278 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 2, MARCH 2008

Robot Path Integration in Manufacturing Processes:
Genetic Algorithm Versus Ant Colony Optimization

Girma S. Tewolde, Student Member, IEEE, and Weihua Sheng, Member, IEEE

Abstract—Tool path planning for automated manufacturing
processes is a computationally complex task. This paper addresses
the problem of tool path integration in the context of spray-
forming processes. Tool paths for geometry-complicated parts are
generated by partitioning them into individual freeform surfaces,
generating the paths for each partition, and then, finally, inter-
connecting the paths from the different patches so as to minimize
the overall path length. We model the problem as a variant of
the rural postman problem (RPP), which we call open-RPP. In
this paper, we present two different solutions to the open-RPP.
The first solution is based on genetic algorithms and the second
one is based on ant colony optimization. This paper presents and
compares the results from both methods on sample data and on
real-world automotive body parts. We conclude this paper with
remarks about the effectiveness of our implementations and the
pros and cons of each method.

Index Terms—Ant colony optimization (ACO), genetic algo-
rithm (GA), path integration, spray forming, tool path planning.

I. INTRODUCTION
A. Motivation

PRAY forming is an emerging preforming process used
S in the manufacturing industry to fabricate products such
as body parts of automobiles and airplanes. The process of
spray forming is as follows. First, glass fibers are sprayed on
a mold using a chopper gun; at the same time, the binders
are applied; then, a consolidation process is implemented to
melt the binders so that the glass fibers are combined; finally,
the finished part is obtained by removing the mold. A typical
spray-forming workcell is shown in Fig. 1. Spray forming has
many advantages over traditional part manufacturing processes,
including lower product weight, lower material cost, and higher
flexibility.

The spray-forming process is usually carried out by mov-
ing mechanisms such as robotic manipulators with specific
spraying tools mounted on their end-effectors. Compared to the
full automation in the spraying process, the automation in the
spraying tool planning is far from satisfying. Currently, tool
planning is done manually through a teaching method, which
heavily relies on an operator’s experience and knowledge. It

Manuscript received May 2, 2006; revised December 11, 2006. This paper
was recommended by Associate Editor Kamel.

G. S. Tewolde is with the Department of Electrical and Computer En-
gineering, Kettering University, Flint, MI 48504 USA (e-mail: gtewolde@
kettering.edu).

W. Sheng is with the School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater, OK 74078 USA (e-mail: weihua.
sheng @okstate.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2007.914769

Fig. 1.

Typical spray-forming workcell.

usually requires an operator to use a trial-and-error approach to
find a good tool plan. For example, in Ford Motor Company’s
Aston Martin plant, it takes an experienced operator about eight
weeks to design a tool trajectory in order to spray a door panel.

B. Related Work

Robot path planning [1], [2] has been attracting many re-
searchers over the last few decades. In recent years, there
are some reports on automated tool planning for specific sur-
face manufacturing applications. Some of the work considers
the coverage problem, which only requires that any point on
the surface be covered or touched by the tool. For example,
Huang [3] presented an optimal line-sweep-based decompo-
sition method to cover a surface by minimizing the number
of turns a tool has to make. However, his method cannot
handle freeform surfaces. Path planning for polishing robots
has been investigated by several researchers. For example,
path generation using the computer-aided design (CAD) model
of a surface has been developed by Mizugaki et al. [4] and
Takeuchi et al. [5]. However, since both methods use parametric
surfaces to represent part geometry, it is very hard to handle
surfaces with multiple patches or surfaces with complicated
topology. The thickness problem arises from spray-painting
applications, and it is more complicated than the coverage
problem. Asakawa and Takeuchi [6] developed a teachingless
path generation method to paint a car bumper using the para-
metric surfaces. However, the resulted paint uniformity is not
satisfying, and no report on how to find the spray overlap
percentage and the gun speed is available. Antonio et al. [7]
developed a framework for optimal trajectory planning to
deal with the optimal paint thickness problem; but in their
method, the paint-gun path must be given a priori. Recently,
Atkar et al. [8] presented an optimal path-planning method for a

1083-4427/$25.00 © 2008 IEEE

TEWOLDE AND SHENG: ROBOT PATH INTEGRATION IN MANUFACTURING PROCESSES 279

N 06

Fig. 2.

Car inner hood.

single freeform surface, and their main concern is to choose the
start curve so that the thickness uniformity can be guaranteed.
Compared to spray painting, spray forming has received even
less attention. Penin et al. [9] developed an automatic path-
planning method to spray glass fibers on a panel with cement.
The spray width and spraying speed are determined using
spray rules. However, the material-thickness constraints are not
considered.

To summarize, several problems need to be solved before
an automated tool planning system can be adopted for factory-
floor use.

1) Most of the existing tool-planning approaches can only
handle path planning on a 2-D plane. Automated tool
planning for freeform surfaces in 3-D space is still an
open problem.

2) Most of the existing approaches can only deal with parts
that have simple geometry while real-world parts usually
have complicated shape or topology. A typical example is
a car inner hood, as shown in Fig. 2. The complexity of
the part geometry requires that the surfaces be partitioned.

This paper is organized as follows. In Section II, the general
framework of tool planning is introduced. Section III discusses
the tool path planning. Section III also presents the path inte-
gration problem and modeling of the problem as a variant of
the rural-postman problem (RPP). Sections IV and V describe,
respectively, the genetic algorithm (GA)-based and the ant
colony optimization (ACO)-based algorithms developed in this
paper to solve the path integration problem. Section VI presents
the implementation details and results of experimental testing
for both algorithms and a comparison between them. Finally,
this paper concludes in Section VII.

II. GENERAL FRAMEWORK

Fig. 3 shows the proposed automated tool-planning system
for spray forming. There are four major inputs to this planning
system, which are as follows: part CAD model, tool model,
task constraints, and optimization criteria. The planning system
generates a tool plan which can be validated by a simulation
module and a deposition quality verification module.

A CAD model contains the geometric information of a part.
A tessellation representation is used to model the part surfaces.

CAD Model ROBCAD™
L Robot Motion
Sur_fa_ce Performance
= Partition Evaluation
¢ Report
Path Planning
[Tool Model for each Patch Tool Trajectory
§ Path ==ty
. Integration
Task ¢ g
Constraints ‘ : " Verification Deposition
Trajec?my 1 Quality
— Planning rpespamey | @) | Evaluation
Optimization] Report
Criteria ‘ e
Fig. 3. Automated tool planning system for spray forming.

A tool is the deposition equipment mounted on the end-effector
of a moving mechanism, such as a robotic manipulator. A
general deposition tool model in spray forming can be repre-
sented by a spray cone [10]. Task constraints include thickness
requirements, kinematics constraints of the moving mechanism,
etc. Optimization criteria can be time, motion performance of
the moving mechanism and wastage, etc.

Therefore, the automated tool-planning problem for spray
forming can be formulated as follows. Given the CAD model
M, of the part surface, tool model M, task constraints €2, and
optimization criteria O, find a mapping F : (M., M;,Q,0) —
T'. T is the overall tool trajectory which specifies a series of
positions and associated velocities of the tool tip. In practice,
a constant standoff distance h is usually used, and the tool tip
is assumed to point toward the surface along the reverse of the
local normal direction [7].

The overall strategy of the automated tool planning, as shown
in Fig. 3, is based on a divide-and-conquer philosophy. The
compound surface is first partitioned into easy-to-solve patches;
second, for each patch, a path is obtained; third, the paths are
integrated to form a complete path; and lastly, associated tool
velocities are calculated for the complete path to obtain the
overall trajectory.

III. TooL PATH PLANNING
A. Surface Partition

The first step in the tool planning is surface partition. It
is observed that the geometry of most automotive parts is
complicated due to the following reasons: 1) there are holes
within the outer contour and 2) the surface normals may not
be consistent, and neighboring surface areas may form certain
angles where they meet. These two facts introduce difficulties in
planning tool trajectory that achieves high motion performance
and minimum thickness error. By partitioning the surfaces, the
tool-planning problem can be simplified. Based on the earlier
two facts, a two-step partition process is proposed. First, the
compound surface is partitioned so that each patch does not
contain any hole and is simple, regular shape, or topology.
Second, each patch is, if necessary, further partitioned based
on the normals so that the final patches are relatively flat.

It is observed that most of the parts in surface manufacturing
consist of low-curvature freeform surfaces. This observation

280 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 2, MARCH 2008

Weighted average normal
A

\/ hole
)/ Free-form
S / surface
/-\ /

Projection Plane

2D projection of S

Fig. 4. Project a freeform surface to a plane.

implies that, in order to understand the topology of a freeform
surface, it is sufficient to analyze the corresponding 2-D pro-
jection. The partitioning obtained in 2-D can then be mapped
back to the freeform surface to realize topology-based surface
partitioning (Fig. 4).

The normal of the projection plane is chosen as the weighted
average normal direction [11]. It has been proved in our pre-
vious work that the projection on this direction achieves the
maximum projection area [11].

Therefore, the problem of partitioning the compound sur-
faces is converted to the problem of partitioning a 2-D polygon
into multiple subpolygons. The criterion to guide the partition is
that the shape of the subpolygons should enable fast movement
of the tool and uniform material deposition. Our previous work
[12] proved that, among all the factors determining the speed
of tool movement, the number of tool direction changes is a
dominant factor because of the deceleration and acceleration
processes. For the uniformity issue, we also observed that it is
usually hard to achieve thickness uniformity along the common
borders which receive material from paths on two different
patches [10]. Therefore, we adopt the following measures to
characterize a subpolygon.

1) Regularity: Sharp angles always bring difficulties in
automated tool planning and motion control due to the
small area at the corner [13], which causes many tool
direction changes. Essentially, the regularity requirement
implies a favor on right or obtuse interior angles.

2) Convexity: Concavity of a polygon also implies more
changes of the tool moving direction. Therefore, it is
necessary to avoid those interior angles that are greater
than 7 in surface partitioning.

3) Number of turns a tool makes: Fewer turns usually
imply less travelling time for the tool, since making turns
requires a tool to completely stop at the ends of the paths
[3]. The number of turns a tool has to make to finish a
subpolygon can be represented by the minimum altitude
ALT 3, of the subpolygon [3].

4) Length of common borders: The common border is
where two subpolygons meet. It is desirable to reduce
the total length of common borders to improve thick-
ness uniformity. This polygon partition problem can be
modeled as a weighted-set partition problem and solved

using commercial optimization software. The detailed
procedures can be found in [14].

The patches obtained through topology-based partition may
exhibit big curvatures. For these patches, it is very difficult
to obtain well-behaved trajectories that minimize the thickness
error. Therefore, a further step is needed to partition the patches
into flat patches or patches that satisfy the flatness constraint:
Its maximum deviation angle (MDA) is less than a certain
threshold B;,. A growth algorithm [11] is proposed to find flat
patches, which finds the triangle with the maximum area first
and then gradually pull in neighboring triangles, until the MDA
exceeds (.

After the two-step surface partition, flat patches are gener-
ated. The whole compound surface can be described by a flat-
patch-adjacency graph, which models each flat patch as a node
and the adjacency relationship between two patches as a corre-
sponding edge.

B. Tool Path Planning for Each Patch

The next step is to plan the tool path to cover each flat patch.
Zigzag or spiral patterns are usually used to generate the paths.
Zigzag patterns lead to simple tool movement, but the non-
isotopic nature introduces difficulty in maintaining thickness
uniformity near the patch borders. Spiral patterns have isotopic
nature but may not be able to avoid disconnected path segments
for certain patch shapes [15]. In most of the previous work, only
one movement pattern can be preselected. In our system, the
tool planner considers both patterns and uses whatever pattern
is appropriate.

To determine the pattern and sweeping direction, the contour
of a flat patch is partitioned into multiple border segments,
based on the critical points where curvatures achieve local
maximum. For simplicity, we only consider the sweeping direc-
tions parallel to border segments. There are multiple choices to
design the paths. For example, Fig. 5(a)—(c) shows three zigzag
patterns while Fig. 5(d) shows a spiral pattern. The pattern and
sweeping direction that results in the maximum path fairness
[14] will be used to generate the tool path on that patch.

With the known pattern and sweeping direction, a nominal
path spacing distance d,, is calculated by minimizing the thick-
ness square error on that patch. The path along the common
border segments are carefully designed so that the thickness
error in the neighborhood of the common border segments is
minimized [10].

C. Path Integration Problem

The generated individual paths should be integrated, which
means that the ends of the paths need to be connected so that
the robot can transit from one path to another (Fig. 6). To
achieve the minimum spray time, the integration problem can
be modeled as a problem of finding the shortest travelling path
for the robot. Essentially, the problem is to determine an order
to traverse each individual path. This problem resembles the
RPP [16]. The RPP assumes an undirected connected graph
G(V,E,R,w: E > Z), where V is the vertex set, E is the
edge set, R is an arbitrary subset of E, and w is the edge length

TEWOLDE AND SHENG: ROBOT PATH INTEGRATION IN MANUFACTURING PROCESSES 281

25
iljim)

Fig. 5. Flat patch and its four sweeping directions.

Star! end

Fig. 6. Paths on different patches should be integrated with a goal to minimize
the total traveling distance.

set. The objective of RPP is to find a minimum length tour in G
that includes each edge of R at least once.

The classical RPP is a tour that traverses the set of all
required edges and possibly some more additional edges to
form a closed cycle of minimum weight. Since, for our spray-
painting problem, we do not really require a closed cycle, we
deal with a modified version of the RPP, that we call open-RPP.
In modeling our problem, we replace the path in each patch
by an edge, whose end points coincide with the end points
of the tool path in that patch, and assign the direct distance
between the end points as its weight. Thus, our objective is to
find an optimal or near-optimal path that starts at some vertex
and traverses through all the required edges.

The RPP (and, hence, the open-RPP) is a variant of the
travelling salesman problem (TSP) and is NP-hard [17]; hence,
there is no known polynomial-time algorithm that provides an
optimum solution to the problem. Instead, many researchers
resort to approximations or some heuristic methods to obtain
near-optimal solutions. The solution provides a list of vertices

[

W
2

7 8
2
N
1
Fig. 7. Transformation of (a) an input graph to (b) a completely connected
Hamiltonian graph GH = (V' pH).

for the visiting order of the tool to tour all the assigned paths,
with a minimal total cost.

In this paper, we develop two methods to solve the open-
RPP problem: the first is a GA-based method, and the second
one is based on the ACO method. Both of these and other
nature-inspired methods are becoming increasingly popular in
solving hard optimization problems [16], [18]-[23]. The next
two sections describe the implementation details of the two
algorithms developed in this paper to generate near-optimal
solutions to the path integration problem.

IV. GA TO SOLVE THE OPEN-RPP

Our implementation of the GA was inspired by the work
of Kang and Han [20], who propose a graph transformation
method by using a Hamiltonian graph that represents all the
required edges in the original problem. On the other hand,
Cook et al. [16] describe a different approach, using a GA for
only generating a minimum-weight augmenting set of required
edges. Then, they apply a basic heuristic to construct comple-
tion of the graph, using the augmented set of required edges, to
obtain an Eulerian tour.

Using the graph-transformation approach, each of the re-
quired edges in the original graph is mapped into correspond-
ing vertices, and then, a complete Hamiltonian graph, G =
(VH, E™), is formed. Therefore, our problem reduces to that of
determining an optimal Hamiltonian cycle for the transformed
graph whose solution gives an optimal order of visiting the
required edges in the original problem. Fig. 7 shows an example
of this transformation process.

The weights of the edges in G are not fixed; instead,
they depend on the visiting order of the pair of vertices in
each required edge and the route between the pair of edges
represented by the nodes in G*. For example, if we consider
two partial paths, 1-2-3—4 and 2-1-4-3, between required
edges 1-2 and 3—4 in Fig. 7(a), we can see that the total distance
of the paths are not the same. The weights of the edges in
the Hamiltonian graph, as shown in Fig. 7(b), are determined
during the computation of the cost of the path obtained by each
individual solution during the application of the GA. At the start
of the program, we compute the shortest distances and paths
between all pairs of vertices in the original graph and store the
result in a matrix for use in computation of the routing costs.

The GA approach attempts to search the entire solution
space to find a global optimal solution, applying randomized
evolutionary operations to prevent it from being trapped in
local optima. For the success of this methodology, an efficient
and good representation of the solution, i.e., the chromosome

282 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 2, MARCH 2008

structure, is essential. For most combinatorial problems, there
is a constraint that the alleles in the chromosome should be
unique.

1) Chromosome Structure: The vertices in V! are arranged
to form the alleles in the chromosome. The chromosome has a
length of |V|. The order of the vertices in the chromosome de-
fines the order of the routing path. Since each vertex represents
an edge in the original graph, we need to identify the order of
traversing the edge from one end point to another, or backward.
This information is encoded as a separate component of the
chromosome structure and evolves alongside it. An example of
the format of the chromosome structure, for |VH| = 6, is shown
as follows:

P=3 12 5 4 6 Psi=0 0 1 0 1 0.

P, is an individual solution in the population, listing the
order of visiting the required edges in the open-RPP path.
Initially, we assign the visiting directions for the required edges
arbitrarily, identifying start and end vertices of the edges. As
the populations of solutions in the GA evolve, the directions of
visiting the required edges in the open-RPP path also evolve.
This information is maintained in the Ps; parameter. A value of
“1” for a visiting direction in the Ps; will follow the initially
assigned order, while a value of “0” will follow the reverse
order. The visiting order affects the cost of the solution, and
we use this information in computing the fitness of individual
solutions. We find this chromosome-encoding method effective,
since in most cases, it converges in fewer generations than the
approach that encodes only the vertex sequences (i.e., using P;
only that was suggested in [20]).

The process of finding a global optimum solution using GA
involves the application of some randomized genetic operations
that are designed to explore the entire solution space. The
crossover and mutation operations used in our implementation
are described as follows.

2) Crossover: The crossover operator exchanges substrings
in two selected chromosomes and produces a pair of new chro-
mosomes. Among several crossover operators that are proposed
for permutation representations, we choose to apply the order
crossover (OX) [18] on the P;’s and the ordinary crossover
operator on the Ps;’s. The OX guarantees the creation of legal
permutation of the vertices in the resulting offsprings. An-
other common crossover operator is partially mapped crossover,
which Kang and Han [20] use in their paper. Fig. 8 shows the
OX and the ordinary crossover operators as applied to a pair
of parent solutions. A randomly chosen continuous block of
alleles (the numbers shown in the boxes) are inherited as they
are from the parents, while the remaining portions of the chro-
mosomes are exchanged between the parents to generate the
offsprings. In the OX method, which was applied to the Py, P
pair to generate the C';, C5 pair, the resulting numbers are then
manipulated to guarantee that the list contains the permutation
of all the vertices (replacing the redundant numbers that are
shown in circles by those missing from the list).

The parents for the crossover operation are selected ran-
domly. But to increase the chances of generating better off-
springs, we take five pairs of random samples of the whole
population and pick the best pair of individuals based on their

Pi=31p546 Ps;= 001010
P,= 634215 Ps,=1[10101

€ =63p540
Cy=3p216

Ci1=63p541 Csi=1p1001
C,=35K4216 Ce=0[10110

Fig. 8. OX operator applied to parents P;, P> and the ordinary crossover
operator applied to parents Ps1, Pgo resulting in the offspring pairs C7, Ca
and Cs1, Cs2, respectively.

fitness for the crossover operation. The crossover rate deter-
mines the number of crossover operations to apply in the current
generation of solutions before making selections to proceed to
the next generation.

3) Mutation: In our implementation, we apply the
reciprocal-exchange mutation on the P’s by selecting two
positions at random and swapping the vertex values at those po-
sitions. Mutation on the Ps;’s is done by swapping two ran-
domly selected bits and flipping the value of another randomly
chosen bit. Like in the crossover operation, mutation is
applied on randomly picked individuals, and the mutation rate
determines the number of times the operation is repeated on
the current generation of solutions before evolving to the next
generation.

4) Fitness Evaluation: Selection of individual solutions to
the next generation is made based on their fitness values. In our
implementation, the total number of individual solutions at the
end of every generation is

Ptotal = Psizc + Trate * Psizc'

Note that, since mutation only modifies the individual on
which it is applied, it does not generate a new offspring. Plie
is the population size that the algorithm maintains, x4t is the
crossover rate, and P, is the total population at the end of
each generation. When proceeding to the next generation during
the evolution process, the fitness of each individual is evaluated,
and the best P, individuals are chosen by the principle of the
survival of the fittest.

The total cost of each open-RPP path computed as its
tour length (TL) is used as a measure of the fitness value.
Floyd—Warshall’s [24] algorithm is applied to compute the
shortest distances between all pairs of vertices in the original
graph, and this information is used for the fitness computation.

V. ACO 1O SOLVE THE OPEN-RPP

Inspiration from nature continues to provide insight into new
approaches in tackling complex computational problems. The
class of ACO [21] algorithms is such an example of nature’s
inspiration as are GA and neural networks. Dorigo et al. [21]
proposed the use of the ant colony as cooperating agents to
solve combinatorial optimization problems. This class of algo-
rithms are versatile and robust, and they are finding applications
in many static and dynamic optimization problems [22], [23].

Dorigo et al. [21] demonstrated their ant system algorithm
by solving the classical TSP. The analogy is taken from the
way ant colonies function in finding the shortest path to a food
source and the sharing of information by depositing a so-called

TEWOLDE AND SHENG: ROBOT PATH INTEGRATION IN MANUFACTURING PROCESSES 283

pheromone on the trail. Each individual ant is a simple creature,
but the emergent complex behavior of the ant colony helps
find the best solution in the search space by distributing the
efforts of individual ants and sharing information by using the
environment. This is a powerful technique and is applicable
to numerous search and optimization problems. Sim and Sun
[23] exploited the adaptive nature of this class of algorithms
to tackle the dynamic-routing and load-balancing problems in
networks.

The open-RPP problem that we are addressing in this paper is
also a problem of combinatorial optimization with the objective
of finding a tour of minimum length that covers all required
edges in a given graph. In the remaining parts of this section,
we describe the ACO-based algorithm developed in this paper.

A. Algorithm Description

In this section, we describe the general idea of the algorithm
we developed to solve the open-RPP by considering the simple
graph shown in Fig. 7. This graph of six required edges and
12 vertices is first transformed into a complete graph by form-
ing edges between all pairs of vertices and by assigning the
shortest path distances between the vertices (computed using
Floyd—Warshall’s [24] algorithm as described earlier) as the
weights for the corresponding edges. Providing such shortest
paths allows the ants to choose optimum paths to connect the
required edges.

During the execution of the ACO-based algorithm, a number
of ants are created to search for the best solution starting from
each vertex of the required edges. Initially, each ant initializes a
list of the vertices it has not visited yet (NVV) and another list
of vertices it has already visited (VV). Similar information is
also compiled about the required edges, i.e., for the not visited
edges (NVE) and visited edges (VE).

For example, if ant 1 is set to start the execution of the
ACO-based algorithm at vertex 1, it initializes the arrays as
follows. The TL is initialized to zero at the start of the search in
each cycle.

NVV[1] = {1,2,3,4,5,6,7,8,9,10,11,12}

VV[1] = {}

VNE[1] = {(1,2), (3,4), (5,6), (7,8), (9,10), (11, 12)}
VE[1] = {}

TL[1] = 0.0.

The ants in the colony need to share information about
the quality of the solution they have generated during each
execution cycle. Such information communication is expected
to influence the ants’ decisions in their choice of paths when
they build an optimum open-RPP path. In effect, the individual
ants in the colony explore different regions of the solution
space in parallel, and they provide feedback to the colony by
appropriately modifying this quantity, which is called trail value
(TV), on the edges of the graph. This mechanism is believed
to stir the solution toward the optimum value and to facilitate
convergence.

The TV accumulated on edge (z,y) since the start of the
ACO-based algorithm is designated by TV,,,. It is contributed
by all the ants that included this edge in their solution during

the previous cycles of the ACO-based algorithm. TV, values
change with time (it gradually decays with time due to the
evaporation process and it increases in value when ants follow
the edge). The TV, value therefore tells the ants how favorable
the edge (z, y) has been so far, and hence, it affects their choice
of path when building a solution.

The amount by which an individual ant contributes to the TV
(ATV,,) depends on the quality of the solution it generated,
which is measured in terms of the open-RPP TL. Hence,
longer tours contribute less than shorter tours. This is a positive
feedback about past performance, and it influences the deci-
sions of future steps of the ACO-based algorithm. Ants in the
succeeding cycles will then have higher probability to choose
edges with higher TVs, thus reinforcing the feedback further
and improving the solution quality. We have used the formula of
Dorigo et al. [21] in updating the TVs on each edge as follows:

For every edge e = (v, v,) in the graph
Initialize ATV, =0
For each ant 7 = 1 to n, do

Q
then compute TV, using
TVay <= p-TVyy + ATV, 2)

Equation (1) shows the aggregation of the TV contributions
on edge (vz,v,) by all ants that include the edge in their path.
The quantity () is a constant parameter. In (2), the value of p
(avalue < 1) determines the evaporation rate of the TV. If some
edge is not selected by many ants in most of the previous cycles,
then its TV will decay at the rate of p. As the TV, value of an
edge gets smaller due to the evaporation effect, it will be less
likely for ants to choose the edge in their path. The second term
in (2) ATV, is the total amount of the TV deposited on an
edge by all ants in the current cycle.

At every step of building the open-RPP path, an ant’s de-
cision on the choice of the next edge for the path is made
based on transition probability (TP). What makes the ACO-
based algorithm powerful is that the decision is based on both
past experience from previous cycles (stored in the TV values)
and the physical configuration of the graph, such as the distance
information between pairs of vertices. Equation (3) [21] shows
how the ¢th ant computes the TP on each of the edges from its
current position (vertex x). The possible legal moves of the ant
from its current position x is the list of vertices that form end
points of the required edges but have not been visited yet

(TVay)*(n2y)? .
' r v , ifw € legal,
TP, = { Zu,elegali (TVauw)* (zw)? & 3)
0, otherwise

where 7, is called visibility and it is computed as 1/d,,,
where d, is the shortest distance between vertices v, and v,,.
« and [are parameters that control the relative importance of
trail intensity versus visibility. Therefore, the TP is a tradeoff
between visibility (which states that closer vertices should be
chosen with high probability) and trail intensity (that states that

284 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 2, MARCH 2008

6 - ___24
17 18 end
5 _____ 1
start 15716 2:3 oo 330
\2. : ob 27 28
13, 14
3 l
11 » 2
' 1 ' A5 26 29
2 ! 20 7
9\—\ h ;
N "
L — S
7 § 19

Fig. 9. Sample data and the open-RPP path generated by the GA-based
algorithm.

if there has been a lot of traffic on edge (v,, v,), then it is highly
desirable) [21].

VI. IMPLEMENTATION AND TEST RESULTS

The two algorithms are implemented in C and run on sample
data as well as on real auto parts from Ford Motor Company.
This section presents the test results of the algorithms and gives
a comparative discussion of the solution quality and runtime
performance of the algorithms. The execution times in all tests
are measured on a DELL Latitude Laptop with a 2-GHz CPU
and 256-MB RAM.

A. Test Results of the GA-Based Solution

1) Test on Sample Data: The GA-based open-RPP algo-
rithm was first tested on some hand-generated sample data.
Fig. 9 shows the graph of a data set, containing 30 vertices and
15 required edges, and the optimal path generated by the pro-
gram. Characteristics of the average and minimum cost of the
solutions as the algorithm evolves over successive generations
is shown in the chart in Fig. 10.

The results demonstrate that our GA implementation reaches
at the best solution in fewer than 100 generations with a
population size of 100, for reasonable sizes of problems. Tuning
of the algorithm is done by running it with different values
of population size (psize), crossover rate (Zyate), and mutation
rate (Mmyate) to see their effect on convergence rate. Good
performance was achieved for pgi,e = 100, 2rate = 0.20, and
Mrate = 0.05. Compared to the relatively higher parameter val-
ues of Kang and Han [20] (2;ate = 0.6 ~ 0.8, myate = 0.03 ~
0.04), our lower crossover rate means that we can achieve the
task at a lower computational cost. In addition, in most small-
to-medium-size problems, our implementation converges at the
best solution with fewer than 100 generations, which is an order
of magnitude lower than the 1000 generations used in [20].
Results of more test experiments on problems of increasing
levels of complexity are provided in Table I and compared with
the results of the ACO-based solution.

2) Test on Real Parts: We also ran the open-RPP algorithm
on real parts from Ford Motor Company. For the car inner
hood, as shown in Fig. 2, the optimal partitions are shown in
Fig. 11. Corresponding to this partition, the generated paths
shown in Fig. 12 are integrated using our GA-based algorithm
to produce an optimal path, as shown in Fig. 13. Fig. 14 shows
how the average and best costs of the computed open-RPP path

75

average cost

65 + / ---
minimum cost

55 A

cost

45 -

35

T T T T T T T T T T

19 28 37 46 55 64 73 82 91 100
generations

1 10

Fig. 10. Evolution of the open-RPP solution by the GA-based algorithm for
the sample data shown in Fig. 9.

evolve with the number of generations. The algorithm is able
to converge to the best solution in less than 50 generations,
as shown in the graph. Results of the algorithm, as applied
on two more automotive body parts, are presented in Table III
alongside with the results of the ACO-based solution.

B. Test Results of the ACO-Based Solution

Like many other heuristic algorithms, the ACO-based algo-
rithm involves a number of parameters that need to be properly
tuned for good performance. The most important parameters of
interest that affect the performance and quality of the solution
are a, 3, p, and Q. For best results, we used the following
settings [21]: =1, 8 =5, p = 0.5, and @ = 100.

1) Test on Sample Data: The ACO-based algorithm is tested
on ten sets of sample test data. The simplest one (data set #1)
has only six vertices and ten edges, out of which three are
designated as required edges. The rest of the data sets have
increasing numbers of vertices and required edges.

The simulation records the shortest path length computed by
the algorithm and its execution time. Effects of the number
of ants and the number of cycles each ant executes are stud-
ied by running the simulation with different settings of these
parameters. For each test case, an average value of ten simula-
tion runs is taken.

Initially, the number of ants was set to twice as many as
the number of required edges in the graph, each ant starting
at one end of a required edge, and the number of ant cycles
was set to 100. Such settings produce open-RPP TLs that are
shorter by up to 13% than the GA-based solution. However,
the ACO-based algorithm has an inherent complexity due to
the following: 1) the need to compute transition probabilities;
2) the need to search for the best edge to follow at each
move; and 3) the need to update the TVs after completion
of each cycle. For example, the largest problem considered in
the simulation requires the manipulation of 80-by-80 matrices
of transition probabilities and TVs, which demands expensive
computation time. The total runtime taken by the basic ACO-
based algorithm in this test case was 42.9 s (which is exces-
sively large as compared to 0.34 s taken by the GA-based
solution). However, experimenting with varying numbers of
cycles reveals that the ACO-based algorithm actually converges
in much fewer than 100 cycles. Good quality TLs are achievable
within as little as ten cycles, thus helping reduce the total
execution time by over 90%.

TEWOLDE AND SHENG: ROBOT PATH INTEGRATION IN MANUFACTURING PROCESSES

TABLE 1
RESULTS OF TESTING THE ACO-BASED AND GA-BASED ALGORITHMS ON SAMPLE TEST DATA. VALUES UNDER COLUMN ACO1 ARE RESULTS OF
DEPLOYING ONE ANT PER REQUIRED EDGE, WHILE ACO2 IS FOR TWO ANTS PER REQUIRED EDGE. THE ALGORITHM
RUNS TEN CYCLES IN BOTH CASES (PATH LENGTHS ARE IN METERS AND EXECUTION TIME IN SECONDS)

Data Path Length | Path Length | Path Length ACO2 vs. GA Exec. Time | Exec. Time | Exec. Time
Set (ACO1) (ACO2) (GA) (% improvement) (ACO1) (ACO2) (GA)
#1 (6 v, 3 re) 16.0 16.0 16.0 0.0% <0.01 <0.01 0.27
#2 (10 v, 5 re) 21.12 21.12 2112 0.0% <0.01 0.01 0.30
#3 (20 v, 10 re) 32.56 32.56 34.45 5.8% 0.05 0.10 0.31
#4 (30 v, 15 re) 38.53 3853 39.06 1.3% 0.15 0.25 0.33
#5 (40 v, 20 re) 63.72 63.72 68.71 7.8% 0.30 0.51 0.35
#6 (50 v, 25 rc) 68.42 67.06 73.94 10.3% 0.52 0.93 0.37
#7 (60 v, 30 re) 8345 8328 91.66 10.1% 0.87 1.57 0.39
#8 (64 v, 32 re) 87.11 86.87 95.66 10.1% 1.01 1.89 0.41
#9 (70 v, 35 re) 89.66 89.49 100.62 12.4% 1.29 2.41 0.45
#10 (80 v, 40 re) 102.10 102.10 115.48 13.1% 1.91 3.56 0.52

Fig. 11. Optimal partition of the car inner hood.

0.8

Fig. 12. Optimal paths for individual patches of the car inner hood.

Table I shows the results of further tests obtained by varying
the numbers of ants searching for the optimum solution in the
ACO-based algorithm. Using half as many ants (i.e., setting
the number of ants to be equal to the number of required
edges) has little impact on the quality of the solution, but it
needed less than half the execution time as compared to the

08
Fig. 13. Integrated path generated by the GA-based algorithm for the car
inner hood.
8
7 e e ! o i e
average cost
6 1 7 T e
3 minimum cost
8
5 B R S LT NIRRT SO USP G B SR S B SO e e e e apocan
4 e e e e e e e o o o o o o o o o o o o 4 2 2, 2 S G i o o 2 S o 0
3 T T T T T T T T T
1 10 19 28 37 46 55 64 73 82 91 100
generations

Fig. 14. Evolution of the open-RPP solution using the GA-based algorithm
for the car inner hood.

case when the number of ants is set to two times the number
of required edges. In Table I, the ACO1 and ACO2 columns,
respectively, refer to these two cases. The GA columns in
Table I refer to the best results obtained from the GA-based
solution with the following parameter settings: number of
generations = 1000; population size = 200; crossover rate =
0.2; and mutation rate = 0.05.

Even further reducing the number of ants does not have
much impact on the solution quality but it has significant

286

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 2, MARCH 2008

TABLE 1I
RESULTS OF TESTING THE ACO-BASED ALGORITHMS ON SAMPLE TEST DATA USING DIFFERENT NUMBERS OF ANTS. THE ALGORITHM IN
EACH CASE RUNS FOR TEN CYCLES (PATH LENGTHS ARE IN METERS AND EXECUTION TIME IN SECONDS)

gain in the execution-time performance of the algorithm, as
shown in Table II. For example, for the largest problem size
(data set #10), the best TL obtained by the algorithm using 3,
5, 10, 40, and 80 ants is, respectively, 108.58, 104.8, 104.64,
102.10, and 102.10 m, with the program execution times, re-
spectively, of 0.24, 0.32, 0.55, 1.91, and 3.56 s in the five cases.
Therefore, a small sacrifice in the solution quality (reduction by
about 2.64% from the best solution, by using only 5 ants than
80 ants) gives over 90% improvement in the execution-time
performance.

2) Test on Real Parts: The ACO-based algorithm is also
tested on real parts from Ford Motor Company. For the gen-
erated paths on the partitions shown in Fig. 12, the algorithm
produces the path integration whose result turns out to be
the same as the result obtained by the GA-based solution,
which is shown in Fig. 13 and in the first row of Table III.
Compared to the tests performed on the large graphs of the
sample data shown in the previous section, the sizes of the real
parts considered in this paper were small enough to give the
same results by the two variants of the ACO-based algorithm
(ACOI1 and ACO?2). The other real test data are two different
door panels whose results of the best open-RPP path obtained
from the ACO-based and GA-based solutions are shown in the
second and third rows of Table III. In the same table, the paths
generated by these algorithms are also compared to arbitrary
paths generated by a human operator.

C. Discussions

To summarize, for small problem sizes, the quality of the
solution generated by both methods is about the same. But
with increasing size and complexity of the problem, the ACO-
based algorithm achieves better quality solutions as compared
to the GA-based algorithm. In our experiments, the cutoff
point between the two methods is at about a problem size of
20 vertices and 10 required edges. For the largest problem size
considered in the experiments, the TL generated by the ACO-
based algorithm is shorter by 13% than that of the GA-based
algorithm.

But an interesting behavior of the GA-based implementation
is that the growth rate of the execution time of the algorithm
is close to flat as compared to the high growth rate exhibited
by the ACO-based method. The reason is that, in the GA-based

Data 3 Ants 3 Ants 5 Ants 5 Ants 10 Ants 10 Ants ACOI ACOI ACO2 ACO2

Set P. Length | E. Time || P. Length | E. Time || P. Length | E. Time || P. Length | E. Time || P. Length | E. Time

#1 (6 v, 3 re) 16.0 <0.01 16.0 <0.01 16.0 <0.01 16.0 <0.01 16.0 <0.01
#2 (10 v, 5 1e) 23.12 <0.01 21.12 <0.01 21.12 0.01 2112 0.01 21.12 0.01
#3 (20 v, 10 rc) 32.56 0.02 32.56 0.03 32.56 0.05 32.56 0.05 32.56 0.10
#4 (30 v, 15re) 40.8 0.04 40.8 0.06 39.06 0.11 3853 0.15 38.53 0.25
#5 (40 v, 20 re) 64.55 0.06 65.13 0.10 63.72 0.18 63.72 0.30 63.72 0.51
#6 (50 v, 25 re) 68.84 0.10 68.84 0.15 68.84 0.25 68.42 0.52 67.06 0.93
#7 (60 v, 30 re) 8345 0.14 8345 0.20 83.45 0.34 83.45 0.87 83.28 1.57
#8 (64 v, 32 re) 8745 0.16 8745 0.23 86.87 0.36 87.11 1.01 86.87 1.89
#9 (70 v, 35 re) 98.92 0.19 89.96 0.25 89.96 043 89.66 1.29 89.49 241
#10 (80 v, 40 re) 108.58 0.24 104.8 0.32 104.64 0.55 102.10 1.91 102.10 3.56

TABLE III

RESULTS OF TESTING THE ACO-BASED AND GA-BASED ALGORITHMS ON
REAL CAR PARTS (PATH LENGTHS ARE IN METERS)

Part Path Length | Path Length | Path Length
Name (ACO) (GA) (Random)
Inner Hood 4.11 4.11 7.14
Door Panel #1 20.79 2271 29.05
Door Panel #2 3436 3548 4621

algorithm, the population size and the number of generations is
set independent of the problem size. However, the number of
ants used in the ACO1 and ACO2 implementations are set to
grow with the number of required edges in the problem. This
results in higher computational costs with increasing problem
sizes. Moreover, the cycle length that each ant has to complete
also increases with the size of the problem. Besides, there is a
larger search space at each step when an ant is to decide on the
next leg of its route as the number of choices it needs to examine
based on the TVs increases. Thus, the cumulative effect of these
factors makes the execution time of the ACO-based algorithm
to grow faster than that of the GA-based algorithm.

However, a closer look at the effects of the number of cycles
and number of ants on the quality and cost of the solution
reveals that the ACO-based algorithm converges in as few as
ten cycles, greatly improving the execution time. The experi-
mental results also demonstrate a tradeoff between the solution
quality and the execution time by varying the number of ants
employed in the search for the optimum solution. Thus, with
just a little sacrifice in the solution quality (by about 2.64%
from the best solution), using as few as five ants, offers over
90% improvements in the execution-time performance.

The path integration algorithms developed in this paper have
great potentials to solve many robotic path-planning problems.
For example, they can be used in manufacturing applications
such as robotic arc welding, painting, as well as humanitarian
demining and lawn mowing, where path integration is an im-
portant step in the planning. Reducing the total path length can
certainly save time and energy for these applications.

VII. CONCLUSION

This paper addresses a challenging problem in automated
tool path planning for spray forming, i.e., how to design tool

TEWOLDE AND SHENG: ROBOT PATH INTEGRATION IN MANUFACTURING PROCESSES 287

paths that can achieve optimized performance for compound
surfaces. First, solving this problem requires the partitioning
of part surfaces of complex geometries and the careful gener-
ation of tool path and trajectory of each partition. Then, the
path integration problem is modeled as a variant of the RPP,
which is solved using two different methods. The first method
presented is based on GA, while the second one is based on
the ACO. Experimental results demonstrate the effectiveness of
both methods and the quality of solutions that can be achieved.
We have shown a tradeoff between the quality of the solution
and the cost of execution time of the ACO-based algorithm.
Overall, the results show that, with increasing complexity of the
problem, the ACO-based method produces better quality solu-
tions (by up to 13% for the largest problem size we considered)
than the GA-based method, at a cost of higher execution time.

Overall, our tool path planning and integration algorithms
extend the traditional robot path planning into manufacturing
applications, because the vast majority of research in robot-
motion planning does not have the constraints that our tool
path planning has to deal with, such as the uniformity, tool
movement performance, etc. To further improve our tool path
planner, we will investigate how to combine human skills and
expertise into the path planning. In this area, some previous
work exists, which uses human operator’s skills to train a robot
path planner [25], [26].

REFERENCES

[1] J. T. Schwartz and M. Sharir, “A survey of motion planning and re-
lated geometric algorithms,” Artif. Intell., vol. 37, no. 1-3, pp. 157-169,
Dec. 1988.

[2] M. Sharir, “Algorithmic motion planning in robotics,” Computer, vol. 22,
no. 3, pp. 9-20, Mar. 1989.

[3] W. H. Huang, “Optimal line-sweep-based decompositions for coverage
algorithms,” in Proc. IEEE Int. Conf. Robot. Autom., 2001, pp. 27-32.

[4] Y. Mizugaki, M. Sakamoto, and K. Kamijo, “Fractal path application in a
metal mold polishing robot system,” in Proc. 5th Int. Conf. Adv. Robotics,
Pisa, Italy, Jun. 1991, pp. 431-436.

[5] Y. Takeuchi, D. Ge, and N. Asakawa, “Automated polishing process with
a human-like dexterous robot,” in Proc. IEEE Int. Conf. Robot. Autom.,
Atlanta, GA, 1993, pp. 950-956.

[6] N. Asakawa and Y. Takeuchi, “Teachingless spray-painting of sculptured
surface by an industrial robot,” in Proc. IEEE Int. Conf. Robot. Autom.,
Albuquerque, NM, Apr. 1997, pp. 1875-1879.

[7] J. K. Antonio, R. Ramabhadran, and T. L. Ling, “A framework for optimal
trajectory planning for automated spray coating,” Int. J. Robot. Autom.,
vol. 12, no. 4, pp. 124-134, 1997.

[8] P. N. Atkar, H. Choset, and A. A. Rizzi, “Towards optimal coverage of
2-Dimensional surfaces embedded in IR3: Choice of start curve,” in Proc.
IEEE Int. Conf. Robot. Autom., 2003, pp. 3581-3587.

[9] L. F. Penin, C. Balaguer, J. M. Pastor, F. J. Rodriguez, A. Barrientos,
and R. Aracil, “Robotized spraying of prefabricated panels,” IEEE Robot.
Autom. Mag., vol. 5, no. 3, pp. 18-29, Sep. 1998.

[10] H. Chen, N. Xi, Z. Wei, Y. Chen, and J. Dahl, “Robot trajectory integration
for painting automotive parts with multiple patches,” in Proc. IEEE Int.
Conf. Robot. Autom., 2003, vol. 3, pp. 3984-3989.

[11] W. Sheng, N. Xi, M. Song, Y. Chen, and J. S. Rankin, III, “Automated
CAD-guided automobile part dimensional inspection,” in Proc. Int. Conf.
Robot. Autom., 2000, vol. 2, pp. 1157-1162.

[12] H. Chen, W. Sheng, N. Xi, M. Song, and Y. Chen, “Automated robot
trajectory planning for spray painting of free-form surfaces in automotive
manufacturing,” in Proc. IEEE Int. Conf. Robot. Autom., 2002, vol. 1,
pp. 450-455.

[13] Y. Yang, H. T. Loh, F. Y. H. Fuh, and Y. G. Wang, “Equidistant path
generation for improving scanning efficiency in layered manufacturing,”
Rapid Prototyping J., vol. 8, no. 1, pp. 30-37, 2002.

[14] W. Sheng, H. Chen, N. Xi, J. Tan, and Y. Chen, “Optimal tool path
planning for compound surfaces in spray forming processes,” in Proc.
IEEE Int. Conf. Robot. Autom., 2004, pp. 45-50.

[15] J. H. Kao and F. B. Prinz, “Optimal motion planning for deposition in
layered manufacturing,” in Proc. ASME Design Eng. Tech. Conf., Atlanta,
GA, Sep. 1998, pp. 1-10.

[16] C. Cook, D. A. Schoenefeld, and R. L. Wainwright, “Finding rural post-
man tours,” in Proc. ACM Symp. Appl. Comput., 1998, pp. 318-326.

[17] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys, The
Traveling Salesman Problem. Chichester, U.K.: Wiley, 1985.

[18] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design.
Hoboken, NJ: Wiley, 1997.

[19] S. M. Thede, “An introduction to genetic algorithms,” J. Comput. Sci.
Colleges, vol. 20, no. 1, pp. 115-123, Oct. 2004.

[20] M. Kang and C. Han, “Solving the rural postman problem using a ge-
netic algorithm with a graph transformation,” in Proc. ACM Symp. Appl.
Comput., 1998, pp. 356-360.

[21] M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: Optimization
by a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 26, no. 1, pp. 29-41, Feb. 1996.

[22] M. Dorigo, G. Di Caro, and L. M. Gambardella, “Ant algorithms for
discrete optimization,” Artificial Life, vol. 5, pp. 137-172, 1999.

[23] K. M. Sim and W. H. Sun, “Ant colony optimization for routing and load-
balancing: Survey and new directions,” IEEE Trans. Syst., Man, Cybern.
A, Syst., Humans, vol. 33, no. 5, pp. 560-572, Sep. 2003.

[24] WIKIPEDIA, Floyd-Marshall algorithm, 2006. [Online]. Available:
http://en.wikipedia.org/wiki/Floyd-Marshall_algorithm

[25] R. Kulic and Z. Vukic, “Methodology of concept control synthesis to
avoid unmoving and moving obstacles,” J. Intell. Robot. Syst., vol. 1,
no. 37, pp. 21-41, May 2003.

[26] R. Kulic and Z. Vukic, “The control based on Lyapunov adaptation law
to be improved by RBF neural network and behavioral cloning,” in Proc.
Int. Conf. Computer as a Tool, EUROCON, 2005, pp. 306-309.

Girma S. Tewolde (S’01) received the B.Sc. degree
in electrical engineering from Addis Ababa Uni-
versity, Addis Ababa, Ethiopia, and the M.Eng.Sc.
degree from the University of New South Wales,
Sydney, Australia.

He is a Lecturer with Kettering University, Flint,
MI, while working on his Ph.D. degree at Oakland
University, Rochester, MI. His areas of interest are
in sensor networks, embedded systems, mobile ro-
botics, sensor and robot localization, task allocation,
and evolutionary methods for optimization and engi-

neering applications.
Mr. Tewolde is a graduate Student Member of the IEEE Computer Society
and the IEEE Robotics and Automation Society.

Weihua Sheng (S’99-M’02) received the B.S. and
M.S. degrees in electrical engineering from Zhejiang
University, Hangzhou, China, in 1994 and 1997,
respectively, and the Ph.D. degree in electrical and
computer engineering from Michigan State Univer-
sity, East Lansing, in 2002.

He is currently an Assistant Professor with the
School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater, OK. He is the
holder of one U.S. patent. His research work has
resulted in more than 60 papers in major journals
and international conferences in robotics and automation. His current research
interests include distributed robotic systems, mobile wireless sensor networks,
process planning for advanced manufacturing technologies and embedded
computing.

Dr. Sheng is a member of the IEEE Robotics and Automation Society.

