
Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

1 | P a g e

Tutorial

Creating a Custom Peripheral and adding

it to a Microblaze Embedded System

Introduction
In the previous tutorials you learned how to create embedded design using EDK, and connect it to a
personal computer over the standard network interface. In these tutorials you only used peripherals
provided by Xilinx in its IP core library. In this tutorial you experiment creating your own IP core, add
it to Xilinx library and integrate it into your design. You will be able to add your own VHDL code into
the new design to implement the required function of your projects. The new peripheral will be
connected to the Microblaze system using the PLB bus.

Pre-requisites
1. Complete Tutorial: Building an Embedded Processor System on FPGA.

Objectives:
1. Create an IP core with PLB interface.
2. Connect the new IP core to Microblaze embedded system.
3. Perform communication with the new core.

Equipment and Tools
1. NEXYS 3 Spartan-6 Board.
2. Xilinx Embedded Development Kit (v13.3).
3. Personal Computer with RS232 cable.

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

2 | P a g e

Tutorial Steps

Part 1: Creating a Custom IP Core
In this part of the tutorial we will create a new IP core using EDK to integrate it with the Microblaze
embedded system.

Step 1: Starting from the end of tutorial 2: you should end up with the Platform Studio window shown
in Figure 1. In this window select the menu item “Hardware-> Create or Import Peripheral...” .
This will display the “Create or Import Peripheral Wizard” window shown in Figure 2. This wizard
will guide you through the required steps to create a new peripheral. Click “Next” to continue.

Figure 2: Create and Import Peripheral Wizard (Step 1)

Figure 1: Platform Studio Window

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

3 | P a g e

Step 2: The second page of the wizard asks if you want to create a new peripheral or import an already
created core. Select “Create Template for a new Peripheral” and then press “Next” as shown in
Figure 3. The wizard will guide you with the necessary steps to build the required files to build and
connect your new peripheral (both hardware and software).

Figure 3: Create and Import Peripheral Wizard (Step 2)

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

4 | P a g e

 Figure4: Create and Import Peripheral Wizard (Step #3)

Step 3: The following window asks about the location where you want to store the files for your new
peripheral. Here you have two options as show in Figure 4. The first option stores the core in a global
repository so that it will be accessible in any project you create. The second option stores the new
peripheral in your project local directory and so it will be accessible only in your project. Since this is
just a tutorial select the second option and then press “Next” .

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

5 | P a g e

Step 4: In the window shown in Figure 5 you are required to enter the peripheral name and revision.
The wizard allows you to create different revisions of the same core as well as starting from scratch.
Note that the core name should consist only of lower case letters and numbers. In this screen you can
also add some description to your core. Give your new IP core any name, for example “mycore” . Type
the name and give description if required then press “Next” to continue.

Figure 5: Create and Import Peripheral Wizard (Step 4)

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

6 | P a g e

Step 5: In this step you are required to select the interface type for your peripheral. Xilinx EDK
supports 3 types of interface standards in its embedded systems. The first and the newest one is the
AXI4 architecture which is designed for various types of communication strategies. The second type is
the “Processor Local Bus (PLB 4.0)” which is a standard bus architecture to connect Microblaze and
its peripheral in a shared bus structure. This bus standard will be used in this tutorial. The last interface
type is the “Fast Simplex Link (FSL)” which is a dedicated FIFO link between the processor and the
peripheral. The Microblaze supports a limited number of FSL links but this communication channel
guarantees the fastest communication between the peripheral and the processor. Select the “Processor
Local Bus (PLB 4.0)” as shown in Figure 6 and then press “Next” .

Figure 6: Create and Import Peripheral Wizard (Step 5)

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

7 | P a g e

Step 6: The PLB bus is based on a Master/Slave configuration. The bus can have multiple masters and
slaves. In the design created in the previous Tutorial, Microblaze acted as the master of the PLB bus
while all other peripheral acted as slaves. The master initiates the transactions and controls the data
flow, while the slave peripheral waits for a transaction from the master. The master of the bus sends
requests to the a specific address space, and the slave peripheral decodes that address and responds to
the request if the address is recognized. The address of each peripheral is unique and all transaction are
memory mapped. In this step we specify the configuration of the core we are about to create. The
wizard will add VHDL logic block for slave, master, or both if required. You have to specify the
components in the slave logic and if you want a master logic you can also do so. As you can see in
Figure 7, you can add interrupt control, software reset, Read/Write FIFO, user registers, and more.
Later you can modify these components and add more depending on the function of your peripheral.
For the purpose of this tutorial select the options shown in Figure 7, then press “Next” .

Figure 7: Create and Import Peripheral Wizard (Step 6)

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

8 | P a g e

Step 7: The following page of the wizard is shown in Figure 8. In this window you have the option to
add cache support for your device as well as changing the data bus width. You do not need to do any
changes in this screen. Press “Next” to continue.

Figure 8: Create and Import Peripheral Wizard (Step 7)

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

9 | P a g e

Step 8: In the previous step you configured the new core to have built in software registers. The wizard
will create the necessary logic inside your core to have read/write registers. In this step you are asked to
specify the number of registers in your design as seen in Figure 9. Select “4” to add for registers to
your design and then press “Next” to continue.

Figure 9: Create and Import Peripheral Wizard (Step 8)

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

10 | P a g e

Step 9: After setting the core configuration and internal components, the wizard window shown in
Figure 10 allows you to change the interface between your new added logic (IP) and the bus interface.
The wizard will create the bus interface for you and then create a usr_logic module that contains all the
logic selected by you in the wizard. This screen allows you to change the signals between the bus
interface and your user logic. Press “Next” to continue.

Figure 10: Create and Import Peripheral Wizard (Step 9)

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

11 | P a g e

Step 10: EDK designs can be simulated for functional and timing verification. In order to perform
simulation, extra files will be needed and added for the simulation of the bus components. If you plan
to perform simulations for your design then select “Generate BFM simulation platform” in the
wizard page shown in Figure 11.

Figure 11: Create and Import Peripheral Wizard (Step 10)

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

12 | P a g e

Step 11: The final step of the wizard contains three final options:
1. The option to generate the user_logic module in Verilog rather than VHDL.
This option is important when you prefer Verilog for hardware development.
2. The option to generate an ISE project to help in the implementation of your core.
The generated ISE project can be used to verify the core before integration in the EDK.
3. The final option is to create a software driver for core to be used during software development.

 Perform the selection as shown in Figure 12 (unless you want to write in Verilog) and then
press “Next” to continue.

The wizard steps are now completed and the template for your design is created.

Figure 12: Create and Import Peripheral Wizard (Step 11)

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

13 | P a g e

Part 2: Modifying the generated IP core

In Part 1 of this tutorial, the wizard created all necessary files required to integrate your core into an
EDK design. These files (as specified in step 3 of the wizard) are located in the local directory of your
projects as shown in Figure 13. The files created are stored in two main directories “pcores” and
“drivers” . The first includes all the files for the hardware build while the second contains the software
drivers created by the wizard. In both directories you will find another directory for your core with the
name “mycore_v1_00_a”.

Figure 13: Project Directory Listing

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

14 | P a g e

Open the folder “pcores->mycore_v1_00_a” it should be as shown in Figure 14. Three directories are
found:

• “data” : this directory contains the files required to define the core to the EDK. The
EDK reads the files inside this directory to identify the bus connections of the core, and the
hardware files required to build the core (library deceleration).
• “devl” : this directory contains the files for the ISE project.
• “hdl” : this directory contains the HDL files for the core.

Figure 14: "pcores->mycore_v1_00_a" directory listing

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

15 | P a g e

Open the folder “devl” as shown in Figure 15. The directory “projnav” contains the files of the ISE
project navigator to edit the source files of your core.

Open that directory as shown in Figure 16.

Here you will find the file “mycore.xise” which is the ISE project navigator file.
You need to open this file using “ISE” .

Figure 15: "pcores->mycore_v1_00_a->devl" directory listing

Figure 16: "pcores->mycore_v1_00_a->devl->projnav"

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

16 | P a g e

Start ISE and the The ISE project navigator window will open. Select “File->Open Project” and
select the file “mycore.xise”.

xxxxxx

This will open the ISE navigator for the “mycore” project as shown in Figure 18.

Figure 18: ISE project for "mycore"

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

17 | P a g e

Open the file “user_logic.vhd” and inspect it. The wizard created an entity called “user_logic” . The
declaration for that entity is shown in Figure 19.

The entity declarations contains the required ports for data and control signals. The signals
“Bus2IP_Data” and “IP2Bus_Data” are 32-bits data signals that are used to transfer data from/to the
core. The signals “Bus2IP_RdCE” and “Bus2IP_WeCE” are the read enable and write enable signals
for each register of the created core. As we selected four registers in the Wizard window, four select
signals are included in these control signals. Other signals are used for data acknowledgment and error
detection.

Figure 19: Entity declaration for "user_logic" component

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

18 | P a g e

The architecture of the “user_logic” is composed of several blocks:

1. Signal declaration:
 As shown in Figure 20, signals are defined for each of the four registers “slv_reg0” to
 “slv_reg3” . Also signals are defined for read/write selection signals, and read/write
 acknowledgement.

2. Register selection signals:
 The bus signals are decoded here to generate read/write select and read/write acknowledgement
 signals as shown in Figure 21.

Figure 20: Signal Declaration

Figure 21: Signal Assignment

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

19 | P a g e

3. Register-Write Process:
This segment of code describes a process that is used to write into each of the four registers. The
process checks the signals “slv_reg_write_sel” signal and decode it to select the proper register and
transfer the data signal “Bus2IP_Data” into the selected register. The write operation is synchronized
with the bus clock “Bus2IP_Clk” and the registers contents are cleared using the bus reset signal
“Bus2IP_Reset”. This segment of code is shown in Figure 22. This process models the hardware
required to transfer data from the PLB data bus into the contents of the selected register.

4. Register-Read Process:
This process models the hardware required to transfer the contents of each register into the PLB data
bus. The process decodes the signal “slv_reg_read_sel” and transfer the contents of the required
register into the signal “slv_ip2bus_data” as shown in Figure 23.

Figure 22: Register Write Process

Figure 23: Register Read Process

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

20 | P a g e

5. Bus driver signals:
The final part of the architecture connects the acknowledgement signals and data signals into the bus
signals as shown in Figure 24.

Now after investigating each component of the “user_logic” module, we are ready to modify it. We
will modify this logic to perform simple subtraction and addition operations. We will simply subtract
the contents of the first two registers and store the results in Register #2. We will also add the contents
of the first two registers and store the results in Register#3 as shown in Figure 25.

Figure 24: Bus Driver Signals

Figure 25: Hardware Modification

Register 0

Register 1

- Register 2

Register 0

Register 1

+ Register 3

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

21 | P a g e

Add the following two lines before the end of the architecture body

 slv_reg2 <= slv_reg0 - slv_reg1;
 slv_reg3 <= slv_reg0 + slv_reg1;

This will build the hardware shown previously in Figure 25. Now as the wizard created a logic to write
into registers 2 and 3, we need to modify this logic so that these registers will only have a single
source. Comment the following code shown in Figure 26. When you complete these modifications
implement the design using the ISE flow to make sure that it builds correctly before connecting the
core to Microblaze in the EDK.

Build the design in the ISE project navigator by selecting “mycore.vhd” and then double click
“Implement Design” in the “Design Tab”.

Figure 26: Modified Version of the Register Write Process

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

22 | P a g e

Part 3: Adding the generated IP core the Microblaze system

Now as we are done modifying the new IP core to work as described in Figure 25. We are ready to add
the newly created peripheral to our Microblaze system created in the previous tutorial. The IP core we
created in Part 1 and Part 2 supports the PLB bus which is the common bus used in the Microblaze
system. Now we will add the new core to the system, connect it to the bus, give it an address space and
then rebuild the system to generate a new bit-stream (file). In Part 4 of this tutorial we will modify the
software of the Microblaze to access this core. Now we will switch back to the EDK by starting the
platform studio using the command “xps”.

Step 1: Add the core to the system:
When you open the EDK after creating the new core, select the tap “IP Catalog” in the left side of the
Platform Studio main window as shown in Figure 27.

The “IP Catalog” is used to explore the library of components available for you to add to your design,
either created by Xilinx (under EDK Install), or by the user (under Project Local Pcores). You will
notice that the core we created appears under the following catalog path: “Project Local Pcores->
MYCORE” . Double-clicking the core will direct the tool to add an instant of this component to your
design.

Figure 27: IP Catalog in the Platform Studio Main Window

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

23 | P a g e

First it will ask you if you want to add “mycore” to your design. Press “Yes”. Then it will display a
window as shown in Figure 28.

When you are done editing the instant name press “OK” to add the component to your design as shown
in Figure 29. This new component is now ready to be connected to the MicroBlaze common PLB bus
(shown in gold). Click the “+” sign beside the name of the core (“mycore_0”) you will notice one
connection named “SPLB” which stands for “slave PLB” . This simply indicates that this component
can be connected to the PLB bus as a slave component. Click the “No Connection” list and choose
“mb_plb” from the list. This will add a gold circle marking the connection of the new component with
the PLB bus as a slave. (Master components are shown with rectangle connections – such as the
Microblaze_0 connection). By completing this step, the new component is now connected to the
PLB bus.

Figure 28: Instant name

Figure 29: New component added to the system

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

24 | P a g e

Step 2: Modify the address space of the new core:
As explained earlier, each component connected to the PLB bus is given an address. This address is
specified by the designer so that the software (user code) can access the peripheral to perform a certain
computation. We need to give our newly added component an address space to be used to access its
registers. To do so, click the address tab in the right side of the platform studio window.

Not that our component “mycore_0” will be shown under “unmapped components”. Select the
component and then change the size of the address space to 64k. This will move the component to
MicroBlaze_0 addresses list. There you will find all components connected to the Microblaze. You
will also be able to list, and modify the address space of each component. In this stage we only need to
give our new component a starting address. This can be any address as long as it is not used by any
other component. For example, as shown in Figure 30, we use the address 0x81500000. Now we are
done adding the new core and assigning it an address space. We are now ready to build the new
hardware. Click “Generate BitStream”.

Figure 30: Address space modification

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

25 | P a g e

Part 4: Modifying the Software

From the software point of view, the new core contains 4 registers as described in Table 1. The wizard
created a driver that will allow us to access the four registers. The driver contains several functions that
will allow us to access each of those registers.

Register Function Address Access Width

Register 0 First Operand Base Address + 0x00 Read/Write 32-bits

Register 1 Second Operand Base Address + 0x04 Read/Write 32-bits

Register 2 Subtraction Result Base Address + 0x08 Read Only 32-bits

Register 3 Addition Result Base Address + 0x0C Read Only 32-bits

Table 1: Registers of the Created IP Core

These functions are listed below:

• MYCORE_mWriteReg(BaseAddress, RegOffset, Data): Writes data to a specific register.
• Data = MYCORE_mReadReg(BaseAddress, RegOffset): Reads data from a specific register.

The tool generates various constants based on the hardware configuration to enable software access to
system constants such as peripheral addresses. For example the constant XPAR_MYCORE_0_BASEADDR is
defined to hold the base address of our component (in this case 0x81500000).

Step 1: Adding the Driver to SDK
Start the SDK as described in Tutorial 2. Then select “Xilinx Tools->Repositories” , the window
shown in Figure 31. This will allow us to add the project local directory as a source for drivers. In the
“Local Repositories” click “New” and then select the project local directory.

Figure 31: Add Repositories

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

26 | P a g e

Step 2: Create a software project:
Create a software project as described in Tutorial 2. In this project we will write software to access the

core and test its functionality. Modify the source code of your “helloworld.c” (or the name you choose for

your project) as shown in the code segment below. The values MYCORE_SLV_REGX_OFFSET are defined by

the driver for each register. Note that the function “xil_printf” is a light version of the famous “printf”

function. This function requires smaller memory size and runs faster than the regular function. We use this

function to print out data. The output is directed to the standard output. This standard output can be the

RS232 serial port if it exists. The settings of the standard output, operating system, and drivers can be

changed by clicking “Modify this BSP's Setting” in the “System.mss” file found in the BSP project (for

example “Hello_world_bsp”).

#include#include#include#include <stdio.h><stdio.h><stdio.h><stdio.h>
#include#include#include#include "platform.h"
#include#include#include#include "xparameters.h"
#include#include#include#include "mycore.h"

voidvoidvoidvoid printprintprintprint(charcharcharchar *str);

intintintint mainmainmainmain()
{

 intintintint a = 0, b = 0;

 init_platform();

 print("Hello World\n\r");

 MYCORE_mWriteReg(XPAR_MYCORE_0_BASEADDR, MYCORE_SLV_REG0_OFFSET, 0x8);

 // Write the value 8 into register 0
 MYCORE_mWriteReg(XPAR_MYCORE_0_BASEADDR, MYCORE_SLV_REG1_OFFSET, 0x5);

 // Write the value 5 into register 1

 a = MYCORE_mReadReg(XPAR_MYCORE_0_BASEADDR,MYCORE_SLV_REG2_OFFSET);

 // Read the value of Register 2 into variable a
 // Should be 3 (0x03)

 b = MYCORE_mReadReg(XPAR_MYCORE_0_BASEADDR,MYCORE_SLV_REG3_OFFSET);

 // Read the value of Register 3 into variable b
 // Should be 13 (0x0D)

 xil_printf("Output = %d, %d",a , b);
 // Print out the result using the serial port
 // Xil_printf is a light version of printf

 cleanup_platform();

 returnreturnreturnreturn 0;
}

Creating a Custom Peripheral and Integration with MicroBlaze Embedded System

27 | P a g e

Compile the code, and then select “Xilinx Tools-> Program FPGA” to download the design on the
FPGA and execute it.

Final Statement
After completing this tutorial you will be able to build an embedded system, add your own design to
that system, and execute the complete system on the FPGA. To gain more knowledge about the EDK
and SDK tools along with adding an IP to a Microblaze you need to build your own design from
scratch.

