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Path planning for mobile robots is a complex problem. The solution should not only 

guarantee a collision-free path with minimum traveling distance, but also provide a smooth 

and clear path. In this dissertation, a Genetic Algorithm Planner (GAP) is proposed for 

solving the path planning problem in static and dynamic mobile robot environments. The 

GAP is based on a variable-length representation. A generic fitness function is used to 

combine the objectives of the problem. Different evolutionary operators are applied some are 

random-based, and others use problem-specific domain knowledge. Various techniques are 

investigated to ensure that the GAP is appropriate for dynamic environments.  

To further increase the efficiency of the GAP, an Island-based GA (IGA) is developed 

on a ring topology and Message Passing Interface (MPI) library is utilized to implement the 

IGA.  

A new Local Search (LS) is also developed in this thesis and different approaches are 

examined for combining the LS algorithm with the GAP to obtain superior solutions.  
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Chapter 1   

Introduction 

The field of robotics has attracted a great deal of attention in research and industrial 

communities. What was considered to be science fiction 25 years ago has now become a 

reality. Currently robots are used in manufacturing, medicine, services, exploration and 

transportation. However, future robotic systems will need to be more autonomous and 

intelligent than the present ones so that robots can execute various types of tasks with 

minimum or no human intervention. One of the challenges for such an intelligent robot is 

determining its fastest and safest route to its destination. This is what is known as the path 

planning problem.  

The path planning problem is an ordering problem, where a sequence of configurations 

is sought, beginning at the initial location and ending at the goal location. The robot searches 

for an optimal or near optimal path with respect to the problem objectives, whose criteria 

include distance, time, energy, safety and smoothness.  

1.1 Motivations  

Mobile robot path planning is one of the problems that need to be solved to achieve full 

robot autonomy; therefore, the need for a robust, adaptive, intelligent planner has become 

1 
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essential. Many approaches have been proposed, but so far, no robotic system can navigate 

efficiently in the real world without human supervision or guidance.  

The driving forces behind this research can be summarized as follows: 

• The need for an autonomous path planner, so a mobile robot can plan its actions 

in real world environments with minimum or no human supervision or guidance. 

• The drawbacks of the existing techniques, including adaptability, computational 

complexity, a poor response to uncertainty, a lack of robustness in the 

optimization goals and the lack of alternative paths. 

• Carry out a feasible study of the potential of Genetic Algorithms (GAs) to 

effectively solve complex problems. 

• The Complexity of GA and to enhance its performance led to an efficient parallel 

implementation. 

• The fact that GA offers more than one solution for the same problem; in a 

dynamic environment, this is useful so that one of the alternative solutions can be 

used when the current path becomes infeasible. 

1.2 Objectives  

The goal of this research is to design and implement a robust planner for solving mobile 

robot path planning problems in static and dynamic environments. This planner should be 

easily integrated with a mobile robot system which includes a sensory system (to attain the 

necessary information about the environment) and a control system (to control the 

movements of the robot) as illustrated in Figure 1.1. By introducing this planner, the robot 
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should be able to work autonomously in its environment with minimum or no human 

supervision.  

 
Figure 1.1: Path planning (Planner) as a part of full mobile robot system 

To solve the path planning problem, a Genetic Algorithm Planner (GAP) based on a 

variable length representation is implemented in this thesis. A generic fitness function is used 

to combine all the objectives of the problem. Then, different evolutionary operators are also 

applied: some depend on randomness and others employ problem-specific domain 

knowledge. Different benchmarks are developed to test the system performance in both static 

and dynamic environments. Furthermore, the GAP is parallelized using the Message Passing 

Interface (MPI) library for a speed-up. An Island-based GA (IGA) is implemented by using a 

ring topology with different migrations approaches techniques. Novel Local Search (LS) 

Global vision system

Control Planner Sensing  

Robot sensory raw data 
(vision, touch, infrared, etc.) 

Task
description 
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algorithm is further proposed in this work and different approaches are examined for 

combining the LS algorithm with the GAP to obtain superior solutions.  

1.3 Contributions 

The contributions of this dissertation are summarized as follows: 

• The Exploration of the feasibility of applying a GA to solve the path planning 

problem in static and dynamic environments and fine tuning critical parameters. 

• Design of a new heuristic technique (LS) to solve path planning. 

• Investigation of an Island-based parallel GA was carried out to enhance the 

system performance. 

• The examination of GA and LS hybridization (Memetic Algorithms) to obtain 

high quality solutions. 

1.4 Thesis Organization  

The thesis consists of six chapters. Chapter 2 provides the necessary background to define 

the path planning problem, optimization and GAs. Conventional approaches and GA 

approaches to solve the path planning problem are reviewed in Chapter 3.  In Chapter 4, a 

detailed implementation of the developed GAP along with the algorithm analysis and results 

for the static and the dynamic environments is presented. The parallel implementation details 

and the results of the IGA are also presented in Chapter 4. Chapter 5 introduces the 

developed Local Search (LS) approach to solve the path planning problem and its 
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hybridization with the GAP. Finally, chapter 6 provides a conclusion and suggestions for 

future work. 

 



 

Chapter 2   

Background 

This chapter reviews several topics that are related to path planning. The introduction of the 

path planning problem is followed by a discussion of optimization, complexity of the 

combinatorial optimization problems and the Genetic Algorithms. By the end of this chapter, 

the reader should have acquired the necessary background information to appreciate the 

contributions of this thesis. 

2.1 Mobile Robots 

The Czechoslovakian playwright, Karel Capek introduced the word robot in the play,  R.U.R. 

(Rossum's Universal Robots). The word, robot, is derived from the Czech "Robota" which 

refers to servitude, forced labour, or slave. In the dictionary, a robot is defined as a 

mechanical device that sometimes resembles a human and is capable of performing a variety 

of often complex human tasks on command or by being programmed in advance. Russell et 

al. [1] defines a robot as an active, artificial agent whose environment is the physical world. 

This definition includes all the artificial creatures that exist physically in the real world and 

interact with it in some manner.  

6 
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Over the past 30 years, an increasing interest in robotic systems has been expressed. 

Robotic systems have proven to be crucial in such fields as  manufacturing automation, space 

and deep sea exploration, dangerous and hazardous missions (e.g. rescue, police and military 

missions), and finally life-like new toys that talk and respond similar to real creatures. 

Example of such systems are reflected in Figure 2.1   

  
(a) General Material Handling (b) Exploration 

  
(c) Rescue (d) AIBO Toy (SONY Corporation)  

Figure 2.1: Robots applications  

One class of robots that has attracted special attention is that of mobile robot. It is “a 

robot vehicle capable of self-propulsion and (pre)programmed locomotion under automatic 

control in order to perform a certain task” [2]. 

Mobile robots have a wide range of potential applications, such as the transportation of 

objects in buildings, factories, warehouses, airports, and libraries, service robots that can 

vacuum apartments, and inspection robots that operate in hazardous environments and space 

exploration. Although the demand for these applications is high, the limitations of the 
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existing robots in the real world, as well as their high cost, have disallowed broad practical 

utilization. The bottleneck in this effort is the problem of the planning and navigation, and 

the lack of the required flexibility and adaptation in different environments and setups. 

2.2 Autonomous Robots 

Future robots are required to be more autonomous than present robot systems. For a robot to 

be autonomous, it must answer the following questions: where am I, where should I go, and 

how can I travel there? 

A robot requires several capabilities to answer these questions and be able to operate in 

an intelligent and autonomous manner.  These capabilities fall into three categories [3]: 

(1) Sensing: allows the robot to gather information about its surrounding 

environment by using different sensing devices. The raw sensory data needs to 

be analyzed and transformed into a realistic model that represents the 

environment. 

(2) Motion Planning: is performed to plan given tasks such as robot navigation, 

robot assembly on an assembly line, and machining. 

(3) Control: A low-level control is required to execute each planned task. 

A robot that is equipped with such capabilities can autonomously plan and execute 

different tasks successfully.  For example, a user may ask the robot to bring him/her a coffee 

mug from a certain location. The robot has to break this task into subtasks: how to obtain  the 

coordinates of the mug, how to "gently" grasp the mug, how to return to the location of the 

user and, how to hand him/her the requested mug. 
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The sensing capability allows the robot to sense the objects in its working space and 

repetitious to answer the first question: "Where am I?". The motion planning capability 

allows the robot to answer the second question "Where should I go?". This capability is the 

brain by which the robot plans how to reach the location of the mug, when and how to grasp 

the mug, and how to return it to the point of origin. All the planned motions must be as 

efficient as possible and as safe as possible. Finally, the control capability would be 

responsible for executing and monitoring the execution of the planned subtasks. 

Motion planning allows the robot to decide how to achieve a given task. It is sufficient 

for the user to supply the robot with an activity, then, the robot determines on its own how to 

achieve it. The motion planning problem is as old as robots are; however, most of the 

revolutionary work in this field was conducted during the 1980s [4]. The motion planning 

problem is divided into two problems: path planning and trajectory planning [5]. Path 

planning refers to the design of the geometric specifications (positions and orientations) 

wherein the dynamics of the robots are neglected, whereas trajectory planning includes the 

design of the linear and angular velocities to track the found path and reach the goal. In this 

thesis the path planning is the main focus due to the potential of the applications.  

2.3 Path Planning 

For path planning, the collision-free routes (paths) must be identified to move a robot from 

an initial position "A" to a final destination "B". The path should also include the robot 

mobility constraints and map boundaries. This type of path planning is exercised in several 

robotic applications, including: finding routes for autonomous robots, planning the 
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manipulator's movement of a stationary robot, and moving entities to different locations on a 

map to accomplish certain goals in manufacturing and services applications.  

The path planning problem is an ordering problem, where a sequence of configurations 

is sought, beginning from the location and ending at the goal location. The path planning 

problem is also called the collision-free path planning problem, where a robot attempts to 

search for an optimal or near optimal path with respect to the problem criteria. The latter 

includes distance, time, energy safety and smoothness. The distance is the most typical 

criterion. Shorter paths are executed faster and require less energy; however, conventional 

path planning approaches do not take into consideration path safety and path smoothness. 

The safety constraint is important to both the robot and its surrounding objects. Path 

smoothness, on the other hand, enhances the energy consumption and the execution time. 

Smoothness is also a constraint and affects most mobile robots because of the bounded 

turning radius. For example, a car like robot has this constraint due to the mechanical 

limitations of its steering angle. 

In real-life applications, the robot navigates in dynamic environments adjusting and 

modifying its planned paths according to the changes that occur in the environment. 

2.3.1 Path Planning Problems Classifications 

The classifications of path planning problems depend on the problem framework [5]. If all 

the environment information is known a priori with no ongoing changes, this classification is 

called static path planning. However, if only partial information about the environment is 

available, the classification is known as dynamic path planning. Motion planning can be 
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either constrained or unconstrained, depending on the restrictions of the motions of the robot, 

which include velocity boundaries, acceleration boundaries, and curvature constraints. 

2.3.2 Path Planning Algorithms 

Path planning algorithms are categorized according to their completeness and scope [5]. 

Complete algorithms are used for finding optimal solutions. They either find an exact 

solution or prove that there is no solution at all. Non-complete (or heuristic) algorithms are 

adopted for finding a near-optimal solution in a short period of time. There is strong evidence 

that a complete planning requires time that is proportional to the number of the degrees of 

freedom (DOF) of the robot. Therefore, Canny [6] classified the path planning problem 

algorithms as NP-Complete. 

Depending on the scope, path planning algorithms are divided into two categories: 

global and local. In global algorithms all the environment information is considered, and the 

path is planned form start to finish. This type of path planning is also known as off-line path 

planning. Local algorithms are designed to avoid obstacles near the robot and to improve the 

path safety and smoothness; therefore, only the information that is close to the robot is 

employed. Local path planning is also known as on-line path planning. 

2.4 Optimization 

Optimization concerns decision-making. Optimization or mathematical programming is the 

study of maximizing and/or minimizing the functions that satisfy the predefined criteria 

called boundary conditions or constraints. Optimization forms an integral part of many 

applications in engineering, management, and economics.  
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2.4.1 Components of Optimization Problems 

The elements that constitute an optimization model include design variable, objective 

function and constraints 

Design Variables 

The design variables represent the variables that are required to quantify or describe the 

system. The design variables consist of design parameters and decision variables. The design 

parameters are the data that defines the problem and the decision variables are the quantities 

whose numerical values are sought to obtain the optimal solution.     

Objective Function 

Objective function or cost function is the prescribed criterion by which the solutions are 

evaluated.  It is a mathematical equation that embodies the design variables. The ultimate 

goal is to minimize the cost or maximize the profit by minimizing or maximizing the 

objective function.   

Constraints 

The optimization constraints, are the conditions that must be satisfied, while the optimal 

solution is being sought which are applied to the design variables. A constraint can be written 

mathematically, either in an equality format such as 01 =x  or in the form of an inequality 

such as . The design space (or the solution space) is the total region or domain, 

defined by the design variables in the objective function. Usually, the design space is divided 

into two regions: feasible and infeasible. The feasible region satisfies the problem 

constraints, and the infeasible region does not satisfy the problem constraints. 

01 ≥x
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By using the basic optimization components the optimization problem is defined as 

follows: Find the values of the variables that minimize or maximize the objective function 

where the constraints are satisfied 

This discussion is illustrated by considering the linear programming optimization model 

in Figure 2.2. 
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Figure 2.2: Simple LP model 

In this simple model, the objective function is 21 2xx + , the decision variables are 

and , and the constraints are given in the inequality form. Figure 2.3 reflects how the 

solution space is divided into a feasible region and an infeasible region. 

1x 2x

 
Figure 2.3: Solution space for LP problem in Figure 2.2 
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2.4.2 Optimization Problem Classification 

Naturally optimization problems are divided into two categories: continuous and discrete. 

Continuous optimization problems seek to solve variables that are defined in the real space. 

Discrete optimization problems refer to problems where the variables can take on discrete 

values. Within this context, the classes of optimization problems are shown in Figure 2.4.  

 
Figure 2.4: Optimization problems classification 

2.4.3 Dynamic Optimization Problems  

When the optimization problem is time dependent, it is said to be dynamic. Most real world 

applications are time dependent. When a dynamic optimization problem is being solved the 
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objective is no longer to find the optimal solution but to track the progression of the optimal 

solution throughout the solution space. In general, a dynamic problem is more complex than 

a static problem, due to the following: 

• Changes in the problem size: The solution space is time dependent, and therefore, 

the complexity of the problem is time dependent. 

• Feasibility changes: As time progresses, feasible solutions can  become infeasible 

and vice versa.  

2.4.4 Combinatorial Optimization Problems 

Combinatorial Optimization Problems (COPs) are decision problems that have a 

countable or finite number of solutions. These types of problems are encountered in everyday 

situations, particularly in engineering design. It may seem trivial to obtain the optimal 

solution for combinatorial problems simply by checking all the feasible solutions. However, 

it turns out that finding this optimal solution becomes intractable, when the number of 

variables increases. One of the challenges in combinatorial optimization is to deal effectively 

with what is known as a combinatorial explosion, where the number of feasible solution 

grows exponentially as the size of the problem increases. 

For example, consider the Traveling Salesman Problem (TSP) which is defined as 

follows. A salesman needs to visit a finite number of cities. A cost is associated with each 

path that is travelled between the two cities. The objective is to find the least costly solution 

for the salesman to visit each city only once and return to the starting city. For a problem 

with  cities, the possible routes aren 2/)!(n . Table 2.1 shows how the number of possible 
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routes exponentially increases as the number of cities increases. The running time is 

calculated, based on assumption that one could possibly enumerate 109 tours per second. 

 

Number of cities Possible routes (n!/2) Running time 

10 1.8144x1006 0.0018 sec 
15 6.5384x1011 10.89 min 
20 1.2165x1018 ~ 38 years 
25 7.75561x1024 ~ 0.245x1009 years  
30 1.32626x1032 ~ 4.20556x1015 years 

Table 2.1: Combinatorial explosion for the TSP problems 
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Figure 2.5: Combinatorial explosion 

2.4.5 Algorithm Classifications 

Combinatorial optimization problems can be solved using search algorithms. These 

algorithms are classified as either exact or approximate approaches. Exact algorithms are 

used to produce solutions that are optimal. Approximate algorithms take a different 

approach; instead of seeking the optimal solution, they aim to produce a near-optimal 

solution by using a reasonable amount of computational resources. Approximate algorithms 
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are used to solve large complex problems that the exact algorithm fails to solve in a 

reasonable time. The basic differences between the two classes are presented in Table 2.2.  

Approximate algorithms can be further classified as heuristic or meta-heuristic. Simple 

heuristic techniques, also known as Local Search (LS for short) and Hill-Climbing, operate 

as iterative improvement techniques. The improvement process is either done 

deterministically or randomly. In the LS, only the moves that result in an immediate 

improvement in the objective function are accepted. Therefore, iterative improvement 

techniques usually become trapped in a local minimum, which can be far from the global 

minimum as shown in Figure 2.6(a).  

 Exact Approximate 

Computation Time high low 

Solution Quality optimal sub-optimal 

Performance guaranteed not guaranteed 

Implementations modelling heuristic implementation 

Table 2.2: Main differences between exact and approximate algorithms 

A meta-heuristic is an iterative master process that guides the operations of the 

subordinate heuristics (usually a local search). The main characteristic of meta-heuristic 

techniques is the strategy it uses to escape the local minimum. In contrast to local search, 

which only accepts downhill moves, the meta-heuristic algorithms allows for uphill moves to 

avoid being trapped in a local minimum as illustrated in Figure 2.6(b) 
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(a) (b) 
Figure 2.6: Heuristics (LS) vs. meta-heuristics 

Various meta-heuristic search principles have been developed. Some of them have been 

inspired by nature and are modelled on processes such as annealing and evolution [7]. The 

Simulated Annealing (SA), Greedy Randomized Adaptive Search Procedure (GRASP), Tabu 

Search (TS), Genetic Algorithms (GA) and Ant Colony Optimization (ACO) [8,9], are the 

most widely applied meta-heuristics techniques for large combinatorial problems. A meta-

heuristic search process can manipulate a single solution (e.g. SA and TS) or a collection of 

solutions per iteration (e.g. ACO and GA). Each meta-heuristic technique uses a different 

strategy to guide the search, and escape from a local minimum. The goal of the meta-

heuristic technique is to efficiently explore the search space in order to find an optimal or 

near-optimal solution. Thus, the element that characterizes the meta-heuristic techniques is 

the balance between diversification and intensification. Diversification, also known as 

exploitation, is the component that allows the search process to explore the solution space. 

Intensification is the component that allows the search process to focus more on the 

promising regions.  A meta-heuristic with such a balance can quickly identify the regions in 
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the search space that have a high quality solutions, since no time is wasted in the regions of 

the search space which are either already explored or do not exhibit high quality features. 

2.5 Genetic Algorithms 

In the 1970's, John Holland introduced Genetic Algorithms (GAs) as an optimization based 

technique [10]. The continuing performance improvements of computational systems have 

made GAs attractive for some types of problems. In particular, genetic algorithms work very 

well on continuous, discrete, and combinatorial problems [11]. A GA is a search strategy that 

uses a mechanism that is analogous to the evolution of life in nature, where a set of 

individuals (solutions) go through a process of evolution. However, the process of evolution 

is not a directed process. When different individuals compete for the resources in the 

environment, those that are fitter are more likely to survive and propagate their genes to the 

next generation. Holland's GA [10] is a population- based algorithm, where individuals 

propagate themselves and their genes, based on the mechanisms of natural selection and 

genetically-inspired operators. Table 2.3 lists the analogy of the optimization problem solver 

with the natural evolution of biology.  

Genetics Optimization (GA) 

Gene Bit  
Chromosome Individual (candidate solution)  
Fitness Objective function 
Population Set of solutions 
Generation Iteration 
Evolution  Operators 

Table 2.3: Optimization solver (GA) analogy with Real biology 
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Holland’s GA is commonly called the Simple Genetic Algorithm (SGA). Crucial to the 

SGA’s proper functionality is a population of binary strings. Each string of 0s and 1s 

represent the encoded version of a solution to the optimization problem. By using the genetic 

operators, crossover and mutation, the algorithm creates, in subsequent generations, new 

individuals from the current population. This generational cycle is repeated until a desired 

termination criterion is achieved. Figure 2.7 introduces the SGA in pseudo-code. In the 

following sections, a detailed description of the components of GA is presented. 

 
Figure 2.7: SGA structure. 

Simple Genetic Algorithm ()   
 { 

Initialize population; 
Evaluate population; 
While termination condition not met  
 { 

Select solutions for next population; 
Perform crossover and mutation; 
Evaluate population; 

   } 
 } 

2.5.1 Solution Encoding 

In nature, the genetic code describes a genotype which is translated into an organism, a 

chromosome, by the process of cell division. This chromosome represents the solution of the 

problem. Different mapping strategies are used to map the chromosome. This mapping is 

called encoding or chromosome representation.  

Binary encoding is the original chromosome representation; i.e., the chromosomes consist of 

a binary string of 0s and 1s. However, there is no restriction on the encoding as long as a 

good method for the encoding and decoding exists. The encoding should include all the 

design variables. 
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For example one of the encoding strategies for mobile robot path planning is performed 

by encoding the moving directions of the mobile robot [12]. As depicted in Figure 2.8 this 

encoding moves the robot from its current position to one of the eight possible directions.  

Figure 2.8 : Path encoding (a) schema of encoding 8 possible movements of the robot. 
(b) encoding of a complete path 

011 010 001 

100 000

111 101 110 (b) 
(a) 001 010 000 010 000

2.5.2 Population 

The evolved solutions in the GA are called population. The population at a given generation t 

is called P(t). Usually, the initial population (at t = 0) is generated randomly to give the GA 

the diversity it needs to explore the solution space. However, combinations of random and 

constructive solutions are also used to produce the initial population. All the subsequent 

populations are generated according to the initial population. The population size, the number 

of individuals in the population, is a vital parameter. A large population size allows the GA 

to explore the entire solution space, but at the expense of high computational time. Generally, 

the population size should be a function of the problem type, the problem size, and the 

problem instance. However, finding a reasonable population size is not a trivial task.  
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2.5.3 Fitness 

In nature, it is the fit individuals who are most likely to survive. The mechanism by which an 

individual's fitness is measured in nature is still unknown. In the GA the fitness is calculated 

based on the objective function of the problem. Computing the fitness of the population is a 

time consuming process, since the population is evaluated by calculating the fitness of all the 

individuals. Furthermore, the evaluation process must deal with the feasibility of the 

solutions (i.e., some individuals in the population are infeasible).  There are many approaches 

to deal with the feasibility problem. The penalty approach [13] attempts to assign fitness to 

an infeasible chromosome that is worse than the fitness of any feasible chromosome. The 

repair technique seeks to fix infeasible chromosomes to maintain a fully feasible population 

at all times. 

2.5.4 The Evolution Process  

Evolution by natural selection is driven, in part, by changes in the gene structure.  These 

changes are usually random; for example during sexual reproduction, radioactivity or cosmic 

rays can damage the DNA molecule. In the GA selection, crossover and mutation are the 

basic operators that form the evolution process.  

Selection Operator 

The selection operator determines which individuals will be chosen for recombination. 

Although selection is based on fitness, the selection process is random. The most used 

selection methods are the roulette wheel selection and tournament selection [11] In the 

roulette wheel selection, also known as the fitness proportionate selection, the individual 

fitness is used to associate a selection probability; individuals with less fitness are less likely 
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to be selected. However, there is still a chance that they can be selected. For the analogy to a 

roulette wheel, imagine a roulette wheel in which each individual represents a slice on the 

wheel, proportional to the probability of selecting the individual. Figure 2.9 depicts an 

example of a roulette wheel for a population of five individuals. It is clear that individual 

number three has a higher probability of being selected, than individual number four which 

has a lower probability of being selected. 

Individual Fitness 
1 150.00 
2 212.00 
3 740.00 
4 95.00 
5 420.00  

Roulette Wheel

3, 
46%

2, 
13%

5, 
26%

4, 6%

1,9%

 

Figure 2.9: Roulette wheel 

In the tournament selection, a number of individuals are picked randomly. And the best 

among these individuals are permitted to reproduce. The fitness function does not really 

matter, as long as it discriminates well between the individuals. There are several types of 

tournament selection that are based on the tournament size, which is the number of the 

selected individuals for the comparison. The most common tournament size is two, which is 

called the binary tournament selection. 

After the selection, each selected individual is called a parent, and all the selected 

individuals make up what is known as the mating pool. 
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Crossover Operator 

Following the selection, a crossover operator is performed on the selected individuals. 

The crossover, or recombination, is the process of combining the genes of one parent with 

those of another to create offspring that inherit characteristics of both parents. The crossover 

probability, or crossover rate, is the probability of performing crossover. The chosen parent 

is paired with a mate also pre-selected for crossover. From each pair (P1, P2) of parents, two 

offspring (C1, C2) will be created that might replace their parents. 
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is variable (such as the path encoding in Figure 2.10) this operator becomes complicated; 

usually, a special operator need to be designed to overcome the side effects of this operation. 

Mutation Operator 

Mutation is preformed to give the GA the diversity it needs to explore the entire solution 

space and help prevent the population from entering a state of stagnation (i.e., the GA stuck 

in a local minimum). The GA has a mutation probability, or mutation rate, which dictates the 

frequency at which the mutation occurs. 

For each gene in each individual, the GA randomly changes the gene value at a 

frequency governed by the mutation rate. In binary strings, 1s are changed to 0s and vice 

versa. The mutation probability should be kept very low so that good building blocks are not 

destroyed. Figure 2.11 shows how the mutation operation is performed on a binary encoded 

chromosome where the bits at the positions, 6, 11, and 18 are altered. 

Before mutation 000 000 010 001 011 001 000 
Mutation bits 000 001 000 010 000 001 000 
After mutation 000 001 010 011 011 000 000 

Figure 2.11: Mutation operation 

2.5.5 Replacement Strategy and Stopping Criteria 

The replacement strategy controls how the newly generated offspring are inserted in the new 

population. The common strategies are: 

• Parent replacement:  The new offspring replaces one of its parents. 

• Random replacement: The new offspring replaces an individual, randomly 

selected from the old population.  

• Worst replacement: the new offspring replaces the worst individual. 
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Replacement is often combined with elitism. An elitism strategy ensures that the best 

generated solution(s), so far, are retained in each population. Elitism is performed so that the 

best generated so far, either replaces the worst individual or a randomly selected individual.  

The Stopping criteria, or termination condition, refers to the condition at which the GA 

terminates. The most commonly used termination condition is based on a predefined number 

of generations, of which the GA terminates. An alternative stopping criteria is based on the 

population convergence, where the GA terminates once it does not generate better solutions 

during the last x generations, where x is a predefined number. Another popular termination 

condition is based on the population diversity, or stagnation, at which the GA terminates 

after all the chromosomes have become the same (or almost the same). 

The previous discussion outlines the basics of the GA. The most important aspects, when 

a GA is designed for a specific problem, are: the solution encoding, the definition of the 

objective function, and the definition of each genetic operator. Once these aspects have been 

well defined, the GA should work fairly well. Beyond that, several approaches can be used to 

further improve the performance such as incorporating the LS, adaptively fine-tuning the GA 

parameters or even speeding up the convergence using parallel computing as will be 

discussed in the next section. 

2.6 Parallel Genetic Algorithms 

As GAs become more popular, they are applied to complex problems that can require a 

long computation time. In such cases, parallel implementations of GAs can be used to attain 

high-quality solutions in a reasonable amount of time. 
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There are several techniques for implementing parallel GAs [14,15] including the global 

single-population Master-slave, the single-population fine-grained, and the multiple-

population coarse-grained. 

2.6.1 Master-Slave Scheme 

In this type the population is centrally maintained on a single processor with slave 

processors that are used to execute only some of the GA operations in parallel as portrayed 

by Figure 2.12. The most common operation that is parallelized is the evaluation of the 

individual, where the master executes GA operators and distributes individuals to the slaves. 

The slaves evaluate the fitness of the individuals. This is highly desirable area for 

parallelization because the evaluation function is independent of the rest of the population 

and the evaluation function is the costly component of a GA. 

Figure 2.12: Master-slave parallel GA 

The advantage of this parallelization type is that there is no need for communication 

between the processes during the fitness evaluations. However, it requires a significant 

amount of communication between the master processor and its slaves, since the entire 

population must be transferred from the master to the slaves at each generation.  

Master  

Slaves 
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2.6.2 Fine-Grained 

In this scheme, the population is divided, and the GA operators are restricted to a local 

neighbourhood, as shown in Figure 2.13. This type of parallel GA is suitable for massively 

parallel computing. The scheme consists of one spatially-structured population and selection, 

and mating is restricted to a local neighborhood. However, some interaction among the 

individuals is allowed. The ideal case is to have only one individual for each existing 

processor. 

Figure 2.13: Fine-grained structure  

2.6.3 Coarse-Grained  

This approach is also known as Distributed Genetic Algorithms (DGA) and the Island-

based Genetic Algorithms (IGA). The main characteristic of this scheme is that the 

population itself is divided into subpopulations across the multiple processors. Each island 

maintains its own population and performs the evolution process locally (i.e., all the genetic 

operators and the fitness evaluations are performed on the local population). At 

predetermined times, individuals migrate between the islands; some individual(s) are 

selected from one island and exchanged with individual(s) from another island. The 

advantage of this scheme is that it eliminates nearly all the communication overhead that is 

imposed by the master-slave parallelization. Although this approach is faster, it is less 
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effective in obtaining good solutions due to the fact that smaller populations are generally 

maintained on each processor and migration is infrequent. There are several techniques by 

which the DGA is implemented. The differences among these techniques concern how the 

migrations occur and how the migrated individuals are selected. There are many possibilities 

for the structure of the migration among the subpopulations. The complete net topology and 

the ring topology, as represented in Figure 2.14 are the most typical structures.  

 
Figure 2.14: Migration structures, DGA with six islands 

It is important to notice that only the master-slave method does not affect the behavior of 

the algorithm, while other methods change the way the GA works. For example, in master-

slave, selection takes into account all the population, but in the other two methods, selection 

only considers a subset of individuals. 

2.7 Summary 

This Chapter introduces several topics including, the path planning problem, 

optimizations techniques and the complexity issues faced when solving hard optimization 

problems. The dynamic path planning problem is a difficult optimization problem and it is 
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faced in most mobile robots applications. This chapter also introduces Genetic Algorithms 

(GAs) as a tool to solve hard combinatorial optimization problems. The GA is robust and 

adaptive because it is a problem-independent search method. Furthermore, The GA provides 

multiple solutions because it is a population based approach; therefore, it is suitable for 

solving static and dynamic optimization problems. In the next chapter a complete review of 

the most common approaches to solve the path planning problem and pervious approaches 

utilized GA will be introduced. 

 



 

Chapter 3   

Literature review 

In Chapter 2 the path planning problem and the GA as a potential optimization tool were 

introduced. This Chapter presents the most common approaches to solve the path planning 

problem and describe pervious approaches utilized GA. 

3.1 Environment representation 

Before a robot can plan a collision-free path, the robot needs a model of the objects in its 

environment. There are different ways for object representation in robotic environments, [4, 

5] including the grid, the cell tree, and the polyhedral. Figure 3.1 reflects a simple 

environment representation by using these approaches.  In the grid representation shown in 

Figure 3.1(b) an array of identical cells is setup, and the cells are marked according to the 

occupancy (usually 1 (dark), if occupied; 0 (white) otherwise). This type of representation 

simplifies the computation, but requires a large amount of memory [5]. The cell tree method 

overcomes this disadvantage by using a smaller number of cells. Cells that are completely 

inside or outside an object(s) are marked as such, and the cells which are partially occupied 

by object(s) are further divided into smaller cells. The process is repeated until all cells are 

completely inside or outside the objects or the maximum resolution is reached. The 2D 

quadtree (Figure 3.1(c)) is the most widely used representation of the Cell tree class.  This 

31 
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class of representation is particularly efficient in environments that contain large objects; 

however, when the environment is occupied by small objects, this representation is wasteful 

due to the overhead of computing the adjacency of the cells. 

  
(a) Original environment. (b) Grid representation 

  
(c) Cell tree representation (d) Polygon representation. 

Figure 3.1: Environment representations approaches 

In the polyhedral representation in Figure 3.1(d) a description of each object is given by 

its set of vertices. This representation is popular, since it allows many environments to be 

closely approximated. Furthermore, this representation has the advantage that many efficient 

algorithms exist for computing the distance and line segment intersections which are the 

most important issues in path planning. 

3.2 Path Planning Approaches 

The most commonly used approaches for solving the path planning problem include the 

roadmap approach, the cell decomposition approach, and the artificial potential field 
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approach [4]. However, Most conventional approaches for solving the path planning problem 

are not performed in the physical workspace (i.e., the space in which the robot and the 

obstacles are physically present) but in the configuration space, denoted as the Cspace, 

which was first introduced by Lozano-Perez and Wesley in 1979 [16]. The Cspace is a 

topological space that is generated by the set of the all possible configurations. Each 

configuration corresponds to a transformation that can be applied to the robot. Complicated 

problems such as determining how to move a piano from one room to another in a house can 

be reduced by using the Cspace concepts to determine a path for a point in the Cspace. In 

other words, the piano (3D rigid body) becomes a moving point in the Cspace. 

The Cspace consists of two sub spaces; namely the obstacle space (Cobstacle) and free 

space (Cfree).  The Cobstacle is a set of infeasible configurations whereas the Cfree is a set 

of feasible configurations. All motion planning problems become equivalent once the Cspace 

is formulated. The key difference between the conventional path planning approaches is the 

methodology by which the Cspace is searched in order to find the global path. The most 

commonly used search strategy is the graph search strategy. The Cspace is formulated using 

different techniques; however, computing the Cspace itself is computationally expensive 

[17,18].  

3.2.1 Roadmap Approach 

The roadmap approach, also known as the skeleton, or the freeway approach, is one of the 

earliest path planning methods [19] that has been widely employed to solve the shortest path 

problem. The approach is based on capturing the connectivity of the robot's free space in the 
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form of a network of 1-D curves, as denoted in Figure 3.2. In this approach, the Cspace is 

used and the key feature of this approach is the construction of a roadmap or a freeway.  

  
(a). (b) 

  
(c) (d) 

Figure 3.2: Roadmap approach. (a) initial robot environment, (b) nodes as generated 
using trapezoidal map, (c) connectivity graphs connecting each adjacent nodes,  and (d) 

search algorithm is applied to find a free path 

Two phases are involved in the roadmap approach: the pre-processing phase and the 

query phase. The construction of the roadmap is performed in the pre-processing phase, 

where a graph whose set of vertices includes the source point and the goal point, and an edge 

is formed between the two vertices, if the edge is completely in the Cfree. There are different 

approaches to construct the roadmap [4, 5]. The visibility graph, voronoi diagram and 

trapezoidal map [20] as illustrated in Figure 3.2 are the most popular techniques. 

Searching the roadmap for a free path is performed in the query phase. In this phase a 

search operator is used to connect the source vertex with the goal vertex. The roadmap is 

classified as a complete approach, (i.e., it finds a free path, if one exists.) however, other non-

complete (probabilistic) variations exist for constructing and searching the roadmap [21]. 

Probabilistic roadmaps in general improve the speed of the algorithm. However, the principal 
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disadvantages of the roadmap approaches are: (i) the roadmap goal is to find a free path (not 

an optimal path or near-optimal), (ii) it is complex and not suitable for dynamic 

environments due to the need for reconstructing the roadmap whenever a change occur.  

3.2.2  Cell Decomposition Approach 

In this approach, the Cfree is decomposed into cells, and a connectivity graph is constructed 

whose vertices and edges represent these cells and their adjacencies.  Again, a search 

operator is used to connect the source point with the goal point in the constructed graph. The 

decomposition is either exact or approximate. 

(a)  (b)  

(c) (d) 

Figure 3.3: Exact cell decomposition. (a) initial environment (b) composing the Cfree 
into trapezoidal and triangular cells (c) construction of the connectivity graph (d) path in the 

connectivity graph determines the channel in the Cfree. 

Exact cell decomposition generates a set of cells that completely fills the Cfree. The 

generated cells are complicated due to their irregular boundaries. Figure 3.3 illustrates the 

concept of the exact cell decomposition in a 2D Cspace. The exact cell decomposition is 
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considered complete, but this accuracy is a more difficult mathematical process for which the 

computational time is high, especially in crowded environments. 

To effectively reduce the computational complexity, approximate cell decomposition 

(also called the quadtree (see Section 3.1)) is utilized. Approximate cell decomposition is 

performed by recursively decomposing the Cspace into smaller cells in steps, each generating 

four identical new cells. This decomposition continuously subdivides the cells until an 

arbitrary resolution limit is reached or each cell lies completely in either the Cfree region or 

in the Cobstacle region. Following decomposition, a free path can then be easily found by 

following the adjacent, as illustrated in Figure 3.4. 

(a)  (b)  

Figure 3.4: Approximate cell decomposition. (a) Cspace, (b) approximate decomposition 
and the free path 

Approximate cell decomposition is not as expensive as exact cell decomposition, and 

can yield similar, if not exactly, the same, results as those of the exact cell decomposition. 

However, cell decomposition approaches are not suitable for dynamic environments due to 

the fact that a new decomposition must be created whenever changes are reported.   
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3.2.3 Artificial Potential field approaches 

The artificial potential field approach is based on a grid representation, by discretizing 

the space into a fine regular grid of configurations. This approach involves modeling the 

robot as a particle, moving under the influence of an artificial potential field whose local 

variations are expected to reflect the structure of the environment. The potential field method 

is based on the idea of attraction/repulsion forces. The attraction force tends to pull the robot 

toward the goal configuration, whereas the repulsion force pushes the robot away from the 

obstacles. At each step, the force, generated by the potential function at the current 

configuration, changes the direction and moves incrementally to the next configuration. The 

artificial potential field concept was first introduced by Khatib [22] as a local collision 

avoidance approach, which is applicable when the robot has no prior knowledge about the 

environment, but the robot can sense the surrounding environment during motion execution. 

The major disadvantages of this approach is that the robot can become stuck in a local 

minimum, since this approach is local rather than a global (i.e., the immediate best course of 

action is considered). Escaping the local minimum is enabled by constructing potential field 

functions that contain no local minimum or by coupling this method with some other 

heuristics technique that can escape the local minimum [23]. The artificial potential field 

approach can be turned into a systematic motion planning approach by combining it with 

graph search techniques [4]. 

3.3 GA Based Path Planning 

Although most conventional and graph search approaches provide a good solution (optimal 

with respect to the traveling distance criterion), they have several disadvantages, the 
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approach lack the capability to cover all the mobility constraints, and can not be directly 

utilized in dynamic environment [5].  

Since GAs are powerful for searching large and complex spaces [11], a number of 

researchers have employed them to solve the path planning problems [24]. Yuval Davidor 

[25] has used a variable-length chromosome representation to solve the path planning 

problem for an arm manipulator. Davidor has introduced a specialized genetic operator, 

which he called the analogous crossover, to deal with the problems of the order based and 

variable-length chromosomes. In contrast to the standard crossover operator which 

determines the corresponding cross points according to their respective position in the 

genome, the analogous crossover uses the candidate chromosome structure to find the cross 

point position. The disadvantages of this approach are: (i) it does not operate in the entire 

working space, (ii) it is not applicable in dynamic environments 

Shibata et al. [26] developed a path planner for multiple autonomous robots by using two 

GAs. Initially, a GA is applied to each robot. Here, the robots explore the solution space, and 

attempt to find a feasible near-optimal path. This technique is referred to as selfish planning. 

The second GA selects the most explored path(s) by coordinating the robots to avoid 

collisions and dead-lock, and to maintain the minimum cost path. This is referred to as 

coordinative planning. Shibata et al. have adopted MAKLINK graph, proposed by Habib and 

Asama [27], to model the environment of the robot. This graph is based on the free-link 

concept to construct the free space within the robot environment in terms of the free convex 

areas as shown in Figure 3.5.    
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(a) (b) 

Figure 3.5: MAKLINK Graph: (a) environment with obstacle and free convex area, and 
(b) a graph representation of the mobile environment  

Following the construction of the graph as seen in Figure 3.5 (b), the edge lengths of the 

graph are used to calculate the fitness. The path selfish planning is encoded according to an 

order of points so that a path passes each point in the graph only once, and the point is 

selected randomly. Specialized crossover and mutation operators are implemented to deal 

with the variable-length encoding. The fitness evaluation is based solely on the minimum 

path length (i.e., energy, smoothness, and safety are not considered.) Although the GA can 

obtain an optimal path 22% of 50 runs for the same problem instance, the work has not been 

further investigated for complex tasks nor in dynamic environments. The same planner was 

further improved in [28] by adding fuzzy logic for the path evaluation which is referred to as 

a Fuzzy Critic. However this approach does not operate in the entire working space and can 

not be directly applied in dynamic environments.     

In [29], a mobile robot path planning in a 3D grid with dynamic obstacles was 

investigated. A genetic string of variable-length is used; the robot path is coded as a string of 

 points, represented by their Cartesian coordinates. The point values are stored in binary n
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form. This approach uses grids and limits the robot to move in one of eight possible 

directions, as shown in Figure 2.8a. The individual fitness is computed based on the path 

length, traversing energy, and traversing time. But this approach does not operate in the 

entire free space, and does not take into account mobility constraints. 

Hoi-Shan Lin et al. [30] propounded the evolutionary navigator (EN) which combines 

offline and online planning, this was the first publication of this project which was later 

known as EP/N (Evolutionary Planner/Navigator) as presented in [31]. In contrast with the 

previous attempts the EP/N is empowered more by domain-specific knowledge and a 

continuous search map. The EP/N, based on the knowledge that is acquired from sensing the 

local environment, represents a candidate path with a chromosome representing a path of 

nodes that are connected by line segments.  

The evaluation function is designed to accommodate path length, smoothness, and 

safety, and a penalty for the infeasible paths; the worst feasible path is fitter than the best 

infeasible path. Six GA operators are introduced in the EP/N (crossover, mutation 1, 

mutation 2, insertion, deletion, and swap). Some of these are completely random-based, but 

others incorporate domain-specific knowledge. Each operator has a performance index [32] 

that is based on the operator's effectiveness with respect to: the number of times the operator 

results in improvement per the number of times the operator applied, the required time to 

apply the operator, and the average time of the increase or decrease gained for all operators 

on the average change in the number of nodes. This performance index affects the operator's 

probability, and therefore, the algorithm self-tunes its performance. 

EP/N performance on dynamic environments is enhanced by adding memory to the 

algorithm. Trojanowski et al. [33] used a local memory where each individual has its own 
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memory buffer. The buffer size is constant during the evolutionary process and initially the 

buffers are empty. The new generated individual is appended to the buffer if it improves 

upon the previous solution quality. The memory is recalled in the online process, whenever 

the robot encounters a new obstacle. Each chromosome and its memory(s) are re-evaluated; 

if any of the remembered chromosomes are better than the currently active chromosome then 

they are swapped with the current one to become active. The main drawbacks of the EP/N 

are that it does not operate in the entire space, and it does not include all the mobility 

constraints.   

Chen and Zalzala [34] applied GAs to solve the path planning problem for a mobile 

robot with safety criteria. They use the grid method by cell decomposition for the 

environment representation. Two numerical potential fields in the work space are used: one 

for the goal which represents the minimum distance value from the goal to a node, and the 

other is the value from the boundary of the closest obstacle to the node. A chromosome is 

encoded as a string of variable nodes, represented by their Cartesian coordinates. The 

numerical potential fields' values are used for evaluating the paths, where safety and traveling 

distance are considered. A special crossover operator, which is identical to other approaches, 

is designed to deal with the variable-length coding, however, the mutation differs. A node in 

a given path is selected randomly with a very small probability then, all the nodes, after the 

selected node, are deleted and new nodes are randomly generated. The drawbacks of this 

approach are: it does not operate in the entire space, since it uses a grid by cell 

decomposition, and it does not utilize domain-specific knowledge. 

Gemeinder and Gerek in [35] employed a map that involves binary assignment of the 

topography's quality. The environments is represented as a grid, where each entry in the 
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environment is a real value, indicating various amount of energy, which is needed if the robot 

moved through a specific region. This energy factor must lie in the interval between 0 and 1, 

for which 1 indicates that this entry cannot be used. The chromosome is encoded as a 

sequence of movements in these environment grids. The initial population is filled with 

sinusoidal shaped paths with random amplitudes and bent sides (left and right). After the 

paths are evaluated according to length and energy consumptions the detour operator is 

introduced for an active search. The worst feasible path is considered fitter than the best 

infeasible path. In addition of the disadvantages of the grid representation, this approach does 

not consider dynamic environments and the mobility constraint are not considered. In 

addition, the authors have not demonstrated the performance of the algorithm on large 

benchmark problems. 

3.4 Summary 

This chapter reviews the common approaches to solve the path planning problem; these 

approaches have several disadvantages which include their computational complexity and 

their disability to solve the problem in dynamic environments. The chapter also reviews 

previous work that utilizes the GA for solving the path planning problem. However, most of 

these approaches are not scalable and also not suitable for dynamic environments. This thesis 

will attempt to introduce a methodology that is capable of solving the problem effectively 

and efficiently.  

 

 



 

Chapter 4  

 

Genetic Algorithm Planner (GAP) 

In the previous chapters, several techniques to solve the path planning problem were 

introduced and Genetic Algorithm was a candidate technique to solve the problem 

efficiently. In this chapter, a description of the proposed Genetic Algorithm Planner (GAP) is 

given. The analysis of the results in both static and dynamic environments is presented. 

Finally, the details and the results of the implemented Island-based GA (IGA) are presented 

in this chapter.  

4.1 Problem Definition 

Given a point mobile robot in a two-dimensional environment with stationary obstacles find 

a path for the mobile robot to move from its current position to its final destination. The path 

should be:  

• Collision-free: there should be no collision with any obstacles. 

• Short: i.e., the traveling distance is the minimum.  

• Safe:  a maximum clearance distance should be adhered to. 

• Smooth: there should be a minimum curvature.    

 

43 
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4.2 The Algorithm 

In this section, a complete description of the algorithm is presented, including the 

presentation strategy, fitness evaluation, evolutionary operators, replacement strategy and 

termination criteria. 

4.2.1 Environment Representation 

In this thesis, the polygonal representation is selected for the following reasons: (i) it 

provides a good approximation of the environments [5], (ii) It requires less space (memory) 

with respect to the grid representation, (iii) it provides flexibility for generating the shorter, 

and smoother paths, and (iv) path feasibility can be checked by using efficient and simple 

geometric algorithms [36,37]. 

The environment is rectangular (usually referred to as the map boundary) with polygonal 

obstacles that are represented by the ordered list of its vertices. As displayed in Figure 4.1 

Obstacle segments are constructed by connecting these vertices, starting with the first vertex 

and ending with the last vertex; Thus, the number of line segments and the number of 

vertices are equal for any given obstacle.     
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Figure 4.1: Obstacle representation 
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4.2.2 Chromosome Representation 

As illustrated in Chapter 2, the chromosome representation or encoding is one of the most 

critical issues when a GA technique is used. The solution, represented by a chromosome, is a 

sequence of ordered positions, starting at the initial point and ending at the goal point. 

Consequently, different solutions may have a different number of sequences, (therefore, a 

variable length chromosome, representing a solution, was selected). A linked list data 

structure is used, as illustrated in Figure 4.2. 

 
Figure 4.2: Chromosome representation  

Each gene in the chromosome contains the x and y coordinates of the path node. The 

first node contains the starting point coordinates, or the robot's current location, and the last 

node contains the goal point coordinates. The number of intermediate nodes (knot nodes) is 

variable. Figure 4.3 shows an example of the different paths for the same task.  

struct path_str { 
double x,y; 
struct path_str* next; 
}; 

xn ynx2 y2y1x1
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Figure 4.3: Two paths generated for the same task. 

In this dissertation, a floating point data type is used for the x, y coordinates. Although 

floating point operations are more complex than integer and binary ones, the former gives 

more flexibility for searching the entire space and accommodating the changes in the robot 

location. As a result, when navigating errors in the robot position occur the algorithm can 

easily adapt to the current location with no additional map adjustments.  

At this stage, it is useful to introduce a terminology chart to familiarize the reader with 

the terms that are used for this thesis. 

Technical Term Description 

Free space The space in the environment with no obstacles 
Occupied space The space in the environment occupied by an obstacle 
Infeasible point A point inside the occupied space 
Feasible point A point outside the occupied space 
Infeasible segment A line segment intersecting with an obstacle 
Feasible segment A line segment not intersecting with any obstacle 
Infeasible path A path has at least one infeasible segment or one infeasible node 
Feasibility ratio The ratio between the number of feasible paths and infeasible paths 
Knot nodes Intermediate nodes in the path 
Collision  number  The number of obstacles intersecting with the path 

Table 4.1: Algorithm terminology. 
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4.2.3 Initial Population 

The initial population is generated randomly. The number of nodes in any given path is 

assigned arbitrarily, and bounded between three and the average number of vertices in the 

environment. The knot nodes coordinates are also generated randomly and only feasible 

nodes are chosen. Figure 4.4 shows a sample initial population. 

 
Figure 4.4: Randomly generated paths. 

4.2.4 Path Evaluation 

The value of the objective function determines the path cost of a chromosome; therefore, all 

the objectives of the problem must be taken into account. Since a chromosome can be either 

feasible or infeasible, two evaluation functions are designed. The evaluation functions, 

introduced by [31], are utilized here with modifications.  

Feasible Path Evaluation 

To achieve a good approximation of the feasible path cost, safety, time and energy are 

considered to be the primary factors. A path that is located away from the surrounding 

obstacles is considered to be safe. Shorter paths are executed faster and require less energy. 
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Most mobile robots need to consider smoothness as a constraint because of the bounded 

turning radius. Smoothness can also be included as a factor in the time and energy objectives, 

because smoother paths are executed in less time and consume less energy. A feasible P with 

n nodes is evaluated by a linear combination of these factors as follows: 

)( . )( . )( . )(cos pclearwpsmoothwpdistwpt csdf ++= . (4-1)

Figure 4.5: Path cost calculations 

This is a multi-objective function, where wd, ws and wc represent the weight of each 

objective to the total cost. The remaining parameters are defined as follows: 

1. dist(p) is the total path length, and is computed by the following equation: 

 ),()( 1
1 1∑ −
= += n

i ii mmdpdist , (4-2)

where is the distance between node  and  ),( 1+ii mmd im 1+im

2. smooth(p) is  the path smoothness and it is calculated as follows: 
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where [ ]πθ ,0∈i  represents the angle between the two line segments, connecting the ith node. 

The parameter α is the desired steering angle and ''a'' is referred to as the map coefficient 

which is a problem dependent and is defined as follows: 

)2 ,
*2

(
AO

AMAXa =  (4-4)

Where A is the total map area, and OA is total obstacle area. The smoothness and 

clearance factors increase for simple environments, whereas this coefficient becomes small in 

crowded environments.   

3. clear(p) is  the path clearance and is calculated as follows: 

∑ −
=

−= 2
1

)()( n
i

igaepclear τ , (4-5)

where gi is the shortest distance between the ith segment and all obstacles, and τ is the desired 

clearance distance. Figure 4.5 illustrates all the components of the feasible path evaluation 

function.  

Infeasible Path Evaluation 

Different strategies can be used to compute the cost of infeasible paths. The evaluation 

criteria of the infeasible path can include the following: 

• the number of intersections with obstacles, 

• the ratio between the number of feasible segments and the number of infeasible 

segments, 

• the depth of the intersections,  
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• the length of the infeasible segments.  

Since the fitness evaluation is the most expensive component in GA, the evaluation 

function for the infeasible paths is designed so that it is easy to compute and give a 

reasonable ranking to the infeasible paths. The infeasible path is evaluated as follows: 

)(cosmax)()()(cos jf
Fjp

kkku ptpppt
∈

++= ηµ , (4-6)

where )( kpµ is the total number of intersections with obstacles, and )( kpη  is the average 

number of intersections for each infeasible segment. The last factor in equation (4-6) 

represents the worst feasible paths, and is included to make the latter better than the best 

infeasible path. By adding this factor the feasible path are fitter than any infeasible path and 

therefore, feasible paths are more likely to be selected for recombination. Figure 4.6 signifies 

two different infeasible paths whose cost values is computed as follows: 

4)( 1 =pµ , 2)( 1 =pη ; i.e., 6)( 1 =pCost  and 

2)( 2 =pµ , 2)( 2 =pη ; i.e., 4)( 2 =pCost . 

Therefore, P2 is fitter (it has less cost) than P1, in other words, P2 has a lower level of 

infeasibility, and it is more likely to generate a feasible offspring. This example is introduced 

to illustrate the feasibility/infeasibility concept; however, there might be scenarios where a 

more infeasible path is more likely to be feasible. 
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Figure 4.6: Two infeasible paths 

 

4.2.5 Genetic Operators 

This section describes the six operators used in the GAP: selection, crossover, mutation, 

repair, shortcut, and smooth. 

Selection Operator 

Since the population can contain both feasible and infeasible paths whose cost is always 

greater than all the feasible paths, the tournament selection method is considered as the 

selection strategy. With this method, an infeasible path still has a good chance to be chosen 

for recombination and is less expensive than other selection schemes. The tournament size in 

this implementation is two (i.e. the binary tournament selection).   

Following the selection process, five operators are used to evolve the selected paths. The 

application of each operator is controlled by a certain probability.  

Crossover Operator 

The crossover operator is primarily responsible for the improvements in fitness by 

recombining two solutions into two new paths. Since the chromosome length for this 

problem is variable, there can be a different number of nodes in the two parents. Therefore, 
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traditional crossover operations cannot be used. The crossover operator is designed as 

follows. Each of the two parents (P1, P2) is divided into two parts. The first part of P1 is 

combined with the second part of P2, and the first part of P2 is combined with the second part 

of P1. This operation is illustrated in Figure 4.7. 

 
(a)   (b)   (c)   

d d d 
b' b' b' 

Figure 4.7: Crossover operation. (a) Crossover positions, (b) Divided paths, (c) New 
combined paths. 

Mutation Operator 

Mutation, viewed as a background operator, has a secondary role to recover genes lost by the 

crossover operator [10]. However, mutation plays a more important role to fine tune and 

further explores the solution space simultaneously [38]. 

This operator is applied to both feasible and infeasible paths and is implemented as 

follows. The coordinates of the selected node (x, y) for this operation are changed by (∆x, 

∆y), as illustrated in Figure 4.8. The change range ∆x and ∆y is dynamically varied according 

to the number of feasible paths in the population. If feasible paths do not exist in the 

population, the new coordinates can be anywhere in the workspace; otherwise, they are 

changed to the nearby coordinates, and as the feasibility ratio increases, the value of ∆x and 

∆y decreases. 

a b 

c c c 
c' c' c' 

a a b b 
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Figure 4.8: Mutation operator 

Repair Operator 

The application of crossover and mutation operators tends to create improved feasible and 

infeasible solutions. However, for complex problems, crossover and mutation alone may not 

be enough to generate a feasible solution. Therefore, a repair operator is introduced to ensure 

problem feasibility by acquiring problem specific-domain knowledge. The repair operator 

introduces new knot nodes that render the newly generated segments feasible. Two repair 

operators are designed namely random repair and exact repair. 

Random Repair: 

This operator generates and insets a random feasible point near an obstacle based on the 

following criteria:  

1. At least one of the two new line segments is feasible; 

2. The number of infeasible segments is reduced; and 

3. the number of collisions is reduced.  

This operation is repeated, until all the segments become feasible, as illustrated in Figure 

4.9, or the number of the inserted nodes exceeds the maximum allowable number set. The 

maximum allowable number is relative to the problem size, and is set to the average number 

of vertices per obstacle. 
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Figure 4.9: Random repair operator 

Exact Repair: 

Although the random repair operator can be effective in providing feasible solutions, it 

fails to repair paths for complex problems (e.g., a maze). Consequently, an exact repair 

operator is introduced to manoeuvre around an obstacle by tracing the obstacle vertices, as 

depicted in Figure 4.10. 

 

Figure 4.10: Exact repair operator 

Shortcut Operator 

This operator, illustrated in Figure 4.11, is applied to both feasible and infeasible paths. The 

objective is to delete the intermediate node (or nodes) between a selected pair if the line 

segment that is connecting that pair is feasible. When this operation is applied to feasible 

paths, the deletion is accepted if the new line segment curvature is better than the worst 

curvature in the initial path. This condition is set so that the shortcut operator does not 

override solutions obtained by the smooth operator.  
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Figure 4.11: Shortcut operator 

Smooth Operator 

This operator smooths the feasible path by cutting the corners of sharp turns. The operator 

inserts two new nodes on the path segments, connected to the selected node, and the latter 

node is deleted, as indicated in Figure 4.12. 

 
Figure 4.12: Smooth operator 

4.2.6 Replacement Strategy and Stopping Criteria 

For the replacement strategy, two techniques are investigated: the parent replacement and the 

worst replacement. In the parent replacement, the new offspring replace their parents, 

whereas in the worst replacement the new offspring replace the parent if the new offspring is 

fitter. 

For the stopping criteria, the algorithm is terminated either after a given maximum 

number of generations, or if the algorithm fails to converge to better solutions during a given 

number of generations. 
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4.3 Dynamic planning 

Optimization in a dynamic changing environment is a difficult problem. The change in the 

environment is more likely to alter the solution landscape, and therefore, reposition the 

global optimum. The key to successful GA implementation for dynamic problems is ensuring 

population diversity during the search process [39]. Since GA might converge to a single sub 

optimal solution and therefore, losses its explorations capability. This diversity can be 

guaranteed by using one of these techniques: introduce new random solutions during the 

search, run the algorithm with a low convergence rate, and use a memory to recall previously 

visited solution(s). These techniques are utilized in this research and four approaches are 

implemented. 

1. Random Immigrants (RI) 

In this approach, diversity is ensured by injecting randomly generated individuals to the 

population at a fixed rate. The Random Immigrants (RI) approach may seem impractical, 

because newly generated individuals cannot survive in a population that has some super fit 

individuals. However, the binary tournament selection is used in this implementation so that 

unfit chromosomes still have a good chance of being selected for recombination.  

2. Low Convergence (LC) 

If the GA converges to a sub optimal solution quickly, the algorithm loses its exploration 

capability.  A Low Convergence (LC) refers to running the GA with low crossover rate and 

high mutation rate respectively. However, the strategy used in this approach is based on 

having a high mutation range (∆x and ∆y) independent of the population feasibility. 
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3. Memory (M) 

In general, the Genetic Algorithm retains a set of individuals in a certain generation. After 

each evolution process the GA replaces the current individuals with newly evolved 

individuals. As time proceeds the GA loses all previously visited solutions and may become 

stuck in a local minimum.  Memory (M) forces the GA to recall the visited solutions during 

the search process. The main problem with this approach is that the information that the GA 

needs to memorize is not identified, nor is the size of the memory determined. For many 

types of combinatorial optimization problems, a special memory needs to be designed to 

efficiently memorize the visited solutions. 

For the path planning problem, the topological diversity introduced in [40] is utilized 

here. The concept of topological diversity among paths is simple. Two feasible paths are 

considered similar, if and only if the polygon, formed by these two paths, is a collision-free 

polygon (i.e., no obstacles lie inside the polygon) as illustrated in Figure 4.13. The similarity 

is checked by forming a polygon ψ using the two paths being tested, and verifying the 

collision of ψ with all the obstacles in the environment. Each obstacle in the environment is 

tested by checking only one of its vertices for a collision with ψ.  If the selected vertex is 

inside ψ, then a collision with this obstacle exists, and these two paths are considered diverse. 

However, if none of the obstacles collides with ψ, then the two paths are similar. 

  
(a) Similar Paths (b) Different Paths 

Figure 4.13: Path similarity 
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After grouping the paths, only the best path of each group is memorized, and those 

memorized paths are re-evaluated and injected, whenever a change occurs in the 

environment. 

4. Memory with Random Immigrants (MRI) 

Combining Memory with Random Immigrants (MRI) gives the GA more balance 

between exploration and exploitation. This technique is investigated by adopting different 

frequency rates for the memory recalling and the random immigrant's injection.    

4.4 Experimental setup 

The GAP is implemented in the C programming language and compiled under 

Solaris/Windows operating systems. Unless it is indicated, all the runs were conducted on HP 

workstation x2100, which has an Intel Pentium processor running at 2.4 GHz with 1 GBytes 

of main memory. This workstation is running Microsoft Windows 2000 Professional. Two 

ASCII input files are used: the benchmark file, which has the all problem attributes, and the 

task file which has the task attributes and the algorithm input parameters. The benchmark file 

structure is described in Appendix A.  

Since the GA depends heavily on randomness, a robust random number generator is 

essential. The Mersenne Twister1 is recognized as one of more robust pseudo-random 

sequence generators; accordingly, it is used in this dissertation.  

                                                 
1 http://www.math.keio.ac.jp/home2/matumoto/public_html/emt.html
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The random number generator depends on a number called the seed (used to set the 

random starting point for generating a series of uniform random numbers).  

In order to obtain a good analysis of the algorithm, a testing set must be defined. The 

testing set is composed of both simple tasks and difficult tasks. The decision is made to have 

the same boundary size for the test set, but with different obstacle numbers, sizes and 

arrangements. The designed set in Figure 4.14 is used to analyze the algorithm. The dynamic 

environments are simulated by introducing new obstacles during the search process.  

   

   
map1 map2 map3 

   

Figure 4.14: Selected Test Set  

4.5 Sensitivity of GA Parameters 

The objective of this section is to analyze the algorithm behaviour, and fine-tune the GA 

parameters for further testing. Since the GA is a stochastic technique like all other meta-

heuristic techniques, conclusions can not be drawn from a single run. All the results are 

based on the following: for each configuration, a number of runs (ten unless otherwise stated) 

are performed for the same configuration, but each run is supplied with a different seed 

number. The best cost, average cost, worst cost, and the average CPU time are registered for 

these runs (all the CPU times are in seconds).  
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4.5.1 Fitness Parameters 

In any generic Genetic Algorithm implementation the fitness function is the only part of 

the algorithm that determines the quality of the search. In this implementation, a multi-

objective fitness function that consists of the length, clearance and smoothness of the path are 

the objectives that form the fitness of the path. The parameters that determine the preferred 

paths are the weight of each objective (wd, ws and wc), preferred clearance (τ), and the 

preferred steering angle (α). Since these parameters affect the fitness function (path cost), 

displaying the path cost as a number will not aid in analyzing the algorithm; as a result, 

visualization has been selected to show the influence of these parameters at this stage. For 

each run, the best path is displayed for the selected set of parameters. 

Figure 4.15 conveys the influence of the preferred clearance on the solution. It is evident 

form the figure that as the clearance parameter increases, more safe paths are generated as, 

shown in Figure 4.15(d).  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.15: Influence the preferred clearance parameter (τ): (a) τ = 0, (b) τ =1,(c) τ = 2, 
and (d) τ = 4 
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Figure 4.16 exhibits the influence of the preferred steering angle on the solutions.  It is 

clear from Figure 4.16(d) how a smaller steering angle generates smoother paths.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.16: Influence of the preferred steering angle parameter (α),  (a) α = 90o,          
(b)  α= 45 o,   (c) α= 20 o, and  (d) α = 5 o 

4.5.2 Population Size  

The population size is one of the main critical factors that determine the performance of any 

GA implementation. Obviously, when the population size is large, the possibility of 

obtaining a better solution is increased, However, GA will need additional time and space, 

thereby increasing the algorithm complexity. Thus a trade off between the solution quality 

and the solution cost is necessary. There is no rule of thumb that helps in setting the 

population size in a GA (the population size varies with each type of problem). In most cases 

though, the population size should be relative to the problem size; as the problem size 

increases, the population size should increase accordingly (i.e., more individuals are needed 

to search the large solution space). 
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Preliminary tests indicate that a small population size (between 10 and 50) provides a 

high quality solution in a reasonable time. To illustrate how the population size affects the 

computational time, the selected test set is solved by using different population sizes (4 to 

52). The best and the average of 20 runs is computed for each population size. Table 4.2 lists 

these results for map2. It can be seen that the population size does not affect the solution 

quality in the same way that it affects the computational time. For all tested problems, it is 

discovered that after a certain population size, there is no significant gain in the solution 

quality. However, there is a significant increase in the computation time. This observation is 

supported by the charts of the population effect for the three benchmarks in Figure 4.17 and 

Figure 4.18 respectively. The relation between the population size and computation time can 

be approximately fitted to a linear relation in Figure 4.18. It is clear from the charts that a 

small number of individuals (from 10 to 30) is reasonable for solving the different 

benchmarks. 

 

Table 4.2:  Best, average and CPU time vs. population size (map2)  

Population 
Size Best Average CPU Time 

(Sec) 

4 99.20 12526.68 1.39 
8 98.38 156.64 1.61 

12 80.15 119.51 1.94 
16 87.72 117.20 2.42 
20 80.79 105.13 2.76 
24 86.13 111.31 2.97 
28 87.62 107.15 3.11 
32 80.07 103.99 3.37 
36 80.15 101.09 3.66 
40 80.79 92.06 3.77 
44 80.07 95.08 4.09 
48 80.79 99.33 4.43 
52 80.15 97.87 4.95 
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Figure 4.17: Population size effect on solution quality  
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Figure 4.18: Population size effect on algorithm complexity 

4.5.3 Operators probability 

In any GA implementation it is important to show the influence of each operator on the 

algorithm performance. The operator's effect on the system is determined by changing the 

operator's rate while fixing other operators' rates. In this procedure, for each setting the best, 
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the average, and the worst are calculated for 20 runs by using a fixed termination condition in 

all the runs.   

Crossover and Mutation Operators 

Crossover and mutation are standard operators for any classic GA. The effect of these 

two operators is determined, while all the knowledge-based operators (repair, shortcut, and 

smooth) are disabled (i.e., their rate value is set to be zero). Each operator's rate is changed 

from 0.1 to 0.9.  

Figure 4.19 plots the crossover rate versus the average path cost of the conducted runs 

for the three maps; note that in this chart, the average path costs are normalized for each 

benchmark. Figure 4.19 illustrates how the crossover affects the algorithm performance. In 

the traditional GA, the general rule is to set the crossover rate at a high value (e.g. 95%). In 

contrast an intermediate value (50%) yields a better result for most benchmarks.  
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Figure 4.19: Crossover rate vs. average path cost (mutation fixed at 10%) 
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Figure 4.20: Mutation rate vs. average path cost (crossover fixed at 50%) 

The effect of the mutation rate on the solution quality is shown in Figure 4.20. It is 

obvious that a higher mutation rate is more likely to produce better solutions. This can be 

explained by picturing the population status during the evolution process. Figure 4.21 and 

Figure 4.22 show the population at different generations for different mutation values, where 

T refers to the generation number and the crossover rate is fixed at 50% for the two runs. The 

population diversity is lost at the low mutation rate at which most of the population 

converges to a sub-optimal path as shown in Figure 4.21(d). On the other hand, at a high 

mutation rate there is always diversity in the population, as shown in Figure 4.22, which 

gives the GA more exploration capability. However, the nature of this operator in this 

implementation is also to fine-tune solutions, as the population feasibility increases. Since a 

balance between exploration and exploitation is always needed to obtain good quality 

solutions, the mutation rate was set at 50%.  
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(a) T = 0 

 

 
(b) T = 10 

 
(c) T = 20 

 
(d) T = 30 

Figure 4.21: Population snapshots, mutation = 10% 

 

 
(a) T = 0 

 

 
(b) T = 10 

 
(c) T = 20 

 
(d) T = 30 

Figure 4.22: Population snapshots, mutation = 90% 
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Repair Operator 

In some complex and structured environments, the GA traditional operators (crossover and 

mutation) tend to produce infeasible solutions. Therefore, the repair operator is introduced to 

ensure feasibility. Since the repair operator uses the obstacle vertices to repair any given 

segments, it can be said that this operator complexity is O(n) where n is the number of 

vertices. The effect of the repair operator in map3 is recorded in Table 4.3. The average and 

the best are plotted in Figure 4.23. A convergence curve for the average path cost of the 20 

runs for each configuration for map3 is shown in Figure 4.24. The convergence for any of the 

runs with the repair operator is much faster than the convergence without the repair operator. 

Figure 4.25 shows the repair rate versus the average gain in the fitness and the CPU time 

increase. Finally the effect of this operator on the solution quality for the selected 

benchmarks is highlighted in Figure 4.26.  

Repair 
Rate Best Worst Average Std Time 

0% 78.27 172.62 113.22 23.60 1.37 
10% 68.05 151.88 81.93 26.61 4.23 
20% 59.49 108.29 70.10 12.63 14.20 
30% 59.49 112.05 73.37 14.59 23.40 
40% 61.59 105.42 68.99 8.79 42.00 
50% 60.07 68.05 66.01 2.75 43.00 
60% 59.71 136.73 69.53 16.05 58.80 
70% 59.69 68.05 66.44 2.43 67.30 
80% 63.87 96.93 68.82 6.85 71.50 
90% 64.13 68.05 66.49 1.95 83.50 
100% 63.87 83.58 67.25 4.31 86.10 

Table 4.3: Repair operator effect on map3 
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Figure 4.23: Effect of the repair operator (map3) 
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Figure 4.24: Average of best so far for the shown configuration (map3) 
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Figure 4.25: Repair effect on the gain of the average cost and CPU time (map3) 
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Figure 4.26: Repair operator vs. average cost 

From the given data it is obvious that the repair operator affects both solution quality and  

CPU time. Setting the repair rate at a high value guarantees a higher CPU time and does not 

guarantee a high quality solution, as can be seen in Figure 4.25. This is attributed to the 

following: as the population feasibility increases, the exploration mechanism decreases, and 
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the exploitation mechanism is increased by the mutation operator. Therefore, a repair ratio of 

30% is selected as the default value for the algorithm. 

Shortcut Operator 

This operator deletes unnecessary knot points as illustrated in Section 4.2.5. Figure 4.27 

reflects the effect of this operator on the algorithm's complexity, and Figure 4.28 denotes the 

effect of the operator on the solution quality. The solution quality is measured as the average 

of the best paths of the 20 runs for each benchmark. With respect to all other operators, the 

shortcut operator is the only operator that reduces the CPU time, as shown in Figure 4.28. 

This is possible since the paths that have a small number of knot nodes require less 

computational time. However, setting the operator rate to a 100% will ultimately effect the 

applications of the other operators, and the algorithm will tend to converge prematurely and 

get stuck in a local minimum. Therefore, a value of 70% is selected as the default value for 

this operator. 
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Figure 4.27: Shortcut rate vs. CPU time 
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Figure 4.28: Shortcut rate vs. solution quality 

Smooth Operator  

The smooth operator is responsible for the smoothness of the paths. The complexity of the 

smooth operator is close to the complexity of the repair operator.  Figure 4.29 reveals the 

effect of the smooth operator on the path cost. It is evident that the effect of this operator 

decreases as the problem complexity increases. This is due to the fact that in crowded 

environments, a smooth path is less likely to occur. However, a trade off between the speed 

and solution quality must be established; and therefore, a default rate for the smooth operator 

is set at 50%.  

 



Chapter 4 72 

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1.05

0 0.2 0.4 0.6 0.8 1
Smooth Rate

A
ve

ra
ge

 C
os

t 

map1 map2 map3
 

Figure 4.29: Smooth rate vs. solution quality 

Replacement Strategy 

The results for the two replacement strategies that are implemented are shown in Figure 4.30 

and Figure 4.31. The difference between the two techniques is negligible; however, the 

parent replacement demonstrates the best solutions, and for this reason, this strategy is 

selected as the replacement technique for the algorithm.  
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Figure 4.30: Replacement strategy: parent replacement vs. worst replacement 
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Figure 4.31: Replacement strategy complexity 

4.6 Results 

In this section, the results of the GAP are obtained for both static and dynamic environments. 

The algorithm is tested with various benchmarks for a fair judgement. The benchmarks vary 

from those embedded in simple environments to those embedded in crowded environments. 

In addition structured and non-structured environments are utilized. Table 4.4 and Figure 

4.32 present the benchmarks and their attributes.  

As shown in Figure 4.32 Task 1 represents a simple environment, Task 5 is a crowded 

environment and it is the most complicated benchmark. Task 2, Task 3, and Task 4 are mid 

range in terms of complexity. Task 6, Task 7 and Task 8 represents structured environments; 

however, Task 8 is the most complex environment.             

The results are obtained by running the algorithm with fixed GA parameters for all the 

benchmarks. For each benchmark ten runs are conducted; the best path and the worst path are 
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displayed for comparison. Also the average path cost and the average CPU time per run are 

reported.   

Benchmark 
Name 

Map 
Boundary ON OV A/OA S D τ α 

Task 1 40x40 3 11 8.31% 3, 3 35, 35 2.0 5.0 

Task 2 40x40 10 40 13.5% 3, 3 35, 35 1.0 15.0 

Task 3 40x40 14 51 22.66% 14, 4 14, 28 2.5 15.0 

Task 4 100x100 6 43 17.72% 20, 50 80, 50 1.0 10.0 

Task 5 160x160 24 95 30.44% 150, 5 5, 150 5.0 25.0 

Task 6 100x80 5 20 11.00% 10, 40 90, 40 1.5 15.0 

Task 7 40x40 3 20 9.50% 14, 33 25, 7 2.0 25.0 

Task 8 100x100 1 20 17.25% 45, 50 95, 20 2.5 10.0 

Table 4.4: Tasks attributes 

Note that the terms used in the above table are defined as follows: ON  is the number of 

obstacles, OV  is the total number of obstacle vertices, A/OA  is the total map area / total 

obstacle area, S  is the initial robot coordinates, D  is the robot final destination coordinates, τ  

is the preferred clearance distance, and α  is the preferred steering angle. 
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Task 1 

 
Task 2 

 
Task 3 

 
Task 4 

 
Task 5 

 
Task 6 

 
Task 7 

 
Task 8 

Figure 4.32: Benchmarks 
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4.6.1 Static Environments 

For each benchmark, the best path and worst path are shown along with their path 

attributes and average CPU time in seconds. These results are depicted in Figure 4.33 to 

Figure 4.40.    

 
Best Path 

 
Worst Path 

Distance 49.29 
Minimum clearance 2.05 
Maximum steering 19.44 
Clearance value 0 
Smoothness value 56.36 
Path cost 105.65 
CPU Time 0.69  

Distance 54.99 
Minimum clearance 1.54 
Maximum steering 21.80 
Clearance value 20.16 
Smoothness value 94.92 
Path cost 170.06 
CPU Time 0.87  

Figure 4.33: Task 1 results 
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Best path 

 
Worst path 

Distance 47.78 
Minimum clearance 0.40 
Maximum steering 13.06 
Clearance value 15.05 
Smoothness value 0 
Path cost 62.83 
CPU Time 2.27  

Distance 59.26 
Minimum clearance 0.54 
Maximum steering 33.69 
Clearance value 11.81 
Smoothness value 11.36 
Path cost 82.42 
CPU Time 3.38  

Figure 4.34: Task 2 results 

 
Best path 

 
Worst path 

Distance 30.61 
Minimum clearance 015 
Maximum steering 53.94 
Clearance value 66.59 
Smoothness value 40.56 
Path cost 137.77 
CPU Time 2.39  

Distance 26.54 
Minimum clearance 0.03 
Maximum steering 33.44 
Clearance value 100.03 
Smoothness value 40.17 
Path cost 166.73 
CPU Time 2.13  

Figure 4.35: Task 3 results 
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Best Path 

 
Worst Path 

Distance 76.43 
Minimum clearance 1.34 
Maximum steering 26.57 
Clearance value 0 
Smoothness value 25.41 
Path cost 101.84 
CPU Time 4.20  

Distance 59.70 
Minimum clearance 0.97 
Maximum steering 24.78 
Clearance value 5.22 
Smoothness value 45.22 
Path cost 146.13 
CPU Time 4.89  

Figure 4.36: Task4 results 

 
Best Path 

 
Worst Path 

Distance 250.66 
Minimum clearance 2.44 
Maximum steering 60.36 
Clearance value 86.61 
Smoothness value 34.42 
Path cost 371.69 
CPU Time 25.40  

Distance 261.95 
Minimum clearance 2.33 
Maximum steering 59.31 
Clearance value 283.95 
Smoothness value 33.48 
Path cost 579.25 
CPU Time 35.38  

Figure 4.37: Task 5 results 
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Best Path 

 
Worst Path 

Distance 109.16 
Minimum clearance 0.77 
Maximum steering 64.80 
Clearance value 114.76 
Smoothness value 500.00 
Path cost 723.92 
CPU Time 3.02  

Distance 114.11 
Minimum clearance 0.06 
Maximum steering 74.62 
Clearance value 502.02 
Smoothness value 1256.03 
Path cost 1872.15 
CPU Time 3.10  

Figure 4.38: Task 6 results 

 
Best Path 

 
Worst Path 

Distance 69.89 
Minimum clearance 1.13 
Maximum steering 63.43 
Clearance value 149.33 
Smoothness value 216.73 
Path cost 453.95 
CPU Time 3.54  

Distance 64.49 
Minimum clearance 0.63 
Maximum steering 73.88 
Clearance value 658.57 
Smoothness value 226.72 
Path cost 949.78 
CPU Time 2.78  

Figure 4.39: Task7 results 
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Best Path 

 
worst Path 

Distance 205.28 
Minimum clearance 1.66 
Maximum steering 64.80 
Clearance value 62.90 
Smoothness value 435.64 
Path cost 703.82 
CPU Time 2.49  

Distance 192.30 
Minimum clearance 0.67 
Maximum steering 53.13 
Clearance value 456.45 
Smoothness value 329.29 
Path cost 978.04 
CPU Time 2.40  

Figure 4.40: Task 8 results 

Results obtained indicate that the algorithm is 100% successful to find a reasonable 

solution for all the tested benchmarks. Also, the results clearly show how the algorithm is 

able to find a high quality solution in a reasonable computation time (CPU time). However, 

the computation times for some benchmarks are excessive. It has been found that the 

complexity of the algorithm depends on the following attributes: the number of obstacles, the 

total number of vertices, the total area that is occupied by obstacles, and obstacles 

arrangement. Figure 4.41 displays the relation between the first three factors and the CPU 

time. It can be observed that the main controlling factor is the total number of vertices in the 

environment followed, by the total obstacle area with respect to the total environment area.   
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Figure 4.41: Algorithm complexity with respect to the environment attributes 

4.6.2 Dynamic Environments 

For the dynamic environments, a benchmark is selected to test the four proposed approaches 

presented in section 4.3. Two scenarios for the dynamic environment are implemented: (i) 

predefined dynamic obstacles, and (ii) random dynamic obstacles. In the predefined dynamic 

obstacles, an object is introduced during the run so that the obstacle has an effect on  

solutions previously obtained by the static mode. In this mode, the dynamic obstacle size and 

shape are user defined and can assume any form. Each dynamic obstacle is associated with a 

generation number at which the obstacle can be activated. For the random mode, a newly 

squared shape generated obstacle is introduced at a fixed number of generations. The 

randomly generated obstacle's attributes have the following restrictions: the obstacle centroid 

does not lie inside an active obstacle, and the new obstacle size is approximately the same 

size as the average size of the existing obstacles. These restrictions are imposed to decrease 

the chances of generating unsolvable environments.       

 



Chapter 4 82 

In order to gain a good understanding of the different investigated techniques, the 

methodology used here in displaying the results are as follows: first a simple case is taken as 

a case study, where the population snapshots before and after the environment is changed 

(turning point) are displayed and discussed for this task. The new obstacle, are displayed at 

each turning point is filled with a grey colour, the convergence curves are used to determine 

how each technique deals with the changes in the environments  

Case Study: 

In this case, Task 1 is considered; new obstacles are introduced at generation 25, 40, and 

50. In addition to the basic GAP, this benchmark is solved using the four proposed 

techniques: (i) The Memory (M), (ii) Random Immigrants (RI), (iii) Memory and Random 

Immigrants (MRI), and  (iv) Low Convergence (LC).  

GAP vs. GAP with Memory (M) 

Figure 4.42 presents the population for the GAP algorithm, and Figure 4.43 shows the 

best path after each turning point. It is evident from the figures that the GA gets stuck in a 

local minimum, and thereby loses its exploration capability. 

In Figure 4.44, the best path snapshots for the same problem are presented when the 

memory component is added. The figures indicate how the memory component affects the 

solution quality, as the GA recalls the previously visited solutions after the new obstacle is 

introduced (generation 26). 

The convergence curve for the GAP is plotted in Figure 4.45 versus the convergence 

curve for the GAP with the memory. The plot shows how the added memory renders the 

algorithm more applicable in dynamic environments.    

 



Chapter 4 83 

  

  
T = 25 

 
T = 26 

 
T = 40 

 
T = 41 

 
T = 50 

 
T =51 

Figure 4.42: Population snapshots task 1 using the basic algorithm 
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T = 26 

 
T = 41 

 
T =51 

Figure 4.43: Best path (GAP) 
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Figure 4.44: Best paths: GAP +Memory 
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Figure 4.45: GAP vs. GAP +Memory 

GAP vs. GAP with Low convergence (LC) 

In the LC mode, the evolution process is running in a slow mode. The main factor that 

enables the LC to work effectively is the mutation that is set at 65%. The mutation range ∆x, 

∆y is maintained high all the time rather than controlled by the feasibility ratio in the 

population. 

Figure 4.46 displays the population for the GAP with the LC, and Figure 4.47 portrays 

the best path after each change in the environment. Figure 4.46 shows how the diversity in 

the populations is consistently ensured.  The convergence curve for the GAP is plotted in 

Figure 4.48 versus the convergence curve for the GAP with the LC. In this plot, it is 

interesting to conclude that this approach converges slowly in the early generations and is 

unable to obtain enhanced solution with respect to pure GAP approach. However, when the 

environment changes, it recovers very quickly and leads to good solutions.  
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Figure 4.46: Population snapshots task 1 using GAP + LC  
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Figure 4.47: Best paths (GAP+ LC) 
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Figure 4.48: GAP vs. GAP+ LC  

 



Chapter 4 88 

GAP vs. GAP with Random Immigrants (RI) 

In this mode, randomly generated individuals replace the worst individuals in the 

population. The number of RI individuals is generated randomly, and bounded by half of the 

population size. The frequency of immigration is set at every five generations. Similar 

behaviour is expected from this technique with respect to the previous technique (LC). The 

convergence curve in Figure 4.49 is close to the previous technique. For this run, the solution 

quality obtained by this technique is better than all the other techniques.  
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Figure 4.49: GAP vs. GAP + RI 

GAP vs. GAP with Memory and Random Immigrants (MRI) 

In this mode of operation, memory is enabled when changes in the environment occur 

and as a result random immigrants are enabled. Figure 4.50 shows the convergence of this 

technique which is almost identical to that based on the RI approach.   
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Figure 4.50 : GAP vs. GAP +MRI  

The represented case study helps to understand the behaviour of each technique but does 

not provide any insight about the general performance of each technique. Therefore, multiple 

runs are conducted to compare the various techniques. The best path, average path, and CPU 

time are used for such comparisons. Figure 4.51 to Figure 4.55 present the best and the worst 

paths found in the five selected dynamic tasks. The dynamic obstacles are characterized by  

the grey colour where as the static obstacles black in colour. Table 4.5 to Table 4.9 display 

the gathered data from the ten runs for these tasks. It is clear from the results obtained that 

the most appropriate technique is the one which adopt the memory. The strength of this 

technique is in its ability to remember the promising solutions, and as the solution landscape 

changes, the recalled solutions quickly facilitate the recovery of the algorithm. The other 

observation that can be made is that the LC mode is executed in a longer time, especially in 

crowded environments, because of the high mutation range. Consequently, the path 

infeasibility is increased as more path nodes are changed to new arbitrary coordinates within 

the environment boundary. Therefore, the application rate of the repair operator is increased 

dramatically. 
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Best Path (LC) 

 
Worst Path (Basic) 

Figure 4.51: Task 1 Dynamic mode 

 Pure 
GAP M MRI LC RI 

Best 198.84 178.23 182.68 173.88 222.76 
Average 572.88 388.46 316.22 373.34 444.68 
Time 2.29 2.43 2.48 2.38 2.01 

Table 4.5: Task 1 results 

 

 

 
Best Path (LC) 

 
Worst Path (Basic) 

Figure 4.52: Task 2 Dynamic mode 

 Pure 
GAP M MRI LC RI 

Best 115.68 112.50 112.04 109.28 114.05 
Average 179.92 178.10 125.93 131.13 132.45 
Time 8.10 7.14 7.54 7.50 8.25 

Table 4.6: Task 2 results 
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Best Path (M) 

 
Worst Path (LC) 

Figure 4.53: Task 3 Dynamic mode 

 Pure 
GAP M MRI LC RI 

Best 183.80 157.73 163.26 183.29 184.79 
Average 195.25 184.27 187.97 208.57 195.56 
Time 5.97 7.92 7.40 10.07 7.41 

Table 4.7: Task 3 results 

 

 

 
Best Path (MRI) 

 
Worst Path (Basic) 

Figure 4.54: Task 4 Dynamic mode 

 Pure 
GAP M MRI LC RI 

Best 171.09 165.31 164.76 175.19 164.76 
Average 228.35 222.00 220.32 222.64 212.35 
Time 6.43 10.57 9.52 16.86 7.10 

Table 4.8: Task 4 results 
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Best Path (M) 

 
Worst Path (Basic) 

Figure 4.55: Task 5 Dynamic mode 

 Pure 
GAP M MRI LC RI 

Best 551.62 515.39 531.09 570.23 541.67 
Average 906.29 613.51 650.47 661.31 727.45 
Time 19.93 19.90 19.67 23.74 20.89 

Table 4.9: Task 5 results 

As illustrated in section 2.4.3, in dynamic optimization problems, the objective is no 

longer to find the optimal solution but to track the progression of the optimal solution 

throughout the solution space. To verify that the algorithm is tracking the progression of the 

optimal solution, the same dynamic benchmarks are solved in static mode, i.e., all the 

dynamic obstacles are known a priori.  Figure 4.56 and Figure 4.57 display solutions 

obtained by the static solver (static mode) and the dynamic solver, for two different tasks. In 

the dynamic mode, initially several objects are removed from the environment (grey shaded 

objects) and then suddenly introduced again.  

 
Dynamic mode 

 
Static mode 

Figure 4.56: Staic vs. dynamic (Task 2)  
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Dynamic mode 

 
Static mode 

  Figure 4.57: Staic vs. dynamic (Task 3)  

The algorithm performance in the dynamic mode was as expected and provides good 

solutions similar to those provided by the static solver when the entire environment is known. 

The results clearly indicate that the algorithm is capable of tracking the progress of the 

solution space peaks and adapts to new changes in the environment.   

4.7 Parallel Implementation 

The GAP is capable of finding feasible and high quality solutions for all the tested 

benchmarks. However, as the complexity of the problem increases the GAP efficiency 

decreases. Therefore, a parallel implementation of the algorithm is adopted to increase the 

algorithm's performance.  

The parallel algorithm is implemented by using the Message Passing interface (MPI) 

library [41]. The MPI is a library specification for message-passing, and is proposed as a 

standard by a broadly based committee of vendors, implementers, and users (www.mpi-

forum.org). The goal of the forum is to develop practical, portable and efficient standard for 

writing message-passing programs.   

 

http://www.mpi-forum.org/
http://www.mpi-forum.org/
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The GAP is parallelized by using the Island-based Genetic Algorithm (IGA) approach. 

Islands are arranged in a ring topology as shown in Figure 2.14. Island individuals are 

allowed to migrate to adjacent neighbours. Migration occurs every "x" generations (i.e., x is 

the frequency of the migration). The number of individuals that migrate is the same for each 

islands, and is governed by the percentage of migration parameter. The percentage of 

migration dictates the percentage of the island population immigrates to neighbouring 

islands. All immigrants are accepted, and replace the islands' worst individuals.  

Two techniques are investigated for the selection strategy, The Best So Far Migration 

(BSF) and The Generation Best Migration (GB). In The BSF the best solution(s) so far 

immigrate to the neighbouring islands, while in the GB, the best within the current 

generation emigrate.  

4.7.1 Results 

The DGA results are conducted on SunUltra workstations, running 900Mhz UltraSPARC III 

CPU with 1 Gbytes of main memory. The workstations which run UNIX are interconnected 

with 100Mbyte/sec Ethernet local area network. 

The same benchmarks are used for testing the IGA; with each of these benchmarks, 

number of islands, migration frequency, and the percentage of the migrator are altered to 

compare the results. Six different island systems are tested: a single island, a two-island ring, 

a four-island ring, an eight-island ring and a ten-island ring. The entire population size is 

constant at 96, except for the case of the ten-islands, where the total population size is 100. A 

fixed number of generations is used as a termination condition, and is set to 100 for all the 

benchmarks. 
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Best So Far Migration (BSF) 

Table 4.10 and Table 4.11 exhibit the obtained results with the BSF migration style, 

where the migration frequency = 10, and migration percentage = 10%. Note that the number 

of islands is denoted as "N" in the tables, the time is in seconds and the cost represents the 

best path cost obtained from each run. Figure 4.58 displays the speed-ups for the different 

benchmarks with the same configurations. Figure 4.59 and Figure 4.60 display the relative 

fitness for different benchmarks where a score that is greater than one denotes an 

improvement in the solution quality over that found in the serial algorithm. (the one-island 

based algorithm).  

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 
N 

Time Cost Time Cost Time Cost Time Cost 

1 12.83 111.67 32.41 58.68 36.07 139.36 63.15 98.81
2 6.47 110.55 18.73 58.68 27.32 126.10 39.26 100.01
4 3.65 108.03 10.83 58.59 12.20 121.37 21.31 98.66
6 2.49 108.31 10.73 54.70 10.03 132.43 14.87 106.25
8 2.02 106.81 8.23 65.83 7.23 132.06 11.52 111.71

10 1.67 110.99 4.95 59.28 6.76 129.93 8.28 105.45

Table 4.10: IGA results: migration frequency = 10, migration percentage = 10%  

Benchmark 5 Benchmark 6 Benchmark 7 Benchmark 8 
N 

Time Cost Time Cost Time Cost Time Cost 

1 68.58 371.97 56.71 983.28 40.97 514.39 42.53 687.63

2 38.13 373.56 37.07 1077.41 27.59 258.14 29.90 584.05

4 34.88 364.93 26.48 903.56 15.39 281.18 13.58 665.68

6 27.74 373.99 15.79 1034.49 9.12 368.93 8.15 655.69

8 23.86 375.94 13.50 1282.68 6.58 525.25 6.32 767.61

10 12.61 367.30 12.36 977.57 6.32 767.61 5.35 659.53

Table 4.11: IGA results (BSF): frequency = 10, percentage = 10%  
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Figure 4.58: (BSF) Speed-up: frequency =10 and percentage = 10% 
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Figure 4.59: Relative fitness (BSF), with frequency =10 and percentage = 10% 
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Figure 4.60: Relative fitness (BSF): frequency =10 and percentage = 10% 

It is obvious that a speed-up is gained for each of the benchmarks. However, there is no 

clear relation between the fitness gain or loss and the number of islands utilized. This is due 

to the fact that as the size of the population decreases, the efficiency of the algorithm to 

obtain good quality solution decreases. As mentioned in Section 2.6.3 this is the main 

disadvantage of this type of parallel implementation. The results obtained from the other 

parameters are provided in Table 4.12 to Table 4.19.  

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 
N 

Time Cost Time Cost Time Cost Time Cost 

1 12.16 111.67 32.41 58.68 36.07 139.36 63.15 98.81

2 7.09 101.21 20.77 59.39 29.71 133.81 39.63 102.89

4 3.51 108.41 11.26 58.59 11.02 128.42 22.13 104.11

6 2.47 101.22 10.56 48.74 9.14 123.50 14.39 108.53

8 2.01 109.27 8.74 56.07 7.58 122.45 10.4 106.85

10 1.76 107.32 6.98 60.03 6.71 136.46 8.99 108.47

Table 4.12: DGA results (BSF): frequency = 10, percentage = 20%  
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Benchmark 5 Benchmark 6 Benchmark 7 Benchmark 8 
N 

Time Cost Time Cost Time Cost Time Cost 

1 68.58 371.97 56.71 983.28 40.97 514.39 42.53 687.63

2 33.53 371.40 38.48 864.94 30.05 274.29 33.42 632.40

4 28.23 367.30 20.92 1016.51 15.42 325.91 18.81 585.04

6 26.62 371.81 19.88 857.83 8.78 482.32 9.33 668.90

8 21.22 356.61 13.27 1464.51 6.33 382.45 7.49 574.00

10 12.90 367.30 14.88 1168.29 5.61 513.40 4.86 686.32

Table 4.13: DGA results (BSF): frequency = 10, percentage = 20% 

 

  

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 
N 

Time Cost Time Cost Time Cost Time Cost 

1 12.83 111.67 32.41 58.68 36.07 139.36 63.15 98.81

2 7.18 105.17 18.26 58.71 26.68 127.26 37.29 106.47

4 4.35 102.90 10.16 58.59 14.45 123.87 19.61 105.84

6 2.57 111.66 10.80 48.95 8.81 132.97 13.98 105.04

8 2.04 109.27 8.02 54.51 7.48 119.53 10.06 110.51

10 1.65 113.49 5.12 59.27 6.52 136.46 8.66 112.75

Table 4.14: DGA results (BSF): frequency = 10, percentage = 30%  

Benchmark 5 Benchmark 6 Benchmark 7 Benchmark 8 
N 

Time Cost Time Cost Time Cost Time Cost 

1 68.58 371.97 56.71 983.28 40.97 514.39 42.53 687.63

2 34.28 378.62 36.96 848.81 29.11 277.12 28.57 624.81

4 27.24 369.53 23.98 914.66 14.43 354.61 15.24 538.90

6 35.23 397.84 16.12 1153.77 10.28 285.26 9.69 607.31

8 24.21 339.19 13.07 1181.86 6.91 327.31 6.30 624.50

10 15.08 352.09 13.25 1659.35 5.74 631.80 5.02 734.41

Table 4.15: DGA results (BSF): frequency = 10, percentage = 30%  
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Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 
N 

Time Cost Time Cost Time Cost Time Cost 

1 12.83 111.67 32.41 58.68 36.07 139.36 63.15 98.81

2 6.94 105.16 18.81 59.63 24.80 137.85 36.70 97.78

4 3.57 108.72 11.73 58.59 14.23 126.92 20.52 103.78

6 2.49 107.28 10.45 54.10 9.14 131.14 13.79 107.53

8 1.87 102.10 7.79 54.96 7.26 126.96 10.30 107.94

10 1.79 106.22 5.14 64.03 5.96 125.18 8.05 105.24

Table 4.16: DGA results (BSF): frequency = 20, percentage = 20%  

Benchmark 5 Benchmark 6 Benchmark 7 Benchmark 8 
N 

Time Cost Time Cost Time Cost Time Cost 

1 68.58 371.97 56.71 983.28 40.97 514.39 42.53 687.63

2 45.82 380.15 37.90 839.64 24.52 377.40 31.21 561.08

4 33.56 374.91 22.08 903.98 14.94 417.71 16.44 529.09

6 28.87 376.27 19.87 908.32 8.89 445.60 8.60 629.02

8 22.86 370.77 13.24 1101.85 6.35 535.16 6.83 625.61

10 14.68 371.58 13.81 1306.63 5.41 243.88 4.87 743.49

Table 4.17: DGA results (BSF): frequency = 20, percentage = 20%  

 

 

Benchmark 1 Benchmark 2 Benchmark 3 Benchmark 4 
N 

Time Cost Time Cost Time Cost Time Cost 

1 12.83 111.67 32.41 58.68 36.07 139.36 63.15 98.81

2 6.91 102.56 20.09 58.71 27.63 129.59 37.27 108.35

4 3.70 107.72 11.30 58.59 13.06 133.78 19.60 104.04

6 2.65 109.27 9.09 59.06 9.25 138.11 14.87 108.09

8 2.01 103.90 7.44 61.92 6.78 133.05 10.35 110.35

10 1.66 113.69 6.02 59.28 6.33 136.63 8.58 106.87

Table 4.18: DGA results (BSF): frequency = 20, percentage = 30%  
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Benchmark 5 Benchmark 6 Benchmark 7 Benchmark 8 
N 

Time Cost Time Cost Time Cost Time Cost 

1 68.58 371.97 56.71 983.28 40.97 514.39 42.53 687.63

2 43.56 386.45 36.86 1041.27 25.29 362.98 28.19 613.28

4 51.71 359.02 19.23 909.72 14.35 312.51 15.07 607.20

6 28.54 373.99 18.44 1082.20 9.17 339.12 9.55 652.53

8 21.06 362.42 12.51 1121.10 5.99 479.45 6.62 625.11

10 27.08 359.33 15.37 1303.87 5.16 536.79 4.38 855.85

Table 4.19: DGA results (BSF): frequency = 20, percentage = 30%  
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Figure 4.61: Solution quality deviation against different migration parameters 

In terms of the speed-up there are no deviations in the results, but in terms of the fitness 

a deviation is observed. However, this difference exists as a result of the ill-behaved fitness 

function. A small difference in the knot node coordinates can result in big difference in the 

path cost. For most of the benchmarks, it is still noticed that the deviation is very small, 

which is reflected in Figure 4.61 (the Y axis in Figure 4.61 represents the standard deviation 
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of the cost for each configuration). However, a distinction exists in benchmarks 6, 7, and 8. 

This variation is due to the nature of these benchmarks; since these benchmarks are 

structured environments (see Figure 4.32). For example, benchmark 7 paths are shown in 

Figure 4.62. Recall that the obstacles in this case are occupying only 9.50% of the 

environment. As a result, 'a' coefficient (the expositional coefficient for the clearance and the 

smoothness in the fitness function) is large (equal to 5.26). Therefore, small changes in the 

node coordinates lead to a tremendous change in the fitness function.  

 
Single island 

 
2 islands 

Distance 70.10 
Minimum clearance 0.98 
Maximum steering 57.43 
Clearance value 303.85 
Smoothness value 341.41 
Path cost 715.37  

Distance 66.98 
Minimum clearance 1.85 
Maximum steering 45.40 
Clearance value 7.41 
Smoothness value 199.86 
Path cost 274.29  

Figure 4.62: (BSF) Sample outputs for benchmark 7 

Generation Best Migration (GB) 

The results of the GB migration style are similar to those of the BSF migration style. 

Figure 4.63 reveals the gained speed-up, while Figure 4.64 and Figure 4.65 display the 

relative fitness for the different benchmarks. The figures clearly show the speed-up factors 

obtained and the gain/loss in solution quality with respect to the number of islands. The 
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speed-up is less in crowded environments, however, the speed-up is guaranteed but the 

solution quality rises and falls as expected, when the entire population is divided.  
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Figure 4.63: (GB) Speed-up: frequency =10 and percentage = 10% 
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Figure 4.64: Relative fitness (GB): frequency =10 and percentage = 10% 
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Figure 4.65: Relative fitness (GB): frequency =10 and percentage = 10% 

 

4.8 Summary 

In this Chapter, a Genetic Algorithm Planner (GAP) for solving the path planning 

problem is presented. Results show clearly that the GAP was 100% successful in obtaining 

good solutions in both static and dynamic environments. In addition, different approaches 

were investigated to enable the algorithm to function correctly in both static and dynamic 

environments. Experimental results indicate that the memory based technique is the best 

among other approaches investigated in this dissertation. Furthermore, The GAP is 

parallelized by using an island-based GA approach (IGA). In this model of computation each 

processor executes the GAP based on its own subpopulation with occasional exchange of 

high quality individuals with it's neighbour processors. Results show a near linear speed-up 

in the computational time. Since the entire population is divided into subpopulations the 

solution quality is also affected.   
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Local Search and Memetic Algorithms 

GAs are appropriate for exploring the solution space but fail to fine-tune the search. As 

discussed in Section 2.4.5 Local Search (LS) algorithms use iterative improvement 

techniques which are applied to a single solution. The new neighbourhood solution is 

generated based on the current solution. If the newly generated solution provides an 

improvement, it becomes the current solution else a new neighbourhood solution is generated 

and evaluated. This process is repeated until no further improvement is achieved. The LS 

method provides local optimum only, and the solution quality depends tremendously on the 

starting initial point. To increase the chances of obtaining a global optimum, the LS is 

usually executed from several starting solutions.  

Combining global and local search is used for many global optimization approaches. 

Memetic Algorithms (MAs) [42] - also known as hybrid EAs and genetic local searches are 

recognized as a powerful search paradigm for evolutionary computing.  

5.1 Local Search 

The LS is designed and implemented with the goal of integrating it with the GA to form a 

Memetic Algorithm (MA). Figure 5.1 shows an overview of the developed LS algorithm. 

104 
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The main component is to define the solution neighborhood. For this problem, the neighbour 

search (neighbour operator) is conducted by changing the node coordinates of a given 

solution. The neighbour search process is illustrated in Figure 5.2. For each node, the 

neighbouring nodes are generated within the desired clearance distance of the original node, 

denoted as the search window. The number of possible nodes within the window changes 

randomly from four to N, where N is the maximum search resolution (denoted here as the 

maximum zoom). The maximum zoom resolution increases, whenever the search fails to 

improve the path. For each knot node in the path, the algorithm either accepts the best 

improvement or the first found improvement. At the beginning of each improvement process, 

the path segments are divided to give the improvement process more nodes to improve. After 

each improvement process, the path is lined up to delete the unneeded nodes. 

The path improvement process terminates if no improvements are reported during a 

given number of iterations. It is found that the algorithm is trapped in a local minimum, if the 

process cannot make further improvements during two consecutive iterations. 

 
 Generate random path P; 
 If (P is not feasible) Repair (P); 
  While termination condition not met 
 { 
    Split segments (P);   
    Improve (P);  
    Line up (P); 
    If (P' < P) P = P'; 
 } 
 

Figure 5.1: LS algorithm 

 

 

 



Chapter 5 106 

   

(a) (b) (c) 

Figure 5.2: Path improvements: (a) initial repaired path, (b) nodes search window, and 
(c) improved path 

5.1.1 LS Results 

This section presents the results of the implemented LS in static and dynamic environments 

for the selected benchmarks.  

Static Environment 

As discussed in the previous section, two techniques are implemented for the improvement 

process. Either the "first improvement" or the "best improvement" is accepted. In utilizing 

the "first improvement" approach, the algorithm accepts the first determined move for each 

node. On the other hand, accepting the "best improvement" forces the algorithm to check all 

the neighbours and allows only the best move found so far to be used. The LS algorithm is 

applied to all benchmarks. For each benchmark, ten runs are carried out, and the resultant 

best path is displayed graphically for each LS technique along with the best cost, average 

cost, and the average CPU time. 

It is expected that "accept first" takes less time and the accept best generates high quality 

solutions, however, the results show that this is not always the case for this implementation. 

It can be seen from the obtained results in Tables 5.1 through 5.8 that there is not much 
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difference in the performance of either technique. However, as the problem complexity 

increases accept best technique is more likely to perform better as shown in Figure 5.11. It is 

also notices that for a problem that has less alternative solutions topology like the structured 

environments in task 6 and task 8 the accept best provides a high quality solution, however, 

these solutions are obtained at a the cost of the computational time. The best obtained result 

for each benchmark is presented in Figure 5.3 through Figure 5.10.  

 As far as the computational time is concerned, the accept first requires slightly less time 

to generate a similar results, as signified in Figure 5.12. Therefore, the accept first technique 

is chosen for further development and comparison in this work. 

The strength of the LS is its ability to find the global minimum, if the starting solution is 

in the global minimum region. Therefore, it can find the optimal solution in problems with a 

small number of local minima. 

  Best Average Time 
Accept Best 93.07 168.39 13.35 
Accept First 99.56 205.61 10.88 

Table 5.1: LS results for Task 1 

 

 
Accept Best 

 
Accept First 

Figure 5.3: Accept first vs. accept best strategy (Task 1) 
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 Best Average Time 

Accept Best 48.69 119.20 15.13 
Accept First 59.60 116.88 14.96 

Table 5.2: LS results for Task 2 

 

 

Figure 5.4: Accept first vs. accept best strategy (Task 2)  

 

 

 

 
Accept Best 

 
Accept First 

 Best Average Time 
Accept Best 140.49 265.12 9.69 
Accept First 139.35 299.24 9.66 

Table 5.3: LS results for Task 3 

 
Accept Best 

 
Accept First 

Figure 5.5: Accept first vs. accept best strategy (Task3)  
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 Best Average Time 
Accept Best 94.60 124.45 32.04 
Accept First 77.46 141.47 30.82 

Table 5.4: LS results for Task 4  

 

 
Accept Best 

 
Accept First 

Figure 5.6: Accept first vs. accept best strategy (Task 4) 

 

 

 

 Best Average Time 
Accept Best 408.47 1720.71 64.52 
Accept First 720.55 1923.66 94.53 

Table 5.5: LS results for Task 5  

 

 
Accept Best 

 
Accept First 

Figure 5.7: Accept first vs. accept best strategy (Task 5)  
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 Best Average Time 
Accept Best 228.92 316.46 120.22 
Accept First 389.90 505.37 70.81 

Table 5.6: LS results for Task 6  

 

 
Accept Best 

 
Accept First 

Figure 5.8: Accept first vs. accept best strategy (Task 6)  

 

 

 Best Average Time 
Accept Best 126.92 666.77 25.20 
Accept First 283.41 1938.13 18.06 

Table 5.7: LS results for Task 7  

 

 
Accept Best 

 
Accept First 

Figure 5.9: Accept first vs. accept best strategy (Task 7) 
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 Best Average Time 
Accept Best 259.22 301.68 299.51 
Accept First 274.33 348.63 181.78 

Table 5.8: LS results for Task 8  

 
Accept Best 

 
Accept First 

Figure 5.10: Accept first vs. accept best strategy (Task 8) 
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Figure 5.11: Solution quality (accept first vs. accept best) 
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Figure 5.12: Computational time (accept first vs. accept best) 

 



Chapter 5 112 

Dynamic Environments 

In the dynamic Genetic Algorithms environment obstacles were introduced at a given 

generation number, however, in LS the iteration number are considered. Ten runs are 

conducted for each dynamic benchmark. Results obtained are presented in Figures 5.13 

through 5.17. 

 
Best Path 

 
Worst Path 

Figure 5.13: LS Dynamic result (Task 1) 

   
Best Path (M) 

 
Worst Path (LC) 

Figure 5.14: LS Dynamic result (Task 2) 

 
Best Path (M) 

 
Worst Path (LC) 

Figure 5.15: LS Dynamic result (Task 3) 
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Best Path (M) 

 
Worst Path (LC) 

Figure 5.16: LS Dynamic result (Task 4)  

 
Best Path (M) 

 
Worst Path (LC) 

Figure 5.17: LS Dynamic result (Task 5)  

As can be seen from the results, the LS get stuck in a local minimum and depend highly 

on the starting initial solution. 

5.1.2 GA vs. LS in Static Environments 

The results from the previous section and the results from Section 4.6.1 are combined and 

plotted for comparison. Figure 5.18 demonstrates that for most of the tested benchmarks the 

LS obtains slightly better solutions than those of the GAP.  It is also observed that for Task 6 

and Task 7 the performance of the LS in terms of the solution quality is much better than the 

GA. This is expected since these two benchmarks have only one possible topology and 

therefore, the LS were able to obtain superior solutions. However, these high quality 

solutions have a price and are obtained using high computation time.  
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In terms of the average of success to obtain a high quality solution the GAP performs better 

than the LS, as shown in Figure 5.19. Furthermore, the GAP also requires much less time to 

obtain the solutions as can be observed from Figure 5.20.  
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Figure 5.18: Best solution GA vs. LS (Static) 
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Figure 5.19: Average path cost GA vs. LS (Static) 
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Figure 5.20: Average CPU time GA vs. LS (Static) 
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5.1.3 GA vs. LS in Dynamic Environments 

The obtained LS and GA results from dynamic environments are also combined and plotted 

for comparison. As demonstrated in Figure 5.21, Figure 5.22 and Figure 5.23, the GA 

technique performs on average better than LS. However LS was able to provide better 

solutions for two benchmarks namely Task 1 and Task 4. This is attributed to the fact that in 

these two benchmarks newly generated obstacles don't affect all the solution space peaks and 

therefore, the LS chances to obtain better solution are higher. However, in terms on of the 

average of success to obtain high quality solutions the GAP performs better than the LS in all 

the tested benchmarks, and furthermore the GAP is much faster than LS.  
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Figure 5.21: Best solution GA vs. LS (Dynamic) 
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Figure 5.22: Average path cost GA vs. LS (Dynamic) 
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Figure 5.23: Average CPU time GA vs. LS (Dynamic) 

It can be concluded from the results in the static/dynamic environments that the GA is 

more robust and scalable than the LS and requires much less time to compute final solutions.   
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5.2 Memetic Algorithms 

GA is not suitable for fine-tuning solutions that are close to the sub-optimal solution. 

The absence of this feature (i.e., fine-tuning) can be recovered by using an LS approach. The 

incorporation of a local improvement operator within the evolution process of the GA will 

most likely generate improved solution quality. There are several approaches to implement 

MAs; however, in this thesis, three strategies are utilized to hybridize the GA and LS as 

follows: 

1. Improve Best Solution 

In this technique, after the GAP is used to solve the problem, the best found path is 

further tuned by using local search. A superior solution are expected from this technique but 

is expected to have more computational time.  

2. LS Operator 

In this technique, the LS is introduced as an operator within the GA; that is, an LS is 

applied to a percentage of the population.  This LS operator is implemented such that only 

single improvement iteration is applied on each selected path (i.e., partial LS). This partial 

LS operator is applied to 10% of the population through experimentation, and the paths are 

selected randomly from the feasible paths within the current population.  

3. Improve Initial 

Here, complete LS is applied to 10% of the initial population. To accelerate the search 

process, the maximum number of unimproved iterations for the LS is reduced to 1, that is, 

the LS stops if no improvement is reported for one iteration. 
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5.2.1 Results  

   The same experimental setup is utilized here where ten runs are conducted for the three 

approaches. A comparison is then made between these approaches and the GAP in terms of 

the solution quality (the best path cost and the average cost) and computation time. Tables 

5.9 through 5.11 present complete results for the implemented MAs, GA and LS. However, 

plots are created for the first four benchmarks are shown in Figures 5.24 through 5.26 

respectively. 

  Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 
Improve Best 90.38 48.46 118.87 89.85 379.26 198.20 143.31 248.54 
LS operator 102.92 48.56 137.21 105.17 353.11 879.22 440.20 524.21 
Improve Initial 106.53 59.44 128.67 108.81 408.69 338.56 219.03 325.55 
GA 105.65 62.83 137.77 101.84 371.69 723.92 435.95 703.82 
LS 99.56 59.6 139.35 77.45 408.25 389.90 283.41 274.33 

Table 5.9: Best path cost 

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 
Improve Best 106.48 58.87 140.09 102.79 460.68 289.20 254.37 315.29 
LS operator 123.27 57.32 156.26 112.12 504.47 962.03 571.04 555.91 
Improve Initial 124.59 69.20 150.96 111.97 488.74 962.03 571.04 336.56 
GA 119.41 68.53 151.92 117.07 437.45 1274.95 663.20 817.06 
LS 205.61 116.88 299.24 141.47 1923.6 505.37 707.45 348.63 

Table 5.10: Average path cost 

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 
Improve Best 9.77 9.66 13.00 31.51 113.61 479.21 91.25 1167.44 
LS operator 12.67 16.43 34.61 30.86 1196.70 479.21 91.95 532.47 
Improve Initial 3.58 7.31 7.14 9.52 168.68 268.95 58.43 430.62 
GA 0.68 5.43 2.20 4.05 24.01 3.58 5.89 2.69 
LS 10.88 14.96 9.66 30.82 103.40 70.81 18.06 181.78 

 Table 5.11: Average CPU time 
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Figure 5.24: Best Paths for the implemented techniques.  
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Figure 5.25: Average Cost for the implemented techniques  
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Figure 5.26: Average CPU Time for the implemented techniques  

Results obtained show that the "improve best technique" gives the best results in terms 

of solution quality. The strength of this technique is that the GA is left without interruption 

(i.e., greedy search) to slowly search and explore the entire space. Once the GA terminates, 

the LS takes over and fine-tunes the best path found so far. Applying the LS as an operator is 

the worst in terms of the computational time and causes no improvement in the solution 

quality as it is expected. This can be attributed to the fact that following the application of the 

LS operator to individuals the later dominate the population and prevent any further 

exploration to take place. The same observation can be made to the "improve initial 

technique" where the initial enhanced population controls the search quality and leads to 

premature convergence. 

5.3 Summary 

A novel Local Search (LS) for solving the path planning problem is presented in this 

chapter. The LS algorithm uses an iterative improvement process by generating new 
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neighbourhood solutions by changing node coordinates. Results obtained indicate that the LS 

was successful in solving the path planning problem. Furthermore, in some of the tested 

benchmarks, LS obtained solutions superior to those obtained by the GAP. However, the LS 

can easily get stuck in a local minimum, and more starting points are required to obtain a 

high quality solutions. Consequently, a Memetic Algorithm (MA) is proposed and 

implemented by combining the GAP with LS. Different approaches are used in this research 

to combine the two algorithms. Results prove that applying the LS as a fine-tuner to the GAP 

final result, tends to improve the algorithm performance to obtain improved solutions. 

 

 



 

Chapter 6  

Conclusions 

The path planning problem for mobile robots in dynamic environments is a difficult 

optimization problem. This type of problem is present in almost all mobile robots 

applications. The path planning problem is an ordering problem, where a sequence of 

configurations is sought, beginning from an initial location and ending at a specific 

destination. A robot searches for an optimal or near-optimal path with respect to the 

objectives of the problem. 

The criteria of the path planning problem include distance, time, energy, smoothness and 

safety. The distance is the most common criterion. However, common path planning 

approaches do not take into consideration path safety and smoothness. Safety constraints are 

necessary for both the robot and its surrounding objects and can increase costs. Smoothness 

is also another important constraint, because of the bounded turning radius in most mobile 

robots. For example, car-like robots have this constraint due to the mechanical limitations of 

its steering angle. 
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6.1 Conclusions 

This thesis introduced a Genetic Algorithm approach for solving mobile robot path 

planning problems in static and dynamic environments. The developed Genetic Algorithm 

Planner (GAP) utilizes variable-length chromosomes for the path encoding. A floating point 

solution encoding is utilized to provide the algorithm with the required flexibility to explore 

the solution space.  A generic fitness function is used to combine the objectives of the 

problem. The paths are evolved by using specially designed random operators and specific-

domain knowledge operators. 

The GAP was implemented in C programming language and tested with a variety of 

benchmarks and tasks, which include simple, crowded, structured, and unstructured 

environments. The GAP was 100% successful in obtaining high quality solutions in both 

static and dynamic environments. In addition, different approaches were investigated to 

enable the algorithm to function correctly in both static and dynamic environments. 

Experimental results indicate that the "memory based technique" is the best among the other 

investigated approaches in this study.     

  Furthermore, to speed-up the algorithm, the GAP is parallelized by using island-based 

GA approach (IGA). In this model of computation each processor executes the GAP based 

on its own subpopulation with occasional exchange of high quality individuals with their 

neighbours' processors. The Message Passing Interface (MPI) library was utilized to 

implement the IGA. Results show a near linear speed-up in the computational time. Since the 

entire population is divided into subpopulations the solution quality was also affected. 

However, results reveal that if no improvement is made in the solution quality, the obtained 
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results are still of high quality (i.e., not far from the result that is obtained by using the serial 

GAP).  

It can be concluded that, the GA is able to solve the path planning problem efficiently; 

however, the GA is not capable of fine-tuning the search. Therefore, a heuristic Local Search 

(LS) algorithm was proposed in this dissertation. The LS algorithm uses the iterative 

improvement process by generating new neighbour solutions which are generated by 

changing the node coordinates. LS was successful in solving the path planning problem, and 

in some of the tested benchmarks, LS obtained solutions superior to those obtained by the 

GAP. However, the LS can easily get stuck in a local minimum, and more starting points are 

required to obtain good solution. Consequently, a Memetic Algorithm (MA) was 

implemented by combining the GAP with the LS. Different approaches were used in this 

research to combine the two algorithms. Results obtained prove that applying the LS as a 

fine-tuner to the GAP final result, tends to improve the algorithm performance to obtain 

adequate solution quality in reasonable time. 

6.2 Future work  

One of the interesting directions for future work involves improving the adaptiveness of 

the GAP such that the GA parameters are automatically initialized and tuned according to the 

nature of the problem. The GA has various parameters that require proper tuning, and 

usually, this tuning process is achieved heuristically. Accordingly, developing an adaptive 

parameter tuning mechanism helps the GA to adjust the parameters to obtain better results. 

Other improvements can be made to dynamically change the GA operators and their 
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behaviour according to the system status.  Also, a Graphical User Interface (GUI) can be 

developed to facilitate the communications between the user and the algorithm.    

Although all the obtained results are promising, it is essential to test the proposed 

algorithm in a real stochastic mobile robot environment. One candidate system for such a test 

is ROBOSOCCER1. The role of the GAP in this system would be to find a good route for the 

various robots, players, according to the environment, soccer field, and to the given task.   

Lastly it is recommended that the same approach be expanded to a higher degree of 

freedom (i.e., Arm Robots).  

                                                 
1- http://wolfman.eos.uoguelph.ca/~robosoccer/ 

 



 

Appendix A 

Benchmarks Files  

The benchmarks files are ASCII text files. The fields in the files are either space or linefeed 

delimited. The files are structured as follows: 

The First two fields represent the map boundary (xmax, ymax), followed by the number 

obstacles in the environment. After that each obstacle record is presented, the first filed in the 

obstacle record is the number of vertices, followed by the vertices in order. Each vertex is 

presented by its x and y coordinates respectively.  

All the benchmarks used in this study are given here  

*****************   Task 1******************* 
40 40        //Map boundary 
3         // Number of obstacles  
4 10 20 15 20 15 5 10 5 // Obstacle 1 
4 20 30 18 34 11 34 10 30 // Obstacle 2 
3 28 16 20 18 28 10   // Obstacle 3 
 

*****************   Task 2 ******************* 
40 40 
10 
3 8 14 6 12 10 10 
5 17 10 20 12 12 14 16 8 18 9 
4 26 18 28 12 32 14 29 14 
4 6 26 6 24 10 20 12 22 
4 19 20 22 19 18 18 18 24 
4 28 26 28 22 36 24 34 30 
3 21 33 20 30 24 29 
5 4 37 40 40 0 40 0 32 6 32 
5 11 34 14 35 12 32 9 30 8 32 
3 36 21 32 18 38 15 
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*****************   Task 3 ******************* 
40 40 
14 
4 8 12 6 12 6 4 10 4 
4 16 24 18 18 10 14 12 24 
3 12 14 16 8 18 10  
5 26 16 28 12 32 14 26 21 22 16 
3 7 15 4 20 10 18  
4 6 30 6 24 10 20 10 22 
4 19 25 20 20 18 21 18 24 
3 28 22 36 24 34 30 
3 21 33 20 30 24 29 
4 40 0 40 6 35 6 32 0 
4 40 40 40 32 35 32 32 40 
4 0 40 8 40 4 32 0 32 
3 16 31 14 37 10 34 
3 36 21 32 20 38 9 
 

***************   Task 4 ******************* 
100 100  
6 
8 9 55 21 55 25 73 23 76 17 73 15 76 12 73 8 76 
12 34 41 40 41 40 47.5 59 47.5 59 31 65 31 65 61 59 61 
 59 55 40 55 40 71 34 71 
5 58 70 72 67 62 80 52 73 47 62 
6 70 15 75 20 80 15 85 25 90 35 75 35 
7 28 15 44 15 60 15 50 27 37 25 43 32 23 27 
5 75 80 85 95 95 85 90 75 85 75 
 

***************   Task 5 ******************* 
160 160 
24 
3 140 36 130 30 130 40 
3 80 66 93 58 78 43 
4 155 155 155 145 141 145 141 155 
4 125 140 144 140 144 128 125 128 
4 141 66 151 66 151 51 141 51 
4 117 54 124 47 117 38 110 48 
4 36 154 47 143 39 138 32 147 
4 107 75 56 75 56 112 107 112 
4 97 113 75 121 92 135 109 123 
4 115 155 115 145 85 145 85 155  
4 56 152 66 147 59 129 51 133 
4 39 128 39 108 31 113 31 128 
4 23 140 17 128 13 132 20 143 
4 14 120 23 112 18 105 10 113 
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4 8 103 42 103 42 58 8 58 
4 12 50 22 43 19 36 8 43 
4 110 105 141 105 141 85 110 85 
4 79 35 97 27 90 19 71 23 
4 45 95 52 90 52 80 45 80 
4 48 124 53 124 53 108 48 108 
4 105 70 120 70 120 65 105 65 
4 5 5 5 20 20 20 20 5 
4 30 30 60 15 45 10 30 15 
5 69 65 62 42 44 39 38 43 51 66 
6 38 27 38 20 62 20 62 11 30 11 31 27 
 

***************   Task 6 ******************* 
100 80 
5 
4 20 80 24 80 24 36 20 36 
4 33 44 37 44 37 00 33 00 
4 46 80 50 80 50 36 46 36 
4 62 44 66 44 66 00 62 00 
4 76 80 80 80 80 36 76 36 
 

***************   Task 7 ******************* 
40 40 
3 
8 20 4 20 10 32 10 31 9 21 9 21 5 31 5 32 4 
4 25 25 25 15 15 15 15 25  
8 19 36 19 30 8 30 9 31 18 31 18 35 9 35 8 36 
 

***************   Task 8 ******************* 
100 100 
1 
20 80 15 20 15 20 70 70 70 70 30 35 30 35 55 55 55 
 55 45 45 45 45 40 60 40 60 60 30 60 30 25 75 25 
 75 75 15 75 15 10 80 10 
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