Building an Embedded Processor System on FPGA

Building an Embedded Processor System
on Xilinx NEXYS3 FPGA and Profiling an
Application: A Tutorial

Introduction:

Modern FPGA’s are equipped with a lot of resources that allow them to hold large digital
systems on a single chip. FPGA vendors provide tools that allow the designer to build embedded
systems on efficiently on FPGAs. One of the new concepts that you will learn in this experiments
is the system-on-chip approach (SoC). In this methodology, a complete micro-processor system
is implemented on a single chip. In our experiment we will use an FPGA board that is equipped
with an FPGA from Xilinx a leading FPGA vendor. Xilinx provides a tool for building an embedded
SoC on its FPGAs, and we are going to use this tool in this experiment. This tool is called Xilinx
Embedded Development Kit (EDK). The EDK allows the designer to build the processor system
based on an embedded processor from Xilinx called MicroBlaze. The tool provides a C/C++
compiler for that processor and an IDE based on Eclipse framework. In this tutorial we will build
a processor system based on MicroBlaze using the EDK and run this system on Nexys 3 FPGA
board.

Objectives:
1. Demonstrate the concept of SoC.
2. Familiar students with embedded soft processor systems on FPGA.
3. Build a soft processor system that will perform simple operations.
4. Profile the Application.

Equipment and Tools

1.

2.

Nexys 3 FPGA board, use two USB cables:
a. Connect the first to the USB PROG port.
b. Connect the second to the UART port.
Xilinx Embedded Development Kit (XPS, SDK). This is tested on revision 13.4 successfully.

Detailed Steps
Part 1: Building the hardware system on FPGA

In previous labs you learned about the Xilinx ISE design flow and how to use it to map a design
using VHDL on FPGA. In this tutorial we will use the Xilinx EDK to build a micro-processor system
and write a simple program for that processor to perform simple /O operations. The first part of

1|Page

Building an Embedded Processor System on FPGA

the tutorial attempts to build the hardware system. The EDK is composed of two software
components: i) Xilinx Platform Studio (XPS) which is used to build and configure the soft
processor system on the FPGA. ii) Xilinx Software Development Kit (SDK), which is the IDE for
software development. Perform the following steps to build the hardware system.

Step 1: We start by building the hardware using the XPS. Start XPS using the program menu as
shown in Figure 1.

J Kilinx ISE Design Suite 13.3
, Accessories
. ChipScope Pro
. Documentation
. EDE
2 Xilinx Platform Studio
@ Kilinx Software Development Kit
. Documentation

) Tools

Figure 1. Starting EDK (Step 1)

When the XPS starts the main window will show the options shown in Figure 2. The “Getting
Started” part gives you the options to create a new project (empty or based on a specific board),
or open an old project that was created before.

Step 2: Select the option “Create New Project Base System Builder” which will allow you to
build an embedded processor system based on the specification of specific board (In our case
Nexys 3 board). The “New Project Wizard” will appear as shown in Figure 3.

Getting Started Documentation

/,,

is:8
¥ Create Mew Project Using Base System Builder ", O See What's Mew

= | Use the Base System Builder wizard to create an XPS project Release notes and information about new IDS features in this release

o
@ Create Mew Blank Project | ﬁ% View Product Information and Documentation
Create a new XPS project without using the Base System Builder " Information about EDK, project flows, and documentation
j Open Project g/ View All EDK Documentation
Open a previously created project All documentation related to EDK.
W Open Recent Project ﬁ
Open a recently used project

Figure 2. XPS Window (Step 2)

Explore XPS Tutorials

Inforrnahon about creating an example design using the embedded design flaw

2|Page

Building an Embedded Processor System on FPGA

%% Create New XPS Project Using BSE Wizard L&J

MNew Project

Project File | C:'\Projects\EDK_Projects\mydesign\aystem, xmp Browse ...

Select an Interconnect Type

) AXI System
AXIis an interface standard recently adopted by Xilinx as the standard interface used for all current and

L future versions of Xilinx IP and tool flows, Details on AXI can be found in the AXI Reference Guide on i
xilinx, com,

@ PLB System

PLE is the legacy bus standard used by Xilinx that supports current FPGA families, induding Spartané and
Virtexf, PLB IP will not support newer FPGA families, so is not recommend for new designs that may
migrate to future FPGA families. Details on PLB can be found in the PLBv46 Interface Simplifications

|| document on xdlinx. com,

Select Existing .bsb Settings File{saved from previous session)
[l Browse .., |
Set Project Peripheral Repository Search Path

| Browse ... |

| Help oK | | Cancel |

Figure 3. Building a New Design (Step 3)

Step 3: In the new project wizard window of Figure 3, select the location you want to save the
files of your project. The project will include so many files in the future so try to keep this location
specific and separate from other files so that you can refer back to it easily. Create a new folder
on the hard drive and name it “Projects” to store all your projects, then create another folder
called “EDK_Projects” to store all projects created using EDK. After that create a folder for this
new project and name it for example “mydesign”. The project file (usually system.xmp) will be
stored in that location (c:\Projects\EDK_Projects\mydesign\system.xmp) as shown in Figure 3.

The second option in this window is to select the interconnect type. The EDK supports two types
of bus interface AXI, and PLB. Both are standard bus topology with various specifications. The
differences between the two standards are beyond the scope of this article. For this experiment
we will use the second option “PLB System”.

When done press “OK”. This will start the “Base System Builder” tool that will help us build and
configure the hardware system as shown in Figure 4.

3|Page

Building an Embedded Processor System on FPGA

e T
& Base System Builder - @ | = I

Welcome Board System Processor Peripheral Cache Summary

I Welcome to the Base System Builder
This tool leads you through the steps necessary for creating an embedded system,

Select One of the Following: |
@ Iwouldlike to create a new design
(7 ITwould ke to load an existing .bsb settings file (saved from a previous session)

Browse ...

Mare Info

< Back I Next > H Cancel

m

Figure 4. Base System Builder - Welcome Screen (Step 4)

Step 4: The welcome screen shown in Figure 4, is the first screen in the Base System Builder
wizard that will guide you to build your system. In this screen select “I would like to create a new
design” and then press next. This will let you create a new design.

Step 5: The second screen of the wizard is shown in Figure 5. In this screen we select the board
that we want to use to build the system. The XPS allow you to build a design based on a specific
board or create a custom design that is generic. Select the first option “I would like to create a
system for the following development board”. This will allow you to select a specific board. The
board is specified by three options:

e Board Vendor: this is the manufacturer of the board. Select “Digilnet” which is the

company that builds the Nexys 3 board.
* Board Name: this is the name of the board we want to use. Select “Nexys 3 Board”.

e Board Version: the board version. Select version “B”.

4|Page

Building an Embedded Processor System on FPGA

Welcome Board System Processor Peripheral Cache Summary
3

Board Selection
| Select a target development board,

Board

@ 1 would like to create a system for the following development board

Board Vendar |Dig'r|ent -B
B oo o
Board Revision |B B

(") T would like to create a system for a custom board

Board Information

Architecture __ Device ___Package __ Speed Grade -
lspartang | | = | lesg324 - |-3

[7] use stepping |

Rezet Polanty |Active High | r-

Relzted Information
wendor's Website

Vendor's Contact Information
Third Party Board Definition Files Download Website

The Mexys3 board features a Xilinx Spartan-6 XCE5LX 16-3C5G324C FPGA device, 512Mb or 256Mb {x16) CORAM component for use with Spartan-6,
128Mbit Mumonyx Parallel PCM Flash memaory, 128Mbit Mumonyx N250Q 128{x4) SPI PCM Flash memory, SMSC LANS710 PHY with MII interface for use with
10,/100Mbps speed, HID Host for USE mouse, keyboard, USB-UART bridge for the serial port, 8 slide switches, 5 pushbuttons in Gamepad configuration and
§LEDs

Figure 5. Board Selection (Step 5)

The Nexys 3 board is equipped with Spartan 6 FPGA chip which is a mid-size FPGA from Xilinx. The
board has several peripherals that can be used with the FPGA to perform several functions (See
Figure 5):

e 512 MB CDRAM.

e 128 Mbit Flash Memory.

* 8 Switches and 8 LEDS.

e 5 Push Buttons.

* Ethernet Physical Interface for base 10/100 networking.
e USB Host for Keyboard and Mouse

* Serial Port

These peripherals allow you to build a small computer system on the board which we are going
to do in this experiment (and the following ones).

When done selecting, press “Next” to move to the next screen.

5|Page

Building an Embedded Processor System on FPGA

Step 6: The following step is to select the system type. This is shown in Figure 6. The XPS allows

us to choose between two types of system architecture:

e Single Processor System: This is the common system that you studied in many courses. The
system is composed on one processor connected to several peripherals using a single common
bus. The advantage of such system is the simplicity of the design and simplicity of
programming such systems. The main disadvantage is that all peripherals are connected
through a common bus, which will reduce the speed for fast peripherals to match the slower
ones. This type of systems is good for applications that do not require high speed of data
communication.

e Dual Processor System: This system architecture is composed of two processors; each is
connected to a separate bus. One processor will be used for high speed peripherals and the
other is used with lower speed peripherals. This increases the performance of the system
compared to the single processor system. However, writing software for this system is more
complex as it requires synchronization between the two processors.

Select “Single Processor System”. This will start building a single processor system. We choose
to build a single processor system as this is simple to develop. However, you can later add more
processors if required.

Welcome Board System Processor Peripheral Cache Summary
j

System Configuration
Configure your system.

1@ Single-Processor System | Dual-Processor System
Select this option to create a design with a single processor. This Wizard Select this option to create a design with two processors. This Wizard
will let you configure the processor, the peripheral set and some major will let vou select the types of processors, peripherals unique to sach

configuration parameters for the peripherals. processor, and peripherals shared by the processors,

' Processor 1 Peripherals

R&232° GRIO

Shared Paripherals H

3 Mailbox Mutex ...
Frocessor 1 Peripherals

R8232 GPIO

Processar 2 Peripherals

DDA

I < Back][Mext > J[Cancel

4 = e —— -]

Figure 6. Select System Architecture (Step 6)
6|Page

Building an Embedded Processor System on FPGA

When done press “Next” to move to the next screen shown in Figure 7.

4 Base System Builder I o 2lx|
Welcome Board System F Peripheral Cache Summary
Processor Configuration
Configure the processor{s).
Reference Clock Frequency |1I]D o0 _'I MHz.
—Processor 1 Configuration
Processor Type |M\cruB\azE ;i
System Clock Frequency |66.6? LI MHz
ity -
Debug Interface |Gn Chip HW Debug Module _V_|
I™ Enable Floating Point Uinit
Mare Info < Back | Next = I Cancel

Figure 7. Processor Configuration (Step 7)

Step 7: The processor configuration screen is shown in Figure 7. As stated earlier, Xilinx

provides a processor called MicroBlaze that can be implemented on its FPGAs. In this screen we
configure the processor as follows:

7|Page

Processor Type: There is only one selection which is MicroBlaze.

System Clock Frequency: This is the processor and common bus reference clock frequency.
Most of the modern FPGA'’s are equipped with clock modules that are able of generating
higher frequencies from a single fixed frequency. For example, Nexys 3 board has on board
clock of 50 MHz, however, you can use higher frequencies using the FPGA clock modules.
Select the desired frequency up to 83 MHz Select “66.67 MHz".

Local Memory: The FPGA contains several memory blocks up to 128 KB. This is different from
the on board memories. You can connect up to 64KB of these block memories to the
MicroBlaze as a local processor memory. You can connect more memory if required through
the local bus. Select “64KB” for this tutorial.

Leave all other options and then press “Next” to move to the next screen.

Building an Embedded Processor System on FPGA

; — 2
@ Base System Buider S B R :
\Welcome Board System Processor Peripheral Cache Summary
|
Peripheral Configuration
To add & peripheral, drag it from the “Available Peripherals™ to the processor peripheral list. To change a core parameter, dick on the peripheral.
|I Available Peripherals
Peripheral Names Processor 1 (MicroBlaze) Peripherals Select Al
10 Devices Core Parameter
ETHERNET - =
= Internal Peripherals DIP_Switches_8Bits o
- Imb_bram_if_cntlr Lo Aps.gpio
- ¥ps_bram_if_cntlr L Int_ermpt =~
- ¥ps_timebase_wdt Ethemet Lile
* xps_timer Cﬂre.: *ps_ethernetlite
LEDs_8Bits
Core: xps_gpio
' Micron_RAM
Core: xps_mch_emc
| Numenyx PCM
Core: xps_mch_emc
| PS2_Mouse_Keyboard
Core: xps_ps2
Add = Push_Buttons_4Bits
Core: xps_gpio
< Remave | RS232 Uart 1
Core: xps_uartlite, Baud Rate: 3600, Data ...
dimb_cntlr
Core: Imb_bram_if_cntlr
ilmb_cntlr
Core: Imb_bram_if_cntlr
More Info | < Back 1 [MNext > | [Cancel
ke =

Figure 8. Peripheral Configuration (Step 8 - 1)

Step 8: After configuring the processor we are ready to configure the peripherals (Input/Output
devices). The peripheral configuration screen is shown in Figure 8. In this screen a list of all the
available peripherals is presented. From this list the designer can choose which peripheral to be
connected to the processor. The screen is divided into two lists. The right-hand side list shows the
peripherals that are not connected to the processor, while the left-hand side list shows all the
peripherals that are currently connected to the processor. By default several peripherals will be
connected to the processor as shown in Figure 8. In this project we do not need many of these
devices so we will remove many of them as shown in Figure 9. Remove the following devices:

e PS2 Mouse_Keyboard

* Micron_RAM

* Numonyx_RCM

* Ethernetlite

To remove a device, select the device then press “Remove”.

This leaves the Switches, Leds, Push Buttons, and Local Memory devices connected to the
processor.

8|Page

Building an Embedded Processor System on FPGA

[Pomesmennaser

System

Board

21

Peripheral Configuration

To add & peripheral, drag it from the "Available Peripherals” to the processor peripheral list, To change a core parameter, ciick on the peripheral,

Avalable Peripherals
Peripheral Names Processor 1 (MiroBiaze) Peripherals [—I Select Al
=| 10 Devices
Ethemet,Lite Igﬂ [Parameter |
ETHERMET DIP_Switches_8Bits
P52 Mouse_Keyboard Core: ps. gpio
Micron_RAM LEDs 8Bits
Mumonyx_PCH Core: ¥ps_gpio
&l Internal Peripherals Push_Buttons_4Bits.
e o i ik e
xps_beam_if_entir R5232_Uart_1

- xps_tmebase_dt
xpa_timer

More Info

< Remove i

dimb_cntir

Core: Imb_bram_if_cnt
iimb_cntir

Core: imb_bram_if_cntir

Core: xps_uartfite, Baud Rate: 9600, Data 6.

<Back | Next > Cancel I

Figure 9. Peripheral Configuration (Step 8 - 2)

To add a device to the processor connection, select the required device and click add. We will add
the xps_timer since it is required for profiling as seen in Figure 10. Make sure to enable interrupts.

Welcome. Board System Processor Peripheral Cache Summary
Peripheral Configuration
To add = peripheral, drag it from the “Available Peripherals” to the processor peripheral list, To change a core parameter, dick on the periphersl,
Avaiisble Periphersic
Peripheral Names Processor 1 (MicroBlaze) Peripherals selectal |
=110 Devices
. Ethernet_Lite Core Parameter |
ETHERNET DIF_switches_Seits
P52_Mouse_Keyboard Core: xps_gpio
Micron_RAM LEDs_8Bits
. Numonyx_PCM Core: xps_apio
) Internal Peripherals Push_Buttons_48its
- Imb_bram_if_cntr Core: xps_apio
- ps_bram_If_cntr RS232_Uart_1
*ps_timebase_ndt Core: xps_uartite, Baud Rate: 9600, Data B..
Xps_timer dimt_ctr
Core: Imb_bram_if_cntir
iimb_cntir
Core: Imb_bram if_cntlr
_tmer_0
Core xps_tmer
M Count Width 32 -
Configure Mode [Two timers are present =
<Remove Use Interrupt ~

Cancel

<Back | Next > |

Figure 10. Adding the xps_timer (Step 8 - 3)

9|Page

Building an Embedded Processor System on FPGA

Now we selected all the required devices. We have some input/output devices connected to the
processor. After completing the hardware, we will write several software applications for the sake

of profiling.

Press “Next” to move to the next screen.

Step 9: Cache configuration screen is shown in Figure 10. If we have more than one memory
types connected to the processor, we can use cache memory to speed up memory access. As we
only have local memory connected to the processor, no cache memory can be configures. We will
leave this screen unchanged and press “Next”.

% Base System Builder |8]
| Welcome Board System Processor Peripheral Cache Summary
Cache Configuration
Select cache size and cache memary for processor(s), |
Processor 1 (MiroBlaze) Cache |
There is no cacheable memory for this processor
I
|
[More Info [<Back | [vet>][concel

Figure 10. Cache Configuration (Step 9)

Step 10: Now we are done configuring the hardware. The last screen of the “Base System
Builder” is shown in Figure 11. This screen displays a summary of the system being built. Two
types of information are displayed; system components and file allocation. The components list
displays the name of each component and the address associated with it. The address assigned to
each peripheral is unique and it is used by the processor to locate a specific device and
communicate with it. For example, the device DIP_Switches_8Bits (the 8 switches on the board) is
assigned the address 0x81440000 which means that the processor will use this address to read
the value of the switches as digital input.

10| Page

Building an Embedded Processor System on FPGA

/% Base System Builder 21
Welcome Board System Processor Cache Summary

Summary

Below is the summary of the system you are creating.

System Summary

Core Name Instance Name | Base Address | High Address |
- Processor 1 microblaze_0
i Xps_gpio DIP_Switches_8Bits 031440000 OxB144FFFF
- xps_apio LEDs._8Bits 081420000 Ox8192FFFF
+- xps_apio Push_Buttons_4Bits 081400000 OxE140FFFF
*. xps_uartiite RS232_Uart_1 084000000 OxB400FFFF
: Imb_bram_if_cntlr dimb_cntir 0x00000000 0x0000FFFF
 Imb_bram_if_cntr iimb_cntr 0x00000000 0x0000FFFF
1. wps_timer xps_timer_0 0x33C00000 0x83COFFFF
File Location
= Overall

i+ D:\a0-PersonalFiles-D1z0-FPGA_Projects\EDKBasedProjects Tutorial-4\system.xmp

i+ D:\a0-PersonalFiles-D1z0-FPGA_Projects\EDKBasedProjects\Tutorial-4system.mhs

- Dt\a0-PersonalFiles-Dlz0-FPGA_Projects\EDKBasedProjects Tutorial-4\data \system, ucf

- De\a0-PersonalFiles-D\z0-FPGA_Projects\EDKBasedProjects\Tutorial-4etcifast_runtime.opt
i+ Di\a0-PersonalFiles D'20-FPGA_Projects\EDKBasedProjects\Tutorial-4\etcidownload.cmd
- Di\a0-PersonalFiles-Diz0-FPGA_Projects\EDKBasedProjects Tutorial-4ietcibitgen.ut

¥ Save Base System Builder (bsb) Settings File
|D:\a0-PersonalFies-D\z0-FRGA_Projects\EDKBasedProjects Tutorial-4isystem.bsh

More Info <gack [[Fmeh | conce

Figure 11. System Summary (Step 10)

The file list includes all the files that are created by wizard to define the project. The wizard
generates six files.

e System.xmp: this is the project file that is used by XPS to open the project for future use.

* System.mhs: this is the hardware description file. This is a text file that describes the
hardware components of the system.

e System.ucf: user constraints file. This file defines the relation between the system
input/output pins and the actual FPGA pins.

e Fast_runtime.opt, download.cmd, bitgen.ut: these three files are used build the bit file
that is later downloaded to the FPGA to configure it to do the function of the system.

This is the final screen of the wizard; clicking “Finish” will end the wizard and generate the
required files on the folder specified at the beginning of the wizard. Click “Finish” and then
check the folder “C:\Projects\EDK_Projects\mydesign” it should look as shown in Figure 13.

11|Page

Building an Embedded Processor System on FPGA

_xps 05/03/201210:05 ... File folder
data 27/02/201212:57 ... File folder
| ete 28/02/2012 3:00 PM File folder
L1 implementation 27/02/20121:05 AM File folder
pcores 27/02/201212:00 ... File folder
| clock_generator 0 2770272012 12:57 ... Text Document
|| systern.bsb BSE File
= system Text Document
|| system.make 05/03/201210:05 ... MAKEFile
& system 27/02/2012 1:05 AM MHS File
@ system 27/0272012 1:05 AM Xilinx Platform Stu...
| system_incl.make 05/03/201210:05 ... MAKE File
|| XpsGuiSessionLock 05/03/201210:05 ... File

Figure 12. Directory Structure

When the “Base System Builder” is done the XPS window should look like Figure 13.

2 il Platiorm Studio (EDK_0.87xd) - D:\a0-Personalfiles-D\20-FPGA_Projects\EDKBasedPrajects\Tutorial-4 \system.xmp - [System Assembly View] =[x

TR
Navgatr X [P Cotsog woex [, Busnterfoces | Ports | Aderesses | L+ | s iverface Fiters <l
fofolalslzlEa |45 s 1= o :
e P mh_vi0 2006 Pucommectzd §
— demby 2008 By e Starciard
o ¥ pb_y6 105, Fu
k- ¢ migcblaze 4200 1e
g S wobrom i 3008 g s
- F¢ b bram . 3006 %m,w 3
. i mam 2008 gt
pe Yropsow 2012 1 _MEMORY_CHANYEL
e P w3 gpio 2008 21 By Inierface Type
- ¥ s g0 2Wa
: T e -
. Y wsmer 1022
o Y wearite 102a s
¥ dock gener. 403 [Finsstors:
e
Export Design
‘ | iegend
|diMaster @Slave iMaster/Slave B Target (Initiator @ Connected JUnconnes cted M Monitor
@) % % ® Bfocal 22 geta sa
% Seaech 1P Catalog: Clear |¥Production PiLicense (paid) Mticense {evall TLocal Zifre Production IiBeta $Development
| 4 |3 Supersedsd
GeneratetCLFies G poedt @ T Catdog = Desgn Summary TT® copalbesgnvien & spwmasenyven [
Eners “nsx
3
Launch Smuator
4l J ;l_j
[comsdle [1) warnings @ errors |
B

Figure 13. Xilinx Platform Studio - System Assembly View

Step 11: The XPS window (Figure 13) opens at the “System Assembly View”which shows the
system components and their interconnection. The system assembly view has three tabs:
* Bus Interface: this shows the bus interconnection between components. As you can see
there are three main buses:
0 ilmb :instruction local memory bus, used to connect the processor to the code
memory. Code memory is the memory that holds the programs code
(instructions).
0 dIimb: data local memory bus, used to connect the processor to the data memory.
Data memory is the memory that holds the program data.
0 mplb: MicroBlaze peripheral local bus (plb), used to connect the processor to all
the other peripherals.
e Ports: this tab lists all the ports of each peripheral/processor and displays its connection.
In this project we will not need to modify this.

12| Page

Building an Embedded Processor System on FPGA

e Addresses: this tab lists the addresses assigned to each peripheral. You can modify these

addresses through this tab. But for this project we will not do any address modification.

In the “Bus Interface” tab you can modify the system by adding more peripherals/processors,

removing peripherals, or changing the configuration of any peripheral.

Step 12: The last step to build the hardware is to generate the bit-file that is used to configure
the FPGA. XPS generates all the necessary files to do so. Each component of the system is defined
in VHDL (or other hardware language) and the tool will compile all these files to build a single

design file to be downloaded on the board. This process is composed of several tasks:

e Synthesis: Will compile all hardware description language (HDL) files of the system and

check for any errors. Synthesis will convert HDL into logical blocks.

e Mapping: Transforms the logical blocks generated from synthesis into FPGA blocks.

* Placement: Specifies each component of the system and its location on the FPGA.

* Routing: Connects all components of the system on the FPGA.

* Generate bit-file: Produces a single configuration file to be downloaded on the FPGA.

The navigator tool-bar is displayed on the left hand side of the XPS window as shown in Figure

14.

Figure 14. Flow Navigator

In the navigator toolbar under the implementation flow you will find a button labeled “Generate

BitStream”. Click this button to start the hardware building process which will take some time to

perform all the tasks listed before. A lot of information will be displayed in the “Console” window in the

bottom of the XPS window. Watch the progress of the work until the “Console” window displays the

message shown in Figure 15. This message states that the tool has created the file “System.bit” which

contains all the required configuration bits. At this point we are done creating the hardware.

:PnysDesignRules:2410 - This design 1S using one or more 2K Block RAMs
9K Block RAM initialization data, both user defined and

ould not be used. For more information,

please reference Xilinx Answer Record 32888
DRC detected 0 errors and 25 warnings. Please see the previously displayed
individual error or warning messages for more dectails.

Creating bit map...

Bitstream generation is complscte.
Done!

i
[E] comsole |t warnings [@ errors |

Figure 15 Hardware Build Done

13| Page

Building an Embedded Processor System on FPGA

Part 2: Profiling

In the first part of the tutorial we were able to build the hardware part of the system. In the second
part we will write a simple C application and compile it for MicroBlaze processor that we built in part
one. The process of building software application and running it is composed of the following tasks:

e Create a software workspace

e Create a board specification project to link the hardware to the software platform

e Create C project and add a source file to it

e Compile the C project to create ELF (embedded executable file)

¢ Merge the ELF file to the bit-stream created in part 1 (system.bit) to generate a complete bit
file that contains both hardware and software (download.bit).

e Download the final bit file (download.bit) to the FPGA to run the application on the
processor system.

Step 1: We perform all these tasks using another tool called Xilinx Software Development Kit
(SDK). We start the SDK using the button “Export Design” in the Navigation toolbar. This button
copies the bit-file (system.bit) and some other files necessary to link the hardware to a directory
called “SDK\SDK_Export” under the projects folder. It will ask if you want to start the SDK. Click
“Export Design” which starts the window shown in Figure 16. In which you have two options;
“Export Only” to just copy the hardware file (used when the SDK is already running) or “Export &
Launch SDK” which will copy the files and starts the SDK; click this button to start the SDK.

i .
7 | Export to SDK / Launch SDK [-

@ This dialog allows you to export hardware
platform information to be used in SOK.

[¥] Indude bitstream and BMM file

(¥P3 will regenerate bitstream if necessary,
and it may take some time to finish.)

Directory location for hardware description files

SOKAEDE._ Export

[F_!(port Only J |Export&Laund'1 SDK| | Cancel | | Help

= = ————————— |

Y= =

Figure 16. Export to SDK (Step 1)

Step 2: When the SDK starts the work space launcher window shown in Figure 17. The
workspace as a software environment which is used to collect several projects in one entity. As
the SDK is based on eclipse platform, those who are familiar with eclipse will find it easy to deal
with the SDK. Change the workspace path as shown in Figure 17.

14| Page

Building an Embedded Processor System on FPGA

Workspace Launcher

Select a workspace

Kilirx SDK stores your projects in a folder called a workspace,
Choose a workspace folder to use for this session,

Workspace: Ci\Projects\EDK_Projects\mydesign\5DK\Workspace

["] Use this as the default and do not ask again

¥ | Browse..,

OK

J{

Cancel l

Figure 17. Workspace Launcher (Step 2)

Step 3: The SDK main window will start then as shown in Figure 18. The SDK IDE development
area is divided into several areas. The left-hand side is the Project Explorer window which shows
one project “mydesign_hw_platform” which represents the hardware created in part one. You
will notice it includes the file “system.bit”. The middle area is the code area. By default the file
“system.xml”which lists the components of the system and information about each of them.

@ C/C++ - Tutorial-4_hw_platform/system.cml - Xilinx SDK =lof =]

Fie Edit Source Refactor Navigate Search Run Project Xiinx Tools | Window Help

5= /B |2 | @S- G| A e [$5-0 - | - | = = = i R cicrs

[Project Explorer 53 = (G systemain 52 S O[Sz ous 2 Glmak| T O[T welcome 52 =i
BN Tutorial-4_hw_platform Hardware Platform Specification 2] [An outine s not avaiasle o

= {3 Tutorial-4_hw_platform

Design Information

Target FPGA Device: xcSslx16
Created With: EDK 13.4
Created On: Wed Feb 04 19:48:28 2015
®PS Design Report: file: /D2 fa0-PersonalFiles D /70 FPGA Projects/ED

rotects Tutorial-4

DK/SDK_Ex

Address Map for processor microblaze_0

dimb_cntr 0x00000000 0x0000££££
imb_cntir 0=00000000 0x0000££££

RS5232 Uart 1 0x84000000 OxB6400£££
DIP_Switches_8Bits 0x81440000 0x8144££££
LEDs_8Bits 0x81420000 0x8142£££f
Push_Buttons_afits Dx81400000 DxB140£££E
xps_timer_0 Dx83c00000 DxB3IcOffff
mdm_0 DxB84400000 0xB440£££5

xps_inte_0 0x81800000 0xB180Ff£f

1P blocks present in the design

microblaze_0 microblaze 8.20.b Datasheet
mb_pls plb_v4s 1.05.2 Datasheet
iimb Imb_v10 2.00.b Datasheet
i oty 10 E R — !

Overview | Source |

[2. problems [Tasks [console 2 [Propertes | 47 Terminal

SO Log

19:49:03 INFO

4] |

: Erocessing command line option -Awspec D:\a0-PersonalFiles-D\zO-FPGA Projec 4|

il

& xilinx SDK

Xilinx SDK is based on Eclipse 3.6.2 and C
New to SDK?

'You can get started by clicking File —> N
Orwatch a 5 minute screencast demanstr

Documentation

Getting Started with Xilinx SDK
EDK Concepts, Tosls and Technig
Migrating from older versions of SC
Erequently asked guestions

Known Issues

+ Knownissues in SDK
« Xilinx Answer Record Search

Questiocns, Comments.. =

+ Xilinx Forums
« xilinx Technical Support

4] |

o

{4 Tutorial-4_hw_platform/system.xmi

Figure 18. SDK Main Window (Step 3)

Step 4: The next step is to create the Xilinx Board Support Package. In the project explorer
window, select File -> new. A new project window will appear as shown in Figure 22. A list of
projects that can be created is shown. Select “Xilinx Board Support Package” which will enable
you to create a standalone board support package (no operating system). As seen in Figure 23.

15| Page

Building an Embedded Processor System on FPGA

I
T
Select a wizard

p—
Wizards:
e fiver ted]

|

L Xilinx Board Support Package

(&4 Xilinx C Project

() Xilinx C++ Project

£ Xiling Hardware Platform Specification
b (= General
b B C/Cs+
b 2 Xiline

<Back | Nea> || Fnsh | [Gancel

Figure 19. New Project (Step 4)

Xilinx Board Support Package Project
Create 2 Board Support Package.

Project name: | standalone _bsp_0f

17 Use defauit location

Location: [0 Personaiies-D\y0-FRGA_Projects EDNBasemToects [Utoral ASOKIWOKSpare it.

Browse.,
Choose fiie system ldrfmit e

Hardware Platform: [Tutorial-4_hw_platform

= |
Pu: [mrabiaze 0 =l

ackage

o

ikernel e
Fﬂ_m;-;-‘ ntes

~T O
2

(2]

Figure 20. Xilinx Board Support Package Project (Continue .. Step 4)

16 |Page

Building an Embedded Processor System on FPGA

A new window will appear “Board Support Package Settings” which will enable you to set certain

parameters as seen in Figure 24.

1 Board Support Package Settings il

Board Support Package Settings

Control various settings of your Board Sunport Package.

Y

stordalorie standalone_bsp_0
& divers OSTyoe: standsboe: Stardalone is 2 smele,
i) i it s
s e 05 3 profiing, sbort and ext.
Target Harduare
i i
Processor: mcrobisze 0
y igelor on the Ieft.
[riame [versen
O et 100 TP TGP/ Stack lorary: WIP V14,0, ximx adapter v1
0 e 1o0s routines to sce .
0 wafesh 3002 i Flash lbrary for Inel/AMD CF1 complart parabel flash
0 s 201 i In-system snd Seria Flash Lirary
O ximte 100a iinx Memry Fie System
@ T ==

Figure 21. Xilinx Board Support Package Settings (Step 4)

Highlight standalone in the “Board Support Package Settings” and change the value for

“enable_sw_intrusive_profiling” to true. Under “enable_sw_intrusive_profiling” you will find a setting
for “profile_timer”. Change the value from “none” to xps_timer_0 as seen in Figure 25.

4¥ Board Support Package Settings =

Board Support Package Settings
Cantrol various settings of your Board Support Package.

i

=1 Qverview
.. P Configuration for 0S: standalone
B drivers Hame | value | Default | Type | Description
e stdin RS232 Uart_1 none peripheral stdin peripheral
stdout RS232 Uart_1 none peripheral stdout peripheral
(=] enabl trusive_profiling true false boolean
e xps_timer_0

false false boolean

Figure 22. Xilinx Board Support Package standalone Settings (Step 4)

17 |Page

Building an Embedded Processor System on FPGA

The final step is to highlight “cpu” under “drivers” and change the “extra_compiler_flage” from —g to “-g

—pg” as seen in Figure 26.

4 Board Support Package Settings

Board Support Package Settings
Control various settings of your Board Support Package.

i

2 O;VE;;i:amna Configuration for driver: cpu
Bl-drivers Mame | value | Default Type | Description

a4 compiler mb-gce mb-gee string Compiler used to compile both BSP/L
archiver mb-ar mb-ar string Archiver used to archive libraries fo
compiler_flags 02 02« string Compiler flags used in BSP and librar
et e o Extra compier flags used in BSP and
xmdstub_peripheral none none peripheral Debug peripheral to be used with xr
4 J 3|

@ o

Figure 23. Xilinx Board Support Package cpu Settings (Step 4)
Step 5: The following step is that we create a C project using the SDK. In the project explorer

window, select File -> New->Project. A new project window will appear. A list of projects that can
be created is shown. Select “Xilinx C Project” which will start a Wizard to create a simple C
program. Select “Xilinx C Project” then click “Next” to continue.

Step 6:

The second screen of the New Project Wizard is shown in Figure 27. This screen allows

you to select a template for the project you want from a predefined list. Select “Hellow World”
which is a template for a simple application that will send some text through the serial port. We
will modify this application later. Select “Hello World”, keep everything else unchanged, and

then press next.

@ New Project

B |t

Project name:

Processor:

Dhrystone

New Xilinx C Project

Create a managed make application project. Choose from one of the sample applications.

==t
Vs

[¥] Use default location

Target Hardware

Hardware Platform: | my

Select Project Template

Empty Application

i
I
iwiP Echo Server
I [P Echos:
Memory Tests
M | Peripherai Tests
Il |SREC Bootiosder
I Xikernel POSIX Threads Dermo
I
I

hello_world_0

mic

e
| T

Next > Cancel

<Back ||

18| Page

Figure 24. New Project (Step 5)

Building an Embedded Processor System on FPGA

Step 7: A new screen of the New Xilinx C Project will appear as shown in Figure 24. This screen
allows you to either “Create a new Board Support Package project” or to “Target an existing Board
Support Package”. We will choose “Target an existing Board Support Package” which is the
standalone_bsp_p (OS:standalone) which we created in the previous step. Press Finish.

4 New Project B — o x|
New Xilinx C Project e
Create a managed make application project. Choose from one of the sample applications. &r

" Create a new Board Support Package project

The template provided by application Heflovord Wil be used o confiotre the project,

Praject name: | hel

¥ sz detaultlocation

Location; | B

@ e (I |

Figure 25. Target an existing Board Support Package (Step 7)

19|Page

Building an Embedded Processor System on FPGA

Step 8: Expand the folder “src” in the “hello_world_0" project. You will notice several C files as
seen in Figure 29. Double click the file “hello_world.c” to open it. The code should look like Figure
30. The code is a simple C application that will print the word “Hello World” on the output device.

&

E %% Binaries

=
E] [n| platfarm_config.h
] [€] platform.c

Bﬂ [platform.h

E Iscript.id
% standalone_bsp_0
I i BSP Documentation
= microblaze_0
| libgen.log
| libgen.options
| @ Makefile

M
ool

= f_,ﬁ Tutorial-4_hw_platform

| system_bd.bmm
=| ‘system.bit
i system.xml

Figure 26. Project Explorer (Step 8)

#include <stdic.h>
#inclunde "platform.h"

void print(char *str);
int main()
{
init platform():
print ("Hello Worldin\z"):

cleanup platform():

retorn 0;

Figure 30. Initial Hello World “Source Code” (Step 8)

Step 9: Modify the source code with your application that you need to profile. When done save
the file. Note that once you are done, the SDK will start compiling your code automatically and
generate the output files (in this case it is the download.bit file). To display any messages you will
need to set the terminal as will be explained in the Appendix at the end.

20| Page

Building an Embedded Processor System on FPGA

Step 10: Highlight the “hello_world_0" with your mouse and right click. This will show a new
menu. Zoom on “C/C++ Build Setting”. This will produce a new screen “C Code Properties” as seen
in Figure 31.

Figure 31. Properties for hello_world_0 (Step 10)

Step 11: Highlight profiling and enable it as seen in Figure 32. A message “Fi ni shed
bui I di ng: hello_world_0.elf.elfcheck” will be produced in the console.

Figure 32. Enable Profiling in Properties for hello_world_0 (Step 11)

21| Page

Building an Embedded Processor System on FPGA

Step 12: Again highlight “hello_world_0" and right click with the mouse. The same menu that
appeared in Step 10 will appear again. This time choose “generate linker script”. A new window
with the title “Generate linker Scripts” will appear as seen in Figure 33. Change both the Heap Size
and Stack Size to 3000. Press “Generate”. This will increase the size of Heap and Stack to allow a
medium sized code to be profiled properly. A message might appear “Linker Script Already Exists”
and will ask you to overwrite the file! Press “Yes”. Again a message “Fi ni shed buil di ng:

hell o_world 0. el f.elfcheck” will appear on the console.

E
Generate linker script
Control your applcation's memary map.
[Cutput Settings Basc | dvanced |
Project: ello_world_0 :
Output Script: Place Code Sections in: | imb_cntir_dimb_cniir |
| [+ Prosects EDK@asedProiects Tutorid+5DK orkapace ello_mord_Orcscrptid | Bromse || Place Data Sectonsing [imb_cnte_dinb_cntr |
| Modfy project butd settings as folows: Place Heap and Stack n: [imb_cntr_dimb_cntr |
|
[set generated saript on al project buid configurations =] Heap Sze:)
~Hardware Mencry Map Stack Size: ~2.9318
Memory [Base address [sme |
mb_cnte_gimb_crt 0000000 64KE
» Fixed Section Assgrments
o

Figure 33. Generate Linker Script (Step 12)

Step 13: Make sure the FPGA is powered on. Select the menu item “Xilinx Tools” from the menu
bar and then select “Program FPGA”. The “Program FPGA” window of Figure 34 will appear
asking you to select the executable (ELF) file to be used.

Beside “microblaze_0” select the second option
“.\mydesign\SDK\Workspace\hello_world_0\Debug\hello_world_0.elf”, then press “Program”.

This will start the programming process on the board.
I

|
Program FPGA
Spedify the bitstream and the ELF files that reside in BRAM memory

~Hardware Configuration
Hardware Spedfication: D:\a0-PersonalFiles-D\z0-FPGA_Projects\EDKBasedProjects Tutorial-4\SDK \workspace Tutorial-4_hw_platform\system. xml
Bitstream: | D:\al-PersonalFiles-D1z0-FPGA_Projects EDKBasedProjects Tutorial-4150K workspace Tuterial-4_hw_platformisystem. bit Browse..

BMM File: |D:\aD-ParsanaIFMes-D\zU-FPGA_Projer_ts\EDK'EasedProjects\'rumria\-4\5DK\worispace\Tutorial—i_hwj\atform\sysbem_bd.bmm Browse..

[Software Configuration

@ [|_cms_|

Figure 34. Program FPGA (Step 13)

22 |Page

Building an Embedded Processor System on FPGA

Step 14: Replace the Hello World Code with the program you want to profile.

Step 15: Point the mouse on “Run” and activate “Run Configurations”. A new window will appear

as shown in Figure 35.

x|
Create, manage, and run configurations —

Hip - Configure launch setiings from this dialog:
I | ~Press the New' button to creste & canfiguration of the selected type,
[©] cic++ Application || -Press the Duplicate’ button to copy the selected configuration.
[E] ¢jc++ Remote Application "
& skt 3 - Press the Delete’ button to remove the selected configuration.
1l Remote 4R Linux appica: || 24— Press the Filier button to configure fitesing options.
0 sanxc/c+BF
- Edit or view n existing configuration by selecting it,
Config settings from the page,
4 _pl\
Fiter matched 5 of 5 items

©) R Close

Figure 35. Run Configurations (Step 15)

Step 16: Double click on “Xilinx C/C++ ELF”. The previous window (Figure 35) will modify to a new

window as seen in Figure 36.

51
Create, and run config i @

x| B~ Name: [hello_world_D Debug

| #) STDIO Connection | |y Prafile Options | [3] Debugger Options | — Comman |

[5] Main "~ Device Init

[€] cjc++ Appiication C/C++ Application:
€] Cjc++Remote Application -
1 [Debughello_world_o.elf Search Project... | Browse...

> Launch Group

Il Remote ARM Linux Appiicat || | Project:

Browse, ..

= Xiirn [Fello_world_o
= ~ Buid (if required) before launching
Build configuration; [Debug =l
 Enable auto buid Disable auto buid
1 Use workspace settings Configure Workspace Setfings...

¥ Gormect pricessinput & ontpitito a tetminal,

Al " 7] Aty Revert

Filter matched 6 of & iteme.
® e

Figure 36. Create, Manage and Run Configurations (Step 16)

23 |Page

Building an Embedded Processor System on FPGA

Step 17: Click on “Profile Options” and a new view of the previous window will appear as seen in
Figure 37. Make sure you enable Profiling and change the scratch memory address that collects
profile data to 0x1500 (or some value that does not overwrite your code, heap and stack!!)

£ Run Configurations _. x|
Create, manage. and run configurations @
OEx|a- Name: [Telo_world_0 Debug
[or Tt 5] Main [, Device Initalization [» STDIO Connection |y Profie Options (3] Debugger Options | = Common
: [E] c/c++ Application 7 et o)
+[&] cfc++ Remote Application
- Launch Group Profiling Options
Reemote ARM Linux Applicath Sampling Frequency (Hz): | 10000
i C/C++ ELF CREE)
187 hello world_0 Debug
Scratch memory address to collect profile data: | 0x1500]

a1
F;ter matched 6 of & items - oy | &I
@) -_Run Close

Figure 37. Create, Manage and Run Configurations (Step 17)

Step 18: The system will execute your code and inform you that the profile results are saved and

a gmon.out file is produced as seen in Figure 38.
4% Profiling Results Saved x|

L,

@ Profiling results saved in gmon.out at hello_world_0/Debug/gmon.out

Figure 38. Create, Manage and Run Configurations (Step 18)

24| Page

Building an Embedded Processor System on FPGA

Step 19: As seen in Figure 39 a gmon.out file is under Debug.
Copmsegmamiil, © %7 "0

el S
5 hello_world_0
q;-? Binaries
-1l Includes
=== Debug
; = src
: #{; hello_world_0.elf - [microblaze fbe]
- gmon.out
(=] hello_world_0.elf.elfcheck
=] hello_world_0.elf.size
| makefile
| objects,mk
L@ sources.mk
B o
o c
‘h| platform_config.h
@ platform.c
-[h] platform.h
2 E lscript.id
=2 @ standalone_bsp_0
i BSP Documentation
‘(22 microblaze_0
[= libgen.log
- |Z| libgen,options
{3 Makefile
-1l system.mss
= {2} Tuterial-4_hw_platform
-[Z] davenload.bit
| system_bd.bmm
; | system.bit
{4k system.xml

Figure 39. Create, Manage and Run Configurations (Step 19)

Step 20: Double click on the gmon.out and if a new window appears press “yes”
Step 21: The results of profiling will be displayed as seen in Figure 40.

gmon file:
Di:\a0-PersonalFiles-D'z0-FPGA_Projects\EDKBasedProjects {Tutorial-4\S0K \workspace thello_world_0'Deb
ug'gmon.out
~ program file:
D:/al-PersonalFiles-D/z0-FPGA_Projects/EDKBasedProjects/Tutorial-4/SDK fworkspace hello_world_0/Deb
ug/hello_world_0.elf

16 bytes per bucket, each sample counts as 99.99%s

Name {oc... + | Samples |Caﬂs | Time/Call | =LTime ’

= Summary 2637
CalFunBig 1433 1 143,300ms 5434% |
CalFunMedi 717 1 71,700ms B
CalFunsmal 358 1 35.800ms 8 55
LookupConf 0 2 Onis 0.0%
XIntc_Reqis 0 1 Onis 0.0%
XIntc_Setin 1 1 99.99%us 0.04%
Xlartlite_S 128 a7 191.44us II.BS%
deanup_pla 0 1 Onis 0.0%
disable_cad 0 1 Onis 0.0%
enable_cact 0 1 Onis 0.0%
init_platforn 0 1 Onis 0.0%
init_ uart 0 1 Onis 0.0%
main a 1] 0.0%
microblaze_ 0 1] 0.0%
outbyte 0 1] 0.0%

Figure 40. Profile Results (Step 21)

25| Page

Building an Embedded Processor System on FPGA

Appendix A (Terminal Connection)

Your C code might contain several printf or xil_printf statements to print certain information on the
screen. In order for you to display information you will need to follow the instructions below:

1. Highlight the Terminal icon at the bottom of the SDK screen and then press on the settings icon
as seenin Figure 41.

[Problems [E Tasks |rE Console [E Properties [&'{ Terminal 1 23‘\ o = (= | B .- x =0
INo Connection Selected - . . 1
=
2

Figure 41. Terminal Connection

2. A new window will appear as seen in Figure 42. Make sure you choose Serial for the

“Connection Type” and the appropriate port available. You might also want to set the Baud Rate
and other settings.

|

—View Settings:

View Title: |Termina| 1

i~ Connection Type:
Serial o

- Settings:

Port:

BaudRatst [9500 Rd|
DataBits: |8 |
StopBits: |1 |
Parity: |None e
Flow Control: [Mone |
Timeout {sec): | 5

i

Figure 41. Terminal Connection

3. Press “OK” and this will allow you to see all output on the terminal in addition to the console.

26| Page

Building an Embedded Processor System on FPGA

Notes:

27 |Page

