
VIVADO TUTORIAL 1

Creating a custom IP block in Vivado

Using ZedBoard: A Tutorial

Embedded Processor Hardware Design

February 24
t h

 2015.

2 VIVADO TUTORIAL

Introduction
This tutorial will guide you through the process of using Vivado and IP Integrator to

create a custom AXI IP block in Vivado and modify its functionality by integrating

custom VHDL code. We will be using the Zync SoC and ZedBoard as a hardware

platform. For simplicity, our custom IP will be a multiplier which our processor will

be able to access through register reads and writes over an AXI bus.

The multiplier takes in two 16-bit unsigned inputs and then it will output one 32 bit

unsigned value. A single 32 bit writes to the IP will contain the two 16-bit inputs,

separated by the lower and higher 16 bits. A single 32 bit read from the peripheral

will contain the result from the multiplication of the two 16-bit inputs. The design is

simple but it is a good example of integrating your own code into an AXI IP block.

Objectives

After completing this tutorial, you will be able to:

• Create an embedded system design using Vivado and SDK flow

• Configure the Processing System (PS)

• Add a custom IP in the Programmable Logic (PL) section

• Use SDK to build a software project and verify the functionality in hardware.

Procedure

This lab is separated into steps that consist of general overview statements that

provide information on the detailed instructions that follow. Follow these detailed

instructions to progress through the tutorial.

This tutorial comprises three stages (each consisting of steps): You will create a

top-level project using Vivado, create the processor system using the IP Integrator,

add two instances of the GPIO IP, validate the design, generate the bitstream, export

to the SDK, create an application in the SDK, and, test the design in hardware. You

will then be able to profile the application and produce statistics that will help you

understand the main bottlenecks of your application.

Requirements
The following is needed in order to follow this tutorial:

• Vivado w/ Xilinx SDK (tested, version 2014.4)

• Zedboard (tested, version D)

VIVADO TUTORIAL 3

Part 1: Building a Zynq-7000 Processor Hardware

Introduction
In this part of the tutorial you will create a Zynq-7000 processor based design and

instantiate IP in the processing logic fabric (PL) to complete your design. Then you

take the design through implementation, generate a bitstream, and export the

hardware to SDK.

If you are not familiar with the Vivado Integrated Development Environment Vivado

(IDE), see the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Step 1: Start the Vivado IDE and Create a Project
1. Start the Vivado IDE (Figure 1) by clicking the Vivado desktop icon or by

typing vivado at a terminal command line.

Figure 1: Getting Started Page

4 VIVADO TUTORIAL

2. From the Getting Started page, select Create New Project. The New Project

wizard opens (Figure 2).

3. Click Next

4. In the Project Name dialog box, type the project name and location. Ensure

that Create project subdirectory is checked, and then click Next.

5. In the Project Type dialog box, select RTL Project, then click Next.

6. In the Add Sources dialog box, ensure that the Target language is set to

VHDL, then click Next.

7. In the Add Existing IP dialog box, click Next.

8. In the Add Constraints dialog box, click Next.

9. In the Default Part dialog box select Boards and choose “ZedBoard Zynq

Evaluation and Development Kit”. Make sure that you have selected the

proper Board Version to match your hardware because multiple versions of

hardware are supported in the Vivado IDE. Click Next.

10. Review the project summary in the New Project Summary dialog box before

clicking Finish to create the project.

Figure 2: Create New Project Wizard

VIVADO TUTORIAL 5

Step 2: Create the Base Processing System
1. In the Flow Navigator, select Create Block Design.

2. In the Create Block Design popup menu, specify a name for your IP

subsystem design as seen in Figure 4.

Figure 4: Create Block Design Dialog Box

Figure 3: Create Block Design from Flow Navigator

6 VIVADO TUTORIAL

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

Figure 6: Add IP Link in IP Integrator Canvas

The IP Catalog opens.

5. In the search field, type zynq to find the ZYNQ7 Processing System IP (not

the Zynq7 processing system BFM), and then press Enter on the keyboard.

Figure 7: The IP Integrator IP Catalog

Because you selected the ZedBoard when you created the project, the Vivado

IP integrator configures the design appropriately.

VIVADO TUTORIAL 7

In the Tcl Console, you will see the following message:

“create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.5

processing_system7_0”

There is a corresponding Tcl command for all actions performed in the IP

integrator block diagram. Those commands are not shown in this document.

See the Tcl Console for information on those commands.

6. In the IP integrator diagram header, click Run Block Automation.

Figure 8: Run Block Automation on Zync

The Run Block Automation dialog box opens, stating that the FIXED_IO and

DDR interfaces will be created for the Zynq core.

7. Click OK.

After running block automation on the Zynq processor, the IP integrator

diagram should look as shown in Figure 9.

Figure 9: Zynq Processing System after Running Block Automation

8. We will now reconfigure the ZYNQ7 Processing System. Double click on the

ZYNC block diagram.

9. The Re-customize IP window will open as seen in Figure 10.

8 VIVADO TUTORIAL

Figure 9: Re-customizing the ZYNQ Processing System

10. Click on the MIO Configuration panel to open its configuration form.

11. Expand the IO Peripherals on the right.

12. Uncheck ENET 0, USB 0, and SD 0, GPIO (GPIO MIO), leaving UART1 selected.

13. In the MIO Configuration panel, expand the Application Processing Unit and

uncheck the Timer 0.

14. From the Page Navigator, select “Clock Configuration” and open the “PL

Fabric Clocks” tree as seen in Figure 11.

VIVADO TUTORIAL 9

 Figure 10: Clock Configuration

15. Make sure that the FCLK_CLK0 is enabled (ticked) and that it is set for a

frequency of 100 MHZ. This will be our AXI clock.

16. Now from the Page Navigator, select “PS-PL Configuration” and open the “GP

Master AXI Interface” tree.

17. Tick the “M AXI GP0 interface” checkbox and enable it as seen in Figure 12.

10 VIVADO TUTORIAL

 Figure 11: PS-PL Configuration

18. Now click “OK” to close the Re-customize IP window.

19. We must now connect the FCLK_CLK0 output to the AXI clock input. To do

this, click on the FCLK_CLK0 output and then click on the M_AXI_GP0_ACLK

input. This will trace a wire between the pins and make the connection as

seen in Figure 13.

 Figure 12: processing_system7_0 connection

VIVADO TUTORIAL 11

Part 2: Create the Custom IP

Introduction
In this part of the tutorial you will create a custom IP by using the “Create and

Package IP” facility in Vivado.

1. With the base Vivado project opened, from the menu select Tools���� Create

and package IP. A new window will appear as seen in Figure 14.

 Figure 13: Create and Package New IP

2. When the “Create and Package IP” wizard opens. Click “Next”.

3. On the next page (Figure 15), select “Create a new AXI4 Peripheral. Click

“Next”.

 Figure 14: Create a new AXI4 Peripheral

12 VIVADO TUTORIAL

4. Now you can give the peripheral an appropriate name, description and

location as seen in Figure 16. Click “Next”.

 Figure 15: Peripheral Details

5. On the next screen we can configure the AXI bus interface. For the multiplier

we will use AXI lite, and it will be a slave to the PS, so we will stick to the

default values shown on Figure 17.

 Figure 16: Add Interface

VIVADO TUTORIAL 13

6. On the last page, select “Edit IP” and click “Finish” as seen in Figure 18.

 Figure 17: Create & Edit IP

7. At this point, the peripheral that has been generated by Vivado is an AXI Lite

Slave that contains 4 x 32 bit read/write registers (as seen in Figure 19). We

want to add our multiplier code to the IP and modify it so that one of the

registers connects to the multiplier inputs and another to the output.

 Figure 19: Summary of IP

14 VIVADO TUTORIAL

Add the multiplier code to the peripheral
You can find the multiplier code on the web site of ENG3050. Download the

“multiplier.vhd” file and save it somewhere, the location is not important for now.

Note that these steps must be done in the Vivado window that contains the

peripheral we just created (not the base project that contains the PS).

1. From the Flow navigator, click “Add Sources”. In the window that appears

(Figure 20) select “Add or Create Design Sources” and click “Next”.

 Figure 20: Add Sources

2. On the next window (Figure 21), click “Add Files”

 Figure 21: Add Files

VIVADO TUTORIAL 15

3. Browse to the “multiplier.vhd” file, select it and click “OK”.

4. Make sure you tick “Copy sources into IP directory” and the click “Finish” as

seen in Figure 22.

 Figure 22: Choosing the VHDL Code

5. The multiplier code is now added to the peripheral; however we still have to

instantiate it and connect it to the registers.

16 VIVADO TUTORIAL

Modify the Peripheral
At this point, your Project Manager Sources window should like the following

Figure 23.

 Figure 23: Project Manager

1. Open the branch “my_multiplier_v1_0-arch_imp”

2. Double click on the “my_multiplier_v1_0_S00_AXI_INST” file to open it.

3. The source file should be open in Vivado. Find the line with the “begin”

keyword and add the following code just above it to declare the multiplier

and output signal:

VIVADO TUTORIAL 17

4. Now find the line that says “ – Add user logic here” and add the following

code below it to instantiate the multiplier:

5. Find this line of code “reg_data_out <= slv_reg1”; and replace it with

“reg_data_out <= multiplier_out”.

6. In the process statement just a few lines above, replace “slv_reg1” with

“multiplier_out”.

7. Save the file

8. You should notice that the multiplier.vhd” file has been integrated into the

hierarchy (as seen in Figure 24) because we have instantiated it from within

the peripheral.

 Figure 24: Sources Hierarchy

18 VIVADO TUTORIAL

9. Click on “IP File Groups” in the Package IP tab of the Project Manager.

 Figure 25: IP Groups

10. Click the “Merge changes from IP File Group Wizard” link.

11. The “IP File Groups” should now have a tick.

 Figure 26: IP File Groups

VIVADO TUTORIAL 19

12. Now Click “Review and Package IP” as seen in Figure 27 and then click

RePackage IP.

 Figure 27: Review and Package IP

13. A final window will appear as seen in Figure 28. Press “OK”

 Figure 28: Close the Project

The peripheral will be packaged and the Vivado window for the peripheral

should be automatically closed. We should now be able to find our IP in the

IP catalog. Now the rest of this tutorial will be done from the original

Vivado window.

20 VIVADO TUTORIAL

Add the IP to the Design

1. Click the “Add IP” icon

2. Find the “my_multiplier” IP as seen in Figure 29 and double click it.

 Figure 29: Search for my_multiplier

3. The block should appear in the block diagram (Figure 30) and you should see

the message “Designer Assistance available”. Click on “Run Connection

Automation”.

 Figure 30: Run Connection Automation

VIVADO TUTORIAL 21

4. In the window that appears (Figure 31), set Clock connection to “Auto” and

click “OK”.

 Figure 31: Run Connection Automation (Auto)

5. The new block diagram should like Figure 32.

 Figure 32: The Final Block Diagram

6. Validate the design (choose “Tools ���� Validate Design”).

7. If all goes well, your design will be validated and you will get a message that says

“validation successful”.

22 VIVADO TUTORIAL

Generate HDL Design Files
You now generate the HDL files for the design.

1. In the Source window, right-click the top-level subsystem design and select

“Generate Output Products” (Figure 33). This generates the source files for

the IP used in the block diagram and the relevant constraints file.

Figure 33: Sources Window

2. The Generate Output Products dialog box opens (Figure 34). Click

“Generate”.

Figure 34: Generate Output Products Option

VIVADO TUTORIAL 23

3. In the Sources window, select the top-level subsystem source, and select

Create HDL Wrapper to create an example top-level HDL file (Figure 35).

4. Click OK when the Create HDL Wrapper dialog box opens.

Figure 35: Create HDL Wrapper

Implement Design and Generate Bitstream
1. In Flow Navigator, click “Generate Bitstream” to implement the design and

generate a BIT file.

Note: If the system requests to re-synthesize the design before implementing,

click No. The previous step of saving the constraints caused the flow to mark

synthesis out-of-date. Ordinarily, you might want to re-synthesize the design

if you manually changed the constraints, but for this tutorial, it is safe to

ignore this condition (Figure 36).

Figure 36: Generate Bitstream

You might see a dialog box stating no implementation results are available.

2. Click “Yes”.

24 VIVADO TUTORIAL

Figure 37: No Implementation Results Available Dialog Box

3. After the design implementation, click “Open Implemented Design”, (Figure

38). Press “ok”

Figure 38: Bitstream Generation Completed

4. You might get a warning that the implementation is out of date. Click “Yes”.

Figure 39: Implementation Is Out-of-Date Dialog Box

VIVADO TUTORIAL 25

Export Hardware to SDK

In this step, you export the hardware description to SDK. You use this in Part 2.

The IP integrator block diagram, and the Implemented design, must be open to

export the design to SDK.

Export to SDK
1. In the Flow Navigator, click “Open Block” to invoke the IP integrator design

(Figure 40).

Figure 40: IP Integrator - Open Block Design

Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select “Export � Export Hardware”

(Figure 41).

Figure 41: Export Hardware for SDK

The Export Hardware for SDK dialog box opens, ensure that Export

Hardware, Include Bitstream, is checked (Figure 42).

Figure 42: Export Hardware for SDK

3. From the main Vivado File Menu, select “Launch SDK”. The SDK will

Launch in a new window.

26 VIVADO TUTORIAL

Part 3: Build Zynq-7000 Processor Software
In this portion of the tutorial you will test the multiplier by printing results to the

terminal via the UART (serial port).

Step 1: Start SDK and Create a Software Application
1. If you are doing this lab as a continuation of Part 2 then SDK should have

launched in a separate window.

2. From the SDK window Select “File > New > Application Project” (Figure 43).

Figure 43: File->New->Application Project

A “New Project” dialog box opens. Here you will enter the name of the project

3. In the Project Name field, type “TestMultiplier”, and click “Next” (Figure

44).

Figure 44: SDK Application Project

VIVADO TUTORIAL 27

4. From the Available Templates, select “Hello World” as seen in (Figure 45)

and click “Finish”.

Figure 45: SDK New Project Template

When the program finishes compiling, you will see the following message on

the console (Figure 46).

Figure 46: SDK Message

28 VIVADO TUTORIAL

Step 2: Modify the Software Application
Now, you can either run the hello world application on the ZedBoard or test the

multiplier!!. If you want to test the multiplier then you need to modify the software

application.

1. From the Project Explorer, open the “TestMultiplier/src” folder. Open the

“helloworld.c” source file.

2. Replace all the code in this file with the following code shown in Figure 47

(available on the webpage)

Figure 47: SDK Message

VIVADO TUTORIAL 29

Step 3: Run the code on the FPGA

1. Download the bitstream into the FPGA by selecting “Xilinx Tools > Program

FPGA” (FIGURE 48).

Figure 48: Program FPGA

This opens the Program FPGA dialog box.

2. A new window will appear (Figure 49)

Figure 49: Program FPGA Window

30 VIVADO TUTORIAL

3. Ensure that the path to the bitstream that you created is correct and then click

“Program”.

Note: The DONE LED on the board turns blue if the programming is

successful.

4. Connect a terminal to see the results (check previous tutorials of how to connect

a terminal).

5. Select “Run � Run Configurations”. A new window will appear as seen in Figure

50.

Figure 50: Run Configuration

6. Double Click on Xilinx C/C++ application (GDB) and a new configuration will be

created “New Configuration” along with its setting menu as seen in Figure 50.

VIVADO TUTORIAL 31

7. Make sure you have an application associated with your run configuration as seen

in Figure 51.

Figure 51: Application associated with your run configuration

8. Click on Run.

9. You will see the following results on the terminal (Figure 52)

Figure 52: Results of Run Configuration

