Tutorial - Using Xilinx System Generator 14.6 for Co-Simulation on
Digilent NEXYS3 (Spartan-6) Board

Shawki Areibi

August 13, 2023

1 Introduction

Xilinx System Generator provides a set of Simulink blocks (models) for several hardware operations that
could be implemented on various Xilinx FPGAs. These blocks can be used to simulate the functionality of
the hardware system using Simulink environment. The nature of most DSP applications requires floating
point format for data representation. While this is easy to implement on several computer systems
running high level modeling software such as Simulink, it is more challenging in the hardware world due
to the complexity of the implementation of floating point arithmetic. These challenges increase with
portable DSP systems where more restricting constraints are applied to the system design. For these
reasons Xilinx System Generator uses fixed point format to represent all numerical values in the system.
System generator provides some blocks to transform data provided from the software side of the simulation
environment (in our case it is Simulink) and the hardware side (System Generator blocks). This is an
important concept to understand during the design process using Xilinx System Generator.

1.1 Objectives

This tutorial will demonstrate the process of creating a simple DSP system using Xilinx System Generator
14.6 The System Generator runs within the Simulink simulation environment which is part of MATLAB
mathematical package. In this tutorial a simple DSP system will be simulated using Simulink and then a Co-
simulation is performed using NEXYS3 (Spartan-6) Board. Co-simulation integrates Simulink simulation
capabilities with a hardware implementation to verify the functionality of the system.

The following steps are described in this tutorial:

e Starting System Generator with MATLAB.

e Creating a DSP system using Simulink and System Generator.

Simulating the DSP system using Simulink.

Preparing System Generator for Co-Simulation on NEXYS3 (Spartan-6) Board.

e Performing Hardware/Software Co-Simulation for the DSP system.

1.2 System Requirements

You must have the following software installed on your PC to complete this tutorial:

o Windows 7 OS.

e ISE 14.6

e System Generator 14.6

e MATLAB R2012a with Simulink.

Besides the following is required to complete this tutorial:

e Familiarity with Simulink Simulation Environment with MATLAB.

e Familiarity with Xilinx ISE and FPGA design flow.

e NEXYS3 (Spartan-6) Board and Digilent USB JTAG download cable

2 Starting System Generator

e To Start Xilinx System Generator, select Start — All Programs — Development — Xilinx —
ISE Design Suite 14.6 — System Generator— Xilinx System Generator 14.6.

e This will start MATLAB and Simulink simulation environment as shown in Figure 1.

e & _@'
Fle Edt View Help File Edt Debug Diswbuted Deskiop Window Help
0= 4 | I & B9 o & of 2| @ | [CPomen FlesiMaTLABRZO0bwork v @
System Generator: 5 pstem Benerator Shortcuts [2] How to Add (2] What's New
4 Workspace ' O # x| Command Window 02 x
e E .S o » () New to MATLAB? Watch this Video, see Demos, or read Getting Started, x
Name vl
o e 3 | xser Cutinei0 nose |
. i SimPowerSystems Bﬂx\ gb ‘:”‘ []‘ Hlin
¥_ph_trace
- e
B simcape i Addressable Shit
w- @ Simulink Contral Design 2.4 Register
W Simulink Design Yerifier
@ Wl Simulink Extras Assatt | Assert
w Estimation
. @l Simulink Response Optimization |:| BitBasher
W Simulink Verification and Validation
Statefl
B stefion Black Box
=l | System Identification Toolox
=l W Target for Freescale MPCSxx
%1 B Target for Infineon C166 Clock Enable Probe: < >
) ¥ Target for T1 C2000 Command History. T
) ¥ Target for T1 C6000 Concat S 08/11/09 1:39 PN
- W Video and Image Processing Blockset N e m -
Las
% T Virtual Relity Toobax Constant [
=7 1 inx Blockset PR
b
2] Basic Elements Convert [
2 Commurication b
[
2] Contral Logic . .
Counter beg-— 10711409 2:40 AN --%
2] Data Types . .
e 11711408 7:48 PH --%
5 beg-— 11711409 8:04 PH --%
B R ego— 12/11/09 3:55 AN --%
femor:
e dyM : onn Sarmple 13/11/09 9:15 PN —-%
ered Memor
5 7o v -- 22/11/09 2:17 PH --%
acls
e e v Expression -- 22/11/09 2:33 PN —-%
< » v
Ready 4 Start] Ready

Figure 1: Simulink and MATLAB

e The Simulink library browser shows a list of all the different Toolboxes installed within MATLAB.
Xilinx System Generator components will appear under three categories:

1. Xilinx Blockset
2. Xilinx Reference Blockset
3. Xilinx XtremeDSP Kit

The category Xilinx Blockset contains all the basic blocks used in various number of applications
and will be used in this tutorial.

e Create a new Simulink model by selecting File - New — Model.

3 Creating a DSP system
In this part of the tutorial we will create a simple DSP system that will be used to evaluate Equation 1:
z=((Bxz)+ (3 xy) (1)
The main operations required to implement this system are:
e Two multiplication operations.
e One addition operation.

e Two storage elements to store the factors (5, 3). In this tutorial we will use a constant block for
these two factors.

For each of these operations a System Generator Block exists. Besides, any System Generator model
requires a System Generator block to perform various hardware operations on the model.

3.1 Building the Hardware Model

For the new model created in Section 2 we will place several block from the System Generator Blockset
category in Simulink library browser:

e Xilinx System Generator Block: The first block to be used in any System Generator model is
the System Generator Block. This block can be found in the following Simulink category: Xilinx
Blockset— Basic Elements— System Generator. Place the System Generator block in the new
model window as shown in Figure 2.

E!sg_tuﬂ
File Edit Wiew Simulation Formak Tools Help
OD=Ed& & o2 » |'|D.D |N0rmal j

20

System
Generator

|Ready 100%: odeds

Figure 2: Creating a new Design

e Input/Output Gateways: are System Generator blocks that are used to convert data received
from Simulink in the floating point format to fixed point format used inside the hardware system
modeled using System Generator. Later, they convert the system output back to floating point.
There are two types of gateways provided by System Generator:

1. Input Gateways: are used at the input of the System Generator system to convert floating
point data info fixed point format. As show in Figure 3 the input gateway properties specify
the details of the fixed point format. Three important properties are:

W) - [E[x) &0 ..
Fle Edt Debug Distrbuted Deskiop Window Hep Gateway In (Xilnx Gateway In) FEX

N ALY T z Gatenay i block, Converts nputs of type Simuik nkeger, doutle
D&+ M| Det % Wi 8 2|0 |[crd =50 point to i ixed point type.

Gateway Out: Getewsy ot block. Convests Xin fired point inputs into ouputs of ype | shorkeuts 2] How to Add (2] What's New
Siruirk integer, double, o fired point

4 Workspace * 0O 2 x || Command] |potts.
aediscaded, = »
depending on haw they are corfigued EEEEe M- Qreves

Name. value o

- Output type:
VB sysgenguivars <11 struct> OBockean © Signed (2scomp) O Unsigned
xISgRoot CWilind10.11DSP

A «1_pb_trace il Humber of bits 16

Badc | Implementation
W sevents | Loeit
& SiPowersystems

. Wi Smscope

W Simulink Control Design

>

Courter
Binary pont |12

W Simulink Design Verfier bt

- W Simulink Extras

w0 W Simulink Parameter Estination

- W Smulnk Response Optmzation

® Quantization:

O Tuncate © Round (unbissed: +/-)
Down Samgle

Overflow:

DSE& &8 2 Owap @ Saturate O Flag as ermor

Sample period |1

W Simulink Verfication and Validation
W Stateflow
- W System entficaton Toobox
- W Target for Freescale MPCSc
W Target for Infinean C166
- B Target For TLC2000
- W Target for T1 C6000
W Video and Image Processing Blockset.
- B Vitual Realty Tookox
= W i Blockset
2] Basic Elements
2] Commurication
2] Control Logic
2] Data Types
2] osp
2] Index
2] Math
] Wemary
2] Shared Memory
2] Tooks

S Vil Dafavencs Borbek

Evpression

GalewayIn Simation

Override with dotbles
Galemay Out

LFSR

Gatanay In

Logical Gatamay Out

Mus Gatemay It

Paralel to Seril

Ready 100% odeds
Regiter PeEe- 22/11/08 2:17 BE -
se- 22/11/09 2333 PM =%

Er=EEE || || EEEE

<

il

freinterpred Reinterpret

a
=24 Ready

Figure 3: Adding IO Gateways

— Output type: Three values can be assigned to this property: Boolean which is a single bit

data representation, two’s complement data representation and unsigned data representa-
tion.

— Number of bits: Number of bits to represent the data. The higher the number of bits, the
higher the resolution of the system.

— Binary point: This is the position of the binary point in the fixed point format.

Select Xilinx Blockset— Basic Elements— Gateway In. Place two input gateways in the
model as shown in Figure 3. Double click on the input gateway to change its properties. The
“Gateway In” properties window will show up. Set the output type to two’s complement, the
number of bits to 16 and the binary point to 12 as shown in Figure 3. You can change the block
name by clicking on it. We will leave the block names unchanged in this tutorial.

2. Output Gateways: are used to transform the data generated from the System Generator in
fixed point format into floating point format required by Simulink. Output gateways automati-
cally detect the fixed point format from the system output and do not require any modification.
Place one output gateway by selecting Xilinx Blockset— Basic Elements— Gateway Out.

e Multipliers: Our model requires two multiplication operation. Xilinx System Generator Blockset
provides several blocks for arithmetic operations. To place a hardware multiplier block select Xilinx
Blockset— Math— Mult. Place two multipliers as shown in Figure 4. Double click on the Mult
block to change its properties. As shown in Figure 4 there are two basic options for output precision
in the basic properties: i) full and ii) user defined. In the full precision option, the multiplier
block uses the input fixed point format to determine the format of the output. In our case the full
precision requires 32 bits with the binary point at bit position 24. In the user defined precision
mode, the designer can specify a different format. In this case the designer needs to specify a
rounding method for excessive data values. In this tutorial we will use full precision option. Also

brary Browse A= . o nlie B

Hardware notes: To use the nternal pipeline stage of the dedicated

D& 4 A | DeR&| & | |multiplier you must select Pipsline for maximum performance,
Mult: Hald\lm._ale rotes: To use the internal p\p:zlme stage of the dedicated multiplier you Basic | yeriareet Implementation
must select Pipeline for maximum performance’.
Precision:

@ Ful O User defined

User Defined Precision
3 Video and Image Processing Blockset (& -2 Expression ”~

L] 2 o 8 E | System Output bype:

= Tl virtual Reality Toolbox
= Tl ilinx Blockset
] Basic Elements

. .
. -
24 Communication D Lol S , e Bnary pont 14 |
)

Generator signed (2's comp) Unsigned

Inverter

Wumber of bits [16 |

2] Control Logic st | GQuantization:
2] Data Types s putt

] bep MCode Truncate Round (unbiased: +/- Inf)

55 ndex Overflaw:

5] Wt Mult atomay 1 p Wrap) Ssturste) Flagas error

;|

2 Memory Y 3L Optianal Port

23] shared Memory Negate

g . 9 u p— [Provide enable port
- | xilinz Reference Blocksst o Reinterpret Latency |3]
- gl wilinx stremeDSP kit @
< | = ® o Ralfinnal L] [o I [=] [Hep] [e]
Ready Ready 100%

Figure 4: Adding Multipliers

in the Implementation Menu the user has the option of optimizing for speed/area and also using
the dedicated Multipliers embedded in an FPGA or just the Look Up Tables (LUTS) instead.

e Constants: The system we are building performs two multiplications between the two inputs (vari-
ables) and two factors. For simplicity we will use constants to represents these two factors. Although
in a typical DSP application we might need to change these factors and we may need to use memory
elements to do so. Constants are usually implemented using hardwired configurations. Place two
constants by selecting Xilinx Blockset— Basic Elements— Constant. Double click on the con-
stant block to display the constant properties and change the constants values to 5 and 3 as shown
in Figure 5. If you use Fixed-point (Signed (2’s comp)) then make sure you have enough bits to
represent your number (Number of bits 16, Binary point 12) would allow you to represent fraction
numbers +7 to -8. Connect the input gateways and the constant to the inputs of each multiplier. To

brary Browse A= . ¢ Consta onstant Blo]

Basic | D43 | Advanced

0= 4 dh | N2y = = A = Type:

Constant: Xl Constant Block O Boolean) Signed (2's comp) O Unsigned (O DSP48 instruction
Constant

Ig‘ Constant value |1 |
-] ideo and Image Processing Blockset & [[t ~ Number of bt [16 |
3 o Acoumulator = System
& W virtual Reality Toolbox 4 (senerator Binary point |12 |

- W] tilin Blockset
2] Basic Elements
2 Communication
2] Control Logic
] Data Types
2] owp 1| Comstant
2] Index
2 Math
2] Memory
2 shared Memory
2 Tooks
w0 W %ilinx Reference Blockset
- T %ilinx #tremeDSP Kit
< ‘
Ready Ready 100% odeds

Addsub DI__> 4 Sample Period

Constant o
p O [Sampled constant
Chiult

Satenayn Malt Sample period |1

3
Gateway Ind A (ab)|

ast| Convert

Multt CK H Cancel][Help H Apply

Counter
Constantd

Divider Generatar 2.0

=R [VE

1 [

3
4

Figure 5: Adding Constants

connect the input gateways to the multipliers input click on the output terminal of the input gateway
and with the mouse button down drag the connection link to one of the multiplier’s input terminals.
Using the same approach connect the constants output to the input of the multipliers as shown in
Figure 5.

e Adder/Subtractor: The final block we need to place in order to complete the system is the

adder /subtractor block. Select Xilinx Blockset— Math— AddSub to place AddSub block. The
AddSub block performs addition and subtraction operations for two operands. The fixed point format
of the output is determined from the inputs format as shown in Figure 6. Connect the outputs of
the two multipliers to the inputs of the Adder. Connect the adder to the Gateway out module.

A= &) AddSub Adder/Subtracto =]
Advanced | Implemertation
0O = dh | DeE& & = 4 Operation;
AddSub: Xiins Adder/Sublractor @) addtion) Subtraction) Addition or subtraction
Optional Parts
Ig‘ [Provide carry-in port
W video and Image Processing Blockset & o N 1o ~ P i it port
w0 T Virtual Reality Toolboc PP Aocumular enarmnr
= 1 Kiro< Blockset E IIIIH i
23] Basic Elements AddSub Eeren 1
onstan
2 Communication o 5
2] Contral Logic [:::)> Chiul (o5
2] Data Types = Gateway In Wult +b
b
50w Consn
5] indes R I
" (ab:
] Math ot Gateway 1 , Sl
& oy = | T T T
#] Shared Memary : Mt e = s
] Tools Counter -
% W Xiinx Reference Blockset Constantt
). N iline RtremeDSP Kit F D Divider Generator 2.0
< | B | === -]
Ready Ready 100% odedS

Figure 6: Adding an Adder/Subtractor

3.2 Estimate Resources

You can estimate the resources used by the design using the Resource Estimator block with multiplier
block implemented in LUTs/Multipliers with latency set to 2 and 3 by following these steps:

1. Double click the System Generator token and select HDL Netlist for Compilation and set the
Part related fields as:

e Compilation: HDL Netlist
e Part: Spartan6 xc6slx16-2csg324

2. Add the Resource Estimator block from Xilinx Tools library (Xilinx BlockSet Tools)

) Resource Estimator (¥ilinx ... E|@|®
Slices
FFs=

BRAMz

I0Es

(1]
(2]
o
LUTs (i
0
Enb. Multz |0

(1]

TBUF=

[JUse area above

Extimate optionz Exztimate &

o) (e) o) (o)

Figure 7: Resource Estimator Block

3. Open the Resource Estimator block (As seen in Figure 7)

4. With Estimate selected from the drop-down box, click the Estimate button.

5. The Estimate Resource tool will have different results based on whether the Multipliers were imple-
mented using dedicated multipliers or the Look Up Tables of the FPGA.

3.3 Preparing the Simulation Environment

After completing the hardware system we will use Simulink environment to verify its functionality. Simulink
offers a very flexible simulation environment which allows building different testing scenarios. For simplicity,
we will build a testing scenario for our system by applying a constant input to the system and display the
result on a single value display.

e Inputs: Simulink provides several blocks that can be used as an input to models generated and
simulated using Simulink environment. These blocks can be found under the following category:
Simulink— Sources. From this category select Constant and place two constants in the model
(the values should be 3.1 and 4.5 respectively). Connect these constants to the two input gateways
of the system. We chose two arbitrarily values for the two constants as shown in Figure 8.

If =
) AECETTE CEx
Fie Edt View Smulston Format Tools Help
D& da| DEES = » o= fion [Wemal -
Constant: Dutpul the constart specified by the Constant value' parameler. If Constant
walue'is a vectar and Interpret vectar parameters as 1-0 s on, treat the constant value as
& 1D anray, Dtherwise, output 3 matrs with the same dimensions 2s the constant value
2] Logic and Bit Operations ~ . |Z|
o Band-Linited White System
23] Lookup Tables Nove Benarator
2 Math Operations
2| Model verification Chirp Signal — y
onstan
23] Model-wids Utiitiss ny | (b
23] Ports & Subsystems @ Clack —|_, F
%] Signal Attributes * Gateway In Mult a+ [owm}
%] signal Rauting Constart v S stemay Out
] Sinks . AddSub
] Sources Gatemay In1 2 (ak)|
Counter Free-Runrin 5
] User-Defined Functions M 9
+ 2] Additional Math & Discrete m Wultt
.] Aerospace Blockset Counter Limited
-] Communications Blockset - Constant
W8] control system Toalbox 2 Digital Clack
< > v
Ready Ready 100% deds

Figure 8: Adding a Simulink Constant to apply an Input to the System

e Output: Simulink provides several blocks to display the simulation results of the model under inves-
tigation. These blocks can be found in the category: Simulink— Sinks. From this category select
Display which is used to display the value of a single output. Connect this block to the output of
the system as shown in Figure 9.

Figure 9 shows the complete model ready for simulation. Save your model to the file sg_tut_1.mdl by
selecting File—Save in the model window.

4 Simulating a DSP system using System Generator and Simulink

The simulation process can be started by clicking the Start Simulation button in the toolbar of the
model window. The execution of the model can be performed using several methods. Simulink can be used
to perform real time simulations (functional simulation). In our case we need to verify the functionality of
the model. For that reason no changes are required in the execution model. After starting the simulation
process, System Generator starts to process each block in the model and generate a simulation model
according to the specific configurations of each block as shown in Figure 10.

= 1B s 1un

Fle Edt Yiew Smulaton Format Tooks Help

D& | DSEE » w00 [Nomal VRS

Display: Numeric display of input values.

= W Simulink -~ - -
2] Commonly Used Blocks El =Y
& Continuous
Outl
—
Seop G atemay Out

23] Parts & Subsyster

2] signal Attributes

2] Signal Routing Tominator o
2] sinks

o snees L ToFie

ady Ready 100% odeds

Figure 9: Display the Results in Simulink

E_@

O =EE =) » 10.0 Hoarmal - &
L 1

Sysgen status

® Initializing:
L] sg_tuklfMulk1
o)
L1 | E— a
= Gateway In it

b

Gatewmay Out z

AddSub

=

& ateway In

Constantt

A

Ready 100%: odeds

Figure 10: Simulating the DSP System in System Generator

This step is performed only once as long as the configurations for each block does not change. Using
the values of 3.1 and 4.5 as inputs for both multipliers, the expected output of the system should be 29.
This can be verified by inspecting the output of the model as can be seen in Figure 11. This verifies the
functionality of the DSP model generated by using Xilinx System Generator and Simulink.

5 Preparing System Generator for Hardware/Software Co-Simulation

In the previous section we verified the functionality of our simple DSP system using Simulink simulation
models for different hardware component. Usually several issues may arise when the model is transformed
into hardware. System Generator provides several methods to transform the models built using Simulink
into hardware. One of these methods is called Hardware/Software Co-simulation. Hardware/Software Co-
simulation enables building a hardware version of the model and using the flexible simulation environment
of Simulink we can perform several tests to verify the functionality of the system in hardware. HW/SW Co-
simulation supports FPGAs from Xilinx on boards that support JTAG or Ethernet connectivity. Several
boards are predefined on System Generator for Co-simulation including the NEXYS3 (Spartan-6) board

=l sg tutl ™

File Edit Wiew Simulation Format Tools Help

O =eEd&E & 2 » |1U.EI |Normal ~| | 3 b

2

Systemn
Generator

Constant

Bl e L

% S ateway In Rult

=7 (ab)

a

P Out [=5

b G atemay Out z
=l AddSub

= atb)
b

&atewmay In

Constantt

hdult

Ready 100%. odeds

Figure 11: Verifying the Simulation Results

we are using in this tutorial.

5.1 Board Requirements for Co-Simulation

For a specific FPGA board to be used for Co-simulation, the following is required:
e A Xilinx FPGA which has enough resources for JTAG/Ethernet communication.
e Support for either JTAG/Ethernet communication.
e A free running clock.

e Xilinx Parallel/USB Programming cable for JTAG configuration/communication.

5.2 Generating Co-Simulation Module

Double click on the System Generator block. A dialog box will show up as shown in Figure 12. This
dialog box allows you to select the type of the hardware generated using system generator. If the board is
supported it will appear and you should follow the steps below. If the board is not supported then refer
to Appendix A which describes in more detail how to configure System Generator to add your board.

e In the compilation list select Hardware Co-Simulation—NEXYS3_Board_Plugin_.JTAG. A
new dialog box will show up highlighting the NEXYS3.

e Click Generate to build the hardware system. This step will generate a bit-stream that will later
be used to configure the FPGA. ISE flow is used by System Generator to build this bit-stream. The
progress of the process is displayed in the Compilation Statue window as shown in Figure 13.

) System Generator: sg_tut1

— Compilation Options

Compilation :

HL Metist Settings...

par NGC Pletlist

Ol = n é ‘% Bitstrearn :I

ED¥ Export Tool

Targ Hardware Co-Simulation k ML402]
ﬁ Timing Analysis MLS06 3
L 4
Synithesis tool :
& Sparkan-34 DSP 18004 Starter Platform]
XET
Syotem | 4 Spartan-34 DSP 34004 Development Platform b
Generator [] Create testhench stremeDaP Development Kit »

5 Mew Compilation Target...
— Clocking Options ——

Canstant

FPGA clock period (ns) : Clack pin location ;
.—-3.1 _
| 100 || |

& ateway In

X

Multirste implementation : DCM input clock period (ns)

|Clock Enahles w | | |

% ateway In1

[Prowide clock enable clear pin

kS
Constantt _— .
N Simulink system period (sec) |1 |
Block icon display: |Defaurt V|
[Generate l ’ [0]34] ’ Apply] ’ Cancel] [Help]
Ready 100% oded5

Figure 12: Configure System Generator for HW/SW Co-Simulation - Compiling a new Board

e When the compilation is complete, a new library is created including one block as shown in Fig-
ure 14. The library name should be “sg_tut_1_hwcosim_lib” and the block name should be
“sg_tut_1_hwcosim”. The block has two inputs and one output as required by the DSP system.
This block includes all the functionality required for the system to be executed on the FPGA.

e Now we are ready to perform HW/SW Co-Simulation for our DSP system.

6 Hardware/Software Co-Simulation

In the previous section two steps were performed:
e We configured System Generator for HW/SW Co-Simulation using NEXYS3 (Spartan-6) Board

e We generated a library with a new block that encapsulate the hardware implementation of the DSP
system. This block is linked to a bit-stream that will be downloaded into the FPGA during Co-

Simulation.

In this section we will modify the DSP model to use the new Co-Simulation block and replace the
simulation models used before.

10

) Com pilation status

Running netlister

Show Detailz

Figure 13: Building the Design Netlist

File Edt ¥iew Simulation Format Tools Help

_ [2l[x] Flibrary: sg_tut1_hweosim_ib

File Edt Yiew Format Help
DEES $mE =2t o0 b =i [om - Fsbe|d @S o8 w000 - RED
Gateway In

v JTAG
Cosim Gateway Out

- Gateway In1

System
Generator sa_tutl
hweazim
5
Canstant)
:
a
1 Gateway Out F
L 9 Addsub
Gateway In ¥ 3 (&)
Multt
2
- pep— Ready 100% Unocked A
0 Compilation status D
-~
: | Compiation firished successhull.
Ready 1100% T=0.00 lodets5 A

Figure 14: Netlist building Complete

11

e Make a copy of the model generated in Section 3.1 by Selecting File—Save as and use the file name

sg_tutl_co.

e In the model sg_tutl_co replace all the hardware components with the “sg_tut_1_hwcosim” from
the library “sg_tut_1_hwcosim_lib” as shown in Figure 15.

hEd& & L) 3 100 [Nomal

N EERE|D 2 S ¥

w @ E

sssss
nnnnnnn

Ready 100% T=0.00

deds

eeeeeeeee

o
Cable speed

100%

Unlacked

[][

ancel | [vep | [ey

Figure 15: Modifying the Design for Co-Simulation

e Connect thr FPGA ‘USB Prog’ cable and "UART’ Cable to USB Ports and power it on. Wait for all

Microsoft Windows drivers to be loaded

e Double click on the “sg_tut_1_hwcosim” block. The block properties window will appear as shown
in Figure 15. For the download cable select Digilent USB JTAG Cable as the NEXYS3 (Spartan-

6) boards uses Digilent USB JTAG download cable. Click OK.

e Now the design is ready for Co-Simulation.

Click the Start Simulation button in the model

window toolbar to start the Co-Simulation. The System Generator will first download the bitstream

associated with the block “sg_tut_-1_hwcosim” as shown in Figure 16.

‘g tutl_co* - [o]x]

=2 3 00 [Nomal | BB S

DeEE B

EEEEEE

JTAG Hardware Co-simulation

e
’—D Gateway Inl

aTAG

¥\ Intializing JTAG Hardware Co-simulation
Status: Configuring FPGA device over

Cosim Gatenay O

sq_tut1
hisasim

100% odeds

| —

z

Figure 16: Starting HW/SW Co-Simulation

12

e When the download completes, System Generators reads the inputs from Simulink simulation envi-
ronment and send them to the design on the board using the JTAG connection. System Generator
then reads the output back from JTAG and sends it to Simulink for displayed.

ﬁ sg_tutl_co™ E‘E‘E‘

File Edit View Simulstion Format Tools Help

D& & B o 3 00 [Momal VBB S

System
Generator

Cocim Gateway Out|s =

Gateway In1 -
iy z

B
sq_tut!
hwcosim
v

Ready 100% adedS

Figure 17: Verifying the Results for HW/SW Co-Simulation

e After the simulation is completed the results should be displayed as shown in Figure 17. We can

verify the results by comparing the simulation output to the expected output (the expected output
is 29) as shown in Figure 17.

13

7 Generating the HDL Code

One of the advantages of Xilinx System Generator is the capability of generating HDL code from your
designs. Make sure you use the original model sg_tutl developed and not the one used for
co-simulation. By following the steps below you should be able to generate the VHDL code and analyze
the implemented design using reports generated in ISE Foundation.

1. Make sure the latency of the multiplier block is set to 2 and under the “Implementation tab” check
that the embedded multiplier usage is checked, and the “Use behavioral HDL” option is checked.

2. Doubel click the System Generator icon (See Figure 18) and specify the following settings:

Compilation: HDL Netlist

Part: Spartan6 xc6slx16-2csg324
Synthesis Tool: XST

Hardware Description Language: VHDL

Target Directory: ./ise
Create Testbench: unchecked
FPGA System Clock Period (ns): 10

-} System Generator: mac

& & ¢
2 & @

Compilation Clocking General I

Compilation :
|[=]|HDL rietiist

Part :

.

|Z]]spantans xcesixs-20sg324

Synthesis tool : Hardware description language :
|esT ~| |wHDoL ~

Target directory :

fise Browvese...

[creste interface document

[] cresate testbench

Generale] [=14] [Apply] [Cancel] [Help

Figure 18: System Generator Parameters for Generating VHDL Code

3. Click Generate to generate the HDL code and ISE Project files.

4. Select Start — All Programs — Development — Xilinx — ISE Design Suite 14.6 — ISE
Design Tools — Project Navigator

5. Open the generated project by selecting File — Open Project and select sg_tut_1.xise in the ise
project directory. The file can be found in your current directory you setup in Matlab.

6. Highlight the top-level file, called sg_tut_1.vhd, and Double click on Implement Design.

14

8 Summary

In this tutorial we demonstrated the use of Xilinx System Generator to perform the following tasks:

e Build a simple DSP system using a basic DSP blocks from Xilinx System Generator Blockset within
Simulink simulation environment.

e Simulate the DSP system using System Generator and Simulink.
e Configure System Generator for Co-Simulation using NEXYS3 (Spartan-6) Board.
e Perform Hardware/Software Co-Simulation for the proposed DSP system.

By the end of this tutorial you should be familiar with Xilinx System Generator design flow.

15

9 Appendix A — Setup A New Board for Co-Simulation

There are two methods that can be followed to add your board to the System Generator.

9.1 Copying a Directory available from Xilinx

Users can obtain the “Nexys3_board_plugin.zip” from Xilinx. Unzip this file in temp. The plugin files are
required to enable JTAG Co-simulation targeting the NEXYS3 board. Unzip Nexys3_board_plugin.zip file

m

<xilinx14.6>\ISE_DS\ISE\sysgen\plugins\compilation\Hardware Co-Simulation directory

9.2 Manual Addition of a Board

By following the steps below you will be able to setup NEXYS3 (Spartan-6) Board for HW/SW Co-
Simulation if it is not defined:

e Double click on the System Generator block. A dialog box will show up as shown in Figure 19. This
dialog box allows you to select the type of the hardware generated using system generator.

e In the compilation list select Hardware Co-Simulation—New Compilation Target. A new
dialog box will show up allowing you to configure a new board (System Generator Board Description
Builder). Note that there are several boards predefined in the list.

) System Generator: sg_tut1

— Compilstion Cption:
Compilation :

l‘g._m_ DL Netlist

partl MGC Metlist

|
Oz u 5 x) Bitstream

ECK Export Toal

-Simulation G- 3
Jnel Timing Analysis MLS06 »
v
Synthesis tool
- Spartan-34 DSP 18004 Starter PlatForm 3
HET
System b Spartan-34 D5SP 34004 Developrent Platform »
Generator |:| Create testbench wkremeDsSP Development Kik »
Iz Mew Compilation Target. ..
— Clocking Options ———
Fenstant FPGA clock period : Clock pin location :
clock period (ns) : ock pin location :
m Gateway In |1 oo | ‘ | E
Miuittir ste implementation DCM input clock period (ns)
|C\ock Enahles v| ‘ |

@ ateway In1

[[] Provide clock enable clear pin

3

Constantt

’ Generate] ’ Ok] ’ Apply] [Cancel] i Help]
Ready 100% oded5

Figure 19: Configure System Generator for HW/SW Co-Simulation - Compiling a new Board

16

52 System Generator Board Description Builder,

Target Board Information
Board Mame | Spartan-3E Starter Board
Syskem Clock,
Frequency (MHz) |50 Pin Location (29
JTAG Cptions
Boundary Scan Position |1 IR Lengths |6, 3, 8 Detect

Targetable Devices

Farnily Part Speed Package add =
spartande |xu:355EIEIe |-4 |Fg32EI

Delete

Mon-Memory-Mapped Ports

Paort: Marne Direction Width
[Help] [Load. ..] [Save Zip... | [Install] [Exit]

Figure 20: Configure System Generator for HW/SW Co-Simulation - Setup the NEXYS3 Board

e The System Generator Board Description Builder dialog box is used to configure a new board
to be used for Co-Simulation. For each board the following information is required to define the
board for Co-Simulation using JTAG (See Figure 20):

— Board Name: The name of the board that will appear in the System Generator Co-Simulation
list.
— Clock Pin Location: The FPGA pin number that is connected to the free running clock.
— Clock Frequency: The frequency of the free running clock.
— The FPGA part number: The FPGA part number.
— The FPGA position in the JTAG chain: The position of the FPGA in the JTAG chain.
Note: If this is the first time to use the System Generator you need to build the parts

list and store them into MATLAB. Execute the command xlupdatepartinfo in the MAT-
LAB command window as shown in Figure 21.

For the NEXYS 3 Board use the following values:

— Board Name: NEXYS3 (Spartan-6) Board
— Clock Pin Location: V10

17

J) MATLAB 7.5.0 {R2007b)
File Edit Debug Distributed Deskbop Window Help

I & BB o & ef 2| @ | cProgram FiesiMATLABIRZI0 biwark V| @

Shortcuts [#] How ko Add [#] What's bew

4 Workspace '+ O » x ommand Windo O
3| ﬂ LR @ @ - D ONew ko MATLAE? Wakch this Videa, see Demos, or read Getting Started. x
Hame Value »» xlupdatepartinta
< | »
Command History w02 x
. om=a b Lo
e = b *a
5-- 10/11/09 Z:40 LM --%
F-%—— 11/11/03 7:48 PH --%
; ¥ lupdatepartinfo
3-- 11/11/09 S:04 PN --%
—- 12/11/09 3:55 AM --%
fey—— 13/11/09 9:15 PH ——%
f3o- 22/11/08 2:17 PH --%
é“%—— z2/11/09 2:18 PM --%
e lear ;

4\ Start

Figure 21: Initialize Parts List

— Clock Frequency: 100 MHz
— The FPGA part number:
Family: spartan6
* Part: xc6sLX16
x Speed: -3
*x Package: csg324
— The FPGA position in the JTAG chain: 1

*

Click Install to build the required files to configure the board for System Generator.

Note: You can save the configurations file into a compressed archive so that you can use
it later to configure the board in case System Generator was reinstalled. Click “Save
Zip” to create the compressed file.

After installing the new board configuration, the board name “NEXYS 3 Board” should appear
in the Co-Simulation list in the System Generator properties as shown in Figure 22. Select the board
from the list.

Note: Board configuration for Co-Simulation is required only once for each new board.
The board name will always appear in Co-Simulation list every time you use System
Generator.

18

System Generator: sg_tut1

File Edit i Sirnul
co T compistion Option
D | @ E é | Compilation : |
HOL Metlisk Settings...
NGC Metlist
}' Bitstreann
& EDK Export Tool
System ML40Z ¥
Generator MLS0E »
) MicroBlaze Mulkimedia Board
Syrthesis tool :
Spartan-34 DSP 18004 Starter Platform »
=T Spartan-34 DSP 34004 Development Platform b
[] Creste testhench
N wkremeDSP Development Kit »
I - Clocking Options Mew Compilation Target...
n FPGA clock period (ns) :
Gate
100 | | |
Multirate: implementation : DEM input clock period (ns)
I: |CIUck Enables v‘ ‘1) |
C
Al [Prawide clack enable clear pin
Owerride with doubles : According to Block Settings
[Generate] [Ok] [Apply] [Cancel I [Help I
Ready

Figure 22: Configure System Generator for HW/SW Co-Simulation - Selecting the new Board

19

