSN nodes can be synchronized, so
that all nodes have the same “virtual time” available.

A trivial solution to neighbor discovery is possible with
synchronized clocks: nodes all wake at designated clock

International Journal of Distributed Sensor Networks 11

times, say when the clock modulo some value K is zero, and
this enables discovery. Clocks might be synchronized using
dedicated hardware; for example, a powerful transmitter on
a special frequency that periodically sends a time beacon
could synchronize all node clocks. However, in the absence
of a specialized setup, synchronizing clocks is only achieved
through message exchange between neighbors. Thus the
argument for using this trivial solution is circular.

Other practical concerns using clocks are jitter and skew.
Some software may insert delay processing clock-generated
interrupts, which degrades the timing of slot boundaries.
Also, counter hardware is often selected for low cost and may
deviate from ideal behavior; typical counters could run at
rates (1±10−5)·t where t is the rate of a corresponding neigh-
bor’s counter. Clock skew thereby degrades the assumption
that slots of neighbors have the same start times. Periodic
resynchronization and other countermeasures can improve
performance of slot-based protocols.

A.7. Application Requirements. Protocols for neighbor dis-
covery all specify schedules of sleeping and awake slots that
either guarantee mutual recognition or provide for mutual
recognition with some probability. Every WSN application
has one or more specified behaviors, which also require
awake periods for processing and communication. The ideal
situation would be to find compatible schedules between
application needs and discovery protocols, since doing so
would leverage warm-up overhead for both purposes and
share processing cycles and bandwidth during the awake
slots. When implemented, applications dictate or exploit
architectural features of the target WSN deployment: some
applications depend on the continuous availability of a base
station whereas others record data in local flash memory for
later extraction.

A.8. Event-Driven versus Periodic. Two extremes in applica-
tion requirements are event-driven and periodic sampling
styles. In the event-driven style, sensors detect phenomena
and trigger software handlers, which may then initiate data
transfer protocols to alert the base station. In the periodic
sampling style, nodes poll sensors for environmental values
and engage in communication rounds at prescribed times.
Many hybrids of these two styles are possible; for instance,
nodes may accumulate sensed values which are triggered by
external events (like the event-driven style) but only transmit
messages to report their sensor readings at regular, periodic
times. Extremely low duty-cycle operation generally favors a
periodic sampling style. In event-driven systems with higher
duty-cycles, the low-power neighbor discovery schemes may
be inappropriate, particularly if low-power protocols such as
B-MAC [26] are acceptable.

A.9. Tethered Applications. Neighbor discovery is simplified
when applications enjoy the assistance of a continuously
powered subnetwork with adequate communication cov-
erage. In such applications, nodes are of two types, con-
tinuous power and those that need to sleep for power
management. Provided every sleeping node p is within

range of a continuously powered node, then when p
wakes up, mutual recognition with a powered node occurs.
The simplest construction puts the powered nodes into a
connected subnetwork, or backbone, which can assemble all
neighborhood information and collect this information at a
base station (or alternatively work on the information with
a distributed algorithm). The powered subnetwork dictates a
power schedule to the other nodes, which arranges them to
be awake concurrently for neighbor recognition.

Tethered applications use an asymmetric architecture of
nodes, as opposed to a fully symmetric network where all
nodes have the same capabilities and power constraints.
An architecture need not be tethered, with some nodes
continuously powered, to be asymmetric. There can be
applications where some nodes use power harvesting, some
use small batteries, and some have larger battery reserves
for higher duty cycles. We observe here that asymmetry in
the architecture is possible mainly to distinguish between
later usages of symmetry in the construction of discovery
protocols, where symmetry and asymmetry refer to algorith-
mic properties, such as having equal or unequal duty cycles
among the nodes running a discovery protocol.

A.10. Deployment. The costs of deploying a WSN applica-
tion, which encompass the programming of the individual
nodes, installing sensor nodes in the field, testing compo-
nents and connectivity, and managing battery supplies and
assorted inventory chores, are “hidden costs” of software
designs and application architectures. An example of this
is the difference between a design where all nodes have
identical programs from a design where each node should
have an individualized program. With identical programs,
setup costs and replacement costs are reduced; in fact,
programming over-the-air is more efficient if all nodes install
the same code image [28]. An advantage of a randomized
discovery protocol can thus be lower cost of deployment.

References

[1] E. F. Moore, “The firing squad synchronization problem,” in
Sequential Machines, E. F. Moore, Ed., pp. 213–214, Addison-
Wesley, 1964.

[2] L. Gasieniec, A. Pelc, and D. Peleg, “Wakeup problem in syn-
chronous broadcast systems,” in Proceedings of the 19th Annual
ACM Symposium on Principles of Distributed Computing
(PODC ’00), pp. 113–121, 2000.

[3] S. J. Mullender and P. M. B. Vitányi, “Distributed match-
making,” Algorithmica, vol. 3, no. 1, pp. 367–391, 1988.

[4] D. K. Gifford, “Weighted voting for replicated data,” in Pro-
ceedings of the 7th ACM Symposium on Operating Systems Pri-
nciples (SOSP ’79), pp. 150–162, 1979.

[5] M. Maekawa, “A
√
N algorithm for mutual exclusion in a de-

centralized systems,” ACM Transactions on Computer Sys-
tems, vol. 3, no. 2, pp. 145–159, 1985.

[6] P. Dutta and D. Culler, “Practical asynchronous neighbor
discovery and rendezvous for mobile sensing applications,” in
Proceedings of the 6th International Conference on Embedded
Networked Sensor Systems (SenSys ’08), pp. 71–84, 2008.

[7] M. J. McGlynn and S. A. Borbash, “Birthday protocols for low
energy deployment and flexible neighbor discovery in ad hoc

12 International Journal of Distributed Sensor Networks

wireless networks,” in Proceedings of the 2nd ACM Interational
Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc ’01), pp. 137–145, October 2001.

[8] S. Fang, S. M. Berber, and A. K. Swain, “Analysis of neighbor
discovery protocols for energy distribution estimations in
wireless sensor networks,” in Proceedings of the IEEE Inter-
national Conference on Communications (ICC ’08), pp. 4386–
4390, 2008.

[9] S. Vasudevan, D. Towsley, D. Goeckel, and R. Khalili, “Neigh-
bor discovery in wireless networks and the coupon collector’s
problem,” in Proceedings of the 15th Annual International
Conference on Mobile Computing and Networking (MOBICOM
’09), pp. 181–192, September 2009.

[10] T. Herman, S. Pemmaraju, L. Pilard, and M. Mjelde, “Tempo-
ral partition in sensor networks,” in Stabilization, Safety, and
Security of Distributed Systems (SSS ’07), vol. 4838 of Springer
Lecture Notes in Computer Science, 2007.

[11] A. Kandhalu, K. Lakshmanan, and R. Rajkumar, “U-connect: a
low-latency energy-efficient asynchronous neighbor discovery
protocol,” in Proceedings of the 9th International Conference on
Information Processing in Sensor Networks (IPSN ’10), pp. 350–
361, April 2010.

[12] M. Bakht and R. Kravets, “SearchLight: asynchronous neigh-
bor discovery using systematic probing,” Mobile Computing
and Communications Review, vol. 14, no. 4, pp. 31–33, 2010.

[13] R. Zheng, J. C. Hou, and L. Sha, “Asynchronous wakeup for
ad hoc networks,” in Proceedings of the 4th ACM International
Symposium on Mobile Ad Hoc Networking (MOBIHOC ’03),
pp. 35–45, June 2003.

[14] M. Bradonjić, E. Kohler, and R. Ostrovsky, “Near-optimal
radio use for wireless network synchronization,” in Algorith-
mic Aspects of Wireless Sensor Networks (ALGOSENSORS ’09),
vol. 5804 of Springer Lecture Notes in Computer Science, pp.
15–28, 2009.

[15] Y. C. Tseng, C. S. Hsu, and T. Y. Hsieh, “Power-saving
protocols for IEEE 802.11-based multi-hop ad hoc networks,”
in Proceedings of the 21st Annual Joint Conference of the IEEE
Computer and Communication Society, 2002.

[16] I. Niven, H. S. Zuckerman, and H. L. Montgomery, An
Introduction to the Theory of Numbers, John Wiley & Sons,
New York, NY, USA, 1991.

[17] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: accurate
and scalable simulation of entire TinyOS applications,” in Pro-
ceedings of the 1st International Conference on Embedded Net-
worked Sensor Systems (SenSys’ 03), pp. 126–137, November
2003.

[18] V. Shnayder, M. Hempstead, B. R. Chen, G. W. Allen, and
M. Welsh, “Simulating the power consumption of large-scale
sensor network applications,” in Proceedings of the 2nd Inter-
national Conference on Embedded Networked Sensor Systems
(SenSys ’04), pp. 188–200, November 2004.

[19] Sensor Andrew, http://www.ices.cmu.edu/censcir/sensor-an-
drew/.

[20] nRF24 series data sheet, Nordic Semiconductor, http://www
.nordicsemi.com/.

[21] CC2500 data sheet, Texas Instruments, http://www.ti.com/.
[22] CC2420 data sheet, Texas Instruments, http://www.ti.com/.
[23] MSP430 data sheets, Texas Instruments, http://www.ti.com/.
[24] ATMEGA128 data sheet, http://www.atmel.com/.
[25] M. Kohvakka, J. Suhonen, M. Kuorilehto, V. Kaseva, M.

Hännikäinen, and T. D. Hämäläinen, “Energy-efficient neigh-
bor discovery protocol for mobile wireless sensor networks,”
Ad Hoc Networks, vol. 7, no. 1, pp. 24–41, 2009.

[26] J. Polastre, J. Hill, and D. Culler, “Versatile low power media
access for wireless sensor networks,” in Proceedings of the
2nd International Conference on Embedded Networked Sensor
Systems (SenSys ’04), pp. 95–107, November 2004.

[27] W. Ye, F. Silva, and J. Heidemann, “Ultra-low duty cycle MAC
with scheduled channel polling,” in Proceedings of the 4th Inter-
national Conference on Embedded Networked Sensor Systems
(SenSys ’06), pp. 321–334, November 2006.

[28] J. W. Hui and D. Culler, “The dynamic behavior of a data dis-
semination protocol for network programming at scale,” in
Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys ’04), pp. 81–94, November
2004.

