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ABSTRACT

SEQUENTIAL/PARALLEL HEURISTIC ALGORITHMS

FOR VLSI STANDARD CELL PLACEMENT

Guangfa Lu

University of Guelph, 2004

Advisor:

Dr. Shawki Areibi

With advanced sub-micron technologies, the exponentially increasing number of tran-

sistors on a VLSI chip causes placement within physical design automation to become

more and more important and consequently extremely complicated and time consuming.

This thesis addresses the placement for VLSI standard cell designs. A number of

heuristic optimization techniques for placement are studied and implemented, in par-

ticular, local search, Tabu Search, Simulated Annealing and Genetic Algorithm. The

Tabu Search reduces wire length on average by 52.4% while Simulated Annealing yields

a 61% improvement on average. Furthermore, two parallel island-based GA models are

implemented on a loosely-coupled parallel computing architecture to pursue better per-

formance. With the synchronous model, an average speedup of 6.2 was achieved by seven

processors. On the other hand, the asynchronous model achieved a 7.6 speedup. The

former obtained the speedups while maintaining equal or better quality of solutions than

a serial GA. In addition to the above developed algorithms, preprocessing and postpro-

cessing procedures were analyzed and developed to further enhance solution quality.
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Chapter 1

Introduction

Integrated Circuit technology has significantly evolved from Small Scale Integration

(SSI) in the 1960s, which contained only tens or hundreds of transistors on a chip,

to Very Large Scale Integration (VLSI) today, which integrates tens of millions

of modules. It is predicted that designers will be able to build VLSI chips with

the integration of billions of transistors running at tens of GHz by the next decade

[Rese02]. This rapid development of circuit technologies will not be realized without

the wide usage of computer aided design (CAD) tools that assist designers in this

process. The automation of various steps in the design as well as fabrication of VLSI

circuits has made this rapid growth in integration technology possible. However,

the exponential increase of circuit complexity also brings a tremendous challenge to

all phases in the VLSI design cycle, and forces designers to seek better approaches

for solving the problems efficiently.

A typical VLSI design cycle involves architecture design, functional design, logic

design, circuit design, physical design, fabrication and packaging. Physical design

1



CHAPTER 1. INTRODUCTION 2

is accomplished in several stages such as partitioning, placement, routing and com-

paction. Our emphasis is on physical design automation and more specifically the

placement stage.

1.1 Motivations

The technologies of VLSI have evolved rapidly for the last four decades. In 1965,

only 30 transistors could be realized on a single chip to implement very simple

logic functions. By 1975, the device count on a chip increased up to 65,000. Now

with the introduction of deep sub-micron semiconductor technologies, the number

of transistors on a chip has grown dramatically to tens of millions or even more

[Rese02]. For example, an Intel Pentium 4 processor fabricated with 0.13 micron

technology in 2002 packs 55 million transistors onto a fingernail size silicon.

In the semiconductor industry, the common belief is “smaller is better”. Smaller

feature size allows more transistors to be integrated into a single chip, therefore more

logic functions can be implemented within the chip. In addition, small size often

leads to two other advantages: lower power consumption and higher performance.

In fact, silicon’s power dissipation has improved as much as has the integration of

transistors over recent years. In addition, speed has increased even more rapidly

than the number of transistors. For example, the Intel Pentium i486 in 1989 ran

at 25 MHz, whereas the Pentium 4 processor in 2004 runs at 3.4 GHz!

However, sub-micron technologies also bring many challenges to the VLSI design

and fabrication process. Firstly, when the feature size is scaled down, the gate delay

usually decreases and leads to a faster circuit speed, but interconnect capacitance
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does not scale down as much as the gate delay [Raba03], as shown in Figure 1.1.

Thus, the effect of interconnect delay dominates the circuit delay in deep sub-

(um)

delay(ns)

1.0

0.1
1.0 0.5 0.25

interconnect 

gate delay

delay

minimum feature size

Figure 1.1: Delays vs. Feature Size [Arei04]

micron VLSI circuits. Secondly, the nearly exponentially increasing number of

transistors on a chip makes layout of transistors more complicated, and it may

take a much longer time to obtain good results. Therefore, effective placement

techniques need to be developed to meet the fast-paced nature of VLSI CAD design.

In this research, we study and implement a series of heuristic algorithms, such

as Local Search algorithms (LS), Tabu Search (TS), Genetic Algorithms (GA),

and Simulated Annealing (SA), to iteratively optimize layout solutions for VLSI

standard cell placement. Some preprocessing and postprocessing techniques are

also implemented to further improve solution qualities.

Almost all the subtasks in VLSI physical design automation are NP-hard1 prob-

1NP-hard problems are the complexity class of decision problems that are intrinsically harder
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lems [Blan85] and therefore require large run-times on existing sequential comput-

ers. Consequently, parallel processing for VLSI CAD applications can be used to

speed up these processes and help deal with complex designs. In this research, we in-

vestigate synchronous and asynchronous models of Island-based Genetic Algorithms

[Lu04], and implement these techniques on a loosely-coupled parallel architecture

to produce layout solutions efficiently.

1.2 Overall Methodology

The creation of a standard cell circuit involves many activities, including logic

design, circuit design, physical design, simulation, testing, and fabrication. Each

of these activities can be further divided into a number of tasks due to its high

complexity. In this work, we focus on the task of placement in the physical design

process for standard cell circuits, specifically heuristic optimization techniques that

solve the underlying subtasks.

VLSI circuit placement is a complex problem. Although there can be many

objectives in standard cell placement, we have restricted our research to focus on

the main objective, which is minimizing the total wire length. Other objectives

such as routability, low power and performance can also be applied based on this

main objective.

The approaches used in this thesis are illustrated in Figure 1.2. The first stage

in the research is to develop a set of algorithms to preprocess an initial constructed

solution. The second stage attempts to develop iterative improvement algorithms

than those that can be solved by a nondeterministic Turing machine in polynomial time. [Atal99]
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Distributed Processing

Iterative

Postprecessing
Algorithms

Preprocessing
Algorithms

Output Circuit

Optimization of Cell Orientation

Optimization of I/O Pads

Simulated
AnnealingTabu SearchLocal Search

Read Circuit

Construct Initial Solution

Eliminate Long Nets

Optimization of Rows

Optimization of Row Orientation

Improvement
Algorithms

Genetic Algorithm
Island−based

Figure 1.2: Our Overall Methodology for the Placement Problem

to effectively solve the problem in reasonable time. Two placement strategies are

studied and implemented as iterative heuristic search techniques: (a) Search only

within the valid solution space; (b) Both valid and invalid moves are accepted but a

penalty is imposed on invalid moves (a legalization procedure is required at the end
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of the search). Based on the second strategy, we developed several meta-heuristic

algorithms for placement: Tabu Search, Genetic Algorithms, and Simulated An-

nealing. Two Island-based Genetic Algorithms were successfully implemented on

a cluster of networked Sun SunBlade 2000 workstations in parallel to speed up

the sequential Genetic Algorithm implementation. Finally, some postprocessing

techniques are employed to further enhance solution quality.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

• Extensively evaluated two placement strategies, and improved the cost func-

tion for the second strategy.

• Implemented several heuristic algorithms to effectively reduce wire length,

and compared their performance; Proposed an approach to dynamically change

weights in Simulated Annealing.

• Implemented an Island-based Genetic Algorithm on s distributed processing

system to speed up the sequential GA process, and proposed an efficient

migration scheme for the model.

• Developed several preprocessing and postprocessing techniques to further im-

prove solution quality.

• A conference publication has resulted from this thesis, which was presented

in the Genetic and Evolutionary Computation Conference (GECCO) 2004 in

Seattle, USA [Lu04].
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1.4 Thesis Organization

The chapters in this thesis are organized as follows. In Chapter 2, a background

of the placement problem is provided, and previous approaches for standard cell

placement are introduced, as well as some of their parallel implementations. Chap-

ter 3 describes heuristic and meta-heuristic techniques for standard cell placement.

Following this, parallel implementations of synchronous and asynchronous Island-

based Genetic Algorithms are presented in Chapter 4. Chapter 5 describes some

preprocessing and postprocessing techniques for placement. Finally, Chapter 6 pro-

vides conclusions and a summary of future work.



Chapter 2

Background

A typical VLSI design cycle is illustrated in Figure 2.1. The design flow starts with

the specification of a circuit, followed by functional design, logic design, circuit

design, physical design, and fabrication/packaging/testing [Sher98].

System specification involves the design goals specified by the customer (e.g.,

performance, functionality, and size), fabrication constraints, design techniques,

and market requirement. Functional design is also called behavioral design. The

system is divided into a number of functional units and the behaviour/functions of

each is identified, as well as the interconnect requirements between the units. In

the logic design stage, Register Transfer Level (RTL) descriptions are derived and

tested, which consists of Boolean expression and timing information. The correct-

ness of logic functions of the system is simulated and verified in this step. In the

circuit design phase, Boolean expressions are converted into circuit representations

such as detailed circuit diagrams or netlists. Layout of the circuit is created in the

physical design stage according to the circuit representation obtained from previ-

8
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Shifter Unit
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ALU
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  specification

Functional

Verification

Layout

Verification
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Verification Logic Design

Circuit Design
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Circuit
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Physical Design
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Implementation of logic blocks are
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Design is fabricated, packed and
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Fabrication, Packaging
& Testing

The customer specifies the performance , 

functionality, and the physical size of the chip.

Q’

QD

Figure 2.1: VLSI Design Cycle

ous stages. A layout is the geometric description of a circuit, specifying a set of

planar geometric shapes in multiple layers. Our work mainly focuses on developing

effective heuristic techniques to solve the VLSI circuit placement efficiently. The

last step is fabrication, packaging, and testing. The output of the layout phase is

fractured into photo-lithographic masks on the wafer during the fabrication process.
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This process is complicated, involving deposition and diffusion of various materials

on the wafer. Finally, individual VLSI chips are diced from the fabricated wafer,

and each chip is then packaged and tested.

To design large, complex VLSI chips quickly to meet the market requirement,

efficient powerful automated design tools are essential.

2.1 Physical Design Cycle

Physical design is the process of converting the specification of a circuit into the

geometric description of a layout [Sher98]. Due to the large number of components

(transistors), physical design is an extremely complex process [Gare79]. It is usually

broken down into several stages, such as partitioning, placement, and routing, as

shown in Figure 2.2. In general, partitioning divides a large system into a set of

subsystems. Placement is performed to place the modules on the chip by satisfying

certain constraints, and finally routing determines how the wires will connect the

modules.

Partitioning is the task of decomposing a circuit into smaller parts. A VLSI

chip may contains millions or even tens of millions of transistors. Dealing with the

entire circuit at a time could be difficult and inefficient. The goal of partitioning is

to transform a large problem into a set of smaller sub-problems by dividing a circuit

into several sub circuits of manageable size. Good partitioning tools can efficiently

reduce layout costs. To make it easier for independent design of these subproblems,

the interconnections (cuts) between partitions should be minimized. Minimization

of the cuts between partitions is the most important objective for VLSI circuit
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Figure 2.2: Physical Design Process

partitioning. Usually the delay between partitions is much greater than the delay

within a partition. Therefore, a circuit must be carefully partitioned, since this

process may degrade the performance of the final design if one or more critical

paths are cut. Minimizing the cut critical path is part of the objective function for

high performance circuits. Other factors that constrain circuit partitioning include

the number and area of partitions.

Placement is the problem of placing modules on a chip while satisfying certain

constraints: (a) to minimize the area of the VLSI chip, (b) to meet the timing
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specifications, (c) solutions produced should be routable. Placement objectives can

vary, depending on the layout style of the chip. In some situations this problem

can be treated as a floor planning problem. Although for simple circuits, global

optimal solutions can be obtained automatically by a computer. However, most

circuits in practice have many modules and constraints and therefore it is virtually

impossible to solve them by exact methods. Heuristic approaches are widely used

to find suboptimal placements solutions quickly.

Routing attempts to determine how the wires connect the modules. Two steps

are involved in routing: global routing and detailed routing. Global routing at-

tempts to partition the routing region into a set of sub-regions to simplify the

routing problem. Besides minimizing the total wire length, congestion is evenly

distributed over the routing area. Detailed routing effectively realizes interconnec-

tions among modules in the chip. The two-layer Manhattan model is widely used

for detailed routing, where horizontal wires are routed in one layer (metal), and

vertical wires are routed in the other layer (polysilicon).

2.2 Layout Styles

Layout styles are broadly classified as either full custom style or semi-custom style.

The full custom layout style allows the designer to fully control the circuit layout.

Usually in full custom designs, a circuit is hierarchically partitioned into a collection

of sub-circuits of any size that can be placed at any location on the silicon wafer of

a chip. This layout style can produce very compact and high performance circuits

because designers can justify a highly optimized layout without most constraints
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existing in other design styles. However, the full custom design process has the

highest complexity among other design styles. With millions of transistors involved,

it is extremely difficult to manually lay out the entire chip. Accordingly, it is suitable

only for large production of small chips with high performance requirement.

On the other hand, semi-custom layout styles are simpler, where circuits are pre-

designed and specifically placed on certain locations on a chip [Wolf02]. As Figure

2.3 illustrates, cell-based semi-custom styles include standard cells and macro cells,

Macro Cells

Cell−based

Array−based

Gate Arrays

FPGA

Standard cells

Semi−custom

Full custom

Layout Styles

Figure 2.3: Layout Styles

while array-based semi-custom styles include Gate Arrays and Field Programmable

Gate Arrays [Sher98].

In order to simplify and automate the physical design process, cell-based ap-

proaches have been in use for many years, and have become extremely popular for

VLSI circuit design. The basis of the cell-based approach is to implement any logic

function by reusing a limited number of predesigned library cells called standard-

cells or macro cells. Figure 2.4 demonstrates that a circuit based on standard cell

design style consists of several modules each representing a standard cell. Prede-
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Figure 2.4: Standard Cell Design Style

fined cells in a cell library have the same height but varying width. They are tested,

analyzed, and specified by the vendor. A cell library can contain a set of basic logic

functions over varied fan-in/out counts and capabilities, so that virtually any logic

function can be implemented. These basic logic functions include AND, OR, NOT,

NAND, NOR, EXOR, NXOR, flip-flops, e.t.c. Usually for each function, there are

several versions of the same cells with different characteristics (area, speed, and

power) in the library. For example, Figure 2.5 illustrates a four fan-out 3-input

NAND standard cell as taken from the Mississippi State Library [Raba03], where

the figure in the left is the cell layout, and the table on the right is the cell charac-

terization for 0.5 um, 1.0 um, and 2.0 um technologies. Besides containing general

purpose basic logic, standard cell libraries may also contain some specifically op-

timized complex circuits to achieve special features (faster speed, smaller area, or

low power). Modules on a standard cell circuit are organized in rows separated by

empty spaces called routing channels. Figure 2.6 shows an example of a standard

cell circuit. Since the cells are designed once and are reusable in standard cell
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Figure 2.5: A Four Fan-out 3-input NAND Standard Cell

Figure 2.6: A Standard Cell Circuit [Raba03]

design style, the physical design automation step involved is significantly simpler

and cheaper than that of the full custom design approach. The design time is also
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dramatically reduced. In the real world, short design time and low design cost are

two critical factors that may contribute to the success of a circuit in the market.

However, since standard cells are predefined by vendors, there is no way to finely

tune the cells during the development of circuits. In addition, a standard cell design

usually occupies more area than a hand-crafted full custom design.

Macro cell design style is similar to the standard cell style except that it uses

predefined macro cells (processors, RAM, etc.) instead of standard cells. Macro

cells are circuit blocks made as full custom by the vendor, and they have an arbitrary

shape and size. Due to the irregular shape and size of the blocks, the automation

of macro cell design is more difficult than that of standard cell design [Cai94]. High

density, high performance, and short design time are the advantages of macro cell

design style.

Gate Array design style is even simpler than standard cell style because all the

cells in gate array are identical, such as a three-input NAND gate. Predefined gates

are separated by both vertical and horizontal channels. Cells are interconnected

by using these channels. Due to the simplicity of identical cells, gate arrays are

cheaper and easier to produce than the previous cell-based styles and full custom

style, but with inferior circuit density and performance.

The Field Programmable Gate Array (FPGA) is a powerful approach that

can significantly reduce manufacturing turn-around time to ASIC design, as well as

the cost for low-volume manufacturing [ea89]. FPGAs consist of programmable

logic blocks and programmable interconnections. A logic block can be viewed

as a memory block and programmed with a “look-up table”. The user simply

programs the interconnect between logic blocks. Technologies of FPGAs include
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SRAM [Xili04], EEROM [Alte04], Anti fuse [Acte04], etc. Since the customization

of a FPGA is rather simple, development cost is low and design time is fast.

Table 2.1 summarizes the differences between full custom, standard cell, macro

cell, gate array and FPGA layout styles in area, performance, and design cost

[Sher98]. Note that a mixture of different layout styles is also common.

Layout Styles
Full Custom Standard Cell Macro Cell Gate Array FPGA

Area compact compact compact moderate large
to moderate

Performance high high high moderate low
to moderate

Design Cost high medium high medium low

Table 2.1: Comparison of Different Design Styles

2.3 The Standard Cell Placement Problem

The placement problem is a very important step in the physical design cycle.

Inferior placements can have drastic effect on chip area, power and performance

[Sher98].

Standard cells in a library have fixed shapes and terminal locations. They are

modules with identical height but varied widths as illustrated in Figure 2.7. In

general, given a cell library and a netlist providing the interconnections between

these modules, the standard cell placement problem involves properly placing the

cells in rows on a VLSI circuit chip. For the cells in the same row or in adjacent

rows, their interconnection wires lie in the routing channels. For the cells in non-
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Figure 2.7: A Standard Cell Circuit

adjacent row, wires pass through either (1) the special empty space between cells,

which is call feedthrough; or (2) the over-the-cell regions if the chip is fabricated in

a two or more metal layers process. The total chip area consists of two parts: the

area required for the cell rows (including feedthroughs) and the area required for

routing of wires (channel area). Figure 2.8 emphasizes the routing channels of a

standard cell circuit. Minimizing the width of the longest row and minimizing the

width of channel heights leads to a minimum layout area [Shah91]. The standard

cell placement problem can be stated as follows: Given a circuit consisting of fixed

standard cells, and a netlist interconnecting the terminals of these cells, produce a

layout indicating the positions of each cells in rows such that all the nets can be

routed and the total layout area is minimized.

Graph theory plays a crucial role in modelling many VLSI physical design prob-

lems including standard cell placement [Sher98]. A circuit can be represented by a

hypergraph G(V, E), where V = {v1, v2, · · · , vn} is the vertex set of the hypergraph,
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Figure 2.8: The Routing Channels

and E = {e1, e2, · · · , em} is the set of edges of the hypergraph. V represents the set

of cells to be placed while E represents the set of nets connecting the cells. Each

edge ej is an ordered pair of vertices with a non-negative weight wj assigned to it.

The hypergraph is then transformed into a graph (a hypergraph with all hyperedge

sizes equal to 2). In other words, each vertex in the graph corresponds to a cell on

the chip and an edge is defined between two nodes in the graph if and only if the

two cells are connected by a net. The placement task seeks to assign all cells of

the circuit to legal locations such that cells do not overlap. Each cell i is assigned

to a location (xi, yi) on the XY-plane. The cost of an edge connecting two cells i

and j with locations (xi, yi) and (xj, yj) is computed as the product of the squared

l2 norm of the difference vector (xi − xj, yi − yj) and the weight of the connecting

edge wij. The total cost of a placement layout, denoted φ(x, y), can be estimated

by the sum of wire length over all nets [Yang03]:

φ(x, y) =
∑

1≤i<j≤N

wij[(xi − xj)
2 + (yi − yj)

2] (2.1)
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Formulation (2.1) can be rewritten in matrix form as:

φ(x, y) =
1

2
xTCx + dT

x x +
1

2
yTCy + dT

y y + t (2.2)

Vectors x and y denote the coordinates of the N movable cells; matrix C is the

Hessian matrix; vectors dT
x and dT

y and the constant term t result from the contri-

butions of the fixed cells. Normally the first moment constraints are added to force

the distribution of the cells to be uniform around the center of the placement area.

It follows that the quadratic placement model is given by:

Min φ(x, y)

s.t. Axx = bx

Ayy = by

lx ≤ xi ≤ ux

ly ≤ yi ≤ uy

where Ax and Ay are q × n matrices; q is the number of regions into which the

placement area has been partitioned. The q × 1 vectors bx and by represent the

centres of the q regions. The parameters lx, ux, ly and uy are lower and upper

bounds on the x and y coordinates of the cells.

The quality of a placement can be specified mainly by the result of chip area,

as well as other evaluation metric employed such as the routability of nets and

circuit performance. These three primary objectives are frequently used to evaluate

solutions obtained by the placement tool. However, sometimes these objectives may

contradict with each other. For instance, minimizing layout area may increase the

longest path (decrease circuit performance). As mentioned above, for standard

cell layout style, the total chip area is approximately equal to the area of the cells
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plus the area occupied by the interconnecting wires, minimizing the wire-length is

approximately equivalent to minimizing the chip area. In this research, we focus on

the main objective, which is minimizing the chip area, or minimizing the total wire

length. Other objectives such as routability and performance can also be applied

based on this objective.

Several approaches have been proposed to evaluate the wire length of circuits.

To name a few, half-perimeter method, complete graph method, minimum chain

method, source-to-sink connection method, Steiner-tree approximation approach

and minimum spanning tree method [Sech86, Shah91].

At the placement stage, detailed routing is not available yet, and the exact

total wire length of the layout cannot be obtained. Therefore, the Half-perimeter

method is commonly used to approximately estimate the total wire-length, namely

half perimeter wire length (HPWL). To evaluate the cost of a given net that is

connecting several modules, the half perimeter distance of the bounding box of this

net is often used to measure the estimated wire length of the net. Figure 2.9 shows

how a bounding box approximately measures a net that is connecting four cells.

Wire

Pin

Bounding BoxCell

Figure 2.9: Wire Length Estimated by a Bounding box
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For a given circuit, the sum of half perimeters of all nets is the estimated total

wire length of the layout. That is,

∑

i∈nets

HPWLi =
∑

i∈nets

pi

2
=

∑

i∈nets

[span x(i) + span y(i)] (2.3)

where pi denotes the perimeter of net i; span x(i) and span y(i) denotes the

vertical and horizontal spans of net i’s bounding box respectively. Different non-

negative weights can be assigned to the nets, such as critical nets.

2.4 Heuristic Optimization Techniques

In the last two decades, interest in heuristic1 search methods for NP-hard combina-

torial optimization problems has continuously grown and many significant studies

have been carried out. A number of heuristics techniques are now popular and

widely used in various fields. VLSI physical design automation is a rich area where

heuristic optimization approaches can be applied effectively.

2.4.1 Classification of Placement Algorithms

The standard cell placement problem involves placing a set of cells on a chip layout,

given a netlist that provides the connectivity information between cells and a library

that contains cell layout information. Module placement is known as an NP-hard

problem and cannot be solved in polynomial time [Blan85]. Therefore, a number

1A heuristic is a technique that reduces or limits the search for solutions in domains that are
difficult and poorly understood. Heuristics do not guarantee optimal, or even feasible, solutions
and are often used with no theoretical guarantee [Stev00].
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of heuristic approaches were developed to solve this problem, which vary in their

efficiency, robustness and layout quality.

Placement algorithms can be classified into two major categories [Sher98]: con-

structive based placement and iterative improvement as illustrated in Figure 2.10.

Constructive placement algorithms usually build up a placement layout from scratch.

Min−Cut

Algorithms
Placement

Force−Directed
Algorithm

Algorithm
Cluster Growth 

Constructive 
Placement Improvement

Iterative

Annealing
Simulated

Genetic−Based
Algorithm

Based Placement
Resistive NetworkPlacement

Partitioning Based 

Optimization
Numerical

Quadratic
AssignmentAlgorithm

Figure 2.10: Classification of Placement Techniques

Good initial placements are usually crucial for several iterative improvement tech-

niques to succeed in obtaining high quality solution. Once an initial placement

is obtained, it is necessary to improve the solution by an iterative improvement

technique. Iterative improvement techniques attempt to repeatedly modify initial

solutions in search of a better solution until no further improvement can be found.

In this section, several methods utilized to iteratively improve placement solutions

are reviewed. The following schema describes a typical placement procedure:

Step 1: Use at least one constructive algorithm to obtain an initial placement.

If multiple initial solutions are used, the best solution is selected.

Step 2: (a) n:=1;



CHAPTER 2. BACKGROUND 24

(b) employ the improvement algorithm;

(c) if successful then goto (b), else goto (d);

(d) if stopping criteria is NOT met, then n:=n+1 and goto (b).

2.4.2 Module Interchange Based Methods

Iteratively searching for better solutions from the neighbourhood in an attempt

to ultimately reach the optimum is the basis of many iterative improvement al-

gorithms. A neighbourhood move is usually produced by perturbing one of two

modules of a current solution. Some module interchange methods are reviewed in

the following context.

In [Chyu83], the adjacent pairwise exchange method uses a simple placement

model that simplifies all modules of a layout by a connection matrix, and iteratively

exchanges only the adjacent cells (see Figure 2.11(a)). If the total wire length

associated with the pair of cells can be decreased by the exchange, the move is

accepted; otherwise it is rejected.

Although any two cells have the chance to be swapped in the approach above, if

they are far away from each other, their interchange may require many iterations.

Therefore in some algorithms in the literature, two swapped cells are not necessarily

adjacent, as Figure 2.11(b) illustrates.

In [Swar95], two kinds of interchanges are used for creating a new move: cell

displacement and cell exchange. As Figure 2.11(c) displays, cell displacement selects

a random cell and moves it to a random location; Cell exchange on the other hand

selects two random cells and exchanges their locations. The algorithm chooses a

source cell and a destination first; if the destination is vacant, a cell displacement
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is performed, otherwise a cell exchange is performed. This method has proven to

be effective in searching for better placement solutions from the neighbourhood.

When discussing iterative improvement algorithms for placement, two differ-

ent strategies are discussed in terms of the feasibility of the solution space of the

algorithms. The first strategy was proposed by Grover [Grov86]. This approach

searches in a solution space containing only valid placement configurations. The

second strategy was used by the successful placement and routing package Tim-

berWolf [Sech85]. It allows module overlaps in its intermediate solutions, that is,

invalid placements are contained in the solution space. The author claims that the

cost function can be updated efficiently after each move.

2.4.3 Tabu Search Algorithm

The Tabu Search meta-heuristic algorithm is a simple yet effective combinatorial

optimization strategy. Tabu Search is based on a hill-climbing search method.

However, by introducing a list of forbidden moves recorded from the recent search

trajectory, Tabu Search guides the search to escape local minima and at the same

time avoids revisiting previous solutions [Glov90]. The origin of Tabu Search goes

back to the 1970s and its current form was first proposed by Fred Glover in 1986.

A general Tabu Search algorithm is shown in Figure 2.12, where s is the current

solution, s′ is the best available candidate in the neighbourhood while s∗ is the best

solution so far. N(s) denotes the set of neighbour solutions, T is tabu memory, and

V ∗ is a set of candidates from tabu-based neighbourhood.

The goal of Tabu Search is to make systematic use of tabu memory to guide a

hill-climbing neighbourhood search that accepts improving moves as well as deteri-
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orating moves. Tabu memory T involves historical information about a finite-sized

list of past moves. With such a short term memory and strategy, Tabu Search can

escape from local minima and avoid cycling to previously visited solutions [Glov90].

To increase the flexibility of the Tabu Search while maintaining the above basic

features, aspiration rules can be embedded in the algorithm. A commonly used

aspiration rule is based on the following: if the cost associated with a Tabu move is

less than the aspiration value associated with the cost of the current solution, then

the move’s Tabu status is temporarily ignored. The appropriate use of aspiration

sometimes is crucial to achieve good solution quality.

Tabu Search has been successfully applied to a wide range of applications in

VLSI CAD design. Song et al proposed their iterative improvement algorithms

for placement using a Tabu Search technique, which attempts to overcome the

limitation of a local optimal point and obtain better placement quality [Song92].

In this algorithm, the neighbourhood N(s) of a solution s is defined as the set

of all solutions s′ that can be obtained from s by exchanging any two connected

modules. Moves are created by the pairwise exchange method by first selecting

a random module mj and then finding a target module mj that is connected to

mi and exchanging their locations. Thus the candidate set at each move is V ∗ ⊆

N(s) − T . Their algorithm yielded solutions that are 6-14% better than the well-

known TimberWolfSC 5.4 based on Simulated Annealing algorithms in a fraction

of the time.

Areibi et al [Arei93] employed Tabu Search techniques to the circuit partitioning

problem for VLSI design. Results of netlist partitions with 10% fewer cut nets than

those of Simulated Annealing were reported, with a 3× speedup.
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In [Lim91] and [Lim96], Tabu Search based algorithms are also applied to place-

ment and global routing for standard cell circuits. They used a divide and conquer

strategy based on successive partitioning approach.

Sait et al [Sait01] implemented a TS algorithm for standard cell placement. In

each iteration, neighbourhood solutions are generated by the exchanges of the loca-

tions of any two randomly selected cells. The neighbourhood size is determined by

the circuit size (e.g., 24 for a circuit with 2081 cells, and 70 for the 3540-cell circuit).

The tabu memory used involves the indices information of the interchanges.

Emmert et al [Emme99, Emme03] developed a method for FPGA floor planning,

which combines a Tabu Search based approach and clustering techniques. The au-

thors claim that their approach achieves a large speedup in execution time without

deterioration in solution quality, compared with commercially available CAD tools.

The size of tabu memory is difficult to determine prior to execution, but the

proper choice of the size is critical to most problems. Therefore, advanced schemes

for Tabu Search methods have been studied by a number of researchers. Dammeyer

et al [Damm93] presented an approach to dynamically manage the size of the tabu

list using the reverse elimination method. Battiti et al [Batt94] proposed a compli-

cated tabu memory management scheme called Reactive Tabu Search. Based on the

basic principle of the generic Tabu Search, Battiti’s approach employed a fully au-

tomatic reaction and escape mechanism to maintain the escape diversification and

the exploitation of fast memory structures. Both Dammeyer and Battiti reported

better results than the original Tabu Search algorithm; however, more computation

time was involved.
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2.4.4 Genetic Algorithms

John Holland [Holl75] first used the term Genetic Algorithm (GA) in 1975. He

described how an evolutionary alike process can be applied to solving mathemat-

ical problems and engineering optimization problems. His approach was based on

Charles Darwin’s theories of evolution and natural selection. Darwin observed that,

in each generation, as variations are introduced into the population, the less fit in-

dividuals have a higher chance of dying off than the more fit ones. GAs attempt

to use a similar concept of reproduction and survival of the fittest to solve various

optimization problems, based on naturally occurring genetic operators.

GAs work on a population of individuals called a chromosomes that represent

a potential solution to a given problem. The size of a population determines the

amount of information stored by the GA. A fitness function is used to evaluate each

individual’s fitness value to measure the goodness of a solution to the problem. In

each iteration, the algorithm breeds a population of individuals by applying genetic

operators such as selection, crossover, inversion, and mutation. A new generation

then evolves from the existing population hopefully with better solutions. Due to

the stochastic selection process, good schemata are more likely to be inherited by

the individuals of new generations. The fitness of the entire population is therefore

improved over a number of generations [Gold89].

The selection operator chooses members from the current generation for repro-

duction. The crossover operator on the other hand combines portions from the two

parents to create two new offsprings. The mutation operator makes an incremental

change to an individual to form a slightly new chromosome. Finally, the replace-
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ment operator decides which offsprings are going to replace which members of the

current generation to create a new generation of individuals. Generational GAs are

commonly used, where the new generation replaces the old one in each iteration.

When a GA has overlapping generations (only a fraction of the individuals are

replaced in each generation), it is called a steady-state GA [Mazu99b].

Figure 2.14 illustrates two different types of Genetic Algorithms: (a) a genera-

tional GA, and (b) a steady-state GA. The main difference is in the replacement

strategy explained earlier. The steady-state GA has a higher growth pressure on

the promising individuals than that of a generational GA. However, it is susceptible

to stagnation [Mazu99a].

One advantage of GAs is their exploration capabilities. GAs are multi-point

heuristics and are less likely to get trapped in the local optima than most of other

optimization techniques [Reev03]. In other words, although GAs are not guaran-

teed to find the global optimal solutions for a problem, they generally can provide

fairly good solutions. Moreover, they are domain-independent stochastic search

techniques [Koza98]. The power of GAs comes from the fact that the technique is

robust, and can deal successfully with a wide range of problem areas.

GINIE is a VLSI placement technique based on the Genetic Algorithm approach

[Leon88]. Each layout configuration is represented by a string where the i-th allele

contains the cell in the i-th position of the chip. Starting from randomly constructed

solutions, GINIE applies crossover, mutation and inversion to a population of in-

dividuals over a number of generations. The stopping criteria is met when there

is no further improvement for 10,000 generations. The population size was set to

50, and 12 offsprings are created for each generation. Comparable quality of place-
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ment results to those obtained by Simulated Annealing algorithms were reported

[Leon88].

Attempting to eliminate the complicated interactions between placement and

routing stages, Krashinsky combined the objectives of the two stages and used

a Genetic Algorithm to simultaneously optimize the placement and routing of a

circuit[Kras00]. Each individual encodes the placement and routing information

of a layout. A genome consists of a number of genes (blocks of cells), each of

which contains a set of routing numbers: x and y placement coordinates, a routing

algorithm specifier, and a routing ordering number. There are two parts in the

scoring function: the most important one is the number of connections that was

successfully routed, and the second is the wire length. The author claims that

this method can produce layouts in which modules are more fully connected and

therefore the chips have a smaller wire length and use a smaller area.

However, one disadvantage of GAs is that they are usually very time consuming,

compared with other techniques [Reev03]. To speed up the GA process, researchers

have studied parallel computing techniques to apply to Genetic Algorithms.

2.4.5 Simulated Annealing Algorithms

In the early 1980’s, Kirkpatrick et al introduced the concepts of annealing for op-

timization [Kirk83]. The Simulated Annealing (SA) algorithm is based on a strong

analogy between the physical annealing process of solids and solving combinatorial

optimization problems [Aart90]. It starts with an initial solution, and continuously

attempts to transform the current configuration into one of its neighbours. Math-

ematically, this can be described with a Markov chain: a sequence of trials, in
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which the probability of the outcome of a given trial depends only on the outcome

of the previous trial. In Simulated Annealing algorithms, the acceptance probability

of a move is determined by:

℘c(s
′) =















1, if C(s′) ≤ C(s);

exp(C(s)−C(s′)
T

), if C(s′) ≥ C(s).
(2.4)

where T is the current temperature, C(s) and C(s′) denote the costs of the current

solution and a neighbourhood solution, respectively.

The SA procedure tends to accept bad moves in an attempt to reduce the proba-

bility of being stuck at a locally optimal solution. The temperature in the Simulated

Annealing is a control parameter which controls the probabilities of accepting bad

moves in the iteration [Mitr86]. A general form of Simulated Annealing procedure

is given in Figure 2.15. Simulated Annealing has been shown to work well on many

difficult applications such as VLSI modules layout and often produces results close

to the global optima. However, Simulated Annealing has several drawbacks. First,

poor setting of algorithm parameters can cause the process to converge prematurely

on sub-optimal solutions or continue searching unnecessarily. Second, since SA re-

lies heavily on random decisions and statistical behavior, Simulated Annealing must

perform a larger number of iterations to arrive at good results. This may be time

consuming, especially if the time for evaluating a move is large.

Sechen et al have successfully applied the Simulated Annealing algorithm to the

standard-cell/macro-cell placement problem in different versions of their well-known

Timberwolf packages [Sech85] [Sun95]. There are two ingredients in their cost

function: total estimated wire length and total sum of overlap penalties. The latter
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allows illegal layouts during the search, and a legalization is required at the end of

the procedure. The cooling schedule is designed as follows: initial temperature is

4000000; final temperature is 0.1; α is set to a value between 0.8 and 0.9. The value

of the inner loop size is determined according to the circuit size, e.g., 100 moves

for a 200-cell circuit and 700 moves for a 300-cell circuit. The authors report that

with these finely tuned parameters, final chip areas are reduced by 15 to 57 % for

various benchmarks.

2.5 Parallel/Distributed Processing

Solving large optimization problems such as placement in VLSI CAD design is

computationally intensive. Researchers and industries are always seeking efficient

algorithms as well as faster hardware to speed up the process. High performance

parallel computing can offer enormous computation power that may speed up the

algorithms in VLSI CAD design. Parallel computing was extremely expensive in the

past but today it is becoming more affordable and cost-effective. This section gives

a brief introduction to parallel processing, and summarizes some parallel algorithms

for VLSI placement.

2.5.1 Motivation

Advances in semiconductor technology have contributed to the doubling of the

number of devices on a silicon chip every 18 months, which follows the prediction

by Gordon Moore in 1965 [Rese02]. Along with the continuous increase in circuit

complexity, circuit placement is becoming a very computation intensive process.
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For example, placement for a large circuit may take hours or even days on a sin-

gle sequential workstation. However, the fast-paced nature of VLSI CAD design

demands advanced computational resources. Therefore, researchers are studying

parallel processing to achieve faster performance [Bane94].

Parallel processing is a computing paradigm that allows multiple processors to

solve one large problem efficiently. Essentially, the following merits may be offered

by the use of this approach for VLSI CAD applications [Bane94]:

• Solving problems faster: If a computation task can be effectively processed

by multiple processors simultaneously, the parallelism may speed up the task.

• Solving larger problems: Parallel systems usually come with larger mem-

ories and more computational resources, hence generally they have the capa-

bility of solving larger problems.

Besides the above main features, other benefits may possibly be yielding better

quality of results and making use of efficient parallel algorithms.

Depending on the nature of the algorithms, many placement algorithms have

been proven to be suitable for parallelization, while some others are generally dif-

ficult to parallelize effectively.

2.5.2 Parallel Processing Architectures

Flynn’s classification scheme of computer architectures is classical and widely ac-

cepted [Flyn66]. It has been used for the classification of high-performance com-

puters as well. According to Flynn’s definitions, computer systems can be classified

into four distinct categories: (1) SISD: which stands for single instruction, single
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data stream and that is where most PCs and workstations fall into this category. (2)

SIMD: single instruction stream, multiple data stream. Vector machines belong

to this class. (3) MISD: multiple instruction stream, single data stream. How-

ever, this is not a practical architecture [Cosn95]. (4) MIMD: multiple instruction

stream, multiple data stream. This type of machine is capable of executing inde-

pendent programs with distinct data simultaneously. Note that SPMD (standing

for Single Program Multiple Data) is essentially similar to MIMD since the latter

can be made SPMD.

In reality, some parallel systems are SIMD machines, but most are MIMD struc-

tures. The latter can be further classified as shared memory systems (e.g., SGI

Origin 2000, Cray T3D), distributed memory systems (e.g., Intel Paragon, IBM

SP, clusters of networked workstations), and distributed shared memory systems

(e.g., HP/Convex Exemplar) in which memory is physically distributed but logically

shared.

Advanced parallel machine models such as the computer systems in SHARC-

NET [SHAR04], are generally organized recursively using clusters in a hierarchical

manner [Kuck96]. The advanced computational facilities of SHARCNET in On-

tario provides scalable computational resources through a hierarchy of processing

capability of over 400 HP/Compaq Alpha processors and large symmetric multipro-

cessor computers. With the extremely fast speed network ORION, users including

researchers at the University of Guelph are able to pursue computationally intensive

research on this high-performance facility. The work in Chapter 4 was originally

targeted to this distributed/shared memory parallel computing platform. However,

due to a compatibility issue with our sequential placer that was originally designed
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and optimized for Sun Solaris operating systems, we had to temporarily port our

parallel implementation to a Solaris-based distributed memory parallel platform,

which is a cluster of ten networked workstations. Strategies of parallelizing an al-

gorithm on these two platforms may be quite different, and therefore, Island-based

GAs were implemented (see Chapter 4) since they are less influenced by the parallel

architectures.

Clusters of networked computer nodes are classified as coarse-grain parallel pro-

cessors for their distributed local memory and slow interconnection. They are

usually not as fast as massively parallel processors. The attraction of clusters lies

in the relative low cost of hardware and software as well as the large number of

knowledgeable human resources for these lower end computers. Some organizations

even use a variety of different computing systems such as personal computers or

workstations to form parallel computing platforms and obtain high computation

power with a reasonable low cost.

Figure 2.16 illustrates the trends in the fastest 500 computers for the last ten

years, which is very interesting [Proj04]. The statistic figure in (a) illustrates the

system architectures of these machines, and their overall performance is displayed

in (b). Figure 2.16 shows that Massively Parallel Processors (MPP) dominate the

high performance computer systems for their super computational power. On the

other hand, the percentage of clusters is increasing rapidly while Symmetric Multi

Processor (SMP) appears to be dying.
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2.5.3 Performance Measure

The performance improvement gained by a parallel implementation is usually mea-

sured by the ratio of speedup, which is given by:

Sp =
T1

Tp

(2.5)

where Tp is the execution time for a parallel algorithm using “p” processors, and

T1 is the execution time for a serial algorithm. For the same amount of work, there

are two reasons why Sp cannot exceed or be equal to “p” in the real world: (1)

the cost for communications and synchronization, and (2) unbalanced work load

among processors [Bane94]. Figure 2.17 illustrates the actual Sp and ideal speedup

of a p processors parallel system.

Amdahl’s law attempts to find out the theoretical limit of speedup [Amda67].

The execution time of an algorithm on a single processor is denoted by T1 and

α is the sequential fraction of the algorithm. As the algorithm is executed on p

processors, only the parallel portion can be speeded up:

Tp = αT1 +
(1 − α)T1

p

Therefore, speedup of p processor parallel system is limited by

Sp =
T1

Tp

=
1

α + (1 − α)/p
≤

1

α
(2.6)

Equation 2.6 is derived based on an optimistic assumption that the parallel

portion of the algorithm can be evenly distributed among p processors and no
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other issue would damage the parallelism or cause extra time. In the real world,

the performance of parallel systems is limited by architectural, algorithmic, and

software factors. Small changes in many aspects, for example work load or I/O

bandwidth, can vary an affect the parallel performance.

To measure the average usage of the processors, the efficiency of a parallel

algorithm can be found by:

Ep =
Sp

p
(2.7)

The better the parallel algorithm is , the nearer Ep is to 1.

However, [Gust90] indicated that in practice, since problem size is reduced in

parallelism, a super-linear speedup (Sp > p) is possible. Other sources of super-

linear speedup include hidden memory latency, subdivision of system overhead, and

randomized algorithms [Helm90].

2.5.4 A Message Passing Standard: MPI

Parallel programming models exist as an abstraction level above hardware and

memory architectures. Several parallel programming models [Fost95] are commonly

used:

• Shared Memory Model

• Thread Model

• Message Passing Model

• Data Parallel Model
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• Hybrid Model

The Message Passing model has the following characteristics: (1) during com-

putation, a set of tasks uses its own local memory; (2) tasks exchange data through

communications by sending and receiving messages; (3) processors cooperate with

each other in performing data transfer. Today, the message passing model has be-

come an expressive, efficient, and well-understood paradigm for parallel program-

ming [Grop96]. The Message Passing Interface (MPI) is a portable software library

in common use to support the message passing model, acting as a middle-ware

on top of the parallel architectures. The success of MPI causes it to become the

de facto industry standard for message passing, and almost all major vendors of

parallel systems provide support for MPI on their systems. Therefore, the parallel

algorithms in this thesis were implemented based on MPI.

MPI is originally a specification developed by the MPI Forum, which is a group

of academics, researchers, and software developers. The goal of the specification is

to develop a standard for writing efficient, flexible, and portable message-passing

parallel programs [Mess04]. The first MPI standard (1.0) was published in 1993, and

the most recent version (MPI-2) was released in 1997. The MPI standard is suitable

for executing SPMD, MIMI, and MPMD programs. Several implementations of

MPI libraries are available publicly, for example, MPICH, CHIMP and LAM. Some

system vendors also have their own MPI implementations.
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2.5.5 Parallel Algorithms for Standard Cell Placement

Parallel/distributed architectures offer an opportunity to design procedures that ex-

plore the solution space more efficiently. Generally speaking, this efficiency may be

achieved by accelerating some tedious computational intensive phases of a sequen-

tial algorithm via distributed processing. Usually implementations of sequential

algorithms need to be rearranged in order to explore and make use of the possible

parallelism. In this section, a review of some optimization techniques (esp. the

ones used in VLSI CAD design) is carried out, explicitly addressing their strategies

for parallel implementations.

2.5.5.1 Tabu Search

Malek et al implemented a Tabu Search algorithm for the traveling salesman prob-

lem (TSP) [Male89]. There are four child processes and one main control process in

their implementation. Each child runs a serial Tabu Search algorithm with differ-

ent parameters. After a specified time interval, the child processes are stopped and

the solutions are compared. Bad solutions are discarded and their child processes

are restarted with a good solution and their tabu lists are emptied. The authors

reported that the parallel TS outperforms the serial implementation.

Taillard [Tail90] proposed a master/slave parallel strategy for Tabu Search. A

master process is used to send an initial solution to a number of slave processes.

At each iteration, each slave examines part of the neighbourhood and sends the

best move to the master process. Having received moves from all slaves the master

chooses the best move among them, and synchronizes this move to all slaves. If
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this move is not tabu, it is performed as the next candidate move. The stopping

criteria is identical to the serial Tabu Search algorithm, which is controlled by the

master process. In this implementation, parallelism is achieved by the simultaneous

neighborhood examinations. In a loosely-coupled parallel platform, this approach

can achieve good parallelism if the synchronization does not require a large amount

of communication. However, it may not be practical to apply such an approach to

the placement of large circuits.

Fiechter [Fiec94] used a decomposition method to parallelize Tabu Search for the

same classical TSP problem. For the intensification phase, each process optimizes

a portion of the tour. At the end of this phase, processes synchronize their data

and recombine the tour and continue processing. For the diversification phase, each

process determines promising moves in its portion of the tour and exchanges the

data with the others, so that all processes use the same candidate list and apply

the moves. The algorithm was implemented on a network of transputers configured

as a ring topology. The author claimed that almost linear speedups are achieved,

and near-optimal solutions are obtained.

For the application of VLSI standard cell placement, AL-Yamani et al [AY02]

described a parallelization of TS algorithm on a network of heterogeneous worksta-

tions using PVM [PVM 04]. A solution is evaluated by using a fuzzy goal-based cost

computation that integrates multiple objectives for cell placement. The algorithm

consists of three types of processes: (i) a master process, (ii) Tabu Search Workers

(TSWs), and (iii) Candidate List Workers (CLWs). Two levels of parallelization

occur simultaneously in the algorithm: (1) the master process initiates a number

of TSWs to perform their own Tabu Searches; and (2) each TSW has a number
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of CLWs for parallel neighborhood examination. Initially, a TSW gets a set of

parameters and an initial solution from the master, and performs a diversification

step so that the starting search area will not easily overlap with other TSWs. A

TSW works somewhat like a master process of its CLWs, using the CLWs to exam-

ine neighbourhood solutions in parallel. Reasonable results of faster run-time and

better solution quality are reported by the authors, compared to a sequential Tabu

Search implementation. This algorithm is actually a combination of multi-search

threads strategy (by multiple Tabu Search workers) and functional decomposition

strategy (by multiple candidate list workers for each TSW). While the bandwidth

of networks is still a constraint, using more TSWs may produce improved solution

quality, and adding more CLWs may result in better solutions in less time.

2.5.5.2 Simulated Annealing Algorithms

The first reported parallel Simulated Annealing algorithm for standard-cell place-

ment was proposed by Retenbar and Kravitz [Krav87], running on a shared memory

multiprocessor system. In this method, a move was divided into several subtasks

which were then executed in parallel, such as selecting a feasible move, applying

block-length penalty, evaluating overlaps, evaluating wire length, and so on. Par-

allelism is obtained by delegating these subtasks of a move to different processors,

and therefore it is very limited. A speedup of 2 on 3 processors was reported with

this algorithm. Also, with this approach, the synchronization between subtasks

must be performed very carefully, otherwise communications would eliminate the

majority of the speedup. The result is that the speedup increases very slowly while

more processors are being involved.
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Instead of basing it on move decomposition, another Simulated Annealing al-

gorithm proposed by Retenbar and Kravitz parallelizes only the non-interacting

moves[Krav87]. To have the maximum parallelism, a maximum set of non-interacting

moves must be determined. However, finding this set among all moves is a difficult

task. In addition, only independent moves are parallelized and many other possibly

good moves are ignored, which leads to poor performance.

Darema et al [Dare87] presented a Simulated Annealing algorithm with paral-

lel move evaluation. According to Darema a speedup around 11× was obtained

with 16 processors. However, this algorithm is suitable only for shared memory

multiprocessors, not for distributed memory networked workstations.

Banerjee, Jones, and Sargent describe a parallel SA for hypercube-based dis-

tributed memory multiprocessors systems [Bane86]. Cells are mapped onto all the

processors in the hypercube, using either a grid-wise or row-wise scheme. With

such a distributed data structure, parallel moves are supported. The exchanging

of pairs of cells connected by direct hypercube links can be evaluated in parallel.

To eliminate errors caused by some iteration between the individual moves, syn-

chronization with a global broadcast mechanism is used in each move. This kind of

synchronization is rather expensive. Speedups of 11 to 21 with 64 processors were

reported.

In [Chan96], the parallel approaches of Simulated Annealing for standard cell

placement are summarized as follows: (1) Parallelize the subtasks within a move

(has a very limited scope for parallelism). (2) Parallelize the evaluation of mul-

tiple moves that do not interact with each other. The disadvantage of such an

approach is that many good interacting moves are left behind, and identifying non-
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interactive moves is difficult. (3) Parallelize all moves, and utilize special methods

to control inaccurate information caused by interactive moves. This approach has

the maximum scope of parallelism.

For loosely coupled multiprocessors (distributed memory parallel systems with

low bandwidth interconnections), several studies to parallelize the Simulated An-

nealing algorithm were carried out. Partitioning approaches were used to divide

a chip into several regions and assign these regions to individual processors. The

easiest way to do this is simply by using a basic fixed partitioning scheme. How-

ever, since the best positions of some cells may be in other partitions, some cells

are not placed in their optimal positions. To solve this problem, Wern-Jieh et al

employed a ’dynamic’ partitioning method [Sun94]. Instead of being split into fixed

areas, a chip is divided vertically into several slices on odd iterations and divided

horizontally into several slices on even iterations. This allows a cell to move from

one position to any other position in the chip in at most two iterations. After each

move of cells, an update must be broadcast to all other processors. The authors

reported that this method yields similar or better results than its serial SA while

offering nearly linear speedups. The maximum number of workstations used in

their experiments was six. It is expected that, if a large number of processors is

used, the parallel efficiency will drop dramatically due to the high cost of global

synchronization on a low bandwidth parallel system.

2.5.5.3 Parallel Genetic Algorithms

Genetic Algorithms are computational procedures that mimic the natural process

of evolution. They have been proven to be able to produce high-quality placement
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solutions for standard-cell circuits as competitive as those of other sophisticated

algorithms [Shah90a] [Klin90]. However, with recent advanced VLSI technolo-

gies, circuit sizes are increasing, and the runtime of Genetic Algorithms (relatively

slower than other algorithms) is becoming an issue [Kiln89, Shah90b]. Therefore,

researchers are studying parallel GAs for better performance.

Similar to natural evolution, (i) individuals are distributed in distinct areas, and

they all exist at the same time and evolve in parallel; (ii) the size of subpopulations

varies; and (iii) the individuals inside an area usually have much more interaction

on than individuals between distinct areas. For most GA applications, the majority

of computation power is consumed on the fitness evaluations. The calculation of

fitness value for a single individual in the population is usually independent and

decoupled from the fitness calculation of other individuals. Therefore, parallel

computing techniques can be applied to Genetic Algorithms with high efficiency

[Koza98]. Several parallel GAs have been proposed by researchers and can be

classified into the following three categories:

1. Global Populations with Parallelism

Global parallel GA was suggested in the early 70’s. Reproduction operators

such as crossover, mutation, and the evaluation of parents are relatively in-

dependent of the GA operations to other individuals. Therefore the most

direct way to parallelize a standard generational GA is to distribute pairs of

parents to multiple processors for further processing. One master processor

stores information on the whole population, performing selection and mating

globally within the population of one generation. If there are N chromosomes
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in each generation, then N/2 slave processors are needed to carry out the GA

operations for N/2 pairs of parents in parallel. That is, each slave proces-

sor holds two parents selected by the master processor and applies crossover,

inversion, mutation and evaluation to the parents. Synchronous versions of

global parallel GA are commonly used in this class. The term “synchronous”

indicates that after a master sends selected individuals to the slaves, it waits

to receive the fitness values before proceeding with the next generation. This

approach is relatively easy to implement, and a fairly good speedup can be

obtained if communication (i.e synchronization) does not dominate the overall

execution time. Obviously, a synchronous global parallel GA shares exactly

the same searching characteristics as a serial classic GA. Asynchronous global

parallel GAs are also possible. With these methods, selection waits until only

a fraction of the population has been processed. Global parallelization GA is

a considered a fine-grain model that is not suitable for processing by a cluster

of networked workstations. Scalability is yet another problem, since exactly

1+N/2 processors are needed.

2. Island Based Models

One way to have a more coarse-grain parallel model while having better scala-

bility than the global parallel GA is to break down the whole population into

subpopulations and distribute them to multiprocessors. These semi-isolated

subpopulations execute as normal Genetic Algorithms, except that they swap

a few chromosomes occasionally. These are called Island-based Parallel GA.

In a simple parallel GA (PGA), without exchanging genetic information, a
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number of independent GA searches with smaller populations occur, starting

from different initial points and moving along various directions in the solu-

tion space. These sub-algorithms together are basically the same as the sum

of the number of serial GA runs but with smaller population sizes. Since such

a simple parallel GA has more potential to converge prematurely, the best

search result with this method might be worse than a single serial GA run

with a longer population size. However, in an Island-based PGA, subpopu-

lations periodically swap a portion of their information with one another in

the model (see Figure 2.18), potential good genes can be transferred from one

island to another, adjusting the designated trajectory of an island to a better

direction [CP99a]. By introducing migration, Island-based Parallel GAs are

able to exploit the differences among the subpopulations, based on the vast

explorations by various islands. For the last ten years, many Island-based GA

model implementations have been reported to display near-linear speedup or

even super-linear speedup, compared to serial GAs [CP98].

3. Cellular Genetic Algorithms

Cellular Genetic Algorithms are sometimes called “massively-parallel” GAs.

A large number of simple processors are laid out on a grid, with edges wrapped

around so that the vertex on one side of the grid is adjacent to the vertex

on the opposite side (see Figure 2.19) [Whit93]. Each processor (cell) is as-

signed to one individual. The mating between individuals is restricted to

within demes2. At each generation, individuals are processed with their GA

2A deme is the set of potential mates for an individual, e.g. its neighbours
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operators in parallel. Various kinds of cellular Genetic Algorithms have been

employed in the literature. In a fixed topology approach, a deme of a cell

is defined as the individuals in some particular grid locations near this cell.

In a random walk approach, a deme is all the individuals along a random

walk route started from this cell. In an island based approach, by dividing

the grid into multiple subgrids, the algorithms use one of the above methods

to choose demes and perform migrations between subgrids for search. For

cellular Genetic Algorithms, the subalgorithms in each cell are tightly con-

nected. Therefore, they are suitable for massively parallel hardware, instead

of distributed parallel systems.

All the above parallel GAs have some type of locality on their matings. Experi-

ments have shown that parallel GAs benefit from this when solving combinatorial

optimization problems, compared to their serial counterpart versions with global

mating [Gord93].

2.6 Summary

As a critical step in the VLSI design cycle, physical design is incredibly a complex

process that has to be decomposed into more tractable subtasks such as partition-

ing, placement, routing. Approaches used by physical design automation highly de-

pends on various layout styles. This thesis concentrates on the NP-hard placement

problem of standard cell circuits. Several generic heuristic techniques are reviewed,

namely Tabu Search, Simulated Annealing and Genetic Algorithm. Since solving

large circuit placement is computationally intensive, some approaches of paralleling
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the above heuristic algorithms are discussed.

In the following chapters some of these heuristic based techniques as well as

a parallel implementation of the Genetic Algorithm are implemented for standard

cell placement.
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Figure 2.11: Module Interchange Methods
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(1) Choose an initial solution s
s∗ := s

(2) while (the stopping criteria is not satisfied)
Generate a candidate set V ∗ ⊆ N(s) − T
Find the best s′ in V ∗
s := s′

if f(s′) < f(s∗) then
s∗ := s′

Update tabu memory T
end while

(3) return s∗

Figure 2.12: A General Form of Tabu Search

(1) Choose an initial placement solution s
initialize s, |T |, nbiter, bestsolution, bestvalue, bestiter

(2) while (nbiter − bestiter) < nbmax
nbiter++
Generate the move s′ ∈ N(s) and s is not in Tabu list T

Randomly select a module mi

Find a best target module mj ∈ Nδ(mi) for interchange,
and module pair (mi, mj) is not in Tabu list T

if f(s′) < bestvalue then
bestvalue := f(s′), bestsolution := s′, bestiter := nbiter

Update tabu memory T
Perform the move

end while

(3) return bestsolution

Figure 2.13: A Placement Optimization Approach Using Tabu Search [Song92]
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with repetition based on their fitness

(done)
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yes
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Replace all individuals of the previous
generation with the offsprings

generationcount

Output Bestone

(a) A Generational GA

population, then replace them

> = gensize ?

Output Bestone
(done)

without repetition based on their fitness
Select two individuals

as a pair of parents

If the two offspring are better than
the two worst individuals in the

yes

no

Generating initial population

Crossover

Mutation

Invertion

Evaluation

generationcount

(b) A Steady-State GA

Figure 2.14: Flowchart of GAs
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(1) Choose an initial solution s := s0

T := T0

(2) while (the stopping criteria is not satisfied)
while (not yet in equilibrium)

Generate a random neighbour s′ from s
if (C(s′) < C(s)) then s := s′

else if (e
C(s)−C(s′)

T ≥ random(0, 1)) then s := s′

if (C(s′) < C(s∗)) then s∗ := s′

end while
T := next temp(T ) ≈ αT

end while

(3) return s∗

Figure 2.15: A General Form of SA
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(a) Architectures, by [Proj04]

(b) Performance, by [Proj04]

Figure 2.16: Trends in the Fastest Computers since 1993
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Figure 2.17: Performance of Parallel Systems [Kuck96]

Figure 2.18: An Example of Island-based GA
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Figure 2.19: An Example of Cellular Genetic Algorithms



Chapter 3

Local Search and Meta Heuristics

The input to any placer tool is a set of standard cells and netlist information. The

goal of the placer is to produce an optimized layout for the given cells. Initially,

a parser is required to properly read, parse and store the circuit information. The

data structure used is usually very complicated yet it is extremely important since

it significantly affects the efficiency of the algorithms used. A good data structure

sometimes demand less computing resources and may be easier to manipulate.

Figure 3.1 illustrates the basic work flow of a typical VLSI placer.

The algorithms of the placer mainly involves the following two stages:

1. Constructively generating one or more good initial solutions;

2. Iteratively improving placement solutions.

This chapter focuses on the iterative improvement phase for circuit placement.

Several heuristic algorithms are implemented in this dissertation to improve solution

quality for this NP-hard problem, based on the cell displacement and cell exchange

56
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Parser reads circuit information

Store circuit information into data structure

Initialize I/O pads

Construct initial solution(s)

Iteratively improve solutions

Final solution

Circuit

Figure 3.1: The Flow Chart of the SC3 Placer

approaches.

The total wire length of a layout is approximately estimated by an efficient

half-perimeter method in the implementation. Two local search algorithms based

on different placement strategies are discussed and implemented in Section 3.1.

Results obtained show that the two placement strategies can produce compara-

ble results however the second approach executes in less CPU time. Since these

search algorithms tend to get trapped in local optima, meta-heuristic algorithms

are further developed in the forms of Tabu Search, Simulated Annealing and Ge-

netic Algorithm. These advanced search heuristics attempt to guide local search

techniques to effectively explore and exploit the solution space efficiently.
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3.1 Local Search Algorithms

To minimize a cost function, Local Search algorithms start from an initial place-

ment solution, and iteratively attempt to obtain a better solution by finding the

best neighbourhood solution of the current solution. If a move yields less cost in

the objective function then it is accepted and the search continues; otherwise the

Local Search stops. For such hill-climbing heuristics, a neighbourhood is created

by performing one of the following two types of module interchanges:

• Cell displacement: moves a cell from its current location and places it to

a random new location on the chip.

• Cell exchange: swaps the locations of any two cells.

Cell displacement and cell exchange can happen in the same row or in different

rows. A third type of move can be used to locally modify a placement solution,

which is based on changing the module orientation. Optimizing cell orientation will

be discussed and implemented in Chapter 5.

The following context describes the implementation of two placement strategies

based on Local Search Algorithm: the first directly minimizes the wire length and

requires shifting some modules at each move, while the other allows overlaps and

legalizes the solution in the final phase of the procedure.

3.1.1 Strategy-I

Minimizing the cost function of Equation (2.3) will minimize the total chip area,

therefore this equation can be directly used to evaluate the acceptability of new
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neighbour solutions in a Local Search. A simple Local Search algorithm imple-

mented is illustrated in Figure 3.2. Starting with an initial placement solution,

the algorithm continuously finds the best neighbour and performs moves until no

further improvement can be achieved.

Local Search Algorithm #1
Input:
The net list of the circuit

Initialization:
Choose an initial placement solution

Mainloop:
while(1)

BestImprovement = -1
for( i = 0; i < NeighbourhoodSize; i++ )

CurrentNeighbour = Generate Legal Interchange()
if ( CurrentNeighbour == NULL ) then

break
improvement = Evaluate the Interchange()
if ( improvement > BestImprovement ) then

BestImprovement = improvement
BestNeighbour = CurrentNeighbour

end for
if ( BestImprovement ≥ 0 ) then

Perform the interchange of BestNeighbour
Update circuit information
CurrentSolution = BestNeighbour

else break
end while

Output:
CurrentSolution

Figure 3.2: Local Search Implementation I

A neighbour solution is generated by virtually performing either a “cell dis-

placement” or a “cell exchange” from the current solution. A valid solution is

an arrangement of the given cells into rows of layout area without any overlap or

empty space between adjacent modules. To ensure the validity of the solution, this
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algorithm inspects the following: (1) modules are placed into adjacent rows, (2)

modules are placed inside the layout area, and (3) no module overlaps nor empty

space between adjacent modules. Shifting of some affected cells usually has to be

performed after changing the location of a module to make room or remove overlap.

An illustration of cell displacement is presented in Figure 3.3 where cell 19 virtually

moves to a location in row #2. Modules 7, 8, and 9 will have to shift to the right

5
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Figure 3.3: Cell Displacement

to make room for the incoming cell, while modules 20, 21, and 22 will shift to the

left to eliminate the empty space. An illustration of the “cell exchange” concept is

presented in Figure 3.4 where module 6 and 19 are exchanged. Since module 6 is

larger than 19, modules 7 - 9 shift to the left and modules 20 - 22 shift to the right.

When a new move is generated for evaluation, affected cells are virtually shifted.

If the best move is accepted, shifting is actually performed.

The function Generate Legal Interchange() in Figure 3.2 creates a new neigh-
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Figure 3.4: Cell Exchange

bourhood configuration by randomly selecting one of the above two types of moves,

with a probability determined by a user-specified “SWAP/MOVE” ratio. The value

of the “SWAP/MOVE” ratio can obviously affect the final search result, since it

determines the quality of solutions generated.

The algorithm uses the Half-Perimeter method to estimate the wire length of

a net. More specifically, the function Evaluate the Interchange() in Figure 3.2 de-

termines the affected nets due to relocation of the cells, and evaluates the ∆C of

these nets based on this method. In each move, many modules are displaced or

exchanged or shifted, and all the nets connected to these modules are affected. To

evaluate the cost change of a neighbourhood solution, the involved computational

effort is not trivial.
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3.1.2 Strategy-II

The previous algorithm can produce good results but the main disadvantage is

attributed to the shifting of modules when evaluating a neighbour solution. This

may affect a larger number of nets, resulting in excessive CPU time. To clarify this

issue, assume each row in a circuit has 80 cells. Averagely, generating a neighbour

by either cell displacement or cell exchange virtually shifts 80 cells, and they may

affect a large number of nets.

Therefore, a second Local Search strategy is implemented as shown in Figure 3.5.

Instead of consuming time in shifting the modules, this algorithm allows overlaps

of the modules without shifting them. These overlaps are penalized in the cost

function. A legalizing procedure is then executed to convert the final solution into

a valid placement. Based on this strategy, the second algorithm may save significant

computation effort compared to the previous one.

Similar to Strategy-I, the algorithm estimates the wire length of all nets based on

the half-perimeter of the bounding box. However, it allows illegal configurations and

penalizes them in the cost function. These illegal configurations include overlaps

between modules in the same row, overshoot or undershoot of row length over the

ideal row length, and overcrowded modules in rows. This dramatically eliminates

the high computation demand for shifting modules and evaluating the affected nets.

Another possible benefit of Strategy-II is that it gives more flexibility to explore

the solution space. A cell can be placed anywhere as long as this move reduces

more wire length than other neighbour solutions.

In the implementation of the second strategy, the cost function is the sum of
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Local Search Algorithm 2
Input:
The net list of the circuit

Initialization:
Choose an initial placement solution

Mainloop:
while(1)

BestImprovement = 0
for( i = 0; i < NeighbourhoodSize; i++ )

CurrentNeighbour = Generate an Interchange()
improvement = Evaluate the Interchange()
if ( improvement > BestImprovement ) then

BestImprovement = improvement
BestNeighbour = CurrentNeighbour

end for
if ( BestImprovement ≥ 0 ) then

Perform the interchange of BestNeighbour
CurrentSolution = BestNeighbour

else break
end while
Legalize Circuit()

Output:
CurrentSolution

Figure 3.5: Local Search Implementation II

the following four terms: (i) C1, wire length cost, (ii) C2, module overlap penalty,

(iii) C3, row length undershoot and overshoot penalty, and (iiii) C4, modules over-

crowded penalty. The overall cost function is given by:

C = C1 + C2 + C3 + C4 (3.1)

The first term C1 is the wire length cost, which is estimated using the Half-



CHAPTER 3. LOCAL SEARCH AND META HEURISTICS 64

Perimeter method (HPWL).

C1 =
∑

i∈nets

[WHspan x(i) + WV span y(i)] (3.2)

Independent weights can be assigned to horizontal and vertical wire length to give

preference in one direction over the other. For example, assigning a slightly larger

weight to WV than WH sometimes helps to produce a better final solution.

The second term C2 is the penalty of overlaps between adjacent modules in the

same row. Two cost functions of C2 are considered, where W2 is the weight of the

overlap penalty:

C2 = W2

∑

i6=j

[Oi,j] (3.3)

C2 = W2

∑

i6=j

[Oi,j]
2 (3.4)

Without shifting, moving a cell may introduce overlaps to the destination or release

some overlaps from the source location. Similarly, an exchange of two cells that

differ in size may result in change of overlaps. The quadratic Equation (3.4) applies

a larger penalty on large overlaps than on small ones, while Equation (3.3) penalizes

the size of overlaps linearly.

The third term C3 compares the actual row length with the desired row length,

and applies a penalty to the amount of overshoot or undershoot of these rows over

the desired row length:

C3 = W3

∑

i∈rows

|row length(i) − Desire row length(i)| (3.5)
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where W3 is the weight of row length penalty.

In the TimberWolf placement package [Sech85], the cost function consists of

three terms that are similar to C1, C2 and C3 described above. In our work, the

cost function further incorporates C4. In an attempt to prevent the algorithm from

placing too many small modules in a single row, a penalty must be applied if the

number of modules in a row exceeds the allowable maximum number. The fourth

term C4 is given by:

C4 = W4

∑

i∈rows

RM(i) (3.6)

where

RM(i) =















0, if Modules(i) ≤ Max Mods;

Modules(i) - Max Mods, if Modules(i) > Max Mods.
(3.7)

where W4 is the weight of the modules overcrowded penalty, Modules(i) is the

number of modules in row i, and Max Mods is the allowable maximum number of

modules that can be placed in one row. Max Mods is determined by the specifi-

cation of a standard-cell circuit.

The function Generate an Interchange() generates a neighbour from a current

solution by virtually performing either a cell displacement or a cell exchange. The

function randomly produces a new move according to the SWAP/MOVE ratio and

neglects module shifting and validity checking.

The function Evaluate the Interchange() evaluates the improvement −∆C for

a neighbour solution. Using the HPWL method, the decrease in wire length of

affected nets is calculated for the term ∆C1. Since only one or two cells change
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their locations at each move, the computation for wire length estimation is trivial.

The calculations of ∆C2, ∆C3 and ∆C4 are not computationally demanding ei-

ther since none of them involves large numbers of nets or modules. The function

Evaluate the Interchange() is illustrated in Figure 3.6.

In each iteration, the Local Search algorithm generates a set of new neighbour

solutions and evaluates the possible improvement for each of them. If a cell dis-

placement or cell exchange does not increase in cost function, it is accepted and

performed. Shifting is not required after each move. The search continues until no

further improvement can be found. At the final stage of the algorithm, a legalizing

procedure is performed to convert the illegal solution to a legal placement that

meets layout specifications. Figure 3.7 illustrates the four stages in the function

Legalize Circuit(). These stages make the layout solution legal, while attempting

to impact the solution quality as little as possible.

Local Search methods typically perform blind search where they sequentially

accept good moves that yield improvements in the objective function. Local Search

heuristics terminate as soon as the first local minima is encountered. The quality

of search results relies heavily on the initial solution, and the local optimum can

be very far away from the global optima. Several techniques are usually used in

an attempt to overcome this problem. One of these approaches is to use multiple

starting points. Another approach is to dynamically change the size of neighbour-

hood. However, the above two methods are not effective enough in helping the

search nor robust enough, due to their lack of “intelligence” and “knowledge” of

the search. Meta-heuristics are advanced algorithms that can gather crucial in-

formation necessary to guide local search explore and exploit the solution space
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procedure Evaluate the Interchange()
comment: ∆C = ∆C1 + ∆C2 + ∆C3 + ∆C4
if ( new configuration == MOVE cell i to the same row ) then

Evaluate C1 (wirelength of nets connected to cell i)
Evaluate C2 i original (overlaps of area covered original location of cell i)
Evaluate C2 i new (overlaps of area covered by new location of cell i)
Virtually move cell i to the new location
Evaluate C ′

1 (wirelength of nets connected to cell i)
Evaluate C ′

2 i original (overlaps of area covered by original location of cell i)
Evaluate C ′

2 i new (overlaps of area covered by new location of cell i)
∆C1 = C ′

1 − C1

∆C2 = (C ′
2 i original + C ′

2 i new) − (C2 i original + C2 i new)
∆C3 = 0, ∆C4 = 0

if ( new configuration == MOVE cell to a different row ) then
Evaluate C1 (wirelength of nets connected to cell i)
Evaluate C2 i original (overlaps of area covered original location of cell i)
Evaluate C2 i new (overlaps of area covered by new location of cell i)
Evaluate C3 (row length penalty of both rows)
Evaluate C4 (modules overcrowded penalty of both rows)
Virtually move cell i to the new location
Evaluate C ′

1 (wirelength of nets connected to cell i)
Evaluate C ′

2 i original (overlaps of area covered by original location of cell i)
Evaluate C ′

2 i new (overlaps of area covered by new location of cell i)
Evaluate C ′

3 (row length penalty of both rows)
Evaluate C ′

4 (modules overcrowded penalty of both rows)
∆C1 = C ′

1 − C1, ∆C3 = C ′
3 − C3, ∆C4 = C ′

4 − C4

∆C2 = (C ′
2 i original + C ′

2 i new) − (C2 i original + C2 i new)

if ( new configuration == SWAP cells i and j in the same row ) then
Evaluate C1 (wirelength of nets connected to cell i and/or cell j)
Evaluate C2 i original and C2 i new

Evaluate C2 j original and C2 j new

Virtually move cell i to the new location
Evaluate C ′

1 (wirelength of nets connected to cell i and/or cell j)
Evaluate C ′

2 i original and C ′
2 i new

Evaluate C ′
2 j original and C ′

2 j new

∆C1 = C ′
1 − C1

∆C2 = (C ′
2 i original + C ′

2 i new) − (C2 i original + C2 i new) + (C ′
2 j original + C ′

2 j new) − (C2 j original + C2 j new)
∆C3 = 0, ∆C4 = 0

if ( new configuration == SWAP cells i and j in different rows ) then
Evaluate C1 (wirelength of nets connected to cell i and/or cell j)
Evaluate C2 i original and C2 i new

Evaluate C2 j original and C2 j new

Evaluate C3 (row length penalty of both rows)
Virtually move cell i to the new location
Evaluate C ′

1 (wirelength of nets connected to cell i and/or cell j)
Evaluate C ′

2 i original and C ′
2 i new

Evaluate C ′
2 j original and C ′

2 j new

Evaluate C ′
3 (row length penalty of both rows)

∆C1 = C ′
1 − C1, ∆C3 = C ′

3 − C3, ∆C4 = 0
∆C2 = (C ′

2 i original + C ′
2 i new) − (C2 i original + C2 i new) + (C ′

2 j original + C ′
2 j new) − (C2 j original + C2 j new)

return improvement = −(∆C1 + ∆C2 + ∆C3 + ∆C4)

Figure 3.6: Evaluate the Interchange() Procedure



CHAPTER 3. LOCAL SEARCH AND META HEURISTICS 68

procedure Legalize Circuit()

Stage 1 for ( i = 0; i < All Rows; i++ )
Shift the modules to remove overlaps

Stage 2 for ( i = 0; i < All Rows; i++ )
if the total width in row i is more than
the maximum row length allowed, then

move the cells having the least
connection in row i to the row j
having the shortest row length.

Stage 3 for ( i = 0; i < All Rows; i++ )
if the total modules in row i is more
than the maximum number allowed, then

move the smallest cells to the row j
having the least cells.
if the above move is not suitable, then

find out the row k which having the
least number of cells, and swap the
largest width cell in the row i with
the smallest cell in the row k;
i = i - 1

Stage 4 for ( i = 0; i < All Rows; i++ )
Shift the modules to remove overlaps

Update circuit information

Figure 3.7: Legalize Circuit() Procedure

effectively. Section 3.2 and 3.3 will present implementations of several advanced

meta-heuristic algorithms for standard cell placement.
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3.1.3 Experimental Results

The algorithms were implemented based on the C programming language, and

compiled using a GNU C compiler. To study the implemented algorithms, a large

number of experiments are conducted on Sun Solaris operating system.

Table 3.1 lists the general information of the benchmark circuits that were

used in the experiments in this thesis. These circuits are the standard MCNC ’91

Benchmarks used for standard cell placement [Kozm91]. The suite includes ten

standard cell circuits ranging from 125 to 25114 cells. According to the size of

the circuits, benchmarks are grouped into small, medium and large classes. The

second column of the table shows the name of the circuit. The third and the fourth

columns show the number of cells and the number of I/O pads that connect the

circuit to the outside world. The number of nets are presented in the sixth column.

The total number of pins of all modules are summarized in the seventh column.

The last column provides the number of rows where the cells are to be placed.

Figure 3.8 illustrates a standard cell circuit.

Cell
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Figure 3.8: A MCNC Standard Cell Circuit

Performance evaluations of the developed algorithms are based on total wire
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Group Circuit Cells IO Pads Total Nets Pins Rows**
modules*

Fract 125 24 149 147 876 6
Small Prim1d 752 81 833 876 5614 16

Struct 1888 64 1952 1920 10814 21

Ind1 2271 814 3085 2478 19186 15
Medium Prim2 3014 107 3121 3136 22371 28

Bio 6417 97 6514 5742 41886 46

Ind2 12142 495 12637 13419 95818 72
Large Ind3 15059 374 15433 21938 136084 54

avq.s 21854 64 21918 22124 152334 80
avq.l 25114 64 25178 25384 165374 86

Note:
* TotalModules = Cells + IOPads

** Rows: The number of rows is specified by a parameter at run time.

Table 3.1: MCNC Benchmarks Used in the Experiments

length obtained and CPU time consumed to achieve final results. Since the initial

placement solutions are different, using only the wire length of final solutions may

not be sufficient. Therefore, the percentage of improvement is also used to measured

the search quality. Most experimental results in this chapter are based on initial

random placement solutions. Each test was conducted 20 times and the average

values were recorded. Note, the “WL” in the tables of this chapter stands for Wire

Length, and “%Imp” refers to percentage of improvement.

3.1.3.1 Comparison of the Two Strategies

The first set of experiments were conducted to compare Strategy-I (minimizes total

wire length, by generating only legal solutions) and Strategy-II (minimizes cost

function (3.1), allowing infeasible solutions with penalty introduced).

Table 3.2 presents the placement results based on the two strategies. In the ex-

periments, the neighbourhood size is a value proportional to the size of the circuits,



CHAPTER 3. LOCAL SEARCH AND META HEURISTICS 71

that is, Neighbours = Ncells/20 (Ncells is the number of modules of a circuit). It

is evident that Strategy-I is more CPU-demanding than Strategy-II. For example

circuit ind3, the time required by Strategy-I was 46 times longer than that based

on Strategy-II. However, solution qualities based on Strategy-I were superior.

Circuit Strategy-I Strategy-II
WL %Imp Time WL %Imp Time

fract 83049 3.58% 0.06 84006 2.47% 0.03
prim1 2.38 × 106 7.62% 0.33 2.49 × 106 3.29% 0.13
struct 1.74 × 106 29.34% 8.20 1.97 × 106 20.22% 1.00
ind1 4.02 × 106 34.94% 37.50 4.40 × 106 28.78% 2.15
prim2 1.22 × 107 26.80% 74.60 1.34 × 107 19.13% 1.55
bio 7.69 × 106 41.44% 503.63 8.26 × 106 37.07% 40.49
ind2 5.10 × 107 45.24% 5093.67 5.65 × 107 39.39% 214.62
ind3 1.56 × 108 44.53% 11302.80 1.68 × 108 40.33% 245.42
avq.s - - very long 4.20 × 107 52.43% 9711.05
avq.l - - very long 4.63 × 107 54.17% 12679.85

Note: The neighbourhood size is Ncells/20.

Table 3.2: Comparison of the Two Placement Strategies (part I)

To further examine the search capability of the two strategies, a second set of

experiments were conducted by varying the neighbourhood size (the results are very

interesting). When the neighbours size was small (e.g. less than 200), Strategy-I

produced better solutions than Strategy-II (see Table 3.3). However, when the size

increased to 200, Strategy-II performed better. The data is plotted in Figures 3.9

and 3.10, where the dashed lines denote the improvement and the computation

time of Strategy-I over varied neighbourhood sizes, and the solid lines denote those

of Strategy-II. The results clearly indicate that (i) Strategy-II can yield better so-

lutions than Strategy-I if the neighbour size is not too small; and (ii) Strategy-I

requires much more computation time than Strategy-II. Similar results were ob-
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tained with the rest of the benchmarks.

Circuit Neighbors Strategy-I Strategy-II
Improvement Time Improvement Time

struct 20 1.12% 0.89 1.85% 0.8
40 9.20% 1.66 5.17% 0.82
80 23.56% 5.37 21.30% 1.01

100 30.27% 8.95 25.95% 1.12
200 39.55% 23.42 40.77% 1.77
500 48.92% 80.85 52.63% 5.04

1000 54.91% 220.37 59.35% 12.87
2000 58.57% 532.32 66.17% 32.15

Table 3.3: Comparison of the Two Placement Strategies (part II)
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Figure 3.9: Strategy-I vs. Strategy-II (%Improvement)

Since Strategy-II can produce better results in less CPU time, the Meta-heuristics

developed later such as Tabu Search and Simulated Annealing will be based on this
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Figure 3.10: Strategy-I vs. Strategy-II (CPU Time)

strategy.

3.1.3.2 Legalization Procedure

Since a legalization procedure is required for Strategy-II, a set of tests were con-

ducted to experiment how the Legalize Circuit() function affects the final solutions,

as Table 3.4 and 3.4 shown.

In the experiments, the neighbourhood size of Local Search was determined by

circuit size (i.e. Neighbours = Ncells/30). X and Y are the wire length in the x

and y direction, respectively. The initial solutions are shown in the second and the

third columns of Table 3.4, and the wire length obtained by Local Search are shown

in the fourth and the fifth columns. The last column displays the percentage of

improvement. On the other hand, the wire length after the legalization stage are
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Initial Placement After LS % Imp by
X Y X Y LS

fract 44257 45356 44058 45356 0.2
prim1 2.00 × 106 5.72 × 105 1.96 × 106 5.72 × 105 1.6
struct 2.00 × 106 5.30 × 105 1.25 × 106 5.30 × 105 29.4
ind1 5.36 × 106 8.10 × 105 2.44 × 106 8.10 × 105 47.3
prim2 1.36 × 107 3.03 × 106 8.76 × 106 3.03 × 106 29.0
bio 1.16 × 107 1.55 × 106 5.30 × 106 1.55 × 106 47.8
ind2 7.93 × 107 1.44 × 107 3.12 × 107 1.44 × 107 51.3
ind3 2.52 × 108 2.97 × 107 7.87 × 107 2.97 × 107 61.6
avq.s 8.20 × 107 6.41 × 106 2.57 × 107 6.41 × 106 63.6
avq.l 9.45 × 107 6.59 × 106 3.08 × 107 6.59 × 106 63.0

Table 3.4: Results before and after the Legalizing Procedure

After Legalization % Imp by % Imp
X Y Legalizing ( final )

fract 43465 44776 1.3 1.5
prim1 1.97 × 106 5.72 × 105 -0.4 1.2
struct 1.37 × 106 5.69 × 105 -6.3 23.1
ind1 3.06 × 106 9.38 × 105 -12.1 35.2

prim2 9.79 × 106 3.40 × 106 -8.5 20.5
bio 6.10 × 106 2.01 × 106 -9.6 38.2
ind2 3.98 × 107 1.47 × 107 -9.5 41.8
ind3 1.29 × 108 3.53 × 107 -19.9 41.7
avq.s 3.31 × 107 9.26 × 106 -11.6 52.0
avq.l 3.93 × 107 1.03 × 107 -12.1 50.9

Table 3.5: Results before and after the Legalizing Procedure (Continue)

shown in Table 3.5. Results indicate that the Legalize Circuit() function tends to

deteriorate the total wire length. In addition, it can be seen that the larger the im-

provement obtained by the previous stages (iterative improvement algorithms), the

more deterioration by the Legalize Circuit() function. For the bio circuit, although

Local Search decreased the total wire length by 47.8%, the legalization increased
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the wire length by 9.6% and yielded an overall improvement of 38.2%. Figure 3.11

illustrates the improvements achieved by Local Search algorithm and the overall

improvement following the legalization step.
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Figure 3.11: Effect of Legalization

3.1.3.3 The MOVE/SWAP Ratio

When generating a neighbourhood solution, Local Search randomly selects one of

the two types of module interchanges (“cell displacement” and “cell exchange”)

with a probability determined by the MOVE/SWAP ratio. Since this ratio affects

search quality, several experiments were conducted in an attempt to find out the

most suitable value.

With a ratio ranging from 1 to 10, a small circuit (fract), a medium circuit

(struct) and a large circuit (ind2) were tested (see Table 3.6). However, the re-

sults are not conclusive since no particular value is found to be ideal for all the
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fract struct ind2
Ratio Improvement Time Improvement Time Improvement Time

1 11.65% 0.12 10.16% 1.76 9.81% 113.90
2 41.28% 0.10 31.10% 1.49 26.25% 97.82
3 37.09% 0.10 31.56% 1.53 25.57% 95.53
4 38.25% 0.14 27.12% 1.38 23.97% 88.60
5 34.78% 0.09 32.16% 1.56 26.41% 93.31
6 34.11% 0.07 31.29% 1.52 28.44% 97.76
7 31.69% 0.09 32.48% 1.60 27.01% 95.83
8 36.45% 0.10 26.39% 1.38 25.31% 93.64
9 40.06% 0.09 30.02% 1.53 28.24% 96.06
10 37.47% 0.09 30.31% 1.47 27.80% 100.21

Table 3.6: MOVE/SWAP Ratio
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Figure 3.12: MOVE/SWAP Ratio: Circuit struct

benchmarks. The normalized improvement and computation time of the circuits

versus the MOVE/SWAP ratio is plotted in Figure 3.12, which indicates that ratios

ranging from 2 to 9 obtained adequate results in less CPU time. Empirically, the
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current implementation uses 5 as the default MOVE/SWAP ratio.

3.1.3.4 Size of Neighbourhood

Neighbourhood size is a crucial parameter to Local Search. Results in Table 3.7

show the effect of neighbourhood size on search quality and CPU time. Since

a candidate solution is created either by moving a cell to a random position or

by exchanging two random cells, the number of potential neighbours of a current

solution may be huge for a medium/large circuit. Thus, usually only a portion of

the potential neighbours are examined. In the experiments, the size ranges from

20 to 2000. From Table 3.7 we can conclude that search quality of Local Search

Circuit Initial Neighbourhood Size
20 40 60 80 100 200 500 1000 2000

Interchange 38 84 122 112 173 179 294 345 448
fract W.L. 86133 71947 61490 56805 55194 53402 49122 45030 40043 37632

CPU Time 0.04 0.06 0.08 0.08 0.10 0.16 0.50 1.13 2.86
Interchange 17 83 198 372 468 713 1233 1761 2290

struct W.L.(×106) 2.47 2.42 2.34 2.16 1.94 1.83 1.46 1.17 1.00 0.83
CPU Time 0.80 0.82 0.90 1.01 1.12 1.77 5.04 12.87 32.15
Interchange 16 114 301 1009 1171 3306 6791 9721 12609

ind2 W.L.(×107) 9.32 9.26 9.13 8.88 7.92 7.39 6.93 5.61 5.03 4.59
CPU Time 59.06 60.77 61.60 64.09 66.39 92.70 221.42 508.83 1280.21

Note:

Interchange: the number of moves attempted;
W.L.: total wire length.

Table 3.7: Size of Neighbourhood

highly depends on neighbourhood size. When a larger size is used, better search

results are obtained. Figure 3.13 plots the experimental results for circuits struct

and ind2.

In the previous experiments (see Tables 3.2, 3.4 and 3.5), neighbours size was set

proportional to the circuit size, i.e Ncells/20 or Ncells/30. However, results indicate

that these sizes are too small for small circuits and excessive for large circuits
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Figure 3.13: Improvement vs Neighbourhood Size

in terms of search quality and CPU time. Empirically, we found that a size of

50 log10 Ncells produced similar quality of solutions with affordable CPU time for

most circuits. Therefore, 50 log10 Ncells is used as the default neighbourhood size

in current Local Search implementation (results with this setup can be found in

Table 3.10).

3.1.3.5 Overlap Penalty and Weight W2

In Section 3.1.2, Equation (3.3) and (3.4) were considered for the second term C2

(overlap penalty) of the cost function used by Strategy-II. In this section, exper-

iments were conducted in an attempt to find out: (i) which equation is the most

suitable for C2 and (ii) how weight W2 affects search quality. Results are displayed
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in Table 3.8 and 3.9.

Circuit W2
∑

i6=j [Oi,j] W2
∑

i6=j [O2
i,j]

Improvement Time Improvement Time
fract 34.78% 0.09 36.97% 0.12
struct 32.16% 1.56 23.59% 1.25
ind2 26.41% 93.31 13.40% 71.37

Table 3.8: Two Overlap Penalty Functions

The overlap penalty based on Equation (3.3) tends to penalize on the size of

overlaps linearly while the quadratic term in Equation (3.4) applies more penalty

on large overlaps than small ones. Results obtained in Table 3.8 indicate that the

first function yields better improvement and therefore Equation (3.3) is chosen to

represent overlap penalty.

struct ind2
W2 Interchange %Imp Time Interchange %Imp Time
1 634 30.98% 1.52 3101 23.64% 102.6
2 643 30.90% 1.53 3212 24.17% 95.57
3 618 30.38% 1.50 3254 25.1% 90.24
4 595 29.92% 1.47 3268 26.2% 89.21
5 575 29.11% 1.45 3244 25.40% 88.84
6 568 29.12% 1.45 3126 24.31% 83.69
7 631 31.07% 1.53 3098 22.63% 80.54
8 573 29.01% 1.45 3052 23.75% 81.23
9 549 28.90% 1.43 3012 23.88% 79.96
10 528 27.97% 1.39 2886 20.46% 75.85
25 519 28.16% 1.38 2537 18.14% 70.63
50 345 21.02% 1.18 1830 13.99% 62.74
100 232 14.13% 1.0 986 10.52% 55.63

Table 3.9: Overlap Penalty Weight W2

Table 3.9 presents results obtained for the LS based on different W2 values.
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A weight value in the range 1 to 9 yields acceptable solution quality while a large

value tends to deteriorate solution quality. For circuit struct, a weight of 7 obtained

31.07% improvement and increasing the weight to 100 yielded 14.13% improvement.

3.1.3.6 Overall Performance of Local Search

Table 3.10 summarizes the experimental results for the implemented Local Search

algorithm. The default neighbourhood size (50 log10 Ncells) was used. An average

improvement of 27.68% was obtained based on Strategy-II implementation.

Wire length
Circuit Initial Final Improvement Interchanges Time

fract 86133 60250 30.05% 117 0.09
prim1 2.57×106 2.00×106 22.31% 293 0.37
struct 2.47×106 1.72×106 30.18% 602 1.45
ind1 6.17×106 4.08×106 33.90% 1160 4.17

prim2 1.66×107 1.27×107 23.60% 1196 2.79
bio 1.31×107 0.96×107 26.65% 1526 18.52
ind2 9.32×107 6.95×107 25.40% 3244 88.84
ind3 2.82×108 2.17×108 23.04% 4768 42.46
avq.s 8.84×107 6.28×107 28.96% 5814 797.78
avq.l 1.01×108 0.73×108 27.71% 5575 724.12

Average Improvement 27.68%
Note: The neighbourhood size is defined as 50 log10 Ncells.

Table 3.10: Overall Performance of Local Search

3.2 A Tabu Search Implementation

The Tabu Search [Glov93] meta-heuristic is an effective and efficient technique that

have been successfully applied to many applications. This section presents our
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implementation of Tabu Search method to the standard cell placement problem.

Results obtained indicate that for most benchmarks, Tabu Search produces better

solution quality than hill-climbing Local Search algorithms.

3.2.1 Algorithm Outline

An outline of the Tabu Search implementation is illustrated in Figure 3.14. For

standard cell placement, the cost function of the Tabu Search algorithm is based on

Equation 3.1. The input of Tabu Search is an initial placement solution. This solu-

tion can be either randomly generated or constructed based on a certain construc-

tive technique. Based on a neighbour searching method similar to that described

previously for LS, the TS algorithm accepts both improving and deteriorating moves

as long as they are the best candidates in any iteration. Moreover, it incorporates

a short-term memory of moves obtained from past history to guide the search such

that it avoids revisiting solutions recently explored. Aspiration is an additional fea-

ture added to further explore the solution space. Two different criteria can be used

to terminate the search: (i) when a specified maximum number of iterations are

reached, (ii) when the search performs a specified maximum number of consecutive

non-improved moves. Since Tabu Search accepts moves that tend to deteriorate

the cost function, a current solution does not necessarily have to be an improving

move. Thus the best-so-far solution is always updated whenever a better one is

found. At the end of Tabu Search, a legalization procedure is required to convert

the best-so-far solution into a valid placement solution.

In the next section, several implementation issues are discussed, including the

neighbourhood definition, the tabu memory, aspiration, the stopping criteria and
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Tabu Search Algorithm
Input:
The net list of the circuit

Initialization:
Choose an initial placement solution
Accumulated Imprv := 0
Initialize Tabulist
Initialize Recoverlist

Mainloop:
while (the stopping criteria is not met)

BestImprovement := −∞
for( i = 0; i < NeighbourhoodSize; i++ )

CurrentNeighbour := Generate an Interchange()
improvement := Evaluate the Interchange()
if CurrentNeighbour is tabued then

if ((improvement + Accumulated Imprv) ≤ 0 ) then
Comment: CurrentNeighbour does not meet Asp criteria,

this move is discarded.
continue

else Override the tabu status
if ( improvement > BestImprovement ) then

BestImprovement := improvement
BestNeighbour := CurrentNeighbour

end for
Accumulated Imprv := Accumulated Imprv + BestImprovement
if (Accumulated Imprv ≥ 0) then

Comment: It is the best solution so far
Flush Recoverlist
Accumulated Imprv := 0

else
Add the move to Recoverlist

Perform the interchange of BestNeighbour
Update Tabulist
CurrentSolution := BestNeighbour

end while
if (Accumulated Imprv < 0) then

Comment: CurrentSolution is not the best solution so far
Roll back to best so far solution from CurrentSolution with Recoverlist

Legalize Circuit()

Output:
CurrentSolution

Figure 3.14: Tabu Search Algorithm for Standard Cell Placement
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the roll back function.

3.2.2 Definition of Neighbourhood

The neighbourhood N(s) of a solution s is defined as the set of solutions s′ that can

be obtained from s by either randomly displacing a cell to a new location or ran-

domly exchanging the locations of any two cells. Compared to the neighbourhood

definitions in [Song92] and [Sait01], this implementation tends to search within a

much larger neighbourhood space. In [Song92], a neighbour was created only by

exchanging two connected cells, and [Sait01] allowed exchanging non-adjacent cells

however “cell displacement” method was not used. Since swapping two adjacent

cells will not change the half-perimeter of the bounding box of the net that connects

these two cells, a cell exchange should not be restricted to the pairs of connected

cells. In addition, with “cell displacement, it is more efficient for a cell to move to

a desired location since overlaps are allowed in Strategy-II.

In the current implementation, users can determine the neighbourhood size in

run-time, otherwise a default value that depends on circuit size is used.

3.2.3 Tabu Memory

Tabu memory is a crucial component of the Tabu Search approach. Simply ac-

cepting bad moves cannot prevent the search from cycling. A tabu list is therefore

used to record some recently visited solutions and prevent the search from revisiting

them. In any iteration k, the algorithm generates a set of neighbourhood moves

N(s) by randomly choosing a cell with a new location (cell displacement) or a pair
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of cells (cell exchange). Instead of evaluating all solutions of N(s), the procedure

evaluates only the candidates of N(s, k) = N(s) − T (k), where T (k) is the set of

solutions in the tabu list. Each time a new move is generated, the solution will

be looked up in the tabu list; if a move is tabu (and does not meet the aspiration

criteria), this placement configuration is rejected.

A successful implementation of Tabu Search involves an appropriate definition of

tabu memory. A simple tabu list in which each tabu element records all modules of a

solution may work well for small circuits. However, for a large circuit, the operation

of such a tabu list may be prohibitive. Therefore, many applications of Tabu Search

in the literature store attributes of solutions. The current implementation uses

from-attributes of solutions in the tabu memory. To identify a practical and effective

transforming attribute, the following definitions of a tabu move are considered:

1. Each tabu element records the cell number, the row number and the cell

location of each affected cell of a tabu move. Using this attribute will hardly

forbid any moves since the location of a cell is represented by a floating point

number and the possibility of randomly generating two identical locations for

a cell is small.

2. Each entry in the tabu list records the cell number, the row number and the

index of each affected cell. An index means the position order of a cell in the

row. This method requires extra computational effort to keep updating the

index of each module, which could be expensive.

3. Each tabu element records the cell number and the row number of each af-

fected cell. This type of tabu memory is employed in the implementation
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since it is the most restrictive.

Tabu list management is concerned with the determination of size of the tabu

list and means to update it. The recency based tabu memory avoids cycles of length

less than or equal to the size of tabu list. If the size is too small, cycling may occur

frequently and if the size is too large, it may forbid too many moves and restrict

search exploration. A large tabu list size may also require more time to search.

In our implementation, empirically large circuits should have a larger size of tabu

list since they usually have a longer search trajectory and may have to prevent a

longer cycle. In the implementation, the default size of the tabu list is a function of

the number of modules in the circuit: |T | = MAX(5, α × log10(modules)). Value

of α ranges from 2 to 7. This formula produces acceptable results for the tested

benchmarks. The tabu size can also be set dynamically during the search as follows:

(i) Increase the size by 1 when a repetition of a solution occurs since the last change;

(ii) Decrease the size by 1 when a cycling is detected and its length is greater than

the moving average of cycling length1. This strategy is implemented according to

Glover’s observation: A small tabu size is preferable for exploring and a larger tabu

size is preferable for breaking free from the vicinity of a local optima [Glov93].

Tabu list is a first-in-first-out queue of length |T |, where elements form a circular

queue. After a new solution is inserted into the end of the list, the oldest tabu

element entry is dropped. Figure 3.15(a) and (b) illustrate the tabu list before and

after this change. The arrangement of tabu memory as a circular queue makes the

changing of tabu size very easy.

1Whenever a cycling is detected, the moving average of cycling length is updated by:
moving average = 0.1× this cycle length + 0.9× moving averagelast
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Figure 3.15: The Circular Queue Structure of Tabu List

3.2.4 Aspiration

Aspiration is a mechanism within Tabu Search that temporarily overrides the tabu

status of moves to give more flexibility to search the solution space.

Aspiration criteria defines when the algorithm should release a solution from its

tabu status. One possible criteria that can be used is: when a move leads to a new

solution which is better than the best found so far, the tabu status of this solution

is dropped. Each time a new solution is generated, it will be looked up in the tabu

list; if the move is tabu, it will be compared with the current aspiration level which

is the cost value of the best found solution so far. If the tabu move is better than

the aspiration level, its tabu status is dropped or else it is rejected. In cooperation

with short term memory, aspiration plays a crucial role in achieving good solutions.
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3.2.5 Stopping Criteria

In this implementation, users can specify one of the following two criteria to termi-

nate the search:

1. The search stops when the total number of iterations performed is greater

than a specified maximum number of iterations.

2. The search stops when the number of iterations performed since the last best

solution exceeds a specified maximum number of iterations.

Maximum Circuit struct
iterations Interchanges Improvement Time

1000 1000 38.62% 2.03
2000 2000 49.12% 3.28
3000 3000 54.20% 4.54
4000 4000 56.41% 5.85
5000 5000 58.85% 7.05
10000 10000 61.28% 13.52
15000 15000 62.77% 19.70
20000 20000 63.03% 25.98
30000 30000 63.75% 38.76

Table 3.11: Stopping Criteria: Maximum Iterations

Results in Table 3.11 and 3.12 indicate that the first criteria has more control

of desired computation effort while the second criteria has more control of expected

search quality.

3.2.6 Roll Back to the Best Solution

Since the algorithm accepts bad moves, the current solution does not necessarily

represent the best solution obtained so far and therefore the best-so-far solution is
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Maximum Circuit struct
moves Interchanges Improvement Time

10 2651 52.72% 4.14
20 3636 56.31% 5.34
40 4887 58.16% 6.97
60 6663 60.50% 3.17
80 7112 60.47% 9.74
100 8493 60.88% 11.54
200 16058 63.06% 21.46

Table 3.12: Stopping Criteria: Maximum Consecutive Non-improved Moves

legalized as a final output. In the implementation, a data structure Recover List

is used to record the moves since the last change of best-so-far. At the end of the

iterative improvement procedure, the best solution is reversely recovered from the

current solution according to the information in the Recover List.

3.2.7 Experimental Results

3.2.7.1 Overall Performance of Tabu Search

Table 3.13 summarizes the default parameters of the Tabu Search implementation.

The neighbourhood size is set to a similar value used by Local Search.

With using default parameters, a set of experiments are conducted with various

benchmarks (see Table 3.14). It can be concluded from the results that Tabu Search

can produce better solution quality than Local Search.
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Circuit Default Parameters
Neighbourhood size Tabu size Stopping criteria ∗

(50 log10 Ncells) (7 log10 Ncells) (10 log10 Ncells)

fract 104 14 20
prim1 143 20 28
struct 163 22 32
ind1 167 23 33
prim2 173 24 34
bio 190 26 38
ind2 204 28 40
ind3 208 29 41
avq.s 216 30 43
avq.l 219 30 43

∗ Stopping criteria: Maximum consecutive non-improved moves.

Table 3.13: Default Parameters Used by Tabu Search

Wire length
Circuit Initial Final Improvement Interchanges CPU Time

fract 86133 43368 49.65% 1841 0.66
prim1 2.57×106 1.46×106 43.27% 3425 2.98
struct 2.47×106 1.05×106 57.50% 4497 5.90
ind1 6.17×106 2.83×106 54.10% 9342 30.51

prim2 1.66×107 0.83×107 49.47% 18391 35.44
bio 1.31×107 0.58×107 55.32% 14095 158.54
ind2 9.32×107 4.59×107 50.73% 33220 372.97
ind3 2.82×108 1.50×108 46.92% 36843 239.08
avq.s 8.84×107 3.65×107 58.75% 48270 6191.17
avq.l 1.01×108 4.22×108 58.31% 50403 5660.50

Average Improvement 52.40%

Table 3.14: Performance of the Tabu Search Technique

3.3 A Simulated Annealing Implementation

Simulated Annealing (SA) is a powerful technique that has been successfully applied

to solve many large combinatorial problems. This section reports our implementa-
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tion of Simulated Annealing algorithm to the standard cell placement problem.

3.3.1 Algorithm Outline

In the current implementation, Simulated Annealing employs the same cost function

represented by Equation (3.1), except that the weights are dynamically altered

according to the change in temperature. Again, a legalization procedure at the end

of the algorithm is required.

The pseudo-cede of the implemented algorithm is given in Figure 3.16. The

variable “T” is an important control parameter used by the algorithm. Initially,

annealing starts with a high initial temperature “T0”. As the algorithm proceeds,

the temperature decreases according to the cooling schedule. At each temperature,

a number of neighbourhood solutions are generated and evaluated. Moves are

always accepted if they reduce the cost of the objective function. However, when

a move tends to deteriorate the cost then it is accepted with a probability. When

the control parameter “T” is high, deteriorating moves are accepted with high

probability, but as temperature cools down the probability decreases and these

moves are rejected. The algorithm is terminated when the temperature reaches

the final temperature “T0”. After all iterations are completed, the best solution is

reversely recovered from the last move according to the data structure RecoverList.

3.3.2 Annealing Schedule

Practical Simulated Annealing implementations tend to use heuristic based sched-

ules rather than the original formulation [Aart90] which leads to global convergence.
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Simulated Annealing Algorithm
Input:
The net list of the circuit

Initialization:
Choose an initial placement solution s := s0

Find T0 according to Initial Acceptance Probability
T := T0

Initialize RecoverList

Mainloop:
while (the stopping criteria is not met)

while (not yet in equilibrium)
s′ := Generate an Interchange()
improvement := Evaluate the Interchange()
if improvement ≥ 0 then

Perform the interchange s := s′

else

if (e
improvement

T ≥ random(0, 1)) then
Perform the interchange s := s′

else
continue

Accumulated Imprv := Accumulated Imprv + improvment
if (Accumulated Imprv ≥ 0) then

Flush RecoverList
Accumulated Imprv := 0

else
Add the move to RecoverList

end while
Update weights
Update temperature T
Update NonImpv Counter

end while
if (Accumulated Imprv < 0) then

Roll back to s∗ from s with RecoverList
Legalize Circuit()

Output:
CurrentSolution

Figure 3.16: Simulated Annealing Algorithm for Standard Cell Placement



CHAPTER 3. LOCAL SEARCH AND META HEURISTICS 92

The annealing schedule is determined by four factors:

1. The initial temperature T0. Theoretically, the initial value of T0 is set so

that virtually all transitions are accepted. In the implementation, users can

empirically specify T0 to be set to very large value of T0 such that e
−∆cost

T0 ≈ 1.

However, such an initial temperature may be difficult to determine. A low

T0 may cause the initial acceptance probability e
−∆C

T to be much less than 1

and might affect the final placement solution. With an extremely high T0, the

search may accept too many random moves at the beginning, wasting CPU

time. Alternatively, users can determine T0 by specifying the parameter of

initial acceptance probability Pc init. The algorithm performs a number of

random walks from s0 at the initialization stage and calculates the average

∆C for these moves. Then the initial high temperature can be determined

with the formula e
−∆Cavg

T0 ≈ Pc init.

2. The size of inner-loop is the equilibrium detection condition. At each

temperature, enough moves should be attempted. In the implementation,

the inner-loop size is set according to the size of the circuit. The default

value used in this implementation is 50 log10 Ncells.

3. The temperature decrement rate (α) is usually fixed and set to a value

close to 1. Typical values lie between 0.8 to 0.99 in any implementation.

4. The termination conditions. Annealing stops either when the tempera-

ture reaches a very low Tfinal, or the cost remains unchanged for the last n

consecutive temperatures.
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3.3.3 Dynamically Changing Weights

The cost Equation (3.1) can be re-written as:

C = (WH × X + WV × Y ) + (W2 × OL) + (W3 × RL) + (W4 × RM) (3.8)

where X and Y denote the total wire length of all nets in the x and y direction; OL

represents the total overlap of all cells; RL denotes the sum of undershoot/overshoot

length in all rows; and RM is the total overcrowded penalty in all rows. Since the

legalization function at the final stage may increase the X but the Y will not be

affected, usually we set the value of WH to 1 and set a slightly larger value for WV

to give higher priority to the wire length in the vertical direction. A fixed value of

W2 specifies the weight of modules overlap penalty. Weights W3 and W4 decide how

much penalty is added to the layouts with the illegal row length and overcrowded

row, respectively.

The weights W2, W3 and W4 are usually small at the beginning, giving more flex-

ibility to the search. As the temperature cools down the weights increase slightly to

apply more penalty to illegal moves in an attempt to produce a legal final solution.

3.3.4 The Spanning Windows

Usually, the cells and the destinations are randomly selected. However, a spanning

window is also implemented and can be used to restrict the moving scope of the cells.

This attempts to imitate the annealing process of solids: when the temperature is

high in the liquid phase, particles of the solid have more energy and arrange them-

selves in a large scope; as temperature decreases to the freezing point, the energy of
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the system is minimal and the particles arrange themselves in the ground state of

the solid. Large-distance moves of a cell usually yield large values of |∆C|, whether

better or worse. Therefore, these moves should be rejected at low temperatures.

This is achieved by applying a spanning window to the Generate an Interchange

function to limit a cell’s moving distance.

3.3.5 Experimental Results

3.3.5.1 Effect of the Parameters on Solution Quality and CPU Time

The temperature decrement rate (α) determines the next temperature to be used by

the algorithm. Table 3.15 and 3.16 display experiments conducted with α ranging

from 0.5 to 0.99. The stopping criteria was based on Tfinal = 0.1. Results indicate

struct
α Interchange Final wire length Improvement Time

0.50 150 2.41 × 106 2.49% 0.82
0.70 288 2.36 × 106 4.62% 0.83
0.90 812 2.15 × 106 12.97% 0.87
0.95 1276 1.98 × 106 19.91% 0.90
0.96 1686 1.89 × 106 23.26% 0.97
0.97 2120 1.85 × 106 25.13% 1.02
0.98 2391 1.70 × 106 31.11% 1.12
0.99 4408 1.47 × 106 40.27% 1.40
Initial wire length: 2.47 × 106

∗ Parameters:

Probability of initial move: 0.95

Final temperature: 0.1

Table 3.15: Effect of the Temperature Decrement Rate α: struct

that a small temperature decrement rate (e.g. less than 0.9) yielded poor placement
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ind2
α Interchange Final wire length Improvement Time

0.50 391 8.87 × 107 1.5% 38.0
0.70 910 8.73 × 107 3.1% 41.9
0.90 2209 8.38 × 107 6.9% 42.5
0.95 4246 7.85 × 107 12.8% 43.6
0.96 5125 7.67 × 107 14.8% 44.7
0.97 6408 7.33 × 107 18.5% 45.7
0.98 7207 7.29 × 107 19.0% 46.7
0.99 14088 6.31 × 107 29.9% 56.5
Initial wire length: 9.32 × 107

∗ Parameters:

Probability of initial move: 0.95

Final temperature: 0.1

Table 3.16: Effect of the Temperature Decrement Rate α: ind2

solutions. This is attributed to the rapid temperature cooling and therefore a small

number of iterations being executed. The values of α ranging from 0.98 to 0.99 are

empirically appropriate for the implementation.

The initial temperature T0 of the algorithm should be large enough to allow

virtually all new configurations to be accepted. T0 can be determined by a user.

Alternately, a parameter of initial acceptance probability Pc init can be specified

to determine T0. Table 3.17 and 3.18 displays the results of a set of experiments

where Pc init ranged from 0.55 to 0.99. For the circuit struct, Pc init = 0.99 yielded

the best solution among the five Pc init values however its CPU time is the longest.

On the other hand, when Pc init = 0.90, the algorithm produced a result close

to the best one but in a much smaller CPU time. The experiment with circuit

ind2 displays similar results. In the current implementation, the initial acceptance

probability Pc init is 0.90 by default.
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struct
Pc init T0 Interchange Wire length Improvement Time

0.50 6932363 1651 1.67 × 106 21.3% 1.1
0.70 8663310 1941 1.62 × 106 25.0% 1.1
0.90 8329563 2083 1.59 × 106 26.1% 1.2
0.95 9187583 1973 1.61 × 106 25.6% 1.2
0.99 3292007 4278 1.55 × 106 27.9% 2.8

Initial wire length: 2.47 × 106

∗ Parameters:

Alpha: 0.98

Final temperature: 0.1

Table 3.17: Effect of Initial Acceptance Probability Pc init: struct

ind2
Pc init T0 Interchange Wire length Improvement Time

0.50 78851316 3548 7.97 × 107 14.5% 43.2
0.70 79181012 3774 7.92 × 107 15.1% 43.4
0.90 83955901 5214 7.71 × 107 17.3% 44.3
0.95 81956050 4610 7.76 × 107 16.8% 44.2
0.99 86070492 7454 7.64 × 107 18.2% 42.1

Initial wire length: 9.32 × 107

∗ Parameters:

Alpha: 0.98

Final temperature: 0.1

Table 3.18: Effect of Initial Acceptance Probability Pc init: ind2

Originally with homogeneous Simulated Annealing algorithms, an infinite num-

ber of transitions is generated for each temperature. In practice, this value should

be set as a function of the number of modules in the circuit. Table 3.19 shows

results obtained using inner-loop sizes ranging from 60 to 2000. Results indicate

that a small inner-loop size yields poor improvement since the search was prevented

to reach its equilibrium at each temperature (i.e meta-stable structures). With a
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Inner-loop size Interchange Final wire length Improvement Time

60 4047 1.56 × 106 36.73% 1.29
80 3422 1.41 × 106 43.00% 1.51
100 3866 1.33 × 106 46.22% 1.71
120 4356 1.29 × 106 47.93% 1.84
150 4611 1.21 × 106 50.82% 2.15
200 5317 1.15 × 106 53.28% 2.57
300 6610 0.98 × 106 59.98% 4.50
400 7826 0.93 × 106 62.32% 5.98
500 8659 0.89 × 106 63.85% 7.89
600 9409 0.85 × 106 65.55% 10.65
800 11128 0.79 × 106 67.83% 15.97
1000 13459 0.76 × 106 68.94% 26.61
2000 35858 0.66 × 106 73.14% 165.39

Initial wire length: 2.47 × 106

∗ Parameters:

Alpha: 0.99

Probability of initial move: 0.90

Stopping criteria: consecutive non-improved temperatures is 3.

Table 3.19: Effect of the Inner-loop Size

lager size, the SA produced better results but the computation time grew expo-

nentially. For circuit struct, a size of 1000 produced results 1% better than those

of the size of 800, but it required a 67% longer computation time. In the current

SA implementation the inner-loop size is set to 50 log10 Ncells (further results can

be found in Table 3.22 in Section 3.3.5.3).

3.3.5.2 Stopping Criteria

Two stopping criteria can be used to terminate the search: (i) the final temperature

Tfinal set by the user, and (ii) the maximum number of consecutive non-improved

temperatures. Table 3.20 and 3.21 display the results of the experiments conducted
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using different stopping criteria.

Final
Temperature Interchange Improvement CPU Time

0.50 3489 42.60% 1.44
0.25 3450 43.79% 1.48
0.10 3997 45.17% 1.67
0.050 4221 46.15% 1.74
0.025 4213 47.03% 1.78
0.010 4595 49.68% 1.99
0.005 5092 51.12% 2.16
0.001 4850 51.31% 2.22
0.0001 5217 53.78% 2.56

Table 3.20: Stopping Criteria: Final Temperature

Non-improved
Temperatures Interchange Improvement CPU Time

1 4006 46.99% 1.62
2 4548 51.81% 2.02
3 5403 55.31% 2.48
4 6088 58.10% 3.13
5 6396 60.01% 3.79
6 6661 60.61% 4.04
7 6959 61.37% 4.55
8 7550 64.21% 5.39
9 7604 65.97% 6.03
10 8018 66.53% 6.81

Table 3.21: Stopping Criteria: Non-improved Temperatures

3.3.5.3 Overall Performance of Simulated Annealing

Table 3.22 displays the placement results based on the Simulated Annealing al-

gorithm. Various benchmarks were tested and a good quality of solutions were
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Wire length
Circuit Initial Final Improvement Interchange Time

fract 86133 36159 58.02% 5207 1.23
prim1 2.57 × 106 1.24 × 106 52.02% 15388 11.04
struct 2.47 × 106 0.77 × 106 68.71% 10436 13.07
ind1 6.17 × 106 2.33 × 106 62.28% 22170 71.64
prim2 1.66 × 107 0.66 × 107 60.01% 49500 111.06
bio 1.31 × 107 0.46 × 107 64.34% 29315 301.31
ind2 9.32 × 107 3.96 × 107 57.56% 70277 635.50
ind3 2.82 × 108 1.22 × 108 56.72% 77883 393.90
avq.s 8.84 × 107 3.09 × 107 65.02% 86056 6204.68
avq.l 1.01 × 108 0.35 × 108 64.46% 91572 5708.38

Alpha: 0.99

Pcinit: 0.90

Inner-loop size: 50 log10 Ncells

Stopping criteria: consecutive non-improved temperatures is 6.

Table 3.22: Overall Performance of Simulated Annealing

obtained as expected. The results were based on the following annealing schedule:

T0 was determined by Pcinit where Pcinit is set to 0.90, α was set to 0.99, and the

stopping criteria was six non-improved consecutive temperatures.

3.4 A Genetic Algorithm Implementation

Figure 3.17 displays the flowchart of a steady-state Genetic Algorithm implemen-

tation carried out by [Yang03] previously. The algorithm first chooses an initial

population, then initiates evolution by applying stochastic operators such as selec-

tion, crossover and mutation to the individuals iteratively. In the implementation,

only two individuals are randomly selected to perform mating in each generation

and create two children in an attempt to replace two worse individuals. Unlike
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GA for Placement
1. set popsize, max gen;

crossover rate, mutation rate, selection method;
2. Choose initial population randomly
3. While Not Done

For (i=1 to popsize/2)
Select parents(mate1,mate2);
if (random(0,1) ≤ crossover rate)

child = Do Crossover(mate1,mate2);
if (random(0,1) ≤ mutation rate)

Mutation(offspring) and evaluate offspring;
End For

Replacement();
gen = gen + 1 ;

End While
4. Return best placement in current population.

Figure 3.17: A Genetic Placement Algorithm [Yang03]

generational GAs where the entire population is replaced, steady-state GAs are

population overlapped.

Scoring Function

Each individual (string) in the population encodes a feasible solution to the standard-

cell placement problem. This string is represented by a set of alleles, as shown in

Figure 3.18. The number of alleles is equal to the number of cells. Each allele

indicates the cell index, the X- coordinates, and the row number of the cell. Figure

3.18(a) illustrates the string encoding of the standard-cell placement given in Fig-

ure 3.18(b). The fitness value of an individual is evaluated by a fitness function F

that estimates the total half-perimeter wire length:

F =
1

∑n
i=1 HPWLi

(3.9)
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allele

       0          20        50        30        0         50        40        30

row_number         0           3          0          2          1          2          3          1

x−coordinate

 cell_index            2           3          1          8          7          6          5          4

1          2          3          4          5          6          7          8

(a) String Encoding

cell

4

3 5

1

8 6

7

2 0

 2

 3

 1

row number

(b) Placement

Figure 3.18: String Encoding

where HPWLi is the estimated wire-length of net i, and n is the number of nets.

Cell overlaps are removed and row lengths are adjusted before evaluating the chro-

mosome.

Selection Function

The selection function employs a Binary Tournament method. To select an individ-

ual as a candidate parent, two individuals are chosen randomly and the one with

higher fitness value is picked for mating.

Crossover Operator

Once two chromosomes are selected, a crossover operator is used to generate two

offspring. [Yang03] employed a crossover operator called Order crossover in the
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implementation. Figure 3.19(a) shows a one-point order crossover operator where

each pair of parents generates two children with a probability equal to the crossover

rate. The operator first copies the array segment to the left point from one parent to

one offspring. Then it fills the remaining part of the offspring by going through the

other parent, from the beginning to the end and taking those elements that were left

out, in order. The default crossover operator of the implementation is a two-points

order crossover, which is similar to one-point order crossover, as Figure 3.19(b)

illustrates.

 2  1  3  8  7  5  9  6  4  10

 8 1  2  3  4  9  10 5  6 7

 2  1  3  8  7  4  9  5  6  10

Crossover Point

 2  1  3  8  7  5  9  6  4  10

 8 1  2  3  4  9  10 5  6 7

 1  9  5 6  4  3  7 10  8 2

Crossover Point1 Crossover Point2

(a)  One−Point Order Crossover (b) Two−Point Order Crossover

Figure 3.19: One-Point and two-Point Order Crossover

Mutation Operator

Following crossover, each offspring is mutated with a probability equal to the mu-

tation rate. In the implementation, the mutation operator alters an individual

by randomly selecting a pair of cells following an interchanging of their cell num-

bers, x-coordinates and row numbers. Figure 3.20 illustrates the mutation process.

The random nature of mutation operation allows for a broader exploration of the
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row_number        0           3          2          2          1          0          3          1

x−coordinate                             0           20        50        30        0        50          40        30

cell_index            2           3

row_number        0           3          0          2          1          2          3          1

 8          7 5          41 6

x−coordinate                             0           20        50        30        0        50          40        30

cell_index            2           3  8          7 5          46 1

Figure 3.20: Mutation Operator

solution space.

Replacement Function

As the new offspring are mutated, replacement is then performed to form a next

generation by using an elitism method. Two children are compared with the two

worst parents and the two fittest individuals are kept to the next generation. The

approach guarantees that the best individual in the current generation will appear

in subsequent generations [Mitc96, Grew95], protecting the search from regression.

3.4.1 Experimental Results

Table 3.23 summarizes the experimental results of the Genetic Algorithm, where

the generation size is set to 100, the population size is set to 24, and the initial

solutions are injected with 30% of good solutions based on the Cluster-Seed method

in [Yang03]. Results obtained indicate that the Genetic Algorithm produce good
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Wire length Improvement CPU Time

Fract 62338 27.63% 1.7
Prim1 1.81 × 106 29.75% 15.4
Struct 9.3 × 105 62.14% 55
Ind1 4.55 × 106 26.37% 86.3

Prim2 1.05 × 107 36.48% 130.8
Bio 7.2 × 107 45.05% 537.4
Ind2 6.41 × 107 31.23% 2223.5
Ind3 1.59 × 108 43.71% 3530.3
avq.s 3.89 × 107 56.01% 7535.5
avq.l 5.1 × 107 49.57% 9661.3

Average 40.79%
∗ Parameters:

Generations: 100

Population size: 24

Others: 30% Injection Initial Solution

Table 3.23: Performance of Genetic Algorithm

quality solutions but is a notorious consumer of CPU time.

3.5 LS, TS, SA and GA: A Comparison

The performance of the Local Search algorithm was compared to (i) Tabu Search

(ii) Simulated Annealing algorithm and (iii) Genetic Algorithm based on 20 runs.

The tests were carried out on all MCNC benchmark circuits, using only the default

run-time parameters. Experimental results are displayed in Table 3.24 and 3.25.

Table 3.24 compares the algorithms in terms of CPU time, and Figure 3.21

illustrates these performance results. Since TS and SA are based on the same local

search algorithm, their searching activities (the number of moves attempted) are

also plotted in Figure 3.22. Results show that the Local Search algorithm accepts
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Circuit LS TS SA GA

fract 0.09 0.66 1.23 1.7
prim1 0.37 2.98 11.04 15
struct 1.45 5.90 13.07 55
ind1 4.17 30.51 71.64 86

prim2 2.79 35.44 111.06 130
bio 18.52 158.54 301.31 537
ind2 88.84 372.97 635.50 2223
ind3 42.46 239.08 393.90 3530
avq.s 797.78 6191.17 6204.56 7535
avq.l 724.12 5660.50 5708.38 9661

Table 3.24: Comparison of LS, TS, SA and GA (CPU Time)

fract prim1 struct ind1 prim2
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Figure 3.21: Comparison of LS, TS, SA and GA (CPU Time)

moves much less than those of the Tabu Search and Simulated Annealing, since

the LS gets trapped in local minima while the meta-heuristics continue to search

landscape. That is, advanced meta-heuristics required longer computation time



CHAPTER 3. LOCAL SEARCH AND META HEURISTICS 106

fract prim1 struct ind1 prim2 bio ind2 ind3 avq.s avq.l
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Benchmark

N
um

be
r 

of
In

te
rc

ha
ng

es

Local Search
Tabu Search
Simulated Annealing

Figure 3.22: Comparison of LS, TS and SA (Move Attempted)

than a simple heuristic. The Tabu Search generally performs productive moves and

therefore spends less time than the Simulated Annealing as seen in Figures 3.21

and 3.22. On the other hand, GA consumed the largest amount of CPU time to

solve the problem in the experiments.

Table 3.25 summarizes the percentage of improvement obtained by these heuris-

tic algorithms. It is clear from Table 3.25 that the improvement obtained by LS

was inferior and the meta-heuristics yielded superior solution quality.

The Local Search algorithm is a basic heuristic which has neither intelligence nor

knowledge to guide the search. It blindly searches for the best solution among the

neighbours of a current solution and performs the moves until no further improve-

ment can be obtained. The search always gets trapped in local minima, therefore

results expected are poor. With a Local Search algorithm, the final solutions are

dependent on the initial placements. In addition, a large neighbourhood size may
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Circuit LS TS SA GA

fract 35.05% 49.65% 58.02% 27.63%
prim1 22.31% 43.27% 52.02% 29.75%
struct 30.18% 57.50% 68.71% 62.14%
ind1 33.90% 54.10% 62.28% 26.37%
prim2 23.60% 49.47% 60.01% 36.48%
bio 26.65% 55.32% 64.34% 45.05%
ind2 25.40% 50.73% 57.56% 31.23%
ind3 23.04% 46.92% 56.72% 43.71%
avq.s 28.96% 58.75% 65.02% 56.01%
avq.l 27.71% 58.31% 64.46% 49.57%

Average 27.68% 52.40% 60.91% 40.79%

Table 3.25: Comparison of LS, TS, SA and GA (%Improvement)

help to yield a better final result, but an exhaustive neighbourhood examination

usually is not affordable. Although there are some possible tricks to help the al-

gorithm work better than a standard Local Search routine (e.g. multiple random

starting points), it is difficult for a Local Search heuristic to avoid getting trapped

in local optima.

The Tabu Search algorithm on the other hand is meta-heuristic approach. It

makes use of searching information from past history, complements prohibition-

based techniques to a basic neighbourhood search heuristic, and guides the search

to move beyond local optimality. A Local Search quits at the first local minima

encountered while Tabu Search accepts even deteriorating moves and thus contin-

ues to search in various regions. Results obtained show that, with intelligent and

systematic use of the past search history, Tabu Search is capable of producing good

results.

Simulated Annealing is a type of probabilistic hill-climbing meta-heuristic ap-
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Figure 3.23: Comparison of LS, TS, SA and GA (%Improvement)

proach that guides the search by accepting bad moves with a certain probability.

Experimental results indicate that SA is a powerful optimization technique that can

produce very good quality solutions. However, one disadvantage of this approach

is that it generally demands longer computation time.

Local Search, Tabu Search and Simulated Annealing algorithms are single-point

heuristics, which means that they operate on only a single solution at a time. This

in place hinders the capability of these algorithms to explore the solution space

effectively. Genetic Algorithm maintains a large population of solutions optimized

simultaneously during each iteration. This is extremely helpful in finding good so-
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lutions when the landscape is irregular. It is evident that GA can produce good

quality solutions comparable to other advanced meta-heuristics. However, GA gen-

erally requires relatively large amount of CPU time to solve problems. In the

current implementation, there are two issues causing the long CPU time of GA: (i)

GA operates a number of solutions in each generation while LS, TS and SA work

on one solution at a time; and (ii) After mating of two parents, a repairing process

is required, which is timing consuming.

3.6 Summary

In standard cell placement, moving a cell to a different location usually requires

shifting modules, which is time consuming. The alternative strategy of allowing an

illegal layout during the search was implemented for VLSI placement problem. A

comparison between the two placement strategies shows that the second strategy

displays great advantages in terms of computation time and solution quality. A

legalization procedure is required at the end of this method, which unfortunately

decreases part of the improvement obtained. Based on this approach, a Local Search

heuristic and several meta-heuristics such as Tabu Search and Simulated Annealing

were implemented in the iterative optimization stage for placement. Experimental

results display that the meta-heuristic algorithms effectively reduced the total wire

length and yielded good quality of placement solutions.

The fast-paced nature of VLSI design demands efficient CAD tools. Parallelism

is an effective approach to achieve faster performance. Genetic Algorithms are

parallel in nature and can be efficiently parallelized by a distributed processing
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system. In the next chapter, the parallel Island-based GA implementation on a

cluster of networked workstations will be presented2.

2The Local Search, Tabu Search and Simulated Annealing are inherently serial algorithms.
Although many studies implemented these algorithms in parallel on loosely-coupled systems, their
parallel efficiency distributed processing system is not promising.



Chapter 4

A Parallel GA Implementation

VLSI standard cell placement is an NP-hard problem [Chan99]. Various heuristic

optimization techniques have been proposed and applied to this problem in the past.

Genetic Algorithms have proven to be able to produce high-quality placement solu-

tions for many combinatorial optimization problems including standard-cell circuits

and competitive with other sophisticated algorithms such as Simulated Annealing,

Tabu Search and force-directed algorithms [Klin90]. However, since the runtime of

Genetic Algorithms is relatively longer than other algorithms, they are becoming

less competitive in the real world [Kiln89, Shah90b]. Therefore, researchers are

seeking parallel GA implementation for better performance.

Island-based GAs are coarse-grain parallel models that can be easily mapped to

existing distributed parallel systems similar to the cluster of networked Sun work-

stations in Intelligent System Lab or the high performance SHARCNET computing

facility [SHAR04]. Since a fairly good speedup can be easily achieved [CP00], the

Island-based GA is becoming the most popular parallel method. In this method, the

111
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population is divided into subpopulations (also known as demes) and distributed

among multiprocessors. These semi-isolated subpopulations are executed as nor-

mal Genetic Algorithms, except that they would interchange a few strings among

them occasionally. By introducing migration, parallel island models have often been

reported to display better search quality than that of a serial GA [Whit97, CP00].

Migration is very important to the search quality and parallel efficiency. Usu-

ally considered to be a good migration scheme, Delay-migration schemes are tech-

niques where migration occurs when the demes approach convergence. However,

in standard-cell placement, this approach is not suitable since large circuits require

an extremely long time to converge. We propose a practical migration scheme

for placement, and describe a successful synchronous implementation. Besides the

migration scheme, our contribution also includes an implementation of an asyn-

chronous model for placement that can achieve super-linear speedup.

The methods of migration schemes determined by convergence are very popular.

[Mune93] proposed algorithms where migration starts only near subpopulations

convergence. In [Brau90], migration occurs after the subpopulations completely

converge. [Brau90] claims that if migration is introduced too early before search

convergence, good original schemata in the demes may be destroyed by incoming

migrants and thus the demes may lose their diversity.

However, large circuits require an extremely long time to converge. Our exper-

imental work shows that for medium circuits, convergence takes several hours even

if we parallelize the GA using 7 processors. Since using convergence to trigger mi-

gration is not practical for placement, we employ a better migration scheme in the

implementation of the synchronous island-based GA. In addition, an asynchronous



CHAPTER 4. A PARALLEL GA IMPLEMENTATION 113

model that can achieve super-linear speedup is implemented and discussed.

4.1 Synchronous Island-based GA

In synchronous island-based GA, the total population is divided equally into sev-

eral subpopulations, and each processor is assigned a single subpopulation to form

an island. As depicted in Figure 4.1, the algorithm in each island is simply a reg-

ular serial steady-state GA that includes a migration process (i.e each algorithm

includes an extra phase of periodically exchanging individuals). More specifically,

for every certain number of generations (known as migration interval), all islands

exchange a candidate of good individuals (migrants), based on the communication

topology. For each island, if an incoming migrant is better than the worst existing

individual, this migrant is injected into the subpopulation. Migration is performed

simultaneously by all islands within a certain interval.

The mechanism to achieve the functionality of island models is complex, since

many parameters affect the quality of search as well as efficiency of parallelism.

Besides the basic GA parameters, other parameters are involved such as deme

size, migrant selection method, migration interval, migration rate, communication

topology, and replacement rules.

4.1.1 The Deme Size and the Number of Islands

For a specific population size, the deme (subpopulation) size is determined by the

number of processors used. The more processors utilized within the distributed

system, the smaller the size of subpopulations, and the shorter the computation
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Figure 4.1: A Synchronous Model with 3 Processors

time. However, this is not always the case, since the execution of a parallel GA

includes not only computation time but also synchronization and communication.

As more processors are used, the average available bandwidth for each processor

decreases, but more communication is required for each processor. The latter grows

especially fast in a low bandwidth parallel system. On the other hand, a very small

subpopulation might prematurely converge, leading to poor solutions. Therefore,

when a parallel GA system is scaled up to pursue better performance, the parallel
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efficiency usually diminishes.

4.1.2 Migration

Migration is the process where subpopulations occasionally exchange some indi-

viduals. It is an important mechanism to improve the solution quality (diversify

search) and affects the efficiency of the parallelism. If the migration is low, the

subalgorithms on different small subpopulations work independently and the final

result may be worse than a serial GA. On the other hand if the migration is high,

the parallel GA behaves very similarly to a serial GA [Whit97, CP00]. There are

several factors that affect the performance of migration, including:

• Migrants Selection Methods: Among the chromosomes in an island, high-

quality individuals are chosen to be sent out as migrants. Several techniques

can be used to select individuals such as picking the best. Other techniques

involve selecting the best individuals probabilistically with methods such as

Roulette-wheel selection, Stochastic universal selection, or Binary tourna-

ment selection. The higher the pressure, the faster the algorithm reaches

equilibrium while sacrificing more genetic diversity of migrants [CP99a]. In

the current implementation, the outgoing migrants are chosen from a pool of

the best individuals, with the restriction that each individual is sent out once

from the same processor. In addition, the algorithm restricts an incoming

immigrant from being sent out directly but allows such a mechanism for chil-

dren. In the “To-All” communication scheme, only the best unsent individual

of a deme can be sent out in each phase of migration.
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• Migration Interval: Migration intervals specify the migration plan (how

often should migration occur). For standard-cell placement, we use a fixed

epoch in our synchronous model, and initiate migration early in the evolu-

tion process. This can be attributed to the following: (i) it is simple; (ii)

for medium/large circuits, convergence could take too long. Also if a fixed

migration interval and migration scheme are used, we could make distributed

demes behave like a single panmictic population.

• Communication Topologies: The communication topology determines the

pattern of communication and connectivity among subpopulations. The ring

topology is extremely popular, since it has the longest diameter and demes

are more isolated compared to other topologies. With a ring topology, the

parallel search may find better solutions than that of a serial GA after some

generations [CP99b]. However, since the demes are quite isolated, the small

deme size usually produces solutions worse than those of a serial GA with

a single population in early generations. To solve this problem, a complete

graph topology called “To-All” topology is used. With such a topology, all

demes are fully connected. During migration, each island contributes the best

individual to the global migrant pool. Since the connection between demes is

very strong in this topology, the frequency of migration must be controlled. In

addition, the number of migrants must be carefully set, so that the strength of

migration is not excessive. As shown in Figure 4.2, only a portion of the best

individuals in the pool is merged back into the subpopulations. With this

migration scheme, a global super-fit individual can move across the overall
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Figure 4.2: The Migration Scheme of the “To-All” Topology

population in every migration interval, while some degree of diversity between

the subpopulations is maintained. Accordingly, the synchronous Island-based

GA may have the chance to outperform its serial version in a very short time.

Also, due to the high connectivity among islands, this synchronous model

would search in a trajectory similar to that followed by a serial GA.
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• Migration Rate: In the implementation, if the ring topology is used, the

migration rate is defined as the percentage of the individuals in a subpopula-

tion that need to be sent out as migrants. On the other hand, if the “To-All”

topology is used, the migration rate specifies the percentage of migrants in

the migration pool that will spread to all subpopulations. A very high migra-

tion rate often leads to two problems: (i) high communication costs; and (ii)

super-fit migrants may dominate and lead to premature convergence. Search

quality usually benefits from an appropriate migration rate.

• Migrant Replacement Rule: When an island receives new migrants, the

worst individuals are replaced with these incoming migrants. For the “To-

All” migration scheme, although each island sends out only one migrant, it

may receive more than one incoming individual to replace the worst members

in its subpopulation.

The main disadvantage of synchronous models is that the migration of all islands

occurs at the same time, and the faster processors have to wait for the slower ones.

4.2 Asynchronous Island-based GA

To further enhance the performance of the Genetic Algorithm, an asynchronous

island-based GA is proposed and implemented for standard-cell placement. In the

asynchronous model, islands are free to evolve and migrate their individuals without

further dealy. As illustrated in Figure 4.3, processors involved are configured as

either a master or a slave, where the latter is responsible for holding a subpopulation

and the master controls the processing in a centralized manner.
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Figure 4.3: The Migration Scheme of the Asynchronous Model with Ring Topology

4.2.1 The Master

The master has the following responsibilities in the asynchronous model:

1. Migration controller: Controls the overall migration activities and dy-

namic load balancing, including routing migrants, communication topology,
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migration plan, and dynamic load balancing. Figure 4.3 illustrates how slaves

report their current states to the master periodically and the means by which

the master sends control signals to different processors.

2. High speed communication router: In the current implementation, there

is no direct communication between slaves, and migration is performed through

the master. Since the master continuously listens to the communication chan-

nels, it is able to respond to the requests from slaves almost immediately. As

soon as the master receives migrants from a slave, it buffers these messages,

and controls the migration scheme. Incorporating a master in the system elim-

inates virtually all delay that might occur between processors. The master

can easily choose a communication topology. Since the “To-All” topology is

synchronous in nature, the asynchronous model uses an alternative topology

in the form of a “Ring”.

4.2.2 Dynamic Load Balancing

Since subpopulations are free to evolve, some processors might finish their task

much earlier than others. This leads to two problems: (i) If a migration occurs

between an evolving island and an idle island, the migration becomes meaningless;

(ii) Majority of processors have to wait for the slowest processor to finish its pro-

cessing. Therefore, a load balancing mechanism is needed to remove some load

from slower processors and transfer it to faster processors.

In Matthem’s algorithm [Mcma98], when a processor completes its work early,

it becomes idle and the algorithm redistributes work assigned to other processors
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to this idle processor. However, a possible problem anticipated in this algorithm

is that migration now is between two portions of the same subpopulation instead

of two different demes. Therefore, a different strategy for dynamic load balanc-

ing is used. Instead of redistributing the work of slower processors and replacing

the whole subpopulation of the faster processor, the algorithm periodically detects

the evolution speed of various demes, and dynamically changes the sizes of the

subpopulations to match the speed.

4.2.3 Distributed Random Migration Plans

In the real world, islands are independent and semi-isolated. Since subpopulations

are free to evolve in the asynchronous model, extra independence is granted to these

subpopulations by (i) applying distributed random migration plans created in each

island; and (ii) using a random number of migrants (with some control) for each

migration. With such distributed random plans, the subpopulations are allowed to

evolve asynchronously. The strategy attempts to simulate the fact that the number

of migrants in each migration is not constant in the real world.

4.3 Experimental Results

The serial steady-state GA is capable of producing good placement solutions.

Therefore, based on the sequential implementation, the island-based Genetic Algo-

rithm is parallelized using the MPI (Message Passing Interface) v.1.2.5. Currently,

the parallel platform utilized is the cluster of networked Sun workstations, which

is a distributed memory parallel architecture.
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Several parameters affect the performance of an island-based parallel GA, thus

a large number of runs were carried out. The benchmark suit used in this chapter

is the same as the one introduced in Chapter 3. In the experiment, two to seven

islands were used for distributed processing. Each test was conducted 20 times and

the average values were recorded. In order to compare the performance and search

quality of the island-based GAs with serial GA, the same basic GA parameters

were maintained whenever possible. Experiments were conducted with various

benchmarks. However, when similar results are obtained from the same setup,

plots of a typical circuit (i.e struct) is presented.

4.3.1 Measuring Search Quality and Parallel Efficiency

Similar to the experiments conducted in Chapter 3, improvement and execution

time are used as criteria to measure the search quality and algorithm efficiency.

However, with a parallel algorithm, the overall execution time is not only the CPU

time for the task, but also includes the overhead due to communication across

the parallel system (i.e synchronization among islands). Speedups and parallel

efficiency can be easily obtained by measuring the execution time of the parallel

algorithm over its serial version. However, it should be noticed that the parallel

efficiency measured accordingly is not sufficient to determine the suitability of a

parallel algorithm since communication overhead is not completely determined by

the algorithm, while the overhead significantly affects parallel efficiency. Thus, for

the same parallel algorithm, the efficiency varies on different parallel architectures,

different problem sizes, and even different runs.
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4.3.2 Performance: Speedup vs. Processors

The amount of speedup achieved from the distributed computing system is con-

sidered the most important measure. The performance of the synchronous model

with the “To-All” and “Ring” migration schemes for circuit struct are illustrated

in Figure 4.4. In this experimental setup, the distributed system is configured
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Figure 4.4: Speedup vs. Processors: Synchronous Models

with several processors ranging from two to seven. The parallel algorithms use the

same empirical GA parameters of the sequential implementation. Results indicate

that both migration schemes obtained near ideal linear speedup, especially when

the system had less than six processors. The speedups of the “To-All” topology

were slightly better than the Ring’s. As expected, when the number of processors

involved increases, the communication overhead cost increases, and a decrease in

parallel efficiency is observed.
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The asynchronous model obtained better speedup than those obtained by the

synchronous models (see Figure 4.5). With asynchronous migration and dynamic
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Figure 4.5: Speedup vs. Processors: Asynchronous Model

load balancing, the asynchronous model achieved a super linear speedup (i.e 7

islands obtained a speedup of 7.6). [Alba99] explains why super linear speedup is

possible for asynchronous models, and [Andr96] acquired similar results with their

implementation, although they were solving a different problem.

4.3.3 Solution Quality

In order to compare the search quality of the proposed “To-All” migration scheme

with that of the “Ring” migration scheme, search results of circuit struct were

plotted for 40,000 generations as seen in Figure 4.6 (a serial GA is also plotted as

baseline). In these experiments, seven processors were used. To ensure fairness, the
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Figure 4.6: Placement Quality: Serial GA and Ring/“To-All” PGAs

same basic GA parameters are maintained.

Similar to other implementations in the literature, the parallel search with ring

topology outperformed the serial GA in the medium and later generations (> 8000

generations, in this case). However, in the literature, no implementation with ring

topology (as well as ours) was able to surpass its serial version in early generations.

Usually, to obtain a better solution than a serial GA, the ring topology parallel GA

requires a large enough number of generations to evolve. The proposed “To-All”

migration scheme, on the other hand, works better than a serial GA almost all

the time. The main advantage of this migration strategy over a “Ring” topology
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is its capability of producing better results than the serial GA for any number of

generation size used. It is important to note that, the execution time for both

migration schemes is almost the same.

In this experimental setup, a large number of generations were carried out as

seen in Figure 4.6. However, we are especially interested in the search quality of the

initial phase of the search, since running a circuit placement with a GA for 40,000

generations is usually not practical for large circuits. Results in Table 4.1 compare

Benchmark Speedup Better Quality
of Solutions

ckt1 52.yal 6.38 2.9%
struct.yal 6.25 0.22%
prim2.yal 6.264 0.024%

avq large.yal 6.063 0.1366%

* 7 processors were used for PGA

Table 4.1: Search Results in the 100th Generation

the synchronous island-based GA with a serial GA in terms of execution time and

search quality, especially their performance in the early generations. The migration

scheme used in the experiments is the “To-All” topology. The algorithms ran for

only 100 generations. Seven processors were used for the parallel GA, and these

experiments involved several circuits. It can been seen from the results that the

parallel implementation achieved speedups from 6.06 to 6.38 with seven processors,

and the proposed migration scheme yielded improved solutions quality over the

serial GA at very early generations (the 100th generation in this case).
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4.3.4 Migration Interval

The migration interval as explained earlier indicates the frequency of migration.

Figure 4.7 and Figure 4.8 introduce migration results based on synchronous and

asynchronous models respectively.

In the synchronous models when migration occurs too frequently, the search

may quickly end up with identical subpopulations and converges prematurely. A

longer migration interval helps the subpopulation to have more divergence. How-

ever, if the interval is too long, migration becomes insufficient, and may lead to

worse solutions. Also, the shorter the migration interval, the more communication

overhead involved. For example, a migration interval of 4 produces the best result

for the “To-All” scheme as shown in Figure 4.7(a) and an interval of 2 is best for

the ring scheme as shown in Figure 4.7(b).

In the asynchronous model, the interval of 10 (as evident from Figure 4.8)

produces the best result.

4.3.5 Migration Rate

The migration rate determines the number of chromosomes that need to be ex-

changed in a certain interval. Experimental results of the synchronous model are

illustrated in Figure 4.9. It is evident from Figure 4.9 that the parallel execution

time grows in proportion to the migration rate. This is because in the synchronous

model, the execution time required by each iteration is the slowest processor’s com-

putation time plus the communication (migration) time. The larger the migration

rate, the more communication involved.
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(a) “To-All” migration scheme

2 4 6 8 10
74

76

78

80

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Migration Interval
2 4 6 8 10

7.6

7.7

7.8

7.9
x 10

6

W
ire

 L
en

gt
h 

(m
)

Execution Time Wire Length

(b) Ring migration scheme

Figure 4.7: Synchronous Model: Migration Interval
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Figure 4.8: Asynchronous Model: Migration Interval

However, in the asynchronous model (Figure 4.10), the migration rate has a

minor affect on the overall execution time. This is due to the fact that the compu-

tation time conceals most of the communication costs when the computation time

is much greater than the communication time.

4.3.6 Scalability Analysis

In this section, experiments are conducted to analyze the scalability of the island-

based GA algorithm running on a loosely-coupled parallel system.

In island-based GAs, speedups are obtained by dividing the overall population

into multiple subpopulations and processing them on multiple processors simulta-

neously. The more processors applied, the faster the execution expected. However,

Figure 4.4 in previous Section 4.3.2 indicates that as more processors are used the

speedup grows slower and the parallel efficiency decreases. As more islands are



CHAPTER 4. A PARALLEL GA IMPLEMENTATION 130

10 20 30 40 50 60 70 80 90
76

76.5

77

77.5

78

78.5

79

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Migration Rate (%)
10 20 30 40 50 60 70 80 90

7.56

7.58

7.6

7.62

7.64

7.66

7.68
x 10

6

W
ire

 L
en

gt
h 

(m
)

Execution Time Wire Length

(a) “To-All” migration scheme

10 20 30 40 50 60 70 80 90
76

78

80

82

E
xe

cu
tio

n 
T

im
e 

(s
ec

on
ds

)

Migration Rate (%)
10 20 30 40 50 60 70 80 90

7.4

7.6

7.8

8
x 10

6

W
ire

 L
en

gt
h 

(m
)

Execution Time Wire Length

(b) Ring migration scheme

Figure 4.9: Synchronous Model: Migration Rate
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Figure 4.10: Asynchronous Model: Migration Rate

utilized, the average available bandwidth for each island is expected to decrease,

but more communication is required for each island. Thus the computation time

for each processor decreases, but the communication time for the system increases.

The latter increases faster in a low bandwidth parallel system. Similar results are

obtained, as Figures 4.11(a) and 4.11(b) illustrate. On the other hand, a small

population may result in poor search quality. The figures also show that although

migration mechanisms may help to yield solutions slightly better than the serial GA,

a very small subpopulation may prematurely converge and lead to poor solutions.

Therefore, the synchronous island-based GA implementation can be scaled up to

eight processors to achieve fairly good speedup and produce even better solutions

than a serial GA. As more processors are used, the parallel efficiency and the

improvement usually diminish as expected.

The asynchronous model has better scalability than the synchronous model in
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Figure 4.11: Synchronous Model: Scalability

terms of parallel efficiency, as Figure 4.5 illustrated previously. However as with

the synchronous model, the solution quality decreases as the parallel system scales
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up.

4.4 Summary

In this chapter, two island-based GAs were introduced based on synchronous and

asynchronous models. A practical migration scheme of synchronous island-based

GA was also presented for the circuit placement problem. Experimental results

indicate that the synchronous model can achieve near linear speedup while the

asynchronous model can achieve super-linear speedup. In addition, the proposed

migration scheme for the synchronous GA yields better quality of solutions than

a serial GA from an early stage of evolution. This emphasizes the advantage of

the proposed migration scheme for such application as the standard-cell placement

problem.



Chapter 5

Preprocessing & Postprocessing

Techniques

Thus far we have described the implementation of several iterative improvement

techniques that proved effective for solving the placement problem. However, the

high computational complexity of placement demands other types of preprocess-

ing/postprocessing techniques to be utilized to further improve solution quality and

reduce CPU time.

In order to save computational effort, several preprocessing techniques are pro-

posed. These techniques tend to optimize the position and orientation of rows

before the iterative placement process begins, in an attempt to move strongly con-

nected blocks of cells closer. Such a strategy may avoid inefficiently interchanging

these cells individually in the main iterative improvement stage. In addition to

tuning the rows, extremely long nets in the system may also be eliminated in the

preprocess procedure.

134
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In addition, several postprocessing procedures were introduced following iter-

ative improvement to further reduce the total wire length. These postprocessing

procedures involve optimizing the position of I/O pads and cell orientation.

5.1 The Preprocessing Procedures

Standard-cell placement is an NP-hard problem. Due to the high computational

complexity of the problem, extra preprocessing steps, where possible, are used

to save computation time and enhance algorithm efficiency. The preprocessing

procedures before iterative improvements involve:

• Eliminating long nets;

• Optimizing row position;

• Optimizing row orientation.

The basic idea behind these algorithms is to apply simple techniques to improve

solution quality with a minimum computation effort before iterative optimization.

5.1.1 Optimizing Row Position/Orientation

Initial solutions constructed by the first stage of placement may contain modules

that have strong connections to other blocks, but separated from each other. Al-

though iterative improvement algorithms tend to search for more optimized solu-

tions by placing modules with high connectivity closer, achieving this might be

quite expensive in terms of CPU time. If strongly connected blocks can be placed
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together with less effort before the main loop of optimizing positions of individual

cells, there could be substantial savings in computation time. Row swapping and

optimizing row orientation are proposed as candidates in the preprocessing stage

to optimize strongly connected modules together.

In Figure 5.1(a), the cluster of cells C1, C2, C3 and C4 have connections to

another cluster of cells C121, C122, C124 and C125. However the first cluster lies on

the left while the other is located on the right. Obviously, changing the orientation

of row 1 can be easily performed and will tend to reduce the length of wire length

in the x direction, as illustrated by Figure 5.1(b).
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Figure 5.1: Change Orientation of Row 1

Figure 5.2 gives an example of swapping rows. In Figure 5.2(a), row R1 and

row R5 have a strong connection, and row R2 is well connected to row R4. Since

row R1 and row R5 are far away from each other, and so are row R2 and row R4,

swapping row R1 and row R4 helps to shorten the distance between these strongly
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connected module blocks, as Figure 5.2(b) demonstrates.

39

1

2

3

4

5

86

36 37

1 2 3 4

38

125
124123

122
121

83 8485

(a) Before Swapping

84
2

3

5

4

1

83 8685

1 2 3 4

125
124

123
122

121

3637 3938

(b) After Swapping

Figure 5.2: Swapping Row 1 with Row 4

Figure 5.3 illustrates the pseudo code for row swapping and optimizing row

orientation. Swapping rows affects only the wire length in the y direction while

changing row orientation affects only the wire length in the x direction. Therefore,

simple data structure can be used to evaluate the quality of neighbours for the Lo-

cal Search algorithms to reduce the computational cost. In Figure 5.3(a), Min y[i]

and Max y[i] are the bounding box information of net i in the y direction. When

evaluating a move, only Min y[i] and Max y[i] of the affected nets are evaluated,

so the computation is simple. Similarly, Min x[i] and Max x[i] are used in Fig-

ure 5.3(b) for the affected nets in the x direction. Thus, the algorithms do not

demand a large computational effort.
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Procedure: Rows Swapping

Choose an initial placement solution
Read Min y and Max y for each net

while(1)
BestImprovement = -1
for( all neighbours )

CurrentNeighbour = Generate A Swap()
improvement = Evaluate the Swap()
if ( improvement > BestImprovement ) then

BestImprovement = improvement
BestNeighbour = CurrentNeighbour

end for
if ( BestImprovement ≥ 0 ) then

Perform the row swapping of BestNeighbour
Update circuit information
Read Min y and Max y for affected nets

else break
end while

(a) Optimizing Row Position

Procedure: Row Flipping

Choose an initial placement solution
Read Min x and Max x for each net

while(1)
BestImprovement = -1
for( all neighbours )

CurrentNeighbour = Generate A Change()
improvement = Evaluate the Change()
if ( improvement > BestImprovement ) then

BestImprovement = improvement
BestNeighbour = CurrentNeighbour

end for
if ( BestImprovement ≥ 0 ) then

Perform the row swapping of BestNeighbour
Update circuit information
Read Min x and Max x for affected nets

else break
end while

(b) Optimizing Row Orientation

Figure 5.3: The Outline of the Algorithms

5.2 The Postprocessing Procedures

Following the iterative improvement phase, postprocessing procedures can be used

to further reduce wire length. In this stage, cell placement has already been per-

formed and all the cells have been assigned to fairly good physical locations within

the chip. The only remaining issue involves optimizing the locations of I/O pads

and the orientations of cells. Since this skep does not create any overlap or any

change of row size, legalization is not required. The postprocessing procedures after

iterative improvement include:

• Optimization of I/O pads
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• Optimizing cells orientation

5.2.1 Optimizing Cell Orientation

There are many possible orientations that a module may have. A module can

be changed to one of eight possible orientations by flipping, rotation or inversion.

However, for standard cells which are rectangles of the same height and variable

width, there exist only two possible orientations: (a) the original orientation of the

cell and (b) the “mirror image” of the given cell, as illustrated in Figure 5.4.
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(b) Mirror Image

Figure 5.4: Module Orientation

Cell flipping in standard cell placement is an operation that replaces some of the

cells with their mirror images with respect to a vertical axis while maintaining the

flipped cells in the same position slots. In certain situations, flipping the modules

in place can reduce the length of some nets. Some examples are illustrated in

Figure 5.5, where modules are denoted with numbers and nets are denoted with

letters. In Figure 5.5(a), if cell C1 is flipped with respect to the vertical axis of

center of the cell, then net “b” will have a shorter distance; thus the total wire

length will be decreased by d2. However in Figure 5.5(b), net “b” is not lucky:
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Figure 5.5: Examples of Optimizing Module Orientation

although flipping cell C1 decreases the wire length of net “b” by d2, it also increases

net “a” by d1. If d1 happens to be greater than d2, the total cost becomes higher,

and this operation is not accepted. Usually in this postprocessing procedure, only

the cells on the edges of bounding boxes of nets are examined. However, flipping a
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cell may affect other cells and cause them to sit on a bounding box. For example

in Figure 5.5(c), the pin of cell C6 was originally not on the bounding box of net

“b”, but after flipping cell C1, the situation is reversed. Flipping cell C1 followed

by cell C6 can yield an improvement of 2× d3 to the total wire length, as shown in

Figure 5.5(c).

Therefore, the main task to be solved is the determination of the optimum ori-

entation of cells by allowing every module to flip left/right so that the total wire

length of all nets is minimized. Cheng et al [Chen91] claimed that the module

orientation problem also turns out to be an NP-hard problem. However, in the

implementation, instead of putting a large computation effort to gain a small im-

provement, a simple algorithm to optimize the module orientation is employed, as

seen in Figure 5.6.

(1) Initialize Min Max Info () for each net
Flag := 1

(2) While (Flag)
Flag := 0
For each row

For each cell on the row
If (the cell is not flipped)

Gain := Estimate the Flipping
If (Gain > 0)

Flag := 1
Update Min Max Info () for affected nets

End If
End If

End For
End For

End While

(3) return

Figure 5.6: Algorithm Outline of Module Flipping
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As mentioned previously in Chapter 3, in the main optimization stage, the

location of a net terminal is approximately represented by the center of the cell

that the net is connected to. This approximation spares significant computation

effort, and has little negative effect on the accuracy of total wire length since the

offset of pins on a cell is usually much smaller than the wire length of the net.

However, this simplification model is not used in this procedure since flipping cells

attempts to squeeze the little improvement by optimizing the locations of these

pins.

In the procedure, an alternative simple data structure is used to store the bound-

ing box information for each affected net. Besides the cells on bounding boxes, the

cells that are located close to the bounding box are also counted in to deal with the

scenario posed by Figure 5.5(c). This information is the so-called Min Max Info ()

in the algorithm outlined in Figure 5.6. For example, for Net10 the Min Max infor-

mation simply stores some cell numbers related to the net’s bounding box:

Min_x[10] is the most left hand side module that connects to net 10.

Min_x_2[10] is the 2nd very left hand side module that connects to net 10.

Max_x[10] is the most right hand side module that connects to net 10.

Max_x_2[10] is the 2nd very right hand side module that connects to net 10.

It is important to note the following: (1) cell flipping does not affect any wire

length in the y direction thus the wire length in this direction is not evaluated;

(2) the offset of pin terminals is much smaller than the wire length of a net, so

no significant wire length decrease should be expected from this procedure; (3)

since it is not an iterative procedure and does not require shifting of cells, it is not

computationally demanding.
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5.3 Experimental Results

Table 5.1 presents results obtained by the Row Swapping() procedure. In the

# of Methods of Performed % Imp. in
Circuit Rows Initial Solutions Moves y direction Time*

fract 6 Random 4 7.67% 0.27%
ARP 1 0.76% 0.00%

prim1 16 Random 0 0.00% 0.00%
ARP 1 0.51% 0.43%

struct 21 Random 12 11.79% 1.30%
ARP 14 7.47% 2.65%

ind1 15 Random 1 0.20% 0.06%
ARP 1 0.34% 0.04%

prim2 28 Random 0 0.00% 0.00%
ARP 2 0.07% 0.01%

bio 46 Random 0 0.00% 0.00%
ARP 5 0.28% 0.15%

ind2 72 Random 13 3.72% 1.33%
ARP 17 0.28% 0.91%

ind3 54 Random 1 0.07% 0.38%
ARP 2 0.06% 0.61%

avq.s 80 Random 0 0.00% 0.00%
ARP 8 0.20% 0.37%

avq.l 86 Random 0 0.00% 0.00%
ARP 15 0.18% 0.81%

Average Random 2.35% 0.33%
ARP 0.99% 0.60%

* Time: Time for Row Swapping

Time for Main Iterarive Improvement Loop
× 100%

Table 5.1: Improvement by Optimizing Row Position

experiment, two different initial construction methods are used to provide initial

solutions with different quality. The ARP (Attractor-Repeller Approach) [Etaw99]

can produce solutions superior to the random constructive method. The table

does not record the improvement in the x direction since it is not affected by the

algorithm. It is evident from Table 5.1 that although the algorithm is simple, it

can improve the solution quality slightly in a short period. This is expected since

the algorithm is a basic Local Search and can get trapped easily in a local minima.

Similar experiments are conducted for the Row Flipping() procedure. Initial



CHAPTER 5. PREPROCESSING & POSTPROCESSING TECHNIQUES 144

# of Methods of Performed % Imp. in
Circuit Rows Initial Solutions Moves x direction Time*

fract 6 Random 3 6.73% 0.02%
prim1 16 Random 8 4.10% 0.10%
struct 21 Random 11 7.60% 0.15%
ind1 15 Random 5 4.03% 0.08%

prim2 28 Random 12 4.13% 0.35%
bio 46 Random 19 5.75% 0.07%
ind2 72 Random 33 3.96% 3.00%
ind3 54 Random 18 2.72% 2.03%
avq.s 80 Random 33 4.81% 0.05%
avq.l 86 Random 29 2.89% 0.03%

Average 4.67% 0.59%

* Time: Time for Row Flipping

Time for Main Iterarive Improvement Loop
× 100%

Table 5.2: Improvement by Optimizing Row Orientation

solutions are randomly constructed in the tests. As illustrated in Table 5.2, this

procedure optimizes the wire length in the x direction on average by 4.67% with

an extra 0.59% CPU time.

Table 5.3 displays the experimental results of the Flipping Modules() procedure

(optimizing module orientation). In the experiment, the procedure is executed

after some iterative optimization algorithms, such as Local Search algorithm, Tabu

Search and Simulated Annealing. Results indicate that, after optimizing the circuits

with advanced heuristic algorithms, flipping some of the cells can still produce a

small improvement in the x direction. In most cases, the computation time spent

by this procedure can be ignored.

The overall performance of the preprocessing and postprocessing procedures are

shown in Table 5.4. It is evident from Table 5.4 that the preprocessing optimization

step can help obtain better results. When flipping/swapping rows were activated, an

average improvement of 4.44% was obtained. On the other hand, the postprocessing

procedure was beneficial in improving solution quality on average by 1.32%.
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Iterative
Circuit Improvement % Imp. % Imp. in Time*

Algorithms x direction

fract LS 35.99% 2.81% 2.44%
TS 48.98% 2.94% 0.75%
SA 56.32% 4.86% 0.00%

prim1 LS 20.93% 1.06% 0.00%
TS 43.84% 1.93% 0.07%
SA 49.90% 2.18% 0.12%

struct LS 22.31% 0.78% 1.17%
TS 55.01% 1.61% 0.09%
SA 64.16% 1.92% 0.07%

ind1 LS 34.32% 0.52% 0.37%
TS 54.31% 0.85% 0.06%
SA 60.54% 1.08% 0.02%

prim2 LS 23.45% 0.67% 0.71%
TS 49.89% 1.17% 0.07%
SA 57.80% 1.42% 0.03%

ind2 LS 25.93% 0.35% 0.42%
TS 50.11% 0.59% 0.05%
SA 57.01% 0.67% 0.02%

ind3 LS 22.55% 0.18% 0.68%
TS 47.61% 0.30% 0.09%
SA 54.76% 0.35% 0.06%

avq.s LS 30.33% 0.31% 0.03%
TS 58.94% 0.65% 0.00%
SA 62.70% 0.74% 0.00%

avq.l LS 27.44% 0.29% 0.04%
TS 58.14% 0.63% 0.00%
SA 61.89% 0.72% 0.00%

* Time: Time for Module Flipping

Time for Main Iterarive Improvement Loop
× 100%

Table 5.3: Improvement by Flipping Modules (Postprocessing)

5.4 Summary

In this chapter, preprocessing and postprocessing procedures are introduced. Pre-

processing procedures attempt to save computational effort and enhance algorithm

efficiency by optimizing row position and orientation before iterative placement

process begins. Experimental results indicate that these techniques are effective.

On the other hand, postprocessing procedures are employed to further reduce wire

length. Optimizing cell orientation after cell locations are determined can slightly

improve solution quality.
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Circuit With Postprocessing With Preprocessing/Postprocessing
Main Postpro- Total Preprocessing Main Postpro- Total
Imp. cessing Flip (x) Swap (y) Subtotal Imp. cessing

fract LS 32.6 2.3 34.9 6.73 7.67 7.2 31.7 2.5 41.4
TS 56.3 4.3 60.6 51.1 3.4 62.3
SA 59.0 6.0 65.0 55.1 7.0 69.3

prim1d LS 23.2 1.2 24.4 4.10 0.00 3.19 19.6 1.2 23.99
TS 46.2 2.0 48.2 43.2 1.9 48.29
SA 53.4 2.7 56.1 53.4 2.5 59.09

struct LS 25.0 0.7 25.7 7.60 11.79 8.48 23.8 0.8 33.08
TS 55.2 1.6 56.8 55.5 1.5 65.48
SA 67.2 2.2 69.4 63.3 1.9 73.68

ind1 LS 36.9 0.7 37.6 4.03 0.20 3.53 35.0 0.6 39.13
TS 50.7 0.9 51.6 52.5 0.9 56.93
SA 55.7 1.1 56.8 59.7 1.0 64.23

prim2 LS 26.6 0.7 27.3 4.13 0.00 3.38 25.5 1.0 29.88
TS 52.8 1.4 54.2 52.0 1.5 56.88
SA 59.6 1.4 61.0 57.5 1.4 62.28

bio LS 27.7 0.8 28.5 5.75 0.00 5.07 25.5 0.8 31.37
TS 55.3 1.5 56.8 53.3 1.4 59.77
SA 61.9 1.7 63.6 61.2 1.8 68.07

ind2 LS 23.6 0.3 23.9 3.96 3.729 3.92 20.0 0.3 24.22
TS 51.2 0.6 51.8 49.8 0.6 54.32
SA 57.8 0.7 58.5 55.3 0.7 59.92

ind3 LS 23.7 0.2 23.9 2.72 0.07 2.44 22.4 0.2 25.04
TS 46.8 0.3 47.1 48.3 0.3 51.04
SA 53.4 0.4 53.8 57.0 0.4 59.84

avq small LS 31.5 0.3 31.8 4.80 0.00 4.46 30.8 0.3 35.56
TS 60.0 0.7 60.7 58.2 0.7 63.36
SA 65.7 0.8 66.5 66.4 0.9 71.76

avq large LS 27.5 0.3 27.8 2.89 0.00 2.71 27.0 0.3 30.01
TS 59.4 0.7 60.1 59.0 0.7 62.41
SA 66.7 0.8 67.5 64.6 0.8 68.11

Average 1.33 4.44 1.31

* The numbers above are the percentage of improvement obtained in varied procedures

Table 5.4: Performance of Preprocessing/Postprocessing Procedures



Chapter 6

Conclusions and Future Directions

The exponentially increasing number of transistors on modern VLSI circuits causes

the placement problem to be extremely complicated, resulting in a long time to

obtain acceptable solutions, especially for large circuits. Moreover, with advanced

sub-micron technologies, the effect of interconnect delay dominates the circuit de-

lays and becomes the key factor in determining the speed of a chip. These issues

accentuate the importance of the placement problem. Therefore, effective and effi-

cient placement techniques are necessary to deal with these new challenges.

In this thesis, three important topics related to standard cell placement were

studied and addressed: heuristic/meta-heuristic optimization techniques, parallel

island-based GAs, and some preprocessing/ postprocessing approaches.

Heuristic techniques have been proven to be powerful in solving NP-hard com-

binatorial optimization problems, including the ones in VLSI CAD design. By

comparing two different placement strategies, it can be seen that the strategy of

allowing illegal layouts during the search offers greater advantages than the other

147
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strategy in terms of computation time and solution quality. Based on this approach,

the Local Search (LS) heuristic, Tabu Search (TS) and Simulated Annealing (SA)

were implemented for the iterative improvement stage. The Local Search heuristic

is a basic hill-climbing technique that iteratively attempt to find the best solution

from the neighbourhood of a current solution. Results obtained indicate that wire

length can be decreased on average by 27%. One of the problems of the Local Search

heuristic is the pitfall of getting trapped in a local optimum, which may be very far

away from the global optimal solution. Meta-heuristics (such as TS, SA and GA)

are advanced techniques that apply some particular mechanisms to guide the local

search in an attempt to explore/exploit solution space more effectively. The Tabu

Search heuristic attempts to go beyond local optima and avoid cycling in a certain

area in the solution space by making a systematic use of the search information

from past history. Experimental results indicate that on average an improvement

of 52.4% can be obtained using this approach. Based on stochastic techniques

(Markov Chains), Simulated Annealing guides Local Search by accepting deterio-

rating moves with a certain probability that depends on current temperature and

cost change. Experimental results display an average improvement of 61% with

this algorithm. The Local Search algorithm usually obtains poor improvements,

while the Tabu Search and Simulated Annealing algorithm can yield much better

solutions at the expense of a longer time. In addition, it can be concluded from

the experimental setup that if more computation time can be used, the TS and SA

algorithms can obtain further improvement than the results obtained.

The Genetic Algorithm can produce placement solutions as good as those ob-

tained by SA. However, the computation time for the GA is excessive. Therefore,
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the implemented island-based parallel GA attempts to divide a population into sub-

populations and assign them to multiple processors so that they can be processed

in parallel. A synchronous model and an asynchronous model of the GA were

implemented on a loosely-coupled parallel system for standard cell placement. A

practical migration scheme was proposed and employed in the synchronous model

for large circuits. Experimental results show that the synchronous parallel GA

implementation can achieve near linear speedup, and the asynchronous model ob-

tained even super-linear speedup. Results obtained also show that by introducing

migration, the synchronous PGA may produce better quality solutions than a serial

GA.

The preprocessing and postprocessing stages are procedures that are executed

prior or after iterative improvement, in an attempt to improve solution quality

with a small computational cost. The preprocessing function in this work includes

“optimizing row orientation” and “optimizing row position” by a modified Local

Search algorithm, while “optimizing module orientation” is part of the postpro-

cessing procedure. Experimental results show that the preprocessing routines can

improve solution quality by an average of 4.44% with an increase of 0.47% in com-

putation time, and the postprocessing algorithms can obtain 1.32% improvement

with a 0.27% increase in time.

Table 6.1 and Figure 6.1 indicate how the various optimization techniques con-

tribute to the overall solutions quality.
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Circuit Preprocessing Iterative Improvement Postprocessing Overall

fract 7.20 LS: 31.7 2.5 41.40
TS: 51.1 3.4 62.30
SA: 55.1 7.5 69.30

prim1d 3.19 LS: 19.6 1.2 23.99
TS: 43.2 1.9 48.29
SA: 53.4 2.5 59.09

struct 8.48 LS: 23.8 0.8 33.08
TS: 55.5 1.5 65.48
SA: 63.3 1.9 73.68

ind1 3.53 LS: 35.0 0.6 39.13
TS: 52.5 0.9 56.93
SA: 59.7 1.0 64.23

prim2 3.38 LS: 25.5 1.0 29.88
TS: 52.0 1.5 56.88
SA: 57.5 1.4 62.28

bio 5.07 LS: 25.5 0.8 31.37
TS: 53.3 1.4 59.77
SA: 61.2 1.8 68.07

ind2 3.92 LS: 20.0 0.3 24.22
TS: 48.8 0.6 54.32
SA: 55.3 0.7 59.92

ind3 2.44 LS: 22.4 0.2 25.04
TS: 48.3 0.3 51.04
SA: 57.0 0.4 59.84

avq small 4.46 LS: 30.8 0.3 35.56
TS: 58.2 0.7 63.36
SA: 66.4 0.9 71.76

avq large 2.71 LS: 27.0 0.3 30.01
TS: 59.0 0.7 62.41
SA: 64.6 0.8 68.11

Average 4.44 LS: 26.13 1.32 31.89
TS: 52.29 58.05
SA: 59.35 65.11

Table 6.1: Improvement of Solution Quality Contributed by Various Procedures

6.1 Future Work

In Chapter 3, two placement strategies were implemented. The approach that

allows infeasibility brings a large saving of computation time to the placer. How-

ever, disadvantages that come with this approach are inevitable: (1) introducing

penalties makes the objective function noisy; and (2) legalization of modules in

the final phase deteriorates solution quality and therefore obtaining near optimal

solutions becomes hindered by this strategy, no matter how efficient the optimiza-
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Figure 6.1: Average Improvements Obtained by the Procedures

tion algorithm is. Further investigation of the effect of more efficient techniques for

legalization should be studied in more detail.

Besides Genetic Algorithms, there are several meta-heuristics in the VLSI CAD

applications, which can produce good quality solutions but demand high compu-

tational effort. Parallelizing these algorithms wherever possible may dramatically

speed up the VLSI CAD design. In particular within our placement tool, Tabu

Search and Simulated Annealing can be good candidates for parallel/distributed

processing.



Appendix A

Glossary

CAD : Computer Aided Design

CMOS : Complementary Metal Oxide Semiconductor

DA : Design Automation

FPGA : Field Programmable Gate Array

GA : Genetic Algorithm

HPWL : Half Perimeter Wire Length

LS : Local Search

MCNC : Microelectronics Center of North Carolina

MIMD : Multiple Instruction Multiple Data stream

MISD : Multiple Instruction Single Data stream

MPI : Message Passing Interface

NP-hard : Non Deterministic Polynomial Hard

PVM : Private Virtual Machine

RTL : Register Transfer Logic
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TS : Tabu Search

SA : Simulated Annealing

SIMD : Single Instruction Multiple Data stream

SISD : Single Instruction Single Data stream

VLSI : Very Large Scale Integration

WL : Wire Length



Appendix B

MPI: Message Passing Interface

The Message Passing Interface (MPI) is a specification of a standard library for

message passing1 systems, which was designed by a group of people from academia

and industry. Their goal was to develop a standard for writing message-passing

programs that would be efficient, flexible and portable on a wide variety of parallel

computers. Today, MPI becomes the most widely used parallel paradigm on both

network of workstation and massively parallel machines.

The creation of the standard began at a workshop in 1992, and the first outcome

was first published in second year. The major versions of MPI highlight the history

of this standard:

• Version 1.0 (1994): Fortran77 and C supported;

• Version 1.1 (1995): Minor corrections and clarifications;

• Version 1.2 (1997): Further corrections and clarifications;

1Message passing is a programming model that gives the programmer explicit control over
interprocess communication.
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• Version 2.0 (1997): Major enhancements involving one-sided communications,

parallel IO, dynamic process generation and Fortran 90/C++ support.

Although MPI-2 has many powerful new features, it is in many cases not yet fully

supported. Consequently the implementation of parallel Island-based GA in this

work was developed based on the MPI version 1.2. The basic MPI-1 has 129 subrou-

tines while MPI-2 adds another 193 subroutines. MPI library is large, however with

only six different routine calls, serious parallel applications can be programmed.

Therefore, programming with a MPI API is easy to start with.

MPI provides support for both the SPMD and MPMD modes of parallel pro-

gramming, as well as inter-application communications. The communication rou-

tines include two classes:

Point-to-point communication routines provide for data exchange between a

programmer specified send task and programmer specified receive task. They

can be further divided into four groups: blocking, non-blocking, persistent

communications, and completion/testing routines.

Collective communication routines provide a convenient means for having all

tasks within the communicator participate in a communication operation.

Most of them are blocking routines.

In addition, MPI provides abstractions for processes at two levels: (i) Each

process has its rank so that processes can identify themselves and perform commu-

nications. (ii) Virtual topologies can help to “connect” processes in a convenient

and efficient way.
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There are several well-tested and efficient implementations of MPI exist. Several

of them are free, e.g, MPICH and LAM. Some hardware vendors supply their tuned

implementations. With MPI, users can easily develop practical and cost effective

parallel applications. Further information about MPI can be found in the following

links:

The MPI home page at Argonne National Lab:

---- http://www-unix.mcs.anl.gov/mpi/

Message Passing Interface (MPI) Forum:

---- http://www.mpi-forum.org/

MPI The Complete Reference:

---- ftp://ftp.netlib.org/utk/papers/mpi-book/mpi-book.html

MPI - Getting Started with MPI:

---- http://www.iu.edu/~rac/hpc/mpi_tutorial/index.html

MPICH - A Portable MPI Implementation:

---- http://www-unix.mcs.anl.gov/mpi/mpich/

LAM-MPI Parallel Computing:

---- http://www.lam-mpi.org/
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