
AN FPGA-BASED IMPLEMENTATION FOR MEDIAN
FILTER MEETING THE REAL-TIME REQUIREMENTS OF

AUTOMATED VISUAL INSPECTION SYSTEMS

Miguel A. Vega-Rodríguez, Juan M. Sánchez-Pérez, Juan A. Gómez-Pulido

Univ. de Extremadura, Dpto. de Informática, Escuela Politécnica.
Campus Universitario, s/n. 10071 Cáceres, Spain.

fax: +34-927-257202
e-mail: {mavega,sanperez,jangomez}@unex.es

Keywords: Factory Automation, Image Processing,
Median Filter, Reconfigurable Hardware, Real-
Time Processing.

Abstract

Image processing is a very important field within
factory automation, and more concretely, in the
automated visual inspection. The main challenge
normally is the requirement of real-time results. On
the other hand, in many of these applications, the
existence of impulsive noise in the acquired images
is one of the most habitual problems. Median filter
is a robust method to remove the impulsive noise
from an image. It is a computationally intensive
operation, so it is hard to implement it in real time.
This paper introduces a new architecture and
optimizations for its implementation with FPGAs.
The practical results show the effectiveness of our
improvements allowing real-time processing and a
minimum use of resources.

1 Introduction

Image processing is a very important field within
industrial automation, and more concretely, in the
automated visual inspection. For example,
automatically analyzing predetermined features of
manufactured parts on an assembly line to look for
defects and process variations [1]. In these
applications, the main challenge normally is the
requirement of real-time results.

On the other hand, in many of these applications,
the acquired images must pass through a stage of

image preprocessing in order to remove distracting
and useless information from the images. For
example, the existence of impulsive noise in the
images is one of the most habitual problems.

Median filter is the nonlinear filter more used to
remove the impulsive noise from an image [4, 1]. It
is a more robust method than the traditional linear
filtering, because it preserves the sharp edges,
although it also has a much higher computational
cost. When the median filter must be carried out in
real time, the software implementation in general-
purpose processors does not usually give good
results. ASICs [9] have been required traditionally.
However, they imply a limited functionality due to
their predefined architecture. Also, the price for
application as well as the production time are
usually prohibitive.

Reconfigurable computing architectures [12] are
sufficiently flexible so that new operations can be
implemented in the existent hardware, and they are
quite quick for real-time execution. Moreover, the
price/performance ratio of these systems makes
them a broadly competitive alternative to ASICs.
FPGAs [2] have been identified as the natural
platform for CCMs [3] due to their
reprogrammability [5].

In section 2 the median filter is described briefly.
Section 3 presents the architecture that we propose
for implementing the median filter by means of
FPGAs, while section 4 illustrates the
optimizations performed in this architecture. Then,
in the following section, we show and analyze the

Proceedings of the 10th Mediterranean Conference
on Control and Automation - MED2002
Lisbon, Portugal, July 9-12, 2002.

experimental results; presenting the conclusions in
section 6.

2 The Median Filter

Median filter is a spatial filtering operation, so it
uses a 2-D mask that is applied to each pixel in the
input image. To apply the mask means to centre it
in a pixel, evaluating the covered pixel brightnesses
and determining which brightness value is the
median value. The median value is determined by
placing the brightnesses in ascending order and
selecting the centre value [1]. The obtained median
value will be the value for that pixel in the output
image. Figure 1 shows an example.

Figure 1: Application of the median filter.

Habitually a 3x3 median filter is used, since bigger
filters usually eliminate small edges. We have
therefore focused on the 3x3 median filter
implementation.

3 Architecture for the Median Filter

Very diverse FPGA-based custom-computing
boards are appearing in the market. These boards
possess different interfaces for their communication
with the host. But in general, boards devoted to
real-time image processing have a PCI interface,
because it gives them the necessary speed to work
as coprocessors. Also, PCI bus has a growing
popularity due to its interesting properties [7]. In
conclusion, FPGAs in these boards have 32-bit

buses for their communication with the external
world, either for their communication through PCI
bus or for the access to the local RAM that the
boards usually have. An example of this board type
is the HOT2-XL board [13] of Virtual Computing
Corporation that has been used to carry out our
experiments.

The fact that we have a 32-bit data bus has a very
large influence in the necessary hardware
architecture for implementing image processing
operations, because it causes that in each read/write
operation we obtain/send four image pixels
(supposing 8-bit pixels). We have gained benefit
from this situation replicating the functional units
in order to apply the median filter simultaneously
on four pixel neighbourhoods. In this way we take
advantage of the inherent neighbourhood
parallelism, and we accelerate the operation four
times. Figure 2 presents the approach followed for
the simultaneous computation of these four output
pixels.

Figure 2: Computation of 4 pixels simultaneously.

Images are divided in pixels (squares) that are
grouped in 32-bit words (4 pixels). The value of
each output pixel O(x,y) is computed using the 9
pixels of the image I that are inside the 3x3 mask
with centre in I(x,y). Each mask application has
been represented with a different texture. Note that
the pixel P4 of the previous word is computed and
not that of the current word. In this way, it is only
necessary to read six words in the input image
instead of nine, reducing the number of read
operations, and therefore increasing the
performance. Pipelining this approach using two
stages it is possible to get an architecture that writes
four pixels (one word) in the output image in each
clock cycle, only reading three input image words
by cycle (Figure 3).

Brightness Values

-1 0 1 ←←←← i
-1 10 30 5
0 20 200 20
1 15 10 30

↑↑↑↑
j

Brightness Values in Order

5 10 10 15 20 20 30 30 200

 Median

Figure 3: Pipelining of the followed approach.

Each Filter circuit computes the associate resulting
pixel (P1, P2, P3 or P4) as the median of the nine
implicated pixels. The computation of these four
pixels is carried out in two stages (pipelining). In
the first stage the resulting pixels P1, P2 and P3 are
computed, storing them in registers to use them in
stage 2. In stage 1 the columns required to compute
the pixel P4 in stage 2 are also stored in registers. It
is also in stage 2 when the word (with its four
pixels Pi) is written in the output image. Thanks to
the pipelining both stages operate at the same time,
gainning in performance. While stage 1 computes
the pixels P1, P2 and P3 according to the three
words read in the current clock cycle, stage 2
computes P4 and writes the resulting word
associated with the three words read in the previous
cycle.

4 Proposed Architecture Optimization

Figure 4 shows the classic approach for sorting 9
pixels and selecting the median. Each Filter circuit
of Figure 3 could be implemented with this
approach. 41 basic nodes are necessary in this
sorting network.

This approach has suffered several proposals of
optimization, reducing the number of necessary
nodes. Among them we highlight the one presented
by Morcego et al. [6] (Figure 5) with a sorting
network composed of 27 basic nodes.

Figure 4: Classic systolic array for sorting 9 pixels.

We have followed the scheme shown in Figure 6,
which is similar to the one proposed by Smith [8],
and much better than the one presented in Figure 5,
since it needs a very lower number of basic nodes
(19 instead of 27). This scheme uses the minimum
exchange network required to produce the median
from nine pixels by performing a partial sorting.

Figure 5: Optimized systolic array.

Each basic node allows to sort two elements. To do
that, each node compares the two elements by
means of an 8-bit comparator, using its output in
two 2:1 multiplexers (see Figure 7).

Figure 6: Implementation for each Filter circuit.

In Figure 6, the triangular groups with three nodes
perform a full sorting on three elements. In this

figure we observe that some nodes only use one of
their two outputs. This allows to eliminate in these
nodes one of the multiplexers, reducing the used
resources. In total, 8 nodes use only one output, so
8 multiplexers can be saved. This scheme is
repeated four times because four Filter circuits exist
(Figure 3), so the total number of saved
multiplexers is 32.

Figure 7: Scheme for each basic node.

A new optimization is applied reusing the
intermediate results obtained in the node tree of the
different Filter circuits. As we have explained, the
final circuit have a total of four Filter circuits,
operating in parallel, with the architecture shown in
Figure 6. However, as these four circuits have many
common inputs (of the 9 implicated pixels up to six
are equal in two different Filter circuits), it is
possible to reuse many of the partial sortings,
therefore, saving a great quantity of nodes. Figure 8
shows this last optimization.

Figure 8: Scheme for the median filter reusing
resources in the four Filter circuits.

The four Filter circuits are shown together, sharing
resources. P1, P2, P3 and P4 are the four pixels
obtained in each clock cycle according to the
execution scheme of Figures 2 and 3, so that P1, P2
and P3 should be stored temporarily in registers to
get the pipelining of the operation. Figure 9
illustrates the internal scheme for anyone of the
Network circuits.

Each input CiL makes reference to the lower value
of the column i, each CiH to the higher value and
CiM to the middle one. The basic nodes that only
use one of their two outputs have been simplified,
removing one of their two multiplexers. So the
quantity of required resources is reduced. In total,
eight nodes of Figure 9 only use one output, so 8
multiplexers can be saved. As this scheme is
repeated four times since there are four Network
circuits, the total number of saved multiplexers is
32.

Analyzing Figure 8 we conclude that 12 basic
nodes are only necessary to compute CiL, CiM and
CiH. If we repeated the scheme of Figure 6 four
times, 36 nodes had been needed to perform the
same sortings. The resource reusing therefore saves
24 nodes, that is to say, 24 comparators of 8 bits
and 48 multiplexers.

Figure 9: Internal scheme for each Network circuit.

In conclusion, thanks to the applied optimizations
we have gotten the reduction in resources shown in
Table 1.

Optimization Comments
Reduction of

Resources

Reduction of the sorting
and selection network
(figure 6 instead of
figure 4)

22 basic nodes
by Filter circuit
(4) = 88 basic
nodes

88 comparators of 8
bits and 176 2:1
multiplexers

Reuse of common
resources (intermediate
results, figure 8)

24 basic nodes
24 comparators of 8
bits and 48 2:1
multiplexers

Optimization of the
basic nodes removing
one output

8 multiplexers by
Network circuit
(4) = 32
multiplexers

32 2:1 multiplexers

Totals ---
112 comparators of 8
bits and 256 2:1
multiplexers

Table 1: Optimizations applied to the proposed
architecture.

5 Experimental Results

We have implemented the median filter, following
the presented architecture and optimizations, on the
XC4062XLA-09HQ240C FPGA of the HOT2-XL
board. This board has been placed in a PCI slot of a
PC, creating a CCM [3]. The experiments have
been performed by a Windows Visual C++
application that manages the system and
reconfigures the board (its FPGA) with different
hardware modules when it is necessary. In this
application, the image processing operations can be
carried out by hardware (FPGA) or software
(Visual C++), allowing the result comparison.
Table 2 shows the obtained results.

Average Execution Time for SW (ms) 84459.766

Average Execution Time for HW (ms) 998.203

Use of Resources (CLBs) 634 (27.52%)

Maximum Frecuency (MHz) 16.162

Minimum Period (ns) 61.873

Table 2: Experimental results for the median filter.

The first and second row show a comparison
between the hardware implementation and its
software version. In both rows, the average
execution time is indicated for the operation on 30

images of 640x480 pixels of 256 gray levels. With
a 16-MHz clock, in the HOT2-XL board, the time
to process 30 images is 998.203 ms. The
reconfiguration time of the board, 440 ms, is
included in this time. Notice that if we use the same
operation repeatedly, the board would only be
configured the first time.

The software version, written in Visual C++ and
compiled with the appropriate optimizations,
requires 84459.766 ms in a PC with a 350-MHz
Pentium-II processor and 64 Mb of RAM.
Therefore, the hardware implementation represents
an important performance improvement, obtaining
a time 85 times smaller. Furthermore, note that the
HOT2-XL is running at a clock rate approximately
1/22 (16 MHz) that of the microprocessor (350
MHz).

The overload due to the reconfiguration time has
great importance. For this reason, we have used the
Configuration Cache included in the HOT2-XL
[13] for alleviating this overload. If a hardware
module was already loaded in the Configuration
Cache the average reconfiguration time would
decrease to 270 ms. Therefore, the median filter
would have in its hardware version a significantly
lower average execution time than the one shown.

If we intend to process images in real time (30
images/second), and we suppose that one
processing operation by image is only applied, we
must admit a maximum time of 1000 ms. Table 2
shows that the software version can not reach this
speed. However, this is possible using our hardware
module.

In the third row we show the FPGA resource use in
number of CLBs (Configurable Logic Blocks),
knowing that the XC4062XLA FPGA has 2304
CLBs. The percentage of CLBs used of those 2304
is also indicated. The quantities presented in this
one and the following rows have been obtained
from the reports generated by the Xilinx
Foundation Series tools after the hardware module
synthesis. Therefore, they are real measurements on
the implementation already carried out, and not
estimations.

Original Image Software Result (Median Filter) Hardware Result (Median Filter)

Figure 10: Results obtained by the median filter (software and hardware implementation).

It should be kept in mind that the hardware module
has its functional units replicated four times. This
fact multiplies the resource use by four. Even more,
the module includes the circuitry required by the
management of the on-board memory. In spite of
everything, the designed hardware module presents
an efficient use of the FPGA resources, requiring a
number of CLBs less than 28%. This low resource
use is useful for future work lines, combining
several modules in the FPGA at the same time, so
avoiding intermediate reconfiguration times.
Pipelines could be designed where each stage is an
image processing operation. The images would
pass each one of the stages until obtaining the final
resulting image.

The fourth row presents the maximum frequency
admitted by our hardware module. The minimum
period (inverse datum) is also indicated. The
hardware module admits a maximum clock
frequency lightly higher than 16 MHz. Note that it
includes a pixel sorting and selection circuit. This
kind of circuits has a lot of logical levels,
generating a great quantity of propagation delays
(logic and routing delays). These facts increase the
minimum clock period, and therefore, decrease the
maximum frequency.

We are now studying the use of FPGAs as part of
an industrial inspection system to classify cork
stoppers according to their quality [10]. We are
using image processing techniques to achieve the
automatic detection and identification of defects in

cork stoppers [11]. In the algorithm we are
developing, a median filter is included in order to
remove noise from the image and get a better defect
detection and an improvement in the later analysis.
As an example, Figure 10 illustrates the results
obtained when we apply a median filter to a
possible input image.

This figure gives us a clearer idea about the utility
of median filter. As we can observe, the result
obtained by our hardware implementation is
identical to the one gotten by the software version,
with the advantage of a lower execution time that
allows us to meet the real-time requirements of
automated visual inspection systems.

6 Conclusions

To configure the HOT2-XL PCI board we are
developing a library devoted to image processing.
At present, the library is formed by a total of 16
hardware modules, of very diverse types: point,
histogram, convolution, mathematical morphology,
... operations. In this work we have shown a study
of the architecture and optimizations proposed for
the implementation in an FPGA of the median
filter.

The practical results illustrate the effectiveness of
the proposed architecture and performed
optimizations: use of parallelism techniques like
replication and pipelining, reduction of the sorting
and selection network, optimization of the basic

nodes removing multiplexers, search for a high
regularity, reuse of common resources (basic
nodes), etc. Everything has allowed us to get real-
time processing, a minimum use of resources and a
suitable operation frequency.

References

[1] G.A. Baxes. “Digital Image Processing.
Principles & Applications”, Wiley & Sons,
(1994).

[2] S. Brown, J. Rose. “FPGA and CLPD
Architectures: A Tutorial”, Proc. of IEEE
Design & Test of Computers, 13(2), pp. 42-57,
(1996).

[3] D.A. Buell, K.L. Pocek. “Custom Computing
Machines: An Introduction”, Journal on
Supercomput., 9, pp. 219-230, (1995).

[4] R.M. Haralick, L.G. Shapiro. “Computer and
Robot Vision”, Addison-Wesley, vol. 1, (1992).

[5] S. Hauck. “The Roles of FPGAs in
Reprogrammable Systems”, Proc. of IEEE,
86(4), pp. 615-638, (1998).

[6] B. Morcego, J. Frau, A. Català. “Suavizado de
Imágenes en Tiempo Real mediante Filtrado
por Mediana Utilizando Arrays Sistólicos”,
Proc. of VII DCIS, pp. 545-546, (1992).

[7] PCI Special Interest Group. “PCI Local Bus
Specification - Revision 2.1”,
http://www.pcisig.com, (1995).

[8] J.L. Smith. “Implementing Median Filters in
XC4000E FPGAs”, Xcell, 23(4), pp. 16,
(1996).

[9] M.J.S. Smith. “Application-Specific Integrated
Circuits”, Addison-Wesley, (1997).

[10]M.A. Vega, J.M. Sánchez, J.A. Gómez. “Could
FPGAs be Used to Classify Cork Stoppers? An
Experimental Study”, 16th Conference on
Design of Circuits and Integrated Systems,
DCIS’2001, pp. 248-253, (2001).

[11]M.A. Vega, J.M. Sánchez, J.A. Gómez. “Cork
Stopper Classification using FPGAs and
Digital Image Processing Techniques”,

EuroMicro Symposium on Digital Systems
Design: Architectures, Methods and Tools,
DSD’2001, pp. 270-275, (2001).

[12]J. Villasenor, W.H. Mangione-Smith.
“Configurable Computing”, Scientific
American, 276(6), pp. 54-59, (1997).

[13]Virtual Computer Corporation. “H.O.T. II
Hardware Guide. Version 2.0”, (1999).

