
CAD Flow for FPGAs
“Introduction”

What is EDA?
o EDA � Electronic Design Automation or (CAD)

o Methodologies, algorithms and tools, which assist and
automate the design, verification, and testing of
electronic systems.

o A general methodology for refining a high-level
description down to a detailed physical
implementation for designs ranging from
– Integrated circuits (including system-on-chips),

– Field Programmable Gate Arrays,

– Printed circuit boards (PCBs) and

– Electronic systems.

o Why?
• Manual design is unrealistic

• Fewer errors

• Time to market.

3

Areas & Domain Knowledge in EDA

FPGA tool flow

HDL
(VHDL /
Verilog)

Synthesize

Net list

Map

Place

Route

Bit
stream

� Hardware design is traditionally done by
modeling the system in a hardware
description language

� An FPGA “compiler” (synthesis tool)
generates a netlist

� which is then mapped to the FPGA
technology

� the inferred components are placed on
the chip

� and the connecting signals are routed
through the interconnection network

� A bit stream is finally produced which
can be used to program the FPGA.

4

Design
Entry

Logic
Optimization

Synthesis

Mapping
to k-LUT

Packing LUTs
to CLBs

Placement

Routing Configure an
FPGA

Simulation

EDA (CAD) Flow for FPGAs

5

“Synthesis”

Synthesis is the process by which the system specifications
and constraints are translated to an implementation (a net
list of connected components).
o Synthesis is considered to be a key stage in

automated design tools (CAD Tools).
o A significant area of research in EDA is in the

development of tools that can synthesize hardware
from a design written in the form of high-level
programming language such as C.

o It is believed that these ``hardware compilers” will
help to decrease development time , thus shortening
the crucial time to market for designs.

6

Design
Entry

Logic
Optimization

Synthesis

Mapping
to k-LUT

Packing LUTs
to CLBs

Placement

Routing Configure an FPGA
or Fabricate IC

Simulation

CAD for IC Design: Synthesis
Technology Independent logic optimization

Technology Dependent Optimization

Objective Function for Synthesis

• Minimize area
– in terms of literal count, cell count, register count, etc.

• Minimize power
– in terms of switching activity in individual gates, deactivated circuit

blocks, etc.

• Maximize performance
– in terms of maximal clock frequency of synchronous systems,

throughput for asynchronous systems

• Any combination of the above
– combined with different weights
– formulated as a constraint problem

• “minimize area for a clock speed > 300MHz”

• More global objectives
– feedback from layout

• actual physical sizes, delays, placement and routing
8

Design
Entry

Logic
Optimization

Synthesis

Mapping
to k-LUT

Packing LUTs
to CLBs

Placement

Routing Configure an
FPGA

Simulation

CAD for FPGAs: Mapping & Covering

9

Mapping

Input: A Boolean network Output: A netlist of k-LUTs implementing the
Boolean network optimizing some cost function

The mapped netlist

Technology
Mapping

a b c d

f

The subject graph
e

a b c d e

f

10

Technology Mapping: A Simple Example

FA

A B

Co Ci

S

A Full Adder Implementation:

S = A+B

Logic synthesis tool reduces circuit to
SOP form

Co = ABCi + ABCi + ABCi + ABCi

S = ABCi + ABCi + ABCi + ABCi

LUT CoCi
B
A

LUT S
Ci
B
A

11

Logic Synthesis in FPGAs

� Logic Optimization

� Technology Mapping

� Definitions

� Technology Mapping
� Logic Optimization
� Logic Synthesis = Logic Optimization + Tech Mapping

12

Mapping and Packing
a
b

c
fNetlist of basic gates

Technology Independent logic optimization

Technology map to lookup tables (LUTS)

Pack LUTs into logic blocks

Netlist of logic blocks

LUT
LUT

LUT

LUT

CLB

13

Objective Function for Mapping

o Minimize area
� in terms of number of LUTs

o Minimize power
� in terms of switching activity in individual LUTs.

o Maximize performance
� in terms of connectivity (depth of LUT implementation)

o Any combination of the above (multi-objective)
� combined with different weights

14

Mapping: Example

In this example, the circuit
in Figure (a) can be
implemented by:

� the circuit of three
5-input lookup tables
shown in Figure (b)

� Notice that one of the
lookup tables uses only 4
of the available 5 inputs.

15

FPGA CAD Flow: Packing

Design
Entry

Logic
Optimization

Synthesis

Mapping
to k-LUT

Packing LUTs
to CLBs

Placement

Routing Configure an
FPGA

Simulation

16

Packing LUTs into CLBs

o Logic block packing
groups several LUTs and
registers into one logic
block.

o This step is necessary
whenever the FPGA logic
block contains more than
a single LUT.

Highly connected LUTs

17

Packing
o Logic Block packing groups several LUTs and

registers into one Configurable Logic Block
(CLB), respecting limitations such as:
i. Number of LUTs a CLB may contain
ii. The number of distinct input signals/clocks a CLB

may contain
o The optimization goals in this phase are to pack

connected LUTs together to Minimize:
i. The number of signals to be routed between logic

blocks
ii. The number of logic blocks used (by filling each

logic block to its capacity)
o This problem is a form of clustering .

18

Clustering “Packing”

A

C

B

D

net1

net2

before
clustering

A

C

B

D

net1

net2

cluster

clustering

A

C

B

D
net2

cluster

after
clustering

19

CAD for FPGAs: Place & Route

Design
Entry

Logic
Optimization

Synthesis

Mapping
to k-LUT

Packing LUTs
to CLBs

Placement

Routing Configure an
FPGA

Simulation

20

Problem Formulation

Given :
• Set of modules M = { m1, m2, ….mn}
• Set of signals S = { s1, s2, ….sq}
• Set of location L = { l1, l2, ….lp}, p ≥ |M|

• ∀ mi ∈ M, there is a set of signals
• ∀ si ∈ S, there is a set of modules

• is said to be a signal net

S
imS ⊆

}|{,
jmSisjm

is
M

is
M ∈=

is
M

Goal : To assign each module mi ∈ M to a location lj ∈ L
such that the chosen objective function is optimized.

21

22

FPGA Placement Problem

• Input – A technology mapped netlist of Configurable
Logic Blocks (CLB) realizing a given circuit.

• Output – CLB netlist placed in a two dimensional array
of slots such that total wirelength is minimized.

CLB Netlist

i1 i2 i3 i4

f1 f2

1 2 3

4 5 6 7 8

9 10

FPGA

Placement

i1 i2 i3

i4

f2

f1

1

2

3

4

5 6

7

8

9

10

VLSI Design Flow and Physical Design

Definitions:
•Cell: a circuit component to be placed on the
chip area. In placement, the functionality of
the component is ignored.
•Net: specifying a subset of terminals, to
connect several cells.
•Netlist: a set of nets which contains the
connectivity information of the circuit.Global

Placement

Detail Placement

Clock Tree Synthesis
and Routing

Global Routing

Detail Routing

Power/Ground
Stripes, Rings Routing

Extraction and
Delay Calc.

Timing
Verification

IO Pad Placement

Placement

Placement is an NP-Complete
problem, therefore we seek to
simplify the solution to the
problem by breaking it down
further into smaller problems:
• Global Placement
• Detailed Placement

Global and Detailed PlacementGlobal and Detailed Placement

Global Placement

Detailed Placement

In global placement, we
decide the approximate
locations for cells by
placing cells in global bins.

In detailed placement, we
make some local adjustment
to obtain the final non-
overlapping placement.

• Legalization
• Local Improvement

Placement Makes a Difference

 MCNC Benchmark circuit e64 (contains 230 4-LUT).
Placed to a FPGA.

Random Initial
Placement

Global
Placement

After Detailed
Routing

25

Placement and Routing

o Two critical phases of layout design:
�Placement of components on the chip;
�Routing of wires between components.

o Placement and routing interact , but
separating layout design into phases:
�Reduces the complexity of the problem.
�Due to interaction solutions obtained are

suboptimal (lose critical information).

26

FPGA Compile Time

o Compiling time ≈

(placement time) + (routing time)
�Currently, placement and routing time for large

FPGAs can easily take hours or even days to
complete.

�These prohibitively long compiling times definitely
nullified the time-to-market advantages of
FPGAs!!.

o Heuristic methods are used to find sub -optimal
solutions in reasonable amount of time.

27

Placement: Why Important?

Reasons:

�Serious interconnect
issues (delay, routability,
noise) in deep-
submicron design

�Need placement
information even in the
early designing stages,
e.g., logic synthesis

� Cong et al. [ASPDAC-03,
ISPD-03, ICCAD-03] point
out that existing placers are
far from optimal , not
scalable, and not stable

2.0 µ 1.5 µ 1.0 µ 0.8 µ 0.5 µ

0.1

1.0

D
e

la
y
 (

n
s
)

Minimum Feature Size

Gate Delay

Interconnect
Delay

0.35 µ

28

Placement: Objectives
o Placement is the procedure to determine the physical

location of each CLBs and I/O pads on the target FPGA
based on some specific objective:
1. Wire length,
2. Delay,
3. Power,
4. Congestion,
5. Routability, ….

o Placement has been proven to be an NP-hard problem
(Non-Deterministic Polynomial)
� It cannot be solved exactly in linear time (i.e., If there are N

blocks need to be placed, the complexity of the
problem will be N!)

29

Placement metrics

o Area, delay, congestion and power are determined
partly by wiring.

o How do we judge a placement Quality?
1. Perform exact wire length measurement.
2. Estimate wire length without actually performing

routing.

o Design time may be important for FPGAs
� Designers might want to experiment with different

architectures and therefore compile time becomes
crucial.

30

31

Total Wire -length

a

b

c

e

d g

f

h

i

j

l

k

c ed

g

f h

il

k

j

a

b

• Wire-length can be measured or estimated using several techniques:
• Half Perimeter Wire Length (HPWL) � Good estimate
• Steiner Trees (most accurate!)
• Spanning Trees (close to Steiner Trees)
• Star Model
• …..

32

Total wirelength with net weights (weighted wirelength)

� For a placement P, an estimate of total weighted wirelength is

where w(net) is the weight of net, and L(net) is the estimated wirelength of net.

� Example:

∑
∈

⋅=
Pnet

netLnetwPL)()()(

33314472)()()(=⋅+⋅+⋅=⋅= ∑
∈Pnet

netLnetwPL

a

b

d

c

f

e
b1 e1

c1

a1

d1

d2 f2

f1

Nets Weights
N1 = (a1, b1, d2) w(N1) = 2
N2 = (c1, d1, f1) w(N2) = 4
N3 = (e1, f2) w(N3) = 1

Total Wire -Length Cost

Wire length measures

� Estimate wire length by distance
between components.

� Possible distance measures:
1. Euclidean distance (sqrt(x2 + y2));
2. Manhattan distance (x + y).
3. HPWL is also a measure .

� Multi-point nets must be broken up into
trees for good estimates.

Euclidean

Manhattan

33

34

Wirelength estimation for a given placement

Wire-length Estimation

Half-perimeter
wirelength
(HPWL)

HPWL = 9

4

5

Complete
graph
(clique)

8

6

5

3
3

4

Clique Length =
(2/p)Σe ∈ cliquedM(e) = 14.5

Monotone
chain

Chain Length = 12

63

3

Star model

Star Length = 15

83

4

35

Preferred method : Half-perimeter wirelength (HPWL)
• Fast (order of magnitude faster than RSMT)
• Equal to length of RSMT for 2- and 3-pin nets
• Margin of error for real circuits approx. 8% [Chu, ICCAD 04]

hwL +=HPWL

RSMT Length = 10

3
1

6

HPWL = 9

4

5

w

h

Wirelength estimation for a given placement (cont‘d .)

HPWL

Placement Phases

o Construction Phase
�Generate a good/feasible initial solution

o Iterative Improvement Phase
�Local search techniques are applied to

improve current initial solution

36

Placement Techniques

Placement
Algorithms

Constructive
Placement

Iterative
Improvement

Partitioning
Placement

Numerical
Optimization

Cluster
Growth

Technique

Simulated
Annealing

Force-directed
Placement

Genetic
Placement

Local Search

37

Cluster Growth Constructive

Construction
Phase

(1,4) (2,4) (3,4)

(0,3)

(0,2)

(0,1)

(1,3) (2,3) (3,3) (4,3)

(1,2) (2,2) (3,2) (4,2)

(1,1) (2,1) (3,1) (4,1)

(1,0) (2,0) (3,0)
0 2V

V

V V

V

V1

3

5

4

CLBs array

I/O pads array

0 1 32 4 5 6

1 2 3 4 50

Seed

0512346 V

V V V

V V

V

V

FPGA Chip

Empty Block
CLB

I/O pad

38

Heuristic methods for FPGA Placement

o Partitioning-based placement.
o Iterative placement.

�Simulated-annealing algorithm.
�Simple local search.

Currently, simulated-annealing is one of the dominant
methods used by both academia and industry.

VPlace (VPR) is the leading tool for FPGA placement
that developed in UNIV. of Toronto.

39

40

Partitioning -based AlgorithmPartitioning -based Algorithm

Partitioning Process

New Cut Existing Cut

New Cut

New
Cuts

Existing Cuts
Existing

Cuts

New Cuts

The smallest
partition part
containing only
one block

Start with a
random
placement of
modules on
the FPGA

Iterative improvement

o Start from a feasible (legal) solution.
� Random start
� Constructive based

o Seek improvements by making small
perturbations.
�Create a neighboring solution (candidate

solution).
�Select (randomly) two blocks, then swap their

locations.

41

Create a neighboring solution:

3

6

2

1

0

4

5

7

V

2

1

4

V

V

6

3

9 7

0 5 8

3

6

2

1

0

4

7

5

V

2

1

4

V

V

6

3

9 7

0 5 8

Accept this
swap

Don’t
Accept this

swap

Swap between two CLBs

42

Create a neighboring solution:

3

6

2

1

0

4

5

7

V

2

1

4

V

V

6

3

9 7

0 5 8

3

6

2

1

0

4

5

7

V

2

1

4

5

V

6

3

9 7

0 V 8

Accept this
swap

Swap between two I/O pads

43

Iterative Improvement

General method to solve combinatorial optimization problems

Principle:
� Start with initial configuration
� Repeatedly search neighborhood and select a neighbor as

candidate
� Evaluate some cost function (or fitness function) and accept

candidate if "better"; if not, select another neighbor
� Stop if:

� quality is sufficiently high, or
� no further improvement can be found, or
� after some fixed time or iterations

44

Iterative Improvement

Simple Iterative Improvement or Hill Climbing :
o Candidate is always and only accepted if cost is lower

(or fitness is higher) than current configuration
o Stop when no neighbor with lower cost (higher fitness)

can be found

Disadvantages:
o Local optimum as best result
o Local optimum depends on initial configuration
o Generally no upper bound on iteration length

45

Criteria of accepting swaps

o Improving swaps are always accepted.
o Non-improving swaps:

�Simple local search:
� Do Not Accept!

�Meta-Heuristic (Simulated-annealing: Accept)
� Based on a controlled probability. (e-∆C/T)

� In the initial start phase accept with high probability and as
we proceed accept bad moves with low probability

46

Simulated Annealing Placement

�An Initial Placement is Improved through Swaps and Moves

�Always accept a Swap/Move if it improves (reduces) cost

�Conditionally accept a Swap/Move that degrades cost under
some probability conditions

Time

Cost

47

Simulated Annealing

o Motivated by the Physical Annealing Process

� Material is heated and slowly cooled down, so
that all particles arrange in the ground energy
state into a uniform structure (i.e., create perfec t
crystals).

� At each temperature wait until the solid reaches
its thermal equilibrium.

o Simulated annealing mimics this process

o The first SA algorithm was developed in 1953.

48

Simulated Annealing

o Compared to hill climbing the main difference
is that SA allows upwards moves

o In Simulated Annealing:

� Good moves are always accepted .

� Bad moves accepted with probability

o Simulated annealing also differs from hill
climbing in that a move is selected at random
and then decides whether to accept it

49

To accept or not to accept?

P = exp(- ∆ cost /T) > r

Where:
� P: Probability of accepting a move
� ∆ cost : change in the evaluation function
� T: the current temperature
� r is a random number between 0 and 1

50

When to Accept?

∆ cost Temp exp(-C/T) ∆ cost Temp exp(-C/T)
0.2 0.95 0.810157735 0.2 0.1 0.135335283
0.4 0.95 0.656355555 0.4 0.1 0.018315639
0.6 0.95 0.53175153 0.6 0.1 0.002478752
0.8 0.95 0.430802615 0.8 0.1 0.000335463

P = exp(- ∆ cost /T) > r

o When the temperature is high (at the start of the s earch) the value of
P = exp(- ∆ cost /T) is high and in most cases will be higher than the
random number generated “r”.

o However, as we decrease the temperature (at the end of the search T is
getting smaller) the value of P = exp(- ∆ cost /T) is low and P is not going
to be greater than the random number generated “r”.

51

Simulated Annealing

Step 1: Initialize – Start with a random initial placement.
Initialize T to a very high value or “temperature”.

Step 2: Move – Perturb the placement through a defined
move.

Step 3: Calculate score – calculate the change in the score
due to the move made.

Step 4: Choose – Depending on the change in score, accept
or reject the move. The prob of acceptance depending on
the current “temperature”.

Step 5: Update and repeat – Update the temperature value
by lowering the temperature. Go back to Step 2.

The process is done until “Freezing Point” is reached.

52

Simulated Annealing

� Initialize temperature T initial =(High Value), T final, = (Low Value)
� Create an initial random solution S = Random Placem ent
� While (T initial > Tfinal)

{
Repeat step 1, 2 and 3 a fixed number of times:

1. Generate a new solution S’
2. If cost(S’) < cost (S),

accept S’, i.e., S ⇐ S’
3. Else

if random() < e -k∆cost/T

accept S’
else

reject S’
Decrease T

}
report (best solution)

53

Simulated Annealing

State

Cost
Temperature

dropping
Drop back

Temperature
High

54

Pros and Cons of SA

o Pros:
�Can Reach Globally Optimal Solution (given “enough” time)
�Open Cost Function.
�Can Optimize Simultaneously all Aspects of Physical Design
�Can be Used for End Case Placement

o Cons:
�Extremely Slow Process of Reaching a Good Solution
�We may revisit solutions visited before (unproductive)

55

56

Analytic Placement
• Also referred to as force-directed or quadratic

placement

• Analytic Placement minimizes a given objective,
such as wire-length or circuit delay, using
mathematical techniques such as numerical
analysis or linear programming.

• Such methods often require certain assumption
such as the differentiability of the obj Function.

• Algorithm:
	 Solve a set of linear equations to find an intermediate solution

	 Repeat the process until equilibrium

Quadratic Placement
• Write down the placement problem as an analytical mathematical problem
• Suppose that all nets in the circuit are 2-pin nets

– Consider a net {i,j}, the wire-length is given by Manhattan distance:
– L {i,j} = |xi – xj| + |yi – yj|

• This is usually referred to as a linear wire-length (non-differentiable)!!!.
• Solution?
• A common idea is to consider the squared Euclidean distance between

modules instead:
– L~

{i,j} = (xi – xj)2 + (yi – yj)2

– So the wire-length minimization problem can be formulated as a quadratic
program.

– It can be proved that the quadratic program is convex, hence polynomial time
solvable

58

• Objective function is quadratic; sum of (weighted) squared Euclidean distance
represents placement objective function

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Only two-point-connections

• Minimize objective function by equating its derivative to zero
which reduces to solving a system of linear equations

• Similar to Least-Mean-Square Method (root mean Square)

() ()()∑
=

−+−=
n

ji
jijiij yyxxcPL

1,

22

2

1
)(

Quadratic Placement

NOTE: In quadratic placement techniques, it is
more convenient to set the cost function L(P) to
half of the total weighted quadratic wirelength so
that the derivatives will have simpler forms

59

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Each dimension can be considered independently:

• Convex quadratic optimization problem: any local minimum solution
is also a global minimum

• Optimal x- and y-coordinates can be found by setting the partial derivatives
of Lx(P) and Ly(P) to zero

() ()()∑
=

−+−=
n

ji
jijiij yyxxcPL

1,

22

2

1
)(

2

1,1

)(),()(ji

n

ji
x xxjicPL −= ∑

==

2

1,1

)(),()(ji

n

ji
y yyjicPL −= ∑

==

Quadratic Placement

60

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Each dimension can be considered independently:

• where A is a matrix with A[i][j] = -c(i,j) when i ≠ j,
and A[i][i] = the sum of incident connection weights of cell i.

• X is a vector of all the x-coordinates of the non-fixed cells, and bx is a vector
with bx[i] = the sum of x-coordinates of all fixed cells attached to i.

• Y is a vector of all the y-coordinates of the non-fixed cells, and by is a vector
with by[i] = the sum of y-coordinates of all fixed cells attached to i.

() ()()∑
=

−+−=
n

ji
jijiij yyxxcPL

1,

22

2

1
)(

2

1,1

)(),()(ji

n

ji
x xxjicPL −= ∑

==

2

1,1

)(),()(ji

n

ji
y yyjicPL −= ∑

==

0
)(=−=

∂
∂

x
x bAX
X

PL
0

)(
=−=

∂
∂

y
y bAY
Y

PL

Quadratic Placement

61

x2x1

x=100 x=200Toy
Example:

Cost= (x1 −100)2 + (x1 −x2)2 +(x2 −200)2

setting the partial derivatives = 0 we solve for the minimum Cost:

Ax + B = 0

= 0
4 −2
−2 4

x1

x2
+ −200

−400

= 0
2 −1
−1 2

x1

x2
+ −100

−200

x1=400/3 x2=500/3

x2
Cost=− 2(x1 −x2) +2(x2 −200)∂

∂

x1
Cost=2(x1 −100) +2(x1 −x2)∂

∂
where A is a matrix with
A[i][j] = -c(i,j) when i ≠ j,
and A[i][i] = the sum of incident
connection weights of cell i.

X is a vector of all the
x-coordinates of the non-fixed cells,
and bx is a vector
with bx[i] = the sum of x-
coordinates of all fixed cells
attached to i.

Y is a vector of all the
y-coordinates of the non-fixed cells,
and by is a vector
with by[i] = the sum of
y-coordinates of all fixed cells
attached to i.

setting the partial derivatives = 0 we solve for the minimum Cost:

Ax + B = 0

 = 0
4 −2

−2 4
x1
x2

+ −200
−400

 = 0
2 −1

−1 2
x1
x2

+ −100
−200

x1=400/3 x2=500/3

x2x1

x=100 x=200

Interpretation of matrices A and B:

The diagonal values A[i,i] correspond to the number of connections to xi
The off diagonal values A[i,j] are -1 if object i is connected to object j, 0 otherwise
The values B[i] correspond to the sum of the locations of fixed objects connected to object i

Example:

p1

p2

a b c

Example II:
Given:
1.Placement P with two fixed points P1 (100,175) and P2 (200,225)
2.Three free blocks a,b,c
3.Four nets N1 – N4

N1 (P1, a), N2 (a,b), N3 (b,c) and N4 (c,P2)

Task : find the coordinates of blocks (xa,ya), (xb,yb) and (xc,yc)

P1

P2

ba
c

Solution of Example II:
First
1.Solve for x-coordinates
2.Lx(P) = (100 – xa)2 + (xa – xb)2 + (xb – xc)2 + (xc – 200)2

0
)(=

∂
∂

Xa

PLx 0
)(=

∂
∂

Xb

PLx 0
)(=

∂
∂

Xc

PLx
xbAX =

Solve for X: xa = 125, xb = 150, xc = 175

Then:
1.Solve for y-coordinates
2.Ly(P) = (175 – ya)2 + (ya – yb)2 + (yb – yc)2 + (yc – 225)2

0
)(

=
∂

∂
Ya

PLy

0
)(

=
∂

∂
Yb

PLy

0
)(

=
∂

∂
Yc

PLy

ybAY =

Solve for Y: ya = 187.5, yb = 200, yc =
212.5Final Solution: a(125,187.5), b(150,200) and c(175,212.5)

Solution of the Original QP

66

• Second stage of quadratic placers: cells are spread out to remove overlaps

• Methods:

− Adding fake nets that pull cells away from dense regions toward anchors

− Geometric sorting and scaling

− Repulsion forces, etc.

Quadratic Placement

Partitioning

• Find a good cut direction and position.

• Improve the cut value using FM.

• Before every level of partitioning, do the Global
Optimization again with additional constraints that the
center of gravities should be in the center of regions.

• Always solve a single QP (i.e., global).

Applying the Idea Recursively

Center of Gravities

Analytic Placement

(a) Global placement with 1 region (b) Global placem ent with 4 region (c) Final placements

Pros and Cons of AP (QP/FD)

�Pros:

Very Fast Analytical Solution

Can Handle Large Design Sizes

Can be Used as an Initial Seed Placement Engine

�Cons:
�Can Generate Overlapped Solutions: Postprocessing

Needed

�Might not be suitable for Timing Driven Placement

�Not Suitable for Simultaneous Optimization of Other
Aspects of Physical Design (clocks, crosstalk…)

�Gives Trivial Solutions without Pads ..

Xilinx ISE vs. Xilinx Vivado

71

FPGA Physical Design

Design
Entry

Logic
Optimization

Synthesis

Mapping
to k-LUT

Packing LUTs
to CLBs

Placement

Routing Configure an
FPGA

Simulation

72

Global vs. Detailed Routing

� Global routing

LB LB LB

SB SB

LB LB LB

SB SB

LB LB LB

SB

SB

LB LB LB

SB SB

LB LB LB

SB SB

LB LB LB

SB

SB

� Detailed routing

73

Routing is Architecture Dependent

� Connection Boxes “C”
� Flexibility, FC (# of wires each

logic pin can connect to)
� Topology (pattern of switches)

� Switch Boxes “S”
� Flexibility, FS
� Topology

� Length of wires:
� Single Length Lines
� Double Length Lines

74

FPGA Routing: VPR

VPR – Versatile Place and Route [Betz, et al., 1997]
� Uses a Pathfinder algorithm
� Increase performance over original Pathfinder algorithm
� Routability-driven routing

� Goal: Use fewest tracks possible
� Timing-driven routing

� Goal: Optimize circuit speed

Routing Resource Graph
Resource

Graph

Route

Rip-up

Done!

congestion?illegal?

no

yes

75

1

1

1

1

1

1

1
1

1

FPGA Routing: PathFinder

� Pathfinder [Ebeling , et al., 1995]
� Introduced negotiated congestion
� During each routing iteration, route

nets using shortest path
� Allows overuse (congestion) of routing

resources

� If congestion exists (illegal routing)
� Update cost of congested resources

based on the amount of overuse
� Rip-up all routes and reroute all nets

2

congestion

2

76

FPGA Physical Design

Design
Entry

Logic
Optimization

Synthesis

Mapping
to k-LUT

Packing LUTs
to CLBs

Placement

Routing Configure an
FPGA

Simulation

77

FPGA Configuration
� Following all CAD steps the end result is a configuration file which

contains the information that will be uploaded into the FPGA in order to
program it to perform a specific function.

� Interfaces available to configure the FPGA?.

78

