Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Tutorial

Creating a Custom Peripheral and adding
it to a Microblaze Embedded System

Introduction

In the previous tutorials you learned how to creatéedded design using EDK, and connect it to a
personal computer over the standard network interfén these tutorials you only used peripherals
provided by Xilinx in its IP core library. In thisitorial you experiment creating your own IP cadd

it to Xilinx library and integrate it into your digg. You will be able to add your own VHDL codeant
the new design to implement the required functiébnyaur projects. The new peripheral will be
connected to the Microblaze system using the PLE bu

Pre-requisites
1. Complete Tutorial: Building an Embedded Procesgste3n on FPGA.

Objectives:
1. Create an IP core with PLB interface.
2. Connect the new IP core to Microblaze embeddecasyst
3. Perform communication with the new core.

Equipment and Tools
1. NEXYS 3 Spartan-6 Board.
2. Xilinx Embedded Development Kit (v13.3).
3. Personal Computer with RS232 cable.

l|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

& Xiliax Platform Studio (EDK_O.76xd) - /home/users/a/ahmed.elhossinifirt tu/Projects/EDK_Projects/Prephirals/system.xmp - [System Assembly View] <@gata © o
& File Edit View Project Ha Device Confi ti Debug Sii i Window Help (=I®)(x]
S iv ad RPN O R e RE@ T
2 x Project soes [, o 5| Businterfaces | Ports | Addresses | & <4
Platform B Name | Bus Name | 1P Type | 1P versio| =
Design Flow. © Project Files dimb % Imb_vio 200b | 3
i MHS File: system.mhs ilmb ¥r Imb_vio 2.00.b 4
é‘, UCF File: data/system.ucf mb_plb “r plb_vae 1.05.a
iIMPACT Command File: etc/dd | o gy BiSricroblazato) ¥r microblaze 8.20.a
Run DRCs Implementation Options File:| |1 &- Imb_bram +¥r bram_bl... 1.00.a
Bitgen Options File: etc/bitgefiiy & dimb_cntir ¥r Imb_bra... 3.00.b
Iimplement Flow SsEMOley > @ ilmb_cntir ¥r Imb_bra... 3.00.b
| © microblaze_0 I8 BT Ei0 ¢ mdm 2.00.b
1 & Project Options & @ DIP_Switches_8Bit ¥ xps_gpio 2.00.a
L i DEVI'Ce‘ "CSV"‘lll"t'fl”G" P & LEDs_8Bit ¥r xps_gpio 2.00.a
Generate Netlist Netlist: TopLeve * @ Hard_Ethernet_MAC._fifo < xps_ll_fifo 1.02.a
Implementation: XPS (Xflow) 3 " © Hard_Ethernet_ MAC & xps_li_te... 2.03.a
HDL: VHDL © RS232_Uart_1 ¥ xps_uart... 1.02.a
Sim Model: BEHAVIORAL s SsPLB TBIPIB =2
3enerate BitStream Design Summary clock_generator_0 +¥r clock_ge... 4.03.a
proc_sys_reset_0 +r proc_sys... 3.00.a
Export Design
Simulation Flow. L1 Gr)IET] €10
Legend
< R b R L S S U S s L Gy
= . A (paid) L (ev. “SLocal 2ipre Production I¥2Beta #4Development
HOL Files L] > u Superseded Di
& Project | @ IP Catalog | 2 Graphical Design View | | | i Design Summary | @ system Assembly view £3 |
Tl
Launch Simulator
(8] console | 1\ Warnings |@ Errors |

Figure 1: Platform Sudio Window

Tutorial Steps

Part 1. Creating a Custom IP Core
In this part of the tutorial we will create a new Iet& using EDK to integrate it with the Microblaze
embedded system.

Step 1:Starting from the end of tutorial 2: you shouldiemp with the Platform Studio window shown
in Figure 1. In this window select the menu iternldrdware-> Create or Import Peripheral...”.
This will display the “Create or Import PeripheMlizard” window shown inFigure 2. This wizard
will guide you through the required steps to createw peripheral. ClickNext” to continue.

® o Create and Import Peripheral Wizard <@gata-ubu> &
Jinx Embedded Pro< Sostions

«
()
0

Welcome to the Create and Import
“TFTT® peripheral Wizard

ﬂv R
- This wizard is used for generating & importing IPs which will work with EDK system. AXI
based IPs can be used in processor systems developed outside the EDK.

Xilinx Embedded
Processing Solutions

$IXILINX

To continue, click Next.

[More info | [=sack | [mext>] [cancel |
Figure 2: Create and Import Peripheral Wizard (Step 1)

2|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Step 2:The second page of the wizard asks if you wantdate a new peripheral or import an already
created core. SeletCreate Template for a new Peripheral”’ and then pres$\Next” as shown in

Figure 3. The wizard will guide you with the necessary stepbuild the required files to build and
connect your new peripheral (both hardware andvsoé).

& Create and Import Peripheral Wizard <@gata-ubu> YRR

Peripheral Flow
Indicate if you want to create a new peripheral or import an existing peripheral. @

This tool will help you create templates for a new EDK IP, or help you import an existing EDK IP into an XPS project or
EDK repository. The interface files and directory structures required by EDK will be generated.

~Select flow

>
_ %- ©§Create templates for a new peripheraI§

(O Import existing peripheral

Implement/Veri >

This tool will create HDL templates that have the EDK compliant

port/parameter interface. You will need to implement the body of the
Import to XPS peripheral.

Options

[_] Load an existing .cip settings file (saved from a previous session)

| (o]

[< Back][Next >][Cancel]

Figure 3: Create and Import Peripheral Wizard (Sep 2)

3|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System
= Re
Repository or Project .
Indicate where you want to store the new peripheral. @

Create Peripheral <@gata-ubu> 2,

A new peripheral can be stored in an EDK repository, or in an XPS project. When stored in an EDK repository, the
peripheral can be accessed by multiple XPS projects.

() iTo an EDK user repository (Any directory outside of your EDK installation path)

Repositor [

@ To an XPS project

R
Project: afs/tu-berlin.de/fhome/a/ahmed.elhossini/irb-ubuntu/Projects/EDK_Projects/Prephirals |]

—Peripheral will be placed under:

/.../home/afahmed.elhossini/irb-ubuntu/Projects/EDK_Projects/Prephirals/pcores

[_h_dore Info] L < Back l[Next >] | Cancel J

Figure4: Create amghort Peripheral Wizard (Step #3)

Step 3:The following window asks about the location whgoet want to store the files for your new
peripheral. Here you have two options as sho®igure 4. The first option stores the core in a global
repository so that it will be accessible in anyjgcbyou create. The second option stores the new

peripheral in your project local directory and swill be accessible only in your project. Sincestis
just a tutorial select the second option and thhesgiNext” .

4|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

e o/ Create Peripheral <@gata-ubu> 2) o) X

" N\

Name and Version R
Indicate the name and version of your peripheral. ‘\\,,S

Enter the name of the peripheral (upper case characters are not allowed). This name will be used as the top HDL design
entity.

Name: [mycore J

Version: 1.00.a

Major revision: Minor revision: Hardware/Software compatibility revision:
T~ - [~}
1 B oo [£] a =
Description:

This is my core!

Logical library name: mycore_v1_00_a

All HDL files (either created by you or generated by this tool) that are used to implement this peripheral must be
compiled into the logical library name above. Any other referred logical libraries in your HDL are assumed to be
available in the XPS project where this peripheral is used, or in EDK repositories indicated in the XPS project
settings.

More Info t < Back H Next > H Cancel]

Figure 5: Create and Import Peripheral Wizard (Step 4)

Step 4:In the window shown ifrigure 5 you are required to enter the peripheral nameravidion.

The wizard allows you to create different revisia@ighe same core as well as starting from scratch.
Note that the core name should consist only of tosese letters and numbers. In this screen you can
also add some description to your core. Give y@w P core any hame, for examplsycore” . Type

the name and give description if required thengidext” to continue.

5|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

r

8 Create Peripheral <@gata-ubu> &) X

Bus Interface "
Indicate the bus interface supported by your peripheral. t\\:??

To which bus will this peripheral be attached?

() AXl4-Lite: Simpler, non-burst control register style interface
(O AXI4: Burst Capable, high-throughput memory mapped interface

(O AX14-Stream: Burst Capable, high-throughput streaming interface

@ Processor Local Bus (PLB v4.6);

(O Fast Simplex Link (FSL)

~ATTENTION

Refer to the following documents to get a better understanding of how user peripherals connect to the
CoreConnect(TM) bus PLB v4.6 interconnect and the FSL interface.

NOTE - Select the bus interface above and the corresponding link(s) will appear below for that interface.

CoreConnect Specification

PLB (v4.6) Slave IPIF Specification for single data beat transfer
PLB (v4.6) Slave IPIF Specification for burst data transfer

PLB (v4.6) Master IPIF Specification for single data beat transfer
PLB (v4.6) Master IPIF Specification for burst data transfer

More Info‘ ‘ < Back] [Next >] t Cancel "
—

Figure 6: Create and Import Peripheral Wizard (Sep 5)

Step 5:In this step you are required to select the int=ftype for your peripheral. Xilinx EDK
supports 3 types of interface standards in its eltkde systems. The first and the newest one is the
AXI4 architecture which is designed for variousagmf communication strategies. The second type is
the“Processor Local Bus (PLB 4.0)"which is a standard bus architecture to connectdiaze and

its peripheral in a shared bus structure. Thisdbasdard will be used in this tutorial. The lagerface
type is thé'Fast Simplex Link (FSL)” which is a dedicated FIFO link between the prooeasd the
peripheral. The Microblaze supports a limited numiieFSL links but this communication channel
guarantees the fastest communication between tifghpeal and the processor. Select tReocessor
Local Bus (PLB 4.0)” as shown ifFigure 6 and then pres®Next” .

6|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

r

8 Create Peripheral <@gata-ubu> &)) X

IPIF (IP Interface) Services ’
Indicate the IPIF services required by your peripheral. @

Your peripheral will be connected to the PLB (v4.6) interconnect through corresponding PLB IP Interface (IPIF) modules,
which provide you with a quick way to implement the interface between the PLB interconnect and the user logic.
Besides the standard functions like address decoding provided by the slave IPIF module, the wizard tool also offers
other commonly used services and configurations to simplify the implementation of the design.

~Slave service and configuration -

Processor Local Bus (version 4.6) Typically required by most peripherals for operations
like logic control, status report, data buffering,
multiple memory/address space access, and etc. (PLB

slave interface will always be included).

PLB v4.6 PLB v4.6 [] Software reset (%] User logic software register
Slave Master i
|_| Read/Write FIFO [_| User logic memory space
["] Interrupt control (%] Include data phase timer

Readl Write
FIFO FIFO
Typically required by complex peripherals like Ethernet

- and PCI for commanding data transfers between
Reg l User Logic I Master Cntir I regions (PLB master interface will be included if

master service selected).

IPIC Master

~Master service and configuration

Write LocalLink

53
s
==
]
o
-]
—_
[
-4

[] User logic master

"Morelnfoi | < Back J Next > ’ cancel |
==y 4 = J

|
L

Figure 7: Create and Import Peripheral Wzard (Sep 6)

Step 6:The PLB bus is based on a Master/Slave configuraiihe bus can have multiple masters and
slaves. In the design created in the previous Taltdvlicroblaze acted as the master of the PLB bus
while all other peripheral acted as slaves. Thetenaritiates the transactions and controls the dat
flow, while the slave peripheral waits for a tractgan from the master. The master of the bus sends
requests to the a specific address space, andatres eripheral decodes that address and responds t
the request if the address is recognized. The addreeach peripheral is unique and all transactien
memory mapped. In this step we specify the conéijon of the core we are about to create. The
wizard will add VHDL logic block for slave, mastesy both if required. You have to specify the
components in the slave logic and if you want aterdegic you can also do so. As you can see in
Figure 7, you can add interrupt control, software resetad®é/rite FIFO, user registers, and more.
Later you can modify these components and add mepending on the function of your peripheral.
For the purpose of this tutorial select the optisingwn inFigure 7, then preséNext” .

7|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

e v Create Peripheral <@gata-ubu> CINCIRCIR"S
Slave Interface R,
Configure the slave interface of your peripheral ‘\\/6

The IPIF slave library provides a quick way to implement a slave interface between the user logic and the PLB v4.6
interconnect. It provides address decoding over various ranges as configured by the user and implements the protocol
and timing translation between the PLB v4.6 interconnect and the IPIC (IP InterConnect . interface between user logic
and IPIF).

~Slave performance

Slave peripherals support single beat read/write data transfers by default. If performance is key to the slave
peripheral (i.e. memory controllers), you can have the burst transfer support tured on - this feature provides
higher data transfer rates for the PLB Cacheline access and enables the transfer protocol for PLB Fixed Length Burst
operations.

D%Burst and cache-line support%

~Data width

The native bit width of the internal data bus may be less than or equal to the PLB slave interface data bus width (it
is always 32-bit for non-burst slaves and can be 32, 64, or 128-bit for slaves supporting burst). To conserve FPGA
resources, set the value to be the same as the smallest PLB master in the system that may interact with your
peripheral.

Native data width: bit

[< Back H Next > H Cancel]

Figure 8: Create and Import Peripheral Wizard (Step 7)

Step 7:The following page of the wizard is shownHigure 8. In this window you have the option to
add cache support for your device as well as cingnie data bus width. You do not need to do any
changes in this screen. Prégxt” to continue.

8|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

r

i 6 \/ Create Peripheral <@gata-ubu>

? v X

N NN N

User S/W Register R
Configure the software accessible registers in your peripheral. ‘\\/6

The user specific software accessible registers will be implemented in the user-logic module of your peripheral. Such

\ registers are typically provided for software programs to control and to monitor the status of your user logic. These
registers are addressable on the byte, half-word, word, double word or quad word boundaries depending on your design.
An example logic for register read/write will be included in the user-logic module generated by the wizard tool for your
reference.

User logic software registers may take full advantage of the slave
IPIF address-decoding service to generate CE decodes for all of the
individual register of interest. The diagram on the left shows the
Reg 1 simplest set of IPIC slave signals to read/write the registers.

Reg 2
Reg 3 Number of software accessible registers: |4 @ (1 to 4096)

Bus2IP_RdReq

Bus2IP_WReq
Bus2IP_RACE

Bus2IP_Data

P2Bus_Daa
lPZBus_RdAck

IPZBus_\MPck
IPZBus_Error

User Logic

[< Back } [Next >] [Cancel]

Figure 9: Create and Import Peripheral Wizard (Sep 8)

Step 8:In the previous step you configured the new coreatve built in software registers. The wizard
will create the necessary logic inside your corbawee read/write registers. In this step you ake@so
specify the number of registers in your designeensnFigure 9. Select‘4” to add for registers to
your design and then pre$ext” to continue.

9|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

kv
(<
0
x

8 o Create Peripheral <@gata-ubu>

IP Interconnect (IPIC) g
Select the interface between the logic to be implemented in your peripheral and the IPIF. &

Your peripheral will be connected to the PLB (v4.6) interconnect through suitable IPIF master/slave module(s). Your
custom logic from the user-logic module interfaces to the IPIF module(s) and other sub-blocks through a set of signals
called the IP interconnect (IPIC) interface. Some of the ports are always present, some are pre-selected based on the
IPIF services you required, and you can choose other optional ports to be included in the design based on your needs.

Note: all IPIC ports are active high. ~Port description

% Bus2IP_Clk
Peripheral % Bus2IP_Reset
Bus2IP_Addr
Bus2IP_CS
Bus2IP_RNW
Bus2IP_Data
Bus2IP_BE
Bus2IP_RdCE
Bus2IP_WrCE
IP2Bus_Data
IP2Bus_RdAck
IP2Bus_WrAck
IP2Bus_Error

IPIC for slave
IPIC for others

]
®"
2
(]
R}
o
&

X X X X %X X %X X

Restore Defaults

[< Back][Next > H Cancel J

Figure 10: Create and Import Peripheral Wizard (Step 9)

Step 9: After setting the core configuration and intereamponents, the wizard window shown in
Figure 10 allows you to change the interface between your agded logic (IP) and the bus interface.
The wizard will create the bus interface for youl &imen create asr_logic module that contains all the
logic selected by you in the wizard. This scredoved you to change the signals between the bus
interface and your user logic. Prébext” to continue.

10|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

e \&/ Create Peripheral <@gata-ubu> EIRCIR IR
(OPTIONAL) Peripheral Simulation Support
Generate optional files for simulation using Bus Functional Models (BFM). &

The EDK provides a BFM simulation platform to help you simulate your peripheral. Indicate if you want this tool to
generate the appropriate HDL and Bus Functional Language (BFL) stimulus file for the target bus.

[] Generate BFM simulation platform

Note: ISim, ModelSim-SE, ModelSim-PE and QuestaSim
simulators are supported.

A testbench template will be generated on top of
your peripheral.

« A test platform description file (bfm_system.mhs)
consisting of the subsystem illustrated by the
diagram will be generated as well.

 All CoreConnect bus transactions can be defined
through BFL command file (sample.bfl).

« Stimulus for other non-CoreConnect bus I/Os of
your peripheral can be defined in the testbench
file.

« Please refer to the README file for BFM
simulation instructions.

Note: License Required for BFM IPs in Simulation.

[< Back JI Next >][Cancel J

Figure 11: Create and Import Peripheral Wizard (Step 10)

Step 10: EDK designs can be simulated for functional amairtg verification. In order to perform
simulation, extra files will be needed and addadtifie simulation of the bus components. If younpla
to perform simulations for your design then sel&etnerate BFM simulation platform” in the
wizard page shown iRigure 11

1l1|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

=

e Create Peripheral <@gata-ubu>

~

<
>

(X

(OPTIONAL) Peripheral Implementation Support
Generate optional files for hardware/software implementation @

Upon completion, this tool will create synthesizable HDL files that implement the IPIF services you requested. A stub
'user_logic' module will be created. You will need to complete the implementation of this module using standard HDL
design flows. The tool will also generate EDK interface files (mpd/pao) for the synthesizable templates, so that you can
hook up the generated peripheral to a processor system.

Note
FERLEITEN) Should the peripheral interface (ports/parameters) or file list change, you will

need to regenerate the EDK interface files using the import functionality of this
tool.

IPIF (VHDL) 28

[_| Generate stub 'user_logic' template in Verilog instead of VHDL
User Logic [%] Generate ISE and XST project files to help you implement the peripheral using XS
(VHDL) !XE%Generate template driver files to help you implement software interface§

More Info ‘ < Back J [Next >] [Cancel \

Figure 12: Create and Import Peripheral Wizard (Step 11)

Step 11:The final step of the wizard contains three fioptions:
1. The option to generate the user_logic module inldgrather than VHDL.
This option is important when you prefer Verilog fardware development.

2. The option to generate an ISE project to help enithplementation of your core.
The generated ISE project can be used to verifgdhe before integration in the EDK.
3. The final option is to create a software driverdore to be used during software development.

Perform the selection as showrHigure 12 (unless you want to write in Verilog) and then
press'Next” to continue.

The wizard steps are now completed and the temfdaieur design is created.

12|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Part 2: Modifying the generated IP core

In Part 1 of this tutorial, the wizard created radicessary files required to integrate your core art
EDK design. These files (as specified in step thefwizard) are located in the local directory otiy
projects as shown ifrigure 13 The files created are stored in two main direetofpcores” and
“drivers” . The first includes all the files for the hardwénald while the second contains the software
drivers created by the wizard. In both directosies will find another directory for your core withe
name‘mycore_vl 00 _a"

B o Prephirals — Dolphin <@gata-ubu> v &
File Edit View Go Tools Settings Help
¢ Back & Forw 44« Icons | 4= Details Columns Preview + Split
Places o x {755 Home > Projects > EDK_Projects > Prephirals Information SR
——— — — — ~
= = = A
Xps data drivers ﬁ
@ Network
— etc implementatio pcores S
R n
Prephirals
Root B
R— Type: Folder
clock_ system.bsb system.log Modified: Today 10:06
a» generator...
. Tash
-
oy
system.make system.mhs system.xmp
H Floppy Drive
system_incl. XpsGuiSession ‘A
make Lock 0
6 Folders, 8 Files (23.2 KiB) =4 R

Figure 13: Project Directdry Listing

13|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Open the foldefpcores->mycore_v1 00_a'’it should be as shown Figure 14. Three directories are
found:

“data” : this directory contains the files required toidefthe core to the EDK. The
EDK reads the files inside this directory to idéntihe bus connections of the core, and the
hardware files required to build the core (librdgceleration).

. “devl” : this directory contains the files for the ISE jpaa.

. “hdI” : this directory contains the HDL files for the eor

f: s mycore_v1_00_a - Dolphin <@gata-ubu>

File Edit View Go Tools Settings Help

«©
O
(x

@Back ©» ass Icons |« Details Columns | gl Preview + Split

Places o x 3> Prephirals > pcores > mycore_v1l 00 a Information X
= — w—

L s o o
data devl hdl

S

Type: Folder
Modified: Today 10:05

- o mycore_v1 00 a
@«
oy

3 Folders Q R

Figure 14: "pcores-> nwcore_vl_oo;a" directory listing

l4|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

@ o) devl - Dolphin <@gata-ubu> W & X
File Edit View Go Tools Settings Help
¢ Back E“; Forward 44s Icons < Details Columns W Preview + Split Search
Places o x | 5> prephirals > pcores > mycore v1_00_a > devl Information AN
T |
-
— =
e - - ,
projnav synthesis create.cip ﬁ
@ Network
e ipwiz.log ipwiz.opt README.txt I
devl
Root
Type: Folder
Modified: Today 10:05
>
¢v Trash
2 Folders, 4 Files (23.7 KiB) Q 8 Q

Figure 15: "pcores->mycore v1_00_a->devl" directory listing

Open the foldefdevl” as shown irFigure 15 The directory‘projnav” contains the files of the ISE
project navigator to edit the source files of yoare.

Open that directory as shownkigure 16.

"g‘ &/ projnav — Dolphin <@gata-ubu> [ORORI)
File Edit View Go Tools Settings Help

¢ Back g Forward 4ss lcons < Details Columns | |l Preview + Split [Search

Places o B > pcores > mycore vl 00_a > devli > projnav Information ° x

= <> TCL

Xmsgs mycore.gise mycore.tcl ﬁ
@ Network 9
= _—

mycore.xise

rojnav
Root proj
Type: Folder
Modified: Today 10:05
+%, Trash

H Floppy Drive
f
!

Figure 16: "pcores->mycore vl 00 a->devl->projnav"

1 Folder, 3 Files (46.8 KiB) e

Here you will find the fil&‘'mycore.xise” which is the ISE project navigator file.
You need to open this file usifitpE” .

15|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Start ISE and the The ISE project navigator winddagivopen. Select“File->Open Project” and
select the filémycore.xise”.

-\ ISE Project Navigator (0.76xd) - /afs/tu-berlin.de/h ini u/Proj _Projects/ i : v1_00_ i xise - [Design @gat:
L File Edit View Project Source Process Tools Window Layout Help
D2HO > $D0EXwa»ift 23R 20 BEOS SR IPTL D
R o Design e - [=1C] - & £ Design Overview a mycore Project Stat
[1] View:® & Impl ion O [sil .
- @ [108 Properties Project File: |mycore.xise Parser Errors:
& |Hierarchy [5) [Module Level Utilization
& mycore [Timing Constraints 7
— | |Module mycore Implementatic
E@ B €3 xcSvIx110t-1f1136 (%] [Pinout Report I |name: Y stapw
&6 & [l mycore - IMP (mycore.vhd) [Clock Report
E PLBV46_SLAVE_SINGLE_| - plbv46_slave_single - implemer| V‘J G Static Timing 'I'hrg.ot xc5vIx110t-1ff1136 « Errors:
[USER_LOGIC I - user_logic - IMP (user_logic.vhd) & Errors and Warnings || Device:
a = [8 Parser Messages ||Product ISE 13.3 * Warning:
P [Synthesis Messages ' | Version:
o [Translation Messages | - =
- [Map Messages || Design Goal: |Balanced * Routing
< R EZ] [Place and Route Messa Results:
- [Timing Messages || Design Xilinx Default « Timing
’7 SuNaEroce==e=Running [Bitgen Messages @ ||Strategy: (unlocked) Constrai
¢ | Processes: USER_LOGIC 1 - user_logic - IMP L—FLAllImplementation e ; S PFinalTin
g |® ¥ Design Utilities Design Properties Score:
.) Check Syntax [[] Enable Message Filtering
X Optional Design Summary Contents
- ["] Show Clock Report
" [] Show Failing Constraints Detailed Reports
(] Show Warnings Report Name | Status| Generated | Errors| Warnin
["] Show Errors
Synthesis
Rennrt
o Start |02 Design |1 Files |) Libraries £ Design Summary ﬂJ
:1061 - Parsing VHDL file "/afs/tu-berlin.de/units/Fak_IV/aes/tools/xilinx/13.3/ISE DS/EDK/hw/XilinxProcessorIPLib/pcores/proc_
tMgmt - Parsing design hierarchy completed successfully.
Launc! Design Summary/Report Viewer...
Started : "Launching ISE Text Editor to edit user_logic.vhd".
]
[E] console |@ Erors | £\ ings | ig6 Find in Files Results |

Figure 18: | SE project for "mycore"

XXXXXX

This will open the ISE navigator for the “mycore’opect as shown ifigure 18.

16|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Open the filé'user_logic.vhd” and inspect it. The wizard created an entity cailser _logic”. The
declaration for that entity is shown kingure 19.

84 entity user logic is

85 generic

86 (

87 == ADD USER GENERICS BELOW THIS LINE —=======—=———=-

88 --USER generics added here

89 == ADD USER GENERICS ABOVE THIS LINE —========—=——==-=

90

91 == DO NOT EDIT BELOW THIS LINE

92 -- Bus protocol parameters, do not add to or delete

93 C_SLV_DWIDTH : integer := 32;

94 C_NUM_REG : integer =4

95 == DO NOT EDIT ABOVE THIS LINE

96):

97 port

98 (

99 == ADD USER PORTS BELOW THIS LINE —=========—==——=--

100 --USER ports added here

101 == ADD USER PORTS ABOVE THIS LINE —=========—==——==-

102

103 == DO NOT EDIT BELOW THIS LINE

104 —-- Bus protocol ports, do not add to or delete

105 Bus2IP Clk : in std logic;

106 Bus2IP Reset : in std logic;

107 Bus2IP Data : in std logic vector(0 to C_SLV_DWIDTH-1);
108 Bus2IP BE : in std logic vector(0 to C_SLV_DWIDTH/8-1);
109 Bus2IP RdCE : in std_logic_vector (0 to C_NUM_REG-1);
110 Bus2IP WrCE : in std _logic_vector (0 to C_NUM _REG-1);
111 IP2Bus_Data : out std _logic_vector (0 to C_SLV_DWIDTH-1);
112 IP2Bus_RdAck : out std_logic;

113 IP2Bus_WrAck : out std logic;

114 IP2Bus_Error : out std logic

115 == DO NOT EDIT ABOVE THIS LINE

116)

117

118 attribute MAX FANOUT : string;

119 attribute SIGIS : string;

120

121 attribute SIGIS of Bus2IP Clk : signal is "CLK";

122 attribute SIGIS of Bus2IP Reset : signal is "RST";

123

124 end entity user logic;

Figure 19: Entity declaration for "user_logic" component

The entity declarations contains the required pdas data and control signals. The signals
“Bus2IP_Data” and“IP2Bus_Data” are 32-bits data signals that are used to tradsfier from/to the
core. The signal®8Bus2IP_RdCE” and“Bus2IP_WeCE” are the read enable and write enable signals
for each register of the created core. As we salefdur registers in the Wizard window, four select
signals are included in these control signals. O¢ignals are used for data acknowledgment and erro
detection.

17|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

The architecture of thiser_logic” is composed of several blocks:

1. Signal declaration:
As shown inFigure 20, signals are defined for each of the four regsstetv_reg0” to
“slv_reg3”. Also signals are defined for read/write selectisignals, and read/write

acknowledgement.
134
135 —=- Signals for user logic slave model s/w accessible register example
136
137, signal slv_reg0 : std_logic_vector (0 to C_SLV_DWIDTH-1);
138 signal slv_regl : std_logic_vector (0 to C_SLV_DWIDTH-1);
139 signal slv_reg2 : std_logic_vector (0 to C_SLV_DWIDTH-1);
140 signal slv_reg3 : std_logic_vector (0 to C_SLV_DWIDTH-1);
141 signal slv_reg write_sel : std_logic_vector (0 to 3);
142 signal slv_reg read sel : std _logic _vector (0 to 3);
143 signal slv_ip2bus data : std _logic _vector (0 to C_SLV_DWIDTH-1);
144 signal slv_read ack : std_logic;
145 signal slv_write_ack : std_logic;
146
Figure 20: Sgnal Declaration
2. Register selection signals:

The bus signals are decoded here to generatew#adielect and read/write acknowledgement
signals as shown iRigure 21

162 - Bus2IP WrCE/Bus2IP_ RdCE Memory Mapped Register

163 - "1000" C_BASEADDR + O0x0

164 e "0100" C_BASEADDR + Ox4

165 e "0o010" C_BASEADDR + O0x8

166 o "oo001" C_BASEADDR + 0xC

167 —_—

N ———————— —

169 slv_reg write_ _sel <= Bus2IP WrCE (0 to 3);

170 slv_reg read sel <= Bus2IP RdCE (0 to 3);

5 i slv _write ack <= Bus2IP WrCE (0) or Bus2IP WrCE(l) or Bus2IP WrCE (2) or Bus2IP WrCE(3);
172 slv_read ack <= Bus2IP RdCE (0) or Bus2IP RdCE (1) or Bus2IP RdCE (2) or Bus2IP RdCE(3);

Figure 21: Sgnal Assignment

18|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

3. Register-Write Process:

This segment of code describes a process thated taswrite into each of the four registers. The
process checks the signatdv_reg_write_sel” signal and decode it to select the proper regaer
transfer the data signdBus2IP_Data” into the selected register. The write operatioayischronized
with the bus clocK'Bus2IP_CIk” and the registers contents are cleared using therdset signal
“Bus2IP_Reset”. This segment of code is shown Fiigure 22 This process models the hardware
required to transfer data from the PLB data bus ihé contents of the selected register.

174 -- implement slave model software accessible register(s)
175 SLAVE_REG_WRITE PROC : process(Bus2IP Clk) is

176 begin

177

178 if Bus2IP Clk'event and Bus2IP Clk = '1' then
179 if Bus2IP Reset = 'l' then

180 slv_reg0 <= (others => '0');

181 slv_regl <= (others => '0');

182 slv_reg2 <= (others => '0');

183 slv_reg3 <= (others => '0');

184 else

185 case slv_reg write_sel is

186 when "1000" =>

187 for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop

188 if (Bus2IP BE(byte_index) = 'l1') then

189 slv_reg0(byte_index*8 to byte index*8+7) <= Bus2IP Data(byte_index*8 to byte_index*8+7);
190 end if;

191 end loop;

192 when "0100" =>

193 for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop

194 if (Bus2IP BE(byte_index) = 'l1') then

195 slv_regl (byte_index*8 to byte index*8+7) <= Bus2IP Data(byte_index*8 to byte_index*8+7);
196 end if;

197 end loop;

198 when "0010" =>

199 for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop

200 if (Bus2IP_BE(byte_index) = '1') then

201 slv_reg2(byte_index*8 to byte index*8+7) <= Bus2IP Data(byte_index*8 to byte_index*8+7);
202 end if;

203 end loop;

204 when "0001" =>

205 for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop

206 if (Bus2IP_BE(byte_index) = '1') then

207 slv_reg3(byte _index*8 to byte index*8+7) <= Bus2IP Data(byte_index*8 to byte_index*8+7);
208 end if;

209 end loop;

210 when others => null;

211 end case;

212 end if;

213 end if;

214

215 end process SLAVE REG_WRITE_PROC;|

Figure 22: Register Write Process

4. Register-Read Process:

This process models the hardware required to ®arnké contents of each register into the PLB data
bus. The process decodes the sigsél reg read_sel” and transfer the contents of the required
register into the signéslv_ip2bus_data” as shown ifFigure 23,

217 —— implement slave model software accessible register (s) read mux

218 SLAVE REG READ PROC : process(slv_reg read sel, slv_reg0O, slv _regl, slv _reg2, slv _reg3) is
219 begin

220

221 case slv_reg read sel is

222 when "1000" => slv _ip2bus data <= slv_regO0;

223 when "0100" => slv ip2bus data <= slv _regl;

224 when "0010" => slv_ip2bus data <= slv_reg2;

225 when "0001" => slv_ip2bus data <= slv_reg3;

226 when others => slv ip2bus data <= (others => '0');
D27 end case;

228

229 end process SLAVE REG READ PROC;

Figure 23: Register Read Process

19|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

5. Bus driver signals:
The final part of the architecture connects thenaekedgement signals and data signals into the bus
signals as shown iRigure 24.

231
232 -- Example code to drive IP to Bus signals
233
234 IP2Bus_Data <= slv_ip2bus data when slv_read ack = 'l1' else
235 (oth = '0');

236
237 IP2Bus_WrAck <= slv_write_ack;
238 IP2Bus_RdAck <= slv_read_ack;

239 IP2Bus Error <= '0';
Figure 24: Bus Driver Sgnals

Now after investigating each component of theer_logic” module, we are ready to modify it. We
will modify this logic to perform simple subtracticand addition operations. We will simply subtract
the contents of the first two registers and stbeeresults in Register #2. We will also add theteots

of the first two registers and store the resultRagister#3 as shown kgure 25.

Register 1

Register 3

Register 1

Figure 25: Hardware Modification

20|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Add the following two lines before the end of threhatecture body

slv_reg2 <=slv_regO - slv_regl,
slv_reg3 <=slv_reg0 + slv_regl;

This will build the hardware shown previouslykigure 25. Now as the wizard created a logic to write
into registers 2 and 3, we need to modify this dogp that these registers will only have a single
source. Comment the following code shownFigure 26. When you complete these modifications
implement the design using the ISE flow to makeeghat it builds correctly before connecting the
core to Microblaze in the EDK.

174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

| il A O 1

-- implement slave model software accessible register(s)
SLAVE_REG_WRITE PROC : process(Bus2IP Clk) is
begin

if Bus2IP Clk'event and Bus2IP Clk = 'l' then
if Bus2IP Reset = 'l1' then
slv_reg0 <= (others => '0');
slv_regl <= (others => '0');

slv_reg2 <= (others => '0');
slv_reg3 <= (others => '0');

case slv_reg write_sel is

when "1000" =>
for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop
if (Bus2IP_BE (byte index) = 'l') then
slv_reg0 (byte_index*8 to byte_index*8+7) <= Bus2IP Data(byte_index*8 to byte_index*8+7);
end if;
end loop;
when "0100" =>
for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop
if (Bus2IP_BE (byte index) = 'l') then
slv_regl (byte index*8 to byte_index*8+7) <= Bus2IP Data(byte_index*8 to byte index*8+7);
end if;
end loop;
when "0010" =>
for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop
if (Bus2IP BE(byte_index) = '1') then
slv_reg2(byte_index*8 to byte_index*8+7) <= Bus2IP Data(byte_index*8 to byte_ index*8+7);
end if;
end loop;
when "0001" =>
for byte_index in 0 to (C_SLV_DWIDTH/8)-1 loop
if (Bus2IP_BE(byte index) = 'l1') then
slv_reg3(byte_index*8 to byte_index*8+7) <= Bus2IP Data(byte index*8 to byte_ index*8+7);
end if;
end loop;
when others => null;

end case;
end if;
end if)|

ssssss SLAVE_REG_WRITE_PROC;

Figure 26: Modified Version of the Register Write Process

Build the design in the ISE project navigator byesgng “mycore.vhd” and then
“Implement Design” in the“Design Tab”.

21|Page

double click

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Part 3: Adding the generated IP core the Microblaze system

Now as we are done modifying the new IP core tokvesr described in Figure 25. We are ready to add
the newly created peripheral to our Microblaze eystreated in the previous tutorial. The IP core we
created in Part 1 and Part 2 supports the PLB thishwis the common bus used in the Microblaze
system. Now we will add the new core to the systsnnect it to the bus, give it an address spade an
then rebuild the system to generate a new bitssti@ide). In Part 4 of this tutorial we will modifthe
software of the Microblaze to access this core. Neevwill switch back to the EDK by starting the
platform studio using the commafxps”.

Step 1:Add the core to the system:
When you open the EDK after creating the new csekect the tap “IP Catalog” in the left side of the
Platform Studio main window as shownRigure 27.

e xF f (EDK xd 3 elhossini tu/Projects/EDk OROR
@ File Edit View Project Har Device Configuration Debug Si i Window Help EEX
i@ PO R ‘a4 RE X
e & IP Catalog ®08® [%[Bus Interfaces | ports | Addresses | £
B - 2 = > - ’g g B Name IBus Name |lPType g
Description P version i % imb 1ol
= £ EDK Install ilmb ¥ Imb_v10
< Analog - mb_plb +r plb_v46
TDRE Bus and Bridge (FIAEN & microblaze_0 ¥ microblaj
n DRCs Clock, Reset and Interrupt & Imb_bram ¥ bram_bl.
Communication High-Sp... & t & dimb_cntir ¥ Imb_bra.
Implement Flow Communication Low-Speed pY & ilmb_cntlr ¥ Imb_bra.
DMA and Timer o & mdm_0 7 mdm
#o Debug i ° & DIP_Switches_8Bit ¢ Xps_gpio
(mL] FPGA Reconfiguration & & LEDs_8Bit +¥r xps_gpio
Generate Netlist General Purpose 10 s @ Hard_Ethernet_MAC_fifo ¥r xps_lI_fif|
10 Modules ° E B Hard_Ethernet_MAC 8 xps_ll_te
Interprocessor Communi... B RS232_Uart_1 ¥ xps_uart,
101 Memory and Memory Co... o SPLB mb_plb lt‘
3enerate BitStream PCI clock_generator_0 ¥ clock_ge
Peripheral Controller proc_sys_reset_0 ¥r proc_sys.
Processor
G3 utilty
Export Design Project Local PCores
USER
=y 5 _ _—
MYCORE 1.00.a — ™
Simulation Flow - L] Gl I] L)
~Legend
* iMaster WSlaye @iMaster/Slave B=Target CInitiator ¥ Connected UUnconnected 1M Monitor
| E YeProduction (DLicense (paid) (License (eval) SiLocal ZiPre Production H2Beta SDevelopment
Generate HDL Files % SRR <I») |+ superseded piscontinued - o
| @ Project | @ IP Catalog I Design Summary [& Graphical Design View @ System Assembly View [[
Console G068
r b s -ubuntu/P. s |
Launch Simulator : \L
L
<] P
[Z] console | £\ Wamings |@ Errors

Figure 27: IP Catalog in the Platform Sudio Main Window

The“IP Catalog” is used to explore the library of components add for you to add to your design,
either created by Xilinx (under EDK Install), or llye user (under Project Local Pcores). You will
notice that the core we created appears underolleving catalog path?Project Local Pcores->
MYCORE” . Double-clicking the core will direct the tool &mld an instant of this component to your
design.

22|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

First it will ask you if you want to adtinycore” to your design. Pressrés’. Then it will display a

window as shown ifrigure 28.

@

Component Instance Name

€]

] Show All Ports

[mycore_o

[Tan]

[l (=) (5]

C_BASEADDR
C_HIGHADDR
C_INCLUDE_DPHASE_TIMER
C_SPLB_AWIDTH
C_SPLB_CLK_PERIOD_PS
C_SPLB_DWIDTH
C_SPLB_MID_WIDTH
C_SPLB_NATIVE_DWIDTH
C_SPLB_NUM_MASTERS
C_sPLB_P2P

Cal| |

—I=]
[ox

[ox!

Hw

K1 3]

el | Help

Figure 28: Instant name

When you are done editing the instant name p@kS to add the component to your design as shown
in Figure 29. This new component is now ready to be conneaetid MicroBlaze common PLB bus
(shown in gold). Click the “+” sign beside the nawfethe core ‘{mycore_0") you will notice one
connection nametiSPLB” which stands fofslave PLB”. This simply indicates that this component
can be connected to the PLB bus as a slave compddkek the“No Connection” list and choose
“mb_plb” from the list. This will add a gold circle markitige connection of the new component with
the PLB bus as a slave. (Master components arershatih rectangle connections — such as the
Microblaze_0 connectionBy completing this step, the new component is nowognected to the

PLB bus.

@ o Xilinx Platform Studio (EDK_O.76xd) - DK_Pre - [System Assembly View] <@gata-ubu> O X
@ File Edit View Project Har Device Config Debug Window Help =18
5 iv iw TR O T48F & RE@ oz
I 5| Businterfaces | Ports | Addresses | ==
Name |Bus Name IP Type o
4 Imb_vio| 3
. +¥r Imb_vio
L <r plb_va6
R +r microbla:
¢ bram_bl
+r Imb_bra.
Yc Imb_b
¢ mdm
o).
0 No Connection =
Generate Netlist > Yr xps_gpio
- ¥r xps_gpio
Interprocessor Communi... ° % xps_II_fif]
Memory and Memory Co. - & xps_li_te
Senerate BitStream PCl Y xps_uart]
Peripheral Controller S sPLB mb_plb =
Processor clock_generator_O ¥ clock_ge.
utility proc_sys_reset_0 ¥ proc_sys.
Export Design Project Local PCores
USER
"= MYCORI
= N — 2 <] 1)
Legend
- . ave b-Target <Initiator @Connected JUnconnected I Monitor
| o | £oy @License (eval) “Slocal Zipre Production H2Beta #4Development
General te HDL Files et

i

@ System Assembly view (3 |

QOeR

Launch Simulator

I
i
i
I

(L]

[5] console | 1\ wamings | @ Errors |

Figure 29: New component added to the system

23|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Step 2:Modify the address space of the new core:

As explained earlier, each component connectetig¢dPL B bus is given an address. This address is
specified by the designer so that the softwarer(csge) can access the peripheral to perform aioert
computation. We need to give our newly added corapban address space to be used to access its
registers. To do so, click the address tab initjig side of the platform studio window.

Not that our componertmycore_0" will be shown undefunmapped components” Select the
component and then change the size of the addpas® $0 64k. This will move the component to
MicroBlaze 0 addresses list. There you will findl @mponents connected to the Microblaze. You
will also be able to list, and modify the addregace of each component. In this stage we only teeed
give our new component a starting address. Thisbeaany address as long as it is not used by any
other component. For example, as showfigure 30, we use the address 0x81500000. Now we are
done adding the new core and assigning it an asldspace. We are now ready to build the new
hardware. ClickGenerate BitStream”.

L2 xF f xd) . elhossini tu/Projects/EDK_Projects/F SRR
@ File Edit View Project Har Device Confi i Debug Si i Window Help =&

5 d i PN OE 2R ‘&' REB £ £
Navigator X < 'IPCatxang ©@O®® .| Bus Interfaces [Ports Addresses =y
2 MNEIBE

Instance |Base Name |Base Address |High Address |Size |Bus Int¢

Description IP Version

B microblaze_0's Address ...

= £ EDK Install dimb_cntir C_BASEADDR 0x00000000 0x00001FFF 8K [x)stme

‘9" Analog ilmb_cntir C_BASEADDR 0x00000000 0x00001FFF 8K | stmB

RuleiCs Bus and Bridge LEDs_8Bit C_BASEADDR 0x81400000 0x8140FFFF 64K [x]spLe

Clock, Reset and Interrupt DIP_Switches_8Bit C_BASEADDR 0x81420000 0x8142FFFF 64K |+ sPLB

Communication High-Sp... mycore_0 C_BASEADDR 0x81500000 ©0x8150FFFF 64K ESPLB

Communication Low-Speed Hard_Ethernet_MAC_... C_BASEADDR 0x81A00000 Ox81AOFFFF 64K |»|spLB

DMA and Timer RS232_Uart_1 C_BASEADDR 0x84000000 0x8400FFFF 64K [x]spLe

#0 Debug mdm_0 C_BASEADDR 0x84400000 0x8440FFFF 64K |v sPLB

(=48] FPGA Reconfiguration Hard_Ethernet_MAC C_BASEADDR 0x87000000 0x8707FFFF 512K [z)sPLB
Generate Netlist General Purpose 10 -

10 Modules

Interprocessor Communi...
I Memory and Memory Co..

Senerate BitStrean PCI

Peripheral Controller

Processor
& utility

Export Design Project Local PCores

USER

=

MYCORE 1.00.a
Simulation Flow - <] 4>
~Legend
*) diMaster USlave diMaster/Slave -Target <Initiator @ Connected JUnconnected I Monitor
| . . | [¥cproduction PLicense (paid) @lLicense (eval) SiLocal iiPre Production RBeta &Development
AL Files (] ‘ [(I>) | Superseded pisconti
\gﬂje“ | @ P catalog 1. Design Summary | % Graphical Design View 2 System Assembly View [J

n Console G0eR

Launch Simulator | - @

= =

[— 22—
[console | &\ Warnings |@ Errorsj

Figure 30: Address space modification

24|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Part 4: Modifying the Software

From the software point of view, the new core corgt@ registers as described in Table 1. The wizard
created a driver that will allow us to access tha fregisters. The driver contains several funstithrat
will allow us to access each of those registers.

Register Function Address Access Width
Register 0 First Operand Base Address + 0x00 Readté/\W 32-bits
Register 1 Second Operand Base Address + Ox04 Wasal/ | 32-bits
Register 2 Subtraction Result Base Address + 0x08 eadPOnly | 32-bits
Register 3 Addition Result Base Address + OxOC Realy | 32-bits

Table 1: Registers of the Created |IP Core
These functions are listed below:

. MYCORE_mWriteReg(BaseAddress, RegOffset, Data): Writes data to a specific register.
. Data = MYCORE_mReadReg(BaseAddress, RegOffset): Reads data from a specific register.

The tool generates various constants based oratdevare configuration to enable software access to
system constants such as peripheral addressesx&mple the constagitAR_MYCORE_0_BASEADDR is
defined to hold the base address of our compoirethié case 0x81500000).

Step 1:Adding the Driver to SDK

Start the SDK as described in Tutorial 2. Then c€lXilinx Tools->Repositories”, the window
shown inFigure 31 This will allow us to add the project local dite/ as a source for drivers. In the
“Local Repositories” click “New” and then select the project local directory.

@ Preferences <@gata-ubu> SCIIGS
type filter text B Add, remove or change the order of SDK's software repositories. - - -
b Genera | Local Repositories (avallable to the current workspace)

b c/cH+
b Help New:
b Install/Update f
b Remote Systems
b Run/Debug
b Team L L
Terminal Global Repositories (available across workspaces)
~ Xilinx SDK
New.
Flash Programming
Hardware Specificati Ber
Log Information Leve
Target Manager —I

SDK Installation Repositories

Note: Local repository settings take precedence over global repository settings.

Restore Defaults | apply |

@ Cance
Figure 31: Add Repositories

25|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Step 2:Create a software project:

Create a software project as described in Tutorial 2. In this project we will write software to access the
core and test its functionality. Modify the source code of your “helloworld.c” (or the name you choose for
your project) as shown in the code segment below. The values MYCORE_SLV_REGX_OFFSET are defined by
the driver for each register. Note that the function “xil_printf” is a light version of the famous “printf”
function. This function requires smaller memory size and runs faster than the regular function. We use this
function to print out data. The output is directed to the standard output. This standard output can be the
RS232 serial port if it exists. The settings of the standard output, operating system, and drivers can be
changed by clicking “Modify this BSP's Setting” in the “System.mss” file found in the BSP project (for
example “Hello_world_bsp”).

#include <stdio.h>
#include “platform. h”
#include “xparameters.h”
#include “mycore.h”

void print(char *str);

int main()

{
int a =0, b =0;

init_platform();
print ("Hello World¥n¥r”);

MYCORE_mWriteReg (XPAR_MYCORE_O_BASEADDR, MYCORE_SLV_REGO_OFFSET, 0x8);
// Write the value 8 into register 0
MYCORE_mWriteReg (XPAR_MYCORE_O_BASEADDR, MYCORE_SLV_REG1_OFFSET, 0x5);
// Write the value 5 into register 1

a = MYCORE_mReadReg (XPAR_MYCORE_0_BASEADDR, MYCORE_SLV_REG2_OFFSET) ;
// Read the value of Register 2 into variable a
// Should be 3 (0x03)

b = MYCORE_mReadReg (XPAR_MYCORE_0_BASEADDR, MYCORE_SLV_REG3_OFFSET) ;
// Read the value of Register 3 into variable b
// Should be 13 (0x0D)

xil_printf (“"Output = %d, %d”,a , b);
// Print out the result using the serial port
// Xil_printf is a light version of printf

cleanup_platform() ;

return 0;

26|Page

Creating a Custom Peripheral and Integration witbréBlaze Embedded System

Compile the code, and then sel&xtlinx Tools-> Program FPGA” to download the design on the
FPGA and execute it.

Final Statement

After completing this tutorial you will be able twild an embedded system, add your own design to
that system, and execute the complete system oRRE&A. To gain more knowledge about the EDK
and SDK tools along with adding an IP to a Micraelayou need to build your own design from
scratch.

27|Page

