
Towards Optimal Circuit Layout Using

Advanced Search Techniques

by

Shawki Areibi

A thesis

presented to the University of Guelph

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Electrical Engineering

Guelph, Ontario, Canada, 2006

c©Shawki Areibi 2006

I hereby declare that I am the sole author of this thesis.

I authorize the University of Guelph to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize the University of Guelph to reproduce this thesis by photo-

copying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

ii

The University of Guelph requires the signatures of all persons using or photo-

copying this thesis. Please sign below, and give address and date.

iii

Abstract

iv

A VLSI chip can today contain millions of transistors and is expected to contain more than

100 million transistors in the next decade. This tremendous growth is made possible by

the development of sophisticated design tools and software. To deal with the complexity

of millions of components and to achieve a turn around time in terms of a couple of

months, VLSI design tools must not only be computationally fast but also generate

layouts close to optimal. The work in this thesis involves exploring algorithmic solutions

to the problem of circuit layout in VLSI design. The exploration is an attempt to evaluate,

design, improve and integrate the best combinatorial algorithms to solve the circuit layout

problem. Advanced search heuristic techniques in the form of Tabu Search, GRASP and

Genetic Algorithms are used extensively to solve most of the problems in circuit layout.

We show in this thesis that new hybrid partitioning techniques based on the above

mentioned heuristics outperform traditional heuristic methods. In fact, these novel ap-

proaches consistently find better solutions than other methods in a fraction of the time.

A new placement algorithm that is suitable for standard cell layout is also presented.

The initial placement is obtained using the partitioning algorithm. An efficient cluster-

ing based algorithm is developed to further reduce the complexity of circuit partitioning

and placement and improve the performance of the design process in terms of quality

and computation time. Finally, parallel implementations of the developed heuristics on

a network of workstations are presented and significant speedups are reported. The abil-

ity of the hybrid heuristics to find near optimal solutions is assessed by comparing their

performance with a general purpose mixed integer programming package. Experimental

results indicate that our heuristics based on clustering and hybridization schemes give

very good results and are suitable for VLSI circuits.

v

Acknowledgements

My sincere thanks go to my supervisor Professor Vannelli for his support and advice

throughout this research. Without his help, this work would never have been

possible.

I would like to thank Professor Michel Minoux from the University of Paris

for being my external examiner. I am deeply indebted to Professor M. Kamel, C.

Gebotys, G. Kesidis from the University of Waterloo, for their advice and helpful

discussions.

I would also like to thank Phil Regier the system administrator of the VLSI

group, for his patience and help.

Many of my friends helped in one way or another to accomplish this research,

thanks to all especially Scott Hadley at Shell Research and Otman Basir and Yousef

Berbash at the System Design Department for their helpful discussions and advice.

vi

To

my wife, mother, brother and children

whose love and encouragement helped accomplish this

thesis.

vii

Contents

1 Introduction 1

1.1 The VLSI Design Process . 1

1.1.1 Design Representations . 2

1.1.2 Steps Within A Design Phase 2

1.1.3 Electronic Design Phases . 4

1.1.4 Complexity of Circuit Layout 5

1.2 Motivation . 6

1.3 Dissertation Framework . 8

1.3.1 Efficiency . 8

1.3.2 Robustness . 10

1.3.3 Complexity Reduction . 10

1.3.4 Speed . 11

1.4 Research Contributions . 11

1.5 Thesis Outline . 14

2 Background 16

2.1 Physical Design and Circuit Layout 16

2.1.1 Circuit Partitioning . 17

viii

2.1.2 Circuit Placement . 25

2.1.3 Routing . 27

2.1.4 Layout Strategies and Styles 30

2.2 Optimization Algorithms . 33

2.2.1 Exact Solution Techniques 34

2.2.2 Approximate Solution Techniques 34

2.2.3 Randomization Algorithms 37

2.3 Summary . 38

3 Advanced Search Techniques 40

3.1 Benchmarks . 41

3.2 A Simple Dynamic Hill Climbing Heuristic 43

3.3 Greedy Randomized Adaptive Search 47

3.3.1 Implementation . 48

3.4 Genetic Algorithms . 54

3.4.1 An Overview of Genetic Search 54

3.4.2 GA Implementation . 60

3.5 Simulated Annealing . 65

3.5.1 Annealing Schedule . 67

3.6 Tabu Search . 70

3.6.1 Tabu Search Main Foundation 71

3.6.2 Tabu Search Implementation for Partitioning 76

3.6.3 Adaptive Tabu Search Heuristic 79

3.6.4 Performance of Advanced Search Techniques 84

3.7 Summary . 85

ix

4 Hybrid Search Techniques 87

4.1 Hybridization . 87

4.1.1 Hybridization Strategy . 89

4.2 Effective Hybrid Schemes . 90

4.2.1 A Combined GRASP-Genetic Search Heuristic 90

4.2.2 A Combined GRASP-Tabu Search Technique 95

4.2.3 Computational Results . 95

4.3 A Memory Based Annealing Heuristic 97

4.3.1 Simulated Annealing with Memory 98

4.4 A Tabu-Genetic Algorithm Approach 101

4.4.1 Search Controller . 102

4.4.2 Computational Results . 106

4.5 Summary . 108

5 Circuit Clustering 110

5.1 Motivation . 112

5.1.1 Previous Algorithms . 114

5.2 A GRASP Clustering Heuristic . 114

5.3 A Statistical Clustering Heuristic 119

5.3.1 Concepts and Terminology 119

5.3.2 Statistical Information and Attributes 124

5.3.3 Cluster Size Thresholds . 124

5.3.4 Searching and Forming Clusters 125

5.3.5 Postprocessing . 126

5.4 Partitioning Clustering Heuristics 127

x

5.4.1 Clustered Single Processing Techniques 127

5.4.2 A Clustered Hybrid Technique 131

5.5 Solution Optimality . 132

5.5.1 Improving CPLEX MIP Performance 133

5.6 Summary . 139

6 Distributed Search Techniques 141

6.1 Motivation . 142

6.1.1 Multiprocessing Issues . 142

6.1.2 Algorithm Development Strategy 143

6.2 A Network Multiprocessor Environment 145

6.2.1 Main NMP Routines . 146

6.3 Parallel Partitioning . 148

6.3.1 A Simple Distributed Partitioning Heuristic 148

6.3.2 A Distributed Genetic Search Heuristic 150

6.3.3 A Distributed Genetic-Tabu Search Heuristic 153

6.4 Summary . 156

7 Circuit Placement 157

7.1 General Placement . 158

7.1.1 Classification . 158

7.1.2 Placement Cost Functions 163

7.2 Constructive Phase . 167

7.2.1 A Quadratic Cost Function 167

7.2.2 Generating a Legal Placement 169

7.3 A Partitioning Placement Heuristic 170

xi

7.4 Iterative Improvement Phase . 171

7.4.1 A Tabu Method for Placement 173

7.4.2 The Objective Function . 175

7.5 Experimental Results . 179

7.6 Summary . 180

8 Complexity Analysis 181

8.1 Notations and Definitions . 182

8.1.1 Notation Used For Main Network 182

8.1.2 Notation Used For Clustered Network 183

8.1.3 Definitions . 184

8.2 Complexity Analysis of Tabu Search 188

8.3 Complexity of Clustering Heuristics 194

8.3.1 GRASP Based Clustering 194

8.3.2 Statistical Based Clustering 197

8.4 Summary . 201

9 Conclusions and Future Directions 202

9.1 Accomplishments . 203

9.2 Summary . 208

9.2.1 Clustered GA-TS Approach 209

9.3 Future Work . 212

9.4 Epilogue . 214

A Data Structures, and Algorithms 215

A.1 Complexity of Partitioning Heuristics 215

xii

A.2 Definitions & Data Structures . 215

B NMP Routines 218

B.1 Connection Based Routines . 218

B.2 Identification Routines . 218

B.3 Timing Routines . 219

B.4 Dynamic Reconfiguration of the System 219

C Complete Tabulated Results 220

C.1 Results of Advanced Search Techniques 221

C.2 Results of Hybrid Search Techniques 231

C.3 Results of Clustering Techniques . 236

C.4 Results of Distributed Processing Methods 242

Bibliography 247

xiii

List of Tables

1.1 Example runtime of VLSI CAD tools on a SUN/4 workstation . . . 6

3.1 Benchmarks used as test cases . 42

3.2 Statistical information of benchmarks 42

3.3 A comparison between GRASP and Sanchis interchange heuristic . 53

3.4 A comparison between constructive techniques 65

3.5 A comparison between different Tabu Search settings 80

3.6 The performance of Adaptive Tabu Search 83

3.7 2-Way partitioning of advanced search heuristics 85

4.1 Comparison between different search methods 90

4.2 Results of GRASP-GA hybrid implementation 94

4.3 Effective hybrid search techniques 97

4.4 The performance of Simulated Annealing with memory 100

4.5 2-Way partitioning results of hybrid heuristics 107

4.6 4-Way partitioning results of hybrid heuristics 107

4.7 6-Way partitioning results of hybrid heuristics 108

5.1 The effect of clustering on circuit statistics 113

5.2 Results using Sanchis interchange with GRASP clustering 118

xiv

5.3 Case1: preference values depending on Ψ 123

5.4 Case2: preference values depending on Ψ 123

5.5 A comparison between attraction functions 124

5.6 Performance based on size threshold 125

5.7 Effect of seed on statistical clustering 126

5.8 The Sanchis interchange heuristic and statistical clustering 130

5.9 Genetic Search based on statistical clustering 130

5.10 Tabu Search and statistical clustering 130

5.11 Performance of GA-TS hybrid with clustering 132

5.12 Optimal solutions for 2-way partitioning 134

5.13 Optimal solutions for 4-way partitioning 134

5.14 Heur-Stat heuristic used with CPLEX MIP solver 138

6.1 Sanchis interchange heuristic . 151

6.2 Sequential and distributed GA . 154

6.3 GA-TS heuristic . 156

7.1 Placement results based on HPWL 179

9.1 2-Way Partitioning: CPU TIME COMPARISON 207

9.2 4-Way Partitioning: CPU TIME COMPARISON 208

9.3 6-Way Partitioning: CPU TIME COMPARISON 208

A.1 Computational complexity of circuit partitioning heuristics 215

C.1 2 Way Partitioning SDHC . 221

C.2 4 Way Partitioning SDHC . 221

C.3 6 Way Partitioning SDHC . 222

xv

C.4 GRASP 2-Way partitioning . 223

C.5 GRASP 4-Way partitioning . 223

C.6 GRASP 6-Way partitioning . 224

C.7 Comparison of GA Techniques for 2 Way Partitioning 225

C.8 Comparison of GA Techniques for 4 Way Partitioning 225

C.9 Comparison of GA Techniques for 6 Way Partitioning 226

C.10 Constructive Methods for 2-Way Partitioning 227

C.11 Constructive Methods for 4-Way Partitioning 227

C.12 Constructive Methods for 6-Way Partitioning 228

C.13 2 Way Partitioning Results Using Adaptive Tabu Search 229

C.14 4 Way Partitioning Results Using Adaptive Tabu Search 229

C.15 6 Way Partitioning Results Using Adaptive Tabu Search 230

C.16 Results of GRASP-GA hybrid implementation 232

C.17 Effective hybrid search techniques 233

C.18 2 Way Partitioning for SAM Hybrid Heuristic 234

C.19 4 Way Partitioning for SAM Hybrid Heuristic 234

C.20 6 Way Partitioning for SAM Hybrid Heuristic 235

C.21 2 way iterative improvement clustering results 236

C.22 4 way iterative improvement clustering results 236

C.23 6 way iterative improvement clustering results 237

C.24 2 way genetic clustering results . 238

C.25 4 way genetic clustering results . 239

C.26 6 way genetic clustering resulsts . 239

C.27 2 way Tabu Search clustering results 240

C.28 4 way Tabu Search clustering results 240

xvi

C.29 6 way Tabu Search clustering results 241

C.30 2-way Distributed Local Search . 242

C.31 4-way Distributed Local Search . 242

C.32 6-way Distributed Local Search . 243

C.33 2-way Distributed Genetic Search 244

C.34 4-say Distributed Genetic Search 244

C.35 6-way Distributed Genetic Search 245

xvii

List of Figures

1.1 The VLSI design process . 3

1.2 Dissertation goals and strategy . 9

1.3 Dissertation outline . 15

2.1 Illustration of circuit partitioning 18

2.2 Layout styles . 32

2.3 Iterative improvement example based on node interchange 35

2.4 The Kernighan-Lin Algorithm . 36

3.1 A dynamic hill climbing heuristic (SDHC) 45

3.2 The convergence of SDHC . 46

3.3 The performance of SDHC . 46

3.4 GRASP (Greedy Adaptive Search) 49

3.5 Parameters affecting GRASP performance 52

3.6 Representation schemes and genetic operators 57

3.7 A generic Genetic Algorithm . 61

3.8 Parameters affecting GA performance 63

3.9 The GA performance . 64

3.10 A Simulated Annealing Algorithm 66

xviii

3.11 Simulated Annealing with different schedules 69

3.12 A comparison between annealing schedules 70

3.13 Parameters affecting Tabu Search 75

3.14 A Simple Tabu Search implementation 77

3.15 Adaptive Tabu Search . 82

3.16 Performance of advanced search heuristics 84

4.1 Hybrid classes applied to combinatorial optimization 88

4.2 A GRASP-GA hybrid . 93

4.3 The performance of the GRASP-GA hybrid 94

4.4 A GRASP-TS hybrid heuristic . 96

4.5 Initial solutions and local search . 98

4.6 Simulated Annealing with memory (SAM) 99

4.7 The performance of SAM . 100

4.8 Interaction between different search strategies 103

4.9 A Tabu Search-Genetic Algorithm hybrid 104

4.10 The performance of GA-TS hybrid 106

5.1 Overview of clustering . 111

5.2 3D view of a clustered network . 115

5.3 A GRASP based clustering heuristic 116

5.4 Performance of clustering based on cluster size 117

5.5 Performance of the GRASP clustering technique 118

5.6 A clustering heuristic based on attributes 121

5.7 Attractive force between modules 123

5.8 A combined clustering-partitioning heuristic 128

xix

5.9 Performance of the statistical clustering technique 131

5.10 Performance of the clustered GA-TS heuristic 133

5.11 Stat-Heur heuristic and CPLEX MIP 136

5.12 Effect of Stat-Heur in improving the CPLEX MIP performance . . . 139

6.1 Computing facilities . 146

6.2 NMP interconnection structure . 147

6.3 A distributed partitioning heuristic 149

6.4 Sequential vs parallel computation 151

6.5 The performance of Sanchis distributed heuristic 152

6.6 A distributed Genetic Algorithm 153

6.7 The performance of a distributed GA heuristic 154

6.8 A distributed GA-TS heuristic . 155

7.1 Interconnection topologies . 165

7.2 Approximate wire estimation and congestion 166

7.3 Wire estimation for global placement 168

7.4 The mapping to legal placement . 170

7.5 The GPPSC heuristic . 172

7.6 Type of possible moves . 174

7.7 A Tabu Search technique for circuit placement 178

9.1 Towards optimal solution of circuit layout 204

9.2 Effect of strategy on an intermediate and large size circuits 206

9.3 CGA-TS: The Best Overall Search Heuristic 210

xx

Chapter 1

Introduction

The last decade has brought explosive growth in the technology for manufacturing

integrated circuits. Integrated circuits with several hundred thousand transistors

are now commonplace. This manufacturing capability, combined with the economic

benefits of large electronic systems, is forcing a revolution in the design of these

systems and providing a challenge to those people interested in integrated system

design. Since modern circuits are too complex for an individual designer or a group

of designers to comprehend completely, managing this tremendous complexity and

automating the design process have become crucial issues.

1.1 The VLSI Design Process

Electronic design is carried out in many ways by designers for a variety of purposes.

It is impossible to describe one methodology that applies in all cases. Instead of

attempting to provide a comprehensive description, this section highlights the de-

sign process that places physical design in perspective and defines the interfaces of

1

CHAPTER 1. INTRODUCTION 2

physical design with other design phases. The VLSI design process is divided for

simplicity into five parts [HU85] as seen in Figure 1.1a: System Specification, Func-

tional Design, Logic Design, Circuit Design, and Circuit Layout. Each design phase

is further divided into three steps consisting of synthesis, analysis, and verification.

1.1.1 Design Representations

During the design process several different representations, or views, are used to

show different aspects of the system under development. Figure 1.1a shows an

example of the representation used during each phase of VLSI design. These views

are classified as behavioral, structural and physical, and they represent various levels

of abstraction [Prea88]. Behavioral representations describe a circuit’s function.

Procedural descriptions and Boolean expressions are behavioral representations;

they say nothing about implementation. Structural representations describe the

composition of circuits in terms of cells (abstractions of circuit element definitions),

components (abstractions of instances of circuit elements) and interconnections

among the components. Physical representations are characterized by information

used in the manufacture or fabrication of physical systems, such as geometric layout

or topological constraints. These representations only implicitly describe how a

circuit behaves.

1.1.2 Steps Within A Design Phase

Each design phase is characterized by synthesis, analysis and verification steps as

shown in Figure 1.1b. Synthesis derives a new or improved representation based

on the representation derived in the previous phase. Analysis follows synthesis in

C
H

A
P

T
E

R
1
.

IN
T

R
O

D
U

C
T

IO
N

3

fabrication

specification

behavioral
representation

structural
representation

structural
representation

physical

representation

Specification

Design

Functional

Design

Logic

Design

Circuit

Design
Physical

requirements

Simulation

Extraction and
Verification

Logic
Simulation

Circuit
Analysis

Functional

REG

ADDER

ALU Contr

Unit

D FF

Synthesis

Analysis

Verification

reject

to lower level

from upper level

lower
from

level
System

(a)

(b)

F
igu

re
1.1:

T
h
e

V
L
S
I

d
esign

p
ro

cess

CHAPTER 1. INTRODUCTION 4

each design phase and generally takes two forms. First, a design representation

must be evaluated against its requirements. For VLSI circuits the requirements

are usually specified in terms of die size, performance, and power consumption. A

design must also be evaluated for behavioral, structural, and physical correctness

and completeness. Verification, the final step within a design phase, demonstrates

that the synthesized representation is equivalent under all conditions of interest to

representations in other phases.

1.1.3 Electronic Design Phases

At the system specifications level, the goals and constraints of the system are de-

fined; that is, what the system will do, the criteria of optimization, the speed

requirement, the space or area requirements, the power requirements, and so forth.

In the functional design phase, the functional relationships among the subunits

are decided. The results may be a purely behavioral representation, or it may

include structural aspects by partitioning functionality into components. The be-

havioral simulation is the normal method of analysis.

Logic design, concerns the logic structure that implements the functional design.

Here, a set of boolean expressions or a representation of a finite state machine need

to be realized. The logic networks have to be converted into electronic circuits. The

logic design is validated by comparing the results from the logic level and behavioral

level simulations.

The circuit design phase concerns the electrical laws that govern the detailed

behavior of the basic circuit elements such as transistors, resistors, capacitors, and

inductors. In this phase, transistors are sized to meet signal delay requirements.

CHAPTER 1. INTRODUCTION 5

Analysis is performed using circuit and timing simulations.

In the physical design or circuit layout phase, the behavioral or structural rep-

resentations from the previous phases are transformed into geometric shapes that

are used in the fabrication of the system. Physical design is a complex process,

therefore, it is usually broken down into various sub-steps in order to handle the

complexity of the problem. In fact, physical design is arguably the most time

consuming step in the VLSI design cycle.

In the final stages of the design cycle (not shown in the figure), a verification

phase checks if all design rules are satisfied. Then the chip is tested and debugged

for any occurring errors. Finally, a prototype is built and tested, before mass

production.

1.1.4 Complexity of Circuit Layout

The input to the physical design phase is a circuit diagram and the output is the

layout of the circuit. This is accomplished in several stages using partitioning,

floor-planning, placement, routing, and compaction. The main objective of this

design process is to position devices on the chip so as to minimize the total area of

the layout. In addition, the total interconnection wire is reduced.

The layout design process is a complicated task [Leng90]. There are two aspects

of building a layout system that contribute to its complexity. One is the combina-

torial aspect and the other is the system aspect. The combinatorial aspect is that

most of the optimization problems that have to be solved during integrated-circuit

layout are intractable or NP-hard [Ullm84, Leig83]. The system aspect deals with

other problems such as the maintenance of the consistency in the design database

CHAPTER 1. INTRODUCTION 6

in the presence of simultaneous changes of the same design object and other related

problems. This thesis is concerned only with the combinatorial aspect of circuit

layout. The purpose of this work is to introduce efficient heuristic solutions to the

underlying combinatorial problems in circuit layout. The developed heuristics for

circuit layout are promising and provide an excellent basis to design efficient CAD

tools.

1.2 Motivation

A large subset of problems in VLSI CAD is computationally intensive, and future

CAD tools will require even more accuracy and computational capabilities from

these tools. Table 1.1 shows examples of CAD tools and their run-times on a

SUN/4 Sparc workstation [Bane94], rated to operate at about 20 MIPS.

The circuit sizes in each of the problems are quite moderate, about 1000 to

40,000 gates. It is clear that for circuits that are hundred times larger, 100,000 to

1 million gates, the run-time requirements will increase 100 times or more. CAD

tools that take hours to run on current designs may take weeks or months to run

on future designs. In fact, some of the industrial CAD tools running on the leading

Application CAD Tool Circuit Size Runtime

Extraction HPEX3.0 1,000,000 rectangles 1 hour
Placement TimberWolf 2907 cells 1 hour
Logic Synthesis MIS2.2 7657 gates 2 hours
Test Generation HITEC2.0 17,793 gates 5 hours
Circuit Simulation RELAX2.0 40,000 elements 1 month

Table 1.1: Example runtime of VLSI CAD tools on a SUN/4 workstation

CHAPTER 1. INTRODUCTION 7

edge ASIC gate-array chips containing 500,000 gates take weeks to run tasks such

as placement, routing, and layout verification [Bane94]. The VLSI design cycle

involves iterations, both within a step and between different steps. The entire

design cycle may be viewed as transformations of representation in various steps.

In each step, a new representation of the system is created and analyzed. The

representation is iteratively improved to meet system specifications. For example,

the layout is iteratively improved so that it meets the timing specifications of the

system. Another example may be the detection of design rule violations during

design verification. If such violations are detected, the physical design step need to

be repeated to correct the error. Therefore, one of the objectives of VLSI CAD tools

is to minimize the number of iterations and thus reduce the time-to-market. This

can be accomplished by having efficient heuristics, that are expected to produce

near optimal solutions in reasonable amounts of time.

Another motivation for designing highly efficient heuristics for CAD tools is

cost. While the costs of integrated circuits have dropped exponentially, the basic

procedure of silicon manufacture is unchanged. A wafer is still tested and chopped

into dies that are packaged. The cost of a packaged integrated circuit is [?]:

cost of IC =
cost of die + cost of testing die + cost of packaging

F inal test yield

cost of die =
cost of wafer

Dies per wafer ×Die yield

The number of dies per wafer is basically the area of the wafer divided by the area

of the die. Reducing the die area by half – the parameter that circuit layout tools

CHAPTER 1. INTRODUCTION 8

controls – doubles the die yield, and thus decreases the cost of production.

The final and most important reason to have efficient heuristic solutions to the

circuit layout problem is speed. Effective placement and routing routines minimize

the die area and the total interconnection wire length. This in place leads to

high performance devices. In other words, the sheer size of the VLSI circuit, the

complexity of the overall design process, the desired performance of the circuit, and

the cost of designing a chip dictate that efficient heuristics are required to solve the

circuit layout problem effectively. Despite significant research efforts in this field,

the CAD tools still lag behind the technological advances in fabrication. This calls

for development of efficient heuristics for physical design automation.

1.3 Dissertation Framework

The main goals of this dissertation are: efficiency, robustness, complexity reduction,

and speed as seen in Figure 1.2. Each goal is achieved using a different strategy.

1.3.1 Efficiency

The primary goal of this thesis is to develop efficient heuristic techniques to

solve the circuit layout problem. This is achieved by evaluating and improving the

performance of recent advanced search methods such as Tabu Search [?, Glov90,

Blan91], GRASP [Feo94], Simulated Annealing [Sech88a], and Genetic Algorithms

[?] on the circuit partitioning problem, and compare them with traditional com-

binatorial optimization techniques in terms of the execution time and quality of

solution. The experience gained from applying these advanced heuristics on the

circuit partitioning problem can then be utilized extensively on the more difficult

CHAPTER 1. INTRODUCTION 9

OPTIMAL

LAYOUT

CIRCUIT

- COMPLEXITY ANALYSIS

- HYBRIDS
- ADVANCED SEARCH METHODS

- MULTIPROCESSING

- EFFICIENT DATA STRUCTURES

- CLUSTERING

- PREPROCESSING

- INTELLIGENT CONTROL

- PARAMTER TUNING

(1) EFFICIENCY (2) ROBUSTNESS

(3) COMPLEXITY REDUCTION (4) SPEED

Figure 1.2: Dissertation goals and strategy

placement problem. The second strategy to achieve efficiency, is to emphasize the

advantages and disadvantages of these different search techniques, and show the

importance of combining these distinct models of computation to solve the com-

binatorial optimization problems in circuit layout. We show that by integrating

these fundamentally different approaches, one can avoid many of the weaknesses

inherent in each methodology, while capitalizing on their individual strengths. In

general, we are interested in finding the most “efficient” algorithm for solving the

circuit layout problem. In its broadest sense, the notion of efficiency involves all

the various computing resources needed for executing an algorithm. The order of

growth of the running time of an algorithm, gives a simple characterization of the

algorithm’s efficiency and also allows us to compare the relative performance of

alternative algorithms. The worst case analysis of the above mentioned heuristics

CHAPTER 1. INTRODUCTION 10

is an important measure of the goodness of these heuristics. We evaluate several of

the important heuristics that are developed by determining the time and space re-

quired to solve large instances of the combinatorial optimization problems of circuit

layout.

1.3.2 Robustness

One of the major research goals in this dissertation is to improve the robustness of

layout heuristics developed. The heuristics should be adaptable to a wide range of

circuit sizes, cost functions, and technology boundary conditions. This important

goal can be achieved by fine-tuning of parameter settings that affect the perfor-

mance of the above mentioned heuristics. Selecting and adapting parameter set-

tings that control strategies such as Tabu Search or Simulated Annealing have a

drastic effect on the final generated solution.

Another means of accomplishing this goal is through intelligent control of the

heuristics involved in solving the problem. The main task of an intelligent controller

involves adapting the parameters of the heuristic according to the properties of the

solution space being searched.

1.3.3 Complexity Reduction

Reducing the complexity of the design is a further important goal in this disserta-

tion. Complexity reduction is achieved by using preprocessing and circuit clustering.

Preprocessing based on statistical information of the circuit reduces the complexity

by eliminating long nets and fixing modules in a particular position through out

the search process. Circuit clustering on the other hand plays a fundamental role

CHAPTER 1. INTRODUCTION 11

in reducing the complexity of the circuits, by utilizing a hierarchical approach to

shorten the design period. This is in place improves the performance of the design

process.

1.3.4 Speed

Finally, our goal is to increase the processing power available to the execution of

the developed heuristics. This is accomplished by using efficient data structures

and distributed processing. Parallelism is applied using standard equipment to sim-

plify experiment management and reduce the overall CPU time required to provide

efficient solutions to the problems. A Network Multiprocessing Environment has

been developed to parallelize the efficient CAD heuristics. Unlike previous parallel

heuristics that required special parallel machines with shared memory or dedicated

interconnection networks, the CAD heuristics run on a network of workstations in

a robust and efficient manner.

1.4 Research Contributions

The main contributions described in this dissertation are:

• Adapting several advanced search heuristics for solving the circuit partitioning

problem. We show the main advantages and disadvantages of each technique,

and the means to overcome their weaknesses.

• Intelligent fine tuning of different parameters for Tabu Search, GRASP, and

Genetic Algorithms allows these heuristics to be used effectively for circuit

layout in particular and other combinatorial optimization problems in general.

CHAPTER 1. INTRODUCTION 12

• A new hybrid technique based on Tabu Search and Simulated Annealing has

been designed. The hybrid technique gives the same high quality of solutions

of Simulated Annealing and reduces the computation time by 50% on average.

• A powerful circuit partitioning hybrid based on Tabu Search and Genetic

Algorithm is proposed. The uniqueness of this hybrid stems from the ability

of a search controller to coordinate the search process efficiently.

• Effective clustering techniques for circuit partitioning in particular and cir-

cuit layout in general are presented. These techniques are based on grouping

“closely” connected cells and nets within the same partition. The main ad-

vantage of these clustering methods is in their capability of providing good

initial solutions and reducing the computation time by 60% on average for

local search heuristics.

• A novel methodology is used to improve the performance of the MIP CPLEX

mixed integer programming package to solve the circuit partitioning problem.

Statistical information extracted from the circuit assigns priority to most inte-

ger variables, this reduces the symmetry of the MIP and accordingly reduces

the number of equivalent solutions.

• Developing and implementing parallel versions of the circuit partitioning

heuristics. The parallel heuristics utilize a number of workstations (connected

together by a local area network) to distribute the load among the processors,

and speed up the execution time of the heuristics.

• A new constructive placement heuristic that is suitable for standard-cell and

gate-array designs has been proposed. The algorithm is based on a partition-

CHAPTER 1. INTRODUCTION 13

ing algorithm that provides an initial placement for the iterative improvement

algorithm.

• A robust and efficient iterative technique for circuit placement has been de-

signed. This technique is mainly based on Tabu Search to improve upon the

initial placement provided by the constructive heuristic.

• A worst case complexity analysis of the Tabu Search partitioning heuristic is

described and compared to previous iterative improvement techniques.

• A worst case complexity analysis of clustering approaches used for circuit

partitioning and placement is presented.

The research in this thesis is hoped to be of great value not only for circuit layout

problems but for other combinatorial and engineering optimization problems as

well. The developed heuristic techniques can be adjusted to these applications

with minimum effort and in some cases with no modification except for the objective

function. Some of the applications that can utilize the developed efficient heuristics

are:

1. Distributed Simulation: Partitioning and mapping for parallel distributed sim-

ulation as an attempt to minimize the communication overhead and uniformly

distribute the execution load among the processors.

2. Logic Synthesis Applications: An obvious way of speeding up the logic syn-

thesis application is to generate a large number of logic partitions of a given

circuit and to synthesize each partition independently. The results of the

individual partitions can then be merged back together.

CHAPTER 1. INTRODUCTION 14

3. Task Scheduling: The problem here is to schedule a collection of tasks on p

processors so that the maximum completion time is minimized. The main

idea is to construct a schedule and iteratively modify it by assigning some

tasks to more processors.

1.5 Thesis Outline

This thesis is divided into nine chapters. Chapter 2 presents an overview of the VLSI

design process and a brief review of heuristic-based search techniques presently used

in circuit layout. Advanced search techniques in the form of Tabu Search, Simulated

Annealing, GRASP, and Genetic Algorithms are introduced in Chapter 3. Results

obtained for the circuit partitioning problem using these advanced techniques are

also presented. Chapter 4 introduces new methodologies of combining the above

heuristics to tackle the circuit partitioning problem in particular and placement

in general. These hybrid systems attempt to combine the power of decentralized

characteristics of heuristics that explore the solution space with the more localized

features of heuristics that efficiently locate local optimum.

Chapter 5 presents a novel technique to significantly reduce the complexity of

the circuits by means of clustering. Techniques for parallel implementation are

introduced in Chapter 6 to increase the processing power available to the execution

of the developed programs. The placement problem using new constructive and

iterative improvement methods is presented in Chapter 7. Analysis of convergence

of some of the above hybrid heuristics are presented in Chapter 8.

Finally, the thesis is concluded in Chapter 9 with a summary of present and

future work. Figure 1.3 presents the main outline of this dissertation.

CHAPTER 1. INTRODUCTION 15

VLSI DESIGN PROCESS

CONCLUSION
FUTURE WORK

CIRCUIT
LAYOUT

COMPLEXITYPHASES PROBLEMS

CIRCUIT PARTITIONING

CLUSTERING SEARCH TECHNIQUES PARALELLISM

SIM ANNEALING GENETIC ALGS TABU SEARCH GRASP

HYBRIDIZATION

CIRCUIT PLACEMENT

OPTIMALITY

ADVANCED SEARCH TECHNIQUES

MOTIVATION

RESEARCH FRAMEWORK

GOALS STRATEGY

Figure 1.3: Dissertation outline

Chapter 2

Background

2.1 Physical Design and Circuit Layout

In the combinatorial sense, the layout problem is a constrained optimization prob-

lem. We are given a circuit (usually a module-wire connection-list called a netlist)

which is a description of switching elements and their connecting wires. We seek an

assignment of geometric coordinates of the circuit components (in the plane or in

one of a few planar layers) that satisfies the requirements of the fabrication technol-

ogy (sufficient spacing between wires, restricted number of wiring layers, and so on)

and that minimizes certain cost criteria. Practically, all aspects of the layout prob-

lem as a whole are intractable; that is, they are NP-hard [Hach89]. Consequently,

we have to resort to heuristic methods to solve very large problems. One of these

methods is to break up the problem into subproblems, which are then solved one

after the other. Almost always, these subproblems are NP-hard as well, but they

are more amenable to heuristic solutions than is the entire layout problem itself.

Each one of the layout subproblems is decomposed in an analogous fashion. In this

16

CHAPTER 2. BACKGROUND 17

way, we proceed to break up the optimization problems until we reach primitive

subproblems.

These subproblems are not decomposed further, but rather solved directly, ei-

ther optimally (if an efficient polynomial-time optimization algorithm exists) or

approximately if the subproblem is itself NP-hard or intractable, otherwise. The

most common way of breaking up the layout problem into subproblems is first to do

logic partitioning where a large circuit is divided into a collection of smaller mod-

ules according to some criteria, then to perform component placement, and then to

determine the approximate course of the wires in a global routing phase. This phase

may be followed by a topological-compaction phase that reduces the area require-

ment of the layout, after which a detailed-routing phase determines the exact course

of the wires without changing the layout area. After detailed-routing, a geometric-

compaction phase may further reduce the layout area requirement [HU85].

2.1.1 Circuit Partitioning

Circuit partitioning is the task of dividing a circuit into smaller parts. It is an

important aspect of layout for several reasons. Partitioning can be used directly

to divide a circuit into portions that are implemented on separate physical compo-

nents, such as printed circuit boards or chips. Here, the objective is to partition

the circuit into parts such that the sizes of the components are within prescribed

ranges and the complexity of connections between the components is minimized.

As can be seen in Figure 2.1, after swapping modules between the two blocks we

end up minimizing the number of signal nets that interconnect the components

between the blocks. A natural way of formalizing the notion of wiring complexity

CHAPTER 2. BACKGROUND 18

module 1 and 3

After swapping

NET 3NET 2 NET 4

NET 1

BLOCK(2)BLOCK(1)BLOCK(2)BLOCK(1)

1 Net Cut3 Nets Cut

5412354321

NET 4NET 3
NET 2

NET 1

Initial Solution

Figure 2.1: Illustration of circuit partitioning

is to attribute to each net in the circuit some connection cost, and to sum the con-

nection costs of all nets connecting different components. A more important use of

circuit partitioning, is to divide up a circuit hierarchically into parts with divide-

and-conquer algorithms for placement, floorplanning, and other layout problems.

Here, cost measures to be minimized during partitioning may vary, but mainly

they are similar to the connection cost measures for general partitioning problems.

2.1.1.1 Circuit Partitioning as a 0-1 Quadratic Transportation Problem

The problem of optimally partitioning an undirected graph G with nm nodes into

nb blocks can be formulated as 0-1 quadratic transportation problem. The disjoint

blocks have exactly m1, m2, . . . , mnb
nodes per block (m1 ≈ m2 ≈ mnb

≈ nm

nb
) such

that
nb
∑

k=1

mk = nm

A variable is assigned to each node, in the form xik where:

xik =

1 if node i is in block k

0 otherwise

CHAPTER 2. BACKGROUND 19

If nodes i and j are both in block k, then xikxjk = 1. Let A represent the connection

matrix (i.e., A is the adjacency matrix of G). The weight of the edge joining node

i to node j is aij . If nodes i and j are not connected, then aij = 0. The problem

is to partition the graph into nb blocks, such that, the sum of the weights on the

interconnection between the nb blocks is minimized. In other words, the goal is to

maximize the edges inside each block. The objective function is thus

Max
nb
∑

k=1

nm
∑

i=1

nm
∑

j=1

aijxikxjk (2.1)

s.t. (i) Module placement constraints:

nb
∑

k=1

xik = 1, ∀i = 1, 2, . . . , nm

(ii) Block size constraints

nm
∑

i=1

xik ≤
nm

nb
, ∀k = 1, 2, . . . , nb

xik ∈ {0, 1}, 1 ≤ i ≤ nm; 1 ≤ k ≤ nb

Barnes [Barn82] developed a polynomial time heuristic for approximating the

above 0-1 quadratic transportation problem. The heuristic is based on approxi-

mating the netlist or hypergraph by a weighted graph G [Hadl92, Vann90], that

tightly estimates the number of cut nets in any netlist partition. The numerical

optimization technique used by Barnes transforms the graph partitioning problem

into a linear transportation problem, which is solved in polynomial time. This tech-

nique can consider 2k linear transportation problems, where k is a small number

CHAPTER 2. BACKGROUND 20

of blocks, and does not require multiple runs. Barnes’s algorithm first finds the nb

largest eigenvalues of the connection matrix A of the graph and their correspond-

ing orthonormal eigenvectors u1, u2, . . . , unb
. Let uik be the ith component of the

eigenvector corresponding to the kth largest eigenvalue of the adjacency matrix of

G. Barnes [Barn82] shows that the solution of the following linear transportation

problem gives an approximate solution to the graph partitioning problem:

Max
nm
∑

i=1

nb
∑

k=1

uik√
mk

xik (2.2)

s.t. (i) Position constraints:

nb
∑

k=1

xik = 1, ∀i = 1, 2, . . . , nm

(ii) Block size constraints:

∑nm

i=1 xik = mk, ∀k = 1, 2, . . . , nb

xik ≥ 0, 1 ≤ i ≤ nm; 1 ≤ k ≤ nb

m1 ≥ m2 ≥ . . . ≥ mnb

For the special case of partitioning into two blocks, the above computation can be

further simplified. The first two eigenvalues of the connection matrix A and their

corresponding eigenvectors u1 and u2 are found; a combined eigenvector

u1−2 =
ui1√
m1

− ui2√
m2

, i = 1, 2, . . . , nm

is calculated. The largest m1 terms of the sorted u1−2 vector represent the nodes of

one block, and the next m2 terms represent the nodes of the other block [Hadl92].

CHAPTER 2. BACKGROUND 21

2.1.1.2 Lower Bounds

The eigenvector technique of Barnes [Barn82] was used to partition the graph G into

k blocks of fixed module size. Another feature of this graph underestimation model

of the netlist is that it allows one to obtain lower bounds on the actual number of

cut nets. An underestimation can prove to be useful when either a lower bound or

the optimal solution for the graph partitioning problem can be found. The reason

the underestimation is useful is that any lower bound for the graph partitioning

problem will also provide a lower bound for the netlist partitioning problem. In

contrast, if a general estimation is used, bounding results from graph partitioning

cannot be exploited.

Recall that the weight of any cut in the generated graph G underestimates

the number of generalized edges cut in H. [Hadl92] and [Dona73] introduced an

approach that finds lower bounds on the weight of any cut of G. So, we can find a

lower bound on the number of cut generalized edges of H.

Consider the matrix A, where aij is the weight of the edge joining nodes i and

j (i.e. A is the adjacency matrix of G). The matrix A is symmetric with zeroes

along the main diagonal. Consider any diagonal matrix U, where

n
∑

i=1

uii = −
∑

i

∑

j

aij

then it can be shown that [Dona73]:

Ec ≥ −
1

2

k
∑

i=1

miλi(A + U), (2.3)

where Ec is the sum of the edges cut by the optimal partition and λi is the ith

CHAPTER 2. BACKGROUND 22

largest eigenvalue of the matrix A+U.

2.1.1.3 0-1 Linear Programming Formulation of Netlist Partitioning

A standard mathematical model in VLSI layout associates a graph G = (V, E)

with the circuit netlist, where vertices in V represent modules, and edges in E

represent signal nets. The netlist is more generally represented by a hypergraph

H = (V, E ′), where hyperedges in E ′ are the subsets of V contained by each net

(since nets often are connected to more than two modules). In this formulation,

we attempt to partition a circuit with nm modules and nn nets into nb blocks

containing approximately nm

nb
modules each; (i.e. we attempt to equi-partition the

V modules among the nb blocks), such that the number of uncut nets in the nb

blocks is maximized.

Defining:

xik =

1 if module i is placed in block k

0 otherwise

yjk =

1 if net j is placed in block k

0 otherwise

So the linear integer programming (LIP) model of the netlist partitioning prob-

lem is given by maximizing the number of uncut nets in each block;

Max
nn
∑

j=1

nb
∑

k=1

yjk (2.4)

CHAPTER 2. BACKGROUND 23

s.t. (i) Module placement constraints:

nb
∑

k=1

xik = 1, ∀i = 1, 2, . . . , nm

(ii) Block size constraints:

nm
∑

i=1

xik ≤
nm

nb

, ∀k = 1, 2, . . . , nb

(iii) Netlist constraints:

yjk ≤ xik, where

1 ≤ j ≤ nn

1 ≤ k ≤ nb

i ∈ Net j

(iv) 0-1 constraints:

xik ∈ {0, 1}, 1 ≤ i ≤ nm; 1 ≤ k ≤ nb

yjk ∈ {0, 1}, 1 ≤ j ≤ nn; 1 ≤ k ≤ nb

The net placement constraints determine if a net (wire) j is placed entirely in block

k or if it is not. In problem (LIP) we maximize the number of uncut nets in the nb

blocks. This is equivalent to the netlist partitioning problem where we minimize

the number of wires connecting the nb blocks.

2.1.1.4 Complexity of Circuit Partitioning

At the basis of all partitioning problems are variations of the following combinatorial

problem.

CHAPTER 2. BACKGROUND 24

Hypergraph Partitioning [Prea88]

Instance: An undirected hypergraph G = (V,E)

with vertex weights w : V → IN ,

edge weights l : E → IN ,

and a maximum cluster size B ∈ IN

Configurations: All partitions of V into subsets V1, . . . , Vm where m ≥ 2.

Legal configurations: All partitions such that

∑

v∈Vi
w(v) ≤ B, ∀i = 1, . . . , m.

Cost functions: c(V1, . . . , Vm) =

∑

e∈E(|{i ∈ {1, . . . , m}|Vi ∩ e 6= φ}| − 1)l(e)

The legal configurations are the partitions in which each cluster Vi has a total

vertex weight not exceeding B. The weights of the vertices represent the block sizes,

and the weights on the edges represent connection costs. The maximum cluster size

B is a parameter that controls the balance of the partitions.

The Hypergraph Partitioning problem is NP-complete even if B ≥ 3 is fixed and

w ≡ 1, l ≡ 1 [Hyaf73]. The problem is only weakly NP-complete if G is restricted

to be a tree [Bert82]. In this case there is a pseudo-polynomial time algorithm that

solves the problem in time O(nB2). If G is a tree and all edge weights are identical,

or if G is a tree and all vertex weights are identical [?], then the problem is in P.

Currently none of the results cited above has practical impact on the VLSI layout

procedures [Prea88]; the instance of the hypergraph partitioning problem that occur

in circuit layout go beyond the graph classes considered in the restrictions of the

problem.

CHAPTER 2. BACKGROUND 25

2.1.2 Circuit Placement

After the circuit partitioning phase, the area occupied by each block can be calcu-

lated, and the number of terminals required by each block is known. In addition,

the netlist specifying the connections between the blocks is available. In order

to complete the layout, we need to arrange the blocks on the layout surface and

interconnect their pins according to the netlist. In general-cell and standard-cell

placement, we want to position the components of the circuit such that the layout

area is minimized. The area measure used here comprises the area taken up by the

circuit components as well as the area needed for wiring the circuit components

together (wiring area or routing area). Since hierarchy is employed in practical cir-

cuit layout, the circuit components to be placed are not necessarily single devices

such as transistors, but may represent large chunks of circuitry, such as complete

adders or control sub-circuits. Thus, the placement problem has the dual flavor

of a two-dimensional packing problem and a connection-cost optimization prob-

lem. The packing problem is concerned with fitting a number of cells of different

sizes and shapes tightly into a rectangle. The connection-cost optimization aims at

minimizing the amount of wiring necessary.

2.1.2.1 Complexity of Circuit Placement

The placement problem can be stated in terms of several non-equivalent combi-

natorial problems, depending on what cost measure should be minimized. Each

one of these problems is NP-complete. Many placement techniques are based on

hypergraph partitioning. This approach is aimed at minimizing wire congestion.

The corresponding combinatorial problem is NP-complete (as described in Section

CHAPTER 2. BACKGROUND 26

2.1.1.4). Methods that try to minimize a cost measure, representing interconnec-

tion cost, look for an assignment of coordinates in the plane, say for the centers

of blocks, such that a cost measure estimating the total amount of wiring is mini-

mized.

Two-Dimensional Placement [Prea88]

Instance: A Hypergraph G = (V,E) and an interconnection

cost function c : E → IN ,

a set V ′ ⊂ V of fixed vertices

and positions si, ti ∈ IN ∀vi ∈ V ′

Legal configurations: All placements ((xi, yi)) i = 1, . . . , |V | with xi, yi ∈ IN

such that xi = si and yi = ti ∀vi ∈ V ′

Cost functions:
∑

e∈E c(e) maxvi,vj∈e d(xi, yi, xj, yj)

The Two-Dimensional Placement problem is in P. In fact, it can be stated

in terms of two identically structured linear programs, one for each dimension.

This characteristic remains true even if the Two-Dimensional Placement problem

is generalized to incorporate block sizes, pin positions in blocks, etc. [Prea88]. In

general the solution of the Two-Dimensional Placement problem only gives a first

approximation of the placement; the blocks have finite dimensions and may still

overlap in the placement. Insisting that blocks be non-overlapping amounts to

requiring that the coordinates of the placement be integer.

Optimal Linear Arrangement [Prea88]

Instance: A Hypergraph G = (V,E) and a

cost function c : E → IN ,

Legal configurations: All permutations π : {1, . . . , n} → {1, . . . , n}.

Cost functions:
∑

e∈E c(e) maxvi,vj∈e |π(i)− π(j)|.
This problem is NP-hard, even if G is only a graph and c ≡ 1 [?]. It can be

CHAPTER 2. BACKGROUND 27

solved in polynomial time O(n2.2) if G is a tree and c ≡ 1 [Shil79]. If the quadratic

distance measure is used in the cost measure, then the problem is still NP-hard for

graphs with c ≡ 1, but no polynomial time algorithm for trees is known.

2.1.3 Routing

Routing follows the placement phase. It determines the course of the wires that

connect the cells laid out during the placement. The structure of the routing phase

depends greatly on the design and fabrication technology [Kuh83]. There are two

approaches to routing; namely, two-phase and area routing. In area routing, the

routing process is carried out in one phase that locates the actual geometric layout

of each net within the assigned routing regions.

In two-phase routing, the routing phase is subdivided into global routing and

detailed-routing. In the global (or loose) routing phase [Mowc87], nets or net seg-

ments are assigned to specific routing channels in the IC, which determines how

wires maneuver around and through cells. As a result of this phase, the intercon-

nection pattern in each channel is defined and is independent of all other channels.

In the second phase, called detailed (or local) routing, the interconnection pattern

in each channel is implemented by assigning the net segments to tracks and columns

in the channel. This phase is commonly referred to as channel routing.

2.1.3.1 Global Routing

The input to the global routing problem is a floorplan that can be represented as

a planar graph F = (V,E), whose vertices represent the blocks and whose edges

represent possible routing channels. Each edge e has two values associated with it,

CHAPTER 2. BACKGROUND 28

a capacity c(e) and a length l(e). The capacity is a measure of how many wires

fit into the corresponding routing channel. The length defines the length of the

routing channel. In addition a multi-set N of nets is given—each net n being a

subset of the vertices of F. N is a multi-set, because the same subset of vertices

can occur several times in N. The nets have to be connected through the routing

channels.

Global Routing [Prea88]

Instance: A Planar graph F = (V,E), a multi-set N of nets on V

a length function l : E → IN ,

a capacity function c : E → IN .

let kn be the multiplicity of n in N.

Legal configurations: A set N ′ ⊂ N or routable nets, and a set of subtrees

Tn,i of F, n ∈ N ′, i ∈ 1, . . . , kn. Here Tn,i

must connect all terminals of net n. Tn,i is called

a Steiner tree for net n. For e ∈ E, let U(e) denote

the set of pairs (n,i) such that e is an edge in Tn,i.

Then for all e ∈ E, |U(e)| ≤ c(e) has to hold.

Cost functions:
∑

e∈E l(e)|U(e)| + λ|N −N ′|.

Here λ is some large constant.

The constraints |U(e)| ≤ c(e) ensure that no edge is used above its capacity.

The large constant λ in the cost function ensures that the number of routable nets

is maximized with priority.

CHAPTER 2. BACKGROUND 29

2.1.3.2 Complexity of Routing

The Global Routing problem is NP-hard even if F is a grid and all nets are two-

terminal nets and c ≡ 1 [Kram84]. If N has only one net n, and kn = 1, this problem

becomes the Minimum Steiner Tree problem. The Minimum Steiner Tree problem

is also NP-hard, but various approximation algorithms exist [Widm86]. If the Min-

imum Steiner Tree problem is restricted to the case that n is a two terminal net,

it becomes the shortest path problem, which is efficiently solvable with Dijkstra’s

algorithm. All maze routers and several Steiner tree heuristics are based on this

observation. Thus, there is a large body of knowledge about the Minimum Steiner

Tree problem. The difficulty with solving this problem for global routing is that

each instance of the problem considers only one net. Some order has to be chosen in

which the nets are processed in order to achieve global routing. The order in which

nets are routed has to be chosen heuristically, and finding good heuristics is a major

stumbling block for finding good routings. Recently, investigations have been car-

ried out to determine how all nets can be routed simultaneously. Most approaches

to simultaneous routing of all wires reformulate the global routing problem as an

integer linear program [Vann89].

There are several reasons why the routing task is subdivided into the two phases

of global routing and detailed-routing. One is that each phase is more tractable than

the whole routing problem in one phase. In fact, many versions of the detailed-

routing problem are in P [Leng90] (i.e. polynomial in time). Another reason is

that, depending on the design and fabrication technology, there are several differ-

ent detailed-routing models. The detailed-routing model influences the size of the

routing space needed, but it is assumed to have only a secondary influence on the

CHAPTER 2. BACKGROUND 30

global routing. Thus, the global routing is somewhat more technology-independent

form of layout description than the detailed routing.

2.1.4 Layout Strategies and Styles

Physical design is an extremely complex process and even after breaking the entire

process into several conceptually easier steps, it has been shown that each step

is computationally hard. However, market requirements demand a quick time-to-

market and high yield. As a result, restricted models and design styles are used in

order to reduce the complexity of physical design. The classification and comparison

of layout styles is given in [Ueda86]. Currently, the popular VLSI physical design

styles are gate-arrays, standard-cells, general-cells, and full-custom design.

2.1.4.1 Gate-Array Design

In gate-array design, the entire wafer is prefabricated with an array of identical

gates or cells. As shown in Figure 2.2a, the cells are separated by both vertical and

horizontal spaces called vertical and horizontal channels. The name ‘gate-array’

signifies the fact that each cell may simply be a gate, such as a 2 input OR gate.

The number of tracks allowed for routing in each channel is fixed. As a result,

the purpose of routing phase is simply to complete the connections rather than

to minimize the area. Because of the large amount of rigidity imposed both by

the design technology and by the prefabrication of the master, gate-arrays do not

achieve the same level of performance and amount of density as do full-custom

chips.

CHAPTER 2. BACKGROUND 31

2.1.4.2 Standard-Cell Design

In standard-cell layout as seen in Figure 2.2b, the cells are small and rectangular;

often, all cells have the same height but different widths; and the cells have fixed

connections on the left and right side (clocks and/or power) that abut with each

other. The placement phase places the standard-cells in horizontal rows. The global

routing phase determines where the wires switch between the rows of standard-

cells. These locations are called feedthroughs. The detailed-routing phase amounts

to a set of channel routing problems, one for each routing channel between two

adjacent rows. This design style is well-suited for moderate size circuits and medium

production volumes. Physical design using standard-cells is more difficult compared

to gate-arrays, but much easier than full-custom design.

2.1.4.3 General-Cell Design

As seen in Figure 2.2c, the general-cell design style is a generalization of the

standard-cell design style. The cells (available from a library or constructed as

required by the design system) may be large and irregularly shaped. Automatic

placement of general-cell designs is complicated because the cells must be repre-

sented as two dimensional objects and their sizes and shapes can vary widely. Au-

tomatic routing is also more difficult (compared to standard-cells and gate-arrays)

since the channels may interact in complex ways.

2.1.4.4 Full-Custom Design

This method is characterized primarily by the absence of constraints on the design

process. It usually requires a hand-crafted level of automation since the lack of

CHAPTER 2. BACKGROUND 32

Fixed rows of basic cells

Pads

Pads

Variable
Height
Channels

Feedthrough

Channel

Horizontal

(A) GATE ARRAY LAYOUT (B) STANDARD CELL LAYOUT

(C) GENERAL CELL LAYOUT

Vertical
Channel

(D) FULL CUSTOM LAYOUT DESIGN

Variable
Length

Rows

Variable
Width Cells

Figure 2.2: Layout styles

CHAPTER 2. BACKGROUND 33

constraints makes synthesis tools difficult to develop. Full-custom design as seen in

Figure 2.2d is time-consuming; thus the method is inappropriate for large circuits.

However, the full-custom method is widely used for smaller cells that are inputs to

synthesis tools.

2.2 Optimization Algorithms

Solving a combinatorial optimization problem amounts to finding the “best” or “op-

timal” solution among a finite or countably infinite number of possible solutions.

Considerable effort has been devoted to constructing and investigating methods

for solving to optimality or proximity combinatorial optimization problems. In-

teger, linear and non-linear programming, as well as dynamic programming have

seen major breakthroughs in recent years. Over the years it has been shown that

many theoretical and practical combinatorial optimization problems belong to the

class of NP-complete problems. A detailed overview of problems in this class is

given by Garey and Johnson [?]. A direct consequence of the property of NP-

completeness is that optimal solutions cannot be obtained in reasonable amounts

of computation time. However, large NP-complete problems still must be solved,

and in constructing appropriate algorithms one might choose between two options.

Either one tries to achieve optimality at the risk of very large, possibly impractica-

ble, amounts of computation time, or one chooses quickly obtainable solutions at

the risk of sub-optimality. The first option constitutes the class of optimization al-

gorithms. Well known examples of enumeration methods use cutting plane, branch

and bound and dynamic programming techniques. The second option constitutes

the class of approximation algorithms, also called heuristic algorithms; examples are

CHAPTER 2. BACKGROUND 34

metric methods, iterative improvement, and calculus-based methods. The division

between the two classes falls into a “grey” region.

2.2.1 Exact Solution Techniques

Integer programming, dynamic programming and graph search techniques are de-

signed to produce global extrema for the problems to which they are applied [Gill81].

Unfortunately, many real-world problems including circuit layout are so large and

difficult that these methods cannot achieve this extrema efficiently due to their

large storage or computational time requirements.

2.2.2 Approximate Solution Techniques

Heuristic methods can produce good solutions (possibly even an optimal solution)

quickly. Often in practical applications, several good solutions are of more value

than one optimal one. The first and foremost consideration in developing heuris-

tics for combinatorial problems of this type is finding a procedure that is powerful

and yet sufficiently fast to be practical. For the circuit partitioning problem three

different classes of algorithms were used to generate good partitions. The tech-

niques are, Iterative Improvement heuristics, Numerical Optimization Techniques,

and Simulated Annealing.

2.2.2.1 Iterative Improvement Techniques

To date, iterative improvement techniques that make local changes to an initial

partition are still the most successful partitioning heuristics used in practice. The

advantage of these heuristics is that they are quite robust. In fact, they can deal

CHAPTER 2. BACKGROUND 35

with netlist as well as arbitrary vertex weights, edge costs, and balance criteria.

The heuristics are frequently used in divide-and-conquer algorithms for placement

and floorplanning that are variants of the mincut strategy [Leng90].

Kernighan and Lin [?] described the fundamental heuristic procedure for graph

partitioning which became the basis for most of the iterative improvement parti-

tioning and placement heuristics generally used. Their heuristic shown in Figure 2.4

dealt with the problem of partitioning a graph with c cells, where c is even, into two

blocks of c/2 cells each. The basic approach is to start with a given partition and to

improve it by iteratively choosing one cell from each of the blocks and exchanging

them as seen in Figure 2.3. fig:kir-lin

654321

F

FL

L

L
F

6

5

2

4

3
1

Link

LinkLink

ToBlk

ToBlkToBlk

To Blk

-1+1 0 -P+P

Module

ModuleModule

Gain

Commulative

From Blk

Module

001101

110010

BestGainPtr

261523

Blk 1Blk 0

Bucket Gain

Move array

Gain array

7654321

6

5

4

3

2

1

Cummulative Gain

Iteration

Figure 2.3: Iterative improvement example based on node interchange

The cells to be switched are chosen so that a maximum decrease in cut-set size

CHAPTER 2. BACKGROUND 36

Pass = 0
While(Cumulative Gain, G > 0)

Pass = Pass + 1
Mark all nodes as not yet moved
while (All the nodes have not been selected)

Select node ai from Block A
Select node bi from Block B
Which maximize the gain gi on exchanging the nodes
Mark ai and bi so that they are locked

end while
Choose k nodes to be exchanged which maximize G =

∑k
i=1 gi

Exchange nodes a1 to ak with nodes b1 to bk

EndWhile /* end of a run */

Figure 2.4: The Kernighan-Lin Algorithm

may be obtained. Formulae are provided for computing and easily updating the

gains so that the choice of cell to move next can be done efficiently.

Fiduccia and Mattheyses [Fidu82] modified the Kernighan and Lin heuristic

by suggesting to move one cell at a time instead of exchanging pairs of vertices,

and also introduced the concept of preserving balance in the size of blocks. This

modification permitted a linear running time per pass for the network adaptation

of the algorithm.

Krishnamurthy [Kris84] introduced a refinement of the Fiduccia and Mattheyses

method for choosing the best cell to be moved. One disadvantage of the previously

mentioned heuristics is that there is a large amount of unresolved nondeterminism.

The heuristics choose arbitrarily between vertices that have equal gain and equal

weight. In Krishnamurthy’s algorithm the concept of look-ahead is introduced.

This allows one to distinguish between such vertices with respect to gains they

make possible in later moves.

CHAPTER 2. BACKGROUND 37

Sanchis [Sanc89], uses the above technique for multiple way network partition-

ing. Under such a scheme, we should consider all possible moves of each free cell

from its home block to any of the other blocks, at each iteration during a pass the

best move should be chosen. As usual, passes are performed until no improvement

in cut-set size is obtained. This strategy seems to offer some hope of improving

the partition in a homogeneous way, by adapting the level gain concept to multiple

blocks. In general, node interchange methods are greedy or local in nature and get

easily trapped in local minimum.

Recently, several authors reported a ratio cut [Wei89] approach which removes

the constraint on predefined subset sizes, and tends to identify natural clusters

in the circuit. Given a network N = (V,E), where V is the set of nodes and E

is the set of edges, the objective is to partition V into disjoint U and W such

that e(U, W)/(|U | × |W |) is minimized (where e(U, W) is the number of edges in

{(u, w) ∈ E|u ∈ U and w ∈ W}). The ratio cut metric intuitively allows freedom

to find “natural” partitions: the numerator captures the minimum-cut criterion,

while the denominator favors an even partition. The main disadvantage of this

approach is that subset sizes may be significantly different when the cut size is

reduced. Therefore, ratio-cut may not be used when tight control on the subset

sizes is required [Shin93].

2.2.3 Randomization Algorithms

Randomization is perhaps the oldest strategy for overcoming local optimality in

combinatorial optimization, and classically takes two forms. The first is the well

known “random restart” approach, which injects a randomizing element into the

CHAPTER 2. BACKGROUND 38

generation of an initial starting point to which a heuristic is subsequently applied.

Depending on the nature of procedure for obtaining such a starting point, the

“randomizing element” may be more systematic than random.

The second classical version of this approach is the “random shake-up” pro-

cedure which, instead of restarting, periodically generates a randomized series of

moves that leads the heuristic from its customary path into a region it would not

otherwise reach. In the framework commonly employed, a criterion is established

for differentiating a move as improving or non-improving, and the purpose of the

randomizing element may be viewed as that of admitting non-improving moves

which would normally be disregarded.

Recently refinements of the random shake-up approach have attracted a good

deal of attention. Simulated Annealing [Davi88, ?], Quantum Annealing [Carv89],

and Genetic Algorithms [?] have been heralded as new and powerful randomized

methodologies for combinatorial problems. Some of these heuristics are introduced

in detail in the next chapter.

2.3 Summary

This chapter introduced the main subproblems of circuit layout in the form of par-

titioning, placement and routing. Practically all these subproblems are intractable,

they are NP-hard. An overview of the techniques that are based on exact and

approximate algorithms to solve the combinatorial problems in circuit layout was

introduced. Some of the severe drawbacks that face these traditional methods is

the high computation time or poor performance due to locality of solutions. It is

not enough to rely on the computing power of high-speed mainframe computers to

CHAPTER 2. BACKGROUND 39

overcome the combinatorial explosion. The key for dealing with such a problem

is to go a step beyond the direct application of exact solution schemes or heuris-

tics, and make recourse to a special procedure (or framework) which monitors and

directs the use of these methods.

In the next chapter, we introduce some of the powerful methods that have

emerged to handle complex optimization problems such as, Simulated Annealing,

Genetic Algorithms, Tabu Search, and GRASP. These methods need not be viewed

competitively, but complementary to each other, as we shall see, since they comprise

the emergence of promise for conquering the combinatorial explosion in a variety

of decision-making arenas including VLSI design.

Chapter 3

Advanced Search Techniques

Some of the problems that are faced by traditional heuristic methods are either, the

vast amount of computation time required to solve a combinatorial optimization

problem or the inferior quality of solutions due to getting trapped in local optimum.

Recently, four approaches have emerged for handling such complex combinatorial

optimization problems: Simulated Annealing, Genetic Algorithms, Tabu Search, and

GRASP. The distinguishing feature for these techniques is the way they attempt

to simulate some naturally-occurring process.

The motivation for the Simulated Annealing [?] algorithm comes from an anal-

ogy between the physical annealing of solids and combinatorial optimization prob-

lems. Simulated Annealing is widely recognized as a method for determining the

global minima of combinatorial optimization problems. Tabu Search finds some of

its motivation in attempts to imitate “intelligent” processes [Reev93], by providing

heuristic search with a facility that implements a kind of “memory”. Tabu search

has been applied across a wide range of problem settings in which it consistently has

found better solutions than other methods. GRASP is a random adaptive simple

40

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 41

heuristic that intelligently constructs good initial solutions in an efficient manner.

Genetic Algorithms on the other hand manipulate possible solutions to the decision

problem in such a way that resembles the mechanics of natural selection and offers

a number of advantages, the most important being the capability of exploring the

parameter space.

In this chapter, the main concepts behind some of the most recent advanced

search techniques to be used in this dissertation are introduced. In the description

of these approaches in the next sections, the circuit partitioning problem is used as

a paradigm for the circuit layout problem. The general strategy is to evaluate the

different advanced search techniques in terms of quality of solutions and computa-

tional time. The different parameter settings that are used to obtain the tabulated

results are presented. Next, the performance of the different heuristics is compared,

highlighting their strengths and weakness. Section 3.1 introduces the main bench-

marks that are used to evaluate the different heuristics used in this dissertation.

Sections 3.2-3.6 introduce the main concepts of the advanced search heuristics.

3.1 Benchmarks

Some of the benchmarks used throughout this thesis to evaluate the performance

of the hybrid algorithm are presented in Table 3.1. Chip1-Chip4 circuits are taken

from the work of Fiduccia & Mattheyses [Fidu82]. The rest are taken from the

MCNC gate array and standard cell test suite benchmarks [Robe87]. As seen in

the table these netlists (hypergraphs) vary in size from 200 to 15000 nodes and

300 to 20000 nets. Tables 3.1-3.2 provide some information on the number of nets

incident on each cell in the circuit and the number of cells that are contained within

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 42

a net, and the average and maximum node degree and net sizes. The main purpose

of extracting statistical information from the circuits is two fold. First, a clustering

based heuristic developed in Chapter 5 utilizes this information to form clusters of

cells, thus reducing the complexity of the circuit.

Circuit Nodes Nets Pins Node Degree Net Size
MAX x σ MAX x σ

Chip3 199 219 545 5 2.73 1.28 9 2.49 1.25
Chip4 244 221 571 5 2.34 1.13 6 2.58 1.00
Chip2 274 239 671 5 2.45 1.14 7 2.80 1.12
Chip1 300 294 845 6 2.82 1.15 14 2.87 1.39
Prim1 832 901 2906 9 3.50 1.29 18 3.22 2.59
Ind1 2271 2192 7743 10 3.41 1.19 318 3.53 9.00

Prim2 3014 3029 11219 9 3.72 1.55 37 3.70 3.82
Bio 6417 5711 20912 6 3.26 1.03 860 3.66 20.92
Ind2 12142 12949 47193 12 3.89 1.76 584 3.64 11.15
Ind3 15057 21808 65416 12 4.34 1.47 325 2.99 3.23

Table 3.1: Benchmarks used as test cases

Circuit Nets Incident on Cell Cells Incident on Net
1 2 3 4 ≥ 5 2 3 4 5-19 ≥ 20

Chip3 20% 31% 14% 27% 8.5% 83% 1.8% 6.8% 8.6% 0.0%
Chip4 23% 47% 7% 20% 3.3% 64% 24% 4.5% 7.2% 0.0%
Chip2 20% 41% 20% 12% 6.6% 57% 17% 18% 8.5% 0.0%
Chip1 11% 37% 17% 30% 5.3% 55% 24% 8.5% 12.1% 0.0%
Prim1 5.6% 18% 25% 33% 19.3% 55% 26% 6.9% 12.1% 0.0%
Ind1 1.5% 21% 35% 20% 21.5% 65% 16% 5.5% 12.9% 0.6%

Prim2 1.4% 15% 42% 17% 23.9% 61% 12% 6.7% 19.9% 0.4%
Bio 0.03% 13% 70% 6.9% 10.5% 69% 16% 7.5% 5.3% 2.2%
Ind2 1.3% 21% 24% 29% 24.3% 71% 14% 2.3% 11.5% 1.2%
Ind3 0.1% 5.8% 27% 21% 46.1% 57% 23% 8.5% 11.2% 0.3%

Table 3.2: Statistical information of benchmarks

Secondly, the statistical information is used as a means to improve the perfor-

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 43

mance of the MIP CPLEX solver [Inc93] in reducing the computation time of the

branch and bound heuristic. In addition, the information in Tables 3.1-3.2 indicates

clearly that these circuits are well suited as benchmarks to test the partitioning

heuristics that are developed.

It is important to note that the it full testing of all techniques discussed in this

dissertation are presented in Appendix C. It is also worth mentioning that the

results that are introduced in this dissertation are not compared to other results

published thus far for the following reason. Most results mentioned in the literature

are either based on partitioning techniques with a certain tolerance on the sizes of

the blocks, or based on the ratio cut technique. Since, no tight restriction is imposed

on the sizes, the quality of solutions vary according to the tolerance indicated. This

makes it difficult to compare published results [Shin93, Wei89, Hage92, Yeh94,

Chan94, Yeh95] with ours that are based on equi-sized partitions.

3.2 A Simple Dynamic Hill Climbing Heuristic

Iterative improvement techniques based on module interchange are the most robust,

simple and successful heuristics in solving the partitioning and placement problems.

The main disadvantage of these heuristics is that they mainly focus on the imme-

diate area around the current initial solution, thus no attempt is made to explore

all regions of the parameter space. More importantly, it has been shown that in-

terchange methods fail to converge to “optimal” or “near optimal” solutions unless

they initially begin from “good” initial starting points [Hadl92, Arei93, ?]. Sechen

[Sech88b] showed that over 100 trials or different runs were required to guarantee

that the best solution would be within twenty percent of the optimum solution.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 44

In this section, a modified implementation of the Sanchis iterative improvement

heuristic is presented. It is characterized by the ability of escaping local optimum,

which usually cause simple descent algorithms to terminate, by dynamically taking

a different direction of a steepest ascent. In Chapter 2, the main concepts of the

Sanchis [Sanc89] heuristic for multi-way graph partitioning was presented. At each

iteration during a pass, the best move is chosen. Passes are performed until no

improvement in cut-net size is obtained.

In SDHC, after the termination of the above heuristic, the heuristic considers

all possible moves of each free cell from its home block to any of the other blocks,

such that the value of the cut-size is increased. This is done such that the di-

rection of the upward slope is different than the last pass performed. As seen in

Figure 3.1 the heuristic continues to explore new regions until either cycling occurs

or a certain number of passes have elapsed. Figure 3.2a compares the performance

of the Sanchis heuristic to that of SDHC. The figure clearly indicates that once the

Sanchis interchange technique stops at a local minima, SDHC focuses the search

on other parts of the solution space to ensure that other regions are explored. It is

worth noting that the complexity of the SDHC heuristic is similar to that of Sanchis

(see Chapter 8). Figure 3.2b shows a comparison between a deterministic version

of SDHC and a stochastic version. The performance of the simple dynamic hill

climbing heuristic is compared to that of Sanchis multi-way partitioning heuristic.

As can be seen in the Figure 3.3, the quality of solutions obtained by SDHC are far

better than those obtained by the Sanchis heuristic. The quality of solutions ob-

tained by SDHC as will be seen later (in Section 3.6.4) are inferior to that obtained

by Simulated Annealing and Tabu Search heuristics. The main objective of SDHC

is to explore small regions effectively in relatively short periods of time. For this

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 45

Pass = 0
While (Stopping Criteria is not met)

Pass = Pass + 1
START DESCEND ROUTINE

Mark all nodes as not yet moved
While (Modules can be Moved)

Select node ai with highest gain
if Balance Criteria is OK
Move ai to destination block
Mark ai as locked

End if
end while
Choose k nodes, which maximize G =

∑k
i=1 gi

Perform Move on nodes a1 to ak

END DESCEND ROUTINE
START ASCENT ROUTINE

Mark all nodes as not yet moved
While (Modules can be Moved)

Select node ai with lowest gain
if Balance Criteria is OK
Move ai to destination block
Mark ai as locked

End if
end while
Choose k nodes, which minimize G =

∑k
i=1 gi

Perform Move on nodes a1 to ak

If (Cycling Occurs)
Terminate Search

END ASCENT ROUTINE
EndWhile
Record Best Solution

Figure 3.1: A dynamic hill climbing heuristic (SDHC)

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 46

160

180

200

220

240

260

280

300

320

0 5 10 15 20 25 30 35 40 45 50

C
U

T
S

PASS

(a) SDHC Convergence Rate (Prim1 Ckt)

Sanchis
SDHC

750

800

850

900

950

1000

1050

1100

0 5 10 15 20 25 30 35 40 45 50

C
U

T
S

PASS

(b) Deterministic vs Random SDHC (Prim2 Ckt)

Deterministic SDHC
Random SDHC

Figure 3.2: The convergence of SDHC

SDHC vs SANCHIS INTERCHANGE
BIO Circuit

Number of Partitions

Cuts Improvement

25%
22%

17%

180 135

762

592

922
763

2 Blocks 4 Blocks 6 Blocks
0

200

400

600

800

1,000

0%
5%

10%
15%
20%
25%

30%

SANCHIS SDHC %IMP

SDHC vs SANCHIS INTERCHANGE
IND2 Circuit

Number of Partitions

Cuts Improvement

58%

12% 14%

677
278

2,282
2,019

2,706
2,319

2 Blocks 4 Blocks 6 Blocks
0

500
1,000
1,500
2,000
2,500
3,000

0%
10%
20%
30%
40%
50%
60%
70%

SANCHIS SDHC %IMP

Figure 3.3: The performance of SDHC

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 47

reason, this heuristic will be utilized later on (in Chapter 5) as a means to refine

the solutions produced by the clustering techniques developed, due to its simplicity

and fast convergence.

3.3 Greedy Randomized Adaptive Search

GRASP is a greedy randomized adaptive search procedure that has been success-

ful in solving many combinatorial optimization problems efficiently [Feo94]. The

GRASP methodology was developed in the late 1980s, and the acronym was coined

by Feo [?]. Each iteration consists of a construction phase and a local optimization

phase. The key to success for local search algorithms consists of the suitable choice

of a neighborhood structure, efficient neighborhood search technique, and the start-

ing solution. The GRASP construction phase plays an important role with respect

to this last point, since it produces good starting solutions for local search. The

construction phase intelligently constructs an initial solution via an adaptive ran-

domized greedy function. Further improvement in the solution produced by the

construction phase may be possible by using either a simple local improvement

phase or a more sophisticated procedure in the form of Tabu Search or Simulated

Annealing.

Next, the various components comprising a GRASP are defined, and a demon-

stration of how to adapt such a heuristic for the circuit partitioning problem is

presented.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 48

3.3.1 Implementation

Figure 3.4 shows a generic pseudo-code of the GRASP heuristic. The main body

of the GRASP algorithm starts by reading the circuit netlist. The algorithm starts

with a construction phase followed by a local improvement phase. The GRASP

implementation terminates after a certain number of phases or runs have passed.

The construction phase as shown in Figure 3.4b is iterative, greedy and adaptive.

It is iterative because the initial solution is built by considering one element at a

time. The choice of the next element to be added is determined by ordering all

elements in a list. The list of the best candidates is called the restricted candidate

list (RCL). It is greedy because the addition of each element is guided by a greedy

function. The construction phase is randomized by allowing the selection of the

next element added to the solution to be any element in the RCL. Finally, it is

adaptive because the element chosen at any iteration in a construction is a function

of those previously chosen. The improvement phase typically consists of a local

search procedure as shown in Figure 3.4c. A more sophisticated local search based

on Tabu Search can be implemented instead of the simple local search procedure.

3.3.1.1 Construction Phase

Initially, all modules are placed into the same block and the gains associated with

modules are calculated in an efficient manner. The discussion here will be based

on four-way partitioning and this can be generalized for the multi-way partitioning

case. Assume there are n modules and four blocks A, B, C, and D. The heuristic

could either place all modules initially in block A and sequentially fill the other

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 49

GREEDY RANDOMIZED SEARCH
(A) MAIN GRASP()

1. Read Circuit NetList();
2. do

3. Construction Phase(Greedy,Rand,Adapt)
4. Local Improvement Phase(Initial Solution)
5. Store Best Solution(Previous Solutions)
6. While not Done

7. Report Best Solution()

(B) Construction Phase()
1. While (construction not done)

2. Greedy: Create Candidate List (RCL)
3. Random: Module = Select from RCL
4. Adaptive: Add new element to solution
5. Feasibility: Check Feasibility of Solution

6. EndWhile

(C) Local Improvement Phase()
1. Read Initial Solution
2. While (local optimum not reached)

3. NewSolution = Local Changes(Solution)
4. EndWhile
5. Return Best Solution()

Figure 3.4: GRASP (Greedy Adaptive Search)

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 50

blocks by moving the n modules to blocks B, C, and D, or can create a dummy

block (say X) and perform the same operation until block X is empty. At each

iteration of the construction phase, the gains for moving modules to the current

block being filled are examined, and an RCL list is created using the modules with

the highest gains. As a module is moved it is locked to its new position (block)

and its associated gain is removed from the bucket list. The gains of the other

modules affected are updated accordingly. The construction phase terminates when

a feasible solution (partition) is generated; i.e, all blocks contain a certain number of

modules. The randomness in the GRASP heuristic is due to the selection strategy

that is used to determine the next module to be appended to a certain block. The

probabilistic component of the GRASP randomly chooses one of k best candidates

in the restricted candidate list (RCL), but not necessarily the top candidate. This

randomized selection strategy introduces diversification of initial solutions to the

method.

The GRASP Parameters

The GRASP has two characteristics which make it appealing to researchers. First

it is easy to implement, as seen from the previous section. Furthermore, only a

few parameters need to be set and tuned. Therefore, development can focus on

implementing efficient data structures to assure quick GRASP iterations. Some

of the parameters that need to be tuned for the circuit partitioning problem are:

Block Selection Strategy, Gain Strategy, and the RCL Length. The Block Selection

Strategy determines the order by which blocks are filled to obtain an initial solution.

In Random Selection Strategy (RSS), all modules are placed into the same block and

the initial gains associated with moving modules to every other block are calculated.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 51

The other blocks are filled randomly according to the best gain associated with the

move involved. In Sequential Selection Strategy (SSS), all modules are placed into

one block in a similar fashion to (RSS), but the other blocks are filled sequentially

by removing excess modules from the initially oversized block and placing them

into the current block under consideration. In Complete Selection Strategy (CSS),

all modules are placed in a temporary block say X, and then every other block is

filled until completion (all blocks meet the size constraint). As seen in Figure 3.5a1

CSS gives the best performance with respect to RSS and SSS techniques.

The Gain Strategy determines the highest gain module to be assigned to a

certain block. In Greedy Gain Strategy (GGS), the module with the highest gain is

always selected and assigned to the appropriate block. In Random Gain Strategy

(RGS) all modules are randomly selected from the RCL and assigned to the blocks

according to the Block Selection Strategy used. Finally, the Biased Gain Strategy

(BGS) is a combination of the above two methods. Figure 3.5b illustrates that BGS

strategy works well for most circuits followed by GGS and RGS respectively.

The length of the RCL or restriction imposed on its values is a key success for

the implementation of the algorithm. Each GRASP iteration produces a sample

solution from an unknown distribution of all obtainable results. The mean and

variance of the distribution are functions of the restrictive nature of the candidate

list. For example, if the cardinality of the restricted candidate list is limited to

one, then only one solution will be produced and the variance of the distribution

will be zero. On the other hand if a less restrictive cardinality limit is imposed,

many different solutions will be produced implying a larger variance. In [Feo94] two

different restrictions are imposed on the RCL, Value Restriction (RCL-VR), and

1The gain has been normalized to one for the three circuits.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 52

1

1.5

Sequential Random Complete

C
U

T
S

Selection Strategy

(a) GRASP: Block Selection Strategy

chip1
prim1

ind2

1

1.5

GGS RGS BGS
C

U
T

S
Selection Strategy

(b) GRASP: Gain Selection Strategy

chip1
prim1

ind2

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

0 1 2 3 4

C
U

T
S

RCL LENGTH

(c) GRASP: RCL Length Strategy

chip1
prim1

ind2

0.8

1

1.2

1.4

1.6

1.8

0 1 2 3 4

T
IM

E

RCL LENGTH

(d) GRASP: CPU Time of RCL Length Strategy

chip1
prim1

ind2

Figure 3.5: Parameters affecting GRASP performance

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 53

Cardinality Restriction (RCL-CR). In RCL-VR a module is allowed to be in the

restricted candidate list if its gain is within some percentage (α) of the maximum

gain. In RCL-CR, the candidate list size is limited by including only the (β) best

elements. In this implementation, a third type of restriction based on a combination

of RCL-CR and RCL-VR is used (RCL-CVR). Figures 3.5c,d show the performance

of the GRASP in terms of computation time and quality of solution with different

RCL lengths.

The results in table 3.3 assess the performance of Sanchis Interchange heuristic,

to that of the GRASP. It is clear from Table 3.3 that the quality of solutions

obtained by the GRASP using only 5 different runs are superior than those obtained

using the Sanchis heuristic from 50 different starting points. The running times of

the GRASP are also much faster since less initial solutions are used. Another reason

for the fast computation time is that the local search heuristic has to perform less

number of passes, since it is starting from a good initial solution, thus the fast

convergence is obtained.

SANCHIS (50 runs) vs GRASP (5 runs)
PRIM1 Circuit IND2 Circuit

Blks SAN GRASP %IMP SAN GRASP %IMP
C T C T C (T) C T C T C (T)

2 Blks 60 91 56 7.2 6% 92% 593 2661 325 155 45% 94%
4 Blks 155 96 127 12.4 18% 87% 2102 12729 1148 312 45% 97%
6 Blks 181 133 153 18.1 15% 86% 2430 25132 1464 1066 39% 95%

Table 3.3: A comparison between GRASP and Sanchis interchange heuristic

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 54

3.4 Genetic Algorithms

Genetic Algorithms (GA’s) are a class of optimization algorithms that seek im-

proved performance by sampling areas of the parameter space that have a high

probability for leading to good solutions [Venk91]. The algorithms are called ge-

netic because the manipulation of possible solutions resembles the mechanics of

natural selection. These algorithms which were introduced by Holland [?] in 1975

are based on the notion of propagating new solutions from parent solutions, employ-

ing mechanisms modeled after those currently believed to apply in genetics. The

best offspring of the parent solutions are retained for a next generation of mating,

thereby proceeding in an evolutionary fashion that encourages the survival of the

fittest.

3.4.1 An Overview of Genetic Search

As an optimization technique, Genetic Algorithms simultaneously examine and

manipulate a set of possible solutions. Each candidate solution is represented by a

string of symbols called a chromosome. The set of solutions Pj, is referred to as the

population of the jth generation. The population evolves for a prespecified total

number of generations under the application of evolutionary rules called Genetic

Operators.

3.4.1.1 Characteristics of Genetic Search

There are many characteristics of Genetic Algorithms which qualify them to be

a robust based search procedure. The first feature of Genetic Algorithms is that

they are characterized to climb many peaks in parallel. Thus, the probability of

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 55

finding a false peak is reduced over methods that proceed form point to point in

the decision space. Secondly, the operators make use of a coding of the parameter

space rather than the parameters themselves. Only objective function information

is used, this results in a simpler implementation. Finally, although the approach

has a stochastic flavor, it makes use of all the information that has been obtained

during the search, and permits the structured exchange of that information [?].

3.4.1.2 Main Components of Genetic Search

There are essentially four basic components necessary for the successful implemen-

tation of a Genetic Algorithm. At the outset, there must be a code or scheme that

allows for a bit string representation of possible solutions to the problem. Next, a

suitable function must be devised that allows for a ranking or fitness assessment of

any solution. The third component, contains transformation functions that create

new individuals from existing solutions in a population. Finally, techniques for

selecting parents for mating, and deletion methods to create new generations are

required.

3.4.1.3 Representation Module

In the original GA’s of Holland [?], each solution may be represented as a string

of bits, where the interpretation of the meaning of the string is problem specific.

As can be seen in Figure 3.6a, one way to represent the partitioning problem is

to use group-number encoding where the j th integer ij ∈ {1, . . . , k} indicates the

group number assigned to object j. This representation scheme creates a possibility

of applying standard operators [Mich92]. However an offspring may contain less

than k groups; moreover, an offspring of two parents, both representing feasible

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 56

solutions may be infeasible, since the constraint of having equal number of mod-

ules in each partition is not met. In this case either special repair heuristics are

used to modify chromosomes to become feasible, or penalty functions that penalize

infeasible solutions, are used to eliminate the problem. These schemes will be ex-

plained in detail in Section 3.4.2.2. The second representation scheme is shown in

Figure 3.6b. Here, the solution of the partitioning problem is encoded as n + k− 1

strings of distinct integer numbers. Integers from the range {1, .., n} represent the

objects, and integers from the range {n + 1, . . . , n + k − 1} represent separators;

this is a permutation with separators encoding. This representation scheme leads to

100% feasible solutions [Mich92], but requires more computation time due to the

complexity of the unary operator involved.

3.4.1.4 Evaluation Module

Genetic Algorithms work by assigning a value to each string in the population

according to a problem-specific fitness function. It is worth noting that nowhere

except in the evaluation function is there any information (in the Genetic Algo-

rithm) about the problem to be solved. For the circuit partitioning problem, the

evaluation function measures the worth (number of cuts) of any chromosome (par-

tition) for the circuit to be solved.

3.4.1.5 Reproduction Module

This module is perhaps the most significant component in the Genetic Algorithm.

Operators in the reproduction module, mimic the biological evolution process, by

using unary (mutation type) and higher order (crossover type) transformation to

create new individuals. Mutation as shown in Figure 3.6c is simply the introduction

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 57

M7M6M5M3M8M4M2M1

BLOCK 1BLOCK 0

(b) Permutation with Separator Encoding.

(a) Group Number Encoding

01110100

M8M7M6M5M4M3M2M1

Unknown

Mapping

=X

=

STEP4: Use Mapping to fill the rest of PositionsSTEP3: Fill Posistions (no Conflict)

)2843,71

5

56(O2

O1

O2 (

O1 (

O2 (

O1 (

)3618,472(

)2x43,75x6

One point crossover

STEP2: Swap Segments Between Cut Points

)x618,472x

STEP1: Two Cut Points

1
0
-

111

000

111

000

110Child2:

001Child1:

000Parent1:

11

1100

0011

0101

.001.894.473.760

.840.005.096.120

.373.266.102.801

0100

0011

0101

Chromosome
New

Bit
New

Numbers
Random

Chromosome
Old

Parent1: 1

P1 (1 2 5 7 , 3 4 6 8) x x 7 4 , 8 1 x x)

)xx43,75xx)2318,4756P2 (

(c) Standard Mutation Operator

(d) Standard Crossover Operator (for group number encoding)

(e) PMX Operator (for permutation with separators encoding)

Figure 3.6: Representation schemes and genetic operators

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 58

of a random element, that creates new individuals by a small change in a single

individual. When mutation is applied to a bit string, it sweeps down the list of bits,

replacing each by a randomly selected bit, if a probability test is passed. On the

other hand, crossover recombines the genetic material in two parent chromosomes

to make two children. It is the structured yet random way that information from

a pair of strings is combined to form an offspring.

Crossover begins by randomly choosing a cut point K where 1 ≤ K ≤ L,

and L is the string length. The parent strings are both bisected so that the left-

most partition contains K string elements, and the rightmost partition contains

L − K elements. The child string is formed by copying the rightmost partition

from parent P1 and then the leftmost partition from parent P2. Figure 3.6d shows

an example of applying the standard crossover operator (sometimes called one-

point crossover) to the group number encoding scheme. Increasing the number of

crossover points is known to be multi-point crossover. The mutation and crossover

operators as described above, apply for the first representation scheme “group num-

ber encoding”. These operators are modified for the “permutation with separator

encoding” scheme. A mutation in this case, would swap two objects (separators

excluded). The crossover operator considered is the partially matched crossover

(PMX) [Mich92]. As shown in Figure 3.6e, PMX builds an offspring by choosing a

sub-partition of a solution from one parent, and preserving the position of as many

modules as possible from the other parent. A sub-partition of the solution is se-

lected by choosing two random cut points, which serve as boundaries for swapping

operations. Figure 3.6e illustrates this process in detail. Generally, the results of

the Genetic Algorithms based on permutation with separators encoding are better

than those based on group-number encoding, but take a longer time to converge

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 59

[Mich92].

3.4.1.6 Population Module

This module contains techniques for population initialization, generation replace-

ment, and parent selection techniques. The initialization techniques generally used

are based on pseudorandom methods. The algorithm will create its starting popu-

lation by filling it with pseudorandomly generated bit strings.

Strings are selected for mating based on their fitness, those with greater fit-

ness are awarded more offspring than those with lesser fitness. Parent selection

techniques that are used, vary from stochastic to deterministic methods. The prob-

ability that a string i is selected for mating is pi, “the ratio of the fitness of string

i to the sum of all string fitness values”, pi = fitnessi
∑

j
fitnessj

. The ratio of individual

fitness to the fitness sum denotes a ranking of that string in the population. The

Roulette Wheel Selection method is conceptually the simplest stochastic selection

technique used. The ratio pi is used to construct a weighted roulette wheel, with

each string occupying an area on the wheel in proportion to this ratio. The wheel

is then employed to determine the string that participates in the reproduction. A

random number generator is invoked to determine the location of the spin on the

roulette wheel. In Deterministic Selection methods, reproduction trials (selection)

are allocated according to the rank of the individual strings in the population rather

than by individual fitness relative to the population average.

Generation replacement techniques are used to select a member of the old pop-

ulation and replace it with the new offspring. The quality of solutions obtained

depends on the replacement scheme used. Some of the replacement schemes used

are based on: (i) deleting the old population and replacing it with new offsprings

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 60

(GA-dop), (ii) replacing parent solutions with sibling (GA-rps), (iii) replacing the

most inferior members (GA-rmi) in a population by new offsprings. Variations to

the second scheme use an incremental replacement approach, where at each step

the new chromosome replaces one randomly selected from those which currently

have a below-average fitness. The quality of solutions improve using the second

replacement scheme. The reason is that this replacement scheme maintains a large

diversity in the population.

3.4.2 GA Implementation

Figure 3.7 shows a simple Genetic Algorithm. The algorithm begins with an encod-

ing and initialization phase during which each string in the population is assigned a

uniformly distributed random point in the solution space. Each iteration of the ge-

netic algorithm begins by evaluating the fitness of the current generation of strings.

A new generation of offspring is created by applying crossover and mutation to pairs

of parents who have been selected based on their fitness. The algorithm terminates

after some fixed number of iterations.

3.4.2.1 Parameters affecting the performance of Genetic Search

Running a Genetic Algorithm entails setting a number of parameter values. Find-

ing settings that work well on one’s problem is not a trivial task. If poor settings

are used, a Genetic Algorithm’s performance can be severely impacted. Central to

these components are questions pertaining to appropriate representation schemes,

lengths of chromosome strings, optimal population sizes, and frequency with which

the transformation functions are invoked. Figure 3.8 shows some of the parameters

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 61

that affect the performance of the Genetic Algorithm. As the number of genera-

tions increase the quality of solutions improve, but the computation time involved

increases also. Choosing the population size for a Genetic Algorithm is a funda-

GENETIC ALGORITHM
1. Encode Solution Space
2.(a) set pop size, max gen, gen=0;

(b) set cross rate, mutate rate;
3. Initialize Population.
4. While max gen ≥ gen

Evaluate Fitness
For (i=1 to pop size)
Select (mate1,mate2)
if (rnd(0,1) ≤ cross rate)
child = Crossover(mate1,mate2);

if (rnd(0,1) ≤ mutate rate)
child = Mutation();

Repair child if necessary
End For
Add offsprings to New Generation.
gen = gen + 1

End While
5. Return best chromosomes.

Figure 3.7: A generic Genetic Algorithm

mental decision faced by all GA users. On the one hand, if too small a population

size is selected, the Genetic Algorithm will converge too quickly. On the other hand,

a population with too many members results in long waiting times for significant

improvement, especially when evaluation of individuals within a population must

be performed wholly or partially in serial. Regarding the reproduction module,

experimental data confirms that mutation rates above 0.04 are generally harmful

with respect to on-line performance. The absence of mutation is also associated

with poorer performance, which suggests that mutation performs an important ser-

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 62

vice in refreshing lost values. Good on-line performance is associated with high

crossover rate combined with low mutation rate.

3.4.2.2 Performance of Genetic Algorithm

Section 3.4.1.3 introduced two methods for solving the problem of producing infeasi-

ble solutions using the Genetic Algorithm. The first is based on a penalty function,

where infeasible solutions are penalized such that their fitness is decreased accord-

ing to the deviation from the feasible solution required. The second method is based

on repairing the infeasible solutions produced by crossover and mutation. To repair

a corrupted chromosome, one could either use a simple repair scheme where extra

genes belonging to a certain block are randomly moved to other unbalanced blocks,

or a more efficient repair scheme is used, where genes are moved to unbalanced

blocks such that the gain is increased (cut-net size is decreased).

Figure 3.9 shows the results obtained by the Genetic Algorithm using a penalty

function, a simple repair heuristic and an efficient repair heuristic respectively.

The solutions obtained by the simple repair solution are much better than those

obtained by the penalty function in terms of quality. The more advanced repair

technique gives the best results with respect to the two other approaches mentioned.

Figure 3.9 also presents the improvement achieved from using the advanced repair

heuristic over the penalty function implementation.

3.4.2.3 Comparison of different Constructive Methods

In this section, the performance of the Genetic Algorithm is compared to results

obtained by Barnes’s eigenvector technique [Barn82] and the GRASP heuristic [?].

The comparison is based on good initial solutions obtained by each heuristic and

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 63

Generation Size

Cuts

100 200 300 400 500 600 700
0

10

20

30

40

50

60

Effect of Generation Size
pop size = 300

Population Size

Cuts

150 200 250 300 350 400
0

10

20

30

40

50

60

70

Effect of Population Size
Copy All Copy Part

Mutation Rate

Cuts

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20

40

60

80

100

120

140

Variable Mutation Rate
crossover = 99%

CrossOver Rate

Cuts

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

20

40

60

80

Variable Crossover Rate
Mutation=0.01

Figure 3.8: Parameters affecting GA performance

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 64

GENETIC ALGORITHM IMPLEMENTATIONS
PRIM1 Circuit

Number of Partitions

Cuts Improvement

84%
74% 75%

521

121 81

697

288
177

755

353

189

2 Blocks 4 Blocks 6 Blocks
0

200

400

600

800

0%

20%

40%

60%

80%

100%

PENALTY SIMPLE REPAIR ADVANCED REPAIR

GENETIC ALGORITHM IMPLEMENTATIONS
IND2 Circuit

Number of Partitions

Cuts (Thousands) Improvement

92%
76% 70%

7.607

2.356
0.572

10.129

5.073

2.363

10.849

6.322

3.342

2 Blocks 4 Blocks 6 Blocks
0

2

4

6

8

10

12

0%

20%

40%

60%

80%

100%

120%

PENALTY SIMPLE REPAIR ADVANCED REPAIR

Figure 3.9: The GA performance

the computation time involved to obtain these solutions. Table 3.4 presents results

of Barnes’s eigenvector algorithm, GRASP and Genetic Algorithms for producing

good initial solutions. The CPU time for the partitions obtained by the Barnes’s

algorithm include the time for forming the graph adjacency matrix, finding the

eigenvalues and eigenvectors. It is interesting to note that most solutions obtained

by the GRASP and Genetic Algorithm are superior to those obtained by the eigen-

vector approach except for Bio circuit. The computation time used by the GRASP

is the least compared to the two other methods. The last column in the table

presents the improvement of solution quality using the eigenvector approach and

the Genetic Algorithm. On average the Genetic Algorithm reduces the amounts of

cuts by 60% compared to the eigenvector approach. Also, eigenvector techniques

can be slow to converge, whereas GA’s are more stable and give superior results.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 65

CONSTRUCTIVE BASED METHODS
Circuit Blks Eigenvector GRASP GA %IMP

Cuts Time Cuts Time Cuts Time Cuts

Prim1 2 Blks 181 10.4 101 1.0 81 9.8 55%
4 Blks 298 13.5 185 2.2 177 14.1 40%
6 Blks 329 22.4 203 2.7 189 18.6 42%

Ind3 2 Blks 3188 151 1819 30.9 930 222 70%
4 Blks 6627 647 2456 70 2444 365 63%
6 Blks 7254 653 3521 149 2890 495 60%

Table 3.4: A comparison between constructive techniques

3.5 Simulated Annealing

Simulated Annealing (SA) searches the solution space of a combinatorial opti-

mization problem, with the goal of finding a solution of minimum cost value. The

motivation for the Simulated Annealing algorithm comes from an analogy between

the physical annealing of solids and combinatorial optimization problems [?]. Phys-

ical annealing refers to the process of finding low energy states of a solid by initially

melting the substance, and then lowering the temperature slowly, spending a long

time at temperatures close to the freezing point. In the analogy, the different states

of the substance correspond to the different feasible solutions of the combinatorial

optimization problem, and the energy of the system corresponds to the function to

be minimized.

A simple descent algorithm corresponds to “rapid quenching” where the temper-

ature is reduced quickly so that only moves which result in a reduction of the energy

of the system are accepted. In Simulated Annealing, the algorithm alternatively

attempts to avoid becoming trapped in a local optimum by sometimes accepting

a neighborhood move which increases the value of (f) as seen in Figure 3.10. The

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 66

acceptance or rejection of an uphill move is determined by a sequence of random

numbers, but with a controlled probability. The probability of accepting a move

which causes an increase δ in (f) is called the acceptance function and is normally

set to e(−δ/T) where T is a control temperature in the analogy with physical an-

nealing. This acceptance function implies that small increases in f are more likely

to be accepted than large increases, and that when T is high, most moves will be

accepted, but as T approaches zero most uphill moves will be rejected.

current solution ← initial solution
current cost ← evaluate(current solution)
T ← Tinitial

While (T ≥ Tfinal)
for i = 1 to iteration(T) /* neighborhood moves */

new solution ← move(current solution)
new cost ← evaluate(new solution)
∆cost← new cost - current cost
if(∆cost ≤ 0 OR e−∆cost/T > random())

/* accept new solution */
current solution ← new solution
current cost ← new cost

EndIf
EndFor
T ← next temp(T)

EndWhile

Figure 3.10: A Simulated Annealing Algorithm

In Simulated Annealing, the single loop of a descent algorithm is replaced by a

double loop; in the outer loop the temperature is changed and the inner loop de-

termines how many neighborhood moves are to be attempted at each temperature.

The determination of the initial temperature, the rate at which the temperature is

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 67

reduced, the number of iterations at each temperature and the criterion used for

stopping is known as the annealing schedule [?]. The choice of annealing schedule

has an important bearing on the performance of the algorithm [Naha85].

3.5.1 Annealing Schedule

The Simulated Annealing algorithm, in its original formulation converges with prob-

ability one to a globally minimal configuration in either one of the following cases

[Laar88]:

1. for each value of the control parameter, Tk, an infinite number of transitions

is generated and limk→∞ Tk = 0. (the homogeneous algorithm);

2. for each value Tk one transition is generated and Tk goes to zero not faster

than O([log k]−1) (the inhomogeneous algorithm).

Certain conditions on the generation and acceptance matrices should also be satis-

fied to ensure the existence of a stationary distribution of a homogeneous Markov

chain [Laar88]. In any implementation of the algorithm, asymptotic convergence

can only be approximated. Thus, though the algorithm is asymptotically an opti-

mization algorithm, any implementation results in an approximation algorithm.

The number of transitions for each value Tk, for example, must be finite and

limk→∞ Tk = 0 can only be approximated in a finite number of values for Tk. Due

to these approximations, the algorithm is no longer guaranteed to find a global

minimum with probability one.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 68

Initial Value of the Control Parameter

The initial value of T is determined in such a way that virtually all transitions are

accepted, i.e., T0 is such that exp(−δcostij/T0) ' 1 for almost all i and j. The

following empirical rule is proposed: choose a large value for T0 and perform a

number of transitions. If the acceptance ratio χ, defined as the number of accepted

transitions divided by the number of proposed transitions, is less than a given value

χ0 (in [?] χ0 = 0.8), double the current value of T0. Continue this procedure until

the observed acceptance ratio exceeds χ0.

Final Value of the Control Parameter

A stopping criterion, determining the final value of the control parameter, is either

determined by fixing the number of values Tk, for which the algorithm is to be

executed, or by terminating execution of the algorithm if the last configuration of

consecutive Markov chains are identical for a number of chains.

Number of Iteration per Temperature

The simplest choice for Lk, the length of the kth Markov chain, is a value depending

(polynomial) on the size of the problem.

Decrement of the Control Parameter

A frequently used decrement rule is given by ck+1 = α× ck, k = 0, 1, 2, where α

is a constant close to 1.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 69

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250

T
E

M
P

E
R

A
T

U
R

E

ITERATION

(a) Temperature Decay of Annealing Schedules

Simple Anneal Schedule
Advanced Anneal Schedule

10

15

20

25

30

35

1 10 100 1000 10000 100000 1e+06

C
U

T
S

ITERATION

(b) Convergence of Simulated Annealing

Simple Anneal Schedule
Advanced Anneal Schedule

Figure 3.11: Simulated Annealing with different schedules

3.5.1.1 Advanced Annealing Schedule

A more advanced annealing schedule proposed by White [Whit84] is also used to

evaluate the performance of Simulated Annealing. The most important settings

used are the stopping criterion and the length of chains during a certain tempera-

ture. In Figure 3.11, a comparison between the simple cooling schedule proposed

by Kirkpatrick [?] and White [Whit84] is shown. Figure 3.11a illustrates the means

of computing the initial temperature in both schedules. Figure 3.11b shows the

convergence rate for a small circuit based on both schedules. Figure 3.12 presents

results obtained by the two annealing schedules mentioned above. The perfor-

mance of the Simulated Annealing using the advanced annealing schedule proposed

by White [Whit84] is superior to that based on a simple annealing heuristic. Thus

far, the Simulated Annealing heuristic provides the best results compared to other

traditional and advanced search techniques mentioned, but at the expense of huge

CPU time.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 70

SIMULATED ANNEALING (Annealing Schedules)
PRIM1 Circuit

Number of Partitions

Cuts Improvement

15%

7%

28%

77 65

114 106

172

124

2 Blocks 4 Blocks 6 Blocks
0

50

100

150

200

0%
5%
10%
15%
20%
25%
30%

SIMPLE SA ADV SA %IMP

SIMULATED ANNEALING (Annealing Schedules)
IND2 Circuit

Number of Partitions

Cuts Improvement

-80%

52%
37%

305
694

1,707

809

2,243

1,395

2 Blocks 4 Blocks 6 Blocks
0

500

1,000

1,500

2,000

2,500 0%
20%
40%
60%

0%
-20%
-40%
-60%
-80%
-100%

SIMPLE SA ADV SA %IMP

Figure 3.12: A comparison between annealing schedules

3.6 Tabu Search

Tabu Search is a general heuristic procedure for global optimization. Based on

simple ideas it has been extremely efficient in getting almost optimal solutions for

many types of difficult combinatorial optimization problems ranging from graph

partitioning [Arei93] [?] [Tao91], graph coloring [Hert87], to quadratic assignment

problems [SK90]. Tabu Search is based on the premise that problem solving, in

order to qualify as intelligent, must incorporate adaptive memory and responsive

exploration. The use of adaptive memory contrasts with “memoryless” designs,

such as those inspired by metaphors of physics and biology (Simulated Annealing),

and with “rigid memory” designs, such as those exemplified by branch and bound

and its AI-related algorithms.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 71

3.6.1 Tabu Search Main Foundation

The basis for Tabu Search may be described as follows. Given a function f(x) to

be optimized over a set X, Tabu Search begins in the same way as ordinary local

search, proceeding iteratively from one point (solution) to another until a chosen

termination criterion is satisfied. Each x ∈ X has an associated neighborhood

N(x) ⊂ X, and each solution x∗ ∈ N(x) is reached from x by an operation called a

move. Tabu Search goes beyond local search by employing a strategy of modifying

N(x) as the search progresses, effectively replacing it by another neighborhood

N∗(x). The key aspect of Tabu Search is the use of special memory structures

which serve to determine N ∗(x), and hence to organize the way in which the space

is explored.

3.6.1.1 Explicit and Attributive Memory

The memory used in Tabu Search is both explicit and attributive. Explicit mem-

ory records complete solutions, typically consisting of elite solutions visited during

the search. These special solutions are introduced at strategic intervals to enlarge

N∗(x), and thereby provide useful options not in N(x). The Tabu Search memory

is also designed to exert a more subtle effect on the search through the use of at-

tributive memory, which records information about solution attributes that change

in moving from one solution to another. For example in a graph or network setting,

attributes can consist of nodes or arcs that are added, dropped or repositioned by

the moves executed.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 72

3.6.1.2 Short Term Memory

It is the feature of allowability whereby some moves are not allowed “they are forbid-

den or made Tabu” which distinguishes Tabu Search from other descent methods.

Allowability is managed by a mechanism that involves historical information about

moves made as the routine progresses; moves accepted for an arbitrarily defined

number of previous iterations are deemed not allowable or Tabu, because to allow

one of them may trap the routine into cycling through moves already taken.

Tabu Move

There are different attributes that can be used in creating the short term memory

of Tabu lists for the circuit partitioning problem. One possibility is to identify

attributes of a move based on the module value to be swapped from one block to

another. Another way of identifying attributes of a move is to introduce additional

information, referring not only to the modules to be moved but to positions (blocks)

occupied by these modules. The recorded move attributes are used in Tabu Search

to impose the constraints, called Tabu restrictions, that prevent moves from being

chosen. Examples of Tabu restrictions employed are as follows: (i) Restrictions

based on module movements (TC1). This is considered to be the most rigid re-

striction since once a module moves from one block to another it is not moved until

it is released from the Tabu list. (ii) Restrictions based on module and source block

(position of module) (TC2). Here, the restriction applies to movement of the mod-

ule and its source block X, but is free to move to other blocks. (iii) Restrictions

based on module and destination block (TC3). Finally, a combination of the above

restrictions is implemented using (TC4). The fourth restriction is considered to be

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 73

the most lenient.

Tabu List

Tabu list management concerns updating the Tabu list; i.e., deciding on how many

and which moves have to be made Tabu within any iteration of the search. Fig-

ure 3.13a shows the quality of solutions obtained as the size of the Tabu list is

increased. The size of the Tabu list can noticeably affect the final results; a long

list may give a lower overall minimum cost, but is usually obtained in a long time.

Further, a shorter list may trap the routine in a cyclic search pattern. Our em-

pirical results show that Tabu list sizes that provide good results, often grow with

the size of the problem. Figure 3.13b shows the Tabu search convergence rate as

a function of the Tabu list length. The longer lists (16, 24) give a lower overall

minimum partition but is obtained in a longer time. The Tabu list of length (4)

on the other hand got trapped in a cyclic search pattern. An appropriate list size

depends on the strength of the Tabu restrictions employed. The sizes of the Tabu

lists will be discussed in Section 3.6.2.

Aspiration

To increase the flexibility of the algorithm, while preserving the basic features that

allow the algorithm to escape local optimum, and avoid cyclic behavior, aspiration is

used to temporarily release a solution from its Tabu status. The aspiration criterion

plays an important role to achieve good performance. The appropriate use of it

can be crucial to the success of the Tabu Search algorithm. Different applications

employ only simple types of aspiration criterion. In the current implementation,

two different methods are used. The first actual aspiration rule (ASP1) is that, if

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 74

the cost associated with a Tabu solution is less than the aspiration value associated

with the cost of the current solution, then the Tabu status of the Tabu solution is

temporarily ignored. That is, although the Tabu solution is not removed from the

Tabu list, its Tabu status is overridden, and a move to the Tabu solution may be

made. The second aspiration rule (ASP2) that is used consists of removing a move

classified as Tabu when the move yields a solution better than the best obtained so

far. Figure 3.13c shows the effect of the aspiration on the overall solution (cut-net)

using the Chip1 circuit. As the number of blocks increase, the effect of the aspiration

level has more impact. The Tabu restrictions and aspiration level criterion of Tabu

Search play a dual role in constraining and guiding the search process.

3.6.1.3 Intermediate and Long Term Memory

Intermediate and long term memory functions are employed within Tabu Search to

achieve regional intensification and global diversification of the search [?, Glov90].

Combined with the short term memory functions, intermediate and long term mem-

ory functions provide an interplay between “exploitation” and “exploration” of the

solution space [?] (fine tuned search versus exploration of the solution space). Inter-

mediate term memory operates by recording and comparing features of a selected

number of best trial solutions generated during a particular period of search. The

method then seeks new solutions that exhibit these features. The long term mem-

ory functions, whose goal is to diversify the search, employs principles that are

roughly the reverse of those for intermediate term memory. Figure 3.13d shows a

recording of the module movement during the search procedure.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 75

120

130

140

150

160

170

180

190

200

210

20 40 60 80100120140160180200220

Cu
tS

ize

TabuLength

(a) CutSize vs TabuLength for Prim1-4.dat

Tc2,ni=5000
min=123

0

20

40

60

80

100

120

140

160

180

1 10 100 100010000100000

Cu
tS

ize
Iterations

(b) Tabu List Length

Size 4
Size 8

Size 16
Size 24

20

40

60

80

100

120

0 50 100 150 200 250 300

C
u

tS
iz

e

TabuLength

(c) Aspiration Criteria’’

2 Blocks No Aspi
2 Blocks with Aspi

4 Blocks No Aspi
4 Blocks With Aspi

6 Blocks No Aspi
6 Blocks With Aspi

1

10

100

1000

10000

0 50 100 150 200 250 300

M
O

V
E

M
E

N
T

MODULES

(d) Module Movement (Attributive Memory)

T32 Aspi
T1500 Aspi

Figure 3.13: Parameters affecting Tabu Search

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 76

3.6.2 Tabu Search Implementation for Partitioning

The Tabu Search routine described so far can be formulated as shown in Figure 3.14.

The algorithm requires an initial feasible solution (partition) for which an associated

cost cut may be calculated. A size for the list of Tabu solutions is also required,

(tabu list size) and a maximum number of moves, (max num iter) after which the

routine terminates.

3.6.2.1 Tabu List Size

Our Tabu list management techniques are based on static and dynamic approaches.

In the static approach, the size of the Tabu lists remains fixed for the entire search

period. Single or multiple attributes are set Tabu as soon as their complements

have been part of a selected move. The attributes stay Tabu for a distinct number

of iterations. The efficiency of the algorithm depends on the choice of the Tabu

status duration (the size of the underlying Tabu list). The size of the Tabu list is

chosen to be a function of the number of nodes within the circuit to be partitioned.

Our experimentation with the Tabu Search algorithm indicates that choosing a

tabu list size = α × nodes (where α ranges from 0.1 to 0.2) yields good results in

most cases. The static approach, though successful for some circuits, seems to be

a rather limited one. The dynamic implementation allows the size of the Tabu list

to oscillate between two ranges. The first range is determined when cycling occurs

(Tabu lists are too short). The second range is determined when deterioration in

solution quality occurs, which is caused by forbidding too many moves (Tabu lists

are too large). Best sizes lie in an intermediate range between these extremes.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 77

Input:
The net list or the Graph G= (V,E)
K = partitions required; | T | = size of Tabu list
max num iter = max iterations allowed.

Initialization:
Initial Partition = Generate a random solution
s = (V1, V2.., Vk); num iter=0;
bestpart=s; bestcut=f(s);

Main Loop:
While (num iter < max num iter)
Pick best module associated with best gain
If (move not in Tabulist) then

Accept move ,Update Tabulist;
Update the Aspiration Level;

If (move in Tabulist) then
If (Cost(tabu sol) < Aspiration(curr sol)) then
Override the TL Status and Accept the move
Update TL; Update the Aspiration Level;

Else
Move not accepted;

num iter = num iter + 1;
End While

Output:
Best Partition = bestpart; Best Cut = bestcut

Figure 3.14: A Simple Tabu Search implementation

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 78

3.6.2.2 Stopping Criteria

The stopping conditions used in this implementation are based on the following:

(i) The search will terminate when “num iter” is greater than the maximum num-

ber of iterations allowed “max num iter”. (ii) The search will terminate, if no

improvement on the best solution found so far can be made, for a given number

“max num iter” of consecutive iterations. The maximum number of iterations after

which the routine terminates, depends on whether the routine starts from a ran-

dom starting point or a good initial starting point (as will be explained in then next

chapter). Experiments performed show the following: For random starting points,

the algorithm requires more iterations to converge to good final solutions, so the

maximum number of allowable iterations is set to “max num iter = 100×nodes”,

whereas for good starting points “max num iter = 20× nodes”. The final report

gives the solution with the overall best partition and best cut after the specified

maximum number of moves.

3.6.2.3 Different Tabu Search Implementations

In this section, the results obtained from the Tabu Search heuristic using different

parameter settings are discussed.

Delayed Tabu List Activation (TS-DA)

The Tabu lists in this setting are not activated “no moves are considered to be

tabu” until the algorithm hits the first local minima. This is the delay activation

(DA). To achieve that without cycling to previous solutions, the interchange method

using a certain number of passes (as described in Chapter 2) is used. Once a local

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 79

minimum is reached, the Tabu lists are activated and the Tabu Search algorithm

resumes exploration for better solutions through the short term memory.

Long and Intermediate Term Memories(TS-DS-IS)

In this setting, the Tabu Search algorithm uses the best Tabu criterion and the most

suitable aspiration rule. At the same time, intermediate and long term memory are

employed to intensify and diversify the search.

Comparison between different settings

Table 3.5 presents results obtained using the Tabu Search under the different set-

tings described. TS-DA represents Tabu Search with delay activation. The second

column of the table represents Tabu Search using the first Tabu restriction. TS-

ASP2 shows results obtained using the second aspiration rule (described in Sec-

tion 3.6.1.2). It should be noted that the best results among the implementations

using the short term memory are based on TS-DA using TC1 and ASP1. Results

obtained using search diversification and intensification are considered best among

the others but, on the expense of extended CPU time.

3.6.3 Adaptive Tabu Search Heuristic

Advances in the development and refinement of general and advanced search strate-

gies depend in part on identifying the type of adaptation to a specific problem

domain that will prove most effective. A worthwhile avenue for research relative to

combinatorial algorithm development is the issue of fine-tuning of different parame-

ters that affect the performance of these algorithms. Experimentation indicates that

selecting the appropriate parameters that control strategies such as Tabu Search,

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 80

Circuit Blks TS-DA TS-TC1 TS-ASP2 TS-DS-IS
Cuts Time Cuts Time Cuts Time Cuts Time

Chip1 2 20 3.2 20 4.1 28 3.2 20 14.0
4 56 4.0 53 4.3 55 3.1 47 23.5
6 58 4.6 67 4.3 56 7.9 58 37.0

Prim1 2 56 6.4 60 6.6 54 11.6 54 47.4
4 102 29.4 114 20.4 129 14.0 102 100.1
6 139 20.7 136 44.0 146 12.3 137 1:15

Ind2 2 392 599 388 14:09 381 17:06 323 37:30
4 1189 9:36 1195 20:09 1207 10:46 991 65:02
6 1375 17:40 1399 14:09 1444 15:30 1375 89:33

Table 3.5: A comparison between different Tabu Search settings

Genetic Algorithms and Simulated Annealing has a drastic effect on the final so-

lution acquired. Many attributes of the solution space can affect the ideal Tabu

list size, mutation and crossover rates, and the annealing schedule in the above

mentioned methods. It is important to identify when and how parameters are sta-

ble, and devise methods to adjust these parameters depending on problem size and

application. This section introduces a new technique to tune the parameters that

control the performance of the Tabu Search algorithm in a more systematic fashion.

The most important parameters that control the performance of Tabu Search

are, the aspiration criterion for backtracking, the lengths of the Tabu lists and the

attributes to be used for the Tabu restrictions.

Sections 3.6.1.2 and 3.6.2.1 presented some schemes for determining the move

attributes and size of the Tabu list respectively. A method proposed here, called

Adaptive Tabu Search (ATS), is considered more robust in the sense that many

parameters adapt according to the properties of the solution space being searched.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 81

3.6.3.1 ATS Implementation

In Section 3.6.2.1, the choice of a preferred value for the Tabu list was based either

on empirical testing or on variation to the Tabu list size to eliminate cycling. These

schemes (static or dynamic) based on a fixed list size (FIX-TABU) are not strict

and, therefore, the possibility of cycling remains. Other Tabu Search implementa-

tions are based on the fact that cycles are avoided if the repetition of previously

visited configuration is prohibited [Glov90]. For example, in the Reverse Elimina-

tion Method [?, Glov90], the only movements that are excluded from consideration

are those that would lead to previously visited solutions. This method may be real-

ized as a strict tabu implementation. Figure 3.15 shows the adaptive Tabu Search

implementation. The main feature of this method is the capability of adapting

different parameters according to the nature of the landscape of the solution space

being searched. Initially, Tabu Search sets a search period through which it updates

statistics regarding the following: (i) Total module moves, average module moves,

(ii) Tabu and non-Tabu moves, (iii) Valid and non-valid moves, (iv) Flat and active

regions, (v) Rate of change of the objective function, (vi) Inactive modules, (vii)

Different number of solutions between search periods. The search controller would

decide according to these values on whether to constraint the search or not. If the

objective function has not changed for a certain number of phases (case 3) then the

controller decides to reset the Tabu list (removes all items) and activate all modules

that have low average movement. The controller attempts to do so either because

the landscape of the solution space is flat or no more modules can be moved due

to invalid moves or Tabu moves. If this is not the case, then the search controller

would decide upon the following:

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 82

Set Search Frequency

To Check Paramters?
TimeNO

Update Move Statistics

Any Improvement
Past 3 Phases?

Reset TabuList

Activate Stuck
Modules

NO YES

YES

Constraint

Search Space?

Increase TS Length Decrease TS Length
Decrease T-Criteria Increase T-Criteria

Aspiration Affect?

YES NO

SEARCH USING NORMAL TS

YES

Increase Aspi Level

NO

Figure 3.15: Adaptive Tabu Search

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 83

• The search is proceeding well,

• The search is constrained,

• The search is unproductive.

In the first case the search controller would proceed to check the affect of the aspira-

tion criterion used, and would tune it according to the value of the aspiration effect

during the previous search period. If the search is constrained or unproductive, the

search controller would utilize the length of the Tabu List and the Tabu Criteria

used to solve the above mentioned problem.

ADAPTIVE TABU SEARCH HEURISTIC
PRIM1 Circuit IND1 Circuit

Blks TS ATS IMP TS ATS IMP
Cuts Time Cuts Time Cuts Time Cuts Time

2 Blks 59 52.5 55 5.6 7% 59 91 28 202 52%
4 Blks 126 50.4 122 44.4 3% 135 171 124 285 8%
6 Blks 159 91 134 127 16% 230 375 176 606 23%

Table 3.6: The performance of Adaptive Tabu Search

The search controller was implemented and tested on some problems, and was

effective in improving the search quality within Tabu Search heuristic. Table 3.6

shows the results obtained with and without the search controller. The results

indicate clearly that when the search controller is tuning the parameters, the quality

of solutions obtained improve steadily for different block partitions and as the

problem size increases.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 84

Advanced Search Techniques
PRIM1 Circuit

Number of Partitions

CUTS TIME (Thousands)

2 Blocks 4 Blocks 6 Blocks
0

200

400

600

800

1000

0

5

10

15

20

25

30

Sanchis SDHC SA TS

Advanced Search Techniques
IND2 Circuit

Number of Partitions

CUTS TIME (Thousands)

2 Blocks 4 Blocks 6 Blocks
0

500

1000

1500

2000

2500

3000

0

10

20

30

40

50

60

Sanchis SDHC SA TS

Figure 3.16: Performance of advanced search heuristics

3.6.4 Performance of Advanced Search Techniques

Figure 3.16 and Table 3.7 present a comparison of the solution quality and com-

putation time of partitions obtained for 2,4 and 6 blocks of Simulated Annealing,

Sanchis interchange method, Dynamic Hill Climbing and Tabu Search2 starting

from random initial points.

As has been discussed in Section 3.5, the Simulated Annealing algorithm’s per-

formance depends on the annealing schedule used. The choice of annealing sched-

ule plays an important role in controlling the effectiveness and efficiency of the

algorithm. Our previous circuit partitioning results using Simulated Annealing

[Arei93, ?] were based on an annealing schedule similar to that proposed by Kirk-

patrick [?]. In this section, solutions obtained by Simulated Annealing are based

on results that use an annealing schedule proposed by White [Whit84]. Even with

2These results are based on pure Tabu Search and not Adaptive Tabu Search.

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 85

Circuit INTER SDHC SA TS
Cuts Time Cuts Time Cuts Time Cuts Time

Chip1 20 18 20 1.3 20 92 20 14.0
Chip2 15 19 14 2.5 14 98 14 10.3
Prim1 60 91 75 5.6 65 346 54 47.4
Prim2 226 433 248 36 224 1314 181 284
Bio 102 1058 135 61 199 3060 127 321
ind1 42 211 76 14 46 959 45 147
ind2 593 2661 278 153 594 6240 323 2250
ind3 514 2294 440 659 655 9420 305 2822

Table 3.7: 2-Way partitioning of advanced search heuristics

this cooling schedule execution times are still high as seen in Table 3.7.

The quality of solutions obtained by the Tabu Search method is consistently bet-

ter than the those obtained by the iterative improvement method (using 50 random

starting points), and in many cases better than Simulated Annealing. Moreover,

the Tabu Search execution time on average, is faster then the Simulated Annealing

approach by a factor of five. The quality of partitions obtained by the Tabu Search

method are better than those obtained by the iterative method by 40% and yields

partitions that are 5% better than those obtained by Simulated Annealing.

3.7 Summary

This chapter considered emerging heuristic search approaches for solving the circuit

partitioning problem in circuit layout. The main advantages and disadvantages

of each heuristic were discussed, and the best parameter setting for the circuit

partitioning problem were presented.

The SDHC heuristic is very simple to implement and is capable of exploring

regions of the parameter space in short periods of time. Genetic Algorithms offer a

CHAPTER 3. ADVANCED SEARCH TECHNIQUES 86

number of advantages : they are robust, they are good at “exploration,” and they

search from a set of designs and not from a single design. GRASP is effective in

producing good starting solutions for local search via an intelligent construction

phase that is greedy and adaptive. Simulated Annealing produces near optimal

solutions and is easily adapted to any combinatorial optimization problem. Tabu

Search is capable of exploiting and exploring the solution space effectively.

We have also demonstrated the importance of intelligently controlling the per-

formance of a search based heuristic. As made explicit in Tabu Search, one may

choose any algorithmic framework and superimpose a search controller within this

technique as an intelligent adapter.

Still theoretical limits do exist. All the approaches mentioned above have fun-

damental strengths but tend to suffer as the problem to be solved increases in size.

Genetic Algorithms are not well suited to perform finely tuned search. Tabu Search

is not certain to find a good solution for every problem without parameter tuning.

The practical question is in the realm of heuristic search “Can these new approaches

be more effective at finding good solutions to hard problems?” The strengths and

limitations of Genetic Algorithms, GRASP, Simulated Annealing, and Tabu Search

remain to be charted fully. While at present there appear to be many constituents

of effective heuristic procedures, the time is perhaps approaching to bind these

heuristics together. The next chapter, introduces the means of combining these ad-

vanced search techniques and shows the importance of integrating them as a means

to offset their weakness and highlight their strengths.

Chapter 4

Hybrid Search Techniques

In general, most real world problems are too complex for any single processing

technique to solve in isolation. The modern philosophy for constructing fast globally

convergent algorithms is to combine a simple globally convergent algorithm, such

as Simulated Annealing or a branch and bound mixed integer programming solver,

with a fast locally convergent heuristic to form a more suitable and faster hybrid.

In this chapter, the means of integrating some of the advanced search heuristics

that have been discussed in Chapter 3 are described. First, a classification of hybrid

techniques will be presented. The advantages and disadvantages of most heuristics

will be presented next. Finally, the hybridization strategies used to integrate the

most promising heuristics will be discussed.

4.1 Hybridization

The previous chapter introduced the main concepts and advantages of using some

advanced search heuristics. Even with these search techniques, theoretical limits

87

CHAPTER 4. HYBRID SEARCH TECHNIQUES 88

exist. A worthwhile avenue for research relative to combinatorial algorithm devel-

opment involves integrating these fundamentally different approaches as a means

to avoid their inherent weakness.

There is currently considerable confusion as to exactly what a hybrid system

is. Much of the problem lies in the different interpretation of functionality and

Hybrids
(c) Polymorphic

HybridsHybrids
(a) Intercommunicating

Tabu Search

Randomized

Circuit

Layout

TS

ANNS SA

GA

Neural Nets

GA

Iterative
Improvement

SA

TS

(b) Function Replacing

Simulated
Annealing

With
Memory

Figure 4.1: Hybrid classes applied to combinatorial optimization

architecture of these systems. Hybridization, in general, couples distinct classes of

techniques tightly and switches between them within a design run. As shown in

Figure 4.1, hybrid implementations can be classified as following [Goon92]:

• Intercommunicating hybrids are independent, self contained, processing

modules that exchange information, and perform separate functions to gen-

CHAPTER 4. HYBRID SEARCH TECHNIQUES 89

erate solutions. Communication and synchronization is usually performed by

the aid of a controller. When a problem can be subdivided into distinct pro-

cessing tasks, then these different independent modules can be used to solve

the parts of the problem that they are best at.

• Function Replacing hybrids address the functional composition of a sin-

gle optimization technique. In this class, a principal function of the given

technique is replaced by another optimization processing technique. The mo-

tivation of replacing these principal functions is to increase execution speed

and enhance reliability.

• Polymorphic hybrids are systems that use a single processing technique to

achieve the functionality of different processing techniques.

4.1.1 Hybridization Strategy

Table 4.1 shows a comparison between different search methods used previously for

circuit partitioning. The comparison is in terms of the capabilities of performing

finely tuned search “Fine-S”, diversification of the search “Div-S”, regional inten-

sification of the search “Inten-S”, local and global convergence1 “L-G-conv” and

finally advantages and disadvantages of each search methods. It is evident that

stochastic, adaptive and local search approaches have strengths and weaknesses

and that they should be viewed not as competing models but as complementary

ones. By integrating these fundamentally different approaches we can avoid many of

the weaknesses inherent in each methodology, while capitalizing on their individual

strengths.

1Sensitivity to initial starting points.

CHAPTER 4. HYBRID SEARCH TECHNIQUES 90

Features of Search Methods
Method Features

Fine-S Div-S Inten-S L-G conv Comments

Numerical no no no local Provides good starting points.
Interchange yes no no local Gets stuck in local minima.
SDHC yes no yes local Produce suboptimal solutions.
GRASP yes yes no local Constructs many initial points.
GA no yes yes global Explore search space.
SA yes yes yes global Huge CPU times.
TS yes yes yes local Extensive Record Keeping.

Table 4.1: Comparison between different search methods

4.2 Effective Hybrid Schemes

Usually, interchange methods fail to converge to optimal solutions unless they ini-

tially begin from good starting points. The choice of starting point is a crucial

factor in the performance of the Iterative Improvement heuristics. The perfor-

mance of some heuristic methods such as Tabu Search and Iterative Improvement

based on node interchange can be improved if initial good starting points can be

produced by some heuristic. In this section, the solution quality of different local

search heuristics that start from good initial solutions are compared. The initial

solutions are obtained using GRASP, Barnes eigenvector approach and a Genetic

Algorithm.

4.2.1 A Combined GRASP-Genetic Search Heuristic

Chapter 3 introduced the main concept of GRASP as a method for intelligently

constructing initial solutions via an adaptive randomized greedy function. In this

section, the importance of integrating GRASP with Genetic Algorithms is described

CHAPTER 4. HYBRID SEARCH TECHNIQUES 91

as a means to improve the solution quality. The developed heuristic not only

produces excellent solutions, but the computation time is reduced drastically. The

Genetic Algorithm here is used to obtain many initial starting points instead of

a single solution provided by the eigenvector approach. This allows a heuristic

such as Tabu Search to concentrate the search effort in the most promising regions.

Another advantage of using the Genetic Algorithm approach is that it allows us to

further explore and diversify the search through information received by the local

search heuristic.

Applications and theory show that GA can be useful in solving difficult prob-

lems. However, a pure genetic approach still has its shortcomings for combinatorial

optimization problems [Glov90]. The hybrid scheme here, works with subpopula-

tions Pi of solutions. The first half of the population is produced randomly, whereas

the second half of the population is produced through a more intelligent scheme

using the GRASP. Thus, this method can be seen as a meta-heuristic that improves

on existing solution procedures. The method is flexible and can be implemented

with many different parameter values.

4.2.1.1 Parameter Setting

In this implementation, the group-number encoding representation scheme is used

instead of the more popular permutation with separators encoding. The reason

behind this is due to the high computation time involved to encode and decode the

second representation scheme. For the purpose of circuit partitioning, calculation

of the objective function “nets cut at every iteration” is expensive. Therefore, it is

modified slightly so that it would only update the value of the chromosome instead

of completely evaluating all solutions [?].

CHAPTER 4. HYBRID SEARCH TECHNIQUES 92

Good on-line performance is associated with high crossover rate (90 − 98%)

combined with low mutation rate (0.01 − 0.06%). Our empirical study, strongly

supports using a multi-point crossover operator over the one-point crossover tech-

nique discussed previously (for group number encoding scheme). A 3-point and

4-point crossover works best for circuit partitioning problems.

In this implementation population sizes between 25-50 were used. These popu-

lation sizes were sufficient in obtaining good initial starting points for a local search

heuristic to obtain good solutions in reasonable amounts of time.

It has been noticed that results vary from one setting to another, but generally

speaking using the Genetic Algorithm with a deterministic selection method such

as rank select and a deletion method such as replace most inferior gives the desired

results for at least obtaining good initial starting points.

4.2.1.2 GRASP-GA Implementation

As in the generic Genetic Algorithm introduced in Chapter 3, the population evolves

into a different population for several generations. At the end, the heuristic returns

the best member of the population as the solution to the problem. For each gen-

eration, the evolution process proceeds as follows. Two members of the population

are chosen according to the selection strategy employed (see Section 3.4.1.6). These

two members are then combined through the crossover operator to produce an off-

spring. It is to be noted that the mutation operator is missing. A local optimization

technique (described in the next section) is then applied to the offspring to improve

it. The offspring is tested to see if it is suitable for the population. The newest

generation is then injected by a combination of chromosomes from the old genera-

tion and new offsprings that have been produced. The basic structure of the main

CHAPTER 4. HYBRID SEARCH TECHNIQUES 93

hybrid heuristic based on GRASP and GA is given in Figure 4.2.

A GRASP-GENETIC ALGORITHM HYBRID
1. Encode Solution Space
2.(a) set pop size, max gen, gen=0;

(b) set cross rate, mutate rate;
3a. Initialize 50% of P Randomly.
3a. Initialize 50% of P using GRASP.
4. While max gen ≥ gen

Evaluate Fitness
For (i=1 to pop size)
Select (mate1,mate2)
if (rnd(0,1) ≤ cross rate)
child = Crossover(mate1,mate2);

Repair child if necessary
Local-Optimize(Population)

End For
Inject New Generation with most fit offsprings.
gen = gen + 1

End While
5. Return best chromosomes.

Figure 4.2: A GRASP-GA hybrid

4.2.1.3 Local Search

Genetic Algorithms are not well suited for fine-tuning structures which are close

to optimal solutions [?]. Incorporation of local improvement operators into the

recombination step of a Genetic Algorithm is essential if a competitive Genetic

Algorithm is desired.

After crossover, GRASP-GA applies a local optimization process on the off-

springs. We use a simple variation of the Sanchis heuristic [Sanc89]. The original

Sanchis heuristic has several passes after which the heuristic terminates as presented

CHAPTER 4. HYBRID SEARCH TECHNIQUES 94

GRASP-GENETIC SEARCH HYBRID
Circuit Blocks Random-GA GRASP-GA %IMP

Cuts Time Cuts Time Cuts

Prim1 2 Blks 76 113 70 140 8%
4 Blks 158 163 130 208 17%
6 Blks 171 216 158 276 8%

Ind2 2 Blks 461 1055 435 866 6%
4 Blks 1949 1656 1129 1378 42%
6 Blks 2895 2179 1559 1818 46%

Table 4.2: Results of GRASP-GA hybrid implementation

GRASP-GENETIC SEARCH HYBRID
CHIP1 Circuit

Number of Partitions

CUTS Improvement

0%

16%
12%

20 20

57
48

83
73

2 Blocks 4 Blocks 6 Blocks
0

20

40

60

80

100

0%

5%

10%

15%

20%

25%

RAND-GA GRASP-GA Improvement

GRASP-GENETIC SEARCH HYBRID
PRIM2 Circuit

Number of Partitions

CUTS Improvement

0%

24%

14%

168 169

454
343

608
520

2 Blocks 4 Blocks 6 Blocks
0

100
200
300
400
500
600
700

0%

5%

10%

15%

20%

25%

RAND-GA GRASP-GA Improvement

Figure 4.3: The performance of the GRASP-GA hybrid

CHAPTER 4. HYBRID SEARCH TECHNIQUES 95

in Chapter 2. In the local optimization phase, a single pass is allowed, furthermore

a restriction on the number of modules to be moved is set to a certain value MAX-

MOD. It is to be noted that if local optimization is not strong enough to overcome

the inherent disruption of the crossover, more strong local optimization is needed.

4.2.2 A Combined GRASP-Tabu Search Technique

Tabu Search as described in Chapter 3, is capable of guiding local search heuristics

that get stuck at a local minima to continue exploration without becoming con-

founded by an absence of improving moves, and without falling back into a local

optimum from which it previously emerged. Yet, the Tabu Search heuristic may

take a considerable amount of time (compared to a simple Iterative Improvement

heuristic) if it starts from a point that is far away from optimality. The combina-

tion of Tabu Search and GRASP leads to a powerful hybrid heuristic. Good initial

partitions obtained by GRASP allow Tabu Search to refine that initial partition

quality in a reasonable amount of time, thus reducing the computational time and

enhancing the solution quality. Figure 4.4 shows the main hybrid heuristic based

on GRASP and Tabu Search.

4.2.3 Computational Results

Table C.17 and Figure 4.5 present a comparison of the solution quality and com-

putation time of partitions obtained for 2,4 and 6 blocks of three netlists with

different sizes. Some general observations can be made from the results presented

in Table C.17. Comparing results based on good initial solutions to those starting

from random initial starting points, the following conclusion can be made:

CHAPTER 4. HYBRID SEARCH TECHNIQUES 96

A GRASP-TABU SEARCH HYBRID
(A) GRASP: INITIAL SOLUTION

Read Circuit NetList();
do

Construction Phase(Greedy,Random,Adaptive)
Store Best Solution(Previous Solutions)

While (not Done)
Report Best Solution()

(B) Tabu Search: Local Improvement Phase()
Read Best Solution
While (local optimum not reached)

NewSolution = Tabu Search(Solution)
EndWhile
Return Best Solution()

Figure 4.4: A GRASP-TS hybrid heuristic

• Initial solutions obtained using Barnes eigenvector approach, GRASP, and

Genetic Algorithms are better than those obtained randomly for most circuits.

• The eigenvector-node interchange approach yields netlist partitions with com-

parable or fewer cut nets than the best netlist partitions obtained using node

interchange heuristics alone on many random initial netlist partitions, in a

small CPU time.

• The combined Tabu Search with GRASP gives rise to a heuristic that is

capable of finding excellent solutions compared to those obtained randomly,

or by a more systematic approach like Barnes eigenvector approach.

• Finally, using the Genetic Algorithm to obtain initial starting points for the

finely tuned search performed by the Tabu Search heuristics are comparable

CHAPTER 4. HYBRID SEARCH TECHNIQUES 97

to those obtained by GRASP. Also, the computation time of this hybrid is

less than other techniques used thus far.

Circuit Blks RAND-TS EIG-TS GRASP-TS GA-TS
Cuts Time Cuts Time Cuts Time Cuts Time

Chip1 2 20 13.4 20 12.6 20 10.2 20 9.4
4 49 12.3 46 11.8 52 11.4 54 9.0
6 64 12.4 59 23.8 55 20.5 56 17.1

Prim1 2 72 15.0 61 31.2 60 17.9 58 19.3
4 126 39.8 119 46.6 102 56.8 115 40.6
6 168 38.8 140 49.8 140 31.5 136 55.3

Ind2 2 675 1710 520 1809 388 1381 286 821
4 2259 1752 1804 1318 1189 1602 1403 1272
6 2682 1733 1803 2171 1371 3038 1537 1132

Table 4.3: Effective hybrid search techniques

We should also mention that the Genetic Algorithm produces many solutions that

vary in quality compared to those obtained by GRASP and the eigenvector ap-

proach. Consequently, in Section 4.4, we show the merit of combining Tabu Search

with Genetic Algorithms in exploring the solution space effectively.

4.3 A Memory Based Annealing Heuristic

The discussion of Tabu Search in Chapter 3 suggests that it may be considered

as a kind of deterministic version of Simulated Annealing in a broad sense. Simu-

lated Annealing achieves diversity in search by randomization without reliance on

memory. By this view, the use of randomization, via assigned probabilities, allows

a gain in efficiency by obviating extensive record keeping and evaluation opera-

tions that a more systematic pursuit of diversity may require. At the same time,

CHAPTER 4. HYBRID SEARCH TECHNIQUES 98

Tabu Search Using Different Initial Solutions
PRIM2 Circuit

PARTITIONS

CUTS Improvement

29%

44%

26%

2 BLOCKS 4 BLOCKS 6 BLOCKS
0

200

400

600

800

0%
10%
20%
30%
40%
50%

198
170

408
371

534
569

EIG-TS
GA-TS

RAND-TS EIG-TS GRASP-TS GA-TS

Tabu Search Using Different Initial Solutions
IND3 Circuit

PARTITIONS

CUTS (Thousands) Improvement

57%
41%

53%

2 BLOCKS 4 BLOCKS 6 BLOCKS
0
1
2
3
4
5

0%

20%

40%

60%

80%

1.615
0.686

2.825
1.858

3.471
1.9

EIG-TS
GA-TS

RAND-TS EIG-TS GRASP-TS GA-TS

Figure 4.5: Initial solutions and local search

it entails a loss in efficiency by allowing duplications and potentially unproductive

wandering that a more systematic approach would seek to eliminate. One possi-

ble effort to improve Simulated Annealing is to replace its rules with those more

closely resembling the prescriptions of Tabu Search. We show that the combina-

tion of Tabu Search and Simulated Annealing gives rise to probabilistic (hybrid)

heuristics that form the basis for approaching combinatorial optimization problems

in an intelligent manner.

4.3.1 Simulated Annealing with Memory

The hybridization method in this section will be based on the polymorphic hybrid

model as seen in Figure 4.1. In this model of computation, Simulated Annealing

emulates Tabu Search by eliminating the unproductive wandering and the duplica-

tion of solutions. The Simulated Annealing algorithm that is guided by Tabu Search

(shown in Figure 4.6) proceeds by attempting a certain number of neighborhood

moves at each temperature, while the temperature parameter is gradually dropped.

CHAPTER 4. HYBRID SEARCH TECHNIQUES 99

The single loop of a descent algorithm is replaced by a double loop; in the outer

loop the temperature is changed and the inner loop determines how many neigh-

borhood moves are to be attempted at each temperature. The annealing schedule

in this hybrid version of Simulated Annealing and Tabu Search is similar to that

proposed by White [Whit84].

current solution ← initial solution
current cost ← evaluate(current solution)
T ← Tinitial

While (T ≥ Tfinal)
for i = 1 to iteration(T) /* neighborhood moves */

new solution ← move(current solution)
if new solution NOT TABU then

Update Tabulist;
Update Aspiration Level;
new cost ← evaluate(new solution)
∆cost← new cost - current cost
if(∆cost ≤ 0 OR e−∆cost/T > random())

/* accept new solution */
current solution ← new solution
current cost ← new cost

EndIf
EndIf
Else If (Move in Tabulist) then

Check Aspiration Value
Override Tabulist if Aspiration is met

End Else
EndFor
T ← next temp(T)

EndWhile

Figure 4.6: Simulated Annealing with memory (SAM)

The short term memory functions in Tabu Search, which are fulfilled by the

Tabu List and Aspiration Criteria, are used to eliminate visiting neighborhood

CHAPTER 4. HYBRID SEARCH TECHNIQUES 100

SIMULATED ANNEALING WITH MEMORY
2-way partitioning

CIRCUITS

CUTS TIME (Thousands)

CHIP1 PRIM2 IND2
0

200

400

600

800

0
1
2
3
4
5
6
7

0
56

0.5
41

38
58

%IMP-CUT
%IMP-TIME

SA SAM

SIMULATED ANNEALING WITH MEMORY
4-way partitioning

CIRCUITS

CUTS TIME (Thousands)

CHIP1 PRIM2 IND2
0

200
400
600
800

1000

0
5
10
15
20
25
30

-3
50

5
46

-5
38

%IMP-CUT
%IMP-TIME

SA SAM

Figure 4.7: The performance of SAM

solutions visited recently, thus preventing duplications of solutions. Aspiration

when used effectively, forces Simulated Annealing to backtrack to previous solutions

as a means to refine the search in those regions, thus improving the quality of

solutions obtained. If a move is randomly chosen and its status is Tabu, another

move will be chosen instead, unless the Aspiration Criteria determines otherwise.

SA vs SAM (SA with Memory)
Prim1 Circuit Ind1 Circuit

Blk SA SAM IMP SA SAM IMP
C T C T C T C T C T C T

2 65 360 56 156 13% 56% 89 1004 37 468 58% 53%
4 106 1311 105 619 1% 52% 141 3922 138 1875 2% 52%
6 124 2440 123 1190 1% 51% 182 7629 183 3740 -1% 51%

Table 4.4: The performance of Simulated Annealing with memory

Table 4.4 and Figure 4.7 present results for the new developed Simulated An-

nealing with memory hybrid (SAM), and compare its performance with that of pure

CHAPTER 4. HYBRID SEARCH TECHNIQUES 101

Annealing heuristic. The results clearly indicate the computation time of SAM is

faster than that of SA by at least 50%, and the quality of solutions obtained by

SAM are comparable with those obtained by SA. The reason as indicated before is

due to eliminating the duplicated solutions and the concentration on regions that

are worth backtracking to using the aspiration criteria of Tabu Search.

4.4 A Tabu-Genetic Algorithm Approach

The hybridization method in this section will be based on the intercommunicating

hybrid model as seen in Figure 4.8. In this model of computation, independent pro-

cessing modules exchange information and perform separate functions to generate

solutions. A common means of attempting to improve the performance of heuristic

methods is to restart the solution process from different solutions. These solutions

are either generated randomly or by a set of favored starting heuristics. The gen-

eration of new starting solutions is a key area to be explored by a more systematic

diversification strategy. The hybrid model is based on using the Genetic Algorithm

as a preprocessor to perform the initial search, before turning the search process

over to a system (i.e. Tabu Search) that can employ domain knowledge to guide the

local search. The Genetic Algorithm here is used (instead of the numerical eigen-

vector approach) to obtain many initial starting points. The Tabu Search heuristic

is then used to concentrate the search effort in the most promising regions. Another

reason for using the Genetic Algorithm approach, is that it is capable of exploring

the solution space, thus it is used for further intensification and diversification of

search. Figure 4.8a shows the 3 principal stages used in the search strategy. The

main task, is divided into three different phases, initial starting points, local search

CHAPTER 4. HYBRID SEARCH TECHNIQUES 102

and exploration of the solution space. The initial solutions are obtained either ran-

domly or in a more systematic way, using a numerical eigenvector based approach,

Genetic Algorithms or GRASP.

4.4.1 Search Controller

Figure 4.9 shows the means of combining the Genetic Algorithm and Tabu Search

into a hybrid technique. This hybrid system thus attempts to combine the power of

decentralized characteristics of Genetic Algorithms with the more localized features

of Tabu Search and Iterative Improvement heuristic based on node interchange.

The main task of the search controller is to synchronize the search among the

three different phases. At each phase, the search controller tunes and sets cer-

tain parameters of the Tabu Search heuristic and those of the Genetic Algorithm.

Parameter tuning is necessary to achieve good performance in every phase of the

search strategy. Once that is achieved it may be useful to invoke either Tabu Search

or an interchange based method to perform finely-tuned local search. The search

controller sets the population and generation size of the Genetic Algorithm to val-

ues of 25 and 10 respectively. A low mutation rate of 0.04 and high crossover rate

of 0.96 are also set to achieve good initial starting points. Repair solutions for

infeasible chromosomes are used here instead of penalty function approaches. As

mentioned in Chapter 3, the Tabu lists in this setting are not activated “no moves

are considered to be Tabu” until the heuristic hits the first local minima. To achieve

that without cycling to previous solutions, the interchange method using a certain

number of passes is performed. Once a local minima is reached, Tabu lists are

activated and the Tabu Search heuristic resumes exploration for better solutions

CHAPTER 4. HYBRID SEARCH TECHNIQUES 103

Genetic Algorithm

(b) Different Aproaches for Search

(c) Controlling the Search Strategy

(a) General Search Strategy

Intensify SearchDiversify Search

Finely Tuned Search

Initial Solutions
Initial Solutions:

Finely Tuned Search:

Diversify Search:

Intensify Search:

Iterative Improvement

Tabu Search

Long Term Memory

Genetic Algorithm

Medium Term Memory

Random Starting points
Eigenvector Approach

Genetic Algorithms
GRASP

Genetic Algorithm

Inter Term Memory (TS)

Tabu

Genetic Algorithm

Long Term Memory (TS)

SearchImprovement

Iterative Search Controller

Genetic Algorithm
Multi

Starting Points

Eigenvector Initial

Starting Point

Random Starting

Points Adaptive Search

Greedy Random

1. Initial Solutions

2. Fine Tune Search

3. Diversify and Intensify Search

Figure 4.8: Interaction between different search strategies

CHAPTER 4. HYBRID SEARCH TECHNIQUES 104

Input Netlist H=(V,E)
Input Partitions (Blocks)

Generate multiple
Solutions Using GA

Perform Local Search
Using Tabu Search

Intensify

Search?

Invoke GA Using

Previous TS Solutions

YES (GAds-TS)

Set GA Parameters
Set TS Parameters
Set GRASP Parameters

NO

Diversify
Search?

Recall Previous

YES (GAis-TS)NO

GA different Solutions

Figure 4.9: A Tabu Search-Genetic Algorithm hybrid

through the short term memory.

4.4.1.1 Search Diversification

The search controller utilizes the Genetic Algorithm to achieve search diversification

(instead of the long term memory usually used with Tabu Search) in two different

ways. The first method is based on obtaining multiple starting solution points using

the Genetic Algorithm. The Tabu Search Algorithm is then invoked to zoom on the

different search points and explore the different regions of the solution space. The

search time on each different initial solution is determined by the search controller

and is basically terminated when no improvements in solution quality are obtained.

In the second approach, the search controller processes information obtained from

CHAPTER 4. HYBRID SEARCH TECHNIQUES 105

Tabu Search during the exploration period. The search controller samples different

solutions points and chooses those points that are distinct from each other. These

points are then injected as initial populations to the Genetic Algorithm, and new

different solutions are formed using crossover and mutation. Since this phase is

critical, the search controller attempts to speed the execution time of the Genetic

Algorithm. This is achieved by using lower population and generation sizes, in the

same time it attempts to repair solutions efficiently instead of penalizing infeasible

solutions.

4.4.1.2 Search Intensification

Intensification of the search is achieved in a similar manner to that of the diversifi-

cation phase, with slight modifications. In this phase, the search controller obtains

sample points from the Tabu Search heuristic at the second half of the exploration

period. These good quality solutions are compared and only those that have similar

qualities are injected in some of the populations of the Genetic Algorithm. Solu-

tions resembling similar structures are created in the same way by crossing notions

between different chromosomes. The search controller, attempts to lower the mu-

tation rate to a low value. The replacement of chromosomes in each generation is

carried out using GA-rmi method discussed in Chapter 3. The selection method

determined by the controller is based on the stochastic roulette wheel method. In

summary, the search controller uses a mechanism opposite to that used for diversi-

fication to achieve intensification of the search.

CHAPTER 4. HYBRID SEARCH TECHNIQUES 106

4.4.1.3 Related Issues

The parameters that control the performance of the Tabu Search heuristic are con-

trolled in a similar fashion to those of the Genetic Algorithm. The most important

are: (i) the aspiration criteria for backtracking, (ii) the lengths of the Tabu lists

and (iii) the attributes to be used for the Tabu restrictions. The search controller’s

performance can be further improved if it can extract some statistical information

on the circuits to be partitioned. For instance, the statistics obtained regarding the

maximum number of cells on any net could be utilized to have some modules fixed

in certain blocks, this in place would reduce the computation time of the heuristics

involved in partitioning the circuit.

4.4.2 Computational Results

Figure 4.10 compares the performance of Tabu Search based on long and intermedi-

ate term memory with the Genetic Algorithm Tabu Search hybrid. Tables 4.5, 4.6

GA-TS HYBRID PERFORMANCE
IND1 CIRCUIT

PARTITIONS

CUTS TIME

2 BLOCK 4 BLOCK 6 BLOCK
0

200

400

600

800

0
200
400
600
800
1,000

26
0

39
50

31
38

%IMP-CUT
%IMP-TIME

TS-DS-IS GA-TS

GA-TS HYBRID PERFORMANCE
IND2 CIRCUIT

PARTITIONS

CUTS TIME (Thousands)

2 BLOCK 4 BLOCK 6 BLOCK
0

400

800

1200

0
1
2
3
4
5
6

18
36

27
17

23
50

%IMP-CUT
%IMP-TIME

TS-DS-IS GA-TS

Figure 4.10: The performance of GA-TS hybrid

CHAPTER 4. HYBRID SEARCH TECHNIQUES 107

and 4.7 present a comparison of the solution quality and computation time of par-

titions obtained for 2,4 and 6 blocks using GRASP, Tabu Search, and Genetic

Algorithm as shown in Figure 4.9.

Circuit TS GAds-TS GAis-TS GAds-is-TS
Cuts Time Cuts Time Cuts Time Cuts Time

Chip1 20 1.8 20 19.2 20 11.1 20 22.9
Chip2 14 2.9 14 15 15 7.2 14 16.0
Prim1 72 9.8 58 60 64 32 57 73
Prim2 252 43.2 180 230 170 114 161 632
Bio 144 89.7 116 462 89 223 89 582
Ind1 59 45.2 38 169 40 130 34 217
Ind2 805 607 273 3363 306 1505 273 3422
Ind3 462 1143 454 3005 664 1565 300 2750

Table 4.5: 2-Way partitioning results of hybrid heuristics

Circuit TS GAds-TS GAis-TS GAds-is-TS
Cuts Time Cuts Time Cuts Time Cuts Time

Chip1 55 3.1 49 22.5 50 13.2 47 36.1
Chip2 35 4.1 28 19.1 26 13.1 28 28.2
Prim1 139 16.4 114 126 119 104 100 156
Prim2 663 61.6 409 653 410 174 356 495
Bio 509 190 411 572 430 414 342 884
Ind1 135 117 112 223 109 160 103 368
Ind2 2323 1227 1038 3182 1529 2882 943 5087
Ind3 2140 4074 1788 6660 1819 4021 1405 10279

Table 4.6: 4-Way partitioning results of hybrid heuristics

The first column in each table refers to a Tabu Search implementation based

on a short term memory. The next three columns in the tables refer to integrating

these heuristic in the following manner:

CHAPTER 4. HYBRID SEARCH TECHNIQUES 108

Circuit TS GAds-TS GAis-TS GAds-is-TS
Cuts Time Cuts Time Cuts Time Cuts Time

Chip1 64 7.7 59 28 62 13.1 56 45.1
Chip2 39 4.1 37 32 36 18.2 36 31.6
Prim1 189 13.0 133 151 133 67 131 122
Prim2 769 60.5 547 384 505 296 501 563
Bio 791 277 500 1141 500 605 411 1415
Ind1 237 241 133 417 177 264 133 555
Ind2 2662 743 1583 3784 2058 3365 1322 6600
Ind3 2120 2126 1900 6960 1930 2354 1900 8848

Table 4.7: 6-Way partitioning results of hybrid heuristics

1. A Genetic Algorithm used to diversify the search (GAds-TS).

2. Search intensification based on Genetic Algorithm (GAis-TS).

3. Search diversification and intensification using the Genetic Algorithm (GAds-

is-TS).

It is clear from Figure 4.10 and Tables 4.5-4.7 that the GA-TS hybrid (that is

based on exploring the solution space by means of diversification and intensification)

improves results by at least 40% over a Tabu Search implementation based only on

a short term memory, and by 20% over a Tabu Search method based on long and

intermediate term memories.

4.5 Summary

This chapter explored the effectiveness of integrating different heuristics to produce

robust, efficient and fast hybrids. The integration of Tabu Search and Simulated

Annealing gave rise to a hybrid probabilistic technique that avoids the necessity

of unproductive wandering due to randomization while producing good effective

CHAPTER 4. HYBRID SEARCH TECHNIQUES 109

solutions. Combining GRASP with Tabu Search and Genetic Algorithms not only

improved the solution quality but also reduced the computation time effectively.

Finally, the combination of Tabu Search with Genetic Algorithm attempted to

combine the strengths of the latter in exploring the solutions space effectively with

the former in finely tuning the search in the most promising regions.

The developed hybrid search techniques are effective in producing good quality

results for the circuit partitioning problem. The main drawback is the excessive

computation time required, which increases with the problem size. In the next

chapter, a novel clustering technique is presented for reducing the problem size

without compromising the solution quality. In fact, using the clustering based

techniques, the quality of solutions produced by many local search heuristics are

improved, in fraction of the time.

Chapter 5

Circuit Clustering

As the complexity of VLSI circuits increases, a hierarchical design approach be-

comes essential to shorten the design period [Hage92]. Circuit clustering plays a

fundamental role in hierarchical designs. Identifying highly connected components

in the netlist can significantly reduce the complexity of the circuit and improve

the performance of the design process. Clustering usually serves as a bottom-up

preprocessing stage in a hierarchical partitioning and placement environment as

seen in Figure 5.1. A good clustering method should identify groups of cells which

will eventually end up together in the final partitioning and placement stages. This

can be difficult because clustering decisions are made prior to the start of the

hierarchical partitioning (placement) process, and hence these decision are made

without a global view of the circuit structure. Because of this difficulty, a top-down

global netlist partitioning methodology has been preferred to a bottom-up cluster-

ing methodology for circuit placement. But the sizes of today’s circuits are so large

that a top-down partitioning scheme alone is infeasible. Therefore, an effective

bottom-up clustering approach is necessary as a preprocessing stage in a hierar-

110

CHAPTER 5. CIRCUIT CLUSTERING 111

ba

dc
NET

e f g

h

CELL

CLUSTERING

PARTITIONING

Blk 1 Blk 2

a b

dc

e
f

g

h
n

ml

k

i

j

FLATTEN

Cluster or Super Node

PLACEMENT

Y

X

FLATTEN

Row 1

Row 2

Y

X

Figure 5.1: Overview of clustering

chical placement approach. In this chapter, new clustering techniques that can be

used for circuit partitioning and placement are introduced. Section 5.1 presents the

motivation of using clustering in general. Section 5.2 introduces a clustering heuris-

tic based on the GRASP heuristic. The main concepts and terminology used for

the second clustering heuristic that is based on statistical information of the circuit

are introduced in Section 5.3. The main clustering heuristic is also introduced in

Section 5.3. Partitioning based on the clustering heuristic and experimental results

are introduced in Section 5.4. Finally, Section 5.5 compares results obtained using a

combined hybrid and clustering technique with those based on a branch and bound

method to solve circuit partitioning in the form of a mixed integer programming

CHAPTER 5. CIRCUIT CLUSTERING 112

problem.

5.1 Motivation

An intuitive interpretation of a cluster in a circuit is that it is a part of the cir-

cuit which is significantly more “complex” or “dense” than the remaining circuit.

A cluster is a group of highly connected components in a circuit. The main goal

of clustering heuristics is to identify the clusters in a circuit. In VLSI layout de-

sign, clustering can be used to construct the natural hierarchy of the circuit. Many

existing layout tools generate a circuit hierarchy based on recursive top-down parti-

tioning. Not only does the time and space required by circuit partitioning increase

as the circuit size increases, but also the stability and quality of their results de-

teriorate. A poor result early in the top-down partitioning process imposes an

unnatural circuit hierarchy and will likely lead to suboptimal solutions.

Given these difficulties, bottom-up clustering can enable successful top-down

partitioning and placement by condensing the circuit netlist and reducing the prob-

lem size. Clustering is attractive because it avoids making the far reaching decisions

that are inherent in a top-down approach. A bottom-up clustering heuristic can

be integrated into the partitioning or placement process (as shown in Figure 5.1)

by using clustering as a preprocessing step. First, clustering is performed on the

circuit to obtain a condensed circuit where each cluster of components is collapsed

to form a single component. Partitioning and placement are then performed on the

clustered circuit instead of the original circuit. Since the number of components in

a clustered circuit is usually much smaller than that of the original circuit, the time

and space required by the layout algorithm is reduced significantly. Table 5.1 shows

the effect of clustering on the general statistics of three circuits with different sizes.

CHAPTER 5. CIRCUIT CLUSTERING 113

The average degree of the nodes increases dramatically after clustering the circuit,

while the average net size decreases accordingly. The decrease of the net size is due

to the fact that many modules that used to be connected to a net are now collapsed

to a single cluster (module), thus the net will connect less modules. The local in-

terchange method would yield significantly better results when the circuit has large

average node degree [Hage92]. Bui et al [Bui87, Bui89] claim that compacting until

average degree in netlist ≥ 3 suffices for Interchange to become essentially optimal.

This is because there are fewer local minima in the k-interchange neighborhood

structure.

Ckt Type Nodes Nets Pins Node Degree Net Size
MAX x σ MAX x σ

chip1 Flat 300 294 845 6 2.8 1.1 14 2.8 1.38
Clus 37 201 470 20 12.7 4.5 5 2.3 0.61

prim1 Flat 832 901 2906 9 3.5 1.29 18 3.22 2.59
Clus 104 694 1674 32 16.0 5.08 9 2.4 0.89

ind2 Flat 12142 12949 47193 12 3.89 1.76 584 3.64 11.15
Clus 1517 11489 29785 65 19.6 8.28 99 2.5 2.6

Table 5.1: The effect of clustering on circuit statistics

Figure 5.2 shows the effect of clustering in reducing the complexity of a sim-

ple circuit with 10 modules and 15 nets. The figure was generated based on a

binary representation. The X-axis represents the modules belonging to one parti-

tion, whereas the Y-axis represents the modules in the second partition. The Z-axis

represents the number of cuts when certain modules are swapped from one parti-

tion to the other. It is clear from Figure 5.2 that the number of local minima is

reduced after clustering the original circuit. This process enables the partitioning

or placement local search heuristics to converge to a neighborhood solution in a

CHAPTER 5. CIRCUIT CLUSTERING 114

short period of time.

5.1.1 Previous Algorithms

Several clustering techniques have been reported in the literature. These approaches

are based on circuit partitioning [Chen92], random walk [Hage92],[Cong91] and

graph connectivity [Chen92]. In the ratio cut method [Chen92], the number of

clusters generated is not known until the heuristic terminates. Moreover, there

are generally few resulting clusters, and these clusters vary widely in size. The

time complexity of the ratio cut method is more than quadratic which makes it

impractical for today’s large circuits. In the random walk method [Hage92], the

length of the random sequence used to find cycles is O(n2), where n is the number

of cells in the input circuit. The total time complexity is O(n3). This long run time

makes it inappropriate to serve as a bottom-up preprocessing stage in a hierarchical

environment. In the (k, l) connectivity method [Garb90], the use of l ≥ 1 often leads

to unnatural results: cells which are farther away from each other (in terms of the

number of intervening nets) are more likely to be placed in the same cluster than

cells which are closer together. Also, the selection of k and l is not an easy task;

they are usually selected based on experiments.

5.2 A GRASP Clustering Heuristic

In this section, a clustering based heuristic that utilizes GRASP to generate clusters

of moderate sizes is introduced. For clustering to be used as a practical bottom-

up approach, there are two important concerns: (i) the computation time used

to generate the clusters must be negligible in comparison to the time needed to

CHAPTER 5. CIRCUIT CLUSTERING 115

SOLUTION SPACE OF CKT1 BEFORE CLUSTERING

’mod10_legal.dat’
 13.5
 12

 10.5
 9

 7.5

0 5 10 15 20 25 30 0
5

10
15

20
25

30

6
7
8
9

10
11
12
13
14
15

X-Direction

Y-Direction

Cuts

SOLUTION SPACE OF CKT1 AFTER CLUSTERING

’mod10_legal_cluster.dat’
 9.83
 8.67
 7.5

 6.33
 5.17

0 0.5 1 1.5 2 2.5 1
2

3
4

5
6

4
5
6
7
8
9

10
11

X-Direction

Y-Direction

Cuts

Figure 5.2: 3D view of a clustered network

CHAPTER 5. CIRCUIT CLUSTERING 116

GENERATE SUB CIRCUIT WITH

NEW MODULES AND NETS

INPUT ORIGINAL CIRCUIT

DETERMINE NUM OF CLUSTERS

RESIZE BLOCKS OF SUB CIRCUIT

USE GRASP TO GENERATE

CLUSTERS

POSTPROCESSING:

(b) Local Search

(a) Uniform Distribution

Figure 5.3: A GRASP based clustering heuristic

partition or place the condensed network and (ii) the sizes of the generated clusters

should vary over as small a range as possible.

The basic heuristic is shown in Figure 5.3. The heuristic does not generate

natural clusters (the number of clusters has to be predetermined) and the number

of clusters usually is set as a function of the number of partitions required. The

cluster size Csz plays an important role in the performance of the clustering heuris-

tic to be used. If Csz is too large, information connectivity could be hidden and

missed by the preprocessing stage of the clustering technique being used. On the

other hand, if the cluster size is small then the performance of subsequent stages

of clustering will deteriorate since the clustered circuit would be of the same com-

plexity of the original circuit. Figure 5.4 shows the quality of solutions obtained

CHAPTER 5. CIRCUIT CLUSTERING 117

Affect of Cluster Size on Clustering
Prim1 Circuit

CLUSTER SIZE

CUTS

144 144 153 159
173 179 175

190

137
122

108
119

135
145

170
180

67 69 62 63 65 68 65 70

0% 0.5% 1.0% 1.5% 2.0% 3.0% 5.0% 7.0% 10% 15%
0

50

100

150

200

2 BLKS 4 BLKS 6 BLKS

Affect of Cluster Size on Clustering
IND1 Circuit

CLUSTER SIZE

CUTS

208

157 166

221
202

253 242
276

131 129 117 124
150

201 202 207

71
40 39 48 50 61

37

102

0% 0.5% 1.0% 1.5% 2.0% 3.0% 5.0% 7.0% 10% 15%
0

50

100

150

200

250

300

2 BLKS 4 BLKS 6 BLKS

Figure 5.4: Performance of clustering based on cluster size

using different cluster sizes. The best quality of solutions obtained were based on

sizes between 1% and 5% of the total original circuit size. Initially the heuris-

tic would read in the circuit description, and resize the blocks to be used by the

GRASP heuristic. GRASP as has been described in Chapter 3 would utilize only

the construction phase to generate the required number of clusters. The parame-

ters used by GRASP are tuned according to the size of the circuit and number of

clusters required. A post processing stage follows the GRASP construction phase.

In this stage, modules are initially uniformly distributed among partitions, this is

followed by a simple dynamic hill climbing interchange pass that improves upon

the initial solution generated. The computational results are shown in Table 5.2

and Figure 5.5.

Table 5.2 compares the results based on Flat Mode1 with those based on 2-phase

clustering. The results indicate that this simple clustering technique is effective in

1This mode refers to the case where the original circuit is partitioned.

CHAPTER 5. CIRCUIT CLUSTERING 118

GRASP Clustering Using SANCHIS Interchange Heuristic
IND1 Circuit IND2 Circuit

Blk FLAT CLUS IMP FLAT CLUS IMP
C T C T C (T) C T C T C (T)

2 42 211 40 27 5% 87% 593 2661 477 209 19% 92%
4 259 526 122 29 52% 94% 2102 12729 1045 243 50% 98%
6 364 769 227 35 37% 95% 2430 25132 1330 280 45% 98%

Table 5.2: Results using Sanchis interchange with GRASP clustering

GRASP CLUSTERING PERFORMANCE
PRIM1 Circuit

Number of Partitions

CUTS TIME

2 BLOCKS 4 BLOCKS 6 BLOCKS
0

50

100

150

200

0
20
40
60
80
100
120
140

0
93

25
93

5
95

%IMP-CUT
%IMP-TIME

Sanchis GRASP-CLUS

GRASP CLUSTERING PERFORMANCE
PRIM2 Circuit

Number of Partitions

CUTS TIME

2 BLOCKS 4 BLOCKS 6 BLOCKS
0

200

400
600

800

1000

0

200

400

600

800

1,000

-1
92

32
95

30
95

%IMP-CUT
%IMP-TIME

Sanchis GRASP-CLUS

Figure 5.5: Performance of the GRASP clustering technique

CHAPTER 5. CIRCUIT CLUSTERING 119

reducing the computation time, and improving the solution quality. The improve-

ment in cut-sizes obtained for 4 and 6 blocks for most circuits are more profound

than those for 2 blocks. This is because the performance of Kernighan-Lin based

partitioning heuristics deteriorates as the number of blocks required increases (mul-

tiple partitions dramatically increase the solution space). Since clustering reduces

the solution space for the problem, this explains the outcome of the tabulated

results.

5.3 A Statistical Clustering Heuristic

In the previous section, a clustering technique based on GRASP was introduced. In

this section, a novel clustering heuristic that utilizes statistical information of the

circuit is presented. The overall clustering heuristic consists of 3 steps, as shown in

Figure 5.6. A preprocessing stage is initially performed to eliminate long nets. This

decreases the runtime and memory requirements considerably. The second step in

the heuristic calculates the statistical information and attributes of the circuit.

This is described in Section 5.3.1. Finally, a post processing step is performed to

further reduce the number of unclustered nodes. Details of the developed clustering

heuristic are described in the following subsections.

5.3.1 Concepts and Terminology

The statistical clustering technique is based on prioritized attributes, where modules

are merged according to an attribute list. The attributes include terminal count,

common net count, the number of nets localized, common net fan-out, and the

cluster size. The main local criteria used to form clusters are:

CHAPTER 5. CIRCUIT CLUSTERING 120

• Γ, the binding factor of the nets,

• Λ, nets incident on modules,

• ∆, modules incident on nets,

• Φ, the attractive force between modules.

5.3.1.1 Binding Factor of Nets

The binding factor (Γi or ΓAB) of a net, say Neti that connects modules (A, B)

measures the connectivity (attractiveness) between net i and other nets that are

incident on modules A, B. In other words it represents the sum of pins that are

located on modules A, B excluding the contribution of pins made by net Neti. The

formula used to calculate this factor is :

Γi = Bind(Neti) = Total P ins(A, B)− Pins(Neti) (5.1)

5.3.1.2 Relationship of Nets and Modules

Factors that relate nets to modules (Λ and ∆) measure the attractiveness of a

module to a net and vice versa. The factor Λ, indicates the number of nets incident

on a cell or the number of pins located on that cell. The higher the value of Λ for

a certain cell, the more critical the cell becomes. On the other hand, ∆ indicates

the number of cells incident on a certain net. Nets that have a high value of ∆

are usually power or clock nets. The importance of this factor will become evident

later on in Section 5.5.1.

CHAPTER 5. CIRCUIT CLUSTERING 121

INPUT ORIGINAL CIRCUIT

NET CONNECTIONS

REQUIRED CLUSTERS

POSTPROCESSING

PREPROCESSING

* Identify Critical Nets

INFORMATION OF THE CKT

GENERATE STATISTICAL

GENERATE SUB CIRCUIT WITH

NEW MODULES AND NETS

MODULE CONNECTIONS

* Remove Long Nets

* Uniform Sized Clusters
* Reduce unclustered Cells

Figure 5.6: A clustering heuristic based on attributes

5.3.1.3 Attraction Force Between Modules

The attractive force between two cells represents the closeness factor due to common

nets between the cells. The attractive force between two cells or clusters, A and B,

is evaluated by the formulae:

ΦA,B = attraction(A, B) = ΩA,B/Ψ (5.2)

CHAPTER 5. CIRCUIT CLUSTERING 122

where ΩA,B is the number of common nets between A and B, and Ψ is a function

that can have the following values:

Φ0
A,B = ΩA,B/Ψ0, Ψ0 = 1, ΩA,B = 1, (5.3)

Φ1
A,B = ΩA,B/Ψ1, Ψ1 = 1, (5.4)

Φ2
A,B = ΩA,B/Ψ2, Ψ2 = min(ΛA, ΛB) (5.5)

Φ3
A,B = ΩA,B/Ψ3, Ψ3 = ΓAB + 2 or

∑

ΛA + ΛB, (5.6)

Φ4
A,B = ΩA,B/Ψ4, Ψ4 = 1/ max(ΛA, ΛB) (5.7)

Formula 5.3 represents only the connectivity between two modules. On the other

hand Formula 5.4 represents the number of nets common between two modules.

The last three formulas represent the attraction between two modules based on the

common nets between them and the number of pins located on each module.

Figure 5.7 presents two sub-circuits that are extracted from the benchmarks

presented in Chapter 3. In Figure 5.7a, we show the effect of each value of Ψ in

combining Module A6 to the three modules A4, A5 and A7 respectively. Table 5.3

shows the preference of each function. Φ0
A,B indicates only that the four modules

are connected. Φ1
A,B shows that module A5 should be connected first to module A6.

Φ2
A,B and Φ3

A,B indicate that A5 should be connected first to module A6 followed by

module A7. Finally, Φ4
A,B indicates that module A4 should be connected to module

A6 before A7. In this example it is more beneficial to use Φ4
A,B over the other

attraction functions. Figure 5.7b shows an example with six modules connected

together. Here, we show the preference of combining modules in this sub-circuit

to module B14. The attraction functions Ψ0
A,B, Ψ1

A,B and Ψ2
A,B indicate only that

module B24 be connected to module B14 but does not show any preference in

CHAPTER 5. CIRCUIT CLUSTERING 123

B14 B20 B22 B23 B24A4 A5 A6 A7 B16

(a) Case 1 (b) Case 2

Figure 5.7: Attractive force between modules

Module Φ0
A,B Φ1

A,B Φ2
A,B Φ3

A,B Φ4
A,B

A4 1 1 0.25 0.11 5.0
A5 1 3 0.75 0.33 15.0
A7 1 1 0.50 0.17 4.0

Table 5.3: Case1: preference values depending on Ψ

combining other modules to B14. Ψ3
A,B prefers combining B20 to B14 even though

only one net connects the two modules. Finally, Φ4
A,B indicates that module B16

should be merged following module B24. Attraction functions based on different

values of Ψ are compared using three circuits. Table 5.5 summarizes the results

obtained. The characteristic feature of this scheme is this look-ahead, which ensures

that when we form a new cluster, it is the best possible with the seed and the

candidate at that time. As expected the attraction functions based on Ψ2, Ψ3 and

Ψ4 give the best results.

Module Φ0
A,B Φ1

A,B Φ2
A,B Φ3

A,B Φ4
A,B

B16 1 1 0.50 0.12 6.0
B20 1 1 0.50 0.25 2.0
B22 1 1 0.50 0.20 3.0
B23 1 1 0.50 0.20 3.0
B24 1 2 1.00 0.22 14.0

Table 5.4: Case2: preference values depending on Ψ

CHAPTER 5. CIRCUIT CLUSTERING 124

Circuit Φ0
A,B Φ1

A,B Φ2
A,B Φ3

A,B Φ4
A,B

Prim2 353 340 334 326 298
Ind2 709 660 658 634 572
Ind3 1133 1154 1008 944 985

Table 5.5: A comparison between attraction functions

5.3.2 Statistical Information and Attributes

During the clustering process, some statistical information is obtained from the

circuit under consideration. Some of the statistics that are gathered are: total

number of pins in the circuit, average number of pins, maximum fanout, minimum

fanout, maximum net binding value, the longest net, the different type of cells (those

having X nets incident on them), and the different type of nets (those having Y

modules incident on them). All the attributes that were discussed in Section 5.3.1

are generated as well.

5.3.3 Cluster Size Thresholds

The nodes and nets in a cluster must satisfy the area and size thresholds. The

size threshold of a cluster depends on the clustering criteria to be used. If the

criterion to be used requires natural clusters then the size of each cluster is not

known until the heuristic terminates. In this case, cluster sizes are not uniform

and may vary according to the attractiveness factor between different modules and

their corresponding seeds. On the other hand, if the forced clusters criterion is used

then the size of each cluster is predetermined according to the following:

Max Clusters = Total Cells/2

CHAPTER 5. CIRCUIT CLUSTERING 125

Min Clusters = 2× Total Blocks

The size threshold is a function of the total number of cells in the original cir-

cuit that no cluster can exceed. Possible number of clusters are: Max Clusters,

Min Clusters, Max Clusters/Min Clusters and other values set according to the

number of partitions required. Table 5.6 presents a comparison between clustering

based on natural sized clusters and forced clusters. The table clearly indicates that

forced sized clusters give better results on average by 40%.

Natural vs Predetermined Sizes
Circuit Natural Sizes Forced Sizes

Size I-Cut F-Cut Size I-Cut F-Cut

PRIM1 53 370 153 1% 222 124
PRIM2 115 1414 559 0.5% 786 297
IND1 103 857 176 0.5% 437 126
IND2 176 4119 1764 0.1% 3405 935

Table 5.6: Performance based on size threshold

5.3.4 Searching and Forming Clusters

During the clustering phase, the sizes of clusters to be formed are set (see Sec-

tion 5.3.3). The process starts by choosing a seed (free module). The free module

is chosen either randomly or deterministically. In the former case, any module that

is not marked yet as being locked to a cluster can be a candidate as an initial seed

or free module. In the latter case, new free modules or seeds are chosen such that

the corresponding value of Λ (nets incident on a cell) is maximum. Finally, modules

that have high connectivity (Φ values) are then merged to the current free module

and marked as being locked. This process continues until the cluster formed satis-

fies the size threshold. Table 5.7 shows results for 4 circuits using the two different

CHAPTER 5. CIRCUIT CLUSTERING 126

seed techniques. The clustering heuristic was run 5 times and the two techniques

are compared for obtaining the best, average, and standard deviation values over

the five runs. It is clear that the second technique based on MAX-Λ gives better

results than the RANDOM seed technique. Another method worth investigating

is based on sorting modules according to their Φ values (using the different five

measures mentioned previously) and choosing the seed from the top of the list.

Circuit RANDOM MAX-Λ
BEST x σ BEST x σ

Prim2 366 425 33 299 326 24
Ind1 137 153 10 92 131 23
Ind2 779 798 13 653 700 25
Ind3 1120 1264 81 893 1055 99

Table 5.7: Effect of seed on statistical clustering

5.3.5 Postprocessing

After clustering, one usually obtains a few big clusters, each containing for example

more than 3% of the total number of cells, and many small clusters or even single

cell clusters. To obtain a reasonable cell partitioning these small clusters have to

be joined to some of the big clusters. Therefore, a post-processing step is executed

on the clustered circuit for two reasons. The first, is to reduce the number of single,

unclustered cells. The second reason is to uniformly break down clusters that are

oversized. That is, as new clusters are formed, they are immediately considered

in evaluating whether other clusters should be combined. The heuristic terminates

when no more clusters can be combined without violating the constraint on the

size. This helps to balance the sizes of the clusters and reduce the number of cells

CHAPTER 5. CIRCUIT CLUSTERING 127

in the clustered circuit. In this step, a simple pass of local search is applied to

collapse cells into clusters. The number of passes required by the heuristic is thus

limited.

5.4 Partitioning Clustering Heuristics

The main disadvantage of using local search heuristics to solve the circuit partition-

ing problem in particular, is that, as the circuit size and number of blocks required

increase, the heuristic gets trapped easily in local minima. A common way to over-

come this problem is to use a clustering based technique prior to the execution

of the local search heuristic. Figure 5.8 shows the two stage hierarchical parti-

tioning methodology that combines the clustering technique with any traditional

or advanced search partitioning heuristic implementation. In the first stage, the

clustering technique described in Section 5.3 is used to condense the input network.

After forming clusters, the condensed network is partitioned using a simple dynamic

hill climbing search technique that utilizes GRASP for its initial solution. In the

second stage, a local search heuristic is used on the flattened network to optimize

local partitions of cells. The combined clustering and local search methodology can

be viewed as a combined bottom-up and top-down approach.

5.4.1 Clustered Single Processing Techniques

Tables 5.8-5.10 present the results obtained for partitioning a circuit into 2,4 and

6 blocks. The search techniques used are: Sanchis Iterative Improvement heuristic,

Genetic Algorithms and Tabu Search respectively. The first part of the tables

represents running the heuristic in the Flat Mode, whereas the second part of the

CHAPTER 5. CIRCUIT CLUSTERING 128

Input the circuit Netlist

Gather Statistic Information

Form Clusters of the circuit

GRASP : Initial Solution
SHDC: Local Search

Perform Final Local Search
On Flattened Circuit

Flatten Clusters to
Original Circuit

Figure 5.8: A combined clustering-partitioning heuristic

CHAPTER 5. CIRCUIT CLUSTERING 129

tables represents the 2-phase heuristic based on clustering. It is clear from the tables

that clustering not only reduces the computation time to solve the problem, but also

improves the quality of solutions drastically compared to solving the original circuit

in the flat mode (unclustered network). Table 5.8 compares Sanchis Interchange

results based on 50 different initial random runs to a single run based on the

clustering-partitioning heuristic. The combined clustering-partitioning technique

improves the quality of solutions on average by 40%. The computation time is

further reduced by 80%. Table 5.9 indicates clearly the impact of clustering on

the performance of the Genetic Algorithm. It is interesting to note that even

though the quality of solutions have improved for the two mentioned circuits, the

computation time of Industry2 circuit remained the same. The reason is due to the

repair solution heuristic involved in this case (see Section 3.4.1.3). Finally, results

obtained for the Tabu Search Heuristic (as shown in Table 5.10) indicate that even

an advanced search heuristic such as Tabu Search (that avoids getting trapped in

local minima) gains from clustering by improving the solution quality, and reducing

the computation time. Figure 5.6 compares results obtained by the clustering

technique using different heuristic search methods. It is clear that clustering has a

more profound affect on the Sanchis Iterative improvement heuristic and Genetic

Algorithm than on Tabu Search. The reason, as one would anticipate, is that Tabu

Search has the capability of exploring the solution space more effectively than the

above mentioned heuristics.

CHAPTER 5. CIRCUIT CLUSTERING 130

Clustering Using SANCHIS Interchange Heuristic
PRIM2 Circuit IND2 Circuit

Blk FLAT CLUS IMP FLAT CLUS IMP
C T C T C (T) C T C T C (T)

2 226 433 176 34 22% 92% 593 2661 337 446 43% 83%
4 627 787 305 24 51% 97% 2102 12729 826 264 60% 98%
6 773 1382 462 26 40% 98% 2430 25132 1041 303 57% 99%

Table 5.8: The Sanchis interchange heuristic and statistical clustering

Clustering Using Genetic Algorithms
PRIM2 Circuit IND2 Circuit

Blk FLAT CLUS IMP FLAT CLUS IMP
C T C T C (T) C T C T C (T)

2 190 36.3 183 28.5 4% 21% 572 166 360 266 37% -
4 529 54.0 371 40.6 29% 26% 2363 274 1139 464 51% -
6 671 71.1 547 63.2 18% 11% 3342 368 1490 984 55% -

Table 5.9: Genetic Search based on statistical clustering

Clustering Using Tabu Search
PRIM2 Circuit IND2 Circuit

Blk FLAT CLUS IMP FLAT CLUS IMP
C T C T C (T) C T C T C (T)

2 181 284 166 139 8% 51% 323 2250 333 1080 -3% 52%
4 357 299 309 206 13% 31% 991 3922 628 1251 36% 68%
6 562 435 459 165 23% 62% 1375 5373 1047 560 24% 89%

Table 5.10: Tabu Search and statistical clustering

CHAPTER 5. CIRCUIT CLUSTERING 131

STATISTICAL CLUSTERING
PRIM1 Circuit

SEARCH METHODS

CUTS IMPROVEMENT

16%

34%

8%

GA SAN TS
0

50

100

150

200

0%

10%

20%

30%

40%

177
148

155
101

102
93

FLAT
CLUS

FLAT CLUS

STATISTICAL CLUSTERING
IND1 Circuit

Number of Partitions

CUTS FLAT CUTS CLUSTER

2 BLOCKS 4 BLOCKS 6 BLOCKS
0

100
200
300
400
500

0
100
200
300
400
500

79
45
54

148
142
86

260
190
147

GA-CLUS
SAN-CLUS
TS-CLUS

GA GA-CLUS SAN SAN-CLUS TS TS-CLUS

Figure 5.9: Performance of the statistical clustering technique

5.4.2 A Clustered Hybrid Technique

In this section, results based on the GA-TS hybrid presented in Chapter 4 are dis-

cussed. Recall from Chapter 4 that the GA-TS hybrid approach produced better

results compared to other hybrid approaches used. The Genetic Algorithm here

uses a population of clustered chromosomes. The main advantage of using this

technique is twofold. First, the memory requirements is reduced dramatically since

the population of solutions used by the GA heuristic deals with a clustered net-

work instead of the original network. The second advantage of using clustering, as

mentioned before, is that the solution space is reduced, thus the GA is capable of

exploring the solution space more effectively. Table 5.11 and Figure 5.10 present a

comparison between GA-TS hybrid and CGA-TS which uses clustering for initial

population of solutions. Results obtained indicate that the clustered based tech-

nique produces solutions that are at least 20% better than those obtained based

on the original circuit representation for medium and large circuits. The cluster-

ing based heuristic has less impact on partitioning small circuits since the original

CHAPTER 5. CIRCUIT CLUSTERING 132

representation suffices for the GA heuristic to explore the solution space effectively.

In the next section, assessment of the results obtained by the combined clustering-

partitioning approach with those obtained using an exact method based on a branch

and bound technique is introduced.

Circuit Blks GA-TS CGA-TS %IMP

Cuts Time Cuts Time
CHIP1 2 Blks 20 22.9 20 17.2 -

4 Blks 46 36.1 44 20.2 2%
6 Blks 56 45.1 55 25.8 1%

PRIM2 2 Blks 161 632 156 360 3%
4 Blks 406 495 276 587 32%
6 Blks 501 563 430 540 15%

IND2 2 Blks 273 3422 206 1547 24%
4 Blks 943 5087 477 2030 49%
6 Blks 1322 6600 1006 2896 24%

IND3 2 Blks 300 2750 289 3900 4%
4 Blks 1405 10279 882 7080 37%
6 Blks 1900 8848 1532 8160 20%

Table 5.11: Performance of GA-TS hybrid with clustering

5.5 Solution Optimality

Here, we undertake to study the ability of the developed clustering-partitioning

heuristics in finding optimal solutions to the benchmarks presented in Chapter 3.

Each problem is formulated as a linear integer program (MIP) as presented in

Section 2.1.1.3 (Equation 2.4). Benchmark problems are optimally solved using

CPLEX Version 3.0 [Inc93], and the results are shown in Tables 5.12–5.13. It is

clear from Tables 5.12–5.13 that the strategy of combining clustering with hybrid

CHAPTER 5. CIRCUIT CLUSTERING 133

GA-TS vs CGA-TS
PRIM2 CIRCUIT

PARTITIONS

CUTS TIME

2 BLOCK 4 BLOCK 6 BLOCK
0

200

400

600

800

0
100
200
300
400
500
600
700

3 32 15%IMP-CUT

GA-TS CGA-TS

GA-TS vs CGA-TS
IND3 CIRCUIT

PARTITIONS

CUTS TIME (Thousands)

2 BLOCK 4 BLOCK 6 BLOCK
0

500

1000

1500

2000

0
2
4
6
8
10
12

4 37 20%IMP-CUT

GA-TS CGA-TS

Figure 5.10: Performance of the clustered GA-TS heuristic

search techniques achieves near optimal solutions and are within 4% of optimality in

the worst case. Tables 5.12–5.13 also present a lower bound obtained by solving the

LP relaxation of the problem. The column in these tables denoted by LP-BOUND

reads the solution of the LP relaxation as compared to the total nets of the circuit.

The difference indicates the lower bound of the partitioning problem.

5.5.1 Improving CPLEX MIP Performance

One frustrating aspect of the branch-and-bound technique for solving MIP problems

is that the solution process can continue long after the best solution has been found.

In these situations, the branch-and-bound tree is being exhaustively searched in an

effort to guarantee that the current integer feasible solution is indeed optimal.

The branch-and-bound tree may be as large as 2n nodes, where n is the number

of binary variables. A problem containing only 30 binary variables could produce a

CHAPTER 5. CIRCUIT CLUSTERING 134

Circuit Heuristic CPLEX Optimality
Method Cuts Time Cuts Time %OPT LP-BOUND

Pcb1 CGA-TS 5 1.1 5 1.23 100% 4
Pcb2 CGA-TS 7 4.0 7 4.87 100% 2
Chip1 CGA-TS 20 106 20 2782 100% 5
Chip2 CGA-TS 14 2.7 14 728 100% 4
Chip3 CGA-TS 7 2.2 7 153 100% 6
Chip4 CGA-TS 7 2.4 7 104 100% 4

Table 5.12: Optimal solutions for 2-way partitioning

Circuit Heuristic CPLEX Optimality
Method Cuts Time Cuts Time %OPT LP-BOUND

Pcb1 CGA-TS 10 0.9 10 329 100% 4
Pcb2 CGA-TS 11 6.2 11 839 100% 6
Chip1 CGA-TS 44 120 44 30.3h 100% 3
Chip2 CGA-TS 25 104 25 153.3h 100% 4
Chip3 CGA-TS 28 207 27 78.1h 97% 13
Chip4 CGA-TS 17 100 17 38.5h 100% 8

Table 5.13: Optimal solutions for 4-way partitioning

CHAPTER 5. CIRCUIT CLUSTERING 135

tree having over one billion nodes. If no other stopping criteria have been set, the

process might continue for a long time, until the search is complete or the computer

memory is exhausted. Therefore, many issues are to be investigated to improve the

performance of the MIP solver.

The first issue is related to different parameter settings of the MIP solver. It

is important to enable any mixed integer programming solver like CPLEX to at-

tempt to reduce the size of the integer program by using a preprocessing phase.

This strengthens the initial linear programming relaxation and reduces the overall

size of the mixed integer program. The path CPLEX takes through the branch-

and-bound tree is determined by a number of user inputs. For example, at each

node, CPLEX can either delve deeper into the tree or “backtrack”, the setting

of the BACKTRACK parameter impacts this decision. Once CPLEX decides to

backtrack, there are typically a large number of available, unexplored nodes from

which to choose; the NODE-SELECT and VAR-SELECT parameter setting influ-

ences this selection. By looking at the solution to the LP relaxation, most variables

take on the same value. This combined with the similarity of the variables makes

it difficult for CPLEX to differentiate one variable from another in the branching

process. The main difference between variables in the formulated problems is that

different binaries enable different numbers of continuous variables to take on values.

By setting the node select parameter to best estimate strategy instead of the depth-

first search, the resulting computations implicitly take this difference into account.

The variable select parameter is used to set the rule for selecting the branching

variable at the node which has been selected for branching. Setting the variable

select parameter to pseudo-reduced costs causes the variable selection to be based

on pseudo-costs which are derived from pseudo-shadow prices.

CHAPTER 5. CIRCUIT CLUSTERING 136

Figure 5.11 summarizes the methodology used to improve the performance of

the CPLEX MIP solver for the circuit partitioning problem. We call this method

Stat-Heur for the CPLEX MIP solver. As seen in the figure, we make use of

our heuristic based techniques in providing a lower bound that is used to cut off

any nodes that have an objective value below the value supplied by the heuristic.

We also utilize the solutions obtained by our heuristics to fix a few modules in

the original formulation. Given that we are maximizing the sum of continuous

variables, it seems that setting a binary variable to 1 will have the most favorable

impact if that variable can enable a larger number of continuous variables to take

on a value of 1. Another important issue worth investigating is the symmetry of the

Generate

Statistical Information

Obtain Initial Solution

Using Heuristic

Reformulate MIP

Set More Integer Vars

Create Priority File

For New Integer Vars

Create Priority File

Create SOS File

Find Estimate of

Lower Cutoff

Reduce Symmetry

Fix Modules

Generate MIP

Solve Problem

Read Circuit

Netlist

Figure 5.11: Stat-Heur heuristic and CPLEX MIP

CHAPTER 5. CIRCUIT CLUSTERING 137

MIP problem. With the current formulation, the problem is extremely symmetric.

There is very little to distinguish one variable from another, both in terms of the

objective function and the constraints. This feature can slow the MIP performance,

because when we branch down on a variable, we can easily shift it’s activity level

to another variable. Reducing the symmetry of the MIP, reduces the number of

equivalent solutions, which will reduce the amount of work needed in the branch

and bound process. One way to reduce the symmetry is to formulate with patterns

instead of assignments. Another means of accomplishing this is through priority

orders. Priority orders provide a very powerful mechanism for adding user-supplied,

problem-specific direction to the branching process. The additional information in

the form of a priority order file can be used to alleviate the effect of the symmetry if

reformulation is not possible. Statistical information of the circuits have been used

extensively to provide such information. The factor Λ that determines the relation

between modules and nets is used to give priority to the modules (x variables)

that have a high percentage of nets incident on them over variables that have less

incident nets.

Since priority orders can supply information on integer variables only, and since

the y variables are continuous (see Section 2.1.1.3), the priority orders were re-

stricted on the x variables. However, because of the nature of our circuit par-

titioning problems, we managed to declare the y variables to be integer without

changing the meaning of our model. Although one’s intuition would say it’s a mis-

take to declare more integer variables, this is not always the case, especially if we

could provide some priority order information regarding the y variables. For the

y variables, ∆, the number of modules incident on the nets was used to provide

such information. The higher the ∆ factor the higher the priority given to the y

CHAPTER 5. CIRCUIT CLUSTERING 138

variable.

Finally, a highly effective method to improve performance is to take advantage

of the presence of Special Ordered Sets (SOSs). Special branching strategies are

available to take advantage of SOSs. These strategies depend upon the SOS prob-

lem definition to include ordering (or weighting) information. If there is no order or

weight assigned to individual SOS members, using SOS branching strategies may

not improve–and can even degrade–performance. It is important to note in Fig-

ure 5.11 that when SOSs are used after specifying a priority order file on individual

variables, CPLEX ignores the order on individual variables because SOS sets in-

volve a branching procedure where the SOS sets are branched on, not individual

variables. Therefore, SOSs are not specified when using priority orders.

Figure 5.12 indicates clearly the impact of using our heuristic based approaches

in improving the performance of the MIP solver. The figure shows that for the

PCB2 circuit up to 96% reduction in computation time was achieved using the

Stat-Heur technique. Table 5.14 presents the amount of reduction in computation

time for different circuits based on 2 and 4 partitions.

Improving CPLEX MIP Performance
Circuit 2 BLKS (Secs) 4 BLKS (Hrs)

CPLEX H-CPLEX SPEED-UP CPLEX H-CPLEX SPEED-UP

CHIP1 2782 1056 62% 92 6.8 92%
CHIP2 728 329 54% 89 4.4 95%
CHIP3 153 67 56% 78 2.26 97%
CHIP4 104 61 41% 38.5 1.18 96%

Table 5.14: Heur-Stat heuristic used with CPLEX MIP solver

CHAPTER 5. CIRCUIT CLUSTERING 139

IMPROVING CPLEX MIP PERFORMANCE
PCB2 CIRCUIT

TIME % IMPROVEMENT

25

51
58

81

METHODS
0

2

4

6

8

10

12

0

20

40

60

80

100

CPLEX FIX PRIOR REFORM ALL

%FIX %PRIOR %REFORM %ALL

IMPROVING CPLEX MIP PERFORMANCE
PCB2 CIRCUIT

TIME % IMPROVEMENT

75
89 88

96

METHODS
0

2

4

6

8

10

12

0

20

40

60

80

100

CPLEX HEUR PRIOR REFORM ALL

%HEUR %PRIOR %REFORM %ALL

Figure 5.12: Effect of Stat-Heur in improving the CPLEX MIP performance

5.6 Summary

In this chapter, two effective clustering heuristics based on different techniques were

introduced. The GRASP based clustering heuristic is efficient and simple to imple-

ment. The second scheme based on statistical information of the circuit improves

upon the first clustering heuristic in quality of solutions. Both techniques are based

on a two stage local search process. Clusters of cells that are highly connected are

formed, and then an efficient assignment to their initial location within different

blocks is performed. A simple dynamic hill climbing heuristic (SDHC) is then used

to improve the solution at the cluster level. Finally, a second local search stage is

used to refine the solution at the cell level. This latter process confines the cells

to local moves, since they are already in their proper position. Results obtained in

the previous sections indicate that the simple clustering heuristics not only reduce

the complexity of the problem but also speed up the execution of the partitioning

process in a fraction of the time.

CHAPTER 5. CIRCUIT CLUSTERING 140

The final goal of this chapter was to assess the quality of solutions obtained by

the developed combined advanced, hybrid, clustering techniques. Solutions were

compared with those obtained by the CPLEX MIP mixed integer programming

package. The results indicate clearly that we are truly heading towards optimal

solutions for the circuit layout problem. In fact, the developed heuristics were

successful in improving the performance of the CPLEX MIP solver by providing

information that was necessary to reduce the computation time on average by 70%.

In view of the increasing complexity of VLSI circuits of the future, the require-

ments on VLSI CAD tools will continuously increase. Parallel processing for CAD

applications is becoming gradually recognized as a popular vehicle to support the

increasing computing requirements of future CAD tools. The next chapter discusses

techniques for distributing the partitioning heuristics developed in this dissertation

as a means to reduce the computation time involved.

Chapter 6

Distributed Search Techniques

Parallel and distributed computing systems offer the promise of a quantum leap

in the computing power that can be brought to bear on many important prob-

lems. The potential for distributed processing exists whenever there are several

computers interconnected in some fashion so that a program or procedure running

on one machine can transfer control to a procedure running on another. In such

an environment we wish to assign optimally the modules of a program to specific

processors. The main objective in optimizing is twofold, minimizing the running

time of the program and improving the efficiency of the algorithm. Our main task

in this work is to develop an environment that allows easy parallelization of the

existing sequential algorithms, in which the potential parallelism fits easily into the

sequential algorithm.

This chapter discusses techniques to parallelize the circuit partitioning heuris-

tics that were described in the previous chapters. The next section discusses the

motivation behind the parallel implementation. Section 6.2 describes the Network

Multiprocessing Environment [?]. The general approach to parallel partitioning is

141

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 142

described in Section 6.3.

6.1 Motivation

Parallelism may be applied in several ways to increase the processing power avail-

able to the execution of a program. These approaches can be broadly categorized

into two groups, namely, closely coupled or synchronized processors, and loosely

coupled or distributed systems. Closely coupled systems have traditionally been

more popular since they can be used to speed existing algorithms and programs.

A typical CAD environment consists of a number of workstations as seen in Fig-

ure 6.1 connected together by a high speed network that allows a team of designers

to access the design database. Most individual CAD problems are typically solved

on a single workstation. The loosely coupled parallel computing environment pro-

vided by the network is not used effectively by CAD algorithms. The workstations

typically can support several user tasks, one of which can run in the foreground

while the others run in the background. When the workstation is used for a text

editing or graphics editing program, it may use its CPU only a fraction of the time

and spend most of its cycles waiting for user input. The CAD programs described

in this dissertation can make use of the idle cycles on all the networked machines

to speed up the solution process.

6.1.1 Multiprocessing Issues

The most promising algorithms used for circuit partitioning and placement are

based on iterative improvement methods. Work by [?] and [?] showed that parallel

implementation of these pairwise interchange methods can be accelerated in two

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 143

ways, by performing several moves in parallel and by performing the subtasks for

each move in parallel. The amount of parallelism within a move is limited, and good

speedup can be achieved only by performing several moves in parallel. However, if

moves are performed in parallel, the system can get into an inconsistent state unless

the processors are synchronized after every set of noninteracting moves is calculated

in parallel. There is a tradeoff between the communication costs and the need

to broadcast information after each accepted move. Typically, several moves are

accepted before a broadcast, which leads to some errors. Since communication costs

are high even on a tightly coupled system, it is not desirable to speed up interchange

methods on a distributed system (by performing several moves in parallel) where

communication time is in the order of several milliseconds.

6.1.2 Algorithm Development Strategy

Having taken a brief look at different parallel processing issues, it is time look at

how parallel processing can be applied to speed up VLSI CAD in general and circuit

layout in particular. Developers of applications for parallel processing must choose

between implementing their ideas in special-purpose or general-purpose hardware.

The primary trade-off is performance gain versus flexibility in implementing appli-

cations. Special hardware (such as a network of transputers) usually yields higher

performance for specific applications whereas general-purpose (i.e, network of work-

stations) can be programmed for a variety of applications. Both approaches have

been pursued in the past by researchers in the VLSI design automation community.

A major limitation with almost all previous work is that the parallel algorithms have

been targeted to run on specific machines like an Intel iPSCTM hypercube-based

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 144

message passing distributed memory multicomputer or an Encore MultimaxTM

shared memory multiprocessor. Such work, although interesting, is not usable by

the rest of the VLSI CAD community since the algorithms are not portable to other

machines.

The most important questions that need to be addressed in the development of

parallel algorithms are therefore: (i) How can parallel algorithms be designed such

that they are truly portable across parallel machines? (ii) How can one exploit

good sequential algorithms in the design of parallel algorithms? and (iii) How can

parallel algorithms keep pace with future developments in sequential algorithms?

These are the main objectives of this work.

Our primary strategy is to utilize the network of workstations (portability) in

such a way to minimize the interaction between processors, and at the same time

utilize the same sequential powerful heuristics developed with minimum modifica-

tions (preserve optimality) on the distributed platform. An attempt will first be

made to test (synchronization, communication) the distributed environment. This

is carried out by implementing a simple distributed scheme where each processor

(workstation) starts from a different initial point in the solution space, iteratively

improve it, and ultimately report the final solution to the master processor. The

second goal is to improve the performance of the circuit partitioning methodology

based on Genetic Algorithms which lends itself naturally to distributed processing,

by dividing the initial population of solutions among n processors, and allowing

these subpopulations to migrate between processors for further mating. This will

attempt to improve solution quality and speed up the convergence rate of the al-

gorithm. Our third goal involves extending the Tabu Search-Genetic Algorithm

Hybrid to the distributed platform, by distributing the diversification and inten-

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 145

sification phases among different processors. This will attempt to cover a larger

portion of the solution space, thus improving the quality of solutions. Finally, we

hope to utilize the distributed system to increase the neighborhood search for the

placement problem, which is considered to be one of the main limitations of solving

this problem.

6.2 A Network Multiprocessor Environment

This section describes an environment designed and built to do experiments in dis-

tributed processing, using standard equipment and utilizing the services of a con-

temporary operating system to reduce hardware and software costs and to simplify

experiment management. The Network Multiprocessing Environment is a package

intended to make distributed, concurrent applications in BSD UNIX socket net-

work easier to write [?]. It sets up a multiprocessor like structure using processes

on a UNIX network. The structure of the interprocess communication paths is an

arbitrarily interconnected graph. For distributed applications of the client/server

model, the Sun Remote Procedure Call (RPC) package provides a good interface

to the socket level of BSD UNIX. RPC, however is not well suited to multipro-

cessor simulations or applications of a more concurrent nature. NMP provides

procedure calls that allow easy parallelization of existing sequential algorithms.

The NMP environment is implemented using a set of standard NMP routines that

allow the creation of virtual multiprocessors with arbitrary interconnection struc-

tures as seen in Figure 6.2. These standard routines are in turn built onto the

UNIX networking primitives. Those primitives allow processes to communicate

with a variety of protocols and connection strategies. The current implementa-

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 146

ETHERNET

SUN SUN SUN HP

VAXSUNSUN

cheetah.vlsi panther puma

sun14.vlsi sun19.vlsi

. . .

Figure 6.1: Computing facilities

tion of the support routines uses reliable two-way communication channels (called

stream-sockets). Stream sockets are similar to UNIX pipes [?], except that the

communicating processes need not reside on the same physical machine.

6.2.1 Main NMP Routines

The execution environment consists of a collection of virtual processors (UNIX pro-

cesses) whose interconnections (UNIX stream-socket connections over an Ethernet)

are created on initialization. In the NMP applications, nodes are referred to by

their node ID (an integer). The node ID is simply the cardinal number of the node

description line in the configuration file, starting with the root as node 0. The four

basic NMP support routines are: NodeInit, SendNode, RecvNode and Node-

Close. These four routines form the core of the system and programs must use

(some form) of these routines. To get started a node (process) initialization func-

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 147

Connection

Arbitrary NMP
Tree Hyper-Cube

Tree
Support Support

BASIC

Support Routines

NMP

Hyper-Cube

Figure 6.2: NMP interconnection structure

tion must be invoked, as follows: neighbors = NodeInit(Type, ConfigFile), NodeInit

initializes the node by reading a ConfigFile and creates other nodes (processes) as

specified in that file. There are two types of node initializations, the first Type=0

is used in the node that interacts with the user. All other nodes are of Type=1

and receive the interconnection information from their creator. The configuration

file consists of two parts. The first part is an ordered set of descriptor lines, one

per node, naming the host process, execution file name and so on, the second part

is a connection matrix, showing how the ordered nodes are connected.

All messages passed through the NMP are sent using: SendNode(NodeID, Mes-

sage, Length). The data in memory at the location pointed to by Message are sent

to the node NodeId. The number of bytes to send is given by the Length parame-

ter. SendNode returns the number of bytes successfully sent. To receive information

sent from SendNode, the following is used: RecvNode(NodeId, Message, Length).

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 148

RecvNode will only return with a partial message if the sender terminated before

completing transmission, otherwise, it will always block until the entire message is

read. If the application needs to check for incoming messages without using the

blocking RecvNode routine, or if it is waiting for messages from more than one

sender, the polling routines may be used. To poll all the neighboring nodes, use:

PollAll(Nodes, Block). If any data are waiting to be read from nodes, the sender

node IDs are returned in the array Nodes (which should be large enough to con-

tain all nodes which may have incoming messages). To check an explicit node for

pending messages, use: PollNode(NodeId, Block). Other useful routines are found

in Appendix B.

6.3 Parallel Partitioning

In most sections comparison are made between a sequential implementation and

a distributed implementation that is run using 10 workstations (unless otherwise

indicated).

6.3.1 A Simple Distributed Partitioning Heuristic

Iterative improvement techniques that make local changes to an initial partition

are still the most successful algorithms used in practice. The advantage of these

heuristics is that they are quite robust. But in general, node interchange are greedy

or local in nature and get easily trapped in local minima. The performance of these

heuristics depend on the initial solution used. As the number of initial solutions in-

crease, this allows the heuristic to diversify the search effectively. In this subsection,

a distributed implementation of the iterative improvement technique is presented.

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 149

Root (Master):
Read configuration file (Initial Structure)
Setup connection with all processors.
Confirm connections with all processors.
Broadcast arguments to all processors.
Poll All processors for final result.
Determine the best solution.
Report solution quality and timing information

Servers (Slaves):
Confirm connection to root
Receive arguments for execution
Read the circuit and set data structures
Obtain different initial solution for partitioning
Perform interchange algorithm
Send results to Root
Close Node

Figure 6.3: A distributed partitioning heuristic

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 150

Figure 6.3 shows the overall algorithm used to implement the simple distributed

partitioning scheme. Figure 6.4 shows the execution mechanism using the sequential

algorithm versus the parallel implementation. It is important to notice that one

should not expect a linear speedup using the distributed network based on the above

mentioned scheme. The main reason is that some runs take more time for execution

than others. Therefore the distributed version best time depends on the longest

run and the communication of solutions among processors (Figure 6.4). Initially

the Master processor sets up the connection to all processors that are involved

in the configuration file. The slaves in turn would confirm the connections. The

master would then broadcast the necessary arguments that are needed to execute

the program. Some of these arguments are: the program name, the circuit name,

the number of blocks, and other important parameters that are used by the main

program. Once these arguments are received the Slaves would then read the input

circuit, obtain an initial solution for the circuit partitioning and perform local

optimization based on the Sanchis multi-way partitioning scheme. The Master in

turn would poll all processors for the final result and report the best solution and

timing information.

Table 6.1 and Figure 6.5 present results using the distributed Sanchis heuristic.

Results indicate that on average a speedup of 7 can be obtained using the above

mentioned heuristic.

6.3.2 A Distributed Genetic Search Heuristic

There are many simple avenues to parallelize a sequential Genetic Algorithm (as-

suming a global shared memory) [Coho91] e.g., selecting and crossing over pairs

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 151

10sec

30sec

85 SEC

RUN1 RUN2 RUN3 RUN4 RUN5

Computation Communication

20sec

10sec

SEQUENTIAL

PARALLEL

15sec

10sec

30sec

20sec 30sec 15sec 10sec

Figure 6.4: Sequential vs parallel computation

Distributed Sanchis Interchange Heuristic
Prim1 Circuit Bio Circuit

Blks SEQ DIS Xs SEQ DIS Xs
Cuts T Cuts T Cuts T Cuts T

2 75 5.8 75 1.1 5 143 75 143 10.7 7
4 155 7.4 155 1.2 6 724 200 724 27.3 7
6 181 9.2 181 1.1 8 821 350 821 60.1 6

Table 6.1: Sanchis interchange heuristic

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 152

Sequential vs Distributed Processing
2-way Partitioning

CIRCUITS

TIME Speedup

CHIP1 PRIM2 IND2
0.1

1

10

100

1000

0
1
2
3
4
5
6
7
8

S-SAN D-SAN

Sequential vs Distributed Processing
6-way Partitioning

CIRCUITS

TIME Speedup

CHIP1 PRIM2 IND2
0.1

1

10

100

1000

10000

0

2

4

6

8

10

S-SAN D-SAN

Figure 6.5: The performance of Sanchis distributed heuristic

of solutions in parallel, and mutating solutions in parallel. However, such avenue

results in only a simple hardware accelerator, and will not be suitable for the local

memory, distributed model of computation. Therefore, the attention is focused on

distributing the population of solutions among the processors and allowing the mi-

gration of these subpopulations for mating and producing excellent offsprings. This

method provides a suitable paradigm to map Genetic Algorithms onto a distributed

system. The Genetic Algorithm code used by each processor is shown in Figure 6.6.

Table 6.2 shows the results of the distributed Genetic Algorithm. The table clearly

shows that the distributed Genetic heuristic achieves good speedup in execution

time. The table also shows that there is a difference between the sequential and

distributed version in solution quality. In most cases the heuristic achieves speedup

with the same or better quality of solutions. Even though the population size is

distributed among processors, the infeasible solutions of these subpopulations are

repaired using an efficient repair heuristic, thus optimized to have a better affect.

Since the subpopulations used are small compared to the population used for the se-

quential heuristic, we can afford to use an efficient repair heuristic. Another reason

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 153

for the quality of solutions is due to the diversification of initial solutions generated

on different processors. It is worth noting that the parallel implementation for the

Genetic Algorithm gives better results than the sequential heuristic used.

Parallel Genetic Algorithm:
Read Circuit
For E iterations do
For Each Processor i do
Run GA for G Generations

End For
For Each Processor i do
Send a set of solutions to Master

End For
End For

Genetic Algorithm within each Processor:
For G Iterations do
While offsprings created ≤ X
Select two solutions
Crossover to obtain offsprings

EndWhile
add offsprings to subpopulation
Calculate Fitness
Select Population of n elements

End For

Figure 6.6: A distributed Genetic Algorithm

6.3.3 A Distributed Genetic-Tabu Search Heuristic

Chapter 4 introduced a Tabu Search-Genetic Algorithm Hybrid based on the inter-

communicating hybrid model. In this model, the independent processing modules

in the form of Tabu Search, GRASP, Genetic Algorithms and simple local search

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 154

Distributed Genetic Search
Prim1 Circuit Bio Circuit

Blks SEQ DIS Xs SEQ DIS Xs
C T C T C T C T

2 76 185 75 22 8 282 1982 284 237 8
4 151 268 155 34 7.7 1164 3053 1146 352 8.6
6 162 356 172 47 7.5 1549 4065 1158 478 8.5

Table 6.2: Sequential and distributed GA

Sequential vs Distributed Processing
2-way Partitioning

CIRCUITS

TIME Speedup

IND1 PRIM2 BIO
1

10

100

1000

10000

0

2

4

6

8

10

S-GA D-GA

Sequential vs Distributed Processing)
4-way Partitioning

CIRCUITS

TIME Speedup

IND1 PRIM2 BIO
10

100

1000

10000

0
2
4
6
8
10

716
101

1023
165

3053
352

S-GA
D-GA

S-GA D-GA

Figure 6.7: The performance of a distributed GA heuristic

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 155

exchanged information and performed separate functions to generate near optimal

solutions. The main task of the hybrid algorithm was to generate good initial start-

ing points, locally fine-tune the search and finally diversify and intensify the search

in the solution space. The distributed Tabu Search Genetic Algorithm (GA-TS)

code used is shown in Figure 6.8. Table 6.3 presents the results obtained for the

distributed GA-TS hybrid. Even though the speedups obtained are not linear (as

expected), we still benefit from using the distributed NMP approach, since the

execution time is faster by at least a factor of three.

Master Processor:
Receive Solutions from Servers
Distribute Solutions for Diversification
Distribute Solutions for Intensification

Report Best overall Solution
Servers (Slaves):

G=Generation Size; PS=Population Size
P=Total Processors; Pi = Processor i
For Each Processor Pi (SLAVE):
Read Circuit
Initialize PS/P population of solutions
For G/P Generations
Crossover;Mutate;Select;.
Produce New Solutions.

End For
Initialize Parameter of TS
Improve Initial Solutions using TS
Report Solutions Back to Master

End For
Invoke Diversification or Intensification Phase.
Report solution to Master.

Figure 6.8: A distributed GA-TS heuristic

CHAPTER 6. DISTRIBUTED SEARCH TECHNIQUES 156

Distributed GA-TS Heuristic
Prim2 Circuit Ind2 Circuit

Blks SEQ DIS Xs SEQ DIS Xs
C T C T C T C T

2 161 632 161 211 3 273 3422 271 1721 2
4 376 495 366 126 4 943 5087 946 1681 3
6 501 563 501 177 3 1322 6600 1322 2221 3

Table 6.3: GA-TS heuristic

6.4 Summary

In this chapter, we introduced a network multiprocessing environment that was

suitable to parallelize the circuit partitioning heuristics used in this dissertation.

The main goals of speeding up the execution time and improving the efficiency of

the existing heuristics was established by careful design of the parallel heuristics.

Results obtained in Section 6.3 indicate that this environment is effective to par-

allelize the heuristics and consequently to speedup the execution times. The main

importance of this work lies in the portability of these heuristics to many sites for

experimentation. Another goal that has been achieved is increasing the processing

power available to the execution of most heuristics developed thus far.

The main emphasis of this chapter and the previous chapters is on presenting

methods for solving the circuit partitioning problems. The different advanced search

techniques and hybrids developed so far, have used the circuit partitioning as a

paradigm for the circuit layout. In Chapter 7, some of the developed heuristics will

be used effectively to solve the circuit placement problem, which is more complex

than circuit partitioning.

Chapter 7

Circuit Placement

As the module count on a chip grows, the quality and speed of automatic layout

algorithms need to be reevaluated. One of the most critical problems encountered

in the design of VLSI circuits is how to assign locations to circuit modules and to

route the connections among them such that the ensuing area is minimized. Due to

the complexity of this problem, it is partitioned into two consecutive stages. The

first deals with assigning locations to individual modules and is commonly referred

to as the Placement problem. The second involves routing of the connections among

the already positioned modules. The quality of the routing obtained at the second

stage depends critically on the placement output of the first stage. Hence, the goal

of a good placement techniques is to position the cells such that the ensuing area

is minimized, while the wire lengths are subject to critical length constraints.

In this chapter, a novel automatic placement method that is suitable for large

scale and highly interconnected systems is developed. The method is applied to

application-specific integrated circuits (ASIC) placement in general. A module-net-

point (MNP) model [Song92] is used to improve the estimation of the wire length,

157

CHAPTER 7. CIRCUIT PLACEMENT 158

especially for nets connected to a large number of modules. The initial placement

is obtained by a combination of a global placement method (optimizing a quadratic

objective function) and a circuit partitioning scheme. A Tabu Search heuristic is

then adapted to improve the placement quality.

7.1 General Placement

Module placement is an NP-hard problem and, therefore, cannot be solved exactly

in polynomial time [?]. Trying to get an exact solution by evaluating every possible

placement to determine the best one would take time proportional to the factorial

of the number of modules. Consequently, it is impossible to use this method for

circuits with any reasonable number of modules. To search through a large number

of candidate placement configurations efficiently, a heuristic algorithm must be

used.

7.1.1 Classification

Placement algorithms can be divided into two major classes: constructive placement

and iterative improvement. In constructive placement, a method is used to build up

placement from scratch; in iterative improvement, algorithms start with an initial

placement and repeatedly modify it, in search of a cost reduction. If a modification

results in a reduction in cost, the modification is accepted, otherwise it is rejected.

7.1.1.1 Constructive Based Algorithms

The constructive algorithms are divided into the following classes: random place-

ment, cluster growth, partitioning based algorithms [Laut79, Suar88], global tech-

CHAPTER 7. CIRCUIT PLACEMENT 159

niques (analytical algorithms) [Otte82, Blan85, Sha85], and branch and bound tech-

niques [Kozm88].

Cluster Growth

Cluster growth placement is a bottom-up method that operates by selecting com-

ponents and adding them to a partial placement. These methods are differentiated

from other placement methods in that cluster growth chooses and places the com-

ponents independently. The first step in cluster growth is to determine a seed

placement. Next, unplaced components are sequentially selected and placed in

relation to those components already placed. This process continues until all com-

ponents are placed. These algorithms are easy to implement but produce poor

results because decisions must be made with incomplete information.

Random Placement

Random constructive placement is a degenerate form of cluster growth. It reduces

to randomly choosing an unplaced component and placing it in a randomly chosen

position. While this method is fast and easy to implement, it utilizes no circuit

specific information.

Partitioning Based Placement

Algorithms based on partitioning components into two or more parts while reserving

space for the components during the process are widely used in modern layout

systems [Breu77]. This top-down approach tends to avoid wiring congestion in the

center of the carrier. These algorithms differ from cluster growth in that the former

considers all interconnections in parallel and then move the components in steps

CHAPTER 7. CIRCUIT PLACEMENT 160

by partitioning the components into specific areas of the placement surface. The

bi-partitioning or min-cut algorithms, divide the components into two sets such

that the number of weighted connections is minimized between the sets and the

area of the components is approximately equal. This process is repeated until each

partition contains only one component. Partitioning based algorithms make use of

the interconnection information at a global level and defer local considerations until

late in the process. Although these procedures produce good results, they tend to

be computationally expensive. They also tend to have difficulty when components

are constrained to fixed positions and when natural partitions of the circuit do not

correspond to the specified partitioning sequences.

Global Placement

While all techniques keep global notions of better or worse placements, the global

techniques are distinguished by moving all of the components simultaneously along

an n-dimensional gradient in the placement state space. This contrasts to clustering

methods that consider each component sequentially, and to partitioning methods

that first divide the components by partitioning and then deal with the components

individually. Most of the global placement methods optimize a quadratic objective

function [Chen84, Blan85, Fran86, ?, Klei91]. Some of these methods apply parti-

tioning to recursively generate smaller subproblems. The majority of these methods

restrict the simultaneous optimization to the initial step. Maintaining simultane-

ousness over all optimization steps has been described in [Klei91].

CHAPTER 7. CIRCUIT PLACEMENT 161

7.1.1.2 Iterative Based Algorithms

Iterative placement manipulates a placement to produce an improved placement.

Within one iteration, components are selected and moved to alternate locations.

If the resulting configuration is better than the old, the new configuration is re-

stored. This process continues until some stopping criterion is met. The stopping

criterion might be relative or absolute improvement in the evaluation metric, or per-

haps the time expended. Iterative placement techniques share the same structure

and utilize three main functions: selection, movement, and scoring. The selec-

tion function chooses the components to move. The function may simply select

components in a predefined sequence, or may involve intelligence to select those

components which are placed poorly. Once the components are selected, the move-

ment function determines new locations for those components. After the selected

components are moved to new positions, a scoring function measures the quality

of the new arrangement. The iterative placement improvement procedures known

as pairwise interchange (PI) [Schw76], neighborhood interchange (NI) [Pate77],

force-directed interchange (FDI) [Agul76], and force-directed pairwise relaxation

(FDPR) [Schw76] have been effective and widely used in automatic placement of

PC cards, PC boards, and LSI chips. The computational step that they all share

consists of interchanging the locations of two modules and computing the cost of

the new placement. The new placement is retained if its cost is lower than the cost

of the old placement. Each algorithm has a different technique by which the pair

of modules to be interchanged is selected.

In PI all (n(n − 1)/2) possible pairs of modules are trial interchanged in one

cycle. In NI, modules in the neighborhood of the primary module (the module

CHAPTER 7. CIRCUIT PLACEMENT 162

which initiates the trial interchange) are trial interchanged with the primary mod-

ule. Each module is selected as a primary module in one cycle. In FDI, a primary

module is selected and its force vector is computed. The primary module is trial

interchanged with its three neighbors in the direction of its force vector. A cycle

consists of selecting each module as a primary module. In FDPR, a primary mod-

ule is selected and its force vector is computed, which defines its zero force target

location. The primary module is trial interchanged with a secondary module in

the ε-neighborhood of its target location, if the target location of that secondary

module is in the ε-neighborhood of the primary module. Again, a cycle consists of

selecting each module as a primary module.

Most of the computation time in the interchange method is taken up by the com-

mon step of these procedures which consists of computing the incremental change in

the cost of the new placement resulting from the interchange [?]. These algorithms

are characterized by accepting trial placements only if the score does not increase.

This characteristic may cause the algorithm to get “stuck” in a local minimum

rather than finding the global minimum. Recently a randomized version based on

Simulated Annealing addressed this problem, and is considered to be widely used

and successful [Sech86].

Simulated Annealing for Placement and Routing

Kirkpatrick [?] proposed the use of SA for the placement and routing of gate-arrays.

The TimberWolf package was developed by Sechen et al [Sech86] for the placement

of gate-arrays, standard-cells, and macro/custom cells as well as the global routing

of standard-cells. Several ways of implementing the basic SA strategy were imple-

mented and satisfactory results were obtained when comparing the quality of the

CHAPTER 7. CIRCUIT PLACEMENT 163

placement by TimberWolf with placements obtained by other programs as well as

manual placement.

According to Sechen et al [Sech86], a standard-cell placement program places

standard-cells into rows and/or columns in addition to allowing user-specified macro

blocks and pads. The program was interfaced to the CIPAR standard-cell placement

package developed by American Micro-Systems. For larger circuits (800 to 1500

cells), TimberWolf reduced total wire length from 45% to 57% in comparison to

CIPAR alone. Furthermore, final chip areas were reduced by at least 30% as a result

of the improved placement. For a circuit of 1000 cells, TimberWolf reduced the final

chip area by 31% in comparison to CIPAR and by 21% over another commercially

available standard-cell placement program [Sech86].

Other algorithms that deserve mentioning are the parallel implementations of

Simulated Annealing for chip placement [Rose88, Dare87, Krav87, Caso87].

7.1.2 Placement Cost Functions

Each of the preceding placement methods depends on the cost function employed in

order to measure the acceptability of a current placement. Since the two fold goal

of cell placement is to minimize the placement area while ensuring the routability

of the layout, cost functions have examined various criteria such as estimated wire

length and cell congestion.

7.1.2.1 Wire Length Estimation

To make a good estimate of the wire length, one should consider the way in which

routing is actually done by routing tools. Almost all automatic routing tools use

CHAPTER 7. CIRCUIT PLACEMENT 164

Manhattan geometry; that is, only horizontal and vertical lines are used to connect

any two points. Further, two layers are used; only horizontal lines are allowed in

one layer and only vertical lines in the other. The shortest route for connecting

a set of pins together is a Steiner tree (Figure 7.1a). In this method, a wire can

branch at any point along its length. This method is usually not used by routers,

because of the complexity of computing both the optimum branching point, and

the resulting optimum route from the branching point to the pins. Instead min-

imum spanning tree connections and chain connections are the most commonly

used connection techniques. Minimal spanning tree (Figure 7.1b) connections allow

branching only at the pin locations. Hence the pins are connected in the form

of the minimal spanning tree of a graph. Chain connections (Figure 7.1c) do not

allow any branching at all. Each pin is simply connected to the next one in the

form of a chain. These connections are even simpler to implement than spanning

tree connections, but they result in slightly longer interconnects. Source-to-sink

connections (Figure 7.1d) where the output of a module is connected to all the

inputs by separate wires, are the simplest to implement. They, however, result in

excessive interconnect length and significant wiring congestion. Hence, this type of

connection is seldom used.

7.1.2.2 Bounding Box

An efficient and commonly used method to estimate the wire length is the semi-

perimeter method [Sech86]. The wire length in this method is approximated by half

the perimeter of the smallest bounding rectangle enclosing all the pins (Figure 7.2a).

For Manhattan wiring, this method gives the exact wire length for all two-terminal

and three-terminal nets, provided the routing does not overshoot the bounding

CHAPTER 7. CIRCUIT PLACEMENT 165

(a) Steiner Tree

Rectilinear Length = 14

(b) Minimum Spanning Tree

Rectilinear Length = 16

(c) Chain

Rectilinear Length = 17

(d) Source-to-Sink

Rectilinear Length = 24

Figure 7.1: Interconnection topologies

rectangle. For nets with more pins and more zigzag connections, the semi-perimeter

wire length will generally be less than the actual wire length. Moreover, this method

provides the best estimate for the most efficient wiring scheme, the Steiner tree. The

error will be larger for minimal spanning trees and still larger for chain connections.

In practical circuits, however, two and three terminal nets are most common. Thus,

the semi-perimeter wire length is considered to be a good estimate.

7.1.2.3 Cell Congestion

One way to measure cell congestion is to calculate the number of nets that connect

separate partitions of the set of cells. The goal is then to minimize the number of

nets cut by a line separating the partitions. Figure 7.2b graphically shows a high

and low-cost configuration for a small example circuit. Some placement algorithms

try to minimize the total wire length, or the congestion, or some combination of

both.

CHAPTER 7. CIRCUIT PLACEMENT 166

Pins

Cells
Bounding

Box

2

3

4 4

1 3 2

1

(a) Wire Length Estimation by Bounding Box (b) Cell Congestion Estimation by net cut count

Figure 7.2: Approximate wire estimation and congestion

7.1.2.4 Other Cost Measures

Placement algorithms for standard-cell placement usually employ the following cost

function consisting of three parts [Sech88a]:

1. Estimate of the wire length of all nets, half-perimeter (W).

2. Overshoot or undershoot of each row over the desired row (R).

3. Area overlap between cell in the same row (O).

F = (α×W) + (β × R) + (γ × O)

A detailed discussion of this cost measure will be explained in Section 7.4.2.

CHAPTER 7. CIRCUIT PLACEMENT 167

7.2 Constructive Phase

7.2.1 A Quadratic Cost Function

For the initial placement problem, a model is needed to estimate the net inter-

connection length between modules. This model usually provides a quadratic cost

metric which when minimized localizes the gates. Figure 7.3 shows some of the

metrics used for initial placement. The most common used metric is that formed

from the sum of the squared vector distances between gates, modeled as points

[Blan85] (Figure 7.3a). This model is not always acceptable (although it provides

a quadratic form appropriate for direct minimization) because it tends to overesti-

mate the actual lengths. Figure 7.3b presents the nets-as-points model which has

been proposed by [Pill88, Zhan89]. Direct minimization of the generated cost func-

tion yields optimal net-point locations which localize the gates. A new module-net-

point (MNP) model is proposed by [Song92]. This model simultaneously considers

the modules and nets as points. The net length is the summation of distances

from the centralized net-point to the modules connected to the net, as shown in

Figure 7.3c. This model is more realistic in estimating the actual wire lengths than

previous models, especially for the multi-pin nets which occur in ASICs.

Let there be M modules located at (xi, yi), i = 1, 2, · · · , M . Let there be N nets

located at (uj, vj), j = 1, 2, · · · , N .

In practical chip layout, the I/O pads can be considered as fixed modules. Let

there be a total of F fixed modules located at ci, i = 1, 2, · · · , F . Let aij denote the

connectivity between module i and net j. Let a′
ij denote the connectivity between

CHAPTER 7. CIRCUIT PLACEMENT 168

MODULE

NET

(a) Gates -as-Points Metric

net pnet r

net s

net q

net v

net u

net t

A

D

net p
net q

net r

net s

net t

net u

net v
B

A

F

E

C C

B

A

F

D

E

(b) Nets-as-Points Metric

net p

net r

net s
net t

net u

net v

net q

(c) Module-Nets-as Points Metric

Figure 7.3: Wire estimation for global placement

fixed module i and net j. Our objective function fx (fy is similar) is as following,

fx =
1

2

M
∑

i=1

N
∑

j=1

aij(xi − uj)
2 +

1

2

F
∑

i=1

N
∑

j=1

a′
ij(ci − uj)

2. (7.1)

The matrix form of the quadratic expression (7.1) is:

Min fx =
1

2
zTBz + cTz + d

s.t zTz = 1 (7.2)

Since the matrix B is symmetric, sparse and positive definite, the solution can be

found by a preconditioned conjugate gradient technique, where the preconditioning

is done by incomplete factorization. The minimization can also be found by solving

for the vector z at which the gradient of fx is zero, 5fx = 0. Minimization can

be performed by applying the last formula to Equation (7.2) yielding the following

CHAPTER 7. CIRCUIT PLACEMENT 169

linear system of equations to be solved for z.

(B + λI)z = c. (7.3)

The parameter λ (λ > 0) is added to make Equation (7.3) more numerically stable

without effecting solution quality. The Harwell routine MA31 [Harw79] is used to

solve Equation (7.3).

7.2.2 Generating a Legal Placement

Solving the quadratic optimization problem in the previous section produces an

optimal continuous placement. The main drawback is that the solution does not

put modules on slots (modules are confined to the center of the region). Therefore

a mapping heuristic should be used to transform the position of some modules to

legal positions on the chip. Also, since optimality is lost when mapping from a con-

tinuous placement to an integer grid, downhill local pairwise swaps are performed

to regain some of the lost optimality. Figure 7.4 shows different approaches for

generating legal placements. Figure 7.4a shows the position of modules after the

initial continuous placement. Attempting to move modules to slots that are close

to their locations could generate an overlapping placement. Figure 7.4b shows a

simple snap-to-grid scheme that is suggested in [Zhan89]. This scheme does not

reserve the relative relation of module position in the X-axis, and is only suitable

for the case where the number of slots m × n is close to the number of modules

M. Another method suggested by [Song92] strives to uniformly place the modules

on the chip so that the routing ultimately can be performed easily. Figure 7.4c

illustrates the procedure for uniform mapping. The main disadvantage using this

CHAPTER 7. CIRCUIT PLACEMENT 170

3
8

2

1

9

4

5

7

6

3 8 1

2 7 6

9 6 4

3
8

1

2

9 4

7
6 5

(a) Continous Placement (b) Simple Snap-to-Grid

(c) Uniform Mapping (d) Block Uniform Mapping

Figure 7.4: The mapping to legal placement

scheme is that in the mapping from the continuous value coordinates into discrete

coordinates, overlaps may occur; i.e., some modules have the same coordinates.

One way of overcoming this problem is to resort to a heuristic to remove all the

overlaps while the total half perimeter wire length (HPWL) increases as little as

possible (decreases as much as possible). This is achieved using a neighborhood

empty-slot move (NESM) heuristic.

7.3 A Partitioning Placement Heuristic

In this section, we introduce a placement heuristic that utilizes a constructive phase

followed by one or more iterative improvement phases to obtain good solutions. As

shown in Figure 7.5, the heuristic tends to minimize the total wire length and

CHAPTER 7. CIRCUIT PLACEMENT 171

congestion of cells at the same time. A global placement method discussed in

Section 7.2 is used to generate a good initial placement. The solution does not

put the modules on slots, but leads to solutions where modules are confined to

the center of the region. This leads to cell congestion and overlapping. As shown

in Section 7.1.2.3, partitioning is used to reduce the congestion. The partitioning

algorithm based on GRASP and Tabu Search Algorithm introduced in Section 4.2.2

is used to partition the components into rows. Here, the IO pads are fixed to a

certain partition. Top IO pads are fixed at block 0, and bottom IO pads are fixed

at block with highest value (i.e, number of rows determined in the design), whereas

other side IO pads are distributed among other blocks and fixed. Since the number

of nets cut between blocks (rows) is minimized, it can be guaranteed that most of

the modules within rows are placed in their correct positions. But still their exists

overlap between modules within a row. The overlap of modules is dealt with by

a snap-to-grid scheme, this scheme has only to deal with module overlap within

a row and not between rows. The combined solution of the global approach and

circuit partitioning leads to good solutions that are improved using the local search

heuristic based on Tabu Search. The next section introduces each phase of the

heuristic and explains the details.

7.4 Iterative Improvement Phase

Since optimality is lost when mapping from a continuous placement to the legal

placement, iterative improvements have to be made to generate a better placement.

A detailed examination of different force-directed heuristics is described with ex-

perimental results in [Goto86]. These heuristics are greedy algorithms which stop

CHAPTER 7. CIRCUIT PLACEMENT 172

INPUT CIRCUIT NETLIST

PERFORM CLUSTERING

GLOBAL PLACEMENT
PARTITIONING (TS)

LEGAL PLACEMENT

EMPTY SLOT MOVING

PLACEMENT (TS)

NEIGHBORHOOD INTER

SOLUTION

Figure 7.5: The GPPSC heuristic

CHAPTER 7. CIRCUIT PLACEMENT 173

at the local optimum when no local improving moves are possible. The chief lim-

itation is that the local optimum may not be a global optimum. Tabu Search

[?, Glov90] guides such a heuristic to continue exploration without getting stuck at

a local optimum by an absence of improving moves, and without falling back into a

local optimum from which it previously emerged. The heuristic using Tabu Search

technique to iteratively improve the placement quality is presented here. First, the

simple Tabu Search technique is briefly introduced.

7.4.1 A Tabu Method for Placement

The majority of this section follows closely work by [Song92]. The Tabu Search

technique is used to guide the neighborhood interchange heuristic in the iterative

placement scheme. We first define the neighborhood of the module.

Definition 1 A δ-neighborhood Nδ(mi) of a module mi is the set of modules mj

whose X- and Y-coordinate are distance δ apart from mi, i.e.,

Nδ(mi) = {mj : |xj − xi| ≤ δ and |yj − yi| ≤ δ, j = 1, 2, · · · , M, i 6= j},

where (xi, yi), (xj, yj) are the coordinates of modules mi, mj, and M is the number

of modules.

We define the neighborhood N(s) of a solution s as the set of all solutions s′

that can be obtained from s by interchanging a pair of modules (mi, mj) where

mj ∈ Nδ(mi) for i = 1, 2, · · · , M . The neighborhood interchange technique is to

find the best solution in the neighborhood N(s), which exhaustively examines all

target modules mj ∈ Nδ(mi) for module mi, i = 1, 2 · · · , M . The best pair of

CHAPTER 7. CIRCUIT PLACEMENT 174

Move Type (B)

Move Type (D)

Move Type (A)

Move Type (C)

Figure 7.6: Type of possible moves

modules (mi, mj) associated with the maximum gain is selected for the interchange

if the gain is positive. The interchange procedure is repeated until the gain is

negative.

A Tabu method for placement is described in Figure 7.7 which is a combination

of the Tabu Search technique and the neighborhood interchange heuristic. The new

solution s′ is obtained from s by the following procedure. First, module mi is ran-

domly selected. Then all target modules mj ∈ Nδ(mi) are exhaustively examined.

The gains are estimated from the difference of the objective function f(s) before and

after the interchange. The best target module mj associating with the maximum

gain is selected for the interchange with module mi if the pair of modules (mi, mj)

is not in Tabu list T . The new solution s′ is obtained by interchanging a pair of

modules (mi, mj), even if the gain is negative. In determining whether a move is

CHAPTER 7. CIRCUIT PLACEMENT 175

Tabu or not, only one Tabu list T containing the |T | last module pair interchanges

is used. Such a list is sufficient to prevent cycling. The Tabu list T is treated as a

circular list. The addition of module pair thus removes the module pair recorded

in its position |T | interchanges ago. Note that the key step in the Tabu method for

placement is to find a good solution in the neighborhood N(s) rather than to find

the best solution in the neighborhood N(s). Given the parameter δ and module

mi, the complexity for examining the modules mj ∈ Nδ(mi) is constant. But given

the parameter δ, the complexity for examining the modules mj ∈ Nδ(mi) for all

modules mi, i = 1, 2, · · · , M is O(M). Therefore, the complexity for finding the

best solution in the neighborhood N(s) is O(M). The complexity of the heuristic

to generate module pair (mi, mj) is constant. Although it needs more Tabu Search

steps to obtain a good result, the total computation time is still much less than

the case of finding the best solution. On the other hand, the random selection of

module mi contributes to diversify the search, hence the possibility of obtaining

a better result increases. A definition of the objective function f(s) for circuit

placement will be discussed in the following sections.

7.4.2 The Objective Function

The Tabu Search heuristic used for the placement consists of two stages. Overlap

is allowed in the first stage and prohibited in the second stage. The main reason of

allowing overlap in the first stage is to increase the solution space being searched.

Tabu Search uses two different objective functions for the search stages.

CHAPTER 7. CIRCUIT PLACEMENT 176

7.4.2.1 First Search Stage

The first stage minimizes the total half-perimeter wire length while making overlap

as small as possible and makes row length uniformly distributed. In this stage, the

objective function is chosen as:

f(x) = cl(x) + co(x) + cr(x). (7.4)

HPWL

The cost cl(x) is the total half-perimeter wire length (HPWL) given by:

cl(x) =
N

∑

i=1

(Hi + Vi), (7.5)

where N is the number of nets, Hi and Vi are the span of the net i in the horizontal

and vertical direction separately.

Overlap Penalty

The cost co(x) is the overlap penalty function, and given by:

co(x) = po

∑

i<j

O(i, j), (7.6)

where po is a penalty parameter. The function O(i, j) returns the total amount of

overlap area between cells i and j.

Certainly, by checking every other cell on the same row as cell i it can be deter-

mined which of these cells overlap with cell i. However, the complexity is O(Mi),

where Mi is the number of cells in the row. The time spent doing overlap com-

CHAPTER 7. CIRCUIT PLACEMENT 177

putation can be substantial. Let Wmax denote the maximum cell width. Another

way to compute the cost c2(x) is to search toward Wmax left away from cell i and

toward Wmax right away from cell i, all other cells which overlap with cell i can be

found. As long as the ratio between the maximum and minimum cell width is not

too large, this is an efficient method.

The overlap penalty parameter is an empirical parameter. If po is too large,

the Tabu method will be primarily concerned with the minimization of the overlap

penalty function. That is, relatively little attention will be paid to the minimiza-

tion of the HPWL. If po is too small, the Tabu method will concentrate on the

minimization of the HPWL. That is, relatively little attention will be paid to the

elimination of the cell overlaps. At the end of the first Tabu Search stage, a large

amount of the cell overlaps still exists. The HPWL will increase when all cell over-

laps are removed by the overlap removing heuristic. The experimental results on

five test circuits show that the lower value of HPWL is obtained when po is in the

range (0.1, 0.5).

Row Length Penalty

The cost cr(x) is the row length penalty function. It is given by

cr(x) = pr

R
∑

i=1

|Lai − Ldi|, (7.7)

here pr is a row penalty parameter, R is the number of rows, Lai and Ldi are the

actual and desired row length for row i. pr = 5 is approximately the smallest value

which would yield uniform row lengths without placing excessively emphasis on

cr(x) in the objective function f(x) [Sech88a].

CHAPTER 7. CIRCUIT PLACEMENT 178

7.4.2.2 Second Search Stage

After the termination of the first search stage, a simple heuristic is used to remove

all the overlap among cells by shifting them. At this stage, the placement has no cell

overlap, and the row length are changed slightly. The objective here is to minimize

the HPWL only, f(x) = cl(x). The heuristic avoids causing overlap in this stage by

choosing cells having the same width and are close to each other. To further refine

the search, a simple neighborhood interchange heuristic is used, since Tabu Search

does not exhaustively search all possible cells in the neighborhood N(s).

Input: initial placement s
nbmax: maximum number of iterations
|T |: size of Tabu list T

Initialization: nbiter:= 0;
bestsolution:= s; bestvalue:=f(s); bestiter:=0;

while nbiter-bestiter < nbmax do
(a) nbiter := nbiter +1 ;
(b) Generate the move s′ ∈ N(s) and s is not in Tabu list T ;

—randomly select a module mi

—find a best target module mj ∈ Nδ(mi) for interchange,
and module pair (mi, mj) is not in Tabu list T

(c) if f(s′) < bestvalue then
bestvalue:= f(s′);bestsol:= s′; bestiter:= nbiter;

(d) Add (mi, mj) to Tabu list T , remove oldest module pair;
(e) s := s′;

EndWhile
output: bestsolution is the best placement found so far

and best value is the minimum half perimeter wire length

Figure 7.7: A Tabu Search technique for circuit placement

CHAPTER 7. CIRCUIT PLACEMENT 179

7.5 Experimental Results

The method for the standard-cell placement has been implemented in the C lan-

guage in the placement program GPPSC. The program GPPSC has been tested

on five examples (Table 7.1). The first three circuits, fnn4, fnn8 and fnn32 are neu-

ral network circuits which are highly interconnected circuits. Circuits Prim1 and

Prim2 are taken from the MCNC standard-cell test benchmarks [Robe87]. These

circuits vary in size from 140 to 3,014 cells and 119 to 3,136 nets. The measure

that has been used here is the half perimeter bounding box that is used by most

researchers. Minimizing the HPWL in place guarantees the reduction of the area

occupied by the components [Sech88a].

Placement Results
Circuit Rows SA TimberWolf TSSC GPPSC

HPWL Time HPWL Time HPWL Time

Ckt1 5 0.0835 171.5 0.0869 6.2 0.0811 8.5
Ckt2 9 0.3051 580.7 0.3230 105.6 0.2954 123.2
Ckt3 19 1.6773 3218.8 1.8052 253.5 1.5344 254.9
Prim1 16 0.9193 1018.3 0.9990 341.7 0.9191 365.7
Prim2 26 3.9518 6574.0 4.4121 2009.5 3.9429 1992.1

Table 7.1: Placement results based on HPWL

Table 7.1 presents results based on the developed heuristic GPPSC. The results

are compared to those obtained by TimberWolf Version 5.1 for standard-cell place-

ment, and Tabu Search heuristic TSSC [Song92] that uses the global constructive

phase only for its initial solution. Results indicate that the solutions obtained by

the novel technique improve results by 5-10% over those obtained by TSSC, and

by 2-3% over those obtained by TimberWolfSC. Even though the improvement in

results obtained by GPPSC are not significant over those obtained by Timber-

CHAPTER 7. CIRCUIT PLACEMENT 180

WolfSC, most techniques used recently [Klei91] produced results that were inferior

to those obtained using TimberWolfSC by a margin of 5%. On the other hand, the

computation time of GPPSC are on average 55% faster than TimberWolfSC.

7.6 Summary

This chapter introduced a novel technique for Standard Cell Placement. The initial

placement was obtained using a combined global optimization algorithm and a

partitioning based heuristic. Results obtained indicate that this initial strategy is

successful in placing most modules in their appropriate position. A Tabu Search

placement heuristic was used to further improve the initial placement. Since the

global placement method was successful to place most of the cells in the “right

position”, the local search algorithm converged quickly to good solutions.

The asymptotic analysis of many heuristics such as Tabu Search and clustering

heuristics is an important measure of the complexity of these heuristics. The next

chapter presents the complexity analysis of many heuristics developed in this dis-

sertation, and shows the time and space requirements for solving large instances of

combinatorial problems in circuit layout.

Chapter 8

Complexity Analysis

The main characteristics associated with “good” heuristic programming methods

are the simplicity of the approach, the simplicity of the computational procedure or

operations employed and the low order polynomial growth in computational time

required as a function of problem size. The evaluation of the performance of a

heuristic method can be carried out either by comparing its performance against

those achieved in the past, or by solving massive problems with known solutions,

or by determining the computational complexity of the heuristic program.

Computational complexity provides a wealth of exciting results of both theoret-

ical and practical nature. Once an algorithm is developed for solving a problem and

decided to be correct, an important step is to determine how much in the way of re-

sources, such as time or space, the algorithm will require. An algorithm that solves

a problem but requires enormous computation time is hardly of any use. Likewise,

an algorithm that requires a vast amount of main memory is not (currently) useful.

So computational complexity seeks to develop general results about the intrinsic

difficulty of solving problems where available information is partial or approximate

181

CHAPTER 8. COMPLEXITY ANALYSIS 182

and to apply these results to specific problems. This allows one to determine what

is meant by an optimal algorithm in many practical situations, and offers a variety

of interesting and sometimes surprising theoretical results.

The previous chapters presented heuristic solutions to the problems of circuit

partitioning and placement. In this chapter, we seek to determine the computa-

tional performance of the heuristic programs in terms of the solution times (number

of operations) required as a function of problem size. Section 8.1 introduces the

main notation and definitions used throughout this chapter. A worst case com-

plexity analysis of the Tabu Search heuristic for circuit partitioning is presented

in Section 8.2. The computational complexity of the two clustering heuristics (de-

scribed in Section 5.2) are introduced in Section 8.3.

8.1 Notations and Definitions

This section introduces the notation that is used for computing the complexity

of the partitioning and clustering heuristics developed in previous chapters. For

simplicity, we borrow some of the notation used in [Sanc89]. The network refers

to the original circuit that is read initially. The clustered network will refer to the

circuit after clustering. First the notation associated with the main network is

introduced followed by notation used for the clustered network.

8.1.1 Notation Used For Main Network

• b will denote the number of blocks “partitions”.

• c the number of cells in the network.

CHAPTER 8. COMPLEXITY ANALYSIS 183

• n the number of nets in the network.

• NC , will denote the set of nets incident on cell C,

• nc will denote the size of NC ,

• CN will denote the set of cells incident on net N,

• cn will denote the size of CN ,

• p will denote the maximum number of nets on any cell,

• q will denote the maximum number of cells on any net in the network,

• m will denote the total number of connection points in the network:

– The variable m may be regarded as a measure of the size of the network.

m =
∑

∀C

nc =
∑

∀N

cn

• l will denote the concept of level gain.

– Computing higher level gains enables the algorithm to better distinguish

between cells whose first level gains are the same.

8.1.2 Notation Used For Clustered Network

• c′ the number of cells in the clustered network.

• n′ the number of nets in the clustered network.

• Ncl will denote the number of Clusters formed.

CHAPTER 8. COMPLEXITY ANALYSIS 184

• Csz will denote the size of a cluster.

• N ′
C will denote the set of nets incident on cell C ′ in the clustered network,

• n′
c will denote the size of N ′

C in the clustered network,

• C ′
N will denote the set of cells on net N ′,

• c′n will denote the size of C ′
N ,

• p′ will denote the maximum number of nets on any cell in clustered network,

• q′ will denote the maximum number of cells on any net in clustered network,

• m′ will denote the total number of connection points in the clustered network,

• Tn will denote the net types in the clustered network,

• Tc will denote the cell types in the clustered network,

• Ccm will denote the common modules for cell C,

• Cmcm will denote the maximum common modules for any cell,

8.1.3 Definitions

8.1.3.1 Free and Locked Cells:

A cell is labeled free if it has not yet been moved during the pass; otherwise, it is

labeled locked.

8.1.3.2 Critical Net:

A net is said to be critical if there exists a cell on it which if moved would change

the net’s cut-state.

CHAPTER 8. COMPLEXITY ANALYSIS 185

8.1.3.3 Network Parameters:

φAi(N) = |C|C ∈ Ai and C ∈ Cnand C is free|

λAi(N) = |C|C ∈ Ai and C ∈ Cn and C is locked|

So φAi(N) is the number of free cells on the net N which are in the block Ai, while

λAi(N) is the number of locked cells on the net N which are in the block Ai. For

each Ai and each net N, define the binding number β:

βAi(N) =

φAi(N) if λAi(N) = 0

∞ if λAi(N) > 0

The binding number of a net with respect to a block of a partition indicates how

tightly the net is bound to the block. If there are locked cells from a net in the

block then the net will be bound to the block for the rest of the pass, since locked

cells can no longer be moved during the pass.

8.1.3.4 Gain Computation:

The ith level gain of C, γi(C), is defined as

γi(C) = |N ∈ NC |βA1(N) = i and βA2(N) > 0|

−|N ∈ NC |βA1(N) > 0 and βA2(N) = i− 1|

Here A1 and A2 are the two blocks of the partition and cell C is assumed to be in

block A1. Note that the first level gain is the actual decrease in cut-set size which

CHAPTER 8. COMPLEXITY ANALYSIS 186

would result from moving cell C from A1 to A2; i.e., the first level gain corresponds

to the regular gain concept used in other interchange methods [?, Fidu82].

For multiple-way partitioning the function β ′ is needed, and is defined as follows:

β ′
Ai

(N) =
∑

j 6=i

βAj
(N)

That is β ′
Ai

(N) is the sum of all the binding numbers of net N with respect to all

of the blocks of the partition except block Ai; it gives a measure of how tightly N

is bound to the “side” of the partition “opposite” Ai.

The ith level gain associated with moving cell C from block Aj to block Ak is

given by:

γi(C) = |N ∈ NC |β ′
Ak

(N) = i and βAk
(N) > 0|

−|N ∈ NC |β ′
Aj

(N) = i− 1 and βAj
(N) > 0|

The rational behind the above definitions is that in order to remove a net from the

cut-set, all cells on the net must end up in a single block.

8.1.3.5 Gain Maintenance:

During each iteration of the algorithm, the gains associated with the cells in the

network will be constantly updated as cells are moved from one block to another.

Each time a cell C is moved, the β and β ′ values for the nets connected to C will

change, in turn causing changes to the gain vectors associated with C’s neighbor

cells. For Net N define:

• status(N) = free if none of its β values are ∞

CHAPTER 8. COMPLEXITY ANALYSIS 187

• status(N) = loose if exactly one of its β values is ∞

• status(N) = locked if two or more of its β values are ∞

The status of a net can be easily updated each time one of its binding values

changes. The values of β ′ can be computed easily as following:

• if N is free then

– β ′
Ak

= cN − φAk
(N)

• else if N is loose then

– β ′
Ak

= cN − φAk
(N)− λAk

(N)

• else if N is locked

– β ′
Ak

=∞

• else if βAk
6=∞

– β ′
Ak

=∞

8.1.3.6 Balancing Criteria:

If no restriction is taken on the size of the final partitions, an empty cut-set is

achieved by moving all of the cells to one block of the partition. So the concept

of mincut partitioning is meaningless unless a restriction is placed on the sizes of

the blocks. The approach taken is to specify a Tolerance TOL = cells/blocks ∗

percent− tolerance that can satisfy the following:

cells/blocks− TOL ≤ Blocki ≤ cells/blocks + TOL

CHAPTER 8. COMPLEXITY ANALYSIS 188

A cell move from Blocki to Blockj is allowed if it preserves the above relationship.

8.2 Complexity Analysis of Tabu Search

For many applications, the choice of the proper data structure is really the only

major decision involved in the implementation. Once the choice has been made,

only very simple algorithms are needed. For the same data, some data structures

require more or less space than others; for the same operations on the data some

data structures lead to more or less efficient algorithms than others. In summary

the choice of algorithm and data structure is closely intertwined, and ways are

sought for saving time and/or space by making this choice properly.

The Tabu Search algorithm is used as a meta-heuristic to guide the Sanchis multiple-

way network partitioning algorithm to achieve better results. Most of the algo-

rithms used in Sanchis [Sanc89] are used within the Tabu Search heuristic except

for some modifications that involve the following:

• No concept of a Pass,

• No concept of free and locked cells,

• All nets are either free or loose at a certain move,

• φ is the only net parameter used to update the gains,

• New concept of Tabu List and Aspiration Level tables.

The data structures most affected by the k-way Tabu Search partitioning scheme

are:

• Circuit Description data structures,

CHAPTER 8. COMPLEXITY ANALYSIS 189

• Gain Vector structures,

• Network Parameter structure,

• Tabu List structure,

• Aspiration Table structure.

After the network is initialized and an initial partition is obtained, iterations are

performed until no more improvements in cut-set size results. Network initialization

consists of reading in a description of the network and initializing the list of cells

incident on each net and the list of nets incident on each cell. A partition P is

assumed to be an array indexed by cell numbers specifying which block each cell

should be in. The starting partition is achieved using a random number generator.

Initializing the partition consists of assigning each cell to its corresponding block

and then initializing the gain values and gain structures for the partition.

8.2.0.7 Complexity of Tabu Search Circuit Partitioning

The following propositions show that the time complexity of the Tabu Search heuris-

tic presented in Chapter 3 is O(b2 + qb(log p)) per iteration.

Partition-Network()
(1) Call Input-Circuit
(2) Obtain a random partition P
(3) Call Init-Partition
(4) Repeat

(a) Call Do-Iteration()

Until (No improvement in cutset size).

Proposition 8.1 O(m) time is needed to read in the circuit description (construct

the two data structures from the sequence of nets given as input).

CHAPTER 8. COMPLEXITY ANALYSIS 190

Proof : It is clear that O(m) time will suffice to do all of the above work

in the routine Input-Circuit , provided that the number of (cell,pin)

pairs in the input stream is O(m).

Input-Circuit()
(1) For net = 1 ... n do

(2) For each cell on net(N) do
(3) Insert net N into the ’nlist’ of cell C
(4) Insert cell C into the ’mlist’ of net N

End For
End For

Proposition 8.2 The criticality of a net β ′
Ak

can be computed in constant time,

O(1) from the status of N and from the φ values for N, independent of b.

Proof : It is not hard to check that the algorithm that computes β ′
Ak

is

done in constant time given by the equations in section 8.1.3.3 and the

procedure Beta-Prime().

Proposition 8.3 The insertion and deletion of a gain node each requires O(log p)

time.

Proof : Since binary search has complexity of O(log p)), and since its

is used implementing the bucket list (with entries ranging from +p to

-p), the time complexity of insert-gain is O(log p). The same applies for

delete-gain.

Init-Partition()
(1) Set all φ values and gain vectors to 0.
(2) For each cell C

– For all blocks
- initialize gains for all free modules

– End For
– For each net N incident on C

CHAPTER 8. COMPLEXITY ANALYSIS 191

- adjust net parameters
– End for

– End For
(3) For each net N

– For each block Ak
– For each cell C on net N

- Call Update-Gain
– End For

– End For
– End For
(4) For each cell C

- let Ak be the block to which C belongs
- For each block Ai 6= Ak

- create gain node for C’s gain in moving to Ai
- insert gain node in gain list and bucket list

- End For
- End For

Proposition 8.4 The routine Init-Partition() requires at most O(mb(log p))

Proof : Step (1) in Init-Partition() is performed in O(nb) ≤ O(mb),

step (2) is performed in O(cb)+O(m) since the second term is dominant

then it is performed in O(m), step (3) is performed in O(mb) since

the call to Update-Gain() requires constant time. Step (4) of Init-

Partition() requires O(cb) time to insert a gain, since Proposition 8.3

states that insertion of a gain requires O(log p) then step (4) will require

O(cb(log p)) time. Hence, Init-Partition() requires at most O(mb(log b+

p))

Proposition 8.5 The routine Can-Move() requires at most O(b2)

Proof : step (1a) of procedure Can-Move() is accomplished in con-

stant time, O(1), since the bucket list is always sorted. Step (1b) which

is a call to procedure Valid-Move() obviously takes constant time as

seen in the procedure in previous section. According to the criteria

chosen to update the Tabu list we have:

CHAPTER 8. COMPLEXITY ANALYSIS 192

• criteria (1): store the module number,

• criteria (2): store the module number, the source block and the

destination block.

Can-Move()
(1) Do

(a) Point to cell with highest gain,
(b) if (Valid-Move())

If (Move-Not-Tabu())
Return (Pointer to cell)

(c) Else
Advance Pointer to next cell with highest gain,

While (gain-ptr is valid)

If criteria (1) is used, a constant time to check whether a module is

Tabu or not can be found in constant time, O(1), whereas if criteria (2)

is used, the possible cell directions is given by the following formula:

b−1
∑

i=1

i =
(b− 1)× (b− 1 + 1)

2
=

b2 − b

2

so the time needed to test if a move is Tabu is O(b2). So the time

complexity of Can-Move is constant, O(1), if criteria (1) is used, and

O(b2) if criteria (2) is used.

Proposition 8.6 The routine Make-Move() requires at most O(qb(log p))

Proof : Step (1) of Make-Move() requires constant time, O(1). Step

(2a) is executed b times, and since each cell incident on N could have

its gain updated, and from Proposition 8.3 the insertion and deletion

of a gain requires O(log p) then one can say that step (2a) requires

O(Max(nc)b(log p)) time. Step (2b) takes constant time. Step (2c) re-

quires O(nc log p). The overall complexity of Make-Move is O(qb(log p)).

CHAPTER 8. COMPLEXITY ANALYSIS 193

Do-Iteration(P)
(1) Initialize TabuList, Aspiration Table
(2) While (Can-Move & Stopping Criteria Not Valid)

(a) Get Nextmove from gain structures
(b) Call Make-Move to perform Nextmove
(c) Call Update-TabuList, Update- Aspiration
(d) Record best partition and best cut

End While
(3) Return(P)

Proposition 8.7 The routine Do-Iteration() requires at most O(b2 + qb(log p)).

Proof : Step (1) takes constant time. Step (2) takes constant time,

O(1), if Tabu Criteria (1) is used and O(b2) if Tabu Criteria (2) is

used. Step (2a) takes constant time. The call to Make-Move() as has

been described in Proposition 8.6 takes O(qb(log p)). Step (2c) which

involves updating the Tabu List and Aspiration Table takes constant

time. Recording the best partition and best cut involves constant time

since only one value of the partition array is updated. The overall

complexity of Do-Iteration() is O(b2 + qb(log p)).

Theorem 8.1 The multi-way network guided partition algorithm based on Tabu

Search requires O(b2 + qb(log p)) time to complete a move.

Proof : From Proposition 8.1 Input-Circuit() takes O(m) time. The

call to Init-Partition() which is performed once during the partition-

ing algorithm takes O(mb(log p)) as had been presented in Proposi-

tion 8.4. The loop to perform an iteration is executed η times and

varies from one circuit to another. As has been proved in Proposi-

tion 8.7 the body of the loop that calls Do-Iteration() has a com-

plexity of O(b2 + qb(log p)) in the worst case. So the overall complexity

CHAPTER 8. COMPLEXITY ANALYSIS 194

of the multi-way partitioning algorithm requires O((b2 + qb(log p)) per

iteration, and O(η(b2 + qb(log p)) for the program to end.

8.3 Complexity of Clustering Heuristics

In this section, we attempt to present the complexity of clustering based on (i)

GRASP, (ii) Statistical circuit information presented in Chapter 5.

8.3.1 GRASP Based Clustering

The following propositions show that the time complexity of the GRASP based

clustering heuristic is O(Ncl(log Ncl + p′)) per move, and O(m′Ncl(log Ncl + p′)) for

creating complete clusters.

GRASP CLUSTER()
(1) Input-Circuit()
(2) Determine number of clusters CLn

(3) Create-Clusters()
(4) Generate-Clustered-Network()
(5) Assign-Clusters-Blocks()
(6) Flatten-Clusters()
(7) Make-Uniform-Partitions()

Proposition 8.8 O(m) time is needed to read in the circuit description. Constant

time is needed to determine number of clusters, O(1).

Proof : Complexity of Input-Circuit() was proved previously in Propo-

sition 8.1. The time needed to determine number of clusters is constant,

O(1).

Create-Clusters()
(1) Allocate all modules to a single block.

CHAPTER 8. COMPLEXITY ANALYSIS 195

(2) Calculate Gain of all modules.
(3) Set MoveArray, GainArray empty.
(4) Set GainPointer to 0.
(5) While Can-Move()

(a) Call Make-Move().
(b) Add nextmove to MoveArray
(c) Add newgain to GainArray

(9) End While
(10) Use Moves in MoveArray upto best ptr.

Proposition 8.9 O(mNcl(log Ncl + p) time is needed to create required clusters

from the circuit description. The time per iteration (moving a single module to

destination) is O(Ncl(log Ncl + p)).

Proof : Step (1) in Create-Cluster() requires constant time. Step

(2) for calculating gain requires O(Ncl(log Ncl + p)). This is similar

to routine used previously in Proposition 8.4. Steps (3) and (4) take

constant time. The most time is occupied by steps (5) and (6). Since

a cell becomes locked after it is moved, the while loop is performed at

most c times. Choosing the next move, including heap updates requires

O(Ncl(log Ncl)) time, hence all move selections during the execution of

the while loop can be performed in O(cNcl(log Ncl)) ≤ O(mNcl(log Ncl)).

Step (6) consists of calls to Make-Move, this routine is adapted from

Sanchis [Sanc89], whose complexity is O(lmb(log b + pl)) and since b in

our case is Ncl and l=1, then the complexity of this call is mNcl(log Ncl+

p). Since steps (7) through (10) take constant time, then the dominant

factor is mNcl(log Ncl + p).

Proposition 8.10 O(n) time is needed for the routine Generate-Clustered-

Network().

CHAPTER 8. COMPLEXITY ANALYSIS 196

Proof : Steps (1) and (2) in Generate-Clustered-Network() takes

constant time. The For loop in step (3) inserts information in the net-

list and mod-list data structures of the newly generated clustered net-

work, this requires O(n) time. Finally step (7) requires O(Ncl). Since

the previous term is dominant, the complexity is O(n) for Generate-

Clustered-Network.

Generate-Clustered-Network()
(1) Allocate Space for netlist and modlist.
(2) Set new value for nets, modules, pins, etc....
(3) For main ckt nnets

(4) If net is cut
(5) Insert info in netlist, modlist of new ckt

(6) End For.
(7) Set Block sizes.

Proposition 8.11 O(c′) time is needed for Assign-Clusters-Blocks() to assign clus-

ters to their corresponding blocks.

Proof : It is clear that assigning clusters to blocks would take O(c′) since

only a loop that involves the number of modules within the clustered-

network would achieve the assignment.

Proposition 8.12 Flatten-Clusters() requires O(NclCsz) time.

Proof : Flatten-Clusters() assigns modules within clusters to a par-

tition P, which is assumed to be an array indexed by cell number, spec-

ifying which block each cell should be in. For all clusters Ncl a certain

number of modules Csz would be assigned to partition P in this case.

CHAPTER 8. COMPLEXITY ANALYSIS 197

Make-Uniform-Partitions()
(1) Compare sizes of blocks.
(2) Determine deviation in sizes.
(3) For sub ckt nblks

(4) For CLn in circuit
(a) If size exceeds target size

(b) Move Module to under sized block
(c) Update Size deviations.

- End For.
- End For.

Proposition 8.13 Make-Uniform-Partitions() requires O(bNcl) time.

Proof : Steps (1) and (2) each requires O(Ncl) time. Step (3) is executed

b times. Step (4) is executed Ncl times. Steps (6) and (7) require

constant time. So the overall time required is O(bNcl).

Theorem 8.2 The GRASP Clustering based heuristic requires O(m′Ncl(log Ncl +

p′)).

Proof : From Proposition 8.8 through 8.13, the dominant factor is in

creating clusters which requires O(m′Ncl(log Ncl + p′)).

8.3.2 Statistical Based Clustering

The following propositions show that the time complexity of the Statistical based

clustering heuristic is O(cq′p′) for creating complete clusters.

STATISTICAL BASED CLUSTERING()
(1) Input Main Circuit()
(2) Circuit Statistics()
(3) Form Stat Clusters()
(4) Generate-Clustered-Network()
(5) Assign-Clusters-Blocks()
(6) Flatten-Clusters()
(7) Local Improve Partition()
(8) Make-Uniform-Partitions()

CHAPTER 8. COMPLEXITY ANALYSIS 198

Proposition 8.14 O(cp′q′) time is needed to generate circuit statistics.

Proof : The routine Circuit Statistics() involves calling four func-

tions, The complexity of each will be proven later on.

• Generate Common Modules(), complexity is O(cp′q′)

• Generate Nets Connections(), complexity is O(nTn).

• Generate Cells Connections(), complexity is O(cTc)

• Generate Nets Binding(), complexity is O(n).

Since the first term is the most dominant, then the complexity of Cir-

cuit Statistics() is O(cp′q′). The complexity can be reduced further

to O(p′q′) while the circuit is being read initially.

Circuit Statistics()
(1) Generate Common Modules()
(2) Generate Nets Connections()
(3) Generate Cells Connections()
(4) Generate Nets Binding()

Proposition 8.15 O(cp′q′) time is needed for Generate Common Modules() to cal-

culate the most common nets between modules in the network.

Proof : Step (2) in Generate Common Modules() requires O(p′q′)

(as will be proven next), and is called c times. Step (3) is computed in

constant time. So the overall complexity of this routine is O(cp′q′).

Generate Common Modules()
(1) For i=0 ... nmods

(2) Find Common Modules(i)
– End For
(3) find max common modules;

CHAPTER 8. COMPLEXITY ANALYSIS 199

Proposition 8.16 O(p′q′) time is needed for Find Common Modules() to locate

the common modules and calculate the first measure of attraction between modules.

Proof : Step (1) in Find Common Modules() requires O(NC) ≤ p′.

Step (2) requires O(CN ≤ q′). Steps (3) through (5) are computed in

constant time, O(1). So the overall complexity of Find Common Modules()

is O(p′q′).

Find Common Modules(K)
(1) For i= 0 ... nets connected to mod K

(2) For all mods connected to net i
(3) locate common module;
(4) ++tot common mods;
(5) calculate measure1 = common nets;

(6) End For
(7) End For

Proposition 8.17 O(cTc) time is needed for Generate Cells Connections to deter-

mine the type of cells in the network and insert information in the cell lists.

Proof : Step (1) in Generate Cells Connections() is executed c

times. Steps (2) and (3) are done in constant time, O(1). Step (4) which

involves inserting data in the cell info list requires maximum O(Tc) it-

erations. So the overall complexity is O(cTc).

Generate Cells Connections()
(1) For i = 0 ... nmods

(2) find max nets per cell;
(3) register type cell;
(3) insert data in cell info;

– End For

Proposition 8.18 O(nTn) time is needed for Generate Nets Connections to de-

termine the type of nets in the network and insert information in the net lists.

CHAPTER 8. COMPLEXITY ANALYSIS 200

Proof : Step (1) in Generate Nets Connections() is executed n

times. Steps (2) and (3) are done in constant time, O(1). Step (4) re-

quires maximum O(Tn) iterations. So the overall complexity is O(nTn).

Generate Nets Connections()
(1) For i=0 ... nnets

(2) find max cells per net;
(3) register type nets;
(3) insert data in net info;

– End For

Proposition 8.19 O(NclCmcm) time is needed for Form Stat Clusters() to create

the required number of clusters.

Proof : Step (1) in Form Stat Clusters() is executed Ncl times. Steps

(2) and (3) are done in constant time, O(1). Step (4) is executed Ccm ≤

Cmcm times. Step (4b) and (4c) are also executed in constant time,

O(1). So the overall complexity is O(NclCmcm).

FORM STAT CLUSTERS()
(1) FOR i=0 ... Clusters

(2) Find Free Module()
(3) Insert Seed In Cluster()

(4) FOR j=0 ... Common Modules
(a) If Size Cluster ≤ Target

(b) Merge Common Module()
(c) Update Common Modules()

- End FOR

- End FOR

Theorem 8.3 The clustering heuristic based circuit statistics requires O(cq ′p′).

CHAPTER 8. COMPLEXITY ANALYSIS 201

Proof : From Proposition 8.14 through 8.19, the dominant factor is

in locating the common modules in the circuit which requires O(cq ′p′).

Other routines involved are:

• Generate-Clustered-Network(), requires O(n) as proved in Propo-

sition 8.10.

• Assign-Clusters-Blocks(), requires O(c′) as proved in Proposi-

tion 8.11.

• Flatten-Clusters(), requires O(NclCsz) as proved in Proposi-

tion 8.12.

• Local Improve Partition(), requires O(m′Ncl(log Ncl + p′))

• Make-Uniform-Partitions(), requires O(bNcl) as proved in Propo-

sition 8.13.

8.4 Summary

In this chapter a worst case complexity analysis of Tabu Search partitioning heuris-

tic was presented. The computation time required for two clustering techniques

based on GRASP and statistical information was also presented in detail. The

next chapter gives an overview of the whole dissertation, and summarizes the main

contributions made.

Chapter 9

Conclusions and Future Directions

In view of the increasing complexity of VLSI circuits, there is a growing need for

sophisticated CAD tools to automate the synthesis, analysis, and verification steps

in the design of VLSI systems. CAD tools have to enable designs that are too

large or complex to undertake otherwise, shorten design time, improve product

quality, and reduce product costs. Despite significant research efforts in this field,

the CAD tools still lag behind the technological advances in fabrication. This calls

for development of efficient heuristics for physical design automation.

The main goal of this work was to introduce new methodologies to tackle the

combinatorial optimization problems in circuit layout as a means to obtain near

optimal solutions. The approach relies on four main components in the form of:

efficiency, robustness, speed and complexity reduction. A strategy was set to meet

these goals effectively using advanced search techniques, hybridization, clustering

and distributed processing.

The next section summarizes the main accomplishments of this investigation.

Section 9.2 summarizes the best methodology that can be used to solve the circuit

202

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 203

layout problem in particular and other combinatorial optimization problems in

general. Finally, Section 9.3 introduces the possible future directions to further

improve upon the developed strategy.

9.1 Accomplishments

In this thesis, a novel methodology was introduced to tackle and solve the VLSI cir-

cuit layout problem effectively. The methodology is summarized in Figure 9.1. The

primary task of this thesis involved developing and evaluating the performance of re-

cent advanced search methods such as Tabu Search [Reev93], GRASP [?], Simulated

Annealing [?], and Genetic Algorithms [Venk91] on circuit layout. A comparison

was made between advanced search heuristics and traditional techniques in terms

of the execution time, quality of solution, and robustness. We showed the main

advantages and disadvantages of each heuristic and the best parameter setting for

the circuit partitioning problem. Results indicate that advanced search techniques

are effective over traditional methods for solving circuit partitioning efficiently.

The importance of intelligently controlling the performance of a search based

heuristic was demonstrated. As made explicit in Tabu Search, one may choose any

algorithmic framework and superimpose a search controller within this technique

as an intelligent adapter.

We also showed the importance of combining these distinct models of compu-

tation to solve the combinatorial optimization problems in circuit layout. The inte-

gration of Tabu Search and Simulated Annealing gave rise to a hybrid probabilistic

technique that avoids the necessity of unproductive wandering due to randomiza-

tion while producing good effective solutions. Combining GRASP with Tabu Search

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 204

Circuit

Clustering

Placement Partitioning

Hybrids

TS

SA

GRASP

GA

Distributed Processing

Algorithms

Netlist

Figure 9.1: Towards optimal solution of circuit layout

and Genetic Algorithms not only improved the solution quality but also reduced

the computation time effectively. Finally the combination of Tabu Search with

the Genetic Algorithm attempted to combine the strengths of the latter in explor-

ing the solutions space effectively with the former in finely tuning the search in

the most promising regions. Results obtained indicate that the hybridization tech-

niques based on advanced search heuristics generated solutions superior to results

obtained from any of the pure single processing heuristics. The running time of

these methods are much faster than those obtained using the Simulated Annealing

algorithm and Tabu Search implementations based on long and intermediate term

memories.

Another main goal of the dissertation was to reduce the complexity of the de-

sign by utilizing a hierarchical approach to shorten the design period. This was

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 205

achieved by using circuit clustering which plays a fundamental role in reducing

the complexity of the design and improving the performance of the design process.

An attempt was made to assess the quality of solutions obtained by the ad-

vanced, hybrid, clustering techniques in finding near optimal solutions. We com-

pared our results with those obtained by the CPLEX MIP package. Results indicate

clearly that we are truly heading towards optimal solutions for the circuit layout

problem. Another important goal achieved was in improving the performance of the

branch and bound algorithm in solving the circuit partitioning problem using the

CPLEX MIP package. Some of the developed partitioning and clustering heuristics

were used to provide necessary information that helped in reducing the computa-

tion time on average by 70%. This strategy helped in solving some of the problems

that were difficult to solve using the CPLEX MIP package alone in fraction of the

time. and ?? compare circuit partitioning using traditional iterative improvement,

advanced each column represents the amount of the previous method. For example

in the second column for advanced cut-size reduction over the column in each table

represents the overall improvement of clustered-hybrid-advanced search technique

interchange methods. It is clear from the tables that the strategy used is layout

problems in general.

Figure 9.2 compares the results obtained for circuit partitioning using traditional

iterative improvement, advanced search techniques, hybrids and clustering. The

Y1 axis in the first figure represents the different solutions obtained using, Sanchis

interchange method, Tabu Search, TS-GA hybrid, and clustered TS-GA hybrid

respectively. On the other hand the Y2 axis represents the percent of improvement

achieved over using the previous method. For example, the first bar in the Y2

axis represents the amount of improvement in cut-size reduction obtained using the

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 206

FINAL COMPARISON
PRIM2 CIRCUIT

PARTITIONS

CUTS IMPROVEMENTS

2 BLOCK 4 BLOCK 6 BLOCK
0

200

400

600

800

1000

0
10
20
30
40
50
60
70

SANCHIS ADVANCED HYBRID CLUSTERED

ADV-IMP HYB-IMP CLUS-IMP FINAL-IMP

FINAL COMPARISON
IND2 CIRCUIT

PARTITIONS

CUTS (Thousands)

2 BLOCK 4 BLOCK 6 BLOCK
0

1

2

3

45
15
24
65

52
5

49
77

43
4
23
58

%ADV-IMP
%HYB-IMP
%CLUS-IMP
%FINAL-IMP

SANCHIS ADVANCED HYBRID CLUSTERED

Figure 9.2: Effect of strategy on an intermediate and large size circuits

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 207

advanced search heuristic over the traditional Sanchis approach. The final bar in the

first figure represents the overall improvement of using a clustered-hybrid-advanced

search technique over the traditional interchange methods. In the second figure,

the table summarizes the amount of improvement achieved using each methodology

over the previous one. It is clear from the figures that the strategy used is successful

and leads towards near optimal solutions of these layout problems in general.

Our final goal was to increase the processing power available to the execution of

the developed heuristics. Unlike previous parallel algorithms that required special

parallel machines with shared memory or dedicated interconnection networks, the

CAD algorithms ran on a network of workstations in a robust and efficient manner.

Tables 9.1, 9.2 and 9.3 summarize the effect of using advanced search techniques,

hybridization and distributed processing over the traditional Sanchis interchange

method. The tables clearly indicate the advantage of using distributed processing

in improving the computation time of the methodology proposed by an average of

60% over sequential implementations.

Hierarchical Comparison of 2-Way Partitioning

Ckt Sanchis Advanced Hybrid DISTRIBUTED Overall

Time Time IMP Time IMP Time IMP IMP
Prim2 433 284 34% 632 -55% 161 74% 62%
Ind2 2661 2250 15% 3422 -34% 1721 49% 35%

Table 9.1: 2-Way Partitioning: CPU TIME COMPARISON

The different advanced search techniques and hybrids developed, have used the

circuit partitioning as a paradigm for circuit layout. In Chapter 7, some of the

developed heuristics were used effectively to solve the circuit placement problem,

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 208

Hierarchical Comparison of 4-Way Partitioning

Ckt Sanchis Advanced Hybrid DISTRIBUTED Overall

Time Time IMP Time IMP Time IMP IMP
Prim2 787 299 62% 495 -39% 126 74% 83%
Ind2 12729 3902 69% 5087 -23% 1681 66% 86%

Table 9.2: 4-Way Partitioning: CPU TIME COMPARISON

Hierarchical Comparison of 6-Way Partitioning

Ckt Sanchis Advanced Hybrid DISTRIBUTED Overall

Time Time IMP Time IMP Time IMP IMP
Prim2 1382 435 68% 632 -31% 211 66% 84%
Ind2 25132 5373 78% 6600 -18% 1322 79% 94%

Table 9.3: 6-Way Partitioning: CPU TIME COMPARISON

which is more complex than circuit partitioning. A novel automatic placement

method that is suitable for large scale and highly interconnected systems was de-

veloped. The initial placement was obtained using a combined global optimization

algorithm and a partitioning based heuristic. Results obtained indicate that this

initial strategy is successful in placing most modules in their appropriate position.

A Tabu Search placement heuristic was used to further improve the initial place-

ment.

9.2 Summary

Search problems are more like “lock and key” problems in which ideally we want to

use a search algorithm to make the right kind of assumption about the landscape

it is searching (i.e, right key for a given lock). A search heuristic is considered to

be successful in solving a complex optimization problem if it possess the following

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 209

characteristics:

• Capable of starting the search from good initial points in the search space

• Adapts its parameters according to the solution space being searched

• Efficiently searches local neighborhoods

• Explores all regions of the parameter space

• Utilizes historical information about moves made as the search progresses

• Robustness and speed

This dissertation presented search techniques based on (i) pure advanced methods,

(ii) hybrids, (iii) clustering, and a combination of the above mentioned techniques.

Each technique as indicated in the previous chapters has its advantages and disad-

vantages. If we were to decide upon the best heuristic to solve the circuit layout

problem in particular, and other combinatorial optimization problems in general

(given that feasible solutions are easy to obtain), we would recommend the follow-

ing technique as shown in Figure 9.3. This technique is based on GRASP, Genetic

Algorithms, Tabu Search and clustering. The question may well be asked: how

good is this technique in solving a certain combinatorial optimization problem, and

what are its distinguishing features?

9.2.1 Clustered GA-TS Approach

Most real world problems in general and VLSI circuit layout problems in particu-

lar are too complex for any single processing technique to solve in isolation. The

majority of CAD tools available today such as TimberWolf [Sech86], Cadence [?],

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 210

RandomGRASP

Distributed Processing

Genetic Alg

Clustering

Tabu Search

Sequential

ROUTING

PLACEMENT

PARTITIONING

OTHERS

SchedulingTSP

Vehicle
Routing

Adaptive TS

OTHER COMBINATORIAL
OPTIMIZATION PROBLEMS

CAD TOOLS

TimberWolf (SA)

Viewlogic (SA)

Cadence

(min-cut)

CIRCUIT LAYOUT

Figure 9.3: CGA-TS: The Best Overall Search Heuristic

and View-logic [?] for circuit placement rely on a single technique in the form of

Simulated Annealing and variation of the Kernighan and Lin iterative improvement

heuristic. This thesis presented a hybrid methodology that not only produces bet-

ter results than Simulated Annealing or traditional interchange methods, but also

reduces the computation time involved and the complexity of the design process.

The technique we propose in Chapter 5 (CGA-TS), possess all features that

a good search technique should acquire. It is capable of obtaining good initial

solutions through two efficient mechanisms, using GRASP and Genetic Algorithms.

It is very capable of local neighborhood search relying on a powerful technique

based on Tabu Search. In addition, embedding an adaptive controller within Tabu

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 211

Search, enables this technique to identify when and how parameters are stable,

and adjusts these parameters depending on the problem size and structure of the

solution space being searched. CGA-TS is also capable of making use of previous

information collected during the search process, using the short term memory of

Tabu Search and by structured recombination crossover operator of the Genetic

Algorithm. The important role of exploring the solution space is accomplished

through the use of the Genetic Algorithm which processes information fed back to

it from the Tabu Search heuristic. Thus, it is utilized for further intensification and

diversification of the search. Finally, the technique further utilizes clustering for the

following reasons. First, clustering is used to condense the problem being solved

as a means to reduce the complexity of the problem. This is achieved as described

in Chapter 5 by smoothing the landscape of the problem and reducing the number

of local minima in the k-interchange neighborhood structure. This process enables

the local search heuristic to converge to a neighborhood solution in a short period

of time. Secondly, clustering is used to reduce the solution space being explored by

the Genetic Algorithm thus increasing the efficiency of the latter to examine the

solution space effectively.

Distributed processing may be applied to some or all stages of the search process

as seen in Figure 9.3 to increase the processing power available to the execution of

the search heuristic. The main advantage of the Network Multiprocessing Environ-

ment presented in Chapter 6 is in minimizing the running time and improving the

efficiency of the proposed CGA-TS heuristic. Parallelism can be applied at each

stage of the search process by obtaining many good initial solutions, clustering,

performing local search, and finally diversifying the search procedure.

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 212

9.3 Future Work

There are several enhancements and extensions that can be applied to further im-

prove upon the methodology used in this dissertation.

First, one can adapt the same strategy used to control and improve the per-

formance of Tabu Search for other advanced search techniques. Determining an

adaptive parameter setting through a control mechanism would save a vast amount

of time that can be consumed by brute force methods in finding good parameter

settings for advanced search algorithms. This method is robust in the sense that

many parameters adapt according to the properties of the solution space being

searched.

The practical successes of Tabu Search have promoted useful research into ways

to exploit its underlying ideas more fully. At the same time, many facets of these

ideas remain to be explored. The issues of identifying best combinations of short

and long term memory and best balances of intensification and diversification strate-

gies still contain many unexamined corners, and some of them harbor important

discoveries for developing more powerful solution methods in the future.

For combinatorial problems whose complexity suggests the use of heuristic meth-

ods, such as the partitioning, placement and routing in circuit layout, it is worth-

while to have a lower bound on what can be achieved, regardless of the algorithm,

provided the calculation of the bound is itself not too onerous and the bounds de-

rived are not too far from the correct value. The calculation of the bound can be

used as a stopping criteria for many of the search techniques presented in Chap-

ters 3–4. This method restricts the continuation of the search in regions of the

search space that have been explored, thus cutting the overall time of the heuristic.

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 213

The calculation of the bound may itself suggest new approaches to solve or find

approximate solutions to the original problem.

The clustering heuristic presented in Chapter 5 was able to significantly reduce

the complexity of the circuits and improve the performance of the circuit partition-

ing process. Yet, the performance of the clustering algorithm can be enhanced by

resorting to the following techniques:

• incorporating other statistical measures of the circuits being solved to form

highly connected sub-circuits,

• investigate better closeness functions of modules similar to those presented in

Chapter 5,

• reducing the complexity of the statistical clustering heuristic, by computing

some of the information while the circuit is initially being read,

• utilize advanced search techniques such as Tabu Search in the refinement

stage of clustering.

Another possible improvement to the partitioning based heuristics is to use a

“net-based move model” instead of the traditional “node-based move model” used

by almost all iterative improvement based partitioning heuristics. In the “net-based

move model” multiple nodes can be moved since a move is associated with a net

rather than a module. Although the net-based move model provides more insight

into the improvement of current partition, it is more expensive than the node-based

move model, because more nodes are involved in each move.

One way in which we try to improve layout heuristics is to soften the boundaries

between layout phases. In other words, rather than just estimating the effect of

CHAPTER 9. CONCLUSIONS AND FUTURE DIRECTIONS 214

a succeeding layout phase, we integrate that phase into the current layout phase.

An example is the integration between placement and global routing that is being

attempted by several researchers [Dona90].

9.4 Epilogue

Recent years have undeniably witnessed significant gains in solving difficult opti-

mization problems, but it must also be acknowledged that a great deal remains to

be learned. Research in these areas is full of uncharted and inviting landscapes.

Research is an aspect of life which stimulates the birth of many new ideas and di-

rections just by attempting to find a solution for one problem. This research work

has broadened my knowledge in many areas which I never envisaged before starting

this thesis. New ideas will definitely keep me busy for years to come.

Appendix A

Data Structures, and Algorithms

A.1 Complexity of Partitioning Heuristics

Table A.1 summarizes the running time of a series of iterative improvement algo-

rithms for graph and network partitioning.

A.2 Definitions & Data Structures

In this appendix the main procedures and data structures involved in multiple way

Tabu Search partitioning algorithm are presented.

Algorithm Complexity Comments

Kernighan & Lin O(c2 log c) Formulas for computing gain
Fiduccia & Mattheyses O(m) Advanced data structures
Krishnamurthy O(lm) Introduced the concept of level gains
Sanchis O(lmb(log b + pl)) Multi-way uniform partitioning

Table A.1: Computational complexity of circuit partitioning heuristics

215

APPENDIX A. DATA STRUCTURES, AND ALGORITHMS 216

Can-Move

(1) Do

(a) Point to cell with highest gain,

(b) if (Valid-Move)

If (Move-Not-Tabu)

Return (Pointer to cell)

(c) Advance Pointer to next cell with highest gain,

While(gain-ptr is valid)

Valid-Move

- size-source-blk = blocksize[source] -1

- size-dest-blk = blocksize[destination] -1

- If (size-source-blk - blocks[source] ≤ TOLERANCE)

AND if (size-dest-blk - blocks[dest] ≤ TOLERANCE)

return(TRUE)

- Else return (FALSE)

Move-Not-Tabu

(1) PTR = TabuList[Module]

(2) If (PTR 6= NULL)

(a) Module-In-TabuList = TRUE

(b) if(Aspiration Condition Met)

return (TRUE)

Else return (FALSE)

Else Return(TRUE)

Make-Move()

(1) C = Nextmove.cell, Aj = Nextmove.source, Ak = Nextmove.target;

(2) For each net N connected to C

(a) For (All blocks)

if(Net is Critical before Move)
Update gain of all cells on net N
Adjust Bucket-Gain-List

APPENDIX A. DATA STRUCTURES, AND ALGORITHMS 217

End For

(b) Update net parameters

(c) if (Net is Critical after Move)

Update gain cells affected
Adjust Bucket-Gain-List

End For

Beta-Prime()

• if N is free then

– β′
Ak

= cN − φAk
(N)

• else if N is loose then

– β′
Ak

= cN − φAk
(N)− 1

• else if βAk
6=∞

– β′
Ak

=∞

Update-TabuList

- PTR = TabuList[Module]

- delete entry at head of the list

- link new entry to head of the list

- adjust tail of the list

- link PTR to new entry,

Update-Gain(C, Ak, N)

- let Aj be the block to which C belongs

- increment the gain for moving cell C to Ak

Reverse-Update-Gain(C, Ak, N)

- let Aj be the block to which C belongs

- decrement the gain for moving cell C to Ak

Appendix B

NMP Routines

B.1 Connection Based Routines

The basic SendNode and RecvNode routines do not check the connectivity of their

destination and source nodes. An attempt to send to or receive from a non-existent

or non-connected node will return an error code and produce a message on the

standard error channel. The following routines are used to determine the status

of the NMP connection configuration. To find out if a node is connected to the

current node, call IsConnected(NodeId) The configured connection between two

other nodes may be determined by AreConnected(NodeId1, NodeId2) To know if

the entire configuration was successfully started, use: MadeConn()

B.2 Identification Routines

The following routines are used to access the internal state of the NMP structures:

A node can determine the name of the machine it’s running on, using GetHost().

218

APPENDIX B. NMP ROUTINES 219

To find out the host machine name of another NMP node, use GetAnyHost(NodeId)

To find out the total number of nodes in the NMP, use GetNodes() A node may

determine its own node ID by calling, GetMyId()

B.3 Timing Routines

Two clock routines are provided for system-consistent timing of programs, clock start()

and clock stop(rt,ut,st,it) These calls may be nested, clock stop terminating the

most recent instance of clock start(). The real time is returned in rt, the user time

in ut the system time in st and the idle time it. All times are in milliseconds.

B.4 Dynamic Reconfiguration of the System

When the application needs to change its configuration while running, it may add

nodes and connections. Nodes can delete themselves by calling NodeClose. The

following procedure creates a new node to participate in the NMP and establishes

a connection between it and the node issuing the call: AddNode(HostName, Ex-

ecFileName, Sin, Sout, Serr, Bits). To create a new connection between existing

nodes, use AddConnect(Type, NodeId). The connection matrix is updated only in

the two nodes involved. The other nodes know nothing of this new connection.

Appendix C

Complete Tabulated Results

This appendix presents results tabulated for all benchmarks introduced in Chap-

ter 3. In the next few sections we summarize results obtained for:

• Advanced search techniques.

• Hybrid search techniques.

• Results based on clustering.

• Distributed processing results.

In each section, results for 2,4 and 6 way partitioning are presented. Also, the

amount of improvement achieved of using a certain method over previous used

methods are indicated.

220

APPENDIX C. COMPLETE TABULATED RESULTS 221

C.1 Results of Advanced Search Techniques

Circuit Sanchis SDHC Solution Quality
Cuts Time Cuts Time %IMP Passes

Chip1 20 0.4 20 1.3 0% 3/3
Chip2 16 0.4 14 2.5 12% 4/10
Prim1 106 1.7 75 5.6 29% 5/25
Prim2 322 9.7 248 36.6 29% 9/48
Ind1 97 5.8 76 14.9 21% 8/17
Bio 180 20.9 135 61.2 25% 12/18
Ind2 677 74.4 278 153.1 58% 19/35
Ind3 659 50.5 440 237.3 33% 7/33

Table C.1: 2 Way Partitioning SDHC

Circuit Sanchis SDHC Solution Quality
Cuts Time Cuts Time %IMP Passes

Chip1 55 0.8 55 3.0 0% 7/7
Chip2 45 0.6 36 3.0 20% 5/47
Prim1 171 2.2 134 11 21% 5/29
Prim2 761 16.9 682 66 10% 6/31
Ind1 259 9.1 215 35 17% 7/45
Bio 762 56.5 592 223 22% 8/43
Ind2 2282 283 2019 579 12% 17/39
Ind3 2583 180 2206 813 15% 10/63

Table C.2: 4 Way Partitioning SDHC

APPENDIX C. COMPLETE TABULATED RESULTS 222

Circuit Sanchis SDHC Solution Quality
Cuts Time Cuts Time %IMP Passes

Chip1 90 0.8 74 1.7 18% 4/11
Chip2 70 0.9 61 4.3 13% 5/42
Prim1 203 3.3 162 14.3 20% 6/44
Prim2 890 27.7 782 108 12% 5/42
Ind1 431 21.2 411 61 5% 9/27
Bio 922 109 763 379 17% 9/50
Ind2 2706 350 2319 1368 14% 15/49
Ind3 2655 150 2655 300 0% 9/9

Table C.3: 6 Way Partitioning SDHC

APPENDIX C. COMPLETE TABULATED RESULTS 223

Ckt INTER GRASP % IMP
Cuts Time Cuts Time Cuts Time

Chip1 20 18 20 2.4 - 78%
Chip2 15 19 14 1.7 6% 91%
Prim1 60 91 56 14.0 6% 84%
Prim2 226 433 179 66 21% 84%
ind1 42 211 50 28.8 -16% 86%
Bio 102 1058 89 124 13% 88%
ind2 593 2661 325 155 45% 87%
ind3 514 2294 520 123 -1% 94%
AVG 196 848 156 64 20% 92%

Table C.4: GRASP 2-Way partitioning

Ckt INTER GRASP % IMP
Cuts Time Cuts Time Cuts Time

Chip1 55 27.4 59 3.4 -6% 87%
Chip2 39 24.4 31 3.5 20% 85%
Prim1 155 96.4 127 12 18% 87%
Prim2 627 787 438 102 30% 87%
Ind1 259 526 160 42 38% 91%
Bio 680 2627 386 213 43% 91%
Ind2 2102 12729 1148 312 45% 97%
Ind3 2183 5874 1898 432 13% 92%
AVG 762 2836 530 140 30% 95%

Table C.5: GRASP 4-Way partitioning

APPENDIX C. COMPLETE TABULATED RESULTS 224

Ckt INTER GRASP % IMP
Cuts Time Cuts Time Cuts Time

Chip1 77 39.4 67 4.8 13% 87%
Chip2 63 40.2 59 4.6 6% 88%
Prim1 181 133 153 18.8 15% 85%
Prim2 773 1382 644 101 17% 92%
Ind1 364 769 303 85 17% 89%
Bio 821 4657 451 359 45% 92%
Ind2 2430 25132 1464 1066 40% 96%
Ind3 2640 13131 2843 371 -7% 97%
AVG 918 5660 748 251 18% 95%

Table C.6: GRASP 6-Way partitioning

APPENDIX C. COMPLETE TABULATED RESULTS 225

Circuit GA (Penalty) GA (Rep Sim) GA (Rep Adv)
Cuts Time Cuts Time Cuts Time

Chip1 143 0.5 60 0.7 25 3.5
Chip2 117 0.5 61 0.9 22 3.2
Prim1 521 1.4 121 2.0 81 9.8
Prim2 1885 5.3 302 7.2 190 36.3
Ind1 1278 4.0 279 5.3 74 25.2
Bio 3346 10.9 1748 14.6 321 75
Ind2 7607 22.8 2356 29.9 572 166
Ind3 13621 32.1 2307 41.9 930 222

Table C.7: Comparison of GA Techniques for 2 Way Partitioning

Circuit GA (Penalty GA (Rep Sim) GA (Rep Adv)
Cuts Time Cuts Time Cuts Time

Chip1 224 0.5 113 0.6 65 4.9
Chip2 185 0.5 107 0.6 62 4.1
Prim1 697 1.5 288 1.9 177 14.1
Prim2 2389 5.1 900 6.9 529 54.1
Ind1 1705 3.8 616 5.0 183 39.2
Bio 4506 10.9 2846 14.4 1677 105
Ind2 10129 21.1 5073 28.6 2363 243.2
Ind3 17508 28.1 4582 39.5 2444 365

Table C.8: Comparison of GA Techniques for 4 Way Partitioning

APPENDIX C. COMPLETE TABULATED RESULTS 226

Circuit GA (Penalty) GA (Rep Sim) GA (Rep Adv)
Cuts Time Cuts Time Cuts Time

Chip1 240 0.7 141 0.6 86 6.8
Chip2 200 0.4 129 0.7 79 5.4
Prim1 755 1.5 353 1.9 189 18.6
Prim2 2550 5.1 1192 6.8 671 71.1
Ind1 1816 3.8 1043 5.0 427 52.2
Bio 4831 10.5 3050 13.9 1759 142
Ind2 10849 20.9 6322 28.8 3342 368
Ind3 18474 27.8 6959 40.1 2890 495

Table C.9: Comparison of GA Techniques for 6 Way Partitioning

APPENDIX C. COMPLETE TABULATED RESULTS 227

Circuit Eigen GRASP GA
Cuts Time Cuts Time Cuts Time

Chip1 42 3.9 46 0.3 25 3.5
Chip2 32 3.4 28 0.1 22 3.2
Prim1 181 10.4 101 1.0 81 9.8
Prim2 694 35.4 404 4.8 190 36.3
Ind1 244 15.8 185 3.9 74 25.2
Bio 440 95.5 293 11.7 321 75
Ind2 1334 169 621 24.1 572 166
Ind3 3188 151 1819 30.9 930 222

Table C.10: Constructive Methods for 2-Way Partitioning

Ckt Eigen GRASP GA
Cuts Time Cuts Time Cuts Time

Chip1 80 7.8 83 0.2 65 4.9
Chip2 51 5.1 43 0.2 62 4.1
Prim1 298 13.5 185 2.2 177 14
Prim2 925 183 569 8.8 529 54
Ind1 359 45.1 216 7.1 183 39
Bio 872 163 426 26 1677 105
Ind2 4643 234 1345 78 2363 243
Ind3 6627 647 2456 70 2444 365

Table C.11: Constructive Methods for 4-Way Partitioning

APPENDIX C. COMPLETE TABULATED RESULTS 228

Circuit Eigen GRASP GA
Cuts Time Cuts Time Cuts Time

Chip1 91 9.9 85 0.7 86 6.8
Chip2 83 7.9 66 0.3 79 5.4
Prim1 329 22.4 203 2.7 189 18.6
Prim2 1095 333 662 18.9 671 71.1
Ind1 415 81.5 328 10.2 427 52.2
Bio 805 295 472 42.5 1759 142
Ind2 4530 555 1649 173 3342 368
Ind3 7254 653 3521 149 2890 495

Table C.12: Constructive Methods for 6-Way Partitioning

APPENDIX C. COMPLETE TABULATED RESULTS 229

Circuit TS ATS Improvement
Cuts Time Cuts Time Improvement

Chip1 20 13.3 20 0.6 -
Chip2 14 6.9 14 7.9 -
Chip3 7 7.4 7 4.8 -
Chip4 13 5.7 8 4.2 38%
Prim1 59 52.6 55 5.6 7%
Prim2 240 3:25 221 5:57 8%
Ind1 59 1:31 28 202 52%
Bio 144 3:45 134 4:52 6%
Ind2 805 21:10 638 51:39 21%
Ind3 462 28:52 357 73:56 23%

Table C.13: 2 Way Partitioning Results Using Adaptive Tabu Search

Circuit TS ATS Improvement
Cuts Time Cuts Time Improvement

Chip1 49 12.3 51 11.4 -
Chip2 35 6.9 30 12.3 14%
Chip3 28 4.6 30 14.1 -
Chip4 21 5.7 20 13.0 5%
Prim1 126 50.2 122 44.4 3%
Prim2 663 1:52 541 551 18%
Ind1 135 2:53 124 285 8%
Bio 509 6:0 494 358 3%
Ind2 2323 26:23 1711 48:2 26%
Ind3 2139 54:5 1752 101:1 18%

Table C.14: 4 Way Partitioning Results Using Adaptive Tabu Search

APPENDIX C. COMPLETE TABULATED RESULTS 230

Circuit TS ATS Improvement
Cuts Time Cuts Time Improvement

Chip1 64 12.5 61 16.3 5%
Chip2 38 13.8 39 11.3 -
Chip3 41 10.5 40 14.9 2%
Chip4 27 3.0 27 18.6 -
Prim1 159 1:13 134 127 16%
Prim2 769 1:46 664 552 14%
Ind1 230 5:14 176 606 23%
Bio 791 6:29 666 21:0 16%
Ind2 2662 17:5 1827 56:0 31%
Ind3 2623 44:3 1874 105:0 28%

Table C.15: 6 Way Partitioning Results Using Adaptive Tabu Search

APPENDIX C. COMPLETE TABULATED RESULTS 231

C.2 Results of Hybrid Search Techniques

APPENDIX C. COMPLETE TABULATED RESULTS 232

GRASP-GENETIC SEARCH HYBRID
Circuit Blocks Random-GA GRASP-GA %IMP

Cuts Time Cuts Time Cuts

Chip1 2 Blks 20 37.2 20 17.0 -
4 Blks 57 52.9 48 25.5 16%
6 Blks 83 72.1 73 42.4 12%

Chip2 2 Blks 16 39.3 17 42.8 -
4 Blks 47 50.0 43 59.6 9%
6 Blks 68 62.7 57 69.3 16%

Chip3 2 Blks 7 34.8 7 36.4 -
4 Blks 37 41.8 37 45.9 -
6 Blks 46 48.5 46 52.9 -

Chip4 2 Blks 8 35.3 8 37.2 -
4 Blks 31 51.1 30 49.5 3%
6 Blks 48 55.7 50 59.5 -4%

Prim1 2 Blks 76 113 70 140 8%
4 Blks 158 163 130 208 17%
6 Blks 171 216 158 276 8%

Prim2 2 Blks 168 213 169 236 -
4 Blks 454 202 343 230 24%
6 Blks 608 269 520 306 14%

Ind1 2 Blks 68 376 56 393 18%
4 Blks 117 558 109 609 7%
6 Blks 272 581 200 683 26%

Ind2 2 Blks 461 1055 435 866 6%
4 Blks 1949 1656 1129 1378 42%
6 Blks 2895 2179 1559 1818 46%

Ind3 2 Blks 645 5285 362 5173 44%
4 Blks 1674 7825 1639 8189 2%
6 Blks 2832 5506 2381 7182 16%

Table C.16: Results of GRASP-GA hybrid implementation

APPENDIX C. COMPLETE TABULATED RESULTS 233

Circuit Blks RAND-TS EIG-TS GRASP-TS GA-TS
Cuts Time Cuts Time Cuts Time Cuts Time

Chip1 2 20 13.4 20 12.6 20 10.2 20 9.4
4 49 12.3 46 11.8 52 11.4 54 9.0
6 64 12.4 59 23.8 55 20.5 56 17.1

Chip2 2 19 1.3 17 3.6 14 4.5 14 5.4
4 39 4.8 34 5.4 31 6.8 30 7.1
6 64 7.8 58 8.2 40 12.8 35 13.2

Prim1 2 72 15.0 61 31.2 60 17.9 58 19.3
4 126 39.8 119 46.6 102 56.8 115 40.6
6 168 38.8 140 49.8 140 31.5 136 55.3

Ind1 2 59 1:31 37 1:34 63 1:12 45 0:58
4 135 2:53 135 2:40 129 4:19 98 2:13
6 230 5:23 144 2:51 185 2:42 157 3:06

Prim2 2 240 3:21 198 2:50 236 2:47 170 1:37
4 663 1:50 408 3:19 368 7:37 371 2:27
6 769 1:44 534 5:57 595 2:20 569 2:55

Bio 2 144 3:37 199 3:46 87 3:19 186 2:52
4 509 6:13 275 4:53 386 4:55 529 5:02
6 791 6:46 353 6:52 413 5:47 481 9:26

Ind2 2 675 1710 520 1809 388 1381 286 821
4 2259 1752 1804 1318 1189 1602 1403 1272
6 2682 1733 1803 2171 1371 3038 1537 1132

Ind3 2 1618 4:47 1615 18:49 521 7:19 686 14:18
4 3153 39:18 2825 43:26 1556 4:55 1858 16:00
6 4120 26:17 3471 24:04 2944 9:55 1900 20:59

Table C.17: Effective hybrid search techniques

APPENDIX C. COMPLETE TABULATED RESULTS 234

Circuit SA SAM % IMPROVE
Cuts Time Cuts Time Cuts Time

Chip1 20 98 20 43 - 56%
Chip2 14 93 14 52 - 44%
Prim1 65 360 56 156 13% 56%
Prim2 224 900 222 528 0.5% 41%
Ind1 89 1004 37 468 58% 53%
Bio 199 2920 150 1759 25% 39%
Ind2 694 6420 425 2634 38% 59%
Ind3 655 9425 563 5685 14% 40%

Table C.18: 2 Way Partitioning for SAM Hybrid Heuristic

Circuit SA SAM % IMPROVE
Cuts Time Cuts Time Cuts Time

Chip1 45 393 46 196 -3% 50%
Chip2 29 326 26 167 10% 48%
Prim1 106 1311 105 619 1% 52%
Prim2 365 4312 346 2327 5% 46%
Ind1 141 3922 138 1875 2% 52%
Bio 327 217:0 338 94:4 -3% 56%
Ind2 809 422:3 849 262:5 -5% 38%
Ind3 1668 668:1 1668 285:24 - 57%

Table C.19: 4 Way Partitioning for SAM Hybrid Heuristic

APPENDIX C. COMPLETE TABULATED RESULTS 235

Circuit SA SAM % IMPROVE
Cuts Time Cuts Time Cuts Time

Chip1 54 715 55 366 -1% 48%
Chip2 32 553 32 298 - 46%
Prim1 124 2440 123 1190 1% 51%
Prim2 428 10736 429 5880 - 45%
Ind1 182 7629 183 3740 -1% 51%
Bio 387 440:27 402 209:3 -3% 52%
Ind2 1395 799:27 1424 519:11 -2% 35%
Ind3 2801 1340:1 2442 714:34 13% 47%

Table C.20: 6 Way Partitioning for SAM Hybrid Heuristic

APPENDIX C. COMPLETE TABULATED RESULTS 236

C.3 Results of Clustering Techniques

Circuit ITER FLAT ITER CLUS REDUCTION
Cuts Time Cuts Time % Cuts Time

Chip1 20 17.3 20 1.2 0% 93%
Chip2 15 19.3 18 0.5 -16% 97%
Prim1 60 91.1 57 5.2 +5% 94%
Prim2 226 433 176 34.5 +22% 92%
Bio 102 1058 111 190 -8% 82%
ind1 42 211 45 25.4 -7% 88%
ind2 593 2661 337 446 +43% 83%
ind3 514 2294 414 300 +19% 87%

Table C.21: 2 way iterative improvement clustering results

Circuit ITER FLAT ITER CLUS REDUCTION
Cuts Time Cuts Time Cuts Time

Chip1 55 27.4 52 0.7 +6% 97%
Chip2 39 24.4 44 0.7 -11% 97%
Prim1 155 96.4 101 3.5 +34% 96%
Prim2 627 787 305 24.3 +51% 97%
Bio 680 2627 244 90.3 +64% 96%
ind1 259 526 142 13.4 +45% 97%
ind2 2102 12729 826 264 +60% 98%
ind3 2183 5874 1124 310 +48% 95%

Table C.22: 4 way iterative improvement clustering results

APPENDIX C. COMPLETE TABULATED RESULTS 237

Circuit ITER FLAT ITER CLUS REDUCTION
Cuts Time Cuts Time Cuts Time

Chip1 77 39.4 60 0.9 +22% 98%
Chip2 63 40.2 52 0.8 +17% 98%
Prim1 181 133 141 4.4 +22% 96%
Prim2 773 1382 462 26.2 +40% 98%
Bio 821 4657 531 94.3 +35% 98%
ind1 364 769 190 18.7 +47% 97%
ind2 2430 25132 1041 303 +57% 99%
ind3 2640 13131 1761 390 +33% 97%

Table C.23: 6 way iterative improvement clustering results

APPENDIX C. COMPLETE TABULATED RESULTS 238

Circuit GA FLAT GA CLUS REDUCTION
Cuts Time Cuts Time Cuts Time

Chip1 25 3.5 26 1.6 -3% 54%
Chip2 22 3.1 18 1.6 +18% 48%
Chip3 8 2.3 9 1.3 -11% 43%
Chip4 10 2.7 9 1.3 +10% 51%
Prim1 81 9.8 79 6.1 +3% 37%
Prim2 190 36.3 183 28.5 +4% 21%
Bio 321 75 152 96.7 +52% -
ind1 74 25.2 92 20.2 -19% 19%
ind2 572 166 360 266 +37% -
ind3 930 222 458 545 +50% -

Avg % 14.1% 27.3 %

Table C.24: 2 way genetic clustering results

APPENDIX C. COMPLETE TABULATED RESULTS 239

Circuit GA FLAT GA CLUS REDUCTION
Cuts Time Cuts Time Cuts Time

Chip1 65 4.9 55 3.0 +15% 38%
Chip2 62 4.1 36 2.8 +42% 31%
Chip3 50 3.2 40 2.5 +20% 21%
Chip4 50 3.6 32 2.4 +36% 33%
Prim1 177 14.1 143 9.2 +19% 34%
Prim2 529 54.0 371 40.6 +29% 26%
Bio 1677 105 442 255 +73% -
ind1 183 39.1 131 23.6 +28% 41%
ind2 2363 274 1139 464 +51% -
ind3 2444 377 1568 902 +36% -

Avg % +34.9% +22.4%

Table C.25: 4 way genetic clustering results

Circuit GA FLAT GA CLUS REDUCTION
Cuts Time Cuts Time Cuts Time

Chip1 86 6.8 72 5.7 +17% 16%
Chip2 79 5.4 45 5.3 +43% -
Chip3 56 4.1 50 3.7 +11% 10%
Chip4 68 4.8 41 4.8 +39% -
Prim1 189 18.6 164 17.2 +13% 8%
Prim2 671 71.1 547 63.2 +18% 11%
Bio 1759 142 609 255 +65% -
ind1 427 52.2 253 39.1 +40% 25%
ind2 3342 368 1490 984 +55% -
ind3 2890 495 2356 861 +18% -

Table C.26: 6 way genetic clustering resulsts

APPENDIX C. COMPLETE TABULATED RESULTS 240

Circuit TS FLAT TS CLUS REDUCTION
Cuts Time Cuts Time Cuts Time

Chip1 20 14.0 20 6.1 0% 56%
Chip2 14 10.3 14 5.3 0% 48%
Prim1 54 47.4 64 23.3 -15% 51%
Prim2 181 284 166 139 +8% 51%
Bio 127 321 160 200 -20% 37%
ind1 45 147 54 66.4 -16% 55%
ind2 323 2250 333 1080 -3% 52%
ind3 305 2822 399 1884 -23% 33%

Table C.27: 2 way Tabu Search clustering results

Circuit TS FLAT TS CLUS REDUCTION
Cuts Time Cuts Time Cuts Time

Chip1 47 23.5 48 16.2 -2% 31%
Chip2 29 19.2 30 13.8 -3% 28%
Prim1 102 100 93 55.2 +8% 45%
Prim2 357 299 309 206 +13% 31%
Bio 317 836 258 299 +18% 64%
ind1 121 382 86 100 +29% 73%
ind2 991 3902 628 1251 +36% 67%
ind3 1817 8668 1775 1971 +3% 77%

Table C.28: 4 way Tabu Search clustering results

APPENDIX C. COMPLETE TABULATED RESULTS 241

Circuit TS FLAT TS CLUS REDUCTION
Cuts Time Cuts Time Cuts Time

Chip1 58 37 58 10.5 0% 71%
Chip2 37 25.5 41 11.9 -9% 63%
Prim1 139 78 129 51.6 +7% 33%
Prim2 562 435 459 165 +18% 62%
Bio 423 820 414 436 +2% 62%
ind1 193 819 147 228 +24% 72%
ind2 1375 5373 1047 560 +23% 89%
ind3 2801 10917 1775 1971 +36% 81%

Table C.29: 6 way Tabu Search clustering results

APPENDIX C. COMPLETE TABULATED RESULTS 242

C.4 Results of Distributed Processing Methods

Circuit SEQUENTIAL PARALLEL (10) Xs
Cuts Time Cuts Time

Chip1 20 1.3 20 0.42 3
Chip2 15 0.9 15 0.2 4
Prim1 75 5.8 75 1.1 5
Prim2 243 33.9 243 4.6 7

bio 143 75 143 10.7 7
ind1 50 18.7 50 3.1 6
ind2 593 206 593 33.1 6
ind3 519 199 519 28.4 7

Table C.30: 2-way Distributed Local Search

Circuit SEQUENTIAL PARALLEL (10) Xs
Cuts Time Cuts Time

Chip1 54 2.0 54 0.5 4
Chip2 39 1.4 39 0.3 5
Prim1 155 7.4 155 1.2 6
Prim2 627 59.5 627 8.7 7
Bio 724 200 724 27.3 7
ind1 259 26.3 259 5.1 5
ind2 2179 995 2179 141.3 7
ind3 2101 481 2101 72.3 7

Table C.31: 4-way Distributed Local Search

APPENDIX C. COMPLETE TABULATED RESULTS 243

Circuit SEQUENTIAL PARALLEL (10) Xs
Cuts Time Cuts Time

Chip1 77 2.4 77 0.5 5
Chip2 66 2.2 66 0.4 6
Prim1 181 9.2 181 1.1 8
Prim2 773 110 773 12.3 9
Bio 821 350 821 60.1 6
Ind1 364 60.5 364 7.4 8
Ind2 2486 1967 2486 280 7
Ind3 2689 747 2689 103 7

Table C.32: 6-way Distributed Local Search

APPENDIX C. COMPLETE TABULATED RESULTS 244

Circuit SEQUENTIAL PARALLEL (10) Xs
Cuts Time Cuts Time

Chip1 20 68.7 20 7.6 9
Chip2 15 56.2 16 6.3 8.9
Prim1 76 185 75 22.4 8
ind1 67 484 66 74 6.5

Prim2 168 697 171 111 6.2
Bio 282 1982 284 237 8.3
ind2 333 2976 328 559 5.3
ind3 649 4007 645 504 7.9

Table C.33: 2-way Distributed Genetic Search

Circuit SEQUENTIAL PARALLEL (10) Xs
Cuts Time Cuts Time

Chip1 54 92.3 52 14 6.5
Chip2 45 78.5 48 9.2 8.5
Prim1 151 268 155 34.7 7.7
ind1 120 716 136 101 7.0

Prim2 403 1023 425 165 6.2
Bio 1164 3053 1146 352 8.6
ind2 1812 4984 1964 503 9.9
ind3 1593 6495

Table C.34: 4-say Distributed Genetic Search

APPENDIX C. COMPLETE TABULATED RESULTS 245

Circuit SEQUENTIAL PARALLEL (10) Xs
Cuts Time Cuts Time

Chip1 77 121 76 14.7 8.2
Chip2 66 104 67 17.1 6.1
Prim1 162 356 172 47.9 7.5
ind1 228 991 263 149 6.6

Prim2 564 1350 592 213 6.3
Bio 1549 4065 1158 478 8.5
ind2 2698 6789 2837 1136 5.9
ind3 2536 8417 2742 1033 8.1

Table C.35: 6-way Distributed Genetic Search

Publications Resulting from This Research

1. S. Areibi and A. Vannelli, S. Areibi and A. Vannelli, “A Combined Eigenvector
Tabu Search Approach For Circuit Partitioning”, In Proceedings of the 1993 Custom
Integrated Circuits Conference, pp. 9.7.1 – 9.7.4, San Diego, 1993.

2. S. Areibi and A. Vannelli, “Circuit Partitioning Using A Tabu Search Approach”,
In 1993 IEEE International Symposium on Circuits and Systems, pp. 1643–1646,
Chicago, Illinois, 1993.

3. S. Areibi and A. Vannelli, “Advanced Search Techniques for Circuit Partitioning”,
In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pp.
77–98, Rutgers State University, New Jersey, 1993.

4. S. Areibi and A. Vannelli, “An Efficient Solution to Circuit Partitioning Using
Tabu Search and Genetic Algorithms”, In 6th International Conference of Micro
Electronics, pp. 70-74, Istanbul, Turkey, 1994.

5. S. Areibi and A. Vannelli, “Advanced Search Heuristics for Circuit Partitioning
and Placement”, To be submitted to : Journal of Heuristics, March, 1995.

6. S. Areibi and A. Vannelli, “Parallel Implementations of Advanced Search Tech-
niques”, To be submitted to : IEEE Transactions On Parallel and Distributed
Systems, April, 1995.

7. S. Areibi and A. Vannelli, “An Efficient Clustering Technique for Circuit Partition-
ing”, To be submitted to : IEEE Transactions On VLSI Systems, May, 1995.

246

Bibliography

[Agul76] B.J. Agule, P.k. Wolff, and M. Hanan, “Some Experimental Results on
Placement Techniques,” In Proceedings of The 13th DAC, pp. 214–224,
IEEE/ACM, San Francisco, California, 1976.

[Arei93] S. Areibi and A. Vannelli, “A Combined Eigenvector Tabu Search Ap-
proach for Circuit Partitioning,” In Proceedings of The 1993 Custom
Integrated Circuits Conference, pp. 9.7.1 – 9.7.4, San Diego, 1993.

[Bane94] Prithviraj Banerjee, Parallel Algorithms for VLSI Computer Aided De-
sign, Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[Barn82] E.R. Barnes, “An Algorithm for Partitioning The Nodes of a Graph,”
SIAM Journal of Algebraic and Discrete Methods, vol. 3, No. 4, pp.
541–550, December 1982.

[Bert82] P.M. Bertolazzi and A.M Spaccamela, “Analysis of a Class of Graph
Partitioning Problems,” R.A.I.R.O Theoretical Informatics, vol. 16, pp.
255–261, 1982.

[Blan85] J.P. Blanks, “Near Optimal Quadratic Based Placement for a Class of
IC Layout Problems,” IEEE Circuits and Devices, vol. 1, No. 6, pp.
31–37, September, 1985.

[Blan91] J. Bland and G. Daswon, “Tabu Search and Design Optimization,”
ORSA Journal of Computing, vol. 23, No. 3, pp. 195–201, April 1991.

[Breu77] M.A. Breuer, “A Class of Min-Cut Placement Algorithms,” In Pro-
ceedings of The 14th DAC, pp. 284–290, IEEE/ACM, New Orleans,
Louisiana, 1977.

[Bui87] T.N. Bui, S. Chaudhuri, F.T. Leighton, and M. Sipser, “Graph Bisection
Algorithms with Good Average Case Behavior,” Combinatorica, vol. 7,
No. 2, pp. 171–191, 1987.

[Bui89] T.N. Bui, “Improving The Performance of the Kernighan Lin and Sim-
ulated Annealing Graph Bisection,” In Proceedings of 26th DAC, pp.
775–778, ACM/IEEE, Las Vegas, Nevada, June 1989.

247

BIBLIOGRAPHY 248

[Carv89] C. Carvalho, D. Falco, and B. Apolloni, “Quantum Stochastic Optimiza-
tion,” Stochastic Processes and Their Applications, vol. 33, No. 2, pp.
233–244, 1989.

[Caso87] A. Casotto, F. Romeo, and A. Sangiovanni, “A Parallel Simulated An-
nealing Algorithm for The Placement of Macro-Cells,” IEEE Transac-
tions on Computer-Aided Design, vol. 6, No. 5, pp. 838–847, September
1987.

[Chan94] P.K. Chan, D.F. Schlag, and J.Y. Zien, “Spectral K-way Ratio-Cut Par-
titioning and Clustering,” IEEE Transactions on Computer Aided De-
sign, vol. 13, No. 9, pp. 1088–1096, 1994.

[Chen84] C. Cheng and E. Kuh, “Module Placement Based on Resistive Network
Optimization,” IEEE Transaction on Computer Aided Design, vol. 3,
pp. 218–225, 1984.

[Chen92] C. Cheng, C. Yeh, and T. Lin, “A Probabilistic Multicommodity-Flow
Solution to Circuit Clustering Problems,” In IEEE International Con-
ference on CAD, pp. 428–431, 1992.

[Coho91] J.P. Cohoon, S.U. Hegde, W.N. Martin, and D.S Richards, “Distributed
Genetic Algorithms for The Floorplan Design Problem,” IEEE Trans-
action on Computer Aided Design, vol. 10, No. 4, pp. 483–492, 1991.

[Cong91] J. Cong, L. Hagen, and A. Kahng, “Random Walks for Circuit Clus-
tering,” In Proceedings IEEE International Conference on ASIC, pp.
14.2.1–14.2.4, June 1991.

[Dare87] F. Darema, S. Kirkpatrick, and V.A. Norton, “Parallel Algorithms for
Chip Placement By Simulated Annealing,” IBM Journal of Research
and Development, vol. 31, No. 3, pp. 391–402, May 1987.

[Davi88] L. Davis, Genetic Algorithms and Simulated Annealing, Morgan Kauf-
mann Publishers, Inc, Los Altos, California, 1988.

[Dona73] W.E. Donath and A.J. Hoffman, “Lower Bounds for The Partitioning of
Graphs,” IBM Journal of Research and Development, IBM, vol. 17, No.
5, pp. 420–425, 1973.

[Dona90] W. Donath, “Timing Driven Placement Using Complete Path Delay,” In
Proceedings of The 27th DAC, pp. 84–89, IEEE/ACM, Orlando, Florida,
1990.

[Feo94] T. Feo, M. Resende, and S. Smith, “A Greedy Randomized Adaptive
Search Procedure for The Maximum Independent Set,” Journal of Op-
erations Research, vol. 42, pp. 860–878, 1994.

[Fidu82] C.M. Fiduccia and R.M. Mattheyses, “A Linear-Time Heuristic for Im-
proving Network Partitions,” In Proceedings of 19th DAC, pp. 175–181,
ACM/IEEE, Las Vegas, Nevada, June 1982.

BIBLIOGRAPHY 249

[Fran86] J. Frankle and R.M. Karp, “Circuit Placement and Cost Bounds
By Eigenvector Decomposition,” In IEEE International Conference on
CAD, pp. 414–417, Santa Clara, California, 1986.

[Garb90] J. Garbers, H.J. Promel, and A. Steger, “Finding Clusters in VLSI Cir-
cuits,” In IEEE International Conference on CAD, pp. 520–523, 1990.

[Gill81] P.E. Gill, W. Murray, and M.H. Wright, Practical Optimization, Aca-
demic Press, New York, New York, 1981.

[Glov90] F. Glover, “Tabu Search Part II,” ORSA Journal on Computing, vol. 2,
No. 1, pp. 4–32, 1990.

[Goon92] S. Goonatilake and S. Khebbal, “Intelligent Hybrid Systems,” 1992 To
Appear In: Proceedings of the First Singapore International Conference
on Intelligent Systems.

[Goto86] S. Goto and T. Matsuda, “Partitioning, Assignment and Placement,” In
Layout Design and Verification, pp. 99–132, North Holland, 1986.

[Hach89] G. Hachtel and C. Morrison, “Linear Complexity Algorithms for Hier-
archical Routing,” IEEE Transactions on Computer Aided Design, vol.
8, No. 1, pp. 64–80, 1989.

[Hadl92] S.W. Hadley, B.L. Mark, and A. Vannelli, “An Efficient Eigenvector
and Node Interchange Approach for Finding Netlist Partitions,” IEEE
Transactions on CAD/ICAS, vol. 11, No. 7, pp. 885–892, July 1992.

[Hage92] L. Hagen and A.B. Kahng, “A New Approach to Effective Circuit Clus-
tering,” In IEEE International Conference on CAD, pp. 422–427, 1992.

[Harw79] Harwell, MA31A, Computer Science Department, University of Texas,
Austin, 1979.

[Hert87] A. Hertz and D. Werra, “Using Tabu Search Technique for Graph Col-
oring,” Computing, Springer Verlag, vol. 39, No. 2, pp. 345–351, 1987.

[HU85] T.C. HU and E. Kuh, “Theory and Concepts of Circuit Layout,” In
VLSI Circuit Layout:Theory and Design, pp. 3–18, IEEE PRESS, New
York, 1985.

[Hyaf73] L. Hyafil and R.L. Rivest, “Graph Partitioning and Constructing Op-
timal Decision Trees Are Polynomial Complete Problems,” Technical
Report, No. 33, IRIA-Laboria, Rocquencourt, France, 1973.

[Inc93] CPLEX Optimization Inc, CPLEX Documentation, CPLEX Optimiza-
tion, Inc, Tahoe, Nevada, 1993.

[Klei91] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich, “GORDIAN: VLSI
Placement By Quadratic Programming and Slicing Optimization,” IEEE
Transaction on Computer Aided Design, vol. 10, No. 3, pp. 356–365,
March 1991.

BIBLIOGRAPHY 250

[Kozm88] K.A. Kozminski and E. Kinnen, “Rectangular Dualization and Rectan-
gular Dissections,” IEEE Transactions on Circuits and Systems, vol. 35,
No. 11, pp. 1401–1416, 1988.

[Kram84] M.R. Kramer and J.V. Leuwen, “The Complexity of Wire Routing and
Finding Minimum Area Layouts for Arbitrary VLSI Circuits,” Advances
in Computing Research, JAI Press, vol. 2, pp. 129–146, 1984.

[Krav87] S.A. Kravitz and R.A. Rutenbar, “Placement By Simulated Annealing
on a Multiprocessor,” IEEE Transactions on Computer-Aided Design,
vol. 6, No. 4, pp. 534–549, July 1987.

[Kris84] B. Krishnamurthy, “An Improved Min-Cut Algorithm for Partitioning
VLSI Networks,” IEEE Transactions on Computers, vol. 33, No. 5, pp.
438–446, May 1984.

[Kuh83] E.S. Kuh, “The Special Issue on Routing and Micro-electronics,” IEEE
Trans CAD of IC, vol. CAD-2, No. 4, , October 1983.

[Laar88] P.M Van Laarhoven and E.h.L. Aarts, Simulated Annealing: Theory and
Applications, Kluwer Academic Publishers, Boston, 1988.

[Laut79] U. Lauther, “A Min-Cut Placement Algorithm for General Cell Assem-
lier Based on a Graph Representation,” In Proceedings of The 16th DAC,
pp. 1–10, IEEE/ACM, San Diego, California, 1979.

[Leig83] F.T. Leighton, Complexity Issues in VLSI, MIT Press, Cambridge Ma,
1983.

[Leng90] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,
John Wiley & Sons, New York, 1990.

[Mich92] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams, Springer-Verlog, Berlin, Heidelberg, 1992.

[Mowc87] J.T. Mowchenko and C.S. Ma, “A New Global Routing Algorithm for
Standard Cell ICs,” In IEEE International Symposium on Circuits and
Systems, pp. 27–30, IEEE, Philadelphia,Pa, 1987.

[Naha85] S. Nahar, S. Sahni, and E. Shragowitz, “Experiments with Simulated
Annealing,” In Proceedings of The 22nd DAC, pp. 748–752, IEEE/ACM,
Las Vegas, Nevada, 1985.

[Otte82] R.H.J.M. Otten, “Eigen Solutions in Top-Down Layout Design,” In
IEEE International Symposium on Circuits and Systems, pp. 1017–1020,
IEEE, Philadelphia,Pa, 1982.

[Pate77] A.M. Patel and K.H. Khokhani, “The Chip Layout Problem: A Place-
ment Procedure,” In Proceedings of The 14th DAC, pp. 291–297,
IEEE/ACM, New Orleans, Louisiana, 1977.

BIBLIOGRAPHY 251

[Pill88] L. Pillage and R. Rohrer, “A Quadratic Metric with a Simple Solution
Scheme for Initial Placement,” In Proceedings of The 25th DAC, pp.
324–329, IEEE/ACM, Anaheim, California, 1988.

[Prea88] B. Preas, Physical Design Automation of VLSI Systems, Ben-
jamin/cummings Publishing Company, Inc, Menlo Park, California,
1988.

[Reev93] C.R. Reeves, Modern Heuristic Techniques for Combinatorial Problems,
John Wiley & Sons, Inc, New York, 1993.

[Robe87] K. Roberts and B. Preas, “Physical Design Workshop 1987,” MCNC,
Technical Report, MCNC, Marriott’s Hilton Head Resort,South Car-
olina, April 1987.

[Rose88] J.S. Rose, W.M. Snelgrove, and Z.G. Vranesic, “Parallel Standard Cell
Placement Algorithms with Quality Equivalent to Simulated Anneal-
ing,” IEEE Transactions on Computer-Aided Design, vol. 7, No. 3, pp.
387–396, March 1988.

[Sanc89] L.A. Sanchis, “Multiple-Way Network Partitioning,” IEEE Transactions
on Computers, vol. 38, No. 1, pp. 62–81, January 1989.

[Schw76] D.G. Schweikert, “A 2-dimensional Placement Algorithm for The Layout
of Electrical Circuits,” In Proceedings of The 13th DAC, pp. 408–416,
IEEE/ACM, San Francisco, California, 1976.

[Sech86] C. Sechen and A. Sangiovanni, “The TimberWolf 3.2: A New Standard
Cell Placement and Global Routing Package,” In Proceedings of The
23rd DAC, pp. 432–439, IEEE/ACM, Las Vegas, Nevada, June 1986.

[Sech88a] C. Sechen, VLSI Placement and Global Routing Using Simulated An-
nealing, Kluwer Academic Publishers, Boston, 1988.

[Sech88b] C. Sechen and D. Chen, “An improved Objective Function for Min-Cut
Circuit Partitioning,” In Proceedings of ICCAD, pp. 502–505, San Jose,
California, 1988.

[Sha85] L. Sha and R.W. Dutton, “An Analytical Algorithm for Placement of
Arbitrarily Sized Rectangular Blocks,” In Proceedings of The 22nd DAC,
pp. 602–608, IEEE/ACM, Las Vegas, Nevada, 1985.

[Shil79] Y. Shiloach, “A Minimum Linear Arrangement Algorithm for Undirected
Trees,” SIAM Journal of Computing, vol. 8, pp. 15–32, 1979.

[Shin93] H. Shin and C. Kim, “A Simple Yet Effective Technique for Partition-
ing,” IEEE Transactions on VLSI Systems, vol. 1, No. 6, pp. 380–386,
September 1993.

[SK90] J. Skorun-Kapov, “Tabu Search Applied to The Quadratic Assignment
Problem,” ORSA Journal on Computing, vol. 2, pp. 195–202, 1990.

BIBLIOGRAPHY 252

[Song92] L. Song and A. Vannelli, “A VLSI Placement Method Using Tabu Search
Technique,” Micro-electronics Journal, vol. 23, pp. 167–172, April, 1992.

[Suar88] P. Suaris and G. Kedem, “An Algorithm for Quadrisection and Its Ap-
plication to Standard Cell Placement,” IEEE Transaction on Circuits
and Systems, vol. 35, pp. 294–303, March 1988.

[Tao91] L. Tao, Y.C. Zhao, K. Thulasiraman, and M.N.S. Swamy, “An Efficient
Tabu Search Algorithm for Graph Bi-sectioning,” In Proceedings/ Great
Lakes Symposium on VLSI, pp. 92–95, IEEE, 1991.

[Ueda86] K. Ueda, R. Kasai, and T. Sudo, “Layout Strategy, Standardization, and
CAD Tools,” Layout Design and Verification, North-Holland, pp. 1–54,
1986.

[Ullm84] J.D. Ullman, Computational Aspects of VLSI, Computer Science Press
Inc, Rockville, Maryland, 1984.

[Vann89] A. Vannelli, “An Interior Point Method for Solving the Global Routing
Problem,” In IEEE Custom Integrated Circuits Conference, pp. 1–22,
IEEE, San Diego, California, 1989.

[Vann90] A. Vannelli and S.W. Hadley, “A Gomory-Hu Cut Tree Representation
of a Netlist Partitioning Problem,” IEEE Transactions on Circuits and
Systems, vol. 37, No. 9, pp. 1133–1139, September, 1990.

[Venk91] V. Venkatasubramanian and I.P. Androulakis, “A Genetic Algorithm
Framework for Process Design and Optimization,” Computers Chemical
Engineering, vol. 15, No. 4, pp. 217–228, 1991.

[Wei89] Y.C. Wei and C.K. Cheng, “Toward efficient hierarchical designs by
ratio cut partitioning,” In IEEE International Conference on CAD, pp.
298–301, Santa Clara, California, 1989.

[Whit84] S.R. White, “Concepts of Scale in Simulated Annealing,” In IEEE Int
Conf on Computer Design, pp. 646–651, IEEE, November 1984.

[Widm86] P. Widmayer, “A Faster Approximation Algorithm for The Steiner Prob-
lem in Graphs,” Acta Informatica, vol. 23, pp. 223–229, 1986.

[Yeh94] C.W. Yeh, C.K. Cheng, and T.T. Lin, “A General Purpose Multiple-
Way Partitioning Algorithm,” IEEE Transactions on Computer Aided
Design, vol. 13, No. 12, pp. 1480–1488, 1994.

[Yeh95] C.W. Yeh, C.K. Cheng, and T.T. Lin, “Optimization by Iterative Im-
provement: An Experimental Evaluation on Two-Way Partitioning,”
IEEE Transactions on Computer Aided Design, vol. 14, No. 2, pp. 145–
153, 1995.

[Zhan89] X. Zhang, L. Pillage, and R. Rohrer, “Efficient Final Placement Based
on Nets-As-Points,” In Proceedings of The 26th DAC, pp. 578–581,
IEEE/ACM, Las Vegas, Nevada, 1989.

