
Building an Embedded Processor System on FPGA

1 | P a g e

Building	an	Embedded	Processor	System	

on	Xilinx	NEXYS3	FPGA	and	Profiling	an	

Application:					A	Tutorial	

Introduction:

Modern FPGA’s are equipped with a lot of resources that allow them to hold large digital

systems on a single chip. FPGA vendors provide tools that allow the designer to build embedded

systems on efficiently on FPGAs. One of the new concepts that you will learn in this experiments

is the system-on-chip approach (SoC). In this methodology, a complete micro-processor system

is implemented on a single chip. In our experiment we will use an FPGA board that is equipped

with an FPGA from Xilinx a leading FPGA vendor. Xilinx provides a tool for building an embedded

SoC on its FPGAs, and we are going to use this tool in this experiment. This tool is called Xilinx

Embedded Development Kit (EDK). The EDK allows the designer to build the processor system

based on an embedded processor from Xilinx called MicroBlaze. The tool provides a C/C++

compiler for that processor and an IDE based on Eclipse framework. In this tutorial we will build

a processor system based on MicroBlaze using the EDK and run this system on Nexys 3 FPGA

board.

Objectives:

1. Demonstrate the concept of SoC.

2. Familiar students with embedded soft processor systems on FPGA.

3. Build a soft processor system that will perform simple operations.

4. Profile the Application.

Equipment and Tools

1. Nexys 3 FPGA board, use two USB cables:

a. Connect the first to the USB PROG port.

b. Connect the second to the UART port.

2. Xilinx Embedded Development Kit (XPS, SDK). This is tested on revision 13.4 successfully.

Detailed Steps

Part 1: Building the hardware system on FPGA

In previous labs you learned about the Xilinx ISE design flow and how to use it to map a design

using VHDL on FPGA. In this tutorial we will use the Xilinx EDK to build a micro-processor system

and write a simple program for that processor to perform simple I/O operations. The first part of

Building an Embedded Processor System on FPGA

2 | P a g e

the tutorial attempts to build the hardware system. The EDK is composed of two software

components: i) Xilinx Platform Studio (XPS) which is used to build and configure the soft

processor system on the FPGA. ii) Xilinx Software Development Kit (SDK), which is the IDE for

software development. Perform the following steps to build the hardware system.

Step 1: We start by building the hardware using the XPS. Start XPS using the program menu as

shown in Figure 1.

Figure 1. Starting EDK (Step 1)

When the XPS starts the main window will show the options shown in Figure 2. The “Getting

Started” part gives you the options to create a new project (empty or based on a specific board),

or open an old project that was created before.

Step 2: Select the option “Create New Project Base System Builder” which will allow you to

build an embedded processor system based on the specification of specific board (In our case

Nexys 3 board). The “New Project Wizard” will appear as shown in Figure 3.

Figure 2. XPS Window (Step 2)

Building an Embedded Processor System on FPGA

3 | P a g e

Figure 3. Building a New Design (Step 3)

Step 3: In the new project wizard window of Figure 3, select the location you want to save the

files of your project. The project will include so many files in the future so try to keep this location

specific and separate from other files so that you can refer back to it easily. Create a new folder

on the hard drive and name it “Projects” to store all your projects, then create another folder

called “EDK_Projects” to store all projects created using EDK. After that create a folder for this

new project and name it for example “mydesign”. The project file (usually system.xmp) will be

stored in that location (c:\Projects\EDK_Projects\mydesign\system.xmp) as shown in Figure 3.

The second option in this window is to select the interconnect type. The EDK supports two types

of bus interface AXI, and PLB. Both are standard bus topology with various specifications. The

differences between the two standards are beyond the scope of this article. For this experiment

we will use the second option “PLB System”.

When done press “OK”. This will start the “Base System Builder” tool that will help us build and

configure the hardware system as shown in Figure 4.

Building an Embedded Processor System on FPGA

4 | P a g e

Figure 4. Base System Builder - Welcome Screen (Step 4)

Step 4: The welcome screen shown in Figure 4, is the first screen in the Base System Builder

wizard that will guide you to build your system. In this screen select “I would like to create a new

design” and then press next. This will let you create a new design.

Step 5: The second screen of the wizard is shown in Figure 5. In this screen we select the board

that we want to use to build the system. The XPS allow you to build a design based on a specific

board or create a custom design that is generic. Select the first option “I would like to create a

system for the following development board”. This will allow you to select a specific board. The

board is specified by three options:

• Board Vendor: this is the manufacturer of the board. Select “Digilnet” which is the

company that builds the Nexys 3 board.

• Board Name: this is the name of the board we want to use. Select “Nexys 3 Board”.

• Board Version: the board version. Select version “B”.

Building an Embedded Processor System on FPGA

5 | P a g e

Figure 5. Board Selection (Step 5)

The Nexys 3 board is equipped with Spartan 6 FPGA chip which is a mid-size FPGA from Xilinx. The

board has several peripherals that can be used with the FPGA to perform several functions (See

Figure 5):

• 512 MB CDRAM.

• 128 Mbit Flash Memory.

• 8 Switches and 8 LEDS.

• 5 Push Buttons.

• Ethernet Physical Interface for base 10/100 networking.

• USB Host for Keyboard and Mouse

• Serial Port

These peripherals allow you to build a small computer system on the board which we are going

to do in this experiment (and the following ones).

When done selecting, press “Next” to move to the next screen.

Building an Embedded Processor System on FPGA

6 | P a g e

Step 6: The following step is to select the system type. This is shown in Figure 6. The XPS allows

us to choose between two types of system architecture:

• Single Processor System: This is the common system that you studied in many courses. The

system is composed on one processor connected to several peripherals using a single common

bus. The advantage of such system is the simplicity of the design and simplicity of

programming such systems. The main disadvantage is that all peripherals are connected

through a common bus, which will reduce the speed for fast peripherals to match the slower

ones. This type of systems is good for applications that do not require high speed of data

communication.

• Dual Processor System: This system architecture is composed of two processors; each is

connected to a separate bus. One processor will be used for high speed peripherals and the

other is used with lower speed peripherals. This increases the performance of the system

compared to the single processor system. However, writing software for this system is more

complex as it requires synchronization between the two processors.

Select “Single Processor System”. This will start building a single processor system. We choose

to build a single processor system as this is simple to develop. However, you can later add more

processors if required.

Figure 6. Select System Architecture (Step 6)

Building an Embedded Processor System on FPGA

7 | P a g e

When done press “Next” to move to the next screen shown in Figure 7.

Figure 7. Processor Configuration (Step 7)

Step 7: The processor configuration screen is shown in Figure 7. As stated earlier, Xilinx

provides a processor called MicroBlaze that can be implemented on its FPGAs. In this screen we

configure the processor as follows:

• Processor Type: There is only one selection which is MicroBlaze.

• System Clock Frequency: This is the processor and common bus reference clock frequency.

Most of the modern FPGA’s are equipped with clock modules that are able of generating

higher frequencies from a single fixed frequency. For example, Nexys 3 board has on board

clock of 50 MHz, however, you can use higher frequencies using the FPGA clock modules.

Select the desired frequency up to 83 MHz Select “66.67 MHz”.

• Local Memory: The FPGA contains several memory blocks up to 128 KB. This is different from

the on board memories. You can connect up to 64KB of these block memories to the

MicroBlaze as a local processor memory. You can connect more memory if required through

the local bus. Select “64KB” for this tutorial.

• Leave all other options and then press “Next” to move to the next screen.

Building an Embedded Processor System on FPGA

8 | P a g e

Figure 8. Peripheral Configuration (Step 8 - 1)

Step 8: After configuring the processor we are ready to configure the peripherals (Input/Output

devices). The peripheral configuration screen is shown in Figure 8. In this screen a list of all the

available peripherals is presented. From this list the designer can choose which peripheral to be

connected to the processor. The screen is divided into two lists. The right-hand side list shows the

peripherals that are not connected to the processor, while the left-hand side list shows all the

peripherals that are currently connected to the processor. By default several peripherals will be

connected to the processor as shown in Figure 8. In this project we do not need many of these

devices so we will remove many of them as shown in Figure 9. Remove the following devices:

• PS2_Mouse_Keyboard

• Micron_RAM

• Numonyx_RCM

• Ethernetlite

To remove a device, select the device then press “Remove”.

This leaves the Switches, Leds, Push Buttons, and Local Memory devices connected to the

processor.

Building an Embedded Processor System on FPGA

9 | P a g e

Figure 9. Peripheral Configuration (Step 8 - 2)

To add a device to the processor connection, select the required device and click add. We will add

the xps_timer since it is required for profiling as seen in Figure 10. Make sure to enable interrupts.

 Figure 10. Adding the xps_timer (Step 8 - 3)

Building an Embedded Processor System on FPGA

10 | P a g e

Now we selected all the required devices. We have some input/output devices connected to the

processor. After completing the hardware, we will write several software applications for the sake

of profiling.

Press “Next” to move to the next screen.

Step 9: Cache configuration screen is shown in Figure 10. If we have more than one memory

types connected to the processor, we can use cache memory to speed up memory access. As we

only have local memory connected to the processor, no cache memory can be configures. We will

leave this screen unchanged and press “Next”.

Figure 10. Cache Configuration (Step 9)

Step 10: Now we are done configuring the hardware. The last screen of the “Base System

Builder” is shown in Figure 11. This screen displays a summary of the system being built. Two

types of information are displayed; system components and file allocation. The components list

displays the name of each component and the address associated with it. The address assigned to

each peripheral is unique and it is used by the processor to locate a specific device and

communicate with it. For example, the device DIP_Switches_8Bits (the 8 switches on the board) is

assigned the address 0x81440000 which means that the processor will use this address to read

the value of the switches as digital input.

Building an Embedded Processor System on FPGA

11 | P a g e

Figure 11. System Summary (Step 10)

The file list includes all the files that are created by wizard to define the project. The wizard

generates six files.

• System.xmp: this is the project file that is used by XPS to open the project for future use.

• System.mhs: this is the hardware description file. This is a text file that describes the

hardware components of the system.

• System.ucf: user constraints file. This file defines the relation between the system

input/output pins and the actual FPGA pins.

• Fast_runtime.opt, download.cmd, bitgen.ut: these three files are used build the bit file

that is later downloaded to the FPGA to configure it to do the function of the system.

This is the final screen of the wizard; clicking “Finish” will end the wizard and generate the

required files on the folder specified at the beginning of the wizard. Click “Finish” and then

check the folder “C:\Projects\EDK_Projects\mydesign” it should look as shown in Figure 13.

Building an Embedded Processor System on FPGA

12 | P a g e

 Figure 12. Directory Structure

When the “Base System Builder” is done the XPS window should look like Figure 13.

Figure 13. Xilinx Platform Studio - System Assembly View

Step 11: The XPS window (Figure 13) opens at the “System Assembly View”which shows the

system components and their interconnection. The system assembly view has three tabs:

• Bus Interface: this shows the bus interconnection between components. As you can see

there are three main buses:

o ilmb : instruction local memory bus, used to connect the processor to the code

memory. Code memory is the memory that holds the programs code

(instructions).

o dlmb: data local memory bus, used to connect the processor to the data memory.

Data memory is the memory that holds the program data.

o mplb: MicroBlaze peripheral local bus (plb), used to connect the processor to all

the other peripherals.

• Ports: this tab lists all the ports of each peripheral/processor and displays its connection.

In this project we will not need to modify this.

Building an Embedded Processor System on FPGA

13 | P a g e

• Addresses: this tab lists the addresses assigned to each peripheral. You can modify these

addresses through this tab. But for this project we will not do any address modification.

In the “Bus Interface” tab you can modify the system by adding more peripherals/processors,

removing peripherals, or changing the configuration of any peripheral.

Step 12: The last step to build the hardware is to generate the bit-file that is used to configure

the FPGA. XPS generates all the necessary files to do so. Each component of the system is defined

in VHDL (or other hardware language) and the tool will compile all these files to build a single

design file to be downloaded on the board. This process is composed of several tasks:

• Synthesis: Will compile all hardware description language (HDL) files of the system and

check for any errors. Synthesis will convert HDL into logical blocks.

• Mapping: Transforms the logical blocks generated from synthesis into FPGA blocks.

• Placement: Specifies each component of the system and its location on the FPGA.

• Routing: Connects all components of the system on the FPGA.

• Generate bit-file: Produces a single configuration file to be downloaded on the FPGA.

The navigator tool-bar is displayed on the left hand side of the XPS window as shown in Figure

14.

Figure 14. Flow Navigator

In the navigator toolbar under the implementation flow you will find a button labeled “Generate

BitStream”. Click this button to start the hardware building process which will take some time to

perform all the tasks listed before. A lot of information will be displayed in the “Console” window in the

bottom of the XPS window. Watch the progress of the work until the “Console” window displays the

message shown in Figure 15. This message states that the tool has created the file “System.bit” which

contains all the required configuration bits. At this point we are done creating the hardware.

Figure 15 Hardware Build Done

Building an Embedded Processor System on FPGA

14 | P a g e

Part 2: Profiling

In the first part of the tutorial we were able to build the hardware part of the system. In the second

part we will write a simple C application and compile it for MicroBlaze processor that we built in part

one. The process of building software application and running it is composed of the following tasks:

• Create a software workspace

• Create a board specification project to link the hardware to the software platform

• Create C project and add a source file to it

• Compile the C project to create ELF (embedded executable file)

• Merge the ELF file to the bit-stream created in part 1 (system.bit) to generate a complete bit

file that contains both hardware and software (download.bit).

• Download the final bit file (download.bit) to the FPGA to run the application on the

processor system.

Step 1: We perform all these tasks using another tool called Xilinx Software Development Kit

(SDK). We start the SDK using the button “Export Design” in the Navigation toolbar. This button

copies the bit-file (system.bit) and some other files necessary to link the hardware to a directory

called “SDK\SDK_Export” under the projects folder. It will ask if you want to start the SDK. Click

“Export Design” which starts the window shown in Figure 16. In which you have two options;

“Export Only” to just copy the hardware file (used when the SDK is already running) or “Export &

Launch SDK” which will copy the files and starts the SDK; click this button to start the SDK.

Figure 16. Export to SDK (Step 1)

Step 2: When the SDK starts the work space launcher window shown in Figure 17. The

workspace as a software environment which is used to collect several projects in one entity. As

the SDK is based on eclipse platform, those who are familiar with eclipse will find it easy to deal

with the SDK. Change the workspace path as shown in Figure 17.

Building an Embedded Processor System on FPGA

15 | P a g e

Figure 17. Workspace Launcher (Step 2)

Step 3: The SDK main window will start then as shown in Figure 18. The SDK IDE development

area is divided into several areas. The left-hand side is the Project Explorer window which shows

one project “mydesign_hw_platform” which represents the hardware created in part one. You

will notice it includes the file “system.bit”. The middle area is the code area. By default the file

“system.xml”which lists the components of the system and information about each of them.

Figure 18. SDK Main Window (Step 3)

Step 4: The next step is to create the Xilinx Board Support Package. In the project explorer

window, select File -> new. A new project window will appear as shown in Figure 22. A list of

projects that can be created is shown. Select “Xilinx Board Support Package” which will enable

you to create a standalone board support package (no operating system). As seen in Figure 23.

Building an Embedded Processor System on FPGA

16 | P a g e

Figure 19. New Project (Step 4)

Figure 20. Xilinx Board Support Package Project (Continue .. Step 4)

Building an Embedded Processor System on FPGA

17 | P a g e

A new window will appear “Board Support Package Settings” which will enable you to set certain

parameters as seen in Figure 24.

Figure 21. Xilinx Board Support Package Settings (Step 4)

Highlight standalone in the “Board Support Package Settings” and change the value for

“enable_sw_intrusive_profiling” to true. Under “enable_sw_intrusive_profiling” you will find a setting

for “profile_timer”. Change the value from “none” to xps_timer_0 as seen in Figure 25.

Figure 22. Xilinx Board Support Package standalone Settings (Step 4)

Building an Embedded Processor System on FPGA

18 | P a g e

The final step is to highlight “cpu” under “drivers” and change the “extra_compiler_flage” from –g to “-g

–pg” as seen in Figure 26.

Figure 23. Xilinx Board Support Package cpu Settings (Step 4)

Step 5: The following step is that we create a C project using the SDK. In the project explorer

window, select File -> New->Project. A new project window will appear. A list of projects that can

be created is shown. Select “Xilinx C Project” which will start a Wizard to create a simple C

program. Select “Xilinx C Project” then click “Next” to continue.

Step 6: The second screen of the New Project Wizard is shown in Figure 27. This screen allows

you to select a template for the project you want from a predefined list. Select “Hellow World”

which is a template for a simple application that will send some text through the serial port. We

will modify this application later. Select “Hello World”, keep everything else unchanged, and

then press next.

Figure 24. New Project (Step 5)

Building an Embedded Processor System on FPGA

19 | P a g e

Step 7: A new screen of the New Xilinx C Project will appear as shown in Figure 24. This screen

allows you to either “Create a new Board Support Package project” or to “Target an existing Board

Support Package”. We will choose “Target an existing Board Support Package” which is the

standalone_bsp_p (OS:standalone) which we created in the previous step. Press Finish.

Figure 25. Target an existing Board Support Package (Step 7)

Building an Embedded Processor System on FPGA

20 | P a g e

Step 8: Expand the folder “src” in the “hello_world_0” project. You will notice several C files as

seen in Figure 29. Double click the file “hello_world.c” to open it. The code should look like Figure

30. The code is a simple C application that will print the word “Hello World” on the output device.

 Figure 26. Project Explorer (Step 8)

Figure 30. Initial Hello World “Source Code” (Step 8)

Step 9: Modify the source code with your application that you need to profile. When done save

the file. Note that once you are done, the SDK will start compiling your code automatically and

generate the output files (in this case it is the download.bit file). To display any messages you will

need to set the terminal as will be explained in the Appendix at the end.

Building an Embedded Processor System on FPGA

21 | P a g e

Step 10: Highlight the “hello_world_0” with your mouse and right click. This will show a new

menu. Zoom on “C/C++ Build Setting”. This will produce a new screen “C Code Properties” as seen

in Figure 31.

 Figure 31. Properties for hello_world_0 (Step 10)

Step 11: Highlight profiling and enable it as seen in Figure 32. A message “Finished

building: hello_world_0.elf.elfcheck” will be produced in the console.

Figure 32. Enable Profiling in Properties for hello_world_0 (Step 11)

Building an Embedded Processor System on FPGA

22 | P a g e

Step 12: Again highlight “hello_world_0” and right click with the mouse. The same menu that

appeared in Step 10 will appear again. This time choose “generate linker script”. A new window

with the title “Generate linker Scripts” will appear as seen in Figure 33. Change both the Heap Size

and Stack Size to 3000. Press “Generate”. This will increase the size of Heap and Stack to allow a

medium sized code to be profiled properly. A message might appear “Linker Script Already Exists”

and will ask you to overwrite the file! Press “Yes”. Again a message “Finished building:

hello_world_0.elf.elfcheck” will appear on the console.

 Figure 33. Generate Linker Script (Step 12)

Step 13: Make sure the FPGA is powered on. Select the menu item “Xilinx Tools” from the menu

bar and then select “Program FPGA”. The “Program FPGA” window of Figure 34 will appear

asking you to select the executable (ELF) file to be used.

Beside “microblaze_0” select the second option

“..\mydesign\SDK\Workspace\hello_world_0\Debug\hello_world_0.elf”, then press “Program”.

This will start the programming process on the board.

Figure 34. Program FPGA (Step 13)

Building an Embedded Processor System on FPGA

23 | P a g e

Step 14: Replace the Hello World Code with the program you want to profile.

Step 15: Point the mouse on “Run” and activate “Run Configurations”. A new window will appear

as shown in Figure 35.

 Figure 35. Run Configurations (Step 15)

Step 16: Double click on “Xilinx C/C++ ELF”. The previous window (Figure 35) will modify to a new

window as seen in Figure 36.

Figure 36. Create, Manage and Run Configurations (Step 16)

Building an Embedded Processor System on FPGA

24 | P a g e

Step 17: Click on “Profile Options” and a new view of the previous window will appear as seen in

Figure 37. Make sure you enable Profiling and change the scratch memory address that collects

profile data to 0x1500 (or some value that does not overwrite your code, heap and stack!!)

 Figure 37. Create, Manage and Run Configurations (Step 17)

Step 18: The system will execute your code and inform you that the profile results are saved and

a gmon.out file is produced as seen in Figure 38.

 Figure 38. Create, Manage and Run Configurations (Step 18)

Building an Embedded Processor System on FPGA

25 | P a g e

Step 19: As seen in Figure 39 a gmon.out file is under Debug.

Figure 39. Create, Manage and Run Configurations (Step 19)

Step 20: Double click on the gmon.out and if a new window appears press “yes”

Step 21: The results of profiling will be displayed as seen in Figure 40.

Figure 40. Profile Results (Step 21)

Building an Embedded Processor System on FPGA

26 | P a g e

Appendix A (Terminal Connection)

Your C code might contain several printf or xil_printf statements to print certain information on the

screen. In order for you to display information you will need to follow the instructions below:

1. Highlight the Terminal icon at the bottom of the SDK screen and then press on the settings icon

as seen in Figure 41.

 Figure 41. Terminal Connection

2. A new window will appear as seen in Figure 42. Make sure you choose Serial for the

“Connection Type” and the appropriate port available. You might also want to set the Baud Rate

and other settings.

 Figure 41. Terminal Connection

3. Press “OK” and this will allow you to see all output on the terminal in addition to the console.

Building an Embedded Processor System on FPGA

27 | P a g e

Notes:

