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ABSTRACT

User authentication, which refers to the process of verifying
the identity of a user, is becoming an important security re-
quirement in various embedded systems. While conventional
solutions for user authentication have relied on password-based
mechanisms, they are increasingly being replaced by biomet-
ric technologies such as fingerprint, face, and voice recogni-
tion, which are known to provide higher levels of security
for user authentication. This paper investigates the prob-
lem of supporting efficient fingerprint-based user authentica-
tion in embedded systems. For improving the performance of

their distinctive physiological (e.g., face, fingerprint, iris) and
behavioral (e.g., signature, gait) characteristics, could form a
component of effective user identification solutions, because
they intrinsically and reliably represent the individual’s bod-
ily identity [4]. Biometric characteristics cannot be lost or
forgotten; they are extremely difficult to copy, share, and dis-
tribute; they require the person being authenticated to be
physically present at the time and point of authentication. Of
these, fingerprint-based biometric authentication is increas-
ingly being accepted as a viable choice for user authentica-
tion in many systems such as personal laptops, enterprise sys-

fingerprint-based authentication, we propose hardware/software tems, etc., due to their high accuracy (lower false accept and

enhancements that include a generic set of custom instruction
extensions to an embedded 1plrocessor’s instruction set archi-
tecture, a memory-aware software re-design, and fixed-point
arithmetic. We believe that the custom instruction set exten-
sions proposed in this work are generic enough to s%eed up
many fingerprint matching algorithms and even other biomet-
ric algorithms. Our experiments with an open-source, high-
fidelity fingerprint authentication algorithm and a testbed fea-
turing a commercial extensible Frocessor show that perfor-
mance is improved by a factor of 10.4X when using the pro-
posed enhancements, while incurring modest overheads.
Categories and Subject Descriptors: J.6[Computer-Aided
Engineering]: Computer Aided Design

General Terms: Design, Embedded Systems, Security.
Keywords: User authentication, fingerprint, extensible pro-
CesSors.

1. INTRODUCTION

Embedded electronic systems are ubiquitously used to cap-
ture, store, manipulate, and access data of a sensitive nature
(e.g., cell phones, personal digital assistants (PDAs), smart
cards). The growing number of instances of breaches in infor-
mation security in the last few years has created a compelling
case for further efforts towards secure embedded systems. Re-
cent advances in embedded system security have addressed
some issues including secure communication, secure informa-
tion storage, and tamper resistance [1,2]. However, user-to-
device authentication typically forms the weakest security link
in the total security chain of most embedded systems, and is
often poorly addressed.

Currently, most solutions to user authentication use sur-
rogate representations of a person’s identity, such as pass-
words and personal identification numbers and token cards.
These approaches suffer from several drawbacks, including in-
sufficient security and inconvenience to users [3]. Biometrics,
which refer to the automatic recognition of people based on
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reject rates relative to voice and face-based solutions) and
lower cost (relative to techniques such as iris recognition) [4].
However, high-fidelity fingerprint-based authentication can be
very compute-intensive, since various signal processing tech-
niques need to be used to compensate for noisy or inaccu-
rate measurements (due to cost constraints, embedded sys-
tems such as mobile phones can afford to employ only low-to-
moderate resolution sensors). Furthermore, processing times
for biometric authentication must be in the order of a few sec-
onds. Because such systems are severely resource-constrained,
performance of software implementations of high-fidelity algo-
rithms can be extremely poor.

In this paper, we enhance the architecture of an embedded
system to address this issue. The main contribution of this
work is that we provide a set of hardware/software enhance-
ments to speed up user authentication. The proposed tech-
niques push the efficiency envelope of high-fidelity fingerprint-
based authentication, and can be applied to a wide range of
fingerprint, and even other biometric, algorithms. To the best
of our knowledge, this is the first investigation of the use of
custom instructions to accelerate biometric authentication.

The rest of this paper is organized as follows. Section 2 dis-
cusses the steps involved in fingerprint-based user authentica-
tion and presents an example of such a system, while Section 3
surveys related work. Section 4 details the hardware/software
enhancements that are used to speed up user authentication.
Section 5 concludes this paper.

2. PRELIMINARIES

In this section, we describe the steps involved in fingerprint-
based authentication and an example implementation of such
a system.

2.1 Fingerprint-based Authentication

There are two types of fingerprint-based authentication tech-
niques: graph-based and minutiae-based [4]. In this work, we

concentrate on the latter because minutiae! are widely be-
lieved to be the most discriminating and reliable features of
a fingerprint. In addition, the amount of information needed
to be stored in the template database for fingerprint match-
ing is smaller and the processing time is shorter than that of
graph-based algorithms. This is important in embedded sys-
tems where processing resources are limited and saving energy
is a major goal.

A fingerprint-based authentication system consists of two
main steps: user enrollment and user authentication, which

The term minutiae refers to features in a fingerprint such as
ridge endings and bifurcations.
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Figure 1: The two main components of a typical
fingerprint-based authentication system.

are shown in Figures 1(a) and 1(b), respectively. In the first
step, an acquisition system captures an image of the user’s
fingerprint. A series of image processing procedures are then
applied to the image to detect and extract the minutiae. The
extracted minutiae are stored in a template database and the
user is now considered enrolled. During user authentication
the user supplies a fingerprint image which is again processed
to detect and extract the minutiae. These minutiae are then
compared against the reference minutiae stored in the tem-
plate database. A reference score is calculated based upon
the number of minutiae that match. The user is considered
authenticated if the score exceeds a specified threshold.

2.2 An Example System

In this work, we used a popular, open-source software im-
plementation of the algorithm described in [5]. It is called Fin-
gerprint Verification System (FVS) [6]. On top of this minu-
tiae extraction algorithm, we implemented the local structure
based minutiae matching algorithm described in [7].

The overall block diagram of FVS is shown in Figure 2.
The first step in minutiae extraction involves normalizing the
captured image to have a pre-specified mean and variance.
Then, an orientation image is created which contains the co-
ordinates of the ridges and furrows in the fingerprint. Next,
a frequency image along the ridges is obtaine§ by examining
each pixel and those in its local neighborhood. The ratio-
nale is that, in a local neighborhood in which no minutiae are
Eresent, the gray levels between the ridges and furrows can

e modeled as a sinusoidal wave. If this is not the case, then
a minutia must be present. Based on the frequency image, a
region mask is created where parts of the original input image
are marked as recoverable or unrecoverable. Gabor filterin
is performed on the recoverable parts to remove noise an
highlight the ridges and furrows. Binarization is done on the
%ixels of the image to mark them as either black or white.

inally, the minutiae are extracted by examining each pixel
and its immediate neighbors.

Once the minutiae have been extracted, they are compared
against those in the template minutiae database to determine
a match. In the local structure algorithm [7], one minutia each
is chosen from the input and template minutiae databases, re-
spectively. Their neighbors are compared to determine if the
candidates match. It a specified number of neighbors match,
the two minutiae are considered a match. The process is re-
peated for every pair of minutiae in the databases. That is,
given input and template databases with M and N minutiae,
respectively, M N comparisons are required. Finally, a match
score is calculated and if it exceeds a given threshold, a match
is declared.

3. RELATED WORK

In this section, we survey various advances in fingerprint-
based authentication. The relevant work can be broadly clas-
sified into two main areas. The first deals with the develop-
ment of robust algorithms for minutiae detection, extraction,
and matching. e second is centered around efficiency is-
sues that arise when such an algorithm is deployed in a given
system.

At the algorithm level, many solutions for fingerprint match-
ing have been proposed that attempt to improve the over-
all authentication accuracy (lower false accepts and rejects).
For example, works, such as those presented in [5], incorpo-
rate various filtering and compensation techniques to account
for pose transformations and other deformations that may be
present in a fingerprint. A rich survey of various fingerprint
matching algorithms and their comparative analysis can be
found in [8].

With security in resource-constrained embedded systems
becoming important, researchers have attempted to integrate
authentication technologies into embedded systems. In that
context, a recent work [9] empirically shows that the pro-
cessing workload of a software implementation of a gray-scale
minutiae detection algorithm can be very significant while
running on a PDA such as an iPAQ. Since a significant burden
is due to the emulation of floating-point computations on the
StrongARM processor that has no floating-point unit (FPU),
the paper showed that the use of fixed-point arithmetic in core
computations can provide considerable speedug. Based on the
target embedded system and the fingerprint-based authenti-
cation algorithm used, other works have suggested hardware
and software enhancements for acceleration. For example, the
fingerprint verification module implemented in the embedded
device ThumbPod [10] uses multiply-accumulate hardware to
accelerate the Discrete Fourier Transform (DFT) computa-
tion used in minutiae detection and software optimizations
that can reduce the number of DFT calculations performed
in minutiae extraction.

4. ARCHITECTURAL ENHANCEMENTS

In this section, we present architectural enhancements that
were used to speed up the performance of FVS running on
an embedded processor (the T1050.3 Xtensa processor from
Tensilica [11]). The processor was configured with separate
two-way, 8KB instruction and data caches and a 32-bit multi-
plier. It was configured without an FPU because the addition
of an FPU incurs a 60% area overhead compared to the base
processor. This overhead is very significant for an embedded
system. Figure 3 shows the experimental testbed used in our
work. It includes three main components: (a) Xtensa emula-
tion platform running at 33 MHz, (b) Sharp Zaurus PDA, and
(c) AES3400 fingerprint sensor from Authentec [12] to capture
fingerprint images. The fingerprint sensor is connected to the
PDA, and the captured image is transferred to the emulation
platform for processing by the FVS-based authentication soft-
ware. Once processing is completed, the matching results are
displayed on the PDA.

4.1 Performance Analysis

We profiled FVS on Xtensa’s instruction set simulator (ISS).
The test data was a set of fingerprint images (256 x 256 pixels)
of various people acquired from the fingerprint sensor. The
ISS did not terminate after running for a week. This was
because FVS is a highly floating-point compute-intensive ap-

lication and the ISgS was using software macros to emulate

oating-point operations. Given the prohibitive time cost of
running an ISS; we decided to run FVS directly on the emu-
lation board to determine baseline performance. To address
the above issue, the floating-point operations in FVS were
converted to fixed-point operations. Fixed-point arithmetic
utilizes the 32-bit integer arithmetic logic unit to perform the
same computation at the expense of accuracy and the range of
numbers that can be represented with a given precision. After
carefully analyzing the code and the range of values that were
produced for various fingerprint images, we decided to use
two base formats, namely Q.22 and Q.28. In the Q.22 format,
the lower 22 bits of a 32-bit integer are used to represent the
fraction. The uiaper 10 bits are used to represent a signed in-
teger. Thus, values between -512 and 511 can be represented
with a precision of five to six decimal digits. Similarly, values
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Figure 2: The steps involved in minutiae detection, extraction, and matching.
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Figure 3: Experimental testbed for fingerprint-based
authentication.

between -8 and 7 can be represented with the Q.28 format.
Note that overflow/underflow is possible although we did not
observe any instance in our test suite of fingerprint images.
In the event that it does occur, the errors Willpbe local.” If
enough such errors do occur in a local neighborhood, then we
may not be able to detect a potential minutia. However, not
being able to detect one minutia among, say, fifty minutiae
(typical for a sample fingerprint) does not pose a significant
problem.

The basic operations of addition, subtraction, and multipli-
cation were straightforward and easy to implement. Precision
problems arose when trying to do fixed-point trigonometric
computations such as sine and cosine. The popular table-
lookup method proved to be insufficient in terms of accuracy.
Higher accuracy could have been obtained with larger tables
at the expense of a higher memory storage requirement. In-
stead, we used the CORDIC method [13], which is an iterative
algorithm that calculates trigonometric values using addition
and multiplication. However, the multiplicand in the mul-
tiplication is limited to powers of two. This translates to a
shift operation and makes CORDIC very amenable to hard-
ware implementation. All trigonometric functions and other
mathematical functions (such as exponential, square root, etc.)
were implemented using CORDIC.

After FVS was converted from floating-point to fixed-point,
we tried to profile it on the ISS again. This time the simulation
did complete and Figure 4 shows the flat execution profile.
The functions, whose name begins with Finger, correspond to
the various processing steps shown in Figure 2. As can be seen
from the profile, 88% of the computation time is spent in the
cordit] function which is called by sincosCordic to calculate
the sine and cosine of a value. The sincosCordic function
is utilized heavily in majority of the enhancement steps of
Figure 2.

4.2 Instruction Set Extensions

Table 1 provides a list of instructions that were added to the
base processor, their opcodes, their inputs and outputs, and
a brief description of what they do. For example, the cordit1
function was implemented as a custom instruction because it
consumes 88% of the total execution time. The semantics of
cordit? and cordit3 are very similar to that of corditl. Con-

%  cumulative
time seconds calls name
88.15 91.12 50236516  corditl
3.07 94.28 25002546 FingerEnhanceGabor
3.06 97.45 25002546  cordit2
2.27 99.79 2 FingerGetFrequency
1.55 101.40 2 FingerDirectionLowPass
0.57 101.99 50236516 sincosCordic
0.43 102.90 234058  cordit3
0.30 103.21 2  FingerOrientation

Figure 4: Profile of FVS using fixed-point operations.

Table 1: Custom Instructions for FVS
Name Opcode | Inputs/Outputs Description
corditl | 4760000 | r1, r2, r3/r1l, r2 | Take input in r3.
Put sin(r3) in r2.
Put cos(r3) in rl.
Take input in 3.
Put exp(r3) in r2.
Internal state in 71.
Take input in r3.
Put atan(r3) in r2.
Internal state in r1.

cordit2 | 4760001 | r1, r2, r3/r2

cordit3 | 4°b0010 | r1, r2, r3/r2

sequently, they too were chosen to be implemented as custom
instructions because virtually the same hardware can be used
for their implementation.

A snippet of the FVS code, which utilizes the cordit1 func-
tion, is shown in Figure 5(a). The pseudo-code of the cordit1
function is shown in Figure 5(b). Figure 5(c) shows the register-
transfer level (RTL) implementation that is functionally equiv-
alent to the body of the for loop highlighted in Figure 5(b).
This implementation was translated to the Tensilica Instruc-
tion Extension (TIE) language. Figure 5(d) shows how the
original code in Figure 5(a) was re-instrumented to utilize the
cordit] custom instruction. The input registers are initialized
using the WT#() macros. The body of the loop is replaced
by a call to the custom instruction. Once the computation is
complete, the RT#/() macros are used to read the values from
the registers and transfer their contents to the “original” pro-
gram variables.

The TIE specification for the custom instructions was com-
piled by the TIE compiler from Tensilica and the RTL imple-
mentation for the custom processor was generated. The RTL
implementation was then synthesized using Design Compiler
from Synopsys to get an accurate measure of gate count. The
total gate count for the custom instructions was 10,983. This
represents approximately 10% area overhead when compared
to the area of the embedded processor without custom in-
structions. The overhead is also much more modest than that
of an FPU (60%). Using design tools from Altera, the new
processor was downloaded onto the emulation board and the
performance was re-evaluated.

4.3 Addressing Memory-related Issues
Fingerprint-based authentication is a data-dominated ap-

plication. If we look back at Figure 2, we see that operations

are being performed sequentially over the pixels of an image.
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void sincosCordic (fp28 a, fp28* cosp, fp28 *sinp)

*ginp = 0;
*cosp = invGainl;

corditl (cosp, sinp, &a);

(a) Original code utilizing the cordit! function.

static void corditl (fp28* x0, fp28* y0, fp28* z0)

fp28 t, x, x1, y, z;

int i;

t = FP28 ONE; // t = 1

X = *x0; y = *y0; z = *z0;

for (i = 0; i < 32; ++i) {

if (z >= 0)
x1 = FPSUB(x, FPMUL28(y,t)); // X1 = x - y*t
y = FPADD(y, FPMUL28(x,t)); // y =7y + x*t
z = FPSUB(z, atanTablel[il); // z = z + atanTable[i]
else {
x1 = FPADD(x, FPMUL28(y,t)); // X1 = x + y*t
y = FPSUB(y, FPMUL28(x,t)): // y =7y - x*t
z = FPADD(z, atanTablel[il); // z = z + atanTable[i]
}

x = x1;

t >>= 1; // shift right one bit

}

*x0 = X;

*y0 = y;

*z0 = z;

(32{1'b1} << (32-ars))
| (TY >> ars)

(32(1'b1} << (32-ars))
| (TX >> ars)

atanTable[ars]

+-
TZ[31]

(c) RTL specification for the cordit! custom instruction.

static void corditl (fp28* x0, fp28* y0, fp28* z0)
fp28 t, ta, tb, x, y, z;

int i;
x = *x0; y = *y0; z = *z0;
// write registers

WTX (x) ;

WTY (y) ;

WTZ (z) ;

1 < 32; i++)
// custom instruction call

for (i = 0;
corditl (i) ;

// read registers

*x0 = RTX():;
*y0 = RTY();
*z0 = RTZ();

(d) Original code re-instrumented to utilize the
corditl custom instruction.

Figure 5: Example to demonstrate custom instruction

implementation and usage.
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Figure 6: Normalized execution times of FVS in five
different scenarios.

Because data cache and fingerprint image sizes were 8KB and
64KB, respectively, we observed significant memory traffic in
moving the image data between memory and cache due to
the sequential nature of the FVS algorithm. For example, the
frequency image is calculated only after the orientation im-
age for the entire image has been obtained. Clearly, this is a
bottleneck.

In the FVS algorithm, computation is very localized. That
is, to obtain a particular piece of information (orientation, fre-
quency, etc.) about a pixel, it is only necessary to analyze the
values of the pixels that are within a certain distance in a local
neighborhood. This holds true for most of the computations
in Figure 2. We can improve the cache data access patterns
of the algorithm by re-organizing the code. The is done by
dividing the image into blocks of 4KB. An image block of this
size is t%ien fetched from memory to cache. Then, the orienta-
tion and frequency images and the region mask are calculated
and Gabor (Cilltering is done on the block before proceeding to
the next block.

44 Exg)erlmental Results

Figure 6 compares the normalized execution time of FVS
in five different scenarios. The first and second bars show the
performance of FVS with floating-point and fixed-point oper-
ations, respectively. In this case, a factor of 2X improvement
was obtained. After the introduction of custom instructions
and re-organization of the al§(0rithm to reduce memory traf-
fic, a further speedup of 5.2X was achieved. This amounts
to roughly 10.4X speedup when using our proposed architec-
tural enhancements. The individual speedups of using only
custom instructions or code re-organization are also shown.
The reason we do not see a significant speedup when using
code re-organization only is that there is still memory traffic
when dealing with pixels lying near the borders of the finger-
print images or the borders of the 4KB memory blocks.

S.  CONCLUSIONS

In this paper, we presented an efficient architecture for
performing n%erprint-based user authentication in embed-
ded systems. For a popular, high-fidelity fingerprint-based
authentication algoritﬁm, we first developed various architec-
tural enhancements that included fixed-point conversions, a
low- overhead set of custom instructions, and memory-aware
code re-organization to significantly boost overall performance.
We believe that the biometric instruction extensions proposed
in this work are generic enough to be utilized in other finger-
print algorithms and even other biometric algorithms.
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