
System Level Tools for DSP in FPGAs

James Hwang, Brent Milne, Nabeel Shirazi, and Jeffrey D. Stroomer

Xilinx Inc, 2100 Logic Drive, San Jose, CA 95124, USA

Abstract. Visual data flow environments are ideally suited for model-
ing digital signal processing (DSP) systems, as many DSP algorithms are
most naturally specified by signal flow graphs. Although several academic
and commercial frameworks provide a high level of abstraction for model-
ing DSP systems, they have drawbacks as design tools for FPGAs. They
do not provide efficient implementations, and their system behavior only
approximates the hardware implementation. In this paper, we describe a
software system that employs a visual data flow environment for system
modeling and algorithm exploration. In this environment, the bit and
cycle behavior of the FPGA implementation are manifest. By observing
circuit behavior in the system environment, one obtains significant speed
improvement over hardware simulation, while gaining substantial flexi-
bility afforded by functional abstraction. In addition, the software auto-
matically generates a faithful hardware implementation from the system
model. Specific issues addressed include the mapping of system parame-
ters into implementation (e.g., sample rates, enables), and implications
of system modeling for testing (e.g., testbench generation).

1 Introduction

In recent years, field-programmable gate arrays (FPGAs) have become key com-
ponents in implementing high performance digital signal processing (DSP) sys-
tems, especially in the areas of digital communications, networking, video, and
imaging[1]. The logic fabric of today’s FPGAs consists not only of look-up ta-
bles, registers, multiplexers, distributed and block memory, but also dedicated
circuitry for fast adders, multipliers, and I/O processing (e.g., giga-bit I/O)[3].
The memory bandwidth of a modern FPGA far exceeds that of a microprocessor
or DSP processor running at clock rates two to ten times that of the FPGA.
Coupled with a capability for implementing highly parallel arithmetic architec-
tures, this makes the FPGA ideally suited for creating high-performance custom
data path processors for tasks such as digital filtering, fast Fourier transforms,
and error correcting codes.

All major telecommunication providers have out of necessity adopted FP-
GAs for high-performance DSP. A third-generation (3G) wireless base station
typically contains FPGAs and ASICs in addition to microprocessors and digital
signal processors (DSPs). The processors and DSPs, even when running at GHz
clock rates, are increasingly used for relatively low MIPs packet level processing,
with the chip and symbol rate processing being implemented in the FPGAs and

G. Brebner and R. Woods (Eds.): FPL2001, LNCS 2147, pp. 534–543, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

System Level Tools for DSP in FPGAs 535

ASICs [2]. The fluidity of emerging standards often makes FPGAs, which can
be reprogrammed in the field, better suited than ASICs.

Despite these characteristics, broad acceptance of FPGAs in the DSP com-
munity has been hampered by several factors. First, there is a general lack of
familiarity with hardware design and especially, FPGAs. DSP engineers conver-
sant with programming in C or assembly language are often unfamiliar with
digital design using hardware description languages (HDLs) such as VHDL or
Verilog. Furthermore, although VHDL provides many high level abstractions and
language constructs for simulation, its synthesizable subset is far too restrictive
for system design.

Fundamentally, there is a lack of high-level tools and flows for DSP design in
FPGAs. In this paper we describe a new software tool called System Generator
for modeling and designing DSP systems in a visual data flow environment. In
addition to providing a great deal of functional abstraction, the tool automat-
ically maps the system model to a faithful hardware implementation. What is
most significant is that the software provides these services without substan-
tially compromising the quality of either the functional representation or the
performance of the hardware implementation.

2 System Level Modeling

Two major trends have emerged in tools and techniques for system level de-
sign: the use of high-level languages and visual data flow. Language based ap-
proaches [4,5] have proven effective for system modeling, specification, and al-
gorithm verification, but remain unsuitable for implementation in any target
other than microprocessors. For targeting state-of-the-art DSPs, today’s compil-
ers often do not provide sufficiently good code for high-performance applications.
Consequently, DSP programmers frequently resort to writing either in assembly
or low level, highly stylized C [6].

Visual data flow environments[7,8,9,10] are ideally suited for modeling DSP
systems, as many algorithms are most naturally specified by signal flow graphs.
Data flow tools are similar to traditional schematic capture tools in that they
provide libraries of functional blocks that can be composed graphically to model
a system. In contrast to schematic tools, however, the library blocks and the
simulation environment in a data flow tool provide a high level of functional
abstraction, with polymorphic data types and operators to model arithmetic on
integer, fixed-point, and floating point data. Time evolution is specified by sam-
ple rates rather than by wiring explicit clocks. Although previous environments
support system modeling and in some cases derived implementations, their costs
of abstraction include inefficient FPGA implementations, and inexact modeling
of the hardware in the system simulation.

2.1 Related Work

The Ptolemy Project at U.C. Berkeley has developed a powerful visual environ-
ment for system modeling, with an emphasis on embedded system design [8].

536 James Hwang et al.

It is an academic framework that does not support FPGA design. The Signal
Processing Worksystem (SPW) from Cadence Design Systems is widely used
for ASIC design in digital communications[7]. For the most part, SPW requires
the user to provide an HDL implementation for the FPGA portion of a system.
Although SPW provides libraries with high level functional abstractions (timed
and untimed), it does not readily support bit and cycle accurate modeling of
user and third-party intellectual property (IP) blocks except through HDL co-
simulation. SPW is a powerful system, but its cost is many times that of a full
suite of commercial FPGA implementation tools.

Another commercial tool of particular interest is Simulink, which runs within
MATLAB, a popular mathematical modeling environment from The MathWorks,
Inc. Simulink supports simulation of continuous-time and space as well as discrete-
time and space dynamical systems. The latter makes it a suitable platform to
model the evolution of hardware over time. Coupled with numerous libraries for
modeling DSP and communications systems, as well as MATLAB’s capabilities
for data analysis and visualization, Simulink is an excellent platform upon which
a system design tool for FPGAs can be built.

2.2 System Generator

System Generator is a new system level tool built on top of Simulink. It facilitates
DSP design for FPGAs. Simulink provides a convenient high level modeling
environment for DSP systems, and consequently is widely used for algorithm
development and verification. System Generator maintains an abstraction level
very much in keeping with the traditional Simulink blocksets, but at the same
time automatically translates designs into hardware implementations that are
faithful, synthesizable, and efficient.

The implementation is faithful in that the system model and hardware im-
plementation are bit-identical and cycle-identical at sample times defined in
Simulink. The implementation is made efficient through the use of Intellectual
Property (IP) cores that provide a range of functionality from arithmetic op-
erations to complex DSP algorithms. These cores have been carefully designed
to run at high speed and be area efficient. In System Generator, the capabili-
ties of IP cores are transparently extended to fit gracefully into a system level
framework. For example, although most underlying IP cores operate on unsigned
integers, System Generator allows signed fixed point numbers to be used as well,
including saturation arithmetic and rounding. User-defined IP blocks can also
be incorporated into a System Generator model as black boxes.

3 System Level Design with System Generator

The creation of a DSP design begins with a mathematical description of the op-
erations needed and concludes with a hardware realization of the algorithm. The
hardware implementation is rarely faithful to the original functional description;

System Level Tools for DSP in FPGAs 537

instead it is “faithful enough”. The challenge is to make the hardware area and
speed efficient while still producing acceptable results.

In a typical design flow, also supported by System Generator, the designer
is faced with the following steps:

1. Describe the algorithm in mathematical terms;
2. Realize the algorithm in the design environment using double precision;
3. Trim double precision arithmetic down to fixed point;
4. Translate the design into efficient hardware.

Step 4 is time consuming and error prone because it can be difficult to guaran-
tee the hardware implements the design faithfully. System Generator eliminates
this concern by automatically generating a faithful hardware implementation.

Step 3 is error prone because an efficient hardware implementation uses just
enough fixed point precision to give correct results. System Generator does not
automate this step, which typically involves subtle trade off analysis, but it does
provide tools to make the process tractable. The reader might wonder why it is
not possible to eliminate Step 3 and simply use floating point operations in hard-
ware. The answer is that most operations have a sufficiently small dynamic range
that a fixed point representation is acceptable, and the hardware realization of
fixed point is considerably smaller and faster.

In the remainder of this section, we describe the capabilities of System Gen-
erator that simply the design process and contrast these capabilities with those
of other tools.

3.1 Arithmetic Data Types

System Generator provides the three arithmetic data types that are of greatest
use in DSP: double precision floating point, and signed and unsigned fixed point
numbers. It does not provide mechanisms to convert floating point algorithms
into hardware, but it does support them for simulation and modeling.

The set of arbitrary precision, fixed-point numbers has nice mathematical
properties, with several advantages over familiar floating point representations.
Operations on floating point numbers entail implicit rounding on the result, and
consequently, desirable algebraic characteristics such as associativity and dis-
tributivity are lost. Both are retained for arbitrary precision, fixed-point num-
bers.

System Generator allows the quantization of the design to be addressed as
an issue separate from the implementation of the mathematical algorithm. The
transition from double precision to fixed point can be done selectively. In practice
this means the designer gets the design working using double precision, then
converts to fixed point incrementally. At all times, these three representations
can be freely intermingled without any changes to the signal flow graph. This
mixing is possible because library building blocks change their internal behavior
based on the types of their inputs.

538 James Hwang et al.

There is another benefit from this scheme in which quantization events are
broken out as separate design parameters. At every point of the design, the
designer can specify how both overflow and rounding are to be addressed. For
overflow, the designer can choose whether saturation should be applied and
do so in consideration of the hardware cost versus the benefit to the system
design. Saturation is a more faithful reflection of the underlying mathematics,
but more expensive in hardware; wrapping is inexpensive but less faithful. It is
also possible to trap overflow events in the system level simulation. This is useful
when debugging a subsystem that should never overflow.

Likewise, when quantizing at the least significant bit, the designer can choose
whether the value should be truncated (with no hardware cost) or rounded under
some particular rule (possibly improving the system design but with added cost
in hardware).

In System Generator, many operators support “full precision” outputs, which
means that the output precision is always sufficient to carry out the operation
without loss of information. Combined with the data type propagation rules
supported in Simulink, this can reduce the clerical burden in algorithm design.

The designer specifies the translation to fixed precision at key points in the
model, namely, at gateways from non-System Generator blocks and in feedback
loops. (Clearly, any operator whose output width exceeds that of its input cannot
feed back on itself with full precision.) System Generator then propagates signal
types and precisions as appropriate. The automatically chosen type is the least
expensive that preserves full precision. Translations from signed to unsigned and
vice versa are automatic as well .

3.2 Hardware Handshaking

In Simulink, time evolution is defined by sample rates for each block in the sys-
tem. Sample rates propogate along signals and through blocks automatically,
so in most cases it is not necessary for the designer to assign explicit rates to
blocks. This is extremely flexible, but has implications for modeling hardware.
A bit and cycle true simulation must provide mechanisms for defining and con-
trolling clocked behavior in the system model. System Generator attempts to
provide control mechanisms that do not compromise the abstract view afforded
by Simulink.

In one such mechanism, every signal carries an implicit boolean “valid bit”
that can be used to achieve hardware handshaking between blocks. For example,
upon startup a pipeline may define its output “invalid” until it has flushed its
pipe. By inspecting the valid bits of its inputs, a block can determine how to
process its input data.

3.3 Multirate Systems

Multirate systems can be implemented in System Generator by using sample rate
conversion blocks for up-sampling and down-sampling. The necessary control
logic is automatically generated when the design is netlisted. Before netlisting,

System Level Tools for DSP in FPGAs 539

the sample rates in the system are normalized to integer values; in hardware, the
system clock period corresponds to the greatest commond divisor of the integer
sample periods. Clock enables are used to activate the hardware blocks at the
appropriate moment in time relative to the system clock.

Consider for example, the multirate system model shown in Fig. 1. This sys-
tem consists of I/O registers, an up-sampler, an anti-aliasing filter, and a down-
sampler. The input signal is up-sampled by a factor of two, and subsequently
down-sampled by a factor of three, giving an overall sample rate conversion by
a factor of 2

3 . The ST blocks in the system model extract sample periods from
Simulink signals. In the example, the input sample period is one. In the gen-
erated hardware implementation, as shown in the same figure, each element is
driven by the system clock, with its respective clock enable driven according to
its sample period in the original system model.

x

CE2

D Q

CE

Din Dout

CE3

D Q

CE2 CE3Sample Rate
Control Logic

System CLK
System CE

CE2
CLK
CE

CE3

y

Hardware Implementation

InReg LowPassFIR OutReg

System Model

Fig. 1 Sample rate conversion by a factor of 2
3 .

3.4 Bit-True and Cycle-True Modeling

System Generator produces a hardware implementation that is bit and cycle
true to the system level simulation. We define the term “bit and cycle true” at
the boundaries of the design. The boundaries of a design in System Generator
are specified by Gateway In and Gateway Out blocks. These form interfaces
between data representations within System Generator and data types standard
to the Simulink environment. When hardware is generated, Gateway In blocks
become input ports and Gateway Out blocks become output ports.

In the Simulink simulation, gateway blocks have data samples flowing in
or out at regular sample periods. The values flowing in provide the stimuli,
and those flowing out represent the response. In the generated hardware, if an
identical stimulus sequence is presented at the input ports (at clock events cor-
responding to the input sample periods), then identical output sequences will

540 James Hwang et al.

be observed (at clock events corresponding to Simulink output events). The val-
ues presented to the hardware input ports and produced by the output ports
are bit vectors interpreted as representing the fixed point values of the Simulink
simulation. This correspondence between Simulink and hardware results is guar-
anteed to hold regardless of the particular input stimulus to the design or the
positioning or number of Gateway Out blocks.

3.5 Automatic Testbench Generation

For a black box instantiation, the designer must provide both a Simulink model
and an implementation. System Generator cannot automatically provide the
verification that the two representations of the black box match. To assist the
designer in verifying that the system model simulated in Simulink mirrors the
generated hardware circuit, a VHDL testbench is automatically created during
HDL code generation.

Simulink Results ModelSim Results

Fig. 2 Simulation results from Simulink and ModelSim VHDL simulator.

Testbench input stimuli are recorded by Gateway In blocks during Simulink
simulation. These blocks quantize double precision input data into a fixed point
representation. The fixed point values are saved to a file and then used as input
stimuli during VHDL simulation.

During HDL code generation, each Gateway In block is translated to a
VHDL component which reads the input stimuli. Gateway Out blocks are trans-
lated to components that compare the VHDL results to the expected results.
The comparisons are performed at the block sample rates. Only values which
are tagged as valid by the valid bit are compared. The fixed point data type
in Simulink is represented using a std logic vector in VHDL. The position

System Level Tools for DSP in FPGAs 541

of the binary point, size of the container, and treatment of sign are supplied to
the VHDL as generic parameters. To ease the interpretation of fixed point types
in VHDL, the gateway blocks convert the std logic vector into a VHDL real
number by using the generic parameter information. A sequence of real numbers
can be viewed as an analog waveform in an HDL simulator such as ModelSim
from Model Technology Inc. This enables the user to view data in the same
manner as a Simulink Scope. An example of this shown in Fig. 2.

3.6 Simulation Results

The automatically generated testbench was used to compare simulation times
in Simulink to a behavioral VHDL simulation as well as a simulation of a back-
annotated netlist. Table 1 shows the simulation results for a 1024-point FFT,
a fully serial implementation of a distributed arithmetic FIR filter, and a fully
parallel implementation of the same filter. Simulations were performed using
ModelSim SE 5.5a on a 650 MHz Pentium III with 500 MBytes of RAM.

It can be seen that system level modeling not only increases design flexibility,
it also provides much faster simulation than traditional HDL simulators. At the
same time, the bit and cycle true simulation in Simulink gives an accurate idea
of detailed system behavior.

Table 1 Simulation Times for DSP Designs.

Simulation Phase 1024 point FFT 256 tap Parallel FIR 256 tap Serial FIR
(15 transforms) (2K samples) (2K samples)

Simulink 30 sec. 16 sec. 16 sec.
Behavioral VHDL 2.5 min. 2 min. 2 min.
Back-annotated VHDL 36 min. 21 min. 24 min.

w/o Timing Info.
Back-annotated VHDL 59 min. 40 min. 46 min.

w/ Timing Info.

4 Design Example

To demonstrate some of the significant features discussed in the previous sec-
tion, we revisit the system model for the audio application depicted in Fig. 1.
This system converts a single channel audio signal from a digital audio tape
format, sampled at 48kHz, to a format for digital audio broadcast, sampled at
32 kHz [11]. This is accomplished by up-sampling by a factor of two and down-
sampling by a factor of three. The Nyquist sampling rate of the digital output
is 16kHz, and the up-sampler has an output rate of 96kHz, so we require an
anti-aliasing filter with a stop band having a normalized frequency of π/3.

542 James Hwang et al.

Fig. 3 Using FDATool and System Generator FIR parameterization GUI used
to design a 256-tap anti-aliasing FIR filter. Coefficient vector h in the parame-
terization GUI is a vector exported from FDATool.

Designing a 256-tap FIR filter with a -100dB response over the stop band is
straightforward using FDATool, a tool which runs in MATLAB (see Fig. 3). The
filter coefficients were exported to the MATLAB workspace as the variable h.
The System Generator GUI for the filter block, shown in Fig. 3, allows the user
to choose from several implementation options.

System Generator detects that the filter coefficients are symmetric, and ex-
ploits this in the elaboration of the IP core to reduce the area required. The
IP core employs distributed arithmetic [12] to compute the dot product. The
number of input bits at a time used to index into the distributed memory is a
user-selectable design parameter. For example, using a 16-bit input width yields
a fully parallel (PDA) implementation, whereas using a single bit yields the most
compact serial distributed arithmetic (SDA) implementation. In hardware, the
IP core is over-clocked accordingly to ensure the system sample rate is seen at
the filter output.

The SDA FIR filter can run well in excess of 102MHz in a Xilinx XCV50E-8
device, which for 16-bit data implies a sample rate of 102/17 = 6MHz. Conse-
quently, a single filter can in principle service � 6×106

9.6×104 � = 62 channels.

System Level Tools for DSP in FPGAs 543

5 Conclusion

Modern FPGAs are powerful DSP devices, and with the availability of sys-
tem level tools like System Generator, are poised to gain broad acceptance in
the DSP community. System Generator supports bit and cycle true modeling,
and automatically generates an FPGA implementation from a system model.
In addition, it provides access to auxiliary tools for filter design, data analysis,
visualization, and testbench creation. System Generator targets an increasingly
broad IP library of DSP functions to take advantage of dedicated features in the
FPGA to achieve high system performance. The combination of tools and IP
libraries helps the system designer manage design complexity, provides a flexible
modeling framework, and facilitates migration from algorithms into silicon.

Acknowledgements

The authors would like to thank their colleagues at Xilinx, Inc. and The Math-
Works, Inc. for many fruitful discussions. In particular, they would like to ac-
knowledge the contributions of D. Parlour, R. Turney, and C. Dick

References

1. C. H. Dick and f. j. harris,“Configurable Logic for Digital Communications:
Some Signal Processing Perspectives”, IEEE Comm. Magazine, vol. 2, Aug. 1999,
pp. 107–111.

2. C. H. Dick and H. M. Pedersen, “Design and Implementation of High-Performance
FPGA Signal Processing Datapaths for Software Defined Radios”,Embedded Sys-
tems Conference Apr. 2001.

3. Virtex-II Platform FPGA Handbook, Xilinx, Inc., 2001.
4. http://www.systemc.org, SystemC.
5. M. Gokhale, J. Stone, and J. Arnold, “Stream-Oriented FPGA Computing in the

Streams-C High Level Language”, in Proc. FCCM00, B. Hutchings (ed.), IEEE
Computer Society Press, 2000, pp. 49–56.

6. J. Eyre, “The Digital Signal Processor Derby”, IEEE Spectrum, June 2001, pp. 62–
68.

7. M. R. Sturgill et. al., “Design and Verification of Third Generation Wireless Com-
munication Systems”, White Paper, Cadence Design Systems, Inc.

8. E. Lee, “What’s Ahead for Embedded Software”, IEEE Computer, vol. 33, no. 9,
September 2000, pp. 18–26.

9. B. Levine et. al., “Mapping of an Automated Target Recognition Application from
a Graphical Software Environment to FPGA-based Reconfigurable Hardware”, in
Proc. FCCM99, K.L. Pocek and J.M. Arnold (eds.), IEEE Computer Society Press,
1999, pp. 292–293.

10. M. Schiff, “Baseband Simulation of Communications System”, Application Note
AN133, Elanix, Inc., April 2000.

11. R.Lagadec, D.Pellooni, and D. Weiss, “A 2-channel, 16-bit Digital Sampling Rate
Converter for Professional Digital Audio”, Proc. IEEE Intl. Conf. ASSP, April
1982, pp. 93–96.

12. S. A. White, “Applications of Distributed Arithmetic to Digital Signal Processing”,
IEEE ASSP Magazine, Vol. 6(3), July 1989, pp. 4-19.

	Introduction
	System Level Modeling
	Related Work
	System Generator

	System Level Design with System Generator
	Arithmetic Data Types
	Hardware Handshaking
	Multirate Systems
	Bit-True and Cycle-True Modeling
	Automatic Testbench Generation
	Simulation Results

	Design Example
	Conclusion

