Creating a custom IP block in Vivado
Using ZedBoard: A Tutorial

Embedded Processor Hardware Design
February 24'" 2015.

VIVADO TUTORIAL 1

Introduction

This tutorial will guide you through the process of using Vivado and IP Integrator to
create a custom AXI IP block in Vivado and modify its functionality by integrating
custom VHDL code. We will be using the Zync SoC and ZedBoard as a hardware
platform. For simplicity, our custom IP will be a multiplier which our processor will
be able to access through register reads and writes over an AXI bus.

The multiplier takes in two 16-bit unsigned inputs and then it will output one 32 bit
unsigned value. A single 32 bit writes to the IP will contain the two 16-bit inputs,
separated by the lower and higher 16 bits. A single 32 bit read from the peripheral
will contain the result from the multiplication of the two 16-bit inputs. The design is
simple but it is a good example of integrating your own code into an AXI IP block.

Objectives

After completing this tutorial, you will be able to:

* Create an embedded system design using Vivado and SDK flow

* Configure the Processing System (PS)

* Add acustom IP in the Programmable Logic (PL) section

* Use SDK to build a software project and verify the functionality in hardware.

Procedure

This lab is separated into steps that consist of general overview statements that
provide information on the detailed instructions that follow. Follow these detailed
instructions to progress through the tutorial.

This tutorial comprises three stages (each consisting of steps): You will create a
top-level project using Vivado, create the processor system using the IP Integrator,
add two instances of the GPIO IP, validate the design, generate the bitstream, export
to the SDK, create an application in the SDK, and, test the design in hardware. You
will then be able to profile the application and produce statistics that will help you
understand the main bottlenecks of your application.

Requirements

The following is needed in order to follow this tutorial:
* Vivado w/ Xilinx SDK (tested, version 2014.4)
* Zedboard (tested, version D)

2 VIVADO TUTORIAL

Part 1: Building a Zynq-7000 Processor Hardware

Introduction

In this part of the tutorial you will create a Zynq-7000 processor based design and
instantiate IP in the processing logic fabric (PL) to complete your design. Then you
take the design through implementation, generate a bitstream, and export the
hardware to SDK.

If you are not familiar with the Vivado Integrated Development Environment Vivado
(IDE), see the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Step 1: Start the Vivado IDE and Create a Project

1. Start the Vivado IDE (Figure 1) by clicking the Vivado desktop icon or by
typing vivado at a terminal command line.

VIVADO"™... XLNX

Getting Started Documentation

= Create New Project Documentation and Tutorials

P2 S =
Mew Project Wizard will guide you through the process] Invaluable for first time users or to try new features,
of selecting design sources and a target device for

= anew project. (aaa
Open Project) User Guide
Open one of the most recently used projects or ~JJ Mare detailed info on Vivado commands, dialogs,
any previously created project. i x i’ and buttons,
Open Example Project - Quick Take Videos
- . 1) View a series of short videos on various topics from

O Gric e e kil e % design flows overview to recommended methodology.

Manage IP 2 Release Notes Guide
SENT

! Open the IP Catalog and view avallable IP,
Create and customize IP to be used in a new project
or open previously customized IP to make changes.

Information about installation and new IDS features
in this release.

|E Td Console

Figure 1: Getting Started Page

VIVADO TUTORIAL 3

2. From the Getting Started page, select Create New Project. The New Project
wizard opens (Figure 2).
3. Click Next

g

#- New Project

Create a New Vivado Project
This wizard will guide you through the creation of a new project

To create a Vivado project you will need to provide a name and a location for your project
files. Mext, you will specify the type of flow you'll be working with. Finally, you will specify
your project sources and choose a default part.

To continue, click Mext.

< Back Finish

Figure 2: Create New Project Wizard

4. Inthe Project Name dialog box, type the project name and location. Ensure

that Create project subdirectory is checked, and then click Next.

In the Project Type dialog box, select RTL Project, then click Next.

6. Inthe Add Sources dialog box, ensure that the Target language is set to

VHDL, then click Next.

In the Add Existing IP dialog box, click Next.

In the Add Constraints dialog box, click Next.

9. Inthe Default Part dialog box select Boards and choose “ZedBoard Zynq
Evaluation and Development Kit”. Make sure that you have selected the
proper Board Version to match your hardware because multiple versions of
hardware are supported in the Vivado IDE. Click Next.

10. Review the project summary in the New Project Summary dialog box before
clicking Finish to create the project.

o

S

4 | VIVADO TUTORIAL

Step 2: Create the Base Processing System

1. Inthe Flow Navigator, select Create Block Design.
File Edit Flow Tools Window Layout View Help
AR ooBREB X P DX S XX @ |2 Default Layout
Flow Navigator «| | Project Manager - zyng_tutorial
QA= Sources
5 Ay b 1
“p. = | Q@J@‘-wl.
. . - Design Sources
? Project Settings [+ Constraints (1)
@Y Add Sources [=}= Simulation Sources (1)
1F 1P Catalog @ sim_1
4 P Integrator
4% Create Block Desig%
¥ Open Block Desig =
& Cenerate Block 0 Create Block Design
Create and add an IP subsystem to the project.
4 Simulation ‘ ‘
Figure 3: Create Block Design from Flow Navigator
2.

subsystem design as seen in Figure 4.

% Create Block Design

In the Create Block Design popup menu, specify a name for your IP

_|

Fleaze specify name of block desian.

Design name: | PawithMuld

Birectory: | 5 <Local to Project>

Specify source set: | (= Design Sources.

Figure 4: Create Block Design Dialog Box

VIVADO TUTORIAL | 5

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

% Select All
Add IP...

& Validate Design
Create Hierarchy...
Create Comment
Create Port...

Create Interface Port...
Regenerate Layout

Save as PDF File...

Ctrl+E
Delete
Ctrl+C
Ctrl+V
Ctrl+A

I Ctrl+I
F6

Ctrl+K
Ctrl+L

Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

Z= Diagram X

3 I #, design_1

@:| @ This design is empty. To get started
ac

Add 1P} from the catalog.

Figure 6: Add IP Link in IP Integrator Canvas

The IP Catalog opens.

5. Inthe search field, type zynq to find the ZYNQ7 Processing System IP (not
the Zynq7 processing system BFM), and then press Enter on the keyboard.

Search: | i~ zyng

(2 matches)

=1 32

Mame Version A4 Status License Vendor

iF ZYNQ7 Processing System 5.2 AXI4-Stream, AXI4 Production Included Kilinx, Inc.
iF ZYNQ7 Processing System BFM 1.0 AX4 Pre-produ... Purchase Xilinx, Inc.
<| ! | r O

Select and press ENTER or drag and drop, ESC to cancel

Figure 7: The IP Integrator IP Catalog

Because you selected the ZedBoard when you created the project, the Vivado
[P integrator configures the design appropriately.

6 VIVADO TUTORIAL

In the Tcl Console, you will see the following message:

“create_bd_cell -type ip -vinv xilinx.com:ip:processing_system?7:5.5
processing_system7_0"

There is a corresponding Tcl command for all actions performed in the IP
integrator block diagram. Those commands are not shown in this document.
See the Tcl Console for information on those commands.

6. Inthe IP integrator diagram header, click Run Block Automation.

Z= Diagram X | [Address Editor X

f’ﬂl % zynq_design_1

Q¢ (@ Designer Assistance available. Run Block Automation

LN

ik /processing_system7_1 /)

A

Figure 8: Run Block Automation on Zync

The Run Block Automation dialog box opens, stating that the FIXED_IO and
DDR interfaces will be created for the Zynq core.

7. Click OK.

After running block automation on the Zynq processor, the IP integrator
diagram should look as shown in Figure 9.

processing_system7_1

DDR == DR
FIXED_IO<- IXED_IO
™ UsBIND_O< |||
—M_AXI_GPO_ACLK 4
LGP ALK ZYNQL™ maa_cros
FCLK_CLKD =

FCLK_RESETO_M

2\ QGF ﬁrocessmg gystem

Figure 9: Zynq Processing System after Running Block Automation

8. We will now reconfigure the ZYNQ7 Processing System. Double click on the
ZYNC block diagram.

9. The Re-customize IP window will open as seen in Figure 10.

VIVADO TUTORIAL | 7

B Re-customize IP .

Xl
ZYNQ7 Processing System (5.5) ‘
ﬁ Documentation ﬁPreseB ii-j IP Location @ Import XPS Settings
‘ Page Navigator < | | Zyng Block Design Summary Report
= 10 Pergherais
General
PS-PL Configuration o Apicatian Piocdssar Rk ARU)
Peripheral 1O Fins
ARM Corex K9 ARM Conex AS
MIQ Configuration (el F] oPU
Clock Configuration ::
—
AGP
DDR Configuration UX [=e] Snoop Gontrol undt BT
1 . 512 KB L2 Cache and Contiofer Ports.
SMC Timing Calculation |
oM 256 KB
Interrupts ‘ Interconnect ERAM
| Memory Interfaces
[oorenrobRz -
Programmabie I L 3
i) ;:_l B |
Processing System(PS}
Hign Perdarmamea
hec 4 XADC I
Purts
Programmable Logic(PL}
s

Figure 9: Re-customizing the ZYNQ Processing System

10. Click on the MIO Configuration panel to open its configuration form.
11. Expand the IO Peripherals on the right.

12.Uncheck ENET 0, USB 0, and SD 0, GPIO (GPIO MIO), leaving UART1 selected.

13. In the MIO Configuration panel, expand the Application Processing Unit and
uncheck the Timer 0.

14. From the Page Navigator, select “Clock Configuration” and open the “PL
Fabric Clocks” tree as seen in Figure 11.

8 | VIVADO TUTORIAL

B Re-customize IP

ZYNQ7 Processing System (5.5)

ﬁ Documentation ﬁPresets Ij_j IP Location @ Import XPS Settings:

¢

Page Mavigator
2Zynqg Block Design

PS-PL Configuration
Peripheral 1O Fins

MIQ Configuration

“

| Clock Configuration

DDR Configuration
SMC Timing Calculation

Interrupts

Clock Configuration Summary Report
i_/’ Basic Clocking |’ﬂdvann§d Clocking | |
o InputFrEqu'eﬂcy(M—]ZJI;’.S.333333 CPU'Clod(Raﬁél 621 X
| l; Search: If.}' .
iy
= ‘Compaonent | Clock Source I Requested Frequenc... | Actual Frequency{MHz) | Range({MHz) |
=2
— | ProcessorMemory Clocks ‘
E'% &) 10 Peripheral Clocks
- PL Fabric Clocks
: ¥ FCLK_CLKO IIO PLL 4 |‘100.000000 100.000000 0.100000 ; 250.000000
[T FCLK_CLK1 IOPLL 150.000000 150.000000 0,100000 : 250,000000
™ Fok_cLk2 IOPLL 50 50,000000 0.100000 : 250.000000
[T FCLK_CLK3 IOPLL 50 50.000000 0.100000 : 250.000000
B System Debug Clocks
G- Timers

o] _cat |

Figure 10: Clock Configuration

15. Make sure that the FCLK_CLKO is enabled (ticked) and that it is set for a

frequency of 100 MHZ. This will be our AXI clock.

16. Now from the Page Navigator, select “PS-PL Configuration” and open the “GP
Master AXI Interface” tree.

17. Tick the “M AXI GPO interface” checkbox and enable it as seen in Figure 12.

VIVADO TUTORIAL 9

B Re-customize TP i x|

ZYNQ7 Processing System (5.5)

i Documentation % Presets |1 1P Location #53 Import XPS Settings

¢

Page Mavigator
Zynq Block Design

3

P5S-PL Configuration

Summary Report

|PS-PL Configuration

Peripheral T/O Pins
MIO Configuration
Clock Configuration
DDR Configuration
SMC Timing Calculation

Interrupts

o [P+

search: [CL-
MName Select Description I
1" General
[+ DMA Controller
& GP Master AXI Interface
[+]"M AXI GPO interface = Enables General purpose AXI master interface 0
AXI GP1interface O Enables General purpose AXI master interface 1

GP Slave AXI Interface

HP Slave AXI Interface

+l- ACP Slave AXI Interface
[&-PS-PL Cross Trigger interface

Enables PL cross trigger signals to PS and vice-versa

[Coc] ol |

Figure 11: PS-PL Configuration

18. Now click “OK” to close the Re-customize IP window.

19. We must now connect the FCLK_CLKO output to the AXI clock input. To do
this, click on the FCLK_CLKO output and then click on the M_AXI_GP0O_ACLK
input. This will trace a wire between the pins and make the connection as
seen in Figure 13.

processing_system7_0

ZYNQ7 Processing System

M_AXI_GPO_ACLK ZYNQ‘ M_AXI_GPO= i

FCLK_RESETO_M

CER 4=
FIXED I0-=

DDR
FIXED_IO

FCLK_CLKO

Figure 12: processing_system7_0 connection

10 | VIVADO TUTORIAL

Part 2: Create the Custom IP

Introduction
In this part of the tutorial you will create a custom IP by using the “Create and
Package IP” facility in Vivado.
1. With the base Vivado project opened, from the menu select Tools=> Create
and package IP. A new window will appear as seen in Figure 14.

[create and Packagenewrp =
Create and Package IP

This wizard can be used to accomplish two tasks:

Package a new IP for the Vivado IP Catalog
This wizard will guide you through the process of creating a new Vivado IP using source files and
information from your current project or spedfied directory.

Create a new AXI4 Peripheral

This wizard will quide you through the process of creating a new AXI4 peripheral which includes
HDL, driver, software test application, IP Integrator BFM simulation and debug demonstration
design.

VIVADO'

Click Next to continue

Al
I

Einish Cancel

Figure 13: Create and Package New IP

N

When the “Create and Package IP” wizard opens. Click “Next”.
3. On the next page (Figure 15), select “Create a new AXI4 Peripheral. Click

«“ ”n
Next”.
M Create and Package New TP e x|
Ch Create Peripheral or Pach P
Please select one of the following tasks. ‘

¢~ Package your current project
Use the project as the source R)r creating a new IP Definition. .
Mote: All sources to be packaged must be located at or below the specified directory.

¢~ Package a spedfied directory
Choose a directory as the source for creating a new IP Definition.

:s Create a new AXI4 peripheral
Create an AXI4 IP, driver, software test application, IP Integrator AXI4 BFM simulation and debug demonstration design.

< Back Mext = Emish I Cancel

Figure 14: Create a new AXI4 Peripheral

VIVADO TUTORIAL 11

4. Now you can give the peripheral an appropriate name, description and

location as seen in Figure 16. Click “Next”.

M. Create and Package New TP .
Peripheral Details
Specify name, version and description for the new peripheral

Mame: I my_multiplier

Version: I 1.0

Display name: Imy_mulﬁplier_vl.o

Description: |My new AXI IP

IP location: I D: fal-PersonalFiles-D/z0-FPGA_Projects [EMNG 3050-xilinxprojects/Vivado 20 14ZyncCustomIP fip_repo

I Owverwrite existing

Mext = Ems=h

Figure 15: Peripheral Details

5. On the next screen we can configure the AXI bus interface. For the multiplier
we will use AXI lite, and it will be a slave to the PS, so we will stick to the

default values shown on Figure 17.

N, Create and Package New IP = x|
Add Interfaces
Add AXI4 interfaces supported by your peripheral ‘
[T Enable Interrupt Support = X Mame |500_Ax1
;I !."':.' Interfaces it Tyne I Lite =

Interface Mode I Slave -
Data Width (Bits} | 32 =
Memory Size (Bytes) | 64 -
Mumber of Redisters | 4= [4..512]

f =500_axI

my_multilier_v 15

< Back

Eirish

Figure 16: Add Interface

12 | VIVADO TUTORIAL

6. On the last page, select “Edit IP” and click “Finish” as seen in Figure 18.

A Create and Package New IP } 1‘

Create Peripheral

Peripheral Generation Summary
1. IP (uoguelph.ca:user:my_multiplier: 1.0) with 1interface(s)
2. Driver{v1_00_a) and testapp more info
3. AXI4 BFM Simulation demonstration design more info
4. AXI4 Debug Hardware Simulation demonstration design maore info

Peripheral created will be avaiable in the catalog @
D:/a0-PersonalFiles-D/fz0-FPGA_Projects/ENG3050-xilinxprojectsVivado 20 142 yncCustomIP

Mext Steps:
(" Add IP to the repository
{~ Verify peripheral IP using AXI4 BFM Simulation interface

" Verify peripheral IP using JTAG interface

VIVADO! i e

< Back | fext> I Einish I Cancel |
Figure 17: Create & Edit IP

7. At this point, the peripheral that has been generated by Vivado is an AXI Lite
Slave that contains 4 x 32 bit read/write registers (as seen in Figure 19). We
want to add our multiplier code to the IP and modify it so that one of the
registers connects to the multiplier inputs and another to the output.

Ifles-d/z0-fpga_projects/eng3050-xilinxprojects/vivado2014zynccustomip/ip_repo/edit_my_multiplier_vi_0.xpr] - Vivado 20144

w tep
& % | £ |3 [Boefauittayout b & 2 Y
ject Manager -edit my_mulipier_v1 0 -
urces — 0 % [[EeoectSumary x| & Package IP - my_multiplier x | oz x
» ah Pockaging Steps «|| 1dentiication
/_multiplier_v1_0 - arch_imp (r nuitpier 1 0.vnd) () || dentification o [uogueoh.ca
ol + Compatbity Lbrary: [user
.— ame: [rv-mer
+/ Customization Parameters x S 0
 Ports and Interfaces Display name: [my_muitipler_v1.0
/ Addressing and Memory Descrtr: [y new w1
Vendor dis name:
+/ Customization GUI oy I
Company u:
. (B [— I
[Ficrarchy] Lbreres | Compi O | | Categors: AX1_Peripheral =
R e s i | Rootdrectory: i _repojmy_mitpier_1.0
& sources [Gevois] i fle name:) repojmy_multpler_L0Je ol
Properties — o x
4 RIL Analysis + > [6k
4 Implementation
& implementaton Settngs
> Run Inplementation
L ed D
Desin Runs —oe x
a) T Constraints | s | s [s [TS [TPis | FaieRoutes [Lt | = [srav | o | Strt | Epsed | stotus pogress | Stategy [pat
0 cenratévistioam PRy ot 1 ot started 019 Xc7020cig% 1 vt
% = impl_t constrs_1. Notstarted [10% Vivado Implementation Defauits (Vivado Implementation 2014) xc72020dg484-1 Vivac
> Open Hardware Manager =
>
14
L4
«“
£
o
g | | |
" Td Console | Messages | [Log | Reports\, 3 Design Runs |

Figure 19: Summary of IP

VIVADO TUTORIAL 13

14

Add the multiplier code to the peripheral

You can find the multiplier code on the web site of ENG3050. Download the
“multiplier.vhd” file and save it somewhere, the location is not important for now.
Note that these steps must be done in the Vivado window that contains the
peripheral we just created (not the base project that contains the PS).
1. From the Flow navigator, click “Add Sources”. In the window that appears
(Figure 20) select “Add or Create Design Sources” and click “Next”.

A Add Sources il

x|
Add Sources

This quides you through the process of addirig and creating sources for your project
¢ Add or create constraints

% Add or create design sources

¢ Add or create simulation sources

¢ Add or create DSP sources.

" Add existing block design sources

 Add existing IP

VIVADO!

To continue, dick Next

s T

Figure 20: Add Sources

2. On the next window (Figure 21), click “Add Files”

A Add Sources B

X
Add or Create Design Sources
Specify HOL and netlist files, or directories containing HOL and netlist files, to add to your project, Create a new source file on disk and add it to

your project. ‘

| Index I Name Library Location

= | &

Add Files... Create File...

RIL ncude filesinto project /
o

Figure 21: Add Files

[7 ‘Add sarei

T I Nests Frieh

VIVADO TUTORIAL

3. Browse to the “multiplier.vhd” file, select it and click “OK”.

4. Make sure you tick “Copy sources into IP directory” and the click “Finish” as
seen in Figure 22.

Add or Create Design Sources

Specify HOL and netlist files, or directories containing HDL and netlist files, to add to your project. Create a new source file on disk and add it to

your project, ‘

| Index | MName Library |

Location
W1

multiplier.vhd il _defaultib D:/a0-PersonalFiles-D/z0-FPGA_Projects/ENG3050-xlinxprojects

Create File...

W 5can and add RTL indude files into project
¥ Copy sources into IP Directory

[Add sources from subdirectonies

= | &

<gack | e | Ensh Cancel

Figure 22: Choosing the VHDL Code

The multiplier code is now added to the peripheral; however we still have to
instantiate it and connect it to the registers.

VIVADO TUTORIAL 15

Modify the Peripheral

At this point, your Project Manager Sources window should like the following
Figure 23.

i Project Manager - edit_my_multiplier_v1.0

Sources O

Q== m et BIE

= Design Sources (3}

{ Ehwlid my_multiplier_vi_0 - arch_imp (my_multipier vl 0.ovhd) (1)
: >¢{H multiplier - TMP {multiplier, vhd)

| E-ERIP-XACT (1)

[Constraints

-5 Simulation Sources (2]

T
b

Kl =

Hierarchy | Libraries | Compile Order |
4% Sources L ') Templates |

Figure 23: Project Manager

1. Open the branch “my_multiplier_v1_0-arch_imp”
Double click on the “my_multiplier_v1_0_SO00_AXI_INST” file to open it.
3. The source file should be open in Vivado. Find the line with the “begin”

keyword and add the following code just above it to declare the multiplier
and output signal:

N

signal multiplier cut : std logic wector (31 downtc 0);

component multiplier
port |
clk: in std logic;
a: in std logic VECTOR({15 downto 0);
b: in std logic VECTOR({15 downto 0);
p: out std logic VECTOR(31 downto 0)):
end component;

16 | VIVADO TUTORIAL

4. Now find the line that says “ - Add user logic here” and add the following

®© N

code below it to instantiate the multiplier:

240 — Add wser logic here

351 mltiplier 0 : mualtiplier

382 port map (

393 clk =+ 5_AXI ACLE,

394 @ =r 3lv_reg0({31 downto 16},
3585 b = 3lv regl(15 downto 0},
J98 p => multiplier put);

297 — fger Iggic ends

Find this line of code “reg_data_out <= slv_reg1”; and replace it with

“reg_data_out <= multiplier_out”.

In the process statement just a few lines above, replace “slv_regl” with

“multiplier_out”.
Save the file

You should notice that the multiplier.vhd” file has been integrated into the
hierarchy (as seen in Figure 24) because we have instantiated it from within

the peripheral.

Sources

Q= et B E

— 0O a =

[=]-+1= Design Sources [2]
-l

£ vhlmulhpher 0 - multiplier - IMP {1
- [IP-XACT |

[+ Constraints

A Simulation Sources (1)

il | |
Libraries |Cun':pﬁe Order |

= my_multiplier_v1_0 - arch_imp (mv_m
Bl my_multiplier_v1_0_500_AXI_inst - my multlpher vi _0_500_Ax]

nuttiplier, vhd)

m |"|E| .:u,,!-'!_'i'

i [=

Figure 24: Sources Hierarchy

VIVADO TUTORIAL | 17

9. Click on “IP File Groups” in the Package IP tab of the Project Manager.

Package IP - my_muitiplier oo~
Packaging Steps «|| File Groups
 Tdenitfication @ Merge changes from File Groups Wizard
a, Name UbraryName | Type | Isindude | File Group Name | ModelMame |
' Compatbility 5| B Standard [n]
= - 5 VHDL Synthesis (2) r my_muitiplier_v1_0
% &7 VHDL Simulation {2) r my_multiplier_v1_0
+ Customization Parameters ’E Ehl A,dva:;:ire Driver (6) P
+ Ports and Interfaces & UL L=vo it M s O
—| @& Block Diagram (1) r
+/ Addressing and Memory @
+' Customization GUL
Review and Package
Figure 25: IP Groups
- « . . »:
10. Click the “Merge changes from IP File Group Wizard” link.
« : ” :
11. The “IP File Groups” should now have a tick.
Package TP - my_multler —oax
Packaging Steps <«|| File Groups
A a, Name UbraryName | Type | Istndude | FleGrouphame | ModelName |
1| B[Standard [m]
+ Compatibility 2 1 VHDL Synthesis (3} £ my_multipher_v1_0
1 VHDL Simulation {3}) my_multiplier_v1_0
N = 8
=5 [
+ Customization Parameters & (]
e & Block Diagram (1) (m
+ Ports and Interfaces I~
+ Addressing and Memory
+ Customization GUL
Review and Package
=]

18 | VIVADO TUTORIAL

Figure 26: IP File Groups

12. Now Click “Review and Package IP” as seen in Figure 27 and then click

RePackage IP.

Package IF - my_multiplier

« File Groups

+/ Customization Parameters
+/ Ports and Interfaces

+ Addressing and Memory
+ Customization GUL

/

1P description: My new AXIIP

1P root directory: d: fa0-personalfiles-d fz0-fpga_projects/eng3050-xdinxprojects/vivado20 14zynccustomip/ip_repo/my_multiplier_1.0

| After Packaging

& Anarchive will ot be generated, Uss the settings iink below to change your preferance
@ Project will be removed after completion
edit packaging settings

N\,

Re-Package IP

<
Packaging Steps « Review and Package
+ Identification Summary of your IP
+f Compatibility IP display name: my_multiplier_v1.0

Figure 27: Review and Package IP

13. A final window will appear as seen in Figure 28. Press “OK”

Close Project

(9\ Finished packaging successfully, Do you want to dose the project?
o Package IP Location: d:/a0-personalfiles-d/z0-fpoa_projects/eng3050-xlinxprojects/
vivado20 14zyncoustomipfip_repo/my_multiplier_1.0

X

Cancel |

Figure 28: Close the Project

The peripheral will be packaged and the Vivado window for the peripheral
should be automatically closed. We should now be able to find our IP in the
IP catalog. Now the rest of this tutorial will be done from the original

Vivado window.

VIVADO TUTORIAL | 19

Add the IP to the Design

1. Click the “Add IP” icon

2. Find the “my_multiplier” IP as seen in Figure 29 and double click it.

Juoguelph.ca...

Select and press ENTER or drag and drop, ESC to cancel
Figure 29: Search for my_multiplier

3. The block should appear in the block diagram (Figure 30) and you should see
the message “Designer Assistance available”. Click on “Run Connection
Automation”.

Diagram

3, PSwithMult

+i
=21

(§ Designer Assistance avaiable, Run Connection Automation

HIER L

my_multiplier_v1.0 (Pre-Productjory
processing_system?_0

M_AXI_GPO_ACLK ZYNO‘ M_AXI_GPO<R

FCLK_RESETO_N

ZYNQ7 Processing System

B e 0O QW8 I LR
3
A

Figure 30: Run Connection Automation

20 | VIVADO TUTORIAL

4. Inthe window that appears (Figure 31), set Clock connection to “Auto” and
click “OK”.

#4 Run Connection Automation | I = x|

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration options on

the right,
=% E\F Al Automation {1 out of 1 selected) S
o =¥ £F my_multiplier _0 il
iy R ¥-00 4x Connect Slave interface (fmy_multiplier_0/500_AXI) to a selected Master address space.
5 B
Options
Master: Jprocessing_system7_0/M_AXI_GPO
Clock Connection {for unconnected dks) < | Auto N

[] cond |

Figure 31: Run Connection Automation (Auto)

5. The new block diagram should like Figure 32.

Diagram — O 3%
Bl PSmﬁ’\m\tD

as |
=

5

(=7

a

-

==

=

=

= multiplier 1.0 {Pre-Produic 1st_processing_system?_0_100M

& t ocessing_system?_0 processing_system?_0_a_penph

= 1 Gl su0.Axt E—" e
&® —~ FIXED, 105 [t e), FIXED_IC
3 | AXLGPO_ACLK ZYNG M_AXLS - =

el FCLK QK LA0K

8 FCLK_RESETO,) —) ARESETH [2

® B e

] 8

(<

<

Figure 32: The Final Block Diagram
6. Validate the design (choose “Tools = Validate Design”).

7. If all goes well, your design will be validated and you will get a message that says
“validation successful”.

VIVADO TUTORIAL @ 21

Generate HDL Design Files
You now generate the HDL files for the design.

1. Inthe Source window, right-click the top-level subsystem design and select
“Generate Output Products” (Figure 33). This generates the source files for
the IP used in the block diagram and the relevant constraints file.

W B pln | —3
AT B 28 R IEJ
=l Design Sources (1)
FN = R < ithvult (PSwithMult.bd) (
-4 F PSwithMult_auto_pc_0 withiviult_auto_pc_0.xd)
- F PSwithMult_my_multiplier_0_0 (PSw
i F PSwithMult_processing_system7_0_0

rstem7_0_ 100M_0, xcl

-{= Simulation Sources (1)
- Eisim_1 (1)

55|
IP Sources | Libraries | Compile Order |

Figure 33: Sources Window

2. The Generate Output Products dialog box opens (Figure 34). Click
“Generate”.

Y. Generate Output Products]

The following output products will be generated.

Preview
Q) | B PSwithMult.bd
e Lo Synthesis
= -l Implementation
E=5]

5.-----'_‘][: Simulation

i

BT oF Eontext Settngs... |

Generate | Cancd |

Figure 34: Generate Output Products Option

22 | VIVADO TUTORIAL

3. Inthe Sources window, select the top-level subsystem source, and select
Create HDL Wrapper to create an example top-level HDL file (Figure 35).

4. Click OK when the Create HDL Wrapper dialog box opens.

iodsnesign g tesin

Sources

. | &= Diagram X:_-ﬂ..nddra

O\E%-."OA ﬂ. C\:‘Cell
L__ }57 Design Sources (1) = [=F{F [processing_syste
H [—l.mm Dinty
C‘i" zynq_deq (5 Source Node Properties... Ctrl+E pi_gpio_1
; Constraints (1) Bxi_bram_f
[Simulation Sou{ Open File Alt+0
| Create HDL Wrapper % I
View Instantiation Template

Figure 35: Create HDL Wrapper

Implement Design and Generate Bitstream

1. In Flow Navigator, click “Generate Bitstream” to implement the design and

generate a BIT file.

Note: If the system requests to re-synthesize the design before implementing,
click No. The previous step of saving the constraints caused the flow to mark
synthesis out-of-date. Ordinarily, you might want to re-synthesize the design
if you manually changed the constraints, but for this tutorial, it is safe to

ignore this condition (Figure 36).

4 Program and Debug
{3 Bitstream Settings
¥ [gnerate Bitstream

Tcl Console

5
(5]

O]

connect_debug_port u_ila_0/P
save_constraints -force

| Generate Bitstream

£ Generate a programming file after implementation.
=l I

Creati
Target

X

<4

I

Figure 36: Generate Bitstream

You might see a dialog box stating no implementation results are available.

2. Click “Yes”.

VIVADO TUTORIAL | 23

=x=)

-
Mo Implementation Results Available

&% There are no implementation results available, Ckay to launch synthesis and implementation?
L 'Generate Bitstream' will automatically start when synthesis and implementation completes.

[7| Don't show this dizlog again

» =

Figure 37: No Implementation Results Available Dialog Box

3. After the design implementation, click “Open Implemented Design”, (Figure
38). Press “ok”

e —
Bitstream Generation Completed \ &3 \

‘]0} Bitstream Generation successfully completed.

Next
@) Open Implemented Design

") View Reports
_) Open Hardware Session

_J Launch iMPACT

[Don't show this dialog again

Figure 38: Bitstream Generation Completed

4. You might get a warning that the implementation is out of date. Click “Yes”.

~

P

P R Implementation is Out-of-date 3 \

A You are opening an implemented design that is now out-of-date because
=== constraints were modified - more_info

Would you like to go ahead and open the out-of-date design?

Figure 39: Implementation Is Out-of-Date Dialog Box

24 VIVADO TUTORIAL

Export Hardware to SDK

In this step, you export the hardware description to SDK. You use this in Part 2.
The IP integrator block diagram, and the Implemented design, must be open to
export the design to SDK.

Export to SDK
In the Flow Navigator, click “Open Block” to invoke the IP integrator design

1.

(Figure 40).

4 [P Integrator

4 Simulation

7% Create Block Design
5¥ Open Block tssign

IOpen Block Desiﬂ

Figure 40: IP Integrator - Open Block Design

Now you are ready to export your design to SDK.

From the main Vivado File menu, select “Export - Export Hardware”

(Figure 41).

& Add Sources...
Open Source File...
Export
Open Log File

Open Journal File

Alt+A
Ctrl+N

Type:

Size: 55.5 KB

Block Designs

3

Export Block Design...
%l Export Bitstream File...

Export Hardware for SDK... %

53
/|

Figure 41: Export Hardware for SDK

The Export Hardware for SDK dialog box opens, ensure that Export
Hardware, Include Bitstream, is checked (Figure 42).

#- Export Hardware for SDK [=]
{0} Export hardware platform for SDK.
Options
Source: # zynq_design_1.bd -
Exportto: | @ <local to Project> -
Workspace: | & <Local to Project= -
Export Hardware
Include bitstream (Note: an implemented design m...
Launch SDK

Figure 42: Export Hardware for SDK

3. From the main Vivado File Menu, select “Launch SDK”. The SDK will

Launch in a new window.

VIVADO TUTORIAL @ 25

Part 3: Build Zynq-7000 Processor Software

In this portion of the tutorial you will test the multiplier by printing results to the
terminal via the UART (serial port).

Step 1: Start SDK and Create a Software Application

1. Ifyou are doing this lab as a continuation of Part 2 then SDK should have
launched in a separate window.

2. From the SDK window Select “File > New > Application Project” (Figure 43).

@ C/C++ - hw_platform_0/system.xml - Xilinx SDK

File] Edit_Source Refactor Navigate Search Run Project Xilinx Tools Window _Help
New Alt+Shift+N » | &5 Makefile Project with Existing Code
Open File.. [C++ Project

[©] CProject
C!ose . ftﬂ"w & Application [yoject

Figure 43': File->New->Application Project

A “New Project” dialog box opens. Here you will enter the name of the project

3. Inthe Project Name field, type “TestMultiplier”, and click “Next” (Figure
44).
ol x|

Application Project e
Create a managed make application praject, @

Project name: | Testultiplier|

¥ Use default location

LLoation: I Di\a0-PersonalFles-D\e0-FPGA_ Projects\ENGI0S0-alinyprojecis\Vin | Brawse.. |

hoose file sysken Id&fau!l "I

~Target Hardware

Hardware Platform: |ZED_Custom_l'P_wrapper_hwglatf‘orm_o j Newl

Processor: Ips?_corbexag_[) j
Target Software

Language: (O o @l

05 Platform: Istandalone _'J
Board Support Package: (% Create New | TestMultiplier_bsp

€ e existing I j

@ < Back Mext = | Finish I Cancel

Figure 44: SDK Application Project

26 | VIVADO TUTORIAL

4. From the Available Templates, select “Hello World” as seen in (Figure 45)
and click “Finish”.

r MNew Project '—| =

Templates

-
Create one of the available templates to generate a fully-functioning @
application project.

Available Templates:

Dhrystone \Let's say 'Hello Werld' in C.
Empty Application

IwIP Echo Server
Mernory Tests
Peripheral Tests
Zynq FSBL

E.Ext » | [Finish J I Cancel l

! — =

-

Figure 45: SDK New Project Template

=

When the program finishes compiling, you will see the following message on
the console (Figure 46).

Overview| source

! Problems [¥] Tasks | B Console &2

B8 Propertie§ R Terminal-‘
ICDT Build Console [Zyng_Design]

Invoking: ARM Print Size
arm-xilinx-eabi-size Zynq_Design.elf
text data bss dec hex filename

74740 2024 33700 110464 1af8@ Zyng Design.elf
Finished building: Zyng_Design.elf.size

|tee "Zyng_Design.elf.size"

16:53:10 Build Finished (took 4s.976ms)
Figure 46: SDK Message

VIVADO TUTORIAL | 27

Step 2: Modify the Software Application

Now, you can either run the hello world application on the ZedBoard or test the
multiplier!!. If you want to test the multiplier then you need to modify the software
application.

1. From the Project Explorer, open the “TestMultiplier/src” folder. Open the
“helloworld.c” source file.

2. Replace all the code in this file with the following code shown in Figure 47
(available on the webpage)

- system.hdf |:H'},\, system.mss | [g] *hellowerld.c 22 |

#include "platform.h™
#include "xbasic_types.h"
#include "xparameters.h”
Xuint32 *baseaddr p = (Xuint32 *)XPAR_MY MULTIPLIER @_S@@ AXI BASEADDR;
- int main()
init platform();
xil printf{"Multiplier Test\n\r");
// Write multiplier inputs to register 8
*{baseaddr_p+8) = @x@@020003;
il _printf("Wrote: @x#@8x \n\r", *(baseaddr_p+@));

// Read multiplier output from register 1
il printf(“"Read : @x¥@8x \n\r", *(baseaddr_p+l1));

xil printf("End of test\n\n\r"};

return @;

Figure 47: SDK Message

28 | VIVADO TUTORIAL

Step 3: Run the code on the FPGA

1. Download the bitstream into the FPGA by selecting “Xilinx Tools > Program

FPGA” (FIGURE 48).

Xilinx Tools | Window Help

Generate linker script
Board Support Package Settings
Repositories

Program FPGA
Program Flash

XMD Console

Launch Shell

Configure JTAG Settings

System Generator Co-Debug Settings
Create Zynq Boot Image

Sx&0K O ©=@2

Figure 48: Program FPGA

This opens the Program FPGA dialog box.

2. A new window will appear (Figure 49)

fiocrrogram ran —
Program FPGA
Specify the bitstream and the ELF files that reside in BRAM memory

=

i~Hardware Configuration

(R B = e Ol P SwithMUltIP wrapper_bw_platform 0

Connection: ILocaI il Mew

Device: | Auto Dtect Select

Bitstream: IPSwimMuItIP_wrapper.bit Searchi.. | | Browse. |

BMM/MMI File: I Searchn., | | Browse,, |
—Software Configuration

Processor | ELF File to Initialize in Block RAM

o | >

@ o |

Figure 49: Program FPGA Window

VIVADO TUTORIAL | 29

3. Ensure that the path to the bitstream that you created is correct and then click
“Program”.

Note: The DONE LED on the board turns blue if the programming is
successful.

4. Connect a terminal to see the results (check previous tutorials of how to connect
a terminal).

5.Select “Run = Run Configurations”. A new window will appear as seen in Figure
50.

50Kk Run Configurations . ii

Create, manage, and run configurations

@ [Application]: Application path is empty. @

Mame: | Mew_configuration

@ Target Setup & Appﬁaﬁonl % so10 Cmnect'mrq h¢ Profie Dptioﬂs] = Commoﬁ]

ter text

E CjC++ Application

CJC++ Remote Application Debug Type: Istandalone Application Debug j

< Lamch Groun i Y Connection: ILocaI LI New |
ﬁ Remote ARM Linux Application

E Target Communication Framework: Device: | Auty Detect Select |

é---gl?:g X|'I\nx C/C++ spplication (GDE)
B T MNew_configuration

Hardware platform: IZED_Custom_IP_wrapper_hw_pIatform_o

i
Processor: Ips?_mrbexag_o j

Bitstream file: | Search... | Brioiyse, |
Initialization file: | Search... | Browse... |

[Summary of operations to be performed
IReset Processor ;I Following operations will be performed before launching the debugger. ;I
1. Reset processor.
™| Protran FRGHE

™ Hun Esy_init
I™ | Rumpe7_post config
™ Enable Cross-Triggering

|

ApEly | Revert |
Filter matched 7 of 10 items
®

Figure 50: Run Configuration

6. Double Click on Xilinx C/C++ application (GDB) and a new configuration will be
created “New Configuration” along with its setting menu as seen in Figure 50.

30 | VIVADO TUTORIAL

7.Make sure you have an application associated with your run configuration as seen

in Figure 51.

i s0< Run Configurations

e

Create,

]

ge, and run ¢

w

= =
BoEl sl

n
Mame: | New_ca!'lﬁguranon

B Launch Group
- & Remote ARM Linux Application
E Target Communication Framework.
=&, Xiinx C/C++application (GDE)
“o B New_ronfiguration

Filter matched 7 of 10 tems

I l-fueérzr tewt @Tafget Setup QWW i ? SfU!OCome{hm‘] if Profile Dpnons] = Gmml
& | CfC++ Application
: [£] CjC++Remote Application

Project Name: ITesﬂVIuItipher

|Debugfl'esn‘-flulﬁplier.elf ,

™ Do not download program to memary

Search... Browse...

Application:

rData Files to download before launch

File | Address d

@

Figure 51: Application associated with your run configuration

8. Click on Run.

9.You will see the following results on the terminal (Figure 52)

(2. Problems | v~ Tasks

ECM|EHWES|J§ITerminaI1 E€|L\'J s e =R El;”@ - % =0

Serial: (COM5, 115200, 8, 1, None, None - COMNECTED) - Encoding: {I50-8852-1)

Multiplier Test

Wrote: BxBB828883
Read : BxBEBEEEEG
End of test

- |

Figure 52: Results of Run Configuration

VIVADO TUTORIAL 31

