
CONSTRUCTIVE AND LOCAL SEARCH HEURISTIC TECHNIQUES
FOR FPGA PLACEMENT

Xiaojun Bao and Shawki Areibi

School of Engineering
University of Guelph
CANADA N1G 2W1

E-mail:
�
xbao, sareibi � @uoguelph.ca

ABSTRACT

The logic capacity of FPGAs has increased so rapidly in the
last decade (up to 40-million gates) that it will take a con-
siderable amount of time for users to synthesize and com-
pile these circuits. These prohibitively long compile times
may adversely affect instant manufacturability of FPGAs and
become intolerable to users seeking very high speed com-
pile. This paper presents two novel placement heuristic al-
gorithms that significantly reduce the amount of computa-
tion time required to achieve acceptable-quality placements.
The first algorithm is a Cluster Seed Search technique (CSS)
that is considered to be a constructive based method and can
be implemented in trivial time compared with other place-
ment algorithms. The second algorithm is an enhancement of
local search and is implemented as a Simple Local Search
(SLS) and Immediate Neighborhood Local Search (INLS).
Both techniques achieve reasonably good solutions quickly.

1. INTRODUCTION

Field-Programmable Gate Arrays(FPGAs) have become a pop-
ular way to realize digital systems because of their dramatic
reduction of turn-around time and start-up cost compared with
traditional Application-Specific Integrated Circuits (ASICS).
Today FPGAs, as one of the most popular VLSI design styles,
could lose their time-to-market advantage and capacity, since
users don’t have patience to wait for long periods of time to
compile their design. Therefore users are willing to accept the
decrease in quality of final results with less FPGA compiling
time.

The focus of this paper is on the placement phase in CAD
compile process. We present two novel placement heuristic
algorithms that significantly reduce the amount of computa-
tion time required to achieve acceptable-quality placements.
The first algorithm is Cluster Seed Search (CSS), a construc-
tive based method that can be implemented in trivial time.
In the common VLSI cell placement, constructive placement
algorithms are generally based on primitive connectivity [1].
But in FPGA placement, CCS uses the fanout number crite-

ria to select the best block and create an improved initial and
legal placement solution.

The second algorithm is an enhancement of local search
and is implemented in two different ways. The first is imple-
mented as a Simple Local Search (SLS) which uses the sim-
plest iterative improvement strategy. SLS attempts to achieve
the reduction in wire-length cost by swapping blocks in a win-
dow which limits the swapping region. Initially the window
is large, and as the heuristic progresses the window shrinks
in size. Limiting the scope of swap within the region of the
original block position gives superior results compared to un-
restricted moves [2]. Local search is also implemented as
an Immediate Neighbor Local Search (INLS). This technique
can achieve suboptimal solutions in a very short period of
time by only swapping the adjacent blocks around the se-
lected blocks.

The rest of this paper is organized as follows: Section 2
summarizes the previous work done so far on FPGA place-
ment. Section 3 describes our new fast placement algorithms,
CCS, SLS and INLS. Section 4 presents the experimental re-
sults. Conclusions and future work are presented in Section 5.

2. BACKGROUND

Most CAD tools for FPGA development pay close attention
to the placement stage to achieve as efficient a circuit map-
ping as possible, which is critical to the routing phase that
follows. Since FPGA placement is an NP-hard combinatorial
optimization problem [1], the heuristic techniques in CAD
tools have to take a reasonable amount of time to produce a
good placement solution.

The optimization techniques for FPGA placement can be
classified into two categories: min-cut(partitioning-based) al-
gorithms [3, 4] and iterative improvement algorithms [5, 6].
Min-cut or partitioning-based placement algorithms can run
in a comparatively short time compared with iterative im-
provement algorithms. They usually produce high quality re-
sults using a divide-and-conquer strategy to reduce the prob-
lem space by repeatedly partitioning the problem into sub-

problems. In such algorithms, a circuit is recursively divided,
and the blocks with high connectivity are left in one of the
partitions by minimizing the number of nets crossing. This
partitioning process repeats until finally the partition comes to
a small size. Highly connected blocks are therefore grouped
in the same partition.

Iterative improvement approaches, such as Simulated An-
nealing placement algorithms [5], are used to obtain very high
quality placement but suffer from long computation times.
Usually, these algorithms start with a random initial solution
and attempt to find an improvement by seeking small pertur-
bation to the placement that results in good solution. In order
to explore the larger solution space, iterative improvement al-
gorithms require a larger number of iterations to reach an op-
timal solution at the expence of large CPU time [7].

3. METHODOLOGY

Most heuristic algorithms for FPGA placement are capable of
achieving good results at the expence of long runtime. Nowa-
days the time issue is becoming more important in the FPGA
design as the technology shrinks. Two novel heuristic algo-
rithms have been developed to solve the FPGA placement
problem in a short period of time.

3.1. Cluster Seed Search

Cluster Seed Search (CCS) is a constructive heuristic method
which is used to build an initial/legal placement. In the com-
mon VLSI cell placement paradigm, constructive placement
algorithms are generally based on primitive connectivity rules [1].
Since the number of input and output pins of each logic block
is fixed, the connectivity rules for common VLSI design do
not work properly in FPGA design. CSS uses the fanout num-
ber criteria to select the best block and creates an improved
initial and legal placement solution. A logic block with high
fanout indicates that the block belongs to a net which has
more terminals. Moving these logic blocks with high fanout
together attempts to shrink the bounding box of the net con-
taining more terminals with higher probability.

1. Seed = RandomSelectSeed();
/*randomly pick up a block as a seed at the start*/

2. SetLocationOfSeed();

3. While(Initial Solution Not Complete)

4. { CreateListOfFanoutNumber(Seed);

/* start of loop*/

/*create the list of fanout number of Blocks connected to the seed*/

5. Seed = SelectBestBlock();
/*select the block with the highest fanout number as the next seed*/

6. SetLocationOfSeed();

/*end of loop*/
/* get the improved initial solution*/

/*place current seed at the location close to the previously placed seed*/

/*place random seed at the first position of FPGA*/

7. }
8.

Fig. 1. Pseudo-Code for CSS

The Pseudo-code for CSS is shown in Figure 1. Typically,
a seed block (a logic block) is selected randomly and placed
in the FPGA layout. Next, a block is chosen from the rest of
unplaced blocks which are connected to the previously placed
seed block according to their fanout. This block is placed at a
vacant location closest to the previous chosen seed, such that
the wire-length is minimized. The current placed block be-
comes the next candidate seed. The process is repeated until
an improved initial and legal solution is constructed.

3.2. Simple Local Search

As one of the most basic iterative heuristic methods, which
typically produce suboptimal solutions (far away from opti-
mal) in short period of time, local search algorithms can find
approximate solutions to large scale combinatorial optimiza-
tion problems [8]. The fundamental principle underlying a
local search algorithm is that it always moves from the cur-
rent solution to the next better solution of the neighborhood
in a greedy way.

6 if(C < 0)

 S = SwapPosition(Block1, Block2);

/*get the final placment solution S*/

/*only accept teh improving swaps*/

6. C = Cost(Block1) − Cost(Block2);

5. Block2 = RandomSelectBlock();

4. { Block1 = RandomSelectBlock();

3. While(ExitCriteria() == false)

2. S = InitialPlacment();

1. SetExitCriteia(); /*set iteration number*/

/*start of loop*/

/*randomly pick up two blocks in the whole neighborhood region*/

/*calculate the change of cost if swapping these two blocks*/

/*end of the loop*/7. }

8.

Fig. 2. Pseudo-Code for simple local search

In this paper, Simple Local Search (SLS) uses the simplest
iterative improvement strategy that swaps the blocks in a win-
dow which limits the swapping region. Initially the window is
large, and as the algorithm progresses the window shrinks in
size. By starting from an initial legal solution, a considerable
amount of time is required to search the whole neighborhood
which is prohibitively large for NP-hard problem, while at-
tempting to achieve improvements. The pseudo-code for this
strategy is shown by Figure 2.

3.3. Immediate Neighbor Local Search

A new local search method is developed to achieve a good
placement solution in a short time. Limiting the scope of
swaps within the region of the original block position has
shown to give superior results compared to unrestricted moves
when a globally good placement is already achieved [2]. There-
fore, this method checks the vicinity of target block and swaps
the nearby blocks around the target block as shown by Figure
3. The next seed block is also chosen from the immediate

neighbors of previously selected block.

������
���
������
���

������
���
������
���

������
���
������
������
������
������
���	�	
	�		�	

�

�

�

������
���
������
���

��
�
������
���

������
���
������
���

������
���
������
���

������
���
������
���

������
���
������
������
������
������
������
������
������
���

������
���
������
���

������
���
������
���

������
���
 � �
 �

!�!!�!"�""�"
#�##�#
$�$$�$%�%&�&

'�''�'
'�'
(�((�(
(�(

)�))�)
)�)
*�**�*
�+�+,�,

-�--�-.�..�./�/0�0

1�11�1
1�1
2�22�2
2�2

3�33�3
3�3
4�44�4
4�45�56�67�7
7�7
8�88�8

9�9�9�99�9�9�99�9�9�99�9�9�99�9�9�9

:�:�:�::�:�:�::�:�:�::�:�:�::�:�:�:

;�;�;�;;�;�;�;
<�<�<�<<�<�<�<

=�=�=�==�=�=�==�=�=�==�=�=�==�=�=�=

>�>�>�>>�>�>�>>�>�>�>>�>�>�>>�>�>�>

?�?�?�?�??�?�?�?�?
@�@�@�@�@@�@�@�@�@

A�A�AA�A�AA�A�AA�A�AA�A�AA�A�A

B�B�BB�B�BB�B�BB�B�BB�B�BB�B�B

Nearby Blocks

Selected
Block

Selected
Block

Nearby Blocks

CLB

Fig. 3. Searching Region of INLS

The Pseudo-code for INLS is shown in Figure 4. The ba-
sic principle underlying this heuristic typically involves the
interchange of any pair of blocks that would eventually lead
to an improvement in wire-length cost. In INLS algorithm,

17. if(C < 0)

8. if(C < 0)

2. While(ExitCriterion() == False) /*start of loop*/
/*start of inner loop*/3. { for(i = 0; i < NumberOfTotalBlocks; i++)

1. S = InitPlacement();

13. }

14. if(no swap happen);
15. { Candidate = randomSelectBlock();

19. }
20. }

/*create the list of blocks around the selected block*/
5. for(j = 0; j < NumberOfNearbyBlocks; j++)
6. { Candidate = SelectNearbyBlock();

9. {

12. }

/*only accept the improving swaps*/

/*avoid the early convergence*/

21. }
/*get the improved initial solution*/

 /*end of loop*/
/*end of inner loop*/

11. Break;

/*search the adjacent neighbors*/

/*avoid doing greedily search, once find the improvement, break*/

4. { createListOfNearby(SeedBlock(i));

7. C = Cost(Candidate) − Cost(SeedBlock(i)); /*calculate the change in the cost*/

10. S = SwapPosition(SeedBlock(i), Candidate);

16. C = Cost(Candidate) − Cost(SeedBlock(i));

18. S = SwapPosition(SeedBlock(i), Candidate);

Fig. 4. Pseudo-Code for INLS

we limit this neighborhood to a very small region – adjacent
to the target block. The algorithm initiates the search from
any location within the FPGA layout. The first seed block is
chosen randomly and the next seed block is selected from the
neighbors of previously selected block. If swapping nearby
blocks lead to a deterioration of the solution quality, a random
block is chosen to further reduce the wire-length. This ap-
proach aids in expanding the search space and prevents early
convergence. The INLS algorithm uses the greedy strategy
to scan and evaluate the current placement and accepts the
best solution until no further improvement is obtained. This
greedy method can guarantee the best possible move in the
solution space and eventually stops at a local minima.

Circuit FPGA Number of Number of Number of Average
name matrix CLBs I/O Pads Nets Fanout

e64 17x17 274 130 290 3.94
tseng 33x33 1047 174 1099 4.28
ex5p 33x33 1064 71 1072 4.73
alu4 40x40 1522 22 1536 4.52
seq 42x42 1750 76 1791 4.46
frisc 60x60 3556 136 3576 4.48
spla 61x61 3690 62 3706 4.73

ex1010 68x68 4598 20 4608 4.49
s38584.1 81x81 6447 342 6485 4.18

clma 92x92 8383 144 8445 4.61

Table 1. MCNC Benchmark circuit suite used as test cases

4. EXPERIMENTAL RESULTS

In this paper, our algorithms target an island-based FPGA
model with each CLB including a 4-input lookup table and
a D flip-flop. Ten MCNC [9] benchmark circuits, shown in
Table 1, are divided into three categories: small, medium and
large. The algorithms were implemented in C++/C and ex-
ecuted on a Sun Sparc10 dual alpha CPU workstation with
Solaris UNIX 8.0 operating system. We carried out CSS

Circuit Average random Average Average CPU Total
name inital cost final cost runtime(s) Improvement%

e64 7542 6992 0.01 6%
tseng 41286 34808 0.05 16%
ex5p 42301 37381 0.04 12%
alu4 61504 53175 0.08 14%
seq 79903 69390 0.11 13%

M.avg 46489 40349 0.05 12%
frisc 229152 177393 0.44 23%
spla 236251 181525 0.47 23%

ex1010 332664 264977 0.74 21%
s38584.1 559870 478670 1.33 15%

clma 796591 631368 2.20 21%
L.avg 430905 346786 1.03 20%

Avg 238697 193567 0.54 16%

Table 2. Performance of Cluster Seed Search

with random initial solutions at first. As shown in Table 2,
CCS achieves on average 16% improvement over a randomly
placed circuit in a short period of time. However, CSS ob-
viously results in poor quality of placement (which will not
be accepted as the final solution). In general, a good start-
ing point can help in reducing the convergence time of lo-
cal search techniques. To evaluate the performance of SLS
and INLS, we implemented both methods and compared their
performance. Both methods begin with either random initial
solutions or solutions constructed by CCS. The results in Ta-
ble 3 and 4 are obtained by running SLS and INLS 50 times
over the ten MCNC benchmark circuits. The results in Ta-
ble 3 are based on random initial solutions. Table 4 are simi-
lar except that initial solutions are based on CCS constructive
method. Tables 3 and 4 confirm that both SLS and INLS are
fast heuristics. INLS achieves better improvement with less
CPU time over medium circuits than SLS. But over the large
circuits, INLS takes less CPU time to obtain the same im-
provement as simple local search. We also conducted some

experimental evaluation of a hybrid technique that combines
the three methods together. In this experimental setup, ini-

Circuit Ave.random SLS-R INLS-R
name initial cost Ave. Ave.CPU Ave Ave.CPU

cost runtime(s) cost runtime(s)

e64 7542 4006 0.06 4004 0
tseng 41286 16478 0.32 15803 0.06
ex5p 42301 21670 0.33 21352 0.14
alu4 61504 28797 0.46 28635 0.18
seq 79903 39080 0.62 39096 0.25

M.avg 46489 26506 0.43 26221 0.12
frisc 229152 102676 1.67 102901 0.59
spla 236251 111485 1.74 110372 1.18

ex1010 332664 138229 2.38 138479 3.0
s38584.1 559870 205301 3.97 204574 2.62

clma 796591 332142 6.82 330038 3.37
L.avg 430905 177967 3.31 177272 2.15

Avg 238697 99986 1.88 99575 1.13
Avg.Impro - 58% - 59% 40%

Table 3. Performance of SLS and INLS

Circuit Initial Solution SLS-C INLS-C
name Created by CCS Ave. Ave.CPU Ave. Ave.CPU

cost time(s) cost time(s)

e64 6992 3904 0.1 3905 0.02
tseng 34808 16036 0.41 15729 0.18
ex5p 37381 21002 0.42 20445 0.22
alu4 53175 27956 0.56 27517 0.27
seq 69390 38062 0.81 37174 0.36

M.avg 40349 25766 0.55 25216 0.26
frisc 177393 94479 2.09 94450 1.04
spla 181525 101300 2.13 101296 1.65

ex1010 264977 128431 2.82 128115 3.72
s38584.1 478670 194515 5.27 194362 3.94

clma 631368 319227 9.01 318885 6.14
L.avg 346786 167594 4.26 167422 3.31

Avg 193657 94493 2.34 94180 1.76
Avg.Impro - 51% - 52% 25%

Table 4. Comparison of SLS and INLS (CCS initial)

tial solutions are obtained via CCS. This is followed by SLS
to explore (diversify the search) the solution space. Finally,
INLS was used to fine tune the search (intensify the search).
Table 5 compares CCS-SLS-INLS with solutions obtained by
SLS-R and INLS-R. The table clearly indicates that this hy-
brid approach achieves on average 15% improvement over the
other individual heuristic approaches.

5. CONCLUSIONS

Time issues have become a critical concern in FPGA design.
Users may be willing to trade placement quality for a reduc-
tion in runtimes. In this paper, two new algorithms for the
FPGA placement problem have been presented and investi-
gated. CSS constructs a good starting point for other iterative
approaches in a very short time. INLS greatly mitigates the
runtime in FPGA placement process, while yielding accept-
able quality of placements. Future work will concentrate on
implementing GRASP like heuristics and Tabu Search to fur-
ther enhance the solution quality.

Circuit SLS-R INLS-R CSS-SLS-INLS
name Ave. Ave.CPU Ave Ave.CPU Ave Ave.CPU

cost runtime(s) cost runtime(s) cost runtime(s)

e64 4006 0.06 4004 0 3647 0.11
tseng 16478 0.32 15803 0.06 14059 0.7
ex5p 21670 0.33 21352 0.14 20076 0.75
alu4 28797 0.46 28635 0.18 25927 1.07
seq 39080 0.62 39096 0.25 35997 1.5

M.avg 26506 0.43 26221 0.12 24014 1.01
frisc 102676 1.67 102901 0.59 92098 4.12
spla 111485 1.74 110372 1.18 100592 5.2

ex1010 138229 2.38 138479 3.0 110097 8.01
s38584.1 205301 3.97 204574 2.62 173668 13.9

clma 332142 6.82 330038 3.37 272831 20.21
L.avg 177967 3.31 177272 2.15 149857 10.28

Avg 99986 1.88 99575 1.13 84898 5.56

Table 5. Performance of SLS, INLS and Hybrid

6. REFERENCES

[1] K. Shahookar and P. Mazumder, “Vlsi cell placement
techniques,” in ACM Computing Surveys (CSUR), Vol-
ume 23 Issue 2, June 1991.

[2] J. Lam, J. Delosme, and C. Sechen, “Performance of
a new annealing schedule,” in IEEE transactions on
Computer-Aided, March 1988.

[3] Huiqun Liu, Kai Zhu, and D. F. Wong, “Circuit parti-
tioning with complex resource constraints in fpgas,” in
Proceedings of the 1998 ACM sixth international sympo-
sium on Field programmable gate arrays, March 1998.

[4] Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan,
“Compilation techniques for reconfigurable devices: Fast
timing-driven partitioning-based placement for island
style fpgas,” in Proceedings of the 40th conference on
Design automation, pp 598 - 603, June 2003.

[5] Vaugh Betz and Jonathan Rose, “VPR: A new packing,
placement and routing tool for fpga research,” in Pro-
ceedings of the 1997 IEEE/ACM international conference
on Computer-aided design, 1997.

[6] Yaska Sankar and Jonathan Rose, “Trading quality for
compile time: ultra-fast placement for fpgas,” in Pro-
ceedings of the 1999 ACM/SIGDA seventh international
symposium on Field programmable gate arrays, February
1999.

[7] Chandra Mulpuri and Scott Hauck, “Runtime and quality
tradeoffs in fpga placement and routing,” in Proceedings
of the 2001 ACM/SIGDA ninth international symposium
on Field programmable gate arrays, February 2001.

[8] E.Arts and J. K. Lenstra, Local Search in Combinatorial
Optimization, Princeton University Press, 2003.

[9] S. Yang, “Logic synthesis and optimization benchmarks,”
in Tech. Report, Microelectronic Center of North Car-
olina, 1991.

