Building an Embedded Processor System on FPGA

Building an Embedded Processor System
on Xilinx NEXYS3 FPGA: A Tutorial

Introduction:

Modern FPGA’s are equipped with a lot of resources that allow them to hold large digital
systems on a single chip. FPGA vendors provide tools that allow the designer to build embedded
systems on efficiently on FPGAs. One of the new concepts that you will learn in this experiments
is the system-on-chip approach (SoC). In this methodology, a complete micro-processor system
is implemented on a single chip. In our experiment we will use an FPGA board that is equipped
with an FPGA from Xilinx a leading FPGA vendor. Xilinx provides a tool for building an embedded
SoC on its FPGAs, and we are going to use this tool in this experiment. This tool is called Xilinx
Embedded Development Kit (EDK). The EDK allows the designer to build the processor system
based on an embedded processor from Xilinx called MicroBlaze. The tool provides a C/C++
compiler for that processor and an IDE based on Eclipse framework. In this tutorial we will build
a processor system based on MicroBlaze using the EDK and run this system on Nexys 3 FPGA
board.

Objectives:
1. Demonstrate the concept of SoC.
2. Familiar students with embedded soft processor systems on FPGA.
3. Build a soft processor system that will perform simple Input/Output operations.

Equipment and Tools

1.
2.

Nexys 3 FPGA board.
Xilinx Embedded Development Kit.

Detailed Steps
Part 1: Building the hardware system on FPGA

In previous labs you learned about the Xilinx ISE design flow and how to use it to map a design
using VHDL on FPGA. In this tutorial we will use the Xilinx EDK to build a micro-processor system
and write a simple program for that processor to perform simple /O operations. The first part of
the tutorial attempts to build the hardware system. The EDK is composed of two software
components: i) Xilinx Platform Studio (XPS) which is used to build and configure the soft
processor system on the FPGA. ii) Xilinx Software Development Kit (SDK), which is the IDE for
software development. Perform the following steps to build the hardware system.

1|Page

Building an Embedded Processor System on FPGA

Step 1: We start by building the hardware using the XPS. Start XPS using the program menu as
shown in Figure 1.

J Kilinx ISE Design Suite 13.3
, Accessories
. ChipScope Pro
. Documentation
. EDE
2 Xilinx Platform Studio
@ Kilinx Software Development Kit
. Documentation

) Tools

Figure 1. Starting EDK (Step 1)

When the XPS starts the main window will show the options shown in Figure 2. The “Getting
Started” part gives you the options to create a new project (empty or based on a specific board),
or open an old project that was created before.

Step 2: Select the option “Create New Project Base System Builder” which will allow you to
build an embedded processor system based on the specification of specific board (In our case
Nexys 3 board). The “New Project Wizard” will appear as shown in Figure 3.

Getting Started Documentation

L,

i f Create Mew Project Using Base System Builder ‘) 9 See What's Mew

& Use the Base System Builder wizard to create an XPS project Release notes and information about new IDS features in this release

¢ Create Mew Blank Project I ﬁ ' View Product Information and Documentation

Create a new XPS project without using the Base System Builder " Information about EDK, project flows, and documentation

Gyl
Open Project @ View All EDK Documentation
Open a previously created project All documentation related to EDK

i
ﬁ Open Recent Project l
Open a recently used project

Figure 2. XPS Window (Step 2)

Explore XPS Tutorials

Information about creating an example design using the embedded design flaw

2|Page

Building an Embedded Processor System on FPGA

%% Create New XPS Project Using BSE Wizard L&J

MNew Project

Project File | C:\Projects\EDK_Projects\mydesign\aystem, xmp Browse ...

Select an Interconnect Type

) AXI System
AXIis an interface standard recently adopted by Xilinx as the standard interface used for all current and

L future versions of Xilinx IP and tool flows, Details on AXI can be found in the AXI Reference Guide on i
xilinx, com,

@ PLB System

PLE is the legacy bus standard used by Xilinx that supports current FPGA families, induding Spartané and
Virtexf, PLB IP will not support newer FPGA families, so is not recommend for new designs that may
migrate to future FPGA families. Details on PLB can be found in the PLBv46 Interface Simplifications

|| document on xdlinx. com,

Select Existing .bsb Settings File{saved from previous session)
| Browse .., |
Set Project Peripheral Repository Search Path

| Browse ... |

| Help oK | | Cancel |

Figure 3. Building a New Design (Step 3)

Step 3: In the new project wizard window of Figure 3, select the location you want to save the
files of your project. The project will include so many files in the future so try to keep this location
specific and separate from other files so that you can refer back to it easily. Create a new folder
on the hard drive and name it “Projects” to store all your projects, then create another folder
called “EDK_Projects” to store all projects created using EDK. After that create a folder for this
new project and name it for example “mydesign”. The project file (usually system.xmp) will be
stored in that location (c:\Projects\EDK_Projects\mydesign\system.xmp) as shown in Figure 3.

The second option in this window is to select the interconnect type. The EDK supports two types
of bus interface AXI, and PLB. Both are standard bus topology with various specifications. The
differences between the two standards are beyond the scope of this article. For this experiment
we will use the second option “PLB System”.

When done press “OK”. This will start the “Base System Builder” tool that will help us build and
configure the hardware system as shown in Figure 4.

3|Page

Building an Embedded Processor System on FPGA

e T
& Base System Builder - @ | = I

Welcome Board System Processor Peripheral Cache Summary

I Welcome to the Base System Builder
This tool leads you through the steps necessary for creating an embedded system,

Select One of the Following: |
@ Iwouldlike to create a new design
(7 ITwould ke to load an existing .bsb settings file (saved from a previous session)

Browse ...

Mare Info

< Back I Next > H Cancel

m

Figure 4. Base System Builder - Welcome Screen (Step 4)

Step 4: The welcome screen shown in Figure 4, is the first screen in the Base System Builder
wizard that will guide you to build your system. In this screen select “I would like to create a new
design” and then press next. This will let you create a new design.

Step 5: The second screen of the wizard is shown in Figure 5. In this screen we select the board
that we want to use to build the system. The XPS allow you to build a design based on a specific
board or create a custom design that is generic. Select the first option “I would like to create a
system for the following development board”. This will allow you to select a specific board. The
board is specified by three options:

e Board Vendor: this is the manufacturer of the board. Select “Digilnet” which is the

company that builds the Nexys 3 board.
* Board Name: this is the name of the board we want to use. Select “Nexys 3 Board”.
* Board Version: the board version. Select version “B”.

4|Page

Building an Embedded Processor System on FPGA

Welcome Board System Processor Peripheral Cache Summary
3

Board Selection
Select a target development board,

Board

(| @ Iwouldlike to create a system for the following development board

Board Vendar |Dig'r|ent -B
eivene [-]
Board Revision B B

(") T would like to create a system for a custom board

Board Information
Architecture __ Device ___Package __ Speed Grade
lspartang | [~]|=
D Use Stepping |

Rezet Polanty |Active High | ":

| = | lesa324

Related Inf ion
wendor's Website

endor's Contact Information
Third Party Board Definition Files Download Website

The Mexys3 board features a Xilinx Spartan-6 XCE5LX 16-3C5G324C FPGA device, 512Mb or 256Mb {x15) CORAM component for use with Spartan-6,
128Mbit Mumonyx Parallel PCM Flash memaory, 128Mbit Mumonyx N250Q 128{x4) SPI PCM Flash memory, SMSC LANS710 PHY with MII interface for use with
10,/100Mbps speed, HID Host for USE mouse, keyboard, USB-UART bridge for the serial port, 8 slide switches, 5 pushbuttons in Gamepad configuration and
& LEDs

Figure 5. Board Selection (Step 5)

The Nexys 3 board is equipped with Spartan 6 FPGA chip which is a mid-size FPGA from Xilinx. The
board has several peripherals that can be used with the FPGA to do several functions (See Figure
5):

e 512 MB CDRAM.

e 128 Mbit Flash Memory.

* 8 Switches and 8 LEDS.

e 5 Push Buttons.

* Ethernet Physical Interface for base 10/100 networking.
e USB Host for Keyboard and Mouse

* Serial Port

These peripherals allow you to build a small computer system on the board which we are going
to do in this experiment (and the following ones).

When done selecting, press “Next” to move to the next screen.

5|Page

Building an Embedded Processor System on FPGA

Step 6: The following step is to select the system type. This is shown in Figure 6. The XPS allows

us to choose between two types of system architecture:

Single Processor System: This is the common system that you studied in many courses. The
system is composed on one processor connected to several peripherals using a single common
bus. The advantage of such system is the simplicity of the design and simplicity of
programming such systems. The main disadvantage is that all peripherals are connected
through a common bus, which will reduce the speed for fast peripherals to match the slower
ones. This type of systems is good for applications that do not require high speed of data
communication.

Dual Processor System: This system architecture is composed of two processors; each is
connected to a separate bus. One processor will be used for high speed peripherals and the
other is used with lower speed peripherals. This increases the performance of the system
compared to the single processor system. However, writing software for this system is more
complex as it requires synchronization between the two processors.

Select “Single Processor System”. This will start building a single processor system. We choose
to build a single processor system as this is simple to develop. However, you can later add more
processors if required. When done press “Next” to move to the next screen shown in Figure 7.

Welcome Board System Processor Peripheral Cache Summary
J

System Configuration
Configure your system.

@) Single-Processor System I Dual-Processor System
Select this option to create a design with a single processor. This Wizard Select this option to create a design with two processors. This Wizard
will let you configure the processor, the peripheral set and some major will let you select the types of processzors, peripherals unique to sach

configuration parameters for the peripherals. processor, and peripherals shared by the processors,

' Processor 1 Peripherals

R&232° GRIO

Shared Paripherals H

3 Mailbox ~ Mutex ...
Frocessor 1 Peripherals

R8232 GPIO

Processar 2 Peripherals

DDA

I < Back][Mext > J[Cancel

4 = e —— -]

Figure 6. Select System Architecture (Step 6)

6|Page

Building an Embedded Processor System on FPGA

RS = e
Frocessor

Welcome Board System Peripheral Cache Summary

Processor Configuration

Configure the processor(s).

Reference Clock Frequency | 100.00 | MHz

Processor 1 Configuration

Processor Type |MicroBlaze B
Systen Cock requency (XS - -
Local Memaory I32k8 E
Debug Interface On-Chip HW Debug :'\’-_ndule

| || Enable Floating Point Urit

| < Back][Mext = J[Cancel

e ———
=—————

L = =

Figure 7. Processor Configuration (Step 7)

Step 7: The processor configuration screen is shown in Figure 7. As stated earlier, Xilinx provides
a processor called MicroBlaze that can be implemented on its FPGAs. In this screen we configure

the processor as follows:
* Processor Type: There is only one selection which is MicroBlaze.

e System Clock Frequency: This is the processor and common bus reference clock frequency.

Most of the modern FPGA'’s are equipped with clock modules that are able of generating

higher frequencies from a single fixed frequency. For example, Nexys 3 board has on board

clock of 50 MHz, however, you can use higher frequencies using the FPGA clock modules.

Select the desired frequency up to 83 MHz Select “66.67 MHz".

e Local Memory: The FPGA contains several memory blocks up to 128 KB. This is different from

the on board memories. You can connect up to 64KB of these block memories to the

MicroBlaze as a local processor memory. You can connect more memory if required through

the local bus. Select “32KB” which is enough for our project.
* Leave all other options and then press “Next” to move to the next scree.

7|Page

Building an Embedded Processor System on FPGA

[i - A=)
8 iesren v S B SLEs. AR = --
Welcome Board System Processor Peripheral Cache Summary
Peripheral Configuration
To add a peripheral, drag it from the “Available Peripherals™ to the processor peripheral list. To change a core parameter, dick on the peripheral.
h Available Peripherals
Peripheral Mames Processor 1 (MicroBlaze) Peripherals Select Al |
& IQ Deviees Core Parameter
ETHERMET z >
[z Internal Peripherals DIP_Switches.8Bits 3
- Imb_bram_if_cntlr o Xps_gpio
- xps_bram_if_cntlr Use Int_errupt [l
- xps_timebase_wdt EthernetTthe .
" xps_timer CDFE.. xps_ethernetlite
LED= &Bits
Core: xps_gpio
' Micron_RAM
| Core: xps_mch_emc
| MNumonyx _PCM
Core: xps_mch_emc
| P52_Mouse_Keyboard
Core: xps_ps
Add > Push_Buttons_4Bits
Core: xps_gpic
< Remove | RS232_Uart 1
Core: xps_uartlite, Baud Rate: 9500, Data ...
dimb_cntlr
Core Imb_bram_if_cntlr
ilmb_cntlr
Core Imb_bram_if_cntlr
o) (o>] []
i — —— —

Figure 8. Peripheral Configuration (Step 8 - 1)

Step 8: After configuring the processor we are ready to configure the peripherals (Input/Output
devices). The peripheral configuration screen is shown in Figure 8. In this screen a list of all the
available peripherals is presented. From this list the designer can choose which peripheral to be
connected to the processor. The screen is divided into two lists. The right-hand side list shows the
peripherals that are not connected to the processor, while the left-hand side list shows all the
peripherals that are currently connected to the processor. By default several peripherals will be
connected to the processor as shown in Figure 8. In this project we do not need many of these
devices so we will remove many of them as shown in Figure 9. Remove the following devices:

e PS2 Mouse_Keyboard

* Micron_RAM

* Numonyx_RCM

To remove a device, select the device then press “Remove”.

This leaves the Switches, Leds, Ethernet , Push Buttons, and Local Memory devices connected to
the processor.

8|Page

Building an Embedded Processor System on FPGA

To add a device to the processor connection, select the required device and click add. Note that

i — =
% Base System Builder @Iﬁ

Welcome Board System Processor Peripheral Cache Summary
j

Peripheral Configuration

To add a peripheral, drag it from the “Available Peripherals” to the processor peripheral list, To change a core parameter, dick on the peripheral.

Available Peripherals

Peripheral Names Processor 1 (MicroBlaze) Peripherals Select all
=} IQ Devices — s
- ETHERNET ! :
- PS2_Mouse_Keyboard DIP_SWltches_SB!ts
- Micron_RAM Core: #ps_gpio
¢ Numenyx PCM Ethemet_Lite]
Iz Internal Peripherals CDFE_! xps_ethernetlite
o Imb_bram_if_cntlr LEDs 8Bits)
o xps_bram_if_cntlr Core: ¥ps_gpio
- xps_timebase_wdt Push_Buttons_élElts
- ups_timer Core: xps_gpio
R5232_Uart 1
Core: xps_uartlite, Baud Rate: 9600, Data ...
dimb_cntlr
Core: Imb_bram_if_cntlr
ilmb_cntlr
Add > Core: Imb_bram_if_cntlr
< Remove
|
| < Back l l Next > I [Cancel

Figure 9. Peripheral Configuration (Step 8 - 2)

some devices may be implemented using different hardware. Example is the Ethernet Physical
Layer. It is shown in the right-hand side as “Ethernet_Lite” and shown in the left-hand side as

“ETHERNET”. The difference between the two is beyond the scope of this tutorial, so we will just
use the module “ETHERNET” by selecting it and press “Add”, doing so will show a dialog box as
shown in Figure 10. This dialog asks to replace “Ethernet_Lite” with “ETHERNET”. Press “Yes” to

do the replacement.

Now we selected all the required devices. We have some input/output devices connected to the
processor. After completing the hardware, we will write a software application to read from the

switches and write to the LEDs.

Press “Next” to move to the next screen.

9|Page

Building an Embedded Processor System on FPGA

7 T T
& Base System Builder g (B2 T | [T T) 12 = |
Welcome Board System Processor Peripheral Cache Summary
[]
Peripheral Configuration
To add a peripheral, drag it from the “Available Peripherals” to the processor peripheral list, To change a core parameter, dick on the peripheral.
Available Peripherals
Peripheral Names Processor 1 (MicroBlaze) Peripherals Select Al |
& I(j) Devices Core Parameter
- ETHERNET ; 5
. PS2_Mouse_Keyboard DIP_SWltches_SB!ts
. Micron_RAM Core:1ps_gpio
. L. Numonyx PCM Ethernet_Lite]
Iz Internal Peripherals Corg. xpsethemethite
o Imb_bram_if_cntlr LEDs 8Bits :
P xps_bram_if_cr;tl.r " Core: xps_gpic .
o ¥ps_timebase | £ Question P @
| e titer -
I'. ") ETHERMET conflicts with Ethernet_Lite, Do you want to remove Ethernet_Lite?
" Click "Yes" to remove Ethernet Lite and add ETHERNET.
Click "Mo" to keep Ethernet_Lite
Yes ! ’ MNo
% — = 4
P —
o) [] (e
P

Figure 10. Peripheral Configuration (Step 8 - 3)

Step 9: Cache configuration screen is shown in Figure 11. If we have more than one memory
types connected to the processor, we can use cache memory to speed up memory access. As we
only have local memory connected to the processor, no cache memory can be configures. We will
leave this screen unchanged and press “Next”.

Step 10: Now we are done configuring the hardware. The last screen of the “Base System
Builder” is shown in Figure 12. This screen displays a summary of the system being built. Two
types of information are displayed; system components and file allocation. The components list
displays the name of each component and the address associated with it. The address assigned to
each peripheral is unique and it is used by the processor to locate a specific device and
communicate with it. For example, the device DIP_Switches_8Bits (the 8 switches on the board) is
assigned the address 0x81440000 which means that the processor will use this address to read
the value of the switches as digital input.

10| Page

Building an Embedded Processor System on FPGA

" — ik
% Base System Builder @I&
Welcome Board System Processor Peripheral Cache Summary

Cache Configuration ‘

Select cache size and cache memory for processor(s),

Processor 1 (MicroBlaze) Cache I

There is no cacheable memory for this processor

———

| More Info | < Back l | Mext = | [Cancel

Figure 11. Cache Configuration (Step 9)

The file list includes all the files that are created by wizard to define the project. The wizard
generates six files.

e System.xmp: this is the project file that is used by XPS to open the project for future use.

e System.mhs: this is the hardware description file. This is a text file that describes the
hardware components of the system.

* System.ucf: user constraints file. This file defines the relation between the system
input/output pins and the actual FPGA pins.

e Fast_runtime.opt, download.cmd, bitgen.ut: these three files are used build the bit file
that is later downloaded to the FPGA to configure it to do the function of the system.

This is the final screen of the wizard; clicking “Finish” will end the wizard and generate the
required files on the folder specified at the beginning of the wizard. Click “Finish” and then
check the folder “C:\Projects\EDK_Projects\mydesign” it should look as shown in Figure
13.

When the “Base System Builder” is done the XPS window should look like Figure 14.

11|Page

Building an Embedded Processor System on FPGA

12| Page

Below is the summary of the system you are creating.

System Summary

Core Name Instance Name Base Address

microblaze_0
DIP_Switches 8Bits 0xf1440000
ETHERMET 087000000
LEDs_&Bits (0x81420000
- Kps_gpio Push_Buttons_4Bits 0x81400000
-xps_uartlite R5232 Uart 1 084000000
Imb_bram_if_cntlr dimb_cntfr 000000000

o lmb_bram_if_cntlr ilmb_cntlr 000000000

wps_|l_temac
-Kps_gpio

High Address

OxB144FFFF
0xET07FFFF
(0xB142FFFF
0xB140FFFF
(0xB400FFFF
0x00007FFF
0x00007FFF

File Location

= Overall
- C\Projects\EDK_Projects\mydesign\system.xmp
Ch\Projects\EDK_Projects\mydesign‘system.mhs
C\Projects\EDK_Projects\mydesign’\data\systermn.ucf

C\Projects\EDK_Projects\mydesign’.etc\fast_runtime.opt
C\Projects\EDK_Projects\mydesign’etc\download.crnd

- C\Projects\EDK_Projects\mydesign’.etcbitgen.ut

Save Base System Builder {bsb) Settings File

| C:'Projects\EDK_Projectsmydesign'system.bsb

More Info

Figure 12. System Summary (Step 10)

W _xps

| data

| etc

. implementation
| pcores

| clock_generator 0
| system.bsh

£ system

|_| system.make

Eg system

5 system

|| system_incl.make
|| ¥psGuiSessionLock

05/03/2012 10:05 ...
27/02/201212:57 ...
28/02/2012 3:00 PM
27/02/2012 1:05 AM
27/02/201212:00 ...
27/02/201212:57 ...
27/02/2012 1:05 AM
05/03/2012 10:05 ...
05/03/2012 10:05 ...
27/02/2012 1:05 AM
27/02/2012 1:05 AM
05/03/2012 10:05 ...
05/03/2012 10:05 ...

Figure 13. Directory Structure

File folder

File folder

File folder

File folder

File folder

Text Document
BSE File

Text Docurment
MAKE File
MHS File
Xilinx Platform Stu...
MAKE File

File

Building an Embedded Processor System on FPGA

& i Paforn Sdka EDKL0 761 TP e By, gpeee—— e R e i)

@ File Edt View Project Hordware Device Configuration Debug Simulation Window Help

S isd PO 20 ae BB £ £

woex|, | Bus Interfaces | Ports | Addresses (1<

Navigator . ool [sobnineosi 8] B _
3 X MM Name Bus Name P Type P Version =4
el L BB E 3
Descrptian Persion || | dimb drimbyiD 2008 T
£ EDKInstall —| ilmb 7 Imb_v10 200.6 i
~ i Analog o | - mb_pto ¥r plb.wi6 1052
Bus and Bridge . w— | @ microblaze 0 8202
Bnincs % Clock, Reset and Interrupt. —t—— | B imb_bram ;. 100.2
Communication High-Speed | & €+ | &l dimb_cntir i 3000
| 4 Communication Low-Speed ' —— | @ ilmb_cntlr i 300.0
ImglementFiow | P
| 5 DMA and Timer ° | @ mdm.0 2006
e 3 Debug * - DI Swiche 2008
Hr #- FPGA Reconfiguration e 31 LEDs. 8Bits 2008
i (3 General Purpose 10 Y @ Push Buito.. 2002
SRR 3 10 Modules & | B ETHERNET. 102
4 Interprocessor Communication o————— | i ETHERNET 2038
¥ 4 Memory end Memory Controller 5 RS232 Uart 1 1022
L 3 Pl 'y SPLE mbplb =
GeneratzBiStream | @ Peripheral Controller clock_gener.. fr clock gene.. 4032
+ Processor Pproc_sys re.. ¥ procsys_re.. 3002
5 Uity
< & Vrification
Evortiekn Project Local PCores
£ Legend
— ﬂ.Mzstew @Slave diMaster/Slave B Target {Initiator @ Connected JUncvnnrmﬂ‘M Maonitor
Generate HOL Fiss FeProduction (BLicense (paid) Blicense (eval) 'SLacal iaPre Production W2Beta E¥Development
[(0 * | 1 Superseded Discontinued
= @ Poect | @ [P Catalog = Design Summary & System Assembly View (<1 Graphicai Design View
M

Launch Simuator

£il - Full license for coi his component. This license does nat give you access to source code implems

s0ft_temac_wrap v2> allows you to us

[& consde | L\ Wamings | @) Evors |

Figure 14. Xilinx Platform Studio - System Assembly View

Step 11: The XPS window (Figure 14) opens at the “System Assembly View”which shows the
system components and their interconnection. The system assembly view has three tabs:
e Bus Interface: this shows the bus interconnection between components. As you can see
there are three main buses:
0 ilmb :instruction local memory bus, used to connect the processor to the code
memory. Code memory is the memory that holds the programs code
(instructions).
0 dIimb: data local memory bus, used to connect the processor to the data memory.
Data memory is the memory that holds the program data.
0 mplb: MicroBlaze peripheral local bus (plb), used to connect the processor to all
the other peripherals.
* Ports: this tab lists all the ports of each peripheral/processor and displays its connection.
In this project we will not need to modify this.
e Addresses: this tab lists the addresses assigned to each peripheral. You can modify these
addresses through this tab. But for this project we will not do any address modification.

In the “Bus Interface” tab you can modify the system by adding more peripherals/processors,
removing peripherals, or changing the configuration of any peripheral. Toillustrate this, we will
delete the peripheral “Push_Buttons_4Bits”:

* Right click the peripheral “Push_Buttons_4Bits” a menu will pop up as shown in Figure
15. Select “Delete Instance”.

e Adialog box will show up with four options. Select the first option “Delete instance and
all its connections” and press “OK”. This will remove the instance from the system.

13|Page

Building an Embedded Processor System on FPGA

& X Piatform Studo (EDK_O.76x) - CAProjects DK Projectsimydesigniayst A v

* Inthe project tab in the middle of the XPS window, locate the file “data/system.ucf” and
open it. Locate the following four lines and delete them:

Net fpga_0_Push_Buttons_4Bits_GPIO_IO_I_pin<0> LOC=D9 | IOSTANDARD = LVCMOS33;
Net fpga_0_Push_Buttons_4Bits_GPIO_IO_I_pin<1> LOC=C9 | IOSTANDARD = LVCMOS33;
Net fpga_0_Push_Buttons_4Bits_GPIO_IO_Il_pin<2> LOC=C4 | IOSTANDARD = LVCMOS33;
Net fpga_0_Push_Buttons_4Bits_GPIO_IO_I_pin<3> LOC=A8 | IOSTANDARD = LVCMOS33;

@ File Edt View Project Hordware Device Configuration Debug Simulation Window Help

Launch Simulator

AT =T R

Bl
Description

£ EDKInstall

3 Anslog

Bus and Bridge

5 Clock, Reset and Interrupt

4 Communication High-Speed
Communication Low-Speed

MA and Timer

bug
GA Reconfiguration

(4 Interprocessor Communication
4 Memory end Memory Controller
& PCD

i Peripheral Contraller

Project Local PCores

i,

o
& Poxct | @ Poaso
| Corsole

3 INFO:cozeutil - Full license for o

~oex[, . » o o tnieroces | ports | acaresses <
ME ME L Name Bus Name P Type 1P Version B
1P Version p— dimb Jr Imb_vi0 2006 T
—|| | imb 7 Imb_y10 2006 s
ot | - mb_plb Jr plb_vis 1052
- ._‘ sl microblaze_0 7r microblaze 8202
B | B mb_bram 3¢ bram block 1002
>t ¥r Imb_bram_i.. 300.6
. 4¢ Imb_bram_i.., 300.b
- +¢ mdm 200
4 | o psgpio 200
- g % ¢ aps_gpio 200
@ =
4 '7:‘ - ETHERNET. . Configure P ...
. | 1 mﬁ y Show Ports for selected IPs
s 1 L Vicw b
i View IP Modifications (Change Log)
View Helper IP Modifications (Change Log) »
View BDF Datasheet
Browse HDL Sources..
Meke This IP Local
Legend
WMaster 9Slave diMaster/Slave B Target (Initiator @ Connected uunwnnrmﬂ M Manitar
WeProduction (Blicense (paid) @license (sval) SLacal aPre Production HBeta EDevelopment
*| 1 superseded piscontinued
= Design Summary (] System Assembly View o/e Graphical Design View
#08 x|

omponent <soft_temac_wrap_v2> allows you to use this component. This license does not give you access to scurce code inplementing this component -

[consde | Warnings | @ Evos |

Figure 15. Deleting Peripheral -1

= & |

Do you want to delete instance PS2_Mouse_Keyboard and its associated ports?
@ Delete instance and all its connections
(") Delete instance and connections to external ports
(7) Delete instance and any connection to internal nets

(71 Delete instance but do not remove the nets

i' [o Hﬂm'lq|

Figure 16. Deleting Peripheral —2

Step 12: The last step to build the hardware is to generate the bit-file that is used to configure
the FPGA. XPS generates all the necessary files to do so. Each component of the system is defined
in VHDL (or other hardware language) and the tool will compile all these files to build a single
design file to be downloaded on the board. This process is composed of several tasks:

14| P a

ge

Building an Embedded Processor System on FPGA

e Synthesis: the compilation process. It will compile all hardware description language (HDL)
files of the system and check for any errors. Synthesis will convert HDL into logical blocks.

* Mapping: transform the logical blocks generated from synthesis into FPGA blocks.

* Placement: specify each component of the system and its location on the FPGA.

* Routing: connect all components of the system on the FPGA.

e Generate bit-file: the result of all the previous steps is stored in a single configuration file
to be downloaded on the FPGA.

The navigator tool-bar is displayed on the left hand side of the XPS window as shown in Figure
17.

Design Flow
»©

Run DRCs

4}
EE

Generate Netiist

Generate BitStream

Export Design

€

i
Generate HDL Files

Launch Simulator

Figure 17. Flow Navigator

In the navigator toolbar under the implementation flow you will find a button labeled “Generate
BitStream”. Click this button to start the hardware building process which will take some time to
perform all the tasks listed before. A lot of information will be displayed in the “Console” window in the
bottom of the XPS window. Watch the progress of the work until the “Console” window displays the
message shown in Figure 18. This message states that the tool has created the file “System.bit” which
contains all the required configuration bits. At this point we are done creating the hardware. The
hardware will have no function without software running on the processor to do some function. This
what will be done in the second part of the experiment.

I WABNING:PhysDesignRules:2410 - This design is using one or more 9K Block R&Ms -

(RAMEBEWER) . 9K Block RAM initialization data, both user defined and
default, may be incorrect and should not be used. For more information,
please reference Xilinx Answer Record 39999.

DRC detected 0 errors and 25 warnings. Please see the previously displayed

individual error or warning messages for more details.

Creating bit map...

Saving bit stream in "system.bit™.

Bitstream generation is complete.

Done!

4 1 b

E| Console |L\, Warnings |@ Errorsl

Figure 18 Hardware Build Done

15| Page

Building an Embedded Processor System on FPGA

Part 2: Software Development

In the first part of the tutorial we were able to build the hardware part of the system. In the second
part we will write a simple C application and compile it for MicroBlaze processor that we built in part
one. The process of building software application and running it is composed of the following tasks:

e Create a software workspace

e Create a board specification project to link the hardware to the software platform

e Create C project and add a source file to it

e Compile the C project to create ELF (embedded executable file)

¢ Merge the ELF file to the bit-stream created in part 1 (system.bit) to generate a complete bit
file that contains both hardware and software (download.bit).

e Download the final bit file (download.bit) to the FPGA to run the application on the
processor system.

Step 1: We perform all these tasks using another tool called Xilinx Software Development Kit
(SDK). We start the SDK using the button “Export Design” in the Navigation toolbar. This button
copies the bit-file (system.bit) and some other files necessary to link the hardware to a directory
called “SDK\SDK_Export” under the projects folder. Then it will ask if you want to start the SDK.
Click “Export Design” which starts the window shown in Figure 19. In which you have two options;
“Export Only” to just copy the hardware file (used when the SDK is already running) or “Export &
Launch SDK” which will copy the files and starts the SDK; click this button to start the SDK.

i .
| Export to SDK / Launch SDK [T

@ This diglog allows you to export hardware
platform information to be used in SOK.

[¥] Indude bitstream and BMM file

(¥P3 will regenerate bitstream if necessary,
and it may take some time to finish.)

Directory location for hardware description files

SOKAEDE._ Export

[F_!(port Only J |Export&Laund'1 SDK| | Cancel | | Help

= = ———————————]

==

Figure 19. Export to SDK (Step 1)

Step 2: When the SDK starts the work space launcher window shown in Figure 20. The
workspace as a software environment which is used to collect several projects in one entity. As
the SDK is based on eclipse platform, those who are familiar with eclipse will find it easy to deal
with the SDK. Change the workspace path as shown in Figure 20.

16 |Page

Building an Embedded Processor System on FPGA

" Workspace Launcher w‘

Select a workspace

Kilinx SDK stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session,

Workspace: Ci\Projects\EDK_Projects\mydesign\5DK\Workspace - Browse...

["] Use this as the default and do not ask again

[ok][Concel |
|

Figure 20. Workspace Launcher (Step 2)

Step 3: The SDK main window will start then as shown in Figure 21. The SDK IDE development
area is divided into several areas. The left-hand side is the Project Explorer window which shows
one project “mydesign_hw_platform” which represents the hardware created in part one. You
will notice it includes the file “system.bit”. The middle area is the code area. By default the file
“system.xml”which lists the components of the system and information about each of them.

€ Crtes - mydesign b platiormysystemyamd - X SOK [N o A — - e 0 e DR S T i
File Edit Source Refsctor Navigate Search Run Project XifinxTools Window Heip

- 0 #2E @-E8-i-G- cEe BYQ Uy ™ < &} e = LTy

o Profect Esplorer B = 0| st 0| Eow B @Ms| = O] Wekome 2 =0

i 2 |/ An cutline is not available. c A
S S mydesign_hw_platform Hardware Platform Specification - s
[® mydesign_hw_platferm %
system_bd.bmm Design Information s
o Xilinx SDK
Target FPGA Device: xchsblo
emaml
o Created With: EDK133
Created On: Tue Mar 06 0207:53 2012
ilinx SOK s b: Eclipse 362 and ¢
XPS Design Report: file,/ DK [htenl NnxSONe Based on otk 2 and
" New to SDK?
Address Map for processor microblaze_0
dimb_cntir 000000000 0x0000784 £ You can get started by clicking File = #
iimb_cntlr 0200000000 0=00007§1£ £ Or watch 3 5 minuta screencast demonsh
RS232 Uart 1 0xB4000000 OxB400£££ €
DIP_Switches 8Bits 0xB1440000 0xB1A4EEE
LEDs 8Bits 0x81420000 0x8142EEEE i
ETHERNET 087000000 0=B707££1£ Documentation
ETHERNET fifo 0xB1a00000 0xBlalffff - i
mdm 0 0284400000 0x8440£££ £ ¢ Getling Starled with Xilinx SDK
« EDK Concepts, Tools and Technic
1P blocks present in the design « Migrating from olderversions of SO
== « Frequentls westion
microblaze 0 microblaze 8202 Datashest
mb_pib plb_vd6 105.2 Datasheet Known Issues
iimb Imib_vi0 2006 Datashest
dimby Imb_v10 200 Datasheet * Known issues in SD
dimb_cntlr Imb_bram_if_cntir 300 Datasheet Xiinx Answer Record Search
iimb_cntlr Imb_bram_if_cntlr 200 Datasheet "
imb_bram bram block 100.a Datacheet Questions, Comments.
RS2I2 Ustl xps_usttite 102 Datasheet - o Jlinx Forums
Overview Source o yilinx Technical Supgorf
[£1 Problems | 2] Tasks| B Console £ . I3 Properties | & Terminal u * o
SDK Log
W v m v

Figure 21. SDK Main Window (Step 3)

Step 4: The following step is that we create a C project using the SDK. In the project explorer
window, right click the window a menu will show up; select New->Project. A new project window
will appear as shown in Figure 22. A list of projects that can be created is shown. Select “Xilinx C
Project” which will start a Wizard to create a simple C program. Select “Xilinx C Project” then click
“Next” to continue.

17 |Page

Building an Embedded Processor System on FPGA

-

"€ New Project [S

Select a wizard —

Wizards:

[, Xilinx Board Support Package
&4 Xilinx C Project
Ié{ Kilinx C++ Project
_. Kilinx Hardware Platform Specification
== General
v = C/C++
= Kilinx

oy == = TE 7 ety
'.:.{,' Bacl Mt Finish | Cancel

- - - o e W

Figure 22. New Project (Step 4)

Step 5: The second screen of the New Project Wizard is shown in Figure 23. This screen allows
you to select a template for the project you want from a predefined list. Select “Hellow World”
which is a template for a simple application that will send some text through the serial port. We
will modify this application later. Select “Hello World”, keep everything else unchanged, and then
press next.

Step 6: The last screen of the new project wizard is shown in Figure 24. In this screen we create
another project called the “The Board Support Package Project”. Each component of the
hardware is associated with a software program that is responsible for operating the device called
the driver. The source of each driver is copied from the EDK directories to Workspace to be
compiled with the project. We will use these drivers to access the hard ware, so it is important to
create the “Board Support Package Project”. This screen, Figure 24, creates that project and
names it “Hellow_World_bsp0”.

Press “Finish” to end the wizard and create the C project “hello_world_0"” and “The Board
Support Package Project” named “Hellow_World_bsp0”. The Project Explorer Window should
look like Figure 25. Three projects will be listed in the explorer.

Step 7: Expand the folder “src” in the “hello_world_0" project. You will notice several C files.
Double click the file “hello_world.c” to open it. The code should look like Figure 26. The code is a
simple C application that will print the word “Hello World” on the output device. We will modify
this code now to read from the switches and put the value on the LEDs.

18| Page

Building an Embedded Processor System on FPGA

New Xilinx C Project

Create @ managed make application project. Choose fram one of the sample applications. -& ”

Project name: hello_world_0

[¥] Use default location

Location; | €\Projects\EDK_ Projects\ mydesign\SDK\Warkspace\hello_world 0 I

Browse,,,
Choose filesystern: Id&fault
Target Hardware
Hardware Platform: | mydesign_hw_platform -
Processor: |m'rcmhtazaﬁ(] - |
Select Project Template
Dhrystone Description
Empty Application Let's say ‘Hello World' in C. -
IwIP Echo Server
Memory Tests
Peripheral Tests
SREC Bootloader
Xilkernel POSIX Threads Demo
® [< Ba(k_ " Next > I | Finish ‘ [Cancel

Figure 23. New Project (Step 5)

New Xilinx C Project

Create a managed make application project. Choose from one of the sample applications, &

(@ Create a new Board Support Package project

The template provided by application 'Hello World" will be used to configure the project.

Project name: hello_world_bsp_0

Use default location

Location: | C\Projects\EDK_Projects\mydesign\SDK\Workspace\hello_world_bsp 0 ‘ [quw;!_»l

Choose file systermt idefau\t - ‘

Target an existing Board Support Package

Available Board Support Packages:

Mo Board Support Packages found

19|Page

tet> | [_Finsh][Cance

Figure 24. New Project (Step 6)

Building an Embedded Processor System on FPGA

4|25 hello_world 0
> g;v? Binaries
> [ap! Includes
: == Debug
4 = sIC
- [£] helloworld.c
3 platfarm_config.h
. [platform.c
3 platform.h
Tl Iscript.d
4 @ hello_world_bsp 0
> 1 BSP Documentation
> (= microblaze 0
| libgenlog
|= libgen.options
Makefile
Il system.mss
Pl g mydesign_hw_platform
|5 system_bd.bmm
|2 system.bit
5 system.xml

Figure 25. Project Explorer (Step 6)

#include <stdioc.h>
#include "platform.h"

void print (char *str);
int main ()
{
init platform():
print ("Hello Worldinhzx"):

cleanup platform();

retorn 0;

Figure 26. Initial Hello World “Source Code” (Step 7)

Step 8: Modify the source code as shown in Figure 27 . When done save the file. Note that once
you are done, the SDK will start compiling your code automatically and generate the output files
(in this case it is the download.bit file). This code performs the following tasks:

* Initialize the drivers for both the switches and LEDs.

e Starts an infinite loop

e Reads the input port connected to the switches and writes it back to the LEDs.

20| Page

Building an Embedded Processor System on FPGA

#include <xparameters.h>
#include <xogpioc.h>

#include "platform.h"
int maini)
{

init_platform();

char swval = 0; // a wariable to store the switch wvalue

XGpio dipsw, leds; /

XGpio_Initialize (&dipsw, XPAR DIP SWITCHES SEBITS_DEVICE_ID): //

XGpio_Initialize (&leds , XPAR LED5S 8BITS_DEVICE ID);

XGpio_SetDataDirection (&leds s 1, 0):
¥Gpio_SetDataDirection (&dipsw , 1, OxFFFFFFEF);

while (1)

{
swval = XGpio_DiscreteRead(&dipsw,1):
XGpio_DiscreteWrite (&leds,1,swval);

cleanup_platform(]ﬂ
return 0;

Figure 27. Modified Source Code (Step 8)

Those who worked with micro-controllers will notice great similarity with programming micro-
controllers. When done modifying the code and saving, the SDK will compile the code
automatically and link it to the hardware. You will be able to download the design on the FPGA at
this point.

Step 9: The final step is to download the design on FPGA. Select the menu item “Xilinx Tools”
from the menu bar and then select “Program FPGA”. The “Program FPGA” window of Figure 28
will appear asking you to select the executable (ELF) file to be used. Beside “microblaze_0" select
the second option “.\mydesign\SDK\Workspace\hello_world_0\Debug\hello_world_0.elf’, then press
“Program”. This will start the programming process on the board. Of course you need to connect
the board at this point for the programming process to complete. As soon as the programming
process complete the system will start working and you will notice the output of the system.

Questions:
1- What is the output of the system?
2- How can you change the output to display some moving patterns on the LEDs?

21| Page

Building an Embedded Processor System on FPGA

Notes:

Program FPGA j _E§ = |
Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory
Hardware Configuration
Hardware Specification: C:\Projects\EDK_Projects\mydesign’\SDK\Workspace\mydesign_hw_platform’systernxmi|
Bitstreamn: C:\Projects\EDK_Projects\mydesign' SDK\Workspace\mydesign_hw_platform'system.bit Browse..

BMM File: C:\Projects\EDK_Projects\mydesign\SDK\Workspace\mydesign_hw_platform'system_bd.bmm

Software Configuration
Processor ELF File to Initialize in Block RAM
microblaze 0 bootloop -

f\hello world 0.elf

@' - L Program JI Cancel

Figure 28. Program FPGA (Step 9)

22 |Page

