A Clustering Utility-Based Approach for ASIC Design

by

Matt D. Thompson

A thesis
presented to the University of Waterloo
in fulfilment of the
thesis requirement for the degree of
Master of Applied Science
in

Electrical & Computer Engineering

Waterloo, Ontario, Canada, 2001

©Matt D. Thompson 2001

I hereby declare that T am the sole author of this thesis.
I authorize the University of Waterloo to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the purpose

of scholarly research.

i

The University of Waterloo requires the signatures of all persons using or photocopying this

thesis. Please sign below, and give address and date.

iii

Abstract

This thesis presents two new approaches for dealing with the high complexity of ASIC design.
A novel utility-based search technique is applied to iterative improvement in the standard-cell
placement problem. Utility theory is used to guide a deterministic (greedy) search heuristic in
finding a local minimum quickly by ranking moves based on an estimate of their proximity to an
optimal location. Moves are then chosen that are statistically more likely to improve than if the
moves were chosen randomly, greatly increasing the rate of convergence. Then a new hierarchal
clustering heuristic is presented which clusters a standard-cell circuit by greedily collapsing net
hyperedges by size, but not permitting very large clusters from forming. The clustering heuristic
demonstrates excellent characteristics for reducing the execution time of standard-cell placement
while achieving better results compared to non-clustered circuit placement and placement using

other edge-based clustering methods.

v

Acknowledgements

First and foremost, I would like to thank my family. To my fiance, Miki, thank you for your love
and support throughout this thesis. This effort truly would not have been possible if it were not
for you. And to my parents, thank you for encouraging me and making me feel worthy of your
pride.

I would like to thank Professor Shawki Areibi for his encouragement and vision. He made me
strive for excellence at every point of this work. His comments and requirements vastly improved
this research.

I would like to thank Professor Anthony Vannelli for his guidance and insight. His was a voice
of calm reason at every critical junction, and kept me from losing sight of what it was that I was
trying to accomplish.

I would also like to thank Andrew Kennings for encouraging me to attempt a Master’s degree
in the first place, even after he had moved on to greener pastures.

And finally, thank you to my good friends and colleagues Bill, Chris, Mattias, Moataz, Andrew,

Hussein, Laleh, and Min, who each contributed in their own way..

Contents

1 Introduction 1
1.1 The VLSI Design Problem 1
1.2 The VLSI Design Process it 2

1.2.1 Behavioral Design e 3
1.2.2 Functional Design e 4
1.2.3 Logical Design 4
1.2.4 Circuit Design o L 4
1.2.5 Physical Design 4
1.2.6 Fabrication and Testing oo 4
1.3 Design Goals o e)
131 Area . o v o o e)
1.3.2 Speed . . . L e e 5
1.3.3 Power Dissipation e 6
1.3.4 Design Time 000 0 e e 6
1.3.5 Testability e 6
1.4 Motivation and Contributions o oL oo L 6
1.5 Thesis Organization e e 8

2 Background 10

2.1 Introduction 10

vi

2.2 Physical Design L e e e 11

2.2.1 Physical Design Process o oo 11
2.2.2 Layout Styles L e 12
2.3 Standard-Cell Placement o oo 17
2.3.1 Problem Overview e 17
2.3.2 Interconnection Cost Lo e 18
2.3.3 Placement Quality Measure 0oL 19
2.3.4 Placement Problem and the Traditional Quadratic Measure 20
2.4 Approaches for Solving the Standard-Cell Problem 21
2.4.1 Numerical Optimization 0 ... 22
2.4.2 Min-Cut Placement o o o 23
2.4.3 Constructive Placement o 000000 24
2.4.4 Tterative Improvement (Search Heuristics) 24
2.5 Test Circuits o . 0 i e e e e e e e e 26
2.6 Summary oL e e e e e e e e e e e e e e e 28
Utility Function-Based Iterative Search 30
3.1 Introduction o . e e e e e e 30
3.2 Previous Work e 31
3.3 Solution Methodology 33
3.3.1 Utility of Net Placement 33
3.3.2 Wirelength Lower Bound 34
3.3.3 Cell Utility o o e e e e e e e e e 36
3.3.4 The UTILITY Heuristic« . oo v i i i vttt e i e e .. 38
3.3.5 Move Selection L e 39
3.3.6 Local Search Window 00 ... 41
3.3.7 Gain Evaluation o o oo 42
3.4 Results. oL e e e 46
3.4.1 UTILITY as a Primary Improver 46

vii

3.4.2 UTILITY as a Post-Processing Improver. 48

3.4.3 Local Search Window Size 50
3.4.4 Cell Utility Net Size Cut-off o o o L. 50
3.4.5 Effectiveness of Utility as a Measure of Cell Placement Quality 52

3.0 Summaryo e e e e e e e e e e e e e 54
4 Clustering-based Placement 57
4.1 TIntroduction L e e 57
4.1.1 Motivation o e 57
4.1.2 Circuit Coarsening v i 58
4.1.3 Clustering v. Coarsening ittt 59
4.1.4 Measurement of clustering quality 59
4.1.5 Goals of Clustering and De-clustering 60
4.1.6 Contributions L 61

4.2 Previous Work e 61
4.2.1 Partitioning-based Clustering methods 62
4.2.2 Constructive Clustering methods 64
4.2.3 Hierarchal Clustering 66
4.2.4 Application to the Standard-Cell Placement Problem 67

4.3 Clustering-based Standard-Cell Placement, 68
4.3.1 Weighted Hyperedge Clustering 68
4.3.2 Implementation as a mapping function 00000 70
4.3.3 Reductionof Nets 72
4.3.4 PinPlacement e 74
4.3.5 De-clustering e 75
4.3.6 Top-Level Improvement e 78

4.4 Results. . . . o o e e 79
4.4.1 Test Circuits o o o i e 79
4.4.2 WHEC Clustering Performance 80

viii

4.4.3 Clustering Method Comparison 81

4.4.4 Effect of Cell Statistics. oo 84

4.4.5 Clustering Depth o o 86

4.4.6 FLATTEN De-clustering Heuristic 87

4.4.7 UTILITY De-clustering Improvement 90

4.5 SUMMATY .« . v v s e e e e e e e e e e e e e e e e e e 90

5 Conclusions 92
Bibliography 96

ix

List of Tables

2.1
2.2

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Benchmarks used for testing L o Lo 27
Connectivity and Cell Sizes of Benchmarks 27
UTILITY performance o 00 ittt s et ettt e e 50
Wirelength and Run-Time Comparison, FLAT Versus WHEC 81
Wirelength Comparison, WHEC Versus EC and MHEC 82
Run Time Comparison, WHEC Versus EC and MHEC 83
Cell and Net reduction comparisono et 83
Size and Connectivity Statistics, EC Clustering 84
Size and Connectivity Statistics, MHEC Clustering 85
Size and Connectivity Statistics, WHEC Clustering 85
FLATTEN de-clustering heuristic performance 89
UTILITY improver de-clustering effectiveness 90

List of Figures

1.1 Common VLSI Design Process Steps
1.2 Multi-level Standard-Cell Placement Task

2.1 Common VLSI Layout Styles
2.2 Half-perimeter Wirelength is an approximation of the routing cost of anet.

2.3 Taxonomy of Solution Approaches to Layout Problems

3.1 wirelength Bound Computation 0. ..
3.2 Large nets are difficult to Improve oo oo 0oL
3.3 Net Size Distribution L
3.4 Utility-based Iterative Improver Heuristic
3.5 Determining cell shift direction o oo oo 0oL
3.6 Estimating change in HPWL for small cell displacements
3.7 Comparison of UTILITY to TILE as a primary improver
3.8 Effect of search depth oL
3.9 Effect of window size L e
3.10 Effect of Net Size Cut-off in Cell Utility Calculation
3.11 Correlation between improvement and cell utility
3.12 Distribution of total half-perimeter wirelength by net size

3.13 Average net utility by net size. L oo oo oL oL

4.1 Multilevel Clustering Hierarchy

x1

4.2 Weighted Hyperedge Clustering 70
4.3 Mapping Implementation L Lo e 71
4.4 Reduction of Internal Nets o o o oo 73
4.5 Net Reduction Algorithm oo oo 74
4.6 Pin Placement ina Cluster 75
4.7 Ordering Cells by Sorting Pin Positions, 7
4.8 Wirelength Versus Clustering Depth, struct Benchmark 86
4.9 Wirelength Versus Clustering Depth, bio Benchmark 87
4.10 Wirelength Versus Clustering Depth, avq.large Benchmark 88
4.11 Clustering method effects on circuit size reduction, avq.large Benchmark 88

xii

Chapter 1

Introduction

1.1 The VLSI Design Problem

Modern electronics have reached a point of unparalleled complexity. Microprocessors in a typical
home computer today contain tens of millions of transistors. When that microprocessor is being
designed, each one of its transistors must be designed and physically laid out on a microchip in
order to implement the circuitry. The only reason that this complexity can be handled at all is
because modern design tools are used that significantly reduce the burden on the design engineer.
The phrase associated with the task of automatically designing a circuit using software tools
is Design Automation (DA). The ultimate goal of the DA research field is to fully automate the
tasks of designing, verifying, and testing a circuit. Some day in the future, perhaps, a design
engineer will be able to describe the desired functionality to a software tool, and the tool will
provide all the information needed to manufacture a microchip satisfying all requirements.
Unfortunately, we are still a long ways from this goal. No software package is currently
capable of handling the numerous, often contradicting, design goals required of modern ICs. To
complicate matters further, many different target technologies exist to fabricate a chip and each
can involve very different design considerations. For example, in a full-custom design (layout styles

are described later in section 2.2.2), minimizing layout area size is of the foremost consideration

CHAPTER 1. INTRODUCTION 2

in a layout, while in an array-type design, the layout area size is dictated by the pre-fabricated
chip used, and so is of no consequence to the designer. This type of dichotomy surfaces in many

aspects of DA.

1.2 The VLSI Design Process

The design problem is too complicated for a software tool to attack at once. Complexity theory
would seem to suggest that this will always be the case. So we are left with a dilemma. The only
feasible approach to solving the VLSI design problem is a divide-and-conquer strategy in which
the design task is broken down into independent sub-tasks that are in themselves more tractable
to a software tool. Decisions in the design flow can then be affected by a design engineer who’s
experience can guide a design to a (hopefully) acceptable solution. Of course, using a divide-and-
conquer approach does not guarantee an optimal, or even a “good” solution. In practice, it results
in layouts that are “good enough”, according to the design goals being observed.

There are a series of steps that are often used to design a VLSI circuit. An outline of the most
common steps [SaiYou95] is illustrated in Figure 1.1. Note that Figure 1.1 shows VLSI design as a
linear process, with one step leading to the next until finally a chip is produced. In reality, design
is a highly iterative process, as often one or more steps must be repeated to meet the requirements
of a previous design step.

There are many reasons for separating the design process into steps. Firstly, by separating
the process into independent steps, the complexity of the problem is reduced. For example, once
the functional description of a circuit has been determined, the logic description is formulated
based on the functional units, not directly from the requirements. Secondly, the specifications
imposed by a higher level onto a lower level can more easily be used to verify the circuit. For
example, when designing an adder, we don’t need to consider the circuit requirements, only the
functional description of the adder. Therefore, by abstracting the previous step to the next
step, the designer can focus his or her efforts on a smaller, more manageable task. The steps of

Figure 1.1 are discussed separately in the following sections.

CHAPTER 1. INTRODUCTION 3

ldea

ldeaisformalized by requirements.

Behavioural design =t
Define inputs and outputs.

Behavior is separated into

Functional design seperate functional blocks.

Functional blocks are described

Logica design ! - -
in terms of logic equations.

Logic is physically designed or

Circuit design technol ogy-mapped.

Implementation of logic blocks are

Physical design physically arranged in the layout area.

LLLL

Design is fabricated and
physically tested.

Fabrication/Testing

Figure 1.1: Common VLSI Design Process Steps

1.2.1 Behavioral Design

The process of designing a VLSI circuit begins with an idea for a new chip. The first step of the
design process to implement that idea is the behavioral design step, in which the idea is translated
into a formal description of what the new design should do. The items in this description are
the circuit’s requirements. This description does not necessarily include all behavior of the final
manufactured microchip, but rather the subset of behavior that is necessary and sufficient to
implement the idea. Later design steps “fill in” any unspecified behavior in whatever way turns
out to be easiest to design, provided that the original requirements are not contradicted. Because
the description at this design step is purely behavioral, rather than structural, it can be completely

independent of the technology that will eventually implement it.

CHAPTER 1. INTRODUCTION 4

1.2.2 Functional Design

After the requirements are specified, the functional description of the circuit is determined. This
is still a high-level description, where the circuit is divided into functional units that each perform
a specific task or sets of tasks. This level is still technology independent, but some decisions made

at this level will affect the final circuit layout.

1.2.3 Logical Design

After the functional description is complete, a logic description is made to implement each func-
tional unit. At this stage of the design, the logical behavior of the circuit is described in terms of

primitive logic operations (NAND, NOT, etc.).

1.2.4 Circuit Design

The circuit design level creates a technology-dependent description of the logic in a circuit. At this
level, electrical equations dictate the behavior of the circuit. All logic gates and memory units
are represented by transistors and passive elements. In some implementation topologies, logic
equations are broken down and mapped to available physical circuit blocks in the circuit topology
(called technology mapping), or pre-designed logic circuit implementations (e.g., a standard-cell

library). In other topologies, individual gates must be designed to implement the logic.

1.2.5 Physical Design

The final step of the design is the physical step. In this step, the circuit-level implementation of
logic blocks, as described in the circuit design step, are physically arranged on a chip surface. The

end result of the physical design stage is a representation of how to actually fabricate the design.

1.2.6 Fabrication and Testing

After the design is complete, the circuit must go through the fabrication and testing stages. The

fabrication stage is where the circuit is actually manufactured and packaged. The testing stage

CHAPTER 1. INTRODUCTION 5

verifies that the chip meets the specifications laid out previously in the requirements stage. It is
important to recognize that, although the last step is named the ”testing” stage, we are referring
here to testing that the physical circuit meets expected behaviour. Other steps also involve testing
and verification processes to verify that the design steps’ results meet the previous design steps’
requirements. If any design step fails to meet its requirements, either the design process for that

step repeats (iterates), or the design process fails.

1.3 Design Goals

There are numerous design goals in VLSI design automation. These goals guide us in our search
for good heuristics, and give us a measure of the quality of a circuit layout. What follows are

brief descriptions of the most common design goals [Ger99].

1.3.1 Area

Minimizing the area of a design reduces the actual material used, and so more chips can be
produced from a single wafer. In itself, this is of little value, but a corollary of this property is
that the yield of the wafer, that is, the proportion of working chips on the wafer, increases. Since
defects usually occur as a function of area and are fairly randomly distributed, a smaller chip area

means that more chips will be free of defects.

1.3.2 Speed

The faster the chip performs, the more attractive it is to industry. Certain functions might also
be dependent on the circuit’s minimum speed performance, in which case the speed can be a
constraint rather than a design goal to be maximized. Speed is often very difficult to measure

during design, and is highly technology dependent, so approximations are usually used.

CHAPTER 1. INTRODUCTION 6

1.3.3 Power Dissipation

Minimizing power dissipation is a goal of increasing importance as portable electronics become
more heavily relied upon, since reduced power consumption can mean a longer battery life for
laptops and cell-phones. Also, localized regions of high power dissipation, called hot-spots, can
lead to early chip failure. Similar to speed, power dissipation can be very difficult to use as a

design goal to be minimized, and so is often used as a design constraint.

1.3.4 Design Time

One factor easily overlooked is the time for design. Particularly for small production runs, the
engineering costs for actually designing a circuit can be considerable. In other cases, a fast
prototype may be desired to test an idea in hardware. A faster tool usually means poorer layouts,
but in these situations, a fast design can be more valuable than an optimal one. The use of good

automation tools can reduce the design time.

1.3.5 Testability

In any fabrication process, some chips will be defective. In complex chips, these defects may not
be readily apparent, but they still exist. Having an easily testable chip can save considerable
expense, since test equipment is very expensive and time consuming to use. Making a chip more

testable usually means an increase in area, lowering chip yield and increasing cost.

1.4 Motivation and Contributions

The design automation task is enormously complex. Even after three decades of research, typical
design tools measure their run-time in terms of hours or even days (e.g., [SunSec95]).

Many previous tools used mathematically demanding techniques to get high quality solutions,
taking advantage of the predominantly small problem size being used industrially at the time.

In more recent years, the problem sizes used in industry have grown by orders of magnitude.

CHAPTER 1. INTRODUCTION 7

For very large problems, computationally expensive techniques cannot function in any reasonable
amount of time.

However, as we move to deep sub-micron designs below 0.18 microns, the delay of a circuit,
as well as power dissipation and area, is dominated by interconnections between logical elements
(i.e. transistors)[BelEIm95]. Since the delay (and therefore area) of a circuit cannot be ignored,
work must still be done to reduce the area of placement and routing for high performance designs.
Poor solutions, even if arrived at quickly, are useless in industry. Therefore, there is a great need
for design automation tools that operate in a reasonable amount of time, while still arriving at
“reasonably good” solutions.

The work in this thesis presents two new methods for handling the highly complex task of
designing ASIC chips. The methods are general in nature, and are applicable to many different
circuit layout topologies. The usefulness of these methods is demonstrated by applying them
to the design task of cell placement for standard-cell topologies. The goal, therefore, is to use
these techniques to reduce the execution time of the placement task while providing similar-quality
solutions to traditional placement techniques. Figure 1.2 shows the context of these contributions,
in relation to design automation in general and the physical design task in specific. This work
primarily targets the area and design time goals of section 1.3.

First, we take advantage of recent developments in utility theory to develop a novel utility-
based iterative search heuristic. This method defines a metric, cell utility, to measure the quality
of a cell’s placement. By focusing on reducing cell utility, the placement quality of poorly placed
cells is improved, exploring the search space of the problem more efficiently. Using utility permits
tremendous time savings compared to traditional methods using randomized search methods.

Second, we adapt multilevel clustering techniques from the circuit partitioning task to the
standard-cell placement task. Very little work has previously been done in the area of clustering-
based placement, despite its high performance record when applied to the partitioning problem.
Clustering-based partitioning in now the de-facto standard for obtaining high-quality solutions,
and is widely accepted as the only practical means to tackle large design problems [AlpHua98].

The new method of clustering a circuit presented here reduces the placement problem size, creating

CHAPTER 1. INTRODUCTION 8

a much smaller search space that can be investigated more rigorously and in less time than the
original (flat) circuit can. The method is based on clustering nets (hyper-edges) in the original

circuit, while introducing a new technique for obtaining balanced cluster sizes.

1.5 Thesis Organization

The next section formalizes the context and scope of the standard-cell placement problem. The
sub-tasks making up the physical design task of VLSI design are introduced, and the layout
technologies that affect physical design are described. Then, the standard-cell placement problem
is formally defined, and standard approaches to solve the problem are briefly surveyed.

In chapter 3, a utility-based iterative search heuristic is presented, and applied to improving a
standard-cell placement. In Chapter 4, several multi-level clustering techniques are described, and
a new fast clustering method is described. Numerical results are presented for both techniques.

Finally, in chapter 5, conclusions are drawn, and future directions for this research are discussed.

CHAPTER 1. INTRODUCTION 9

VLSI Design Physical Design Circui_t Generatgd.
From Logica Description

(Technology-Mapping)
Behavioural e
Design Partitioning
Reduce Circuit Complexity
Functional WHEC
Design Floorplanning
[Generate Initial Placement]
Logical Design Standard-Cell
Placement
[Improve Placement]
Circuit Design

Physical Design
(standard-cell)

UTILITY

Fabrication/
Testing

(N\
Routing Reconstruct Circuit
FLATTEN
. J
(N\
Reduce Reconstruction Error

Valid Coordinates for
Each Standard-Cell
(Meeting objectives)

Figure 1.2: Multi-level placement task for standard-cell placement, showing location within
VLSI design process and highlighting thesis contributions (WHEC weighted hyper-edge clus-
tering heuristic, UTILITY utility-based iterative improver, and FLATTEN greedy de-clustering
heuristic)

Chapter 2

Background

2.1 Introduction

The VLSI design process is broken down into simpler, more computationally tractable tasks, to
manage the high complexity of the task. One of these tasks is physical design, which, while a
much simpler task when handled independently, is still incredibly complex. Not surprisingly, this
complexity is handled by dividing the physical design task into more tractable sub-tasks.

One sub-task within physical design is placement, in which technology-mapped logic compo-
nents are arranged on a chip. This is a particularly demanding task for automation, especially for
the standard-cell layout style. In this style there are many physical parameters of the layout that
are unconstrained, making high-quality layout automation very difficult and time-consuming.

This thesis presents search and complexity-management techniques that are applied to the
standard-cell layout style. In the remainder of this chapter, the context and scope of the standard-
cell placement problem is presented. Section 2.2 describes the physical design task, and describes
the division of tasks made by automated layout tools. The layout styles that dictate the heuristics
that are then presented in section 2.2.2. Section 2.3 describes the standard-cell placement problem
and gives a mathematical formulation for it. Section 2.4 describes some approaches that have been

taken in the past to solve the standard-cell placement problem. Finally, section 2.5 describes the

10

CHAPTER 2. BACKGROUND 11

benchmark circuits that are used throughout this thesis to measure and compare performance of

the work presented.

2.2 Physical Design

Like the VLSI design process, physical design automation is divided into more tractable sub-tasks,
so that a physical design can be realized in a reasonable amount of time. The sub-tasks that are
used depend on many factors such as the target technology, the layout style used, the desired
design time, the desired chip size, and so on. For example, a small circuit usually doesn’t need to

be partitioned to fit onto several chips, since it can probably fit on a single chip.

2.2.1 Physical Design Process

The physical design process usually performs most or all of the following steps: partitioning,

placement, and routing.

Partitioning

If an initial design is too large to be placed in a single target chip, the problem must be partitioned
into several sub-circuits. The most common metric of the quality of a partitioning solution is the
number of interconnections between partitions (e.g., [FidMat82]).

Partitioning has been a very active topic for research in physical design automation, and
many algorithmic techniques for other stages of physical design and general design automation

originated in applications to partitioning (for a recent survey on partitioning, see [AlpKah95]).

Placement

After the circuit is assigned to a placement area of sufficient size, the layout modules of the circuit
must be physically assigned, or “placed”, in valid positions in the placement area. The placement

task is highly dependent on the layout style used.

CHAPTER 2. BACKGROUND 12

Routing

In the routing step, interconnections between layout modules are physically assigned to allowable
routing “tracks”. Routing connections directly to physical tracks has been attempted with limited
success, but the more common approach is to further divide the routing problem into global routing
and detailed routing. Global routing assigns interconnections a general path through a chip. In
this stage, the primary goal is to minimize congestion through any one part of the chip. The
second step, detailed routing, attempts to find a valid track assignment, using the results from

the global routing stage to simplify the search.

2.2.2 Layout Styles

A VLSI design includes logical and physical designs of a circuit. The logical design of a circuit
is independent of an implementation, while the physical design is inherently linked to the layout
style of the target technology that will implement the desired behavior. The layout style dictates
many design constraints for physical design, since it must be possible to fabricate the physical
design in the desired technology. Different design styles are used to alter the design style to achieve
some quality gain. For example, highly-constrained design styles are used to simplify and speedup
the design process, while loosely-constrained design styles are used to achieve high-performance,
low-area designs.

There are currently many different technologies that can implement a VLSI design. Figure 2.1

illustrates several of the most common layout styles currently in use.

Custom Layout

The most basic, and also one of the most used, physical design method is for a design engineer to
lay out an entire circuit by hand. The chip topology for this style of design is called full-custom
layout. An example of full-custom design is shown in Figure 2.1(D). Since this layout is completely
at the control of the designer, very compact and efficient layouts can be obtained. Usually the
only limitations imposed on the designer in full-custom layout are the physical design rules of the

fabrication technology used.

CHAPTER 2. BACKGROUND 13

sze“)ws of basic cells Pads FfEdthmugh

N O 0 © @O [@ © o/ & o
Im 5| | / 5|
Pads OoO0oooO Variable ~|_|
Ol Dooooool |@ Height o O
N poooood Channels
Ol Dooooool |@ Dr%\ O
0000000 Variale —— | _| [N
O ooooooo) @ width cells |0 g
Ooooooo ST T
O o Variable %ﬂ O
O 0 O O O Length O 0 O O O
Rows
(A) GATE ARRAY LAYOUT (B) STANDARD CELL LAYOUT
Vertical
\Channel
O O\W O & O O O O O
O O O O
X
:l [-]
g [. a| |SF| === |e
(——
E | e
D D Horizontal D ODoooooo D
ooooooao
= % mf Chame = ceooeed) |m
O O O O
O O O O O O O O O O
(C) GENERAL CELL LAYOUT (D) FULL CUSTOM LAYOUT DESIGN

Figure 2.1: Common VLSI Layout Styles

This topology permits the greatest flexibility of design and results in the smallest chip area. It
is also the most complicated to layout, and therefore the most time-consuming (and expensive).
It is also the slowest to fabricate. Because of the prohibitive design costs involved, the full-custom
layout style is only suitable for large production run chips and for relatively small chips (in the
SST or MST domain) or for small sub-components within a chip (in the VLSI domain).

However, this flexibility allows another approach for full-custom design. Normally a full-
custom design is laid-out as blocks of other layout styles, where each block is matched to the
layout style which best represents it. For example, a logic array might be laid-out as a gate-array

(discussed in the next section), while a memory array would most likely be laid-out by hand for

CHAPTER 2. BACKGROUND 14

speed and space efficiency. Full-custom layout is often called mized layout when it approached in
this manner.

This can be a very powerful design style, and is the style used in industry for very large, very
high production chip design (such as a personal computer microprocessor). It is also very difficult
to automate full custom design. Typically, the individual blocks will be floor-planned by making
early assumptions about their connections to other blocks. These assumptions become design
constraints when designing the internal circuitry of the blocks. Several iterations might have to
be made before a legal solution is obtained.

Because of the high engineering costs involved in designing in the full-custom style, it is not
well-suited for small production runs. It is also not suited for situations requiring fast fabrication
turn-around, such as just-in-time production or fast prototyping, since the entire chip must be

fabricated (in comparison to gate-array styles where most or all of the chip is pre-fabricated).

Gate-Array

Gate-array layout is actually a term given to a set of topologies, such as sea-of-gates (SOG), mask-
able gate-array (MGA) and a number of other gate-array topologies. Gate-array layouts are highly
structured topologies, generally consisting of a grid array of pre-fabricated generalized logic blocks,
as shown in Figure 2.1(A). By programming or fabricating interconnections, the desired design
can be implemented. For example, in a mask-able gate-array layout, interconnections (wires) and
logic-connecting metal layers are laid out as a set of photo-lithography masks, which are used to
fabricate the final chip.

Gate-array layouts are well suited for design automation, due to their regular layout style. Chip
sizes and valid placement locations are fixed by the type of gate-array used, and cannot be altered
by the automation software. Also, because most or all of the physical chip is pre-fabricated, the
turn-around time is much faster than that of full-custom layout, making gate-arrays suitable for
medium-sized production. However, the mask-able versions of the gate-array topology must still

be sent out to fabrication, making them unsuitable for small-scale or fast-prototype applications.

CHAPTER 2. BACKGROUND 15

FPGA

A special case of the gate-array layout is the Field-Programmable Gate-Array, or FPGA, topology.
In this topology, the chip is bought pre-fabricated and packaged. The feature that makes FPGAs
stand out among gate-array topologies is that, instead of effecting a design with a photo-mask, all
wires and interconnections are manufactured on the chip, and programmable fuses are fabricated
into the interconnections. The designer can effect a design by programming the interconnections
between the gates and the wires, altering the connectivity between the pre-fabricated logic blocks
in the array. This programming requires minimal hardware, and no fabrication, so the designer
can physically implement a design in-house in a short period of time, hence the term ”field-
programmable”.

Individual FPGA chips can be quite expensive. Large state-of-the-art chips can cost thousands
of dollars each, making them impractical for anything but the smallest production runs. FPGAs
are also not very space-efficient, since wires and interconnects are purposely generic to allow a
variety of uses. Also, because these circuit use fuse-technology, which add a significant delay to
interconnections, they are not suitable for very speed-demanding or low-power applications.

However, because the chip topology is highly regular, effective automated design tools exist
that can allow a fast design turnaround with a minimum of human interaction, minimizing design-
time costs. Today’s FPGAs can contain millions of transistors and can implement an entire
hardware “system” in a single chip (called Systems On Chip, or SOC). And because all but the
most inexpensive FPGAs are re-programmable, they are good for testing incremental changes to
a design in hardware. Therefore, the FPGA is very well-suited for fast-prototyping a design in

hardware.

Standard-Cell

In between full-custom and FPGA circuits are several intermediate topologies that provide a
compromise between good design time and production size. These topologies can be loosely
termed the Application-Specific Integrated Circuit, or ASIC, topologies. FPGAs are sometimes

included in this category, but are usually considered to be used for too small a production to be a

CHAPTER 2. BACKGROUND 16

true ASIC. FPGAs are often used to prototype other ASIC designs, however. The exact definition
of an ASIC is highly debatable, but is usually considered to be any partially pre-fabricated chip
that requires further fabrication to complete a design, targeted for a small- to medium-production
run, and designed for a specific task or set of tasks. Examples of ASICs include a video controller
chip, or an encoder chip in a television remote-control. A micro-controller or an FPGA is usually
not considered an ASIC because of its flexibility of design. Both are fabricated in order to fill a
number of roles, and can be programmed for specific tasks, but are not designed for any one task
in particular. Of course this is a pretty fine line, and one or both can be argued to belong to the
family of ASICs, but for this discussion they will not be included.

The Standard-Cell topology is one in which the logical circuit design is first mapped to a library
of standard-cells. The designer can increase productivity by utilizing a pre-designed standard-cell
library. The library typically includes common logic gates and small functional blocks such as
multiplexers and decoders, and sometimes even small storage elements such as latches or flip-
flops. All standard cells in a library are restricted to having the same height, but their width can
be chosen by the standard-cell library designer to accommodate the area of the functional block
design. Once a circuit is mapped, the circuit of standard-cells is laid out in rows within the chip
boundaries. Spaces between the rows, called channels, are used to implement the interconnections
between standard-cells. T/O connections are placed at the edge of the chip. The standard-cell
topology is illustrated in Figure 2.1(B).

The particular standard-cells used are chosen by a designer to implement a design. Therefore
the topology is flexible enough to efficiently implement many designs. However, because the
topology has a great deal of structure, it is also well-suited for automated design. The design
tool’s job is to lay out the cells in rows such that the interconnection length is minimized, and the
chip area is minimized. However, the variable-width aspect causes complications in automation,
and the final result must be fully fabricated, so it is best suited for medium-sized production

where area or performance is a major consideration.

CHAPTER 2. BACKGROUND 17

General-Cell

The final design style that will be mentioned is the general-cell, or macro-cell, topology. This
topology is made up of a (usually) small number of irregularly-shaped blocks, with interconnec-
tions being laid down in the spaces between the blocks, as in Figure 2.1(C). The irregularly-shaped
blocks introduce several design challenges, but the small problem size makes it suitable for com-
putationally demanding solution methods. These methods can arrive at high quality solutions in

very short amounts of time.

2.3 Standard-Cell Placement

The work in this thesis presents two new methods for handling the highly complex task of designing
ASIC chips. The usefulness of these methods is demonstrated by applying them to the design task
of cell placement for standard-cell topologies. These methods are general enough that they would
also be suitable for other layout styles such as FPGAs and gate-arrays, with suitable modification.

The standard cell placement problem is the problem of arranging a circuit of interconnected
equal-height, variable-width, “standard cells” into parallel rows (see Figure 2.1) such that the
total interconnection length, placement area, or some other performance metric is minimized.
The standard-cell placement problem has been shown to belong to the N P-complete class of

problems, so heuristic solution methods must be used [GarJoh79].

2.3.1 Problem Overview

The placement problem, as it pertains to this report, can be described as follows: given a set of
modules and nets, assign the modules to legal positions within a placement area such that the
interconnection cost between the modules is minimized.

The set of modules in the network is denoted by M and the set of nets by N. The set of
modules can be divided into cells, which implement logic and are placed in the chip core region,
and pads, which provide external connection and are placed around the periphery of the chip.

The modules connected by a net n € N is denoted by M, and the set of nets connected to a

CHAPTER 2. BACKGROUND 18

module m € M is denoted by N,,.

In the standard-cell layout, cell modules are placed within R parallel rows in the chip core
area such that no cells in a row are overlapping, and a maximum row length is not exceeded. Pad
modules are placed at the placement area’s periphery. In the placement stage of design, the actual
physical placement of interconnections is not known, but is approximated with measures such as
HPWTL (described in the next section). In the global and detailed routing stages, interconnections

are placed in the inter-row gaps between rows and between rows and pads.

2.3.2 Interconnection Cost

It is too computationally expensive to determine routes for wires to take to interconnect cells
and pads during the placement design stage. Because of this, the routing cost is approximated
during placement, and a separate routing design step is performed after placement. The most
commonly used estimate of interconnection cost is the half-perimeter of the smallest bounding
box containing all pins of a net. This is called the half-perimeter wirelength (HPWL), and is
illustrated in Figure 2.2.

Bounding Box

Module ,,,E 7777777 —

S =

—

HPWL + i
/\/

Figure 2.2: Half-perimeter Wirelength is an approximation of the routing cost of a net

The HPWL of a net approximates the length of a minimal Steiner tree, which is a lower bound
on the final routing cost of a net. By increasing the rout-ability of the circuit, we can reduce the

overall area of the final layout.

CHAPTER 2. BACKGROUND 19

Given that a cell m has center coordinates (z,,ym), and a cell’s pin connecting to net n
has coordinates relative to the cell’s center (&n, Pmn), the pin’s absolute coordinates are 2, =
Zm + Emn and Ymn = Ym + Jmn. The half perimeter of net n is calculated with the following

equation.

2.3.3 Placement Quality Measure

The most common objective for the placement problem is to minimize the routing cost. Routing
cost is used because reducing it actually minimizes a number complimentary design goals. By
reducing the routing length, the area needed by the interconnections (and therefore, the chip) is
reduced, and more chips can be manufactured on the same chip wafer, increasing chip yield and
lowering cost [SaiYou95]. Shorter interconnections also result in an increase of chip speed due to
the reduction in interconnection capacitance [BelElIm95]. Power reduction is also reduced due to
the same reduction in capacitance [WesEsh93].

Therefore, the basic placement objective function is to minimize the total half-perimeter wire-
length for all nets in a placement, since the HPWL of a circuit is an estimate of the final routing
cost (see the previous section):

Minimize » HPW Ly, (2.2)
neN

There are numerous other terms that can be added to the objective function to directly
optimize the various design goals of section 1.3, such as minimizing the length of a critical path
to meet timing constraints, or to minimize the final area of the chip by minimizing the longest
standard-cell row length.

Minimizing several terms in an objective function is possible, but it can be very difficult
to strike a balance between competing goals, and can be computationally demanding. More
commonly, constraints, or acceptable limits, are placed on key parameters, and any solution that

meets those constraints is permissible.

CHAPTER 2. BACKGROUND 20

In the standard-cell problem, there are constraints on the allowable values of z and y co-
ordinates that are imposed by the standard cell layout style for semi-custom chips. The z and y
co-ordinates for a pad module must represent a position on the edge of the standard cell layout
area. The value of z and y for cell modules must be such that the entire cell is within a row. As
well, no cell or pad may overlap with another.

Other objectives can be met by either objective function terms, or by fixed constraints. For
example, in standard-cell layout, the row-lengths should be approximately equal to minimize the
chip width. This can be met by either inserting a large-row penalty term directly into the objective
function, or by placing constraints on maximum row lengths.

One important objective that should be mentioned is that the placement algorithm should
lead to a routable chip, i.e., a chip that can be connected subject to the constraints of the
implementation technology. This objective is not normally reflected in the objective function of
the placement phase, due to the high complexity of the routing task [Are95]. Instead, the chip is
placed first, and then an attempt is made to route it. If it is not routable, the placement phase

is repeated until the routing is successful.

2.3.4 Placement Problem and the Traditional Quadratic Measure

As an example of a method of approximating a solution to equation (2.2), a mathematical for-
mulation of an approzimation to the standard-cell placement problem is now presented. A circuit
is represented by a hypergraph G(V, H), where the vertex set V = {vy,v2,--+,v,} represent the
nodes of the hypergraph (set of cells to be placed), and H = {ey, ez, -, en } represents the set of
hyperedges of the hypergraph (set of nets connecting the cells). The two dimensional placement
region is represented as an array of legal placement locations. Ultimately, the placement task seeks
to assign all cells of the circuit to legal locations such that cells do not overlap. The hypergraph
is transformed into a graph (a hypergraph with all hyperedge sizes equal to 2) via clique model
for each net. Each edge e; is an unordered pair of vertices with a nonnegative weight w; assigned
to it. Each cell ¢ is assigned a location (z;, y;) on the XY-plane. The cost of an edge connecting

two cells ¢ and j with locations (z;,y;) and (z;,y;) is computed as the product of the squared I,

CHAPTER 2. BACKGROUND 21

norm of the difference vector (z; — z;, y; — y;) and the weight of the connecting edge w;;. The

total cost, denoted ¢(z, y), can then be given as the sum of the cost over all edges; i.e:

S(ay) = Y wijllwi—a)’ + (i —)’ (2.3)

1<i<j<N

This formulation does not actually restrict cells to occupy legal positions, and so minimizing
(2.3) produces a placement with a great amount of overlap among the cells because cells sharing
common nets are attracted together. However, this formulation can be solved in polynomial
time (i.e., it is not an N P-complete problem) [Eta99]. We refer to formulation (2.3) as the QP

(Quadratic Programming) formulation.

2.4 Approaches for Solving the Standard-Cell Problem

Standard-cell placement is a N P-complete combinatorial optimization problem. Many techniques
have been developed to attempt to find the optimal solution in a reasonable amount of time.
Figure 2.3 shows a taxonomy of the most widely-used approaches to solving a physical design
layout problem.

The most basic division among approaches is between exact solution methods and approxi-
mation methods, also called heuristics. Exact solution methods are precisely that - they solve
the problem formulation of section 2.3.3 exactly, giving the optimal solution. In reality, exactly
solving an NN P-complete problem, like standard-cell placement, takes an extraordinary amount
of time, and so these methods are of little practical use. Approximation methods, on the other
hand, give sub-optimal solutions, but can be implemented to operate in reasonable amounts of
time. Every method used industrially is of this type, since design time is of great importance in
industry‘. The measure of the quality of an approximation method is the distance of the solution
from the global optimal solution.

Approximation methods can be broadly divided into three classes of approaches: global meth-
ods, constructive methods, and iterative improvement (search) methods. In global methods, cells

are placed in globally-good positions by relaxing the constraints of the problem. Constructive

CHAPTER 2. BACKGROUND 22

Cell Placement

N

Exact Solution Approximation Methods
Methods (Heuristics)
Global Methods Constructive Methods Iterative | mprovement Methods
Numerical Optimization Partitioning-based Deterministic Stochastic
Methods Methods Methods Methods

Figure 2.3: Taxonomy of Solution Approaches to Layout Problems

placement methods start with a small set of cells and “build” a placement by iteratively adding
unplaced cells adjacent to already-placed cells. Iterative improvement methods start with a le-
gal placement and improve it by searching for small perturbations to the placement that result
in better solutions. The Approximation methods are discussed in more detail in the following

subsections.

2.4.1 Numerical Optimization

One global placement approach is numerical optimization. In these methods, the standard cell
problem is formulated in terms of an objective function to be minimized (or maximized) subject to
a set of constraints. The formulation is then solved exactly using mathematical programming tech-
niques such as linear, non-linear, integer, and dynamic programming techniques [Eta99, Beh99].

This appears to be the same approach as an exact solution method, which was already shown
to be unsolvable in reasonable time. However, in numerical optimization methods, the original
problem is approximated by a similar problem that can be solved in polynomial time. The global

optimum to this new problem is then found using modern mathematical programming techniques,

CHAPTER 2. BACKGROUND 23

and is used as an approximate solution to the original standard-cell problem. If the approximation
model is good, solution quality obtained in this way can be very good. An example of a numerical
optimization formulation is the QP formulation presented earlier in section 2.3.4, in which the
rectilinear wirelength measure is approximated with a quadratic “straight-line” measure, which
is much more easily solved.

The solutions arrived at in this manner are good from a “global” perspective, since they are
optimal according to a mathematical model of the system, but are sub-optimal according the
actual chip layout. This is because the cell positions attained are not actually legal solutions
(remember, in standard-cell layout cell positions are constrained to non-overlapping positions in a
row). This is often referred to as a “top-down” method, since the global view is considered before
the detailed view is considered. To get a legal solution, a legalization heuristic must be used to
find a “good” legal position for each cell. A good legalizer minimizes the difference in wirelength
(or other objectives) between the global solution and the legalized solution.

The quality of the solutions is partially a factor of the mathematical model used to represent
the placement problem, and partially a factor of the legalization method used. Many methods
have been used to approximate the exact standard-cell problem, the most popular being linear
models [KleSig91] and quadratic programming models [CheKuh84, Beh99, EtaAre99].

Global placers are never used alone. Because of the error introduced by the legalization process,
solutions are sub-optimal compared to search techniques. However, search techniques can be used

after global placement to further improve the quality.

2.4.2 Min-Cut Placement

Another popular global placement approach is min-cut placement (e.g., [HuaKah97]). In these
methods, a circuit is recursively bisected (partitioned into two parts), minimizing the number of
nets that connect components between partitions (i.e. minimizing the “cuts”). High-performance
partitioning itself is usually performed using search heuristics (discussed in the next sub-section).

Min-cut placement achieves high-quality placements for two reasons. First, the heuristic be-

haves as a top-down method in early iterations, placing cells in the general regions that they

CHAPTER 2. BACKGROUND 24

should belong to. As the partition size decreases, it behaves more as a bottom-up method, plac-
ing cells in smaller and smaller regions, eventually reaching a partition size of a single cell. Second,
it implicitly reduces net congestion as a function of min-cut partitioning. This not only increases
the chances of achieving a routable circuit, but tends to reduced the initial wirelength.

Like numerical optimization methods, partitioning-based methods do not directly attempt to
minimize wirelength (or other common objectives), and so the solution obtained is sub-optimal
in terms of wirelength. Search heuristics are used to further improve the solution after min-cut is

used.

2.4.3 Constructive Placement

In this method, a placement is constructed by choosing a set of seed cells which are initially placed
in the placement area. Then, recursively, a set of cells are placed adjacent to the seeds, until the
placement has “grown” from the original seed cells.

Constructive placement is a “bottom-up” method, since it considers only the local environment
of each individual cell, placing each cell at the best location available at the moment. In this
method, cells tend to be placed well locally, but have poor overall quality.

Because of their lack of global perspective, constructive methods do not provide high quality
solutions. However, they are usually very fast, and can therefore be used as a starting point for

search-based heuristics, instead of a purely random initial solution.

2.4.4 Tterative Improvement (Search Heuristics)

A search heuristic begins with an initial (legal) solution, and attempts to improve it by incre-
mentally searching the solution space. Better solutions are obtained by perturbing the solution in
some way such that the new solution has an “acceptable” cost. We do not say a “lower” cost, since
stochastic search heuristics find good solutions by occasionally accepting higher-cost solutions to
escape local minima in the search space.

The goal of any search heuristic is to find the global optimum, which is the best possible

solution to the problem. For an NP problem, however, it is not possible to exhaustively search

CHAPTER 2. BACKGROUND 25

all possible solutions and take the best. Instead, search heuristics attempt to find a good local
optimum. Eventually during a search, given enough time, a solution is found where no single
perturbation improves the placement quality. This situation is called a local optimum. The best
possible local optimum is also the global optimum.

A deterministic, or “greedy”, heuristic only accepts the best possible perturbation at any time.
Deterministic heuristics are fast, but they also get trapped in local minima quickly. When applied
to NP problems, this usually means that greedy heuristics find very sub-optimal solutions.

Stochastic heuristics use some “randomness” to accept some poor solutions, which allows
the search to escape some local minima when encountered. For a stochastic search, it may be
possible to accept several poor solutions in order to get to a point where moves again improve
the solution quality, hopefully to a new local minimum that is better than the previous local
optimum. Heuristics that are able to escape local optima by accepting some poor solutions are
said to exhibit “hill-climbing” ability.

In the following subsections, the most common approaches to iterative improvement are pre-

sented as examples.

Breadth-First Search

An example of a simple search method is breadth-first search. Each cell in a placement is moved
in turn to a new location, and the solution is accepted if the cost is reduced. It is “breadth-first”
in that each cell is attempted exactly once before a second attempt is made. Breadth-first search

is also a greedy method, since it only accepts moves that reduce the total cost.

Simulated Annealing

An example of an advanced search heuristic is simulated annealing [KirGel83]. Simulated anneal-
ing is a mathematical analogy to the annealing process in chemical engineering, where crystals are
grown in a hot metal by carefully controlling the rate of cooling of the metal. In the placement
problem, simulated annealing is used to “crystallize” a good placement by controlling the rate of

improving and non-improving cost changes as a placement is perturbed. Simulated annealing is a

CHAPTER 2. BACKGROUND 26

stochastic method with hill-climbing ability, since it can accept a series of poor moves to escape a
locally-optimal solution. Many implementations of simulated annealing have been applied to the
standard-cell problem (e.g., [Gro86, SecLee87, MalGro89, SunSec95]).

In simulated annealing, a cell is chosen at random, and either moved to a new location, or
swapped with a neighboring cell. If the cost of the solution is reduced, the move is accepted.
However, if the cost is increased, the move may still be accepted with a probability of e=2¢/T,
where AC is the change in cost, and T is the annealing temperature. Initially, T is set to a very
high value such that most moves are accepted. As moves are accepted, T is gradually decreased,
lowering the number of poor solutions that are accepted. After many moves have been accepted,
T is very low, and only improving solutions are accepted.

The rate of temperature change is called the annealing schedule, and determines the final
solution quality obtained. Simulated annealing has been mathematically proven to converge to
the global optimal solution when used for a long-enough time with a good annealing schedule

[MitRom86], but this time is too long for use for practical use, and some good local optimum is

usually accepted as a final solution.

Force-directed Improvement

One method that was developed for placement problems is force-directed improvement [Ger99].
In this search method, the nets are considered to exert a pulling force on all connected cells.
When a cell is considered for a move, all these forces are considered, and the cell is moved to the
location nearest it’s center-of-potential. This method can be implemented to run quickly, and has
shown to perform well. However, determining the weight function for each net is difficult, and

varies from circuit to circuit.

2.5 Test Circuits

Tables 2.1 and 2.2 show the benchmark circuits used to measure the performance of the heuristics

in this thesis. The circuits used were the MCNC 91 benchmarks [Koz91]. This test set consisted

CHAPTER 2. BACKGROUND 27

Circuit Cells | Pads | Nets Pins Rows Pad Distribution

Top | Bottom | Left | Right
Fract 125 24 147 462 6 22 2 0 0
Primary1 752 81 904 5526 16 21 20 20 20
Struct 1888 64 1920 5471 21 64 0 0 0
Industryl 2271 814 2478 8513 15 254 258 302 0
Primary2 2907 107 3029 18407 28 30 16 30 31
Biomed 6471 97 5742 26947 46 8 72 9 8
Industry2 || 12142 | 495 | 13419 | 125555 72 107 126 123 139
Industry3 || 15059 | 374 | 21940 | 176584 54 113 124 63 74
Avqg.small || 21854 64 22124 | 82601 80 30 34 0 0
Avq.large || 25114 64 25384 | 82751 86 30 34 0 0

Table 2.1: Benchmarks used for testing

Circuit Cell Width Module Degree Net Size
Min | Max | z | o Max | z | o Max | z | o
Fract 16 64 31.1 | 16.8 7 3.5 | 1.49 17 | 3.14 | 2.25
Primaryl 30 | 200 | 106.6 | 70.1 9 3.7 1 1.15 18 | 3.26 | 2.60
Struct 16 40 26.0 | 7.8 4 291 0.6 17 | 2.84 | 1.90
Industryl 12 84 31.6 | 11.8 9 351 1.0 320 | 3.47 | 8.55
Primary?2 30 | 300 | 86.3 | B7.7 9 371 1.5 37 | 3.64 | 3.76
Biomed 16 72 35.1 | 18.6 6 321 1.0 43 | 3.05 | 3.40
Industry?2 32 | 280 | 82.3 | 41.6 12 139 | 1.7 427 | 3.46 | 7.47
Industry3 56 | 232 | 93.6 | 32.9 12 1 44| 1.5 325 | 3.00 | 3.23
Avg.small || 16 72 33.1 | 19.6 7 35| 14 451 | 2.64 | 4.47
Avq.large 16 72 31.9 | 18.5 7 331 1.3 451 | 2.55 | 4.18

Table 2.2: Connectivity and Cell Sizes of Benchmarks

of ten circuits ranging in size from 125 cells to over 25000 cells.

Table 2.1 shows the net list statistics for each benchmark used. The pad distributions indicated
the number and location of pads, and the rows indicates the number of standard-cell rows in
which to place the circuit. Pad distribution and number of rows are parameters dictated by the
benchmark circuit files.

Table 2.2 shows the distribution of cell sizes, cell connectivity, and net connectivity. The
minimum module and net degrees are not given since they are always equal to ‘2°.

The circuits have been grouped according to size: small, medium, and large, indicated by

horizontal lines in Table 2.1, where the “small” circuits are Fract, Primaryl, and Struct, the

CHAPTER 2. BACKGROUND 28

“medium” circuits are Industryl, Primary2, and Biomed, and the “large” circuits are Industry2,
Industry3, Avq.small, and Avq.large. These groupings by size will be indicated in all further
tables of results, and should be considered when observations or conclusions are made for “small”,
“medium”, and “large” problems are made. The primary basis of this division is the number of
pins in the circuit, since the number of pins determines in a large part the time needed for
improvement, although it also corresponds to the number of modules or nets in the circuit as well.
The last four circuits are generally recognized as “large” problems. These circuits are the primary
focus of this thesis. The other benchmarks are presented and used for completeness, but are not
as valuable for drawing conclusions since the problem size is such that computationally complex
placement techniques can be used on them in reasonable amounts of time. Since the focus of this
thesis is to present fast heuristics for use on large problems, it is reasonable to expect that slower,

more exhaustive techniques should perform better on smaller circuits.

2.6 Summary

The VLSI design process is broken down into simpler, more computationally tractable tasks, to
manage the high complexity of the task. One of these tasks is physical design, which, while a
much simpler task when handled independently, is still incredibly complex. Not surprisingly, this
complexity is handled by dividing the physical design task into more tractable sub-tasks.

Many different circuit topologies exist to implement a circuit, such as full-custom, gate-array,
and standard-cell layouts. Each of these topologies imposes design constraints and optimization
concerns, which affect the design of a circuit.

The layout topology used to demonstrate the search and complexity-management techniques
in this thesis is the standard-cell layout style. This style has a number of unique characteristics
that make it particularly difficult to automate, and so is an ideal candidate for demonstrating
these new approaches.

Many approaches have been taken to solve the standard-cell problem, and ASIC design prob-

lems in general, including global, constructive, and iterative improvement methods. Finding the

CHAPTER 2. BACKGROUND 29

absolute best solution to a large problem is virtually impossible, so all practical solution ap-
proaches are categorized as heuristics, and therefore find sub-optimal solutions.

It is difficult to measure the quality of a solution approach, since ASIC design is computa-
tionally very complex and usually an optimal answer is not known by which to compare results.
To overcome this problem, a standard set of benchmark circuits are used to compare behavior
and solution quality obtained with other solution technique. Any new technique should compare
results on this basis.

In the following two chapters, two new approaches to dealing with the high complexity of
ASIC design are presented. In the next chapter, a deterministic search heuristic is presented
and applied to iterative improvement for the standard-cell placement problem. In chapter 4, a
clustering heuristic is used to take a different approach to ASIC design, by reducing the complexity

of the problem.

Chapter 3

Utility Function-Based Iterative

Search

3.1 Introduction

Iterative improvement methods seek to improve an initial problem solution by making small
changes, such as moving or swapping individual cells in the placement problem. Iterative im-
provement search techniques are applicable to many different fields of study. In the remainder
of this chapter, we will focus on the application of iterative improvement to the standard-cell
placement problem.

In standard-cell placement, new states are created by moving a cell or set of cells to new
locations. Possible movements to examine are usually selected randomly. This randomness of
selection can be advantageous to a search heuristic, since it can allow the search to escape local
minima (see section 2.4.4). This is desirable early-on in the improvement process, when the
solution is far from a local minima, and a good search heuristic is attempting to “guide” the
search to a good minimum. In later design stages, such as after a good global placer has been
used and the solution is already close to a good local minima, all that remains is to seek out the

local minimum as fast as possible. However, the search space in a typical placement problem is

30

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 31

enormous. Late in a search, very few possible moves actually improve the quality of the solution.
A purely random move selection can cause the search to spend a disproportional amount of time
examining poor moves, and the move acceptance rate will be low. What is desired is greedy
search heuristic that reduce the number of possible moves to examine, and thus speed up the
search process by increasing the acceptance rate.

In this chapter we examine a novel new approach to overcome this problem, by utilizing a
measure of a cell’s placement quality to choose moves that are statistically more likely to improve.
Utility, in the scope of the placement problem, is a measure of the quality of a current placement
relative to its optimal placement. A simple iterative interchange heuristic can be implemented,
selecting cells for possible moves based on the utility value of those cells. By concentrating
computational effort on cells with worse-than-average placements, greater gain can be achieved
with less effort than that which a randomized method could achieve in the same time. In this
way, it is possible to reduce the computational impact of examining moves that will be rejected,
while increasing the acceptance rate versus a comparable method choosing moves randomly.

In section 3.2 previous attempts to overcome this problem are presented. Then, in section 3.3
a new method based on utility theory is presented. Section 3.4 shows the results of using the
utility-based improver as part of a state-of-the-art standard-cell package. Finally, in section 3.5
we discuss the effectiveness and usage of the new improvement scheme, and propose further

directions for work.

3.2 Previous Work

It was recognized long ago that a deterministic move selection mechanism (i.e. not purely ran-
dom) could significantly speedup a search. Simulated Evolution (SE) is one method proposed
to overcome this problem [KinBan89]. In SE, the cells to be moved are chosen deterministically,
using a selection criterion the authors called the “goodness” of a cell. In a pass of the search
heuristic, a threshold goodness value is randomly selected. Cells with a goodness the threshold

value are marked for relocation. Then, these cells are simultaneously removed from the layout area

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 32

and then placed by solving a matching problem between marked cells and free placement spaces.
Results using SE proved that deterministic selection of possible moves does achieve a fast gain,
and the selection can be done with little overhead compared to a random selection mechanism.
However, the actual mechanism for the calculation of goodness in SE is very unsophisticated, and
the matching method of placement in the SE heuristic is too slow for practical implementation.

Another method for reducing the number of rejected states is to select candidates for a move
based on the size of cells. If a candidate cell is moved to a new row, and the length of the row would
exceed row length limits, the candidate cell is discounted. This is now a commonplace heuristic
feature (e.g., [SunSec95]), and can be incorporated into practically any selection mechanism. The
heuristic presented in this chapter restricts move selections based on cell sizes.

A method to increase the acceptance rate of moves is to use a local search window. A local
search window is a region surrounding a candidate cell for movement. Allowable positions to move
the cell, or to select a partner for a location swap, are limited to the window, thus keeping searches
localized to the candidate cell. The motivation for this is the observation that in a global placer,
or some other search method that places a circuit from a top-down perspective (see section 2.4),
modules are already located in a globally good, but locally sub-optimal, placement. By limiting
the range of possible moves, the likelihood that these final locations will be found, and speed of
convergence to the corresponding local minima, are increased. Using a search window has been
shown to greatly increase the convergence rate of a search, and finds good local optima when
starting from a good global initial placement [Ken97, SunSec95]. When used on a poor initial
placement, the local search window imposes too great a restriction on allowable moves, and the
final solution quality is poor. The heuristic we develop in this chapter uses the concept of a local
search window to increase the acceptance rate of moves.

A different method for the selection of moves proposed in this chapter is based on utility
theory [EtaVan98]. Utility theory has been used in physical design automation in the past for
the channel routing problem [EtaVan98]. The concept of utility is very similar to the concept of
goodness in simulated evolution, but where the goodness of a cell is a measure of “survivability”

from one pass to the next, utility is a measure of “room to improve”, or ideally, “distance from

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 33

optimality”. This allows utility to be more flexible, since it is not a simple binary survive/not
survive decision. There are other implementation differences as well, making SE and our heuristic

distinct approaches to the improvement problem.

3.3 Solution Methodology

3.3.1 Utility of Net Placement

The utility of a net is a measure of how close to optimality the routing cost of a net is, where the
routing cost is approximated by the net’s HPWL. We calculate the net utility as the ratio of a
net’s current wirelength to its ideal wirelength. The current wirelength of a net can be estimated
with its HPWL. However, knowing the ideal wirelength of a net is equivalent to knowing the ideal
placement of its connected cells! Since this is just a restatement of the placement problem itself,
clearly we can’t calculate the ideal wirelength of a net. So what can we do?

We don’t know the ideal position of all cells in a placement (since this is precisely the problem
we are approximating), and therefore, we can’t know the ideal wirelength of any net in such a
placement. However, if we focus our attention on a single net and disregard all other nets in the
circuit, then it obvious that the best placement for those cells connected to the net is if all the
cells are adjacent to each other, since this will result in the smallest wirelength for the net.

It turns out, however, that even determining the optimal placement for cells connected to a
single net is not trivial for the standard-cell layout style. In a more regularly-structured design
layout style, such as FPGAs, a ideal relative placement can be found in constant-time. For
standard-cells, it is a problem of O(n!) complexity for standard-cells, since the width of a cell and
the pin placement on the cells is variable - a big difference! To make this heuristic more practical,
an approximation on this bound must be made. The approximation used described in detail in
later in section 3.3.2.

Assuming we have calculated the current wirelength and the wirelength lower-bound, the

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 34

utility Upet of net ¢ is calculated as

BOUN D;

Une 7 —
YT THPWI,

(3.1)

Where BOUN D; is a close approximation of a lower bound of the HPWL of net ¢, calculated by
the method in section 3.3.2, and HPW L; is the half-perimeter wirelength of net ¢, described in

section 2.3.2.

3.3.2 Wirelength Lower Bound

It was shown in the previous section that calculating a net’s wire length lower bound is an NP
problem. However, we can readily approximate the cells’ relative placement to each other. The
algorithm used to approximate a lower bound on a net is similar to that used in [KinBan89], and
is illustrated in Figure 3.1.

As a first approximation of the optimal placement, all cells of the current net are assumed to
be placed next to each other without space between them, as though they were all positioned in
a single row (Figure 3.1(b)). Next, all cell areas are collapsed to an approximately square region
(since a square has the minimal perimeter among all rectangles of the same area). Row spacing
is considered and included in the computation. Figures 3.1(c) and (d) show the result after a net
has been collapsed over two and three rows, respectively. Note that in Figure 3.1(c), the region
is closer to a square shape (as measured by its aspect ratio) than that in Figure 3.1(d), so this
configuration would be accepted.

This leads to a minimum perimeter considering only the cell dimensions. However, the min-
imum bounding rectangle (from which the HPWL is derived) depends on the relative position
of the pins which connect the cells to the current net. Recall that pin positions are actually
approximated as a position somewhere inside of a cell (e.g. as in Figure 3.1(a)).

To estimate the effect on the actual net length, the lower bound is approzimated by subtracting
half of the row height from the top and bottom sides, and 3/4 of the width of an average cell of

the net on the left and right sides of the region. The half-perimeter of the final (dashed) region

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH

) L _® —@® row
Pin ~ R R R
Cel _\
® @ row
Net —7]
® L J @ row
@
b)
® § 1/2 row height
row spacing

Cell area collapsed over two rows
(minimum perimeter)

©

row spacing

row spacing

Cell area collapsed over three rows
(not minimum perimeter)

(d)

A—

3/4 avg. cell width lower bound
bounding box approximation

©

approximate lower bound
I

3/4 avg. cell width
actual wirelength

®

Figure 3.1: wirelength Bound Computation

35

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 36

of Figure 3.1(e) is then taken as the lower bound.

This bound is not a true lower bound, since it is possible for a placement of cells to have a
wirelength lower than this value. This situation occurs for small nets that have all pins situated
farther than 3/4 of an average cell width from the outside of the boundary region, as in Fig-
ure 3.1(f). However, this situation only arises when a net’s placement is locally optimal or very
nearly optimal, so we reflect this information by changing the utility of these nets to a utility of
‘1.0’ - the true optimal utility. Larger nets are rarely super-optimal, since the probability of a net
being optimally placed decreases rapidly with net size.

Calculating the lower bound in computationally expensive, since we must iterate over several
rows to find the optimal collapsed area region for a net to occupy. However, calculation of the lower
bound is independent of an actual circuit placement, and so the lower bound can be calculated
for all nets as a pre-processing stage before a search is begun. During a search, a net’s utility can

be quickly calculated at any time by dividing the current HPWL of the net by its lower bound.

3.3.3 Cell Utility

Cell utility is a measure of a cell’s placement quality based on the placement of the nets it is
connected to. The utility of cells in a placement is used to select cells for movement, so the goal
of calculating cell utility is to reflect the degree to which a cell’s placement can improve.

It is very difficult to significantly improve large nets. Notice that on a two cell net (Fig-
ure 3.2(a)), the perimeter of the net (and therefore the HPWL measure of placement cost) is
always due to the placement of the two cells on the net, i.e., HPWL can be improved by moving
either cell closer to the other. In a larger net, such as the six cell example in Figure 3.2(b), the
placement can be changed by moving any cell, but it can only be improved by moving one of
the cells on the net’s perimeter. Obviously, as the net size grows (and in large benchmarks, the
largest nets connect hundreds or thousands of cells), the chances of selecting one of the perimeter
cells and moving it in the correct direction diminish rapidly with increasing net size.

While only a few cells in a typical net can reduce the perimeter, moving any cell in a net can

increase the net perimeter. It is obvious that the size of a net will usually be directly related to

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 37

(A) (B)

Figure 3.2: Large nets are difficult to Improve

the size of its perimeter, but is inversely related to it’s ability to improve. In other words, the
larger the net, the harder it is to make its placement better. If this effect is not accounted for
appropriately in a measure of cell utility, it could give a misleading indication of a cell’s ability to
improve, particularly if it is connected to several very large nets. A good measure of cell utility
should therefore consider the size of a net.

There are several ways to reflect the size of a net when calculating the cell utility. One
method would be to consider the size of nets when calculating net utility. However, this would
require extra computation time to calculate utility for those large nets that, as just described,
are very unlikely to be improved. Another method would be to weight all net utilities in the cell
utility calculation, but again, this would still entail calculating all net utilities for nets attached
to the cell. Because large nets are difficult to improve, large nets should not be used in cell utility
calculations! The actual cutoff value is discussed later.

The method used in the utility-based heuristic for calculating cell utility is therefore to average

all connected nets’ utilities, disregarding large nets. That is

ZiENm Unet,i

Ucett =
|Nom |

(3.2)
where the size of net ¢ is smaller than some user-specified threshold size, and U, is the net utility,
discussed in section 3.3.1. If large nets are disregarded, the utilities for these nets does not need

to be calculated and maintained.

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 38

Selecting the actual net size cutoff value is not trivial, because of the variations in benchmark
circuit statistics and the interactions between cell and net utility and gain estimation. As Fig-
ure 3.3 shows, the vast majority of nets connect between 2 and 5 cells, so a cutoff should definitely
be higher than 5 cells. Move gain estimation (discussed later in section 3.3.7 considers only nets
below 30 cells in size. The consequence of this for cell utility is that, if the utility of a particular
cell is dominated by larger nets, and the move actually improves the placement, gain estimation
will not reflect this fact so the move could be rejected.

A threshold value of 30 cells was used, since over 99% of the nets in the largest benchmarks are
smaller than 30 cells, and gain estimation uses a 30-cell threshold. Furthermore, disregarding large
nets has been shown to greatly reduce run-times during other aspects of physical design in large
circuits, such as cost estimation, without adversely affecting solution quality [SecLee87, Are95].
These assumptions are investigated in section 3.4.4.

In the utility-based heuristic, cell utilities are not maintained within a pass due to the high
computational cost of maintaining a sorted utility list, and the inaccuracy introduced by using
estimated net wirelengths (see section 3.3.7 within a pass. At the beginning of a pass, the cell
utilities are calculated for all cells and sorted. This sorted cell utility list is then used to “suggest”
cells that have a high potential for wirelength improvement. Note that a larger pass size will lead

to decreasing utility accuracy over time within a pass.

3.3.4 The UTILITY Heuristic

Iterative improvement approaches typically choose cells randomly. What makes the utility-based
approach novel is the mechanism it employs to select possible cell movements. The utility-based
iterative improvement heuristic (UTILITY) is shown in Figure 3.4.

The calculation of net and cell utilities in line 1 of Figure 3.4 is performed as in the previous
sections. In line 4, a percentage of the sorted utility list, called the search depth, is examined.
Starting at the lowest utility value (corresponding to the worst-placed cell), cells are examined,
one per pass, and removed from the utility list until the search depth has been reached. The local

search window and target selection of lines 6-13 are discussed in sections 3.3.5 and 3.3.6, below.

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 39

Distribution of nets by cell degree, largest four benchmarks
T T T

% nets of degree
N w S (o) [o2] ~
o o o o o o
T T T T T
| | 1 | |

=
o
T
i

! ! !
10 15 20 25 30

o
o
[é)]

Cumulative distribution of nets by cell degree, largest four benchmarks
100 T T T T

701 .

% nets below degree
(0]
o
T
|

60 | | |
0 5 10 15 20 25 30
net degree

Figure 3.3: Net dize distribution for four largest benchmark circuits. The vast majority of nets
have a degree below 5, with over 99% of nets having a degree below 15.

Gain evaluation in line 21 of the pseudo-code is discussed in detail in section 3.3.7.

3.3.5 Move Selection

The UTILITY heuristic focuses on the 1-opt (cell moves) and 2-opt (cell swaps) movement of cells.
Other algorithms have been proposed using other movements. K-opt (group placement) moves
have been used in some successful improvers [DolJoh91, KinBan89], the were shown in [KinBan89]
to be too slow for simultaneous placement in a random pattern. Cell orientation (cell flipping)
movements have proved to be effective (e.g.[Are95]), but are not appropriate to the UTILITY

method due to the very small gains involved.

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 40

1. Calculate HPWL lower bounds, and initialize net and cell utilities.
2. for each pass

3. sort list of cells by utility — utility list

4. for search depth of utility list

5. source cell + head of utility list (worst utility), remove from list
6. create a local search window

7. select a target location randomly within window
8. determine movement type

9. if no move or swap can be made

10. exit current iteration

11. else

12. save current placement

13. end if

14. if a move can be made

15. move source cell to target location

16. else if swap can be made

17. determine target cell closest to target position
18. swap source and target cells

19. end if

20. correct cell overlaps and row gaps

21. determine gain of movement

22. if gain > 0

23. accept movement

24. else

25. reject movement and restore previous placement
26. end if

27. end for

28. update net and cell utilities

29. end for

Figure 3.4: Utility-based Iterative Improver Heuristic

In UTILITY, the type of movement attempted is determined by the row lengths resulting from
moving or swapping cells. First, if moving a cell to a row A does not cause the new length of
row A to exceed a mazimum-row-length parameter, then the a move is attempted. Otherwise, if
swapping two cells does not exceed the maximum-row-length for either row, a swap is attempted.
If this also fails, the iteration fails and the heuristic continues by selecting a new source cell.

In the UTILITY heuristic, the maximum-row-length is equal to the average row length of the
initial placement plus the smaller of 1% of the average row length or the average cell width. Since

the initial average row length is equal to the ideal row length in a perfectly compact placement,

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 41

this ensures a small final placement area, while not greatly restricting cell movement. This is the

same method used in the TimberWolfSC algorithm.

3.3.6 Local Search Window

Limiting the scope of moves within the locality of the source position has been shown to give
superior results compared to unrestricted moves, when starting from a good global initial place-
ment [Ken97]. This follows from the observation that a global placer places modules in a globally
good, although locally suboptimal, position. After legalization, most cells should be within the
locality of their final positions. By limiting the range of possible moves, the likelihood that these
final locations will be found, and speed of convergence to the corresponding local minima, are
increased.

Note that if we start from a poor initial position, the quality of the final solution could
be drastically reduced, since a comparatively large number of cells will be far from their ideal
locations. The use of a range limiter in this case will prevent those cells from finding their ideal
locations. If, on the other hand, the global placer is good, there will be few of these cases, and
the final quality will not be affected greatly by the use of a range limiter.

Another thing to consider is the relationship between the range limiter window, and the size of
the circuit. One might be tempted to generalize that a larger problem means that moves require a
larger window to avoid overly limiting the search space. However, ideally, the difference between
the legalized position and the final position is a function of the legalization method used, and not
the size of the problem, so a fixed initial search window size could be used on any benchmark
[SecLee87].

The TimberWolf placer in [SunSec95] used a fixed window size for all temperatures in its
simulated annealing schedule. This simplification made the determination of a suitable annealing
schedule easier, and resulted in very good placement results. However, the tile-based improver of
Kennings [Ken97] showed that altering the window size over the improvement time can increase
the acceptance rate, resulting in high quality solutions in a shorter period.

Attempts to determine an adaptive window size based on circuit statistics failed. UTILITY

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 42

uses a user-selectable local search window size, so that parameters can be tuned for each individual
circuit. However, on searches with many passes, an initial window size of 10 average cell widths
and 3 rows either side of the source cell, and a final window size of 2 average cell widths by 1 row

gave reasonably good results for all circuits, while reducing the execution time substantially.

3.3.7 Gain Evaluation

Calculating the gain of a placement is a time-consuming task. In modern search heuristics, the
vast majority of time during a search is spent calculating the gains of perturbations [SunSec95,
DolJoh91, Ken97].

The gain of a search iteration is the total improvement in HPWL due to the movement of
cells. A positive gain is equal to the drop in total wirelength, and vice versa. The trivial way
of calculating this would be to calculate the overall circuit wirelength before and after the move,
and subtract the difference. Indeed this is the most accurate way to do it. It is also the most
time-consuming way to do it.

In a cell move where no overlap is created (and therefore no other cells are shifted), only those
nets connected to the moved cell are affected in any way. By examining each net affected by a
move and calculating their wirelengths before and after the move was performed, the change in
wirelength caused by the move can be determined. The difference in these wirelengths will be the
exact gain of the movement. Calculating gain in this manner is the only way of calculating wire-
length gain exactly, but it is the single most time-consuming step in iterative improvement. Any
improvement to gain calculation can result in dramatic improvements in running time [SunSec95].

Ideally, the fewest nets that must be examined are only those connected to cells being moved.
In standard cell placement where cells may have many different widths, this situation only arises
when swapping two equally-sized cells, a and b, where only nets N, U N, must be examined (nets
connected to either a or b).

Swapping equally-sized cells does not occur frequently during improvement. It is much more
common that either a single cell is moved, or unequally-sized cells are swapped. In both of

these cases, overlap is generated when one cell is moved to a location that is already partially

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 43

occupied by other cells. To achieve a legal placement, these “occupying” cells must be shifted to
non-overlapping positions in the row to make room for the moved cell.

Unlike in the ideal situation described, these shifting movements alter not only the wirelengths
of nets connected to the cell being moved, but also the wirelengths of all nets connected to the
cells shifted out of the way as well. Whereas in the ideal case only a few nets might be affected,
when overlap is created a large number of nets are affected. In a large benchmark, potentially
tens of thousands of nets can be affected by the movement of a single cell! Tt is in these situations
that calculating movement gains precisely can result in huge run-times.

In [SunSec95], Sun examined a method to reduce the number of cells to be shifted, by allowing
gaps to exist in the placement. If the rows are not compacted after a movement is made, then the
source row of a move, or the row containing the larger cell in a swap do not need to be shifted.
This can significantly reduce the number of nets that must be updated.

Usually, when cells are shifted, it is always in a single direction, depending on how the row data
structures are implemented. Another technique to reduce the number of affected nets proposed
in [SunSec93] is to select the direction of a shift in different directions depending on the insertion
point. A simple technique used to maintain a compact placement is to keep the left edge of a
placement flush with the core edge, and have the right edge floating with the row length variations.
To maintain this structure, all shifts are towards the right. This means that, on average, half of
the cells are shifted for each move. Sun and Sechen proposed that by abandoning this flush-left
structure and allowing rows to be shifted to the side of the row closest to the inserted cell, even
fewer numbers of cells need to be shifted. The problem with this approach unmodified is that the
placement tends to “spread out” along the row, with row gaps concentrated in the center of the
row. Movement activity dies quickly, as more and more move attempts are rejected due to row
length constraints. Sun and Sechen did not explain how they overcame this problem.

The approach used in UTILITY is to allow row gaps, and to use a new method for selecting
the direction of shifting cells. Instead of shifting to the closest side of the row, UTILITY shifts
towards the closest gap large enough to accommodate the overlap introduced by the inserted cell.

As can be seen in Figure 3.5, by inserting cell A into the first row and shifting cells to the closest

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 44

side of the row (left), the final row length, even after absorbing some overlap by gap a, will exceed
the core, which is highly undesirable. By shifting to the right, the row gap b can absorb the
overlap without exceeding the core dimensions. Another feature of this method is that it finds
the fewest cells to be shifted if a maximum row length is to be maintained. For example, if cell
A is moved to the second row of Figure 3.5, the row gap c is large enough to accommodate the
overlap of cell A, but shifting right will actually shift fewer cells. The combined size of gaps d and
e can also absorb the overlap, but the furthest of the two, e, is still closer than ¢. By searching
for the closest gap from the target location, this mechanism ensures that a small number of cells

is shifted (and therefore a small set of affected nets), while maintaining a stable core size.

Cel A

r- P

| 1 |

|a ' ! / / b row
| y L A R R 5

' Target Position < ! / j !
e t | d De row
‘ edge of row mldljleof edge of row ‘

(min. cell position) row (max. cell position)

Figure 3.5: Determining cell shift direction

In UTILITY, we use the same gain estimation mechanism as [SunSec95], which reduces the
time of calculating the gain of a movement by approximating the affect of shifted cells on wire-
length changes. In this gain model of shifting cells, the change in wirelength for the cells being
moved or swapped is calculated exactly, but the change in wirelength for the cells that must be
shifted to eliminate overlap is estimated, as demonstrated by the three-cell net in Figure 3.6. The
half-perimeter wirelength of a net is due to the placement of pins at the perimeter of a net’s
bounding box (cells A and B in Figure 3.6). Moving a pin on this perimeter, such as cell A,

will generally alter the HPWL by an amount equal to the pin’s displacement, for small moves.

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 45

Moving a pin that is not on the perimeter, such as that of cell C, will not alter the HPWL for
small moves. The value of these observations is that, rather than calculating the bounding box
for the net after each cell’s shifting by examining all pins on the net, the change in wirelength can
be approximated by simply adding or subtracting the shift amount from the previous net wire-
length as appropriate. Since hundreds or thousands of pins do not to be repeatedly examined,

this method can dramatically reduce execution time of the search[SunSec95].

“ »
Pin bounding box

Figure 3.6: Estimating change in HPWL for small cell displacements

The shifting model for gain estimation is not perfect. For larger moves, such as when a pin
not on the perimeter is moved outside of the perimeter, this estimation model will not hold since
it will not indicate the true increase in HPWL. Another case not reflected accurately is when a
cell is moved such that it is no longer on the perimeter. For example, if cell A is moved to the
right a small amount, the HPWL is decreased by the amount of the move, but if it continues to
move right until it passes cell C, the actual HPWL will not continue to decreases since the pin
on cell C becomes the new perimeter of the net’s bounding box, but the shifting model will not
reflect this fact.

Despite these inaccuracies, since the maximum displacement of moves in the UTILITY heuris-
tic is restricted by the local search window, most displacements are small compared to the size of

the bounding box, so the shifting model approximation is fairly accurate in practice.

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 46

To further minimize the adverse effects of large nets in a circuit, large nets are ignored during
move gain estimations. The reasons are the same as in section 3.3.3, namely that estimating gains
for large nets takes requires extra time without significantly altering the placement outcome. Sun
and Sechen in [SecLee87] showed that, when used with the shifting gain estimation model, limiting
gain estimation to nets smaller than 30 cells actually increases estimation accuracy slightly, and
reduces run time by over 80% by reducing the time required for computing movement gains.

Therefore, only nets smaller than 30 cells are considered during gain estimation in this chapter.

3.4 Results

Numerical results were obtained using the full set of MCNC benchmark circuits, introduced in

section 2.5.

3.4.1 UTILITY as a Primary Improver

The UTILITY heuristic was developed to be a fast, greedy heuristic, exploiting knowledge of the
current placement to select moves with a good probability to improve the placement quality. The
utility list search depth of a UTILITY search determines the size of the search space that can be
examined during a pass. A smaller search depth will concentrate on fewer possible moves, and
therefore limits the size of the search space. However, a smaller search depth will also not waste
time on well-placed cells that are very unlikely to be improved by a move.

Figure 3.7 illustrates the behavior of the UTILITY heuristic with varying utility list search
depths, using the Industry2 large benchmark as an example. In the legend, 20% means that the
lowest 20% of the utility list is examined in a pass, before the utilities are re-calculated for the
next pass. Here, UTILITY was used as a primary improvement heuristic, meaning that was used
alone to achieve the final solution quality, starting at a good initial solution. However, UTILITY
was not designed to be used as a primary improvement heuristic. Figure 3.7 also compares the
UTILITY heuristic to a good greedy random-move-selection iterative improver to illustrate this.

The improver used was the TILE heuristic developed by Kennings in [Ken97], and has been shown

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 47

to give very competitive final solutions. We used the ARP global placer developed by Etawil in
[EtaVan98] to generate initial solutions. For both heuristics, the same-sized local search window

was used.

27

2.65

N
N o g
o a =)

Total Estimated Wire Length (micrometers)
N
i
(4]

24

1 1 1 1 1 1 1 1 1 J
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

Figure 3.7: Comparison of UTILITY to TILE as a primary improver, showing affect of different
utility list search depths

The general behavior of a utility-based is demonstrated. By using a utility list with a fixed
search depth, a particular region of the search space is examined rigorously. For a small search
depth, this means that the very worst-placed cells are emphasized, and a large amount of im-
provement is seen in a very short time. However, this traps the solution in a local minimum
very quickly. Examining the results for the 10% search depth, we can see that this is true. The
solution converges very quickly, but the quality is poor. Increasing the search depth increases the
number of cells that are examined, increasing the search space, so convergence takes longer, but
final solution quality is greater. Search depth can be traded-off with convergence speed.

The TILE improver, which is a greedy method which rapidly moves large numbers of cells,

examines much more of the search space than UTILITY. Starting from a “good” solution, there

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 48

is still much possible improvement to be made, which is exploited efficiently by TILE. Even at
the slowest convergence rate (when the entire utility list is examined), UTTLITY converges at an

inferior solution to that of TILE.

3.4.2 UTILITY as a Post-Processing Improver

UTILITY can function as a primary improvement method, but it was not designed to be so;
UTILITY was designed as a fast greedy search heuristic. Because of this, it is better suited as a
“post-processing” improver, whereby it is used to quickly achieve a slight improvement in already-
high-quality solution. Figure 3.8 shows the performance of the utility heuristic on a placement
after being improved by ARP and TILE. In this case, the initial solution is of very high quality,
meaning that the solution is very close to a local minimum. Because of this, there are few moves
remaining that will improve the solution. The initial solution was obtained by running the TILE
improver until it converged to a good solution. After the TILE had finished, the UTILITY
heuristic was run for 3000 seconds on the industry2 benchmark, varying the utility list search
depth.

As a post-processing step, the UTILITY displays the same overall behavior as when used
as a primary improvement method. The same generalization holds true: decreasing the utility
list search depth decreases final solution quality but increases convergence rate. This is the
characteristic that makes UTILITY poor as a primary improver, but good as a post-processing
improver.

Comparing Figures 3.7 and 3.8, it can clearly be seen that the rate of convergence of UTILITY
has drastically diminished after the TILE improver has been used. The reason for this is simple:
the starting solution in Figure 3.8 is much better than that of Figure 3.7, and so there are far
fewer moves that can improve the solution.

As a primary improver, the convergence rate of UTILITY is so fast for small search depths
compared to TILE that it is not practical to sacrifice solution quality for convergence speed, since
increasing the convergence speed by a comparatively small time can greatly increase solution

quality. Since many moves can result in improved placement cost, it is not practical to waste time

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 49

voa x 10” Effect of Utility List Search Depth, Time vs. Wirelength, Industry2 Benchmark
ny
202 V&
N
NN
AN
o~
2 XL
@ RN
Q N~
5] S el
£ 198 SN
S ~a
E RN
S 1.96F -~ . TN __
=3 -~ ~ -
S -~ ~ -
@ [
- N
()
=194r
2
o
]
g 1921
B
w
ES 20%
.9 19 L 30%
— = 40%
1.881 — 100%
1.86
1 1 1 1 1 J
500 1000 1500 2000 2500 3000

Time (seconds)

Figure 3.8: UTILITY effect of varying search depth on total wirelength, with a constant window
size of 5Hx2

with utility overhead when a simple random-move selection will achieve good quality solutions in
a small amount of time.

After the placement has been improved to a high-quality solution, however, a random-move
selecting heuristic, such as TILE, spends almost all search time examining moves that do not
improve the solution. UTILITY, on the other hand, focuses on the worst-placed cells, and therefore
greatly increases the proportion of moves that increase the solution quality. The same basic
behavior still holds true: faster convergence results in lower final quality, but because convergence
is so slow, it is much more reasonable to accept an inferior solution to save time.

Table 3.1 summarizes the typical performance of the UTILITY search heuristic when used as
a post-processing improver. Results labeled “No Util” were attained by running ARP followed
by running TILE until it converged. Results labeled “Util” were attained by performing 100
iterations of UTILITY, on the results attained in “No Util”. UTILITY was run searching 20% of

the utility list with a window size of 5x2..

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 50

circuit No Util | Util | Imp. || No Util | Util | Incr.
WL WL % Time | Time | %
Fract 0.035 | 0.035 0 9.2 10 8.7
Primaryl 0.84 0.84 0 127 131 3.0
Struct 0.44 0.44 0 186 197 5.5
Sm. Avg. 0 5.7

Industryl 1.70 1.68 1.2 602 617 2.4
Primary?2 4.26 4.22 | 0.9 611 628 2.8
Biomed 2.29 2.21 3.5 1327 1364 | 2.7
Me. Avg. - - 1.9 - - 2.6
Industry?2 20.2 20.1 0.5 3344 3411 | 2.0
Industry3 54.1 54.0 | 0.2 4400 4475 | 1.7
Avg.small 10.2 9.97 | 2.3 6853 6963 | 1.6
Avq.large 11.4 11.2 1.8 7735 7857 1.6
Lg. Avg. - - 1.6 - - 2.3
Average || - | - | 1.1 || - | - | 3.4 |

Table 3.1: UTILITY performance as a post-processing improver.

The results in Table 3.1 show that a small amount of improvement can very quickly be achieved
when UTILITY is used on a placement that is already of very high quality. For the large bench-
mark circuits, an average improvement of 1.6% was achieved with an increase in total execution
time of only 3.4%. Therefore, while UTILITY was not very effective as a primary improver, it is

quite effective as a post-processing improver.

3.4.3 Local Search Window Size

The size of the local search window affects the size of the search space that can be examined from
any particular placement. Figure 3.9 shows the affect of varying the local search window size of

a UTILITY search, with a fixed search depth of lowest 20% of the utility list.

3.4.4 Cell Utility Net Size Cut-off

In section 3.3.3, it was proposed that large nets should not be used in cell utility calculations.
The reason for this was that, because large nets are very difficult to improve, their contributions

of net utility could be misleading to cell utility values, and this property should be reflected in

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 51

x 10° Effect of Local Search Window Size, Time vs. Wirelength, Industry2 Benchmark

5x1

2.02

N

Total Estimated Wire Length (micrometers)
= =
© ©
(2] ©

=

©

=
T

1.02 I I I I I]
500 1000 1500 2000 2500 3000

Time (seconds)

Figure 3.9: UTILITY effect of varying window size on total wirelength, with a constant search
depth of 20%

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 52

the cell utility calculation. Figure 3.10 summarizes the effect of different net size cut-off values to
final wirelength, using the Industry2 benchmark as an example. Results were attained using the

ARP global placer, the TILE improver, and then 100 passes of the UTILITY search improver.

203 x 10° Final wirelength vs. Cell utility net size cutoff, Industry2 benchmark
. T T T T T T

2.028 b

N
o
N
(=}
I

2.024 h

2.022 - B

Final total wirelength (micrometers)

N
o
o
T
I

2.018 b

2016 I I I I I I I I
0 50 100 150 200 250 300 350 400 450

Net size cutoff

Figure 3.10: Effect of net size cut-off in cell utility calculation, showing how a cut-off below 30
cells results in significantly poorer solutions. Results are for the industry2 benchmark with a
maximum net degree of 427.

Figure 3.10 corroborates the assumptions made in section 3.3.3. In agreement with the con-
clusions presented in [SecLee87], disregarding large nets does not adversely affect solution quality,

and actually provides a slight improvement over a solution considering all nets.

3.4.5 Effectiveness of Utility as a Measure of Cell Placement Quality

In this chapter, utility theory was used to describe the quality of placement of a cell, in order to
determine good candidates for search moves. Figure 3.11 shows that there is a high correlation
between improvement in cell utility and improvement in wirelength, especially for the largest

benchmarks.

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 53

Correlation between utility and wirelength, by benchmark

0.2 T T T T T T T
: improvement in utlity
0.18} improvement in wirelength |
0.16 E
0.14+ E

4
[
N
T
I

Normalised improvement
o o
o o ©
() © =
T T T
Il Il Il

o
o
S
T
I

o
o
R
T
I

I I I I I I I
fract priml struct indl prim2 bio ind2 ind3 avgsmall avglarge
Benchmark

Figure 3.11: Correlation between wirelength improvement and cell utility, using UTILITY heuris-
tic. Normalised improvement is the ratio of final value to initial value, normalized to the initial
value.

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 54

Figure 3.12 shows the distribution of total half-perimeter wirelength by net size, and shows
that the vast majority of total estimated wirelength is distributed in small nets. This is consistent
with the observation in section 3.3.3 that most nets are between 2 and 5 cells in size.

Distibution of Wirelength (HPWL) by net size, all benchmarks
T T T T T T T T T T T T

: before iterative improvement
after iterative improvement | -

Proportion of total wirelength

3 4 5 6 7 8 9 10 11 12 13 14 15+
Net Size

Figure 3.12: Distribution of total half-perimeter wirelength by net size. Porportion of total
wirelength is the total wirelength of all nets for each net size, divided by the total wirelength of
all nets.

Figure 3.13 shows that after improvement with UTILITY, the net utility of small nets between
2 and 5 cells in size is increased. For two-cell nets, net utility is increased by a factor of almost
100%! This indicates that, in terms of the utility measure, net lengths are closer to optimum.

Since there is a high correlation between improvement in wirelength and improvement in cell

utility, our measure of cell utility is a good measure of a cell’s placement’s closeness to optimality.

3.5 Summary

In this chapter we examined a novel new approach to overcome the problem of random move

selection in a deterministic (greedy) search heuristic. By measuring the utility of a cell’s placement,

ot
Ut

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH

Average Net Utility by net size, all benchmarks
0.35 T T T T T T T T T T

: before iterative improvement
after iterative improvement

o
N
T
I

Average Net Utility
o
B
(4]
T
Il

0.11- B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15+
Net Size

Figure 3.13: Average net utility by net size.

moves are chosen that are statistically more likely to improve than if the moves were chosen
randomly. By concentrating computational effort on cells with worse-than-average placements,
greater gain can be achieved with less effort than that which a randomized method could achieve
in the same time. In this way, it is possible to reduce the computational impact of examining
moves that will be rejected.

It was shown that using utility as a measure of placement quality was effective. Improving
the cell utility of poorly-placed cells improved the total wirelength of the solution, and solution
convergence time was dramatically increased with smaller utility list search depths, so that “good”
solutions were found quickly. However, when compared to a good deterministic search heuristic as
a primary improvement heuristic, the results using utility were not competitive. The convergence
time for the utility-based heuristic was too short to adequately examine the search space, and so
the solutions were of very low-quality.

Utility-based improvement was shown to be best suited for use as a fast post-processing im-

CHAPTER 3. UTILITY FUNCTION-BASED ITERATIVE SEARCH 56

provement step, after significant improvement has already been made by another improvement
method. Most good improvement methods, such as simulated annealing, achieve a large degree
of improvement by using stochastic methods in initial phases of improvement, in which a large
number of non-improving moves are accepted in order to escape local minima. Utility-based im-
provement, by contrast, is exactly the opposite of this. Random move selection is avoided, and
gain is accepted deterministically. Because of this, utility-based improvement cannot function
well as a primary improvement heuristic.

However, when the placement quality is already high, a deterministic approach is desirable.
Again using simulated annealing as an example, in late placement phases, when the solution qual-
ity is getting very good, simulated annealing behaves very deterministically, accepting very few
non-improving moves. If more non-improving moves are accepted, the solution will not converge to
a local minimum, and at worst, the solution will find a new, poorer-quality local minimum, defeat-
ing the purpose of using hill-climbing. Because utility-based improvement is highly deterministic,
quickly finding a local minimum, it is well suited to achieve any post-processing improvement.

In the next chapter we investigate another way to handle highly complex problems in ASIC
design. In this chapter, the complexity of the standard-cell placement problem was handled by
reducing the size of the search space by using utility to focus search efforts on poorly-placed cells.
In the next chapter, circuit clustering is introduced which actually reduces the search space of the
problem, rather than trying to confine a search. The circuit size is reduced, so that the complexity
of the improvement task itself is reduced. This method also presents an interesting challenge to

restoring circuit complexity, in which utility-based improvement plays an important role.

Chapter 4

Clustering-based Placement

4.1 Introduction

4.1.1 Motivation

As mentioned previously, the size of standard-cell placement problems is increasing at a sub-
stantial rate. Even the outdated benchmarks available to the academic world are very large by
combinatorial scales. Computation speed increases over time as well, but because of the complex-
ity of the placement problem, a doubling of the circuit size cannot be handled in the same time by
a doubling of the computation speed. A placement heuristic that produces excellent results, but
takes weeks or months to run is often useless to the modern just-in-time fabrication mentality. In
many cases, even a heuristic that runs in days is considered too slow, when a few years ago it was
considered commonplace.

This demonstrates the need for good but fast placement heuristics. Commonly-used heuristics
that were appropriate for smaller circuits can not stand up to the demands placed on them by
larger circuits, because the run-time complexity of these heuristics is simply too large. The need
for pseudo-linear time heuristics is evident (pseudo-linear meaning very low-order polynomial,
such as O(nlogn) and preferably less than quadratic (O(n?))).

There are two techniques currently in use to deal with this problem. The most obvious method

CHAPTER 4. CLUSTERING-BASED PLACEMENT 58

is to implement faster heuristics at the cost of lower-quality solutions. The other is to attempt to

reduce, or “cluster”, the size of the circuit into a less-complex form.

4.1.2 Circuit Coarsening

The first approach to a placement problem is to solve it in a top-down fashion, by considering
globally the best positions for cells in a placement. This is, of course, incredibly time-consuming,
and simply isn’t practical for large problems without relaxing the problem.

The more conventional approach is to use a bottom-up, iterative improvement approach, which
attempts to find a good overall solution by looking at one or a few cells’ movement at a time. This
is less time consuming, but also less beneficial since only a small local improvement is considered
at a time.

Techniques have been attempted to “blend” the two approaches to get the best of both worlds.
One example is simulated annealing, by definition an iterative improver and so a bottom-up
method, but at its high temperature regime, it is know to behave in a top-down manner [SunSec95].
For this reason, simulated annealing is often referred to as a “pseudo-top-down” method, since
over the course of its improvement it considers the global placement of each cell. It has been
mathematically proven that the simulated annealing method can give a global optimal solution
given a long enough time [MitRom&6].

A more recent approach to combining these techniques is called hierarchal improvement, and is
a two-step procedure, first proceeding bottom-up, and then top-down. The bottom-up technique
is clustering, and involves the grouping of highly connected cells into clusters and clusters into
larger clusters, while the goal of the top-down method is to determine the location for all the
clusters, and then the location of all cells within those clusters [MalGro89]. The goal of this is
to reduce the number of entities that need to be improved, and the number of interconnections
between them, through the bottom-up stage. This reduces the search space by reducing the
degrees of freedom for cell moves, making a top-down method more feasible.

This approach was first applied to the linear placement problem in 1972 with Schuler and

Ulrich’s paper [SchUIr72] and has since been applied heavily to the partitioning problem. Only

CHAPTER 4. CLUSTERING-BASED PLACEMENT 59

recently has it been applied to the standard-cell placement problem, and then only in limited
usage [SunSec95, MalGro89]).

Solution quality doesn’t necessarily need to deteriorate to achieve computational gains, since
search efficiency is also improved. This conclusion follows by observing that without clustering,
for two highly connected cells to move together, first one would have to be selected to move, then
the second would have to somehow find its way close to the location of the first one. This would
take much longer on a non-coarsened circuit because several moves would have to be tried before
they can come together [MalGro89] (This of course assumes that the clustering method is good,

as any poor clusters made at the bottom-level step will be “fixed” at the high level).

4.1.3 Clustering v. Coarsening

The terms “clustering” and “coarsening” are encountered frequently in the literature, and the
terms can cause confusion. Clustering usually refers to generating a small number of super-cells,
each containing a large number of cells. This is analogous to a k-way partitioning where £ is
reasonably large. Coarsening usually refers to generating a large number of super-cells, where
each super-cell consists of only a few, or even just one, cell. The distinction between the two is
“fuzzy”. In practical use, the terms are generally interchangeable. We will endeavor to refer to a
group of cells as a “cluster”, and the act of creating clusters as “coarsening” (since it is somewhat

more accurate).

4.1.4 Measurement of clustering quality

Despite active attempts to find one, there is presently no known metric for directly measuring
the quality of a clustering [Alp94]. Attempts have been made to quantify and define metrics, but
the ones found are specific to a single sub-class of clustering heuristics (the random-walk method
described later), and are based on clustering-based-partitioning results.

The only agreed-upon measure of a clustering’s quality is by the final improvement obtained
using the method. In other words, we must infer the quality of our clustering method from the

quality of our whole placement heuristic. This is obviously not an ideal situation, since final

CHAPTER 4. CLUSTERING-BASED PLACEMENT 60

solution quality is a factor of many variables, including the size and statistics of the circuit being
placed, the placement heuristics used, and the length of improvement time allowable. The best
that can be done to distinguish clustering methods apart is to attempt to isolate the effects of the
clustering method from the improvement methods by testing in different situations with different
improvers and different benchmarks. As we discuss later, we have attempted to test this solution

space as thoroughly as time reasonably permits.

4.1.5 Goals of Clustering and De-clustering

As we mentioned above, the quality of the clustering method can only really be measured by the
quality of the final solution. We only know the final solution after the clusterer has done its job,
so what objective does our clusterer use?

The principle behind coarsening a circuit is to: (a) reduce the problem size, while (b) keeping
the quality of the solution as good as for the flat circuit [Kar97, MalGro89]. Obviously, the
computational time of the coarsening method should also be kept small. Therefore, a good
clustering method should quickly identify groups of cells which will eventually end up together in
the final placement stage [SunSec95].

In doing this, there have been some common goals empirically give consistently good results,
both for the partitioning problem and for the placement problem. First, the physical size of
clusters should vary over a small range [SunSec95]. The reason for this is that if the range is
large, gain estimation errors get larger, and the size difference inhibits cell movements in the
iterative improvement. Second, the size and number of nets should be reduced [Kar97]. This is a
direct consequence of our primary goal of reducing the problem size, but is frequently overlooked
in the literature, where the concentration is on reducing the number of cells. The reason for this
is because placement methods perform better, and cost estimation is faster and more accurate,
with fewer and smaller nets. Nevertheless, there is general agreement that reducing the number
of nets, and choosing clusters to reduce the most nets, is preferable, and gives best results. This
implies that highly connected cells have been clustered since many nets will become localized

(connected only to cells within the same cluster) [SunSec95, Kar97, MalGro89].

CHAPTER 4. CLUSTERING-BASED PLACEMENT 61

Therefore, the highest priority in a clustering method should be to localize, or increase the
potential to localize, nets to a cluster. It should also ensure that the cluster sizes are not excessively
diverse, and that the size of nets is reduced if not entirely eliminated.

The goals of de-clustering are comparatively simple. First and foremost, the original flat
circuit should be obtained after de-clustering, i.e., the original circuit should not be modified.
Second, the quality of the solution at the flattened level should be as close as possible to that of
the clustered levels. The measure of this quality is simply the increase in total wirelength while

descending the hierarchy towards the flat circuit.

4.1.6 Contributions

In this chapter, we propose a technique to reduce the problem size, while keeping the execution
time to a minimum. We reduce the problem size using a circuit coarsening technique, and we
reduce the complexity of the search by examining pseudo-linear time heuristics for performing the
clustering and de-clustering. We consider some fast heuristics that have been applied successfully
to the circuit partitioning problem, and present several modifications to consider the particular
demands of the placement problem. We also apply a fast legalization heuristic to reduce the

de-clustering penalty.

4.2 Previous Work

This chapter investigates the application of circuit clustering to the placement problem. Circuit
clustering has been a revolutionary development to design automation. By reducing the complex-
ity of the problem, very large industrial problems can be dealt with in reasonable amounts of time.
This has been the most significant benefit of circuit clustering - enabling heuristics to operate on
very large problems. Circuit partitioning has been the major area for previous clustering research,
with literally hundreds of papers published in conferences and journals in recent years. Yet very
little academic work has been done for the clustering-based placement problem, a much more

complex problem than circuit partitioning. Less than half a dozen papers have been published in

CHAPTER 4. CLUSTERING-BASED PLACEMENT 62

the last decade on clustering-based placement, and only a single paper has addressed multi-level
placement [SunSec95]. The major purpose of this work is to attempt to apply what has happened
in the partitioning world to the placement problem, and to note any relevant issues that should
be considered that are particular to placement.

In the rest of this section we first provide a brief survey of the major successful clustering
methods that have been applied to circuit clustering, and then present the previous work that

has been done in clustering-based standard-cell placement.

4.2.1 Partitioning-based Clustering methods

The partitioning problem (see section 2.2.1) has long been a “test-bed” for experimenting with
advanced search heuristics, due to the wide uses of partitioning in various fields such as network
routing, computer memory management, and, of course, physical design automation. As a result
of this work, a staggering variety of approaches to partitioning have been applied, and many
perform very well.

As previously mentioned, one can view the problem of clustering a circuit as the equivalent
problem of partitioning a circuit into a very large number of small partitions. This may seem odd
- to solve a partitioning problem in order to better solve another partitioning problem - but the
structure of the problems is actually very different. In general application, the final solution to
the partitioning of a circuit should be very high-quality. In contrast, partitioning-based clustering
does not need to be so accurate, since many approximation are made in the clustering heuristic
itself.

This observation has given new life to many primitive clustering methods that were originally
designed with speed in mind, but have given way to more advanced, but much slower, methods
which give high-quality solutions. Some of these methods are ideally suited for clustering, since

speed is one of the primary considerations when forming clusters.

CHAPTER 4. CLUSTERING-BASED PLACEMENT 63

Ratio-cut circuit partitioning

This method finds natural clusters by minimizing the interconnections between clusters [YehChe92].
It generally finds few clusters with wide range of sizes, and the number of clusters is not known
in advance. Also, most heuristics have a quadratic or greater time complexity, making them

unsuitable for a fast coarsening technique [YehChe92].

Random Walk

This is another partitioning based-method that first finds a random non-repeating sequence of
cells by “walking” from one cell to another by their interconnections [ConHag91, KahKan92].
The “steps” are usually selected at random, but can consider other attributes as well, such as the
weight or number of interconnections. Clusters are then formed by performing a linear partitioning
on the sequence. The length of the random sequence is quadratic, and total complexity of the

heuristic is cubic. Also, the walk and partitioning heuristic can not easily consider the cell sizes.

Eigenvector/Spectral methods

Eigenvector methods are attractive in circuit partitioning because they are fast and require low
storage overhead (e.g., [HagKah92, AlpKah96]). First, the net list adjacency matrix A is created,
which requires the circuit hypergraph to be modeled as a graph. The diagonal matrix D = (d;;),
with d;; = 2?21 ai;, is used to form the Laplacian matrix of A, given by Q = D — A. The
first d eigenvectors of) are found, where d is a user-specified parameter. Then, the eigenvectors
are combined, either through summation, binary encoding, or some other way. Modules with
similar-valued entries in the combined eigenvectors are assigned to the same cluster.

This is a highly mathematical approach to the clustering problem, which can best be viewed
as follows: Any eigenvector is a one-dimensional (i.e., linear) placement of the modules in a net
list. Closely-valued entries in the eigenvector indicate strong connectivity between the correspond-
ing modules. If several eigenvectors (i.e., several one-dimensional placements) are obtained and
combined in some meaningful way, highly connected regions of the net list can be discerned.

Eigenvector-based methods can be implemented very quickly, limited only by the eigenvector

CHAPTER 4. CLUSTERING-BASED PLACEMENT 64

calculations which take an expected O(n'*) time using the Lanczos iteration [AlpKah96]. The
main disadvantage of these methods is that they view all modules as being equal sized, with no

straightforward way to weight individual modules.

4.2.2 Constructive Clustering methods

Partitioning-based methods rarely consider the sizes of clusters as an objective - a consideration
of major importance to the placement problem - and partitioning-based methods that do consider
sizes tend to be prohibitively time-consuming (e.g., [YehChe92]).

Another approach to the clustering problem the constructive method, in which clusters are
“grown” from selected seed cells. This is similar to the constructive placement approach, discussed
in section 2.4.3. There has also been previous work in the partitioning field on constructive
partitioning, but results tend to be sub-standard to partitioning-based methods when compared
on solution quality obtained, and are often used merely to generate a better-than-random initial
solution for an iterative improvement technique [Ken97]. However, these methods tend to be

flexible to size constraints - an important consideration in forming clusters.

Prioritized Attributes

In this constructive method, modules are merged according to an attribute list [MalGro89]. The
attributes considered include terminal count, common net count, number of nets localized, com-
mon net fan-out, and cluster size. The major advantage of this method is that it can be easily
adapted to consider different priorities and combinations of attributes. The main disadvantage is
that the ideal priorities and attribute list is not the same for all circuits. The time complexity for

this method depends on the attributes considered.

(k,1) Connectivity Method

In this method, clusters are formed using a measure of graph connectivity. Clusters are formed
by joining k-connected components in a circuit into a cluster. To limit the search for connected

components, only components connected by a path with length [are considered [GarPro90].

CHAPTER 4. CLUSTERING-BASED PLACEMENT 65

The choices of k£ and [are difficult to select. The method has a polynomial complexity in
O(n*"). As well, for choices of [> 1, unnatural results can result, since cells further apart from
each other are more likely to be joined than those closer together (since there are more paths

between them, as measured by the heuristic, and hence meet the k-requirement to form clusters).

hMetis

The methods proposed by Karypis et. al. [Kar97] are simple connectivity based methods, cluster-
ing edges or hyperedges in a hypergraph in linear-time. The method implemented in the hMetis
software package [Kar99] greedily clustered entire nets in one pass, and then clustered remaining
cells in a second pass. No constraints on cluster sizes or numbers were considered. Nevertheless,
this very fast and simple method produced the best results at the time of its publishing. However,
these methods have never been publicly applied to placement.

The simplest method presented is the “edge-connected clustering”, or “EC” method. A cell is
chosen, and a cluster is formed by pairing it with a randomly-chosen connected cell. In a graph,
the result is to eliminate a graph edge, but in a hypergraph the result is merely to reduce the size
of the hyperedge (unless the hyperedge only connects the two cells, of course).

Results using EC were of lower quality than the hyperedge based methods, the best of which
is the “modified hyperedge clustering”, or MHEC, method. MHEC functions by examining the
net-list in two passes. In the first pass, each net is visited in order of increasing size, and the net is
clustered if none of the cells on the net are already assigned to an existing cluster. In the second
pass, again each net is visited in order of increasing size, and all remaining unclustered cells on
each net are formed into a cluster.

Apart from performing well in the partitioning problem, it has many properties that make it
appealing for application to the placement problem: linear time complexity, fairly even cluster
sizes, and good circuit size reduction. The focus of MHEC is to reduce the number of nets in the
circuit as greedily as possible. In the first pass, as many small nets are eliminated (clustered) from
the circuit. The second pass has the effect of “almost” eliminating nets, in that in subsequent

clustering levels it will be easier to eliminate the net. By visiting nets in order of increasing size,

CHAPTER 4. CLUSTERING-BASED PLACEMENT 66

this method implicitly attempts to cluster smaller nets first, so that the number of nets in the

problem is more likely to be reduced.

4.2.3 Hierarchal Clustering

Early methods of clustering performed the desired circuit size reduction in a single level (e.g.
[MalGro89]). Research has recently shown that clustering in steps (illustrated in Figure 4.1),
reducing the circuit size gradually by adding intermediate levels to the hierarchy, produces superior
results by permitting more gradual de-clustering [Kar97]. This gradual clustering is often called
“multi-level” or “hierarchal” clustering.

During de-clustering in a single clustering level heuristic, the difference between positions in
clustered cells and flat circuit cells can be substantial, and significant iterative improvement is
necessary to achieve a high quality solution. In a multi-level heuristic, much smaller differences
are created between levels of the hierarchy, because it is built slowly. During de-clustering, these
differences are more easily managed by simple interchange heuristics, resulting in a superior quality

solution in a shorter amount of time.

clustersformed 7:::'

Level n g:)e:/r:gfsllsgel I:l:l:l

Q\ /:‘Iuster \ de-cluster
Level 1
ev

CT T TT71] CT T TT71]

/ custer & de-cluster

Leve 0 [ULLILITIIT] (IIITT T ITT]
(Flat) HIEIEEEEE (T 11

Figure 4.1: Multilevel Clustering Hierarchy: Majority of placement effort is executed at top
hierarchy level, when the circuit is smallest.

CHAPTER 4. CLUSTERING-BASED PLACEMENT 67

4.2.4 Application to the Standard-Cell Placement Problem

As previously mentioned, very little work has been publicly done applying clustering to the
standard-cell placement problem. So far only two main efforts have been put forth, and one of

these has since released their product commercially, ending the release of academic information.

TimberWolfSC

With the last public release of TimberWolfSC [SunSec95], a clustering-based simulated annealing
heuristic produced the highest-quality results up to that time. The clustering method used was
partitioning-based, minimizing a cost function of a weighting of the pins of the cluster, through
an application of simulated annealing. The method explicitly emphasized clustering nets with
small fan-out (to reduce overall number of nets) and the importance of maintaining similar-sized
clusters. In theory, the clustering method is linear time, but it uses simulated annealing (which
is decidedly NOT fast).

The clustering method in TimberWolf also constrains maximum and minimum cluster sizes,
and gives a pre-defined number of clusters, which can mean that clusters are “forced” to fit the
constraints, but that is generally not a problem with huge circuits. Overall, the clustering method

allowed very good results for placement, but was still fairly time-consuming.

Mallela and Grover (Prioritized Attributes)

Mallela and Grover [MalGro89] identified the need for a fast clustering method, and used the
prioritized attributes method to “grow” clusters from randomly-selected seed cells based on the
strength of their connections . Their method finds a sub-optimal matching solution pairing cells
to seeds by iterating over many passes to find good potential clusters based on the attributes,
while limiting cluster sizes. They found that the ideal attributes and corresponding priority,
for clustering, was first the number of nets localized, and then the reduction of terminal count.
However, this method did not consider multi-level clustering, and the matching stage of the
heuristic was very time-consuming.

There have been many methods used to form clusters in a circuit net list. Those methods

CHAPTER 4. CLUSTERING-BASED PLACEMENT 68

surveyed here each have advantages and disadvantages, but no one method is ideally suited for
the standard-cell placement problem. Of all the methods examined, the MHEC method in hMetis
displays most of the characteristics demanded in the standard-cell problem, apart from consid-
eration of cluster sizes. However, there is nothing inherent in MHEC that would prevent such
considerations from being implemented. In the next section, a new novel approach for circuit clus-
tering is presented, based on weighted hyperedge clustering, which displays linear time-complexity,

highly-connected clusters, high net localization, cluster size control, and good performance.

4.3 Clustering-based Standard-Cell Placement

4.3.1 Weighted Hyperedge Clustering

As we saw in the last section, little previous work has been done on the clustering-based placement
problem, but many different ideas for clustering have been proposed that could have potential
applications in placement. In particular, fast methods for clustering, based on linear-time mea-
sures of connectivity, proposed by Karypis et. al. [Kar97] showed high-quality results for the
partitioning problem, while displaying many of the properties that are desirable in a clusterer for
placement, namely speed, fairly even natural cluster sizes, and good circuit size reduction. In this
section we describe a new clustering method based on this previous work but more suitable for
the placement problem. As will be seen, the major addition to simple hyperedge clustering was
the development of cluster size control.

The major problem with Karypis’ MHEC method when applied to placement is that there
is no explicit cluster width control. Sun and Sechen showed that for good quality placements,
consistent cluster widths resulted in superior results [SunSec95].

In general, MHEC clusters consist of similar numbers of cells, typically between two and four
[Kar97]. However, in the placement problem, a more important consideration is cluster width. A
pair of clusters each consisting of two cells may have widths differing by an order of magnitude,
and clusters with larger or smaller numbers of cells compound this problem. The result is that,

while the sizes of the clusters tend to be consistent (and do not have to be consistent), the resulting

CHAPTER 4. CLUSTERING-BASED PLACEMENT 69

widths of clusters are almost certainly not.

In our approach, which we call a“Weighted Hyperedge Clustering”, or WHEC, the approach
is to explicitly limit cluster widths as they are formed. As seen in the pseudo-code in Figure 4.2,
an upper and a lower width limit is determined based on the cell widths in the current hierarchal
level. As a potential clustering of cells is examined, a new cluster is only created if the sum
of the constituent cells’ widths is between these width limits. This limitation on sizes prevents
excessively large clusters from impeding improvers, yet still reduces the problem size.

Similar to the MHEC method, our method is divided into passes. In the first pass, cells
hyperedges are greedily clustered together, but only if they are within width limits. In the second
pass, remaining cells on hyperedges are also greedily clustered together. Finally, since it is possible
that some cells are only connected to a cluster that is prohibited from clustering based on its size,
a third pass is performed to assign any remaining cells to a new cluster.

We say that our method is “weighted” clustering, but in fact only the first pass is really size-
limited. However, by observing the operation of the MHEC method, we know that this is where
the largest clusters are formed. Since smaller nets are clustered first, the first pass creates mostly
small clusters, resulting in clusters with generally small widths, but occasionally a large net will
survive and result in a large cluster. By limiting the first pass sizes, these few large nets are
avoided, and the second pass ensues. Cells on the smaller nets are clustered in the second pass,
which have by now been diminished in total unclustered cell width, guaranteeing that by the time
the larger nets are again visited, there are few unclustered cells remaining on them. The result is
that huge clusters are eliminated, while still allowing a large amount of circuit size reduction.

Limiting sizes in the first pass only prevents huge clusters from forming. Therefore, the criteria
for selecting size limits need not be complex. Observations have noted that any limit on the same
magnitude of the original circuit, such as twice the average cell width, or twice the maximum cell
width, give virtually identical results. In our investigation, twice the maximum cell width was
used to limit sizes in the first pass. This encourages at most a doubling of the maximum cell size

at each level of the hierarchy.

CHAPTER 4. CLUSTERING-BASED PLACEMENT 70

1. Sort nets by increasing size

2. For each sorted net

3. If no cell on net is clustered

4. If sum of cell widths on net is within limits
5. Cluster all cells on net

6. End If

7. End If

8. End For

9. For each sorted net

10. If sum of unclustered cell widths on net is within limits
11. Cluster all unclustered cells on net

12. End If

13. End For

14. For each cell in circuit

15. If not clustered

16. Create a new cluster from cell

17. End If

18. End For

Figure 4.2: Weighted Hyperedge Clustering

4.3.2 Implementation as a mapping function

The clustering task requires a good data structure for mapping cells-to-clusters and clusters-to-
cells, the latter being useful for de-clustering. Assigning a cell to a cluster should be a constant-
time operation, and traversing the entire structure, and destroying it, should be linear time in the
size of the circuit.

The data structure used in this dissertation is shown in Figure 4.3. An index array is used for
mapping cells to clusters, and an array of singly-linked lists is used for mapping clusters to cells.

This data structure allows a cell to be assigned to a cluster in constant-time, since adding a
cell to the cell-to-cluster array, and adding a cell to the head of the cluster-to-cell list, are both
constant-time operations. Determining if a cell is clustered and which cluster the cell is assigned to
can also be done in constant-time. Also important is accessing the cluster-to-cell lists, since they
must be traversed when de-clustering. Traversing a list is a linear-time operation, and examining
the array of lists is also linear-time. However, since the union of all lists is equal to the original

circuit list of cells, and no cell belongs to more than one cluster, examining all cluster-to-cell

CHAPTER 4. CLUSTERING-BASED PLACEMENT 71

~ -

Cluster 0 Cluster 1

Cells to Clusters Clusters to Cells
o [0 o[Tz h
e | Rpiiptinl
2 0
3 0
4 1

nClusters -1
nCells -1

Figure 4.3: A Possible Mapping Implementation, showing organization of cells-to-clusters and
clusters-to-cells structures.

CHAPTER 4. CLUSTERING-BASED PLACEMENT 72

lists during de-clustering can be done in linear-time, in the order of the number of cells in the
de-clustered circuit!
Therefore, this data structure allows clustering and de-clustering, apart from sorting the net-

list by size (which must be done only once in WHEC), to be done in linear-time.

4.3.3 Reduction of Nets

One of the primary goals of the clustering task is to reduce the number of nets in the clustered
circuit. Regardless of the method used for clustering cells, reduction of the nets can proceed in
a linear fashion once all cells have been assigned to clusters, and still produce both reduced-size
nets and eliminate localized nets in the clustered circuit.

The method for doing this is illustrated in Figure 4.4. Originally Net 1 connects cells B and
C, and Net 2 connects all three cells. Assuming that the clustering step clusters cells B and
C together, Net 2 connects cell A with the new cluster. However, Net 1 connects the two cells
that are now merged into a single cluster. At the new level of the hierarchy, Net 1 serves no
purpose, since its wirelength cannot possibly be affected by any movement of clusters in the next
level, and can be eliminated from the coarsened circuit’s net list. It should be remembered at
higher levels of the hierarchy that these nets still exist, and will be placed back into the net
list during de-clustering. Removing these nets will remove their associated wirelength from the
coarsened circuit. However, these nets will still connect the same modules, and will have a non-
zero wirelength, so during de-clustering, these nets will add to the total circuit wirelength. For
this reason, the wirelength of the top level circuit is not necessarily a realistic or attainable wire
length for the original flat circuit.

Note also that Net 2 only requires a single connection to the new cluster to retain the connec-
tivity information from the previous hierarchal level, so the two pins that used to connect cells B
and C can be replaced by a single pin connected to the new cluster (Figure 4.4(C)).

The algorithm for reducing the number of nets is presented in Figure 4.5.

CHAPTER 4. CLUSTERING-BASED PLACEMENT 73
Net 2 connected twice
to cluster, and can be reduced net 1 localized
Net 2 /\ Net 2 in clustered circuit
Net 1 \ \/\
Fr==-=-=-- 1
-l -, - =L 4
Cel A Cel B CelC Cell A ' caiB 1 ' cdic 1
L - — -4 L — — o
7
cells combined
into cluster
) (B)
Net 2
Cluster A Cluster B

©

Figure 4.4: Nets are Reduced (Eliminated) when all pins are inside the cluster.

CHAPTER 4. CLUSTERING-BASED PLACEMENT 74

For each net in hierarchy level n
C = # of distinct clusters connected by net in level n + 1
IfC ==
Skip net
Else
Create new net in level n+ 1
End If
End For

eI e

Figure 4.5: Net Reduction Algorithm

4.3.4 Pin Placement

In the partitioning problem, a net that is connected to more than one cell within a cluster in a flat
circuit can be connected a single time to the cluster in the coarsened circuit without losing any
information. This is a powerful feature of using clustering in partitioning since the time needed
to evaluate a partitioning (by calculating a cost function) is proportional to the number of pins
in the circuit.

In placement, the problem is much more complicated. The evaluation of a placement is
based on 2-dimensional coordinates of pins in the circuit. It is important to account for all pin
positions, since electrically-equivalent pins on a cell cannot be grouped together the way they
can in partitioning. Ideally, when cells are clustered together, the pin positions on the cluster
depend on the relative positions of the cells within the cluster. This presents a dilemma, since
determining the relative placement of the cells presumes a knowledge of the ideal placement of
the cells. However, we don’t know this ideal placement, and we require a relative placement in
order to determine a good placement for the clusters.

The approach taken in all past work in clustering-based placement (e.g. [MalGro89, SunSec95])
has been to assign all pin positions to the center of the cluster, as in Figure 4.6. The reason for
this is to minimize the eventual increase in wirelength caused by flattening out the circuit. This
increase is minimized when the error between the approximated pin positions and the eventual
pin positions is small, which implies that cluster sizes (widths) should not be allowed to get too

great, perhaps as a function of the row separation distance.

CHAPTER 4. CLUSTERING-BASED PLACEMENT 75

~ Pins combined into
Net single pin in center of cell

Pin

N

Cell |

cells combined into
cluster

(A) (B)
Flat Circuit Clustered Circuit

Figure 4.6: Pins are all placed at the center of a new cluster.

4.3.5 De-clustering
Legalization using FLATTEN

In this section, a very quick heuristic, FLATTEN, is presented which improves de-clustering
quality slightly. Previous methods for clustering-based placement [SunSec95, MalGro89] flattened
the circuit by placing the cells of a cluster randomly within the physical confines of the cluster at
the previous hierarchal level. Since the cluster module is created with equivalent height and area
as its cells, de-clustering a cluster does not change the size of the chip. Since relative positions
between cells in a cluster were not considered at any clustered level of the hierarchy, they are
not implied at the flattened level, and so some method must be used to determine legal relative
positions for the flattened cells to occupy.

As the circuit is flattened some worsening of the solution is inevitable. This is because during
the de-clustering phase, nets that were localized to a cluster must be added back to the flattened
circuit as it is broken down into its constituent cells, increasing total wirelength.

Another source of wirelength increase during de-clustering is the approximation made for pin
placement. The problem is that the pin placement in the clustered levels (i.e., overlapping cells

with pins in the center of the cluster) is a poor approximation for the true pin positions in the

CHAPTER 4. CLUSTERING-BASED PLACEMENT 76

eventual relative placement of the cells. The top-level placement is made, assuming that the
estimated pin locations are the same as the pin positions for corresponding cells in the original
circuit. As the clusters are broken down, this difference is exposed, and the overall solution
gets worse. The approximation error increases as the cluster size increases, since the difference
between the possible real pin positions and the center of the cluster is greater. For this reason it
is important to keep the maximum cluster size reasonably low.

To minimize the quality deterioration during circuit flattening, further improvement is per-
formed on the circuit at each flattening stage, using a very localized search heuristic. A greedy
method for reducing the legalization error, which we call FLATTEN, is shown in Figure 4.7.

In the FLATTEN heuristic, the average position of all connected pins is calculated for each
cell in a cluster (indicated by the light gray circle and square in Figure 4.7(A)). The cells within
the cluster are then sorted by their average pin x-coordinate, and given a relative order as they
are flattened (in Figure 4.7(B), cells A and B are swapped in accordance with their average pin
positions). This method does not search for a reduced cost of the overall placement, and no
HPWL is computed, but instead places the cells in a location more tenable for local improvement.

A local improvement step is still required after this quick legalization step.

Local Improvement

As previously mentioned, the majority of placement improvement work is targeted for the highest
level of the hierarchy, where it can take advantage of the reduction in complexity. If the clustering
method and improver perform well, the placement achieved at the highest level should be of very
high quality. However, as the circuit is clustered and improvements made at the top level of
the hierarchy, many approximations must be made. Many decisions must be made to reduce the
complexity of the problem while still representing the flat circuit accurately, such as estimating
pin positions and removing large nets.

These approximations made while clustering lead to significant quality deterioration during
de-clustering, as approximations made at the top hierarchal level “trickle-down” through each de-

clustering step. Localized improvers must be used to minimize this deterioration as it is introduced

CHAPTER 4. CLUSTERING-BASED PLACEMENT

center-of-gravity for net

original

cluster

cell attached
to net

(A)

]
]

(B)

77

Figure 4.7: Cells within a cluster are given relative placements according to their sorted average

pin positions

CHAPTER 4. CLUSTERING-BASED PLACEMENT 78

at each de-clustering phase, but because the top-level solution is (presumably) of high quality,
the improvers used during de-clustering should be able to find a local minimum with little effort.
Recall that as the circuit is de-clustered, the problem size increases; work done at lower levels of
the hierarchy take longer than that at upper levels, so it is prefereable to distribute as much work
as possible to the upper levels.

What is needed is an improver that excels at greedily improving a solution with very localized
moves, in as short a time as possible. An excellent candidate for this is the utility-based improver,

UTILITY, proposed in chapter 3. This is the method that was used in this investigation.

4.3.6 Top-Level Improvement

The majority of the improvement work should be done at the highest level of the hierarchy, to
take advantage of the reduced search space provided by clustering the circuit. Quality of the
solution at this point is, obviously, mostly a factor of the improvement heuristic quality. However,
the potential for improvement is limited by the clustering method. A good clustering method will
reduce the original circuit search space to a similar, but much smaller, search space, with many
cells in the placement already moved in proximity to one another through the clusters they form.
In a clustering such as this, a good improvement heuristic will attain a high-quality solution.

By contrast, a poor clustering method may reduce the size of the search space, but the search
space will not be very similar to the original space. This means that what may be a very good
solution in the reduced search space, will not translate to a good solution in the flat search
space. Therefore, two clustering methods that reduce the search space by the same degree are
not necessarily equivalent. This premise is what we base our observations on; the quality of a
clustering method can only be determined from the final solution quality.

The ARP global placer is the initial placement heuristic used at the top level of the hierarchy,
which is known to provide good global solutions in reasonable amounts of time [Eta99]. After
the cells in the global solution are assigned legal positions, a tile-based iterative improvement
method [Ken97] is used to correct for errors induced by the legalization process. Together, these

placement heuristics adequately explore the search space of the top-level circuit placement.

CHAPTER 4. CLUSTERING-BASED PLACEMENT 79

4.4 Results

The quality of a clustering method can only be measured by comparing final placement quality to
that of flat placement heuristics. Even in a relatively simple clustering method such as WHEC,
however, there are numerous factors that can affect performance. We can’t control factors such
as circuit connectivity, but we can characterize a clustering method’s behavior.

Section 4.4.1 discusses some important properties of the benchmark circuits used for testing
the performance of our clustering technique.

Sections 4.4.2 and 4.4.3 show the performance of the WHEC clustering heuristic. Section 4.4.2
summarizes the performance of our hierarchal placement method to a similar flat placement
method, while section 4.4.3 compares our clustering technique to several other similar clustering
methods.

Sections 4.4.4 and 4.4.5 show the affect of varying factors on clustering heuristic performance.
Section 4.4.4 illustrates the changes in circuit connectivity and cell width distribution after clus-
tering, linking clustering performance to desirable and avoidable circuit properties. Section 4.4.5
shows the affect of varying clustering depth on solution quality, showing how cluster depth also
affects circuit statistics. Finally, section 4.4.6 summarizes the performance of the FLATTEN

de-clustering heuristic.

4.4.1 Test Circuits

The same benchmark circuits used to test the utility-based improver in chapter 3 were used to
test the clustering heuristics, and are presented in section 2.5.

There are several observations that can be made about the benchmark circuits, that play a
role during clustering and placement. The benchmarks circuits in Table 2.5 have widely varying
pad distributions. This has little impact on iterative improvement techniques, but it can have a
profound influence on global placers that use the placement of pads to “spread” the placement of
cells in the chip core [EtaAre99]. When a global placer is used, circuits with highly symmetrical
pad positions lead to better quality solutions, since legalizing the global solution is easier. Circuits

with highly assymetrical pad positions have lower-quality solutions after the global placement step,

CHAPTER 4. CLUSTERING-BASED PLACEMENT 80

and are therefore more difficult to improve by local search techniques due to increased legalization
error. The Struct and Biomed benchmark circuits are particularly susceptible to this problem,
while circuits such as avq.small and avq.large are fairly symmetrical and are less susceptible.
Cell widths also vary greatly among the various benchmark circuits, but of particular interest is
the standard deviation of cell widths. The circuits can be roughly grouped by cell width deviation
into those with a low deviation, below 20 or so, and those above it. A low deviation value means
that most cells are close to the mean width, and so the cell sizes are fairly evenly sized. Notice
that, of the large circuits, both Industry2 and Industry3 have large standard deviation values.
Examining the module degree and net size statistics points out the interesting property that
all circuits, no matter how complex, have very similar connectivity. Notice that despite the very
large range of maximum net sizes in Table 2.2, the mean and standard deviation vary over a
very small range. This indicates that the average large digital circuit (which we are placing in
standard-cells) consists largely of three-port devices (such as a 2-1 NAND gate) with an average

fan-out of 2, as might be expected.

4.4.2 WHEC Clustering Performance

Table 4.1 summarizes the performance of our hierarchal placement method using WHEC clus-
tering, compared with a comparable flat placement heuristic. The results for clustering-based
placement were obtained by running the improvement heuristic with three levels of clustering,
using the ARP global placer [EtaVan98] and the TILE iterative improver [Ken97] at the top hier-
archal level, and the UTILITY iterative improver (see Chapter 3) during de-clustering. In the flat
placement heuristic (columns labeled “FLAT” in the results), the same placement method was
used as was used in the clustering heuristic, but no clustering (or de-clustering) was performed.
Since UTILITY was used in the hierarchal heuristic, it was also used as a final post-processing
step in the flat heuristic.

Both the WHEC-clustered and flat improvement results were attained using 40 passes of TILE
(examining each cell in the circuit 20 times per pass), and 100 passes of UTTLITY examining 20%

of the utility list each pass. For this and all other results, wirelength is measured in meters and

CHAPTER 4. CLUSTERING-BASED PLACEMENT 81

Circuit Wire Length | Wire Length | Wire Length || Time | Time | Speedup
Flat WHEC Reduction Flat | WHEC
fract 0.035 0.035 0% 10 4.4 2.3
priml 0.85 0.89 -4.7% 141 50 2.8
struct 0.44 0.42 +4.5% 205 52 3.9
Sm. average - - -0.1% - - 3.0
ind1 1.68 1.61 +4.2% 618 270 2.3
prim2 4.24 4.27 -0.7% 624 224 2.8
bio 2.21 2.25 -1.8% 1381 391 3.5
Med. average - - +0.6% - - 2.9
ind2 20.0 21.0 -5.0% 3411 2061 1.7
ind3 54.0 56.4 -4.4% 4453 1624 2.7
avq.small 9.81 7.14 +27.0% 6812 2385 2.9
avq.large 11.41 8.36 +26.7% 7917 2857 2.8
Lg. average - - +11.0% - - 2.5
| average || - | - | +46% || - | - | 28]

Table 4.1: Wirelength and Run-Time Comparison, FLAT Versus WHEC

time is measured in user time on a Sun Ultral0 workstation with 512MB of RAM.

The results in Table 4.1 show that the WHEC-based heuristic achieved similar-quality results
to, but an average of three times faster than, those of the flat placement heuristic. The results also
show that larger circuits are improved to a greater degree than smaller circuits, while run-time
speedup is fairly consistent regardless of circuit size. For the largest circuits which were very
responsive to clustering-based placement, avq.small and avq.large, the WHEC heuristic achieved
a 27% improvement in wire length, while taking only 36% of the flat heuristic run-time, showing

that, particularly for large circuits, WHEC is very effective for standard-cell placement.

4.4.3 Clustering Method Comparison

Tables 4.2, 4.3, and 4.4 summarize the results of our new clustering heuristic, compared with EC
and MHEC clustering heuristics proposed by Karypis et. al. [Kar97], and a non-clustered (flat) im-
provement heuristicc. MHEC was used for comparison since it is the basis for our WHEC method,
and produced excellent results when applied to the partitioning problem. The EC method was
used as another basis for comparison, since it represents a highly random and simplistic clustering

method. The flat heuristic results are repeated for completeness. The results were obtained by

CHAPTER 4. CLUSTERING-BASED PLACEMENT 82

Circuit Flat EC MHEC | WHEC | WHEC(2)
Fract 0.035 0.044 | 0.036 0.036 0.035
Priml1 0.85 1.23 0.91 0.89 0.87
Struct 0.44 0.73 0.48 0.42 0.41
Sm. Agg. 1.33 2.36 1.43 1.35 1.32
Ind1 1.68 1.86 1.65 1.62 1.63
Prim?2 4.24 5.43 4.54 4.28 4.13
Bio 2.21 2.62 2.93 2.26 2.23
Me. Agg. 8.13 9.91 9.12 8.16 7.99
Ind2 20.0 22.8 20.4 21.0 20.6
Ind3 54.0 72.8 60.5 56.4 53.8
Avq.small 9.81 8.43 7.34 7.14 8.85
Avq.large 11.41 8.58 8.71 8.36 9.66
Lg. Agg. 95.22 || 112.61 | 96.95 92.90 92.91

Agg. WL [104.62 || 124.88 | 107.50 | 102.41 | 102.22 |

Table 4.2: Wirelength Comparison, WHEC Versus EC and MHEC

running the improvement heuristic with three levels of clustering, using ARP and TILE at the
top hierarchal level and UTTLITY during de-clustering. The column marked WHEC(2) shows the
results when cluster sizes are limited during the second pass of the WHEC heuristic, in addition
to the first pass as in “standard” WHEC. Clustered reductions in net and cell counts in Table 4.4
are in relation to the original unclustered benchmark circuits in section 2.5.

Compared to EC and MHEC, WHEC achieved the best solution quality of all methods, and
usually improved on the flat solutions, but took longer than the other clustering methods. The EC
method is characterized as the fastest method, due to the fact that it reduced the number of cells
in the circuit the most. However, the results attained were not as good as the hyperedge based
methods, suggesting that quality is not necessarily dependent on cell-count reduction alone. The
MHEC method results fell between EC and WHEC in quality and speed. It reduced the number
of nets the most, which is logical since clustering was performed by collapsing hyperedges (nets).
Since WHEC was a constrained version of MHEC, it clustered fewer cells and and collapsed fewer
nets that MHEC and EC.

The WHEC(2) method warrants special consideration. This method shows the importance of

balanced cluster sizes during placement. For the circuits with uneven cluster sizes (see section 4.4.4

CHAPTER 4. CLUSTERING-BASED PLACEMENT 83

Circuit Flat EC | MHEC | WHEC | WHEC(2)
fract 10 2.3 3 4.4 4.6
prim1 141 22 36 50 b}
struct 205 44 44 52 145
Sm. Agg. 356 68 83 106 205
ind1 618 131 246 270 300
prim?2 624 135 193 224 270
bio 1381 318 543 391 578
Me. Agg. || 2623 584 982 885 1148
ind2 3205 829 2056 2061 1805
ind3 4453 943 1892 1624 2185
avg.small || 6812 || 1289 | 2133 2385 3069
avq.large 7917 || 1512 | 2510 2857 3551
Lg. Agg. || 22387 || 4573 | 8591 8927 10610
| Agg. WL || 25366 || 5225 | 9656 | 9918 | 11963 |

Table 4.3: Run Time Comparison, WHEC Versus EC and MHEC

Circuit EC MHEC WHEC

Mods | Red. | Nets | Red. || Mods | Red. | Nets | Red. || Mods | Red. | Nets | Red.

Fract 50 66 % 107 27T % 80 46 % 99 33% 88 41 % 107 27 %
Primaryl 215 | 74 % 608 3% 324 | 61 % 457 | 49 % 389 | 53 % 509 44 %
Struct 382 |80 % | 1245 | 35 % 346 | 82 % 612 68 % 511 74 % 780 59 %
Sm. Avg. - 73 % - 32 % - 63 % - 50 % - 56 % - 43 %
Industryl 1228 | 60 % | 1677 | 32 % || 1740 | 44 % | 1332 | 46 % || 1892 | 39 % | 1424 | 43 %
Primary2 602 | 80 % | 2162 | 29 % || 1068 | 65 % | 1458 | 52 % || 1311 | 57 % | 1591 | 47 %
Biomed 1654 | 75 % | 2668 | 54 % || 1657 | 75 % | 1712 | 70 % || 2047 | 69 % | 1733 | 70 %
Me. Avg. - 72 % - 38 % - 61 % - 56 % - 55 % - 53 %
Industry?2 3073 | 76 % | 8657 | 35 % || 4836 | 62 % | 6745 | 50 % || 5917 | b3 % | 7516 | 44 %
Industry3 2800 | 82 % | 15839 | 28 % || 4399 | 71 % | 12314 | 44 % || 6427 | 58 % | 13806 | 37 %
Avqg.small || 3631 | 83 % | 10836 | 51 % || 5969 | 73 % | 7987 | 64 % || 7258 | 67 % | 9051 | 59 %
Avq.large 4363 | 83 % | 11816 | 53 % || 6733 | 73 % 884 | 97 % || 8434 | 67 % | 10204 | 60 %
Lg. Avg. - 81 % - 42 % - 70 % - 64 % - 61 % - 50 %
[Average [- [76%] - [4%] - [66%] - [57%] - [58%] - [49%

Table 4.4: Cell and net reduction after three levels of clustering, using EC, MHEC, and clustering
heuristics

CHAPTER 4. CLUSTERING-BASED PLACEMENT 84

Circuit Cell Width Module Degree Net Size
Min|Max|a? |0' Max|a? |0 Max|£ |0
Fract 16 312 | 149.5 | 100.4 || 18 95 | 5019 2.55 | 1.26
Primaryl || 30 1340 | 598.3 | 386.7 || 26 12.2 | 6.6 || 17 2.82 | 2.23
Struct 16 240 | 154.5 | 71.3 15 9.2 | 4.2 | 17 2.42 | 2.13

Industryl || 12 396 173.6 | 93.5 25 11.0 | 5.8 || 219 | 3.06 | 7.09
Primary2 || 30 1650 | 525.4 | 326.6 || 39 13.9 | 7.0 || 32 3.23 | 3.28
Biomed 16 408 144.6 | 97.5 22 7.7 | 4.2 | 42 3.35 | 4.34
Industry2 || 32 1536 | 388.0 | 272.9 || 42 11.1 | 7.4 || 424 | 3.37 | 9.03
Industry3 || 56 1224 | 581.2 | 259.5 || 53 17.4 | 8.8 || 214 | 2.68 | 2.72
Avqg.small || 16 488 | 202.8 | 103.0 || 23 10.0 | 4.3 || 343 | 2.42 | 5.51
Avq.large || 16 488 186.3 | 103.3 || 21 8.7 | 4.0 | 336 | 2.38 | 5.28

Table 4.5: Size and Connectivity Statistics, EC Clustering

below), this method performed better than the other methods, and is the only method which beat
the flat results for the industry3 benchmark. WHEC(2) is instructional to examine because it
shows that rigorously restricting cluster sizes does have a beneficial effect on circuits where the
other methods have difficulty. However, WHEC(2) performed very poorly for most circuits - it
will not be included in further comparisons.

All clustering methods had difficulty improving some circuits, particularly industry2, indus-
try3, prim1, and prim2. By contrast, the avq circuits tended to be highly responsive to improve-
ment by clustering, and results obtained by all methods were much better than those achieved
using the flat heuristic. This observation suggests that circuit topology plays an important role in
clustering-based improvement, with some topologies being more or less responsive to clustering-

based placement. These issues are discussed more fully in the next subsection.

4.4.4 Effect of Cell Statistics

Tables 4.5, 4.6, and 4.7 show cell width and connectivity distributions after circuit clustering
with EC, MHEC, and WHEC clustering heuristics, respectively. The results were obtained by
running the improvement heuristic with three levels of clustering, using ARP and TILE at the
top hierarchal level and UTILITY during de-clustering.

Comparing Tables 4.5, 4.6, and 4.7 with the improvement results in Table 4.2 shows that there

CHAPTER 4. CLUSTERING-BASED PLACEMENT

Circuit Cell Width Module Degree Net Size
Min|Max|i‘ |0' Max|i‘ |0' Max|i‘|0'
Fract 16 336 | 97.2 | 97.2 15 6.0 | 4.0 13 3.0 | 2.0
Primaryl || 30 2110 | 387.3 | 353.2 || 21 7.3 | 45| 18 3.8 3.0
Struct 16 336 | 174.2 | 1129 || 11 6.7 | 2.8 | 17 3.2 | 2.8
Industryl || 12 374 | 83.8 | 70.3 25 5.7 | 3.7 || 284 | 4.3 | 10.5
Primary2 || 30 1660 | 290.5 | 244.9 || 45 7.3 | 6.1 33 4.7 | 4.4
Biomed 16 3912 | 144.2 | 212.5 || 89 6.8 | 5.5 | 390 | 4.7 | 10.7
Industry2 || 32 2912 | 258.7 | 236.0 || 56 7.4 | 5.6 || 487 | 4.5 | 12.5
Industry3 || 56 3192 | 375.7 | 292.8 || 89 10.8 | 7.9 || 285 | 3.3 | 3.7
Avg.small || 16 1064 | 145.1 | 104.0 || 59 6.9 | 38399 |3.1]|7.0
Avq.large || 16 1104 | 140.4 | 99.1 50 6.4 | 35| 376 | 3.1]|64

Table 4.6: Size and Connectivity Statistics, MHEC Clustering

Circuit Cell Width Module Degree Net Size
Min|Max|i‘ |0' Max|i‘ |0' Max|:i‘ |0'
Fract 16 336 | 99.7 | 96.4 16 6.2 | 4.1 13 3 2.02
Primaryl || 30 1640 | 369.5 | 348.6 || 25 7.1 | 4.7 18 3.80 | 3.06
Struct 16 336 | 164.9 | 98.1 11 6.7 | 2.6 || 17 3.11 | 2.86
Industryl || 12 410 | 83.4 | 67.3 22 5.7 | 3.5 || 284 | 4.33 | 10.5
Primary2 || 30 1560 | 285.2 | 234.1 || 45 7.2 |59 33 4.78 | 4.47
Biomed 16 720 | 127.6 | 73.2 25 6.1 | 2.8 29 4.75 | 5.55
Industry2 || 32 2272 | 246.8 | 210.2 || 40 7.1 | 5.1 || 491 | 4.63 | 12.7
Industry3 || 56 3192 | 370.4 | 278.4 || 82 10.5 | 7.5 || 293 | 3.37 | 3.82
Avqg.small || 16 472 | 134.9 | 94.1 20 6.3 | 3. 393 | 3.12 | 7.03
Avq.large || 16 504 | 131.0 | 90.2 21 59 | 2.8 || 376 | 3.08 | 6.57

Table 4.7: Size and Connectivity Statistics, WHEC Clustering

CHAPTER 4. CLUSTERING-BASED PLACEMENT 86

is a high correlation between clustering-based improvement and cell width distribution. Circuits
with high cell width deviations, such as industry2 and industry3, were more difficult to improve
by clustering methods than those circuits with lower deviations, such as avq.small and avq.large.

All three clustering methods had a difficult time maintaining even cluster sizes for most bench-
marks, compared to the flat circuit cell width deviations in Table 2.2 (in section 2.5). However,
the cell width deviation is much lower when using WHEC than it is when using EC or MHEC.
Since the results using WHEC were substantially better, we can conclude that evenly distributed
cluster sizes are highly desirable, since they have a significant impact on a circuit’s capacity to be

placed well.

4.4.5 Clustering Depth

Figures 4.8, 4.9 and 4.10 show the effects of different clustering depths on solution quality using
different clustering methods, as measured by total wirelength. Results were obtained by running
the benchmarks with between one and six levels of clustering, using ARP and TILE at the top
hierarchal level, and UTILITY during de-clustering. The three circuits shown represent the small,

medium, and large circuits, respectively.

Clustering Method and Levels for Struct Benchmark

0.7

0.6

0.5
n
g
I}
E
£04r
=3
c
2
2
E
< 0.3F
<

0.2

—e— EC
x MHEC
- —+- WHEC
0.1r
0 I I I I I)
0 1 2 3 4 5 6

levels of clustering

Figure 4.8: Wirelength Versus Clustering Depth, struct Benchmark

CHAPTER 4. CLUSTERING-BASED PLACEMENT 87

Clustering Method and Levels for Bio Benchmark

35

N
&l
T

N
T

total wilelength (metres)
P
o
T

x MHEC
-+- WHEC
051
0 ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 4 5 6

levels of clustering

Figure 4.9: Wirelength Versus Clustering Depth, bio Benchmark

The results clearly show that, for WHEC, three levels of clustering gives good results for all
sizes of circuits. For all clustering depths greater than two, WHEC out-performed both EC and
MHEC for all circuit sizes. For small circuits, EC and MHEC generally give better results for
lower levels of clustering than WHEC, but the solutions obtained were still inferior to the flat
solutions. For medium and large circuits, WHEC is clearly preferable.

Figures 4.8, 4.9 and 4.10 also show that the WHEC method is fairly insensitive to increases
in clustering depth. This is in stark contrast to the other clustering methods, EC and MHEC,
which are much more sensitive to changes in clustering depth. For the avq.large benchmark (a
large circuit) the ideal clustering depth was three levels, but increasing the clustering depth to
four levels only increased wirelength by an average of 3%, versus a 10% increase when EC was

used.

4.4.6 FLATTEN De-clustering Heuristic

Table 4.8 shows the effect of using the FLATTEN de-clustering heuristic, described in section 4.3.5,

used during the de-clustering phase for different clustering depths. Results were obtained by using

CHAPTER 4. CLUSTERING-BASED PLACEMENT

Clustering Method and Levels for Avg.Large Benchmark

16- —— EC
x MHEC
- +- WHEC

14

-
N
T

=
o
T

total wilelength (metres)

0 I I I I I)

levels of clustering

Figure 4.10: Wirelength Versus Clustering Depth, avq.large Benchmark

x 10 Clustering Method effects on circuit size reductions Avg.Large Benchmark
3
2.5% —o— EC
> o x MHEC
% 2k ~ - —+- WHEC
o
S
5 1.5
o)
§ af
<
05
0
0
levels of clustering
x 10*
3 —

number of nets

levels of clustering

Figure 4.11: Clustering method effects on circuit size reduction, avq.large Benchmark

CHAPTER 4. CLUSTERING-BASED PLACEMENT 89

| Circuit || One | Imp || Two | Imp || Three | Imp |
fract 42654 0.97% 50586 1.71% 49870 2.50%
prim1 1131245 | -0.78% || 1143974 | -0.23% || 1209388 | 0.09%
struct 776255 0.79% 520059 3.08% 486149 7.09%
Sm. avg || - 0.32% || - 1.52% || - 3.23%
ind1 2064284 | 0.09% 2068205 | 0.25% 2085678 | 0.43%
prim2 5843413 0.08% 5589677 | 0.51% 5924559 | 0.76%
bio 3008984 | 0.01% 2845382 | 0.95% 2751993 1.29%
Med. avg || - 0.06% || - 0.57% - 0.83%
ind2 28666972 | 0.09% 28035935 | 0.02% 29005368 | 0.14%
ind3 72989736 | 0.28% 82342961 | 0.34% 90299540 | 0.40%
avq.small || 13739141 | -3.82% || 11714924 | 0.54% 9920093 1.56%
avq.large || 15000070 | -0.44% || 12096544 | 7.67% 11209297 | 0.97%
Lg. avg - -0.97% || - 2.14% - 0.77%

[average | - | -0.59% [- | 1.41% [- | 1.60% |

Table 4.8: Performance of FLATTEN de-clustering placement heuristic, after one, two, and three
levels of clustering

the ARP global placer at the top hierarchal level, without any iterative improvement, and then
using only FLATTEN during de-clustering, again without any iterative improvement. The reason
for not using iterative improvement is that the search space for the FLATTEN heuristic is highly
local, since cells within a cluster are only placed within the physical confines of the cluster.
This means that cell positions can only change by a maximum of half the original cluster width
(see section 4.3.5), so little improvement is expected during the fast FLATTEN heuristic, when
compared to other improvement techniques. In order to emphasize this fact, no iterative improvers
were used. Results using the FLATTEN heuristic were compared against clustered results using
only ARP at the top hierarchal level and then de-clustering, placing cells randomly within the
physical confines of their clusters.

Average improvement using the FLATTEN heuristic under these circumstances was between 1-
2% for most benchmarks, and had the most effect on large circuits at higher clustering depths. As
expected, little improvement was actually obtained, but the heuristic has a linear time complexity,
so no noticeable difference in execution time was used to gain the improvement, showing that the

FLATTEN heuristic is useful.

CHAPTER 4. CLUSTERING-BASED PLACEMENT 90

Circuit Wire Length | Wire Length | Wire Length Time Time Time
No Imp. UTILITY Reduction No Imp. | UTILITY | Increase

fract 0.037 0.035 5.4 % 3.7 4.4 18.9 %
prim1 0.91 0.89 2.2 % 44 50 13.6 %
struct 0.44 0.42 4.5 % 40 52 30.0 %
Sm. average - - 4.0 % - - 20.8 %
ind1 1.65 1.61 2.4 % 237 270 13.9 %
prim2 4.37 4.27 2.3 % 196 224 14.2 %
bio 2.34 2.25 3.8 % 330 391 18.5 %
Med. average - - 2.8 % - - 15.5 %
ind2 22.2 21.0 5.4 % 1908 2061 8.0 %
ind3 58.0 56.4 2.8 % 1473 1624 10.3 %
avq.small 7.32 7.14 2.5 % 2135 2385 11.7 %
avq.large 8.49 8.36 1.5 % 2453 2857 16.5 %
Lg. average - - 3.0 % - - 11.6 %
| average || - | - | 3.2 % I - | - | 1565 %

Table 4.9: Effectiveness of using the UTILITY improver during circuit de-clustering

4.4.7 UTILITY De-clustering Improvement

Table 4.9 shows the effectiveness of the UTILITY heuristic used during de-clustering. Both sets
of results were attained by applying three levels of clustering using WHEC, then improving the
circuit with ARP and TILE at the top hierarchal level. The columns labeled “UTILITY” applied
100 iterations of the UTILITY heuristic after emph de-clustering step, while the columns labeled
“No Imp.” were not improved at all during de-clustering.

As the results show, there was an average 3.2% difference in total wirelength when not using
improvement during de-clustering, but using the UTILITY improver increased overall run-time
by an average 15.5%, showing that using de-clustering improvement can be very important for

minimizing solution quality deterioration during de-clustering.

4.5 Summary

The WHEC method of clustering was shown to be very effective when applied to the standard-cell

placement problem. Two other methods of clustering, edge clustering and modified hyperedge

CHAPTER 4. CLUSTERING-BASED PLACEMENT 91

clustering proposed by Karypis et. al. [Kar97] where shown to perform well for the placement
problem, but the size-limiting feature of WHEC provided results superior to the other methods.

Results obtained using the WHEC clustering method were very close in quality to those of a
flat heuristic. For large circuits, using clustering actually provided a 11% improvement over the
flat solutions. However, the real advantage of using circuit clustering is the reduction in execution
time allowed by reducing the problem size. Compared to the flat heuristic, the clustered solutions
were attained an average of three times faster. In addition, the clustering and de-clustering of
the circuit took only a few seconds, even on the largest benchmarks, proving that simple and fast
clustering techniques can achieve large gains versus a flat technique.

A high correlation was shown to exist between evenly-distributed cluster sizes and final so-
lution quality. When comparing different clustering methods, the circuits with the more evenly-
distributed cluster sizes had better final results than those with more uneven sizes. When the
cluster sizes formed were very uneven, final solution quality was usually inferior to those achieved
using the flat placement heuristic.

It was shown that, for WHEC, three levels of clustering gave good results for all sizes of
circuits. For all clustering depths greater than two, WHEC out-performed both EC and MHEC
for all circuit sizes. For small circuits, EC and MHEC generally give better results for lower levels
of clustering than WHEC, but the solutions obtained were still inferior to the flat solutions. For
medium and large circuits, WHEC is clearly preferable. The WHEC method was shown to be
less sensitive to increases in clustering depth than other clustering methods examined. For the
avq.large benchmark (a large circuit) the ideal clustering depth was three levels, but increasing
the clustering depth to four levels only increased wirelength by an average of 3%, versus a 10%

increase when EC was used.

Chapter 5

Conclusions

Two new approaches to dealing with the high complexity of ASIC design have been presented.
A novel utility-based iterative improvement heuristic and a new hierarchal clustering heuristic
were shown to provide excellent characteristics for reducing the execution time of standard-cell
placement while improving results, when compared to good existing approaches.

When performing a greedy search close to a local minimum in the search space, the majority
of moves within a solution’s neighborhood do not improve the solution quality. A novel new
approach to overcome the problem of random move selection in a deterministic (greedy) search
heuristic is to use utility-theory to find a local minimum quickly by ranking moves on an estimate
of their proximity to an optimal location, and then choose moves that are statistically more likely
to improve than if the moves were chosen randomly.

When applied to the standard-cell placement problem, a cell’s utility is a measure of how close
to optimality the cell’s placement is. By concentrating a search’s computational effort on cells
with worse-than-average placements, greater gain can be achieved by the utility-based search with
less effort than that which a randomized move-selection method could achieve in the same time.
In this way, it is possible to reduce the computational impact of examining moves that will be
rejected.

When applied to non-hierarchal placement, it was shown that using utility as a measure of

92

CHAPTER 5. CONCLUSIONS 93

placement quality was effective. Improving the cell utility of poorly-placed cells improved the
total wire length of the solution, and solution convergence time was dramatically increased with
smaller utility list search depths, so that “good” solutions were found quickly. However, when
compared to a good deterministic search heuristic as a primary improvement heuristic, the results
using utility were not competitive. The convergence time for the utility-based heuristic was too
short to adequately examine the search space, and so the solutions were of very low-quality.

Utility-based improvement was shown to be best suited for use as a fast post-processing im-
provement step, after significant improvement has already been made by another improvement
method. It was most effective when used on a placement after other improvement techniques
had converged, and the utility-based search was able to rapidly seek a local minimum in the
search space. Because utility-based improvement is highly deterministic, quickly finding a local
minimum, it is well suited to achieve any post-processing improvement.

Window size was shown to have a significant impact on the performance of our heuristic.
However, a relation between circuit statistics and window size was not found. As well, compromises
were made to select a good utility list search depth, and number of improvement passes that would
produce good results for all circuits. Future directions for research into utility-based improvement
could try to develop an adaptive heuristic that finds ideal utility list depth, number of passes, and
window size parameters for different circuits. As well, incorporating a mix of gain estimation in
earlier search stages, and exact gain calculation during later search stages, might produce good
results.

Overall, utility-based searching is very effective, when applied to the right kind of problem.
Due to its highly-localized search space and rapid convergence properties, it should only be applied
when a rapid solution is needed regardless of high-quality, or when the search is expected to be
in the vicinity of a good local minimum in the search-space.

The size of ASIC design problems is increasing at a substantial rate, and methods for dealing
with highly complex problems are needed. One method for dealing with complex systems is to
narrow a search to localized regions of the search space. Utility-based placement is one excellent

example of this. Another method is to reduce the complexity of the problem itself, by restructuring

CHAPTER 5. CONCLUSIONS 94

it into a smaller form through circuit clustering.

Our new hierarchal clustering method, weighted hyper-edge clustering, was shown to be very
effective when applied to the standard-cell placement problem. Although performance was fairly
good for small- and medium-sized problems, performance was highest on the largest benchmark
circuits.

Two other methods of clustering: edge clustering, and modified hyper-edge clustering, both
proposed by Karypis et. al. ([Kar97]), where shown to perform well for the placement problem, but
the size-limiting feature of our clustering method provided results superior to the other methods.

Results obtained using our clustering method were very close in quality to those of a flat
heuristic, actually improving the solution for the largest benchmarks. Compared to the flat
heuristic, the clustered solutions were attained an average of three times faster and the clustering
and de-clustering of the circuit took only a few seconds, even on the largest benchmarks, proving
that simple and fast clustering techniques can achieve large gains versus a flat technique.

A high correlation was shown to exist between evenly-distributed cluster sizes and final so-
lution quality. When comparing different clustering methods, the circuits with the more evenly-
distributed cluster sizes had better final results than those with more uneven sizes. When the
cluster sizes formed were very uneven, final solution quality was usually inferior to those achieved
using the flat placement heuristic. Therefore, maintaining even cluster sizes is very important to
a clustering heuristic.

It was shown that, for our clustering method, three levels of clustering gave good results for
all sizes of circuits, and gave consistently superior results at greater clustering depths to those of
other clustering methods examined. While our method did not perform as well as edge-clustering
or modified hyper-edge clustering methods on small, our method is clearly preferable for medium
and large circuits. Weighted hyper-edge clustering was shown to be much less sensitive to increases
in clustering depth than other clustering methods examined, making it more robust for practical
implementation, when experimenting with different cluster depths is not feasible. For the avq.large
benchmark (a large circuit) the ideal clustering depth was three levels, but increasing the clustering

depth to four levels only increased wire length by an average of 3%, versus a 10% increase when

CHAPTER 5. CONCLUSIONS 95

edge-clustering was used.

A fast method of reducing the impact of de-clustering was shown to be effective. The method
functions by finding a relative placement of the cells in a cluster based on the sorting the center-
of-gravity of each cell’s connected pins. The method operates in linear-time complexity, while
typically achieved 1-2% improvement.

Future work in the clustering problem should focus on reducing the unevenness of cluster sizes.
However, some circuits were insensitive to cluster size deviation, while others were very unforgiv-
ing. A modification to weighted hyper-edge clustering would perform very well if some adaptive
technique for modifying weighting factors to accommodate these circuits could be found. The
optimum clustering depth was found to be slightly different for different benchmarks. Attempts
to find a correlation between clustering depth and circuit statistics was unsuccessful. Developing
an adaptive technique to determine the ideal depth, it could save significant time and effort on

the part of the designer using this heuristic.

Bibliography

[SaiYou95] S. M. Sait and H. Youssef, “VLSI Physical Design Automation,” TEEE Press, New
Jersey, 1995.

[Ger99] S. H. Gerez, “Algorithms for VLST Design Automation,” John Wiley & Sons, New York,
1999.

[BelEIm95] A. Bellaouar and M. I. Elmasry, “Low-Power Digital VLSI Design,” Kluwer Academic
Publishers, Boston, 1995.

[GarJoh79] M. R. Garey and D. S. Johnson, “Computers and Intractability,” Freeman, San Fran-
cisco, 1979.

[FidMat82] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for Improving Net-

work Partitions,” Proc. Design Automation Conference, 1982, pp. 175-181.

[AlpKah95] C. J. Alpert and A. B. Kahng, “Recent Directions in Netlist Partitioning: A Survey,”
Integration: The VLSI Journal, 1995, pp. 1-81.

[AlpHua98] C. J. Alpert, J. H. Huang and A. B. Kahng, “Multilevel Circuit Partitioning,” IEEF

Trans. Computer-Aided Design of Integrated Circuits and Systems 1998, pp. 655-667.

[CohPar87] J. P. Cohoon and W. D. Paris, “Genetic Placement,” IEEE Trans. Computer-Aided
Design, Vol. CAD-6, no. 6, November 1987, pp. 956-964.

[Beh99] L. Behjat, “A Concentric Placement Approach for Standard Cell Layout,” M.A.Sc. The-

sis, University of Waterloo, Waterloo, Ontario, 1999.

96

BIBLIOGRAPHY 97

[SunSec95] W.-J. Sun and C. Sechen, “Efficient and Effective Placement for Very Large Circuits,”
IEFFE Trans. Computer-Aided Design of Integrated Circuits and Systems, Voll14, no3, march
1995, pp. 349-359.

[KirGel83] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science, Vol. 220, no. 4598, 13 May 1983, pp. 671-680.

[Gro86] L. K. Grover, “A New Simulated Annealing Algorithm for Standard Cell Placement,”

Proc. IEEFE International Conf. on Computer-Aided Design, 1986, pp. 378-380.

[MitRom86] D. Mitra, R. Romeo, and A. Sangiovanni-Vincentelli, “Convergence and Finite-Time
Behavior of Simulated Annealing,” Advances in Applied Probability, Vol. 18, No. 3, pp. 747-
771, 1986.

[KleSig91] J. M. Kleinhans, G. Sigl, F. M. Johannes and K. J. Antreich, “GORDIAN: VLSI
Placement by Quadratic Programming and Slicing Optimization,” IEEE Trans. Computer-
Aided Design, Vol. 10, No. 3, March 1991, pp. 356-365.

[SigDol91] G. Sigl, K. Doll and F. M Johannes, “Analytical Placement: A Linear or a Quadratic
Objective Function?” 28th ACM/IEEE Design Automation Conference, 1991, pp. 427-432.

[DolJoh91] K. Doll, F. M. Johannes and G. Sigl, “DOMINO: Deterministic Placement Improve-
ment with Hill-Climbing Capabilities,” Proc. VLSI, 1991, pp. 91-100.

[DolJoh92] K. Doll, F. M. Johannes, and G. Sigl, “Accurate Net Models for Placement Im-
provement by Network Flow Methods,” Proc. IEEE International Conf. on Computer-Aided

Design, 1992, pp. 594-597.

[CheKuh84] C.-K. Cheng and E. S. Kuh, “Module Placement Based on Resistive Network Opti-
mization,” IEEFE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 3,
No. 3July 1984, pp. 218-225.

[HuaKah97] D. J.-H. Huang and A. B. Kahng, “Partitioning-Based Standard-Cell Global Place-
ment with and Exact Objective,” Proc. ISPD, April 1997, pp. 18-25

BIBLIOGRAPHY 98

[KinBan89] R. M. King and P. Banerjee, “ESP: Placement by Simulated Evolution,” IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol. 8 No. 3, March 1989, pp. 245-
256.

[EtaVan98] H. A. Etawil and A. Vannelli, “Utility Function Based Hybrid Algorithm for Channel
Routing,” Proc. IEEE International Conf. on Computer-Aided Design 1998, pp. 258-261

[Ken97] A. Kennings, “A Deterministic Iterative Improvement Technique,” Ph.D. Thesis, Uni-

versity of Waterloo, Waterloo, Ontario, Canada, 1997.

[EtaAre99] H. A. Etawil, S. Areibi, and A. Vannelli, “Attractor-Repeller Approach for VLSI
Global Placement,” Proc. IEEE International Conf. on Computer-Aided Design, 1999.

[SecLee87] C. Sechen and K-W Lee, “An Improvement Simulated Annealing Algorithm for
Row-Based Placement,” Proc. IEEFE International Conf. on Computer-Aided Design, 1987,

pp. 478-481.

[SecSan85] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Placement and Routing
Package,” IEFFE J. of Solid-State Circuits, Vol. 20, No. 2, 1985, pp. 432-439.

[Koz91] K. Kozminski, “Benchmarks for Layout Synthesis - Evolution and Current Status,” 28th

ACM/IEEFE Design Automation Conference, 1991, pp. 265-270.

[SecSan86] C. Sechen and A. Sangiovanni-Vincentelli, “TimberWolf 3.2: A New Standard Cell
Placement and Global Routing Package,” Proc. Design Automation Conference, 1986,
pp. 432-439.

[HanWol76] M. Hanan, P. K. Wolff, Sr., and B. J. Agule, “Some Experimental Results on Place-

ment Techniques,” Proc. Design Automation Conference, 1976, pp. 214-224.

[Are95] S. Areibi, “Towards Optimal Circuit Layout Using Advanced Search Techniques,” Ph.D.

Thesis, University of Waterloo, Waterloo, Ontario, 1995.

[WesEsh93] N. H. E. Weste and K. Eshraghian, “Principles of CMOS VLSI Design: A Systems
Perspective,” Addison-Wesley, New York, 1993.

BIBLIOGRAPHY 99

[Alp94] C. J. Alpert and A. B. Kahng, “A General Framework for Vertex Orderings, With Appli-
cations to Netlist Clustering,” Proc. IEEE International Conf. on Computer-Aided Design,
1994.

[Kar97] George Karypis et. al., “Multilevel Hypergraph Partitioning: Applications in VLSI Do-

main”, Proc. Design Automation Conference, 1997.

[Kar99] George Karypis et. al., “The hMetis Hypergraph Partitioning Package,”

http://www.cs.umn.edu/ karypis.

[SchUlr72] D. M. Schuler and E. Ulrich, “Clustering and Linear Placement,” Proc. Design Au-

tomation Workshop, 1972, pp. 50-56.

[MalGro89] Sivanarayana Mallela and Lov K. Grover, “Clustering based Simulated Annealing for

Standard Cell Placement”, Proc. Design Automation Conference, 1989, pp. 312-317.

[Eta99] H. Etawil, “Convex Optimization and Utility Theory: New Trends in VLSI Circuit Lay-

out,” Ph.D. Thesis, University of Waterloo, Waterloo, Ontario, 1999.

[YehChe92] C. W. Yeh, C. K. Cheng, and T. T. Lin, “A Probabilistic Muticommodity-Flow
Solution to Circuit Clustering Problems,” Proc. IEEE International Conf. on Computer-
Aided Design, 1992, pp. 428-431.

[ConHag91] J. Cong, L. Hagen, and A. Kahng, “Random Walks for Circuit Clustering,” Proc.
Intl. Conf. on ASIC, June 1991, pp. 14.2.1-14.2.4.

[KahKan92] L. Hagen and A. B. Kahng, “A New Approach to Effective Circuit Clustering,” Proc.

IEFE International Conf. on Computer-Aided Design, 1992, pp. 422-427.

[GarPro90] J. Garbers, H. J. Promel, and A. Steger, “Finding Clusters in VLSI Circuits,” Proc.
IEFEE International Conf. on Computer-Aided Design, 1990, pp. 520-523.

[HagKah92] L. Hagen and A. B. Kahng, “New Spectral Methods for Ration Cut Partitioning
and Clustering,” IEFFE Trans. Computer-Aided Design of Integrated Circuits and Systems,
Vol.11, No.9, Sept. 1992, pp. 1074-1085.

BIBLIOGRAPHY 100

[AlpKah96] C. J. Alpert and A. B. Kahng, “Simple Eigenvector-Based Circuit Clustering Can Be
Effective,” Proc. IEEE Intl. Symp. on Circuits and Systems, May 1996, pp. IV/683-686.

