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What is EDA?
o EDA � Electronic Design Automation or (CAD)

o Methodologies, algorithms and tools, which assist and 
automate the design, verification, and testing of 
electronic systems.

o A general methodology for refining a high-level 
description down to a detailed physical 
implementation for designs ranging from 
– Integrated circuits (including system-on-chips), 

– Field Programmable Gate Arrays, 

– Printed circuit boards (PCBs) and 

– Electronic systems. 

o Why?
• Manual design is unrealistic

• Fewer errors

• Time to market.
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Areas & Domain Knowledge in EDA



FPGA tool flow

HDL
(VHDL /
Verilog)

Synthesize

Net list

Map

Place

Route

Bit 
stream

� Hardware design is traditionally done by 
modeling the system in a hardware 
description language

� An FPGA “compiler” (synthesis tool) 
generates a netlist

� which is then mapped to the FPGA 
technology

� the inferred components are placed on 
the chip

� and the connecting signals are routed
through the interconnection network

� A bit stream is finally produced which 
can be used to program the FPGA.
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EDA (CAD) Flow for FPGAs
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“Synthesis”

Synthesis is the process by which the system specifications 
and constraints are translated to an implementation (a net 
list of connected components).
o Synthesis is considered to be a key stage in 

automated design tools (CAD Tools).
o A significant area of research in EDA is in the 

development of tools that can synthesize hardware
from a design written in the form of high-level 
programming language such as C.

o It is believed that these ``hardware compilers” will  
help to decrease development time , thus shortening 
the crucial time to market for designs.
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Objective Function for Synthesis

• Minimize area
– in terms of literal count, cell count, register count, etc.

• Minimize power
– in terms of switching activity in individual gates, deactivated circuit 

blocks, etc.

• Maximize performance
– in terms of maximal clock frequency of synchronous systems, 

throughput for asynchronous systems

• Any combination of the above
– combined with different weights
– formulated as a constraint problem 

• “minimize area for a clock speed > 300MHz”

• More global objectives
– feedback from layout

• actual physical sizes, delays, placement and routing
8
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Mapping

Input: A Boolean network Output: A netlist of k-LUTs implementing the 
Boolean network optimizing some cost function

The mapped netlist

Technology
Mapping

a b c d

f

The subject graph
e

a b c d e

f
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Technology Mapping: A Simple Example

FA

A B

Co Ci

S

A Full Adder Implementation:

S = A+B 

Logic synthesis tool reduces circuit to
SOP form 

Co = ABCi + ABCi + ABCi + ABCi

S = ABCi + ABCi + ABCi + ABCi

LUT CoCi
B
A

LUT S
Ci
B
A
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Logic Synthesis in FPGAs

� Logic Optimization 

� Technology Mapping

� Definitions 

� Technology Mapping
� Logic Optimization
� Logic Synthesis = Logic Optimization + Tech Mapping
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Mapping and Packing
a
b

c
fNetlist of basic gates

Technology Independent logic optimization

Technology map to lookup tables (LUTS)

Pack LUTs into logic blocks

Netlist of logic blocks

LUT
LUT

LUT

LUT

CLB

13



Objective Function for Mapping

o Minimize area
� in terms of number of LUTs

o Minimize power
� in terms of switching activity in individual LUTs.

o Maximize performance
� in terms of connectivity (depth of LUT implementation)

o Any combination of the above (multi-objective)
� combined with different weights
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Mapping: Example

In this example, the circuit 
in Figure (a) can be 
implemented by:

� the circuit of three  
5-input lookup tables
shown in Figure (b)   

� Notice that one of the 
lookup tables uses only 4 
of the available 5 inputs.  
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FPGA CAD Flow: Packing
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Packing LUTs into CLBs

o Logic block packing 
groups several LUTs and 
registers into one logic 
block.

o This step is necessary 
whenever the FPGA logic 
block contains more than 
a single LUT.

Highly connected LUTs
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Packing
o Logic Block packing groups several LUTs and 

registers into one Configurable Logic Block 
(CLB), respecting limitations such as:
i. Number of LUTs a CLB may contain
ii. The number of distinct input signals/clocks a CLB 

may contain
o The optimization goals in this phase are to pack 

connected LUTs together to Minimize:
i. The number of signals to be routed between logic 

blocks
ii. The number of logic blocks used (by filling each 

logic block to its capacity)
o This problem is a form of clustering .
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Clustering “Packing”
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CAD for FPGAs:  Place & Route
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Problem Formulation

Given : 
• Set of modules M = { m1, m2, ….mn}
• Set of signals S = { s1, s2, ….sq}
• Set of location L = { l1, l2, ….lp}, p ≥ |M|

• ∀ mi ∈ M, there is a set of signals    
• ∀ si ∈ S, there is a set of modules 

• is said to be a signal net

S
imS ⊆

}|{,
jmSisjm

is
M

is
M ∈=

is
M

Goal : To assign each module mi ∈ M to a location lj ∈ L 
such that the chosen objective function is optimized.
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FPGA Placement Problem

• Input – A technology mapped netlist of Configurable 
Logic Blocks ( CLB ) realizing a given circuit.

• Output – CLB netlist placed in a two dimensional array 
of slots such that total wirelength is minimized.

CLB Netlist

i1 i2 i3 i4 

f1 f2 

1 2 3

4 5 6 7 8

9 10

FPGA

Placement

i1 i2 i3 

i4 

f2 

f1 

1
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5 6

7

8

9
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VLSI Design Flow and Physical Design 

Definitions:
•Cell: a circuit component to be placed on the 
chip area. In placement, the functionality of 
the component is ignored.
•Net: specifying a subset of terminals,  to 
connect several cells.
•Netlist: a set of nets which contains the 
connectivity information of the circuit.Global 

Placement

Detail Placement

Clock Tree Synthesis
and Routing

Global Routing

Detail Routing

Power/Ground 
Stripes, Rings Routing

Extraction and 
Delay Calc. 

Timing 
Verification

IO Pad Placement

Placement

Placement is an NP-Complete 
problem, therefore we seek to 
simplify the solution to the 
problem by breaking it down 
further into smaller problems:
• Global Placement
• Detailed Placement



Global and Detailed PlacementGlobal and Detailed Placement

Global Placement

Detailed Placement

In global placement, we 
decide the approximate 
locations for cells by 
placing cells in global bins. 

In detailed placement,  we 
make some local adjustment 
to obtain the final non-
overlapping placement.

• Legalization
• Local Improvement



Placement Makes a Difference

 MCNC Benchmark circuit e64 (contains 230 4-LUT). 
Placed to a FPGA.

Random Initial
Placement

Global
Placement

After Detailed
Routing
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Placement and Routing

o Two critical phases of layout design:
�Placement of components on the chip;
�Routing of wires between components.

o Placement and routing interact , but 
separating layout design into phases:
�Reduces the complexity of the problem.
�Due to interaction solutions obtained are 

suboptimal (lose critical information).
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FPGA Compile Time

o Compiling time ≈

(placement time) + (routing time)
�Currently, placement and routing time for large 

FPGAs can easily take hours or even days to 
complete.

�These prohibitively long compiling times definitely 
nullified the time-to-market advantages of 
FPGAs!!.

o Heuristic methods are used to find sub -optimal 
solutions in reasonable amount of time.
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Placement: Why Important?

Reasons:

�Serious interconnect 
issues (delay, routability, 
noise) in deep-
submicron design

�Need placement 
information even in the 
early designing stages, 
e.g., logic synthesis

� Cong et al. [ASPDAC-03, 
ISPD-03, ICCAD-03] point 
out that existing placers are 
far from optimal , not 
scalable, and not stable
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Placement: Objectives
o Placement is the procedure to determine the physical 

location of each CLBs and I/O pads on the target FPGA 
based on some specific objective:
1. Wire length, 
2. Delay,
3. Power,
4. Congestion, 
5. Routability, ….

o Placement has been proven to be an NP-hard problem
(Non-Deterministic Polynomial)
� It cannot be solved exactly in linear time (i.e., If there are N 

blocks need to be placed, the complexity of the 
problem will be N!)
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Placement metrics

o Area, delay, congestion and power are determined 
partly by wiring.

o How do we judge a placement Quality?
1. Perform exact wire length measurement.
2. Estimate wire length without actually performing 

routing.

o Design time may be important for FPGAs
� Designers might want to experiment with different 

architectures and therefore compile time becomes 
crucial.
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Total Wire -length
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• Wire-length can be measured or estimated using several techniques:
• Half Perimeter Wire Length (HPWL) � Good estimate
• Steiner Trees (most accurate!)
• Spanning Trees (close to Steiner Trees)
• Star Model
• …..
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Total wirelength with net weights (weighted wirelength)

� For a placement P, an estimate of total weighted wirelength is

where w(net) is the weight of net, and L(net) is the estimated wirelength of net.

� Example:

∑
∈

⋅=
Pnet

netLnetwPL )()()(

33314472)()()( =⋅+⋅+⋅=⋅= ∑
∈Pnet

netLnetwPL

a

b

d

c

f

e
b1 e1

c1

a1

d1

d2 f2

f1

Nets Weights
N1 = (a1, b1, d2) w(N1) = 2
N2 = (c1, d1, f1) w(N2) = 4
N3 = (e1, f2) w(N3) = 1

Total Wire -Length Cost



Wire length measures

� Estimate wire length by distance 
between components.

� Possible distance measures:
1. Euclidean distance (sqrt(x2 + y2));
2. Manhattan distance (x + y).
3. HPWL is also a measure .

� Multi-point nets must be broken up into 
trees for good estimates.

Euclidean

Manhattan

33
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Wirelength estimation for a given placement

Wire-length Estimation

Half-perimeter
wirelength 
(HPWL)

HPWL = 9

4

5

Complete 
graph 
(clique)

8

6

5

3
3

4

Clique Length =
(2/p)Σe ∈ cliquedM(e) = 14.5

Monotone 
chain

Chain Length = 12

63

3

Star model

Star Length = 15

83

4
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Preferred method : Half-perimeter wirelength (HPWL)
• Fast (order of magnitude faster than RSMT)
• Equal to length of RSMT for 2- and 3-pin nets
• Margin of error for real circuits approx. 8%  [Chu, ICCAD 04]

hwL +=HPWL

RSMT Length = 10

3
1

6

HPWL = 9

4

5

w

h

Wirelength estimation for a given placement (cont‘d .)

HPWL



Placement Phases

o Construction Phase
�Generate a good/feasible initial solution

o Iterative Improvement Phase
�Local search techniques are applied to 

improve current initial solution
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Placement Techniques

Placement 
Algorithms

Constructive 
Placement

Iterative 
Improvement

Partitioning 
Placement

Numerical
Optimization

Cluster
Growth 

Technique

Simulated
Annealing

Force-directed
Placement

Genetic 
Placement

Local Search
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Cluster Growth Constructive 

Construction 
Phase
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Heuristic methods for FPGA Placement

o Partitioning-based placement.
o Iterative placement. 

�Simulated-annealing algorithm.
�Simple local search.

Currently, simulated-annealing is one of the dominant 
methods used by both academia and industry.

VPlace (VPR) is the leading tool for FPGA placement 
that developed in UNIV. of Toronto.
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Partitioning -based AlgorithmPartitioning -based Algorithm

Partitioning Process

New Cut Existing Cut

New Cut

New 
Cuts

Existing Cuts
Existing 

Cuts

New Cuts

The smallest 
partition part 
containing only 
one block

Start with a 
random 
placement of 
modules on 
the FPGA



Iterative improvement

o Start from a feasible (legal) solution.
� Random start
� Constructive based 

o Seek improvements by making small 
perturbations.
�Create a neighboring solution (candidate 

solution).
�Select (randomly) two blocks, then swap their 

locations.
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Create a neighboring solution:
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Create a neighboring solution:
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Iterative Improvement

General method to solve combinatorial optimization problems

Principle:
� Start with initial configuration
� Repeatedly search neighborhood and select a neighbor as 

candidate
� Evaluate some cost function (or fitness function) and accept 

candidate if "better"; if not, select another neighbor
� Stop if:

� quality is sufficiently high, or
� no further improvement can be found, or 
� after some fixed time or iterations
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Iterative Improvement 

Simple Iterative Improvement or Hill Climbing :
o Candidate is always and only accepted if cost is lower 

(or fitness is higher) than current configuration
o Stop when no neighbor with lower cost (higher fitness) 

can be found

Disadvantages:
o Local optimum as best result
o Local optimum depends on initial configuration
o Generally no upper bound on iteration length
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Criteria of accepting swaps

o Improving swaps are always accepted.
o Non-improving swaps:

�Simple local search:
� Do Not Accept!

�Meta-Heuristic (Simulated-annealing: Accept)
� Based on a controlled probability. ( e-∆C/T)

� In the initial start phase accept with high probability and as 
we proceed accept bad moves with low probability
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Simulated Annealing Placement

�An Initial Placement is Improved through Swaps and Moves

�Always accept a Swap/Move if it improves (reduces) cost

�Conditionally accept a Swap/Move that degrades cost under 
some probability conditions

Time

Cost
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Simulated Annealing

o Motivated by the Physical Annealing Process

� Material is heated and slowly cooled down, so 
that all particles arrange in the ground energy 
state into a uniform structure (i.e., create perfec t 
crystals).

� At each temperature wait until the solid reaches 
its thermal equilibrium.

o Simulated annealing mimics this process

o The first SA algorithm was developed in 1953.
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Simulated Annealing

o Compared to hill climbing the main difference 
is that SA allows upwards moves

o In Simulated Annealing: 

� Good moves are always accepted . 

� Bad moves accepted with probability

o Simulated annealing also differs from hill 
climbing in that a move is selected at random 
and then decides whether to accept it
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To accept or not to accept?

P = exp(- ∆ cost /T ) > r

Where:
� P: Probability of accepting a move
� ∆ cost : change in the evaluation function
� T: the current temperature
� r is a random number between 0 and 1
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When to Accept?

∆ cost Temp exp(-C/T)  ∆ cost  Temp exp(-C/T) 
0.2 0.95 0.810157735 0.2 0.1 0.135335283
0.4 0.95 0.656355555 0.4 0.1 0.018315639
0.6 0.95 0.53175153 0.6 0.1 0.002478752
0.8 0.95 0.430802615 0.8 0.1 0.000335463

 

P = exp(- ∆ cost /T) > r

o When the temperature is high (at the start of the s earch) the value of
P = exp(- ∆ cost /T) is high and in most cases will be higher than the 
random number generated “r”.

o However, as we decrease the temperature (at the end  of the search T is 
getting smaller) the value of P = exp(- ∆ cost /T) is low and P is not going 
to be greater than the random number generated “r”.
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Simulated Annealing

Step 1: Initialize – Start with a random initial placement. 
Initialize T to a very high value or “temperature”. 

Step 2: Move – Perturb the placement through a defined 
move.

Step 3: Calculate score – calculate the change in the score 
due to the move made.

Step 4: Choose – Depending on the change in score, accept 
or reject the move. The prob of acceptance depending on 
the current “temperature”. 

Step 5: Update and repeat – Update the temperature value 
by lowering the temperature. Go back to Step 2. 

The process is done until “Freezing Point” is reached.
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Simulated Annealing

� Initialize temperature T initial =(High Value), T final,  = (Low Value)
� Create an initial random solution S = Random Placem ent
� While (T initial > Tfinal )

{
Repeat step 1, 2 and 3 a fixed number of times:

1. Generate a new solution S’
2. If cost(S’) < cost (S), 

accept S’, i.e., S ⇐ S’
3. Else 

if random() < e -k∆cost/T

accept S’
else

reject S’
Decrease T

}
report (best solution)
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Simulated Annealing

State

Cost
Temperature

dropping
Drop back

Temperature
High

54



Pros and Cons of SA 

o Pros:
�Can Reach Globally Optimal Solution (given “enough” time)
�Open Cost Function.
�Can Optimize Simultaneously all Aspects of Physical Design
�Can be Used for End Case Placement

o Cons:
�Extremely Slow Process of Reaching a Good Solution
�We may revisit solutions visited before (unproductive)
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Analytic Placement
• Also referred to as force-directed or quadratic 

placement

• Analytic Placement minimizes a given objective, 
such as wire-length or circuit delay, using 
mathematical techniques such as numerical 
analysis or linear programming.

• Such methods often require certain assumption 
such as the differentiability of the obj Function.

• Algorithm:
	 Solve a set of linear equations to find an intermediate solution

	 Repeat the process until equilibrium



Quadratic Placement
• Write down the placement problem as an analytical mathematical problem
• Suppose that all nets in the circuit are 2-pin nets

– Consider a net {i,j}, the wire-length is given by Manhattan distance:
– L {i,j} = |xi – xj| + |yi – yj|

• This is usually referred to as a linear wire-length (non-differentiable)!!!.
• Solution?
• A common idea is to consider the squared Euclidean distance between 

modules instead: 
– L~

{i,j} = (xi – xj)2 + (yi – yj)2

– So the wire-length minimization problem can be formulated as a quadratic 
program.

– It can be proved that the quadratic program is convex, hence polynomial time 
solvable
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• Objective function is quadratic; sum of (weighted) squared Euclidean distance
represents placement objective function

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Only two-point-connections

• Minimize objective function by equating its derivative to zero 
which reduces to solving a system of linear equations 

• Similar to Least-Mean-Square Method (root mean Square)

( ) ( )( )∑
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−+−=
n

ji
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1,

22

2
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Quadratic Placement

NOTE: In quadratic placement techniques, it is 
more convenient to set the cost function L(P) to 
half of the total  weighted quadratic wirelength so 
that the derivatives will have simpler forms
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where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Each dimension can be considered independently:

• Convex quadratic optimization problem: any local minimum solution 
is also a global minimum

• Optimal x- and y-coordinates can be found by setting the partial derivatives 
of Lx(P) and Ly(P) to zero  
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where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Each dimension can be considered independently:

• where A is a matrix with A[i][j] = -c(i,j) when i ≠ j, 
and A[i][i] = the sum of incident connection weights of cell i. 

• X is a vector of all the x-coordinates of the non-fixed cells, and bx is a vector 
with bx[i] = the sum of x-coordinates of all fixed cells attached to i. 

• Y is a vector of all the y-coordinates of the non-fixed cells, and by is a vector 
with by[i] = the sum of y-coordinates of all fixed cells attached to i.
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x2x1

x=100 x=200Toy
Example:

Cost= (x1 −100)2 + (x1 −x2)2 +(x2 −200)2

setting the partial derivatives = 0 we solve for the minimum Cost:

Ax + B = 0 

= 0
4 −2
−2 4

x1

x2
+ −200

−400

= 0
2 −1
−1 2

x1

x2
+ −100

−200

x1=400/3   x2=500/3

x2
Cost=− 2(x1 −x2) +2(x2 −200)∂

∂

x1
Cost=2(x1 −100) +2(x1 −x2)∂

∂
where A is a matrix with            
A[i][j] = -c(i,j) when i ≠ j, 
and A[i][i] = the sum of incident 
connection weights of cell i. 

X is a vector of all the                   
x-coordinates of the non-fixed cells, 
and bx is a vector 
with bx[i] = the sum of x-
coordinates of all fixed cells 
attached to i. 

Y is a vector of all the                   
y-coordinates of the non-fixed cells, 
and by is a vector 
with by[i] = the sum of                   
y-coordinates of all fixed cells 
attached to i.



setting the partial derivatives = 0 we solve for the minimum Cost:

Ax + B = 0 

  = 0
4 −2

−2 4
x1
x2

+ −200
−400

 = 0
2 −1

−1 2
x1
x2

+ −100
−200

x1=400/3   x2=500/3

x2x1

x=100 x=200

Interpretation of matrices A and B:

The diagonal values A[i,i] correspond to the number of connections to xi
The off diagonal values A[i,j] are -1 if object i is connected to object j, 0 otherwise
The values B[i] correspond to the sum of the locations of fixed objects connected to object i

Example:



p1

p2

a b c

Example II:
Given:
1.Placement P with two fixed points P1 (100,175) and P2 (200,225)
2.Three free blocks a,b,c
3.Four nets N1 – N4

N1 (P1, a), N2 (a,b), N3 (b,c) and N4 (c,P2)

Task : find the coordinates of blocks (xa,ya), (xb,yb) and (xc,yc)



P1

P2

ba
c

Solution of Example II:
First
1.Solve for x-coordinates
2.Lx(P) = (100 – xa)2 + (xa – xb)2 + (xb – xc)2 + (xc – 200)2

0
)( =

∂
∂

Xa

PLx 0
)( =

∂
∂

Xb

PLx 0
)( =

∂
∂

Xc

PLx
xbAX =

Solve for X:  xa = 125, xb = 150, xc = 175

Then:
1.Solve for y-coordinates
2.Ly(P) = (175 – ya)2 + (ya – yb)2 + (yb – yc)2 + (yc – 225)2

0
)(

=
∂

∂
Ya

PLy

0
)(

=
∂

∂
Yb

PLy

0
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=
∂

∂
Yc

PLy

ybAY =

Solve for Y:  ya = 187.5, yb = 200, yc = 
212.5Final Solution: a(125,187.5), b(150,200) and c(175,212.5)



Solution of the Original QP
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• Second stage of quadratic placers: cells are spread out to remove overlaps

• Methods:

− Adding fake nets that pull cells away from dense regions toward anchors

− Geometric sorting and scaling

− Repulsion forces, etc.

Quadratic Placement



Partitioning

• Find a good cut direction and position.

• Improve the cut value using FM.



• Before every level of partitioning, do the Global 
Optimization again with additional constraints that the 
center of gravities should be in the center of regions.

• Always solve a single QP (i.e., global).

Applying the Idea Recursively

Center of Gravities



Analytic Placement

(a) Global placement with 1 region (b) Global placem ent with 4 region (c) Final placements



Pros and Cons of AP (QP/FD)

�Pros:

Very Fast Analytical Solution


Can Handle Large Design Sizes


Can be Used as an Initial Seed Placement Engine

�Cons:
�Can Generate Overlapped Solutions: Postprocessing

Needed

�Might not be suitable for Timing Driven Placement

�Not Suitable for Simultaneous Optimization of Other 
Aspects of Physical Design (clocks, crosstalk…)

�Gives Trivial Solutions without Pads ..



Xilinx ISE vs. Xilinx Vivado
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FPGA Physical Design

Design 
Entry

Logic 
Optimization

Synthesis

Mapping 
to k-LUT

Packing LUTs 
to CLBs

Placement

Routing Configure an 
FPGA

Simulation
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Global vs. Detailed Routing

� Global routing

LB LB LB

SB SB

LB LB LB

SB SB

LB LB LB

SB

SB

LB LB LB

SB SB

LB LB LB

SB SB

LB LB LB

SB

SB

� Detailed routing
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Routing is Architecture Dependent

� Connection Boxes “C”
� Flexibility, FC (# of wires each 

logic pin can connect to)
� Topology (pattern of switches)

� Switch Boxes “S”
� Flexibility, FS
� Topology

� Length of wires:
� Single Length Lines
� Double Length Lines
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FPGA Routing: VPR

VPR – Versatile Place and Route [Betz, et al., 1997]
� Uses a Pathfinder algorithm
� Increase performance over original Pathfinder algorithm
� Routability-driven routing

� Goal: Use fewest tracks possible
� Timing-driven routing

� Goal: Optimize circuit speed

Routing Resource Graph
Resource 

Graph

Route

Rip-up

Done!

congestion?illegal? 

no

yes
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FPGA Routing: PathFinder

� Pathfinder [Ebeling , et al., 1995]
� Introduced negotiated congestion
� During each routing iteration, route 

nets using shortest path
� Allows overuse (congestion) of routing 

resources

� If congestion exists (illegal routing)
� Update cost of congested resources 

based on the amount of overuse
� Rip-up all routes and reroute all nets

2

congestion

2
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FPGA Physical Design

Design 
Entry

Logic 
Optimization

Synthesis

Mapping 
to k-LUT

Packing LUTs 
to CLBs

Placement

Routing Configure an 
FPGA

Simulation
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FPGA Configuration
� Following all CAD steps the end result is a configuration file which 

contains the information that will be uploaded into  the FPGA in order to 
program it to perform a specific function.

� Interfaces available to configure the FPGA?.
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