

CONSTRUCTIVE/ITERATIVE BASED TECHNIQUE FOR

FPGA PLACEMENT

A Thesis
Presented to
The Faculty of Graduate Studies
of

The University of Guelph

by

XIAOJUN BAO

In partial fulfilment of requirements
for the degree of
Master of Science

August, 2004

(©Xiaojun Bao, 2004

ABSTRACT

CONSTRUCTIVE/ITERATIVE BASED TECHNIQUE FOR
FPGA PLACEMENT

Advisor:
Xiaojun Bao

Professor Shawki Areibi
University of Guelph, 2004

Professor Dilip Banerji

Today the logic capacity of Field-Programmable Gate Arrays (FPGAs) has increased
dramatically (up to 10-million gates) that prohibitively long compile times may adversely
affect instant manufacturability of FPGAs and become intolerable to users seeking very
high speed compile. This thesis presents several heuristic techniques and investigates the
effectiveness and efficiency of heuristics and meta-heuristics for FPGA placement. In con-
structive based heuristics, Cluster Seed Search (CSS) is developed to improve averagely
random initial solutions by 19%; GRASP and a Partitioning based method are also imple-
mented and achieve 25% and 44% improvement respectively. In iterative based heuristics,
an enhanced local search technique is implemented in two forms: Simple Local Search
(SLS) and Immediate Neighbourhood Local Search (INLS), which both achieve 50% im-
provement quickly. A Tabu Search (TS) technique and a Genetic Algorithm approach
are also implemented to further enhance solution quality. Results obtained indicate that

both Tabu Search and Genetic Algorithms can enhance solution for FPGA placement

and produce on average 74% and 20% improvement in reasonable time.

Acknowledgements

My sincere thanks go to my advisor, Prof. Areibi for his great support and advice
throughout this research. Without his help, this work would never have been
possible.

I would also like to express my appreciation to my co-advisor, Prof. Banerji for
advising and revising this thesis with great meticulosity.

I am grateful to Mr. Don Cavanaugh and my friend Sharlene Shuizing for

providing excellent proofreading.

To
my wife, Suling Liu
whose love and encouragement helped accomplish this

thesis.

ii

Contents

1 Introduction 1
1.1 Problem Definition 0oL, 3
1.2 Motivation 3
1.3 Proposed Research Approach 4
1.4 Contributions 7
1.5 Thesis Organization L 7

2 Background and Literature Review 8
2.1 FPGA Architecture Lo 9
2.2 CADfor FPGAs 12

2.2.1 Placement Process in FPGA Design 15
2.3 Heuristic Search Techniques 21
2.3.1 Genetic Algorithms 22
2.3.2 TabuSearch 000, 24
2.4 Heuristic Algorithms for FPGA Placement 26
2.4.1 VPR - Versatile Place and Route 30
2.4.2 Simultaneous Place and Route Strategy 33

il

2.4.3 Hierarchical Approaches for FPGA Placement 35

2.5 MCNC benchmark Circuits 37
2.6 SUMMATY e e 37
Constructive Based Methods 39
3.1 Cluster Seed Search 000, 40
3.1.1 Implementation L. 41
3.1.2 Experimental Results 43
3.2 GRASP . . . e 44
3.2.1 A Generic GRASP 44
3.2.2 GRASP for FPGA placement 46
3.2.3 Experimental Results 50
3.3 Partitioning Based FPGA Placement 52
3.3.1 Implementation L. 95
3.3.2 Experimental Results, o7
3.4 Constructive Techniques: A Comparison 59
3.4.1 Flat Level Evaluation 59
3.4.2 Hierarchical performance 62
3.5 Summary ... 65
Iterative Based Techniques 66
4.1 Local Search Techniques 68
4.1.1 Simple Local Search 68
4.1.2 Immediate Neighborhood Local search 72
4.1.3 Peformance of SLS and INLS 75

v

4.2 Simulated Annealing oL Lo 78

4.2.1 Annealing Scheduleo 78
4.2.2 Experimental Results 81

4.3 Tabu Search Technique 81
4.3.1 Neighborhood Move 84
4.3.2 Tabu Criteria 0L 85
4.3.3 Tabu List Size oL 86
4.3.4 Aspiration Criteria, 87
4.3.5 Stopping Criteria, 90
4.3.6 Performance of Tabu Search for FPGA Placement 91

4.4 Genetic Algorithms oo 0oL 95
4.4.1 Encoding Mechanism 97
4.4.2 Tournament Selection with/without Replacement 98
4.4.3 Crossovero e 100
444 Mutation Lo 101
4.4.5 Replacement Method 102
4.4.6 GA Parameter Tuning 105

4.5 Tterative Techniques and Metaheuristics: A Comparison 113
4.5.1 Flat Level Evaluation, 113
4.5.2 Hierarchical Performance 115

4.6 Summaryo e e e 119
5 Conclusions and Future Work 121
5.1 Future Worko 123

A Acronym Glossary 125

B Routing Results 126

Bibliography 127

vl

List of Tables

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11

3.12

VPR temperature update schedule 32
MCNC Benchmark circuit suite used as test cases 37
Performance of Cluster Seed Search 43
Performance of GRASP based on pure construction phase only . . . 51
Performance of GRASP based on SLS. 51
Performance of GRASP based on INLS 52
Performance of SA partitioning based placement o7
Performance of LS partitioning based placement 59
Comparison between Partitioning, CSS and GRASP 60
A comparison between Partition/CSS/GRASP with INLS on flat level 61

A comparison between Partition/CSS/GRASP on hierarchical place-

ment . . .o Lo e 62
Comparison between hierarchical and flat constructive techniques . 63
Comparison between Partition-Based/CSS/GRASP with INLS . . . 64

Comparison between hierarchical and flat constructive techniques

with INLS o o o 64

vil

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

B.1

Performance of SLS and INLS 76

Comparison of SLS and INLS (CSS initial) 7
Performance of SLS, INLS and Hybrid 7
SA with random initial solutions 82
SA with CSS initial solutions 82
TS Based on INLS with random initial solutions 92
TS Based on SLS with random initial solutions 92
Comparison between TS based on INLS and SLS 93
TS based on INLS with CSS initial solutions 94
TS based on SLS with CSS initial solutions 94
Comparison between TS with random/CSS initial solutions 95
Comparison between iterative techniques based on random solutions 114
Comparison between iterative techniques based on CSS 115
Comparison between hierarchical iterative techniques 117
Comparison between hierarchical and flat iterative techniques . . . 118
Routing results Lo oL 126

viii

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1

Approaches for FPGA placement 5
3x3 island-based array FPGA 9
The classification of FPGAs 10
The routing architecture of island-based FPGAs 11
The flow of CAD system for FPGA 13
A CLB with four pins oL 16
Single-trunk Steiner Tree wirelength model 17
Bounding box wirelength model00 20
Overview of simple Genetic Algorithms 23
Tabu search components 25
Pseudo-code for basic Tabu Search 26
Taxonomy for FPGA Placement 27
Pseudo-code for Simulated Annealing 31
LUT swap during placement 35
Hierarchical Placement 36
CSS in (a) standard cell design and in (b) FPGA design 41

X

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12

Pseudo-code for CSS 42

Pseudo-code for a generic GRASP 45
Pseudo-code for GRASP on FPGA placement 47
Initialization in GRASP construction phase 48
Example of RCL construction 49
Cost of CSS and GRASP construction phase 53
Time of CSS and GRASP construction phase 53
Partition based FPGA placement method 54
Recursive partitioning with SA algorithm 95
Partitioning based FPGA placement algorithm 56
Cost/Time of random based technique, CSS, GRASP and Partitioning 58
The search window of SLS, 69
Pseudo-code for SLSo 70
Effect of the search window on medium-size circuits 71
Effect of the search window on large-size circuits 71
Searching Region of INLS 72
Block seed selection criteria on a medium-size circuit 73
Block seed selection criteria on a large-size circuit 73
Pseudo-code for INLS o000 74
Effect of the exploring function 75
Simple SA pseudo-code for FPGA placement 79
Pseudo-code of Tabu Search for FPGA placement 83
Effect of Tabu criteria on a medium-size circuit 85

4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23

4.24

4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33

Effect of Tabu criteria on a large-size circuit 86

Effect of tabu list size on a medium-size circuit 87
Effect of tabu list size on a large-size circuit 88
Effect of Tabu search with/without aspiration (Medium Circuit) . . 89
Effect of Tabu search with/without aspiration (Large Circuit) . .. 89
Evaluating the Stopping Criteria 90
TS based on INLS and SLS(circuit: e64-4lut) 93
A Genetic FPGA Placement Algorithm 96
String encodingo 97

Effect of binary tournament selection with/without replacement on
a small-size circuito Lo 99
Effect of binary tournament selection with/without replacement on
a medium-size circuito Lo 99

Effect of binary tournament selection with/without replacement on

alarge-size circuito Lo 100
One-point order crossover for FPGA placement 101
Mutation process for FPGA placement 102

Effect of elitism and non-elitism replacement on a small-size circuit 103
Effect of elitism and non-elitism replacement on a medium-size circuit104

Effect of elitism and non-elitism replacement on a large-size circuit . 104

Effect of population size on a small-size circuit 106
Effect of population size on a medium-size circuit 106
Effect of population size on a large-size circuit 107
Effect of generation size on a small-size circuit 107

xi

4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48

Effect of generation size on a medium-size circuit 108

Effect of generation size on a large-size circuit 108
Effect of crossover rate on a small-size circuit 109
Effect of crossover rate on a medium-size circuit 109
Effect of crossover rate on a large-size circuit 110
Effect of mutation rate on a small-size circuit 110
Effect of mutation rate on a medium-size circuit 111
Effect of mutation rate on a large-size circuit 111
Effect of injecting good solutions on a small-size circuit 112
Effect of injecting good solutions on a medium-size circuit 112
Effect of injecting good solutions on a large-size circuit 113
Wirelength comparison of iterative techniques 116
CPU time comparison of iterative techniques 116
Flat cost hierarchical cost obtained by iterative based tenchniques . 118

Flat CPU time vs hierarchical CPU time by iterative based tenchniques119

xii

Chapter 1

Introduction

The development of a typical Very Large Scale Integration (VLSI) circuit includes
a design phase, utilizing Computer-Aided Design (CAD) tools, fabrication, verifi-
cation and testing. Since the complexity of VLSI design has been growing at an
exponential rate in the last decade, the efficiency of each step involved becomes
essential for a robust design. Various VLSI design styles can be used to implement
a specific digital design. Each design style bears its own merits and drawbacks. To
create a good design at low cost and in a short time, designers have to select proper
tools to carry out their designs effectively.

Several design styles can be considered for chip design. Full custom design,
one of the most fundamental VLSI design methods, depends solely on designers
who have to calculate the geometry, orientation and placement of every individ-
ual transistor without the use of any existing library in a CAD tool. Standard
cell and Mask-Programmable Gate Arrays (MPGAs) fall into the class of semi-

custom style and can be easily used to implement Application-Specific Integrated

CHAPTER 1. INTRODUCTION 2

Circuits (ASICs). In standard-cell design [Kang03] all of the commonly used func-
tional modules are developed, optimized and stored in a typical library with fixed
height. Mask-Programmable Gate Arrays (MPGAs) [Kang03] are an alternative
way for designers to define the interconnections between the transistors which have
been fabricated by the manufacturer. Field-Programmable Gate Arrays (FPGAs)
[Brow92| provide a means for fast prototyping and also for a cost-effective chip
design, especially for low-volume applications [Kang03]. Unlike MPGAs, all pro-
grammable interconnects in FPGAs are pre-fabricated such that users can imple-
ment the physical interconnects by programming RAM cells or melting fuses.

An FPGA has become a popular means to realize digital systems because of
its dramatic reduction of turn-around time and start-up cost compared with tra-
ditional ASICs. FPGA placement and routing are two critical phases in FPGA
design. FPGA placement determines the location of logic blocks required by cir-
cuits in the chip such that the area and speed are optimized. The quality of
placement greatly affects the routing phase. Once placement is completed, routing
is performed by assigning the actual interconnections between logic blocks. Due
to the fact that both placement and routing are NP-hard [Shah91], both phases of
design can consume most of the CPU time during compilation. Current CAD tools
provide high-quality placement and routing solutions at the expense of CPU time
[Mulp01]. The compile time tends to increase tremendously as the size of circuits
becomes larger. With the continuous increase in the logic capacity of FGPAs, it is
imperative to develop effective and efficient placement and routing algorithms that

will provide acceptable solutions in reasonable amounts of CPU time.

CHAPTER 1. INTRODUCTION 3

1.1 Problem Definition

In order to realize a digital system on an FPGA, an effective and special CAD tool
is required. These tools attempt to achieve a successful FPGA design by using
heuristics to tackle problems in the form of packing, placement and routing. The
focus of this thesis is on developing effective placement techniques that can manage
the growing complexity of designs carried out by engineers in industry.

FPGAs have become a popular way to realize digital systems because of their
dramatic reduction in turn-around time and NRE cost compared with traditional
Application-Specific Integrated Circuits (ASICs) [Kang03]. The logic capacity of
FPGAs has increased so rapidly in the last decade (up to 10-million gates), that
it has imposed a new challenge on FPGA compile time dominated by placement
and routing operations. Although the current CAD algorithms offer high-quality
solutions, they require a considerable amount of CPU time. Actually, the compile
time will increase exponentially as the complexity of the circuit increases. In addi-
tion, there is a necessity today for new fast heuristics that can face the challenge

of dynamic placement for reconfigurable computing systems.

1.2 Motivation

The prohibitively long compile times may adversely affect instant manufacturabil-
ity of FPGAs and become intolerable to users seeking very high speed compile.
Today FPGAs, as one of the most popular VLSI design styles, could lose their
time-to-market advantage and capacity, since users don’t have patience to wait for

long periods of time to compile their design. Therefore users are willing to accept

CHAPTER 1. INTRODUCTION 4

the decrease in quality of final results with less FPGA compiling time. This de-
mand motivates the necessity to explore new meta-heuristics for fast compilation of
FPGA design with acceptable quality. Meta-heuristics are a good choice to obtain a
good solution to many combinatorial optimization problems, e.g. FPGA placement
known as NP-hard [Trim94]. In addition to single-solution search algorithms such
as Local Search and Tabu Search, population-based meta-heuristics — Genetic Al-
gorithms or multi-start meta-heuristics - GRASP can be used to deal with FPGA
placement problem. In this thesis we investigate the performance of these meta-
heuristics on FPGA placement, and attempt to obtain acceptable solutions in a

short period of time.

1.3 Proposed Research Approach

Figure 1.1 presents the research approach followed in this thesis to deal with the
FPGA placement problem. In most FPGA placement algorithms, initial solutions
of placement are constructed randomly. The placement algorithm attempts to
improve this random solution by an iterative process which may result in longer
execution times. Therefore, a good initial solution is very important to achieve
a high-quality solution in a short time. Cluster Seed Search (CSS), a construc-
tive based method, is developed and can be easily implemented in trivial time. In
the common VLSI cell placement, constructive placement algorithms are generally
based on primitive connectivity [Shah91]. However, in FPGA placement, CSS uses
the fanout number criteria to select the best block and create an improved initial

and legal placement solution. Greedy Random Adaptive Search Procedure [Feo89]

CHAPTER 1. INTRODUCTION)

et [css) (GRS (Patiioing

Local Search Metaheuristic
Techniques Technigques

|terative
Based Methods

Flat Hierarchica
Placement Placement

Figure 1.1: Approaches for FPGA placement

(GRASP) is yet another constructive heuristic based approach, which combines the
power of a greedy heuristic, randomization and local search procedures. Since it is
easy to implement the GRASP heuristic and a few parameters need to be set and
tuned, it is appealing to many researchers. Initially, all the logic blocks required by
the circuit are placed into one logic block. Next, the best logic block is selected and
removed from the initially overlapped blocks and placed into the nearest location
to previously set blocks. This procedure is repeated until a feasible initial solu-
tion is generated. The Partitioning based approach is another constructive based

technique which applies a recursively dividing strategy to reduce the complexity of

CHAPTER 1. INTRODUCTION 6

FPGA placement, such that improved feasible solutions are obtained quickly.

In addition, two iterative heuristics are proposed to further improve solution
quality. The first is an enhancement of local search and is implemented in two
different ways. Simple Local Search (SLS) attempts to achieve reduction in wire-
length cost by swapping blocks in a window which limits the swapping region.
Initially the window is large, and as the heuristic progresses the window shrinks in
size. Limiting the scope of swap within the region of the original block position
gives superior results compared to unrestricted moves [Lam88]. Local search is also
implemented as an Immediate Neighbourhood Local Search (INLS). This technique
can achieve suboptimal solutions in a very short period of time by only swapping the
adjacent blocks around the selected blocks. Meta-heuristics are also considered in
this thesis to further improve solution quality. Tabu Search(TS) guides local search
to continue exploration without getting stuck in a local optimum by an absence
of improving moves [Arei93]. In order to further explore the solution space, two
different search techniques are integrated into the T'S search heuristic, i.e SLS and
INLS.

Eventually, we propose a population-based meta-heuristic—Genetic Algorithm
(GA) for FPGA placement. In GA, each chromosome of the population is encoded
to represent a solution to the placement problem. During each generation, the fit-
ness of each chromosome is evaluated, and the best chromosomes of the population
are carried over to next generation by an elitism selection mechanism. By using
crossover and mutation to explore the problem space, GA can converge toward an

improved placement solution.

CHAPTER 1. INTRODUCTION 7

1.4 Contributions

The main contributions of this thesis can be summarized as following:

e Development and implementation of constructive based techniques(CSS, GRASP,
Partitioning based method) as good starting points for other iterative based
techniques; Development and implementation of iterative based techniques(SLS,
INLS, SA, TS, GA) to efficiently and effectively explore the solution space in

a reasonable amount of CPU time.

e A thorough investigation of the performance of several search techniques for

FPGA placement on flat and hierarchical levels [Du03].

e A paper was submitted and accepted in CCECE conference proceedings [Bao04].

1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 discusses previous work done on
FPGA placement, as well as prior work done on hierarchical clustering. Chapter 3
describes our proposed constructive placement algorithms, and presents experimen-
tal results based on the approaches developed. Chapter 4 focuses on iterative place-
ment algorithms and analyzes solution quality obtained from several meta-heuristics
(i.e trajectory placement algorithms and population-based placement algorithm).
Chapter 5 attempts to present some key conclusions of the work accomplished and

proposes possible directions for future work.

Chapter 2

Background and Literature

Review

Field Programmable Gate Arrays(FPGAs) are programmable logic devices(first in-
troduced in 1983[Cart86]) that can be used to implement digital systems and are
fully reprogrammable. Their appearance is ascribed to a successful combination of
the programmability of the configurable logic blocks and the interconnection struc-
ture. By eliminating customization during manufacturing, FPGAs eliminate each
design’s custom mask-making, test pattern generation, wafer fabrication, pack-
aging and testing [Trim94]. Compared to other design styles, FPGAs cut down
the design cycle time by providing quick and cheap modifications to the design.
Rapid design turnaround results in short time-to-market. With the capability of
re-programmability, FPGAs reduce the fabrication cost of implementing a digital

design in ASICs.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

2.1 FPGA Architecture

In general, a typical FPGA chip is composed of 10 blocks, an array of uncommitted
configurable logic blocks(CLBs), that can realize a variety of logic functions, and
programmable interconnect structure implementing any interconnection topology.

Figure 2.1 shows a diagram of a typical FPGA defined in [Trim94].

Vetica [T LI JET O L1] [10blocks
Routin T T 1T RNk
Chann _ e
- CLB CLB CLB
u []
|) T IRah
D‘” | CLB CLB il AD (L:Oﬂ'ﬁgglrablLe
<1 Logic Blocks
switch aB o™
Box <=+ il
DL, | LN P L [P [AD
alll CLB 1| CLB 11 CLB =
I i Eoritzontal
outin
HEN HEN N Cham

Figure 2.1: 3x3 island-based array FPGA

The functionality of the logic blocks depends on the complexity and architecture
of the design. A logic block is a collection of look-up tables (LUTSs) and registers
[Betz99]. These LUTs and registers are clustered into a logic block capable of
implementing either combinational and/or sequential logic functions. The higher
the number of LUTs and registers combined into a logic block, the more functions
the logic block can fulfill. Based on previous research, the logic block with 4-input

look-up table achieves the best performance for most architectures [Brow92].

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

According to FPGAs routing resource layout, they can fall into one of the fol-
lowing four classifications [Brow92]. The structures of these FPGAs are illustrated
in Figure 2.2 .

Symmetrical Island-Based: In this architecture, logic blocks are surrounded
by the routing resources which are placed in horizontal and vertical channels. Logic
blocks, referred to as Configurable Logic Blocks(CLBs), are connected to routing
resources by programmable switches.

Sea-of-Gate: Logic blocks are laid out as a symmetrical array, and routing
resources are overlaid on top of the logic blocks. This structure is similar to the

architecture used in MPGAs.

Island based Row-based
Logic

) e Bk T [LT LT

/V
Interconnect ‘ ‘ ‘

Hierarchical

Sea—-of-Gates 1

Logic
‘ / o
Interconnect]]

Figure 2.2: The classification of FPGAs

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

Row Based: In this style of design, the basic architecture consists of rows of
logic blocks with horizontal routing resources between the rows. In ASIC design
the structure of the standard cell resembles that of Row based FPGA style.

Hierarchical: This architecture is based on an EPROM programming technol-
ogy. Logic blocks and routing resources are arranged into a hierarchical mode or

macrocell mode.

Wire Segments
m C/?ecti on Box
CLB -| CLB

CLB CLB

SwitchBox

Figure 2.3: The routing architecture of island-based FPGAs

As shown in Figure 2.3, the routing resources include three basic parts: connec-
tion block, switch box and wire segments. The input or output pins of CLBs are
connected to routing channels by programming the connection block. The switch
box lying in the center of four CLBs is a user programmable switch box which can
join the wire segments together in the different routing channels. The connectivity
F, of the wire segments in the routing channels depends on the topology [Chan96].
Each wire segment could be connected to some or all of the wiring segments on

the neighbourhood channels through the switch box. This connectivity also relates

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

to the flexibility Fy of the switch box. When Fy; = 0.7W(W denotes the number
of wires in a channel) and F, = 3 or 4, the most area-efficient architecture can be

achieved in this type of FPGA [Rose91, Tsen92].

2.2 CAD for FPGAs

The tradeoffs are the essence to the design of FPGAs. A designer who wants to
make the best use of FPGAs must balance the cost and performance of the design.
The design of FPGAs involves complex steps that cannot be carried out manually.
Therefore, an effective and specialized CAD system is required to support the design
procedures of FPGAs. A typical CAD system for designing FPGAs is illustrated

in Figure 2.4. The detailed description of each step involved is given below.

e Initial Design Entry:
At the top phase of the CAD system, the description of the digital design
to be implemented can be created by using schematic capture, hardware de-
scription language such as VHDL or Verilog. The output of this phase is a
boolean expression format that is further processed by synthesis and logic

optimization.

e Synthesis and Logic Optimization:
If the description of the circuit is specified in a hardware descriptive language
or schematic form, it is necessary to transform the description into logic level
representation. The restricted physical structure of FPGAs make it critical
to optimize the logic design in order to achieve the speed, area and timing

constraints.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

——

[Initial Design Entry]

|

[Synthesis & Logic Optimization

|

[Technology Mapping and Packing]

|

e |

|

[Routing]

'

[FPGA Programming File]

——

Figure 2.4: The flow of CAD system for FPGA

13

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 14

e Technology Mapping and Packing:
The optimized logic description of the circuit should then be mapped into
look-up tables (LUTs) to implement specified logic functionalities by the tech-
nology mapping programs [Fran91b, Fran91a, Chen92, Cong94]. Since a logic
block is a cluster of many LUTs and registers, the goal of packing is to mini-
mize the number of logic blocks for the circuit by trying to combine as many
LUTs and registers in a logic block as possible. This step attempts to reduce
the number of signal connections between CLBs and increase the feasibility

of routing [Betz97, Betz99].

e Placement:
Following the mapping and packing phase, the placement phase is performed
to determine the exact physical location of logic blocks on the target device.
Obviously, placement algorithms are employed to minimize the total length of
interconnect and critical path delay. The quality of placement can affect the
final performance of the circuit. Current placement algorithms attempt to

achieve high-quality solutions at the expense of high CPU runtime [Betz99].

e Routing:
Routing is a critical step within the CAD tool to verify the correctness of the
digital circuit. In this phase, the routing resources of an FPGA (like wire
segments and programmable switches) are assigned to construct the actual
connections between logic blocks occupied by the circuit. Routability is an

important measure for the success of placement phase.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 15

e FPGA programming file:
This is the final step of the CAD flow. Following the simulation of the design,
a bitstream file, created by the CAD tool, is used to implement the final

designed circuit on the target FPGA.

2.2.1 Placement Process in FPGA Design

FPGAs provide a paradigm for cost-effective design and implementation. As the
logic capacity of FPGAs increases quickly, efficient CAD tools for FPGAs become
essential. FPGA placement is a very important step in CAD flow of a digital
system and its quality has a great influence on the routing process which decides
if the digital system can successfully be mapped onto the FPGA chip. As a result,
FPGA placement problem has been widely studied [Betz99].

In the physical design automation, the placement phase decides the physical lo-
cation of each logic block, preceding the routing phase. The input to the placement
stage is generally a set of a technology-mapped netlist of logic blocks, input and
output pads and their interconnections. The result of placement is an assignment
of the blocks and pads to specific physical locations of the FPGA that minimizes a
specific cost function [Brow92|. As a fundamental element, a logic block is used to
perform a specified logic function. Figure 2.5 shows the structure of CLB and the
representation in the netlist. 10O blocks are the physical interface connecting the
implemented system to the outside world.

Since the FPGA placement problem is known to be NP-hard [Brow92], meta-
heuristics have been proposed to solve such a problem. By minimizing the total

wirelength based on the specific cost function, CAD tools use these meta-heuristics

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 16

name of input name of
the pad pins the net index output
LB of pin pin
\a V/ l
and2
b
clk >R -
S mp| e name of
the CLB

Figure 2.5: A CLB with four pins

to efficiently map blocks and pads in the circuit netlist on the physical layout of
FPGA chip. In order to understand the efficiency of CAD tools for FPGAs, in
this chapter, the design procedure of FPGA and the details of the placement and

routing problems are discussed.

2.2.1.1 Wirelength Estimation for Placement

The total wirelength refers to the length of routing wires required to map the circuit
onto an FPGA chip. Area efficiency is one of the issues drawing the most concern in
digital system design. Designers attempt to minimize overall interconnection length
of the circuit to achieve the minimum chip area. In the placement stage, it is very
difficult to determine the exact wire area for the physical interconnection between

CLBs and pads. Wirelength estimation is a key factor to solve the placement

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 17

problem and can significantly impact the performance of placement algorithms.
Various models to estimate wirelength have been proposed, such as Steiner tree
[H04], bounding box [Brow92] and spanning tree [Shah91].

Steiner Tree Wirelength Model

A Steiner Tree [H04] is used to construct the shortest route between a set of ter-
minals. Single-Trunk Steiner Tree (STST) is the most appropriate steiner tree es-
timation technique for gate array or standard cell design styles [Prea88|. In STST,
the calculation of the wirelength estimator for a net is illustrated in Figure 2.6.
A single trunk can lie at the mean position of all the terminals in a net on a x-y
coordinate. Horizontal or vertical wire segments are drawn from each terminal to

the horizontal or vertical trunk respectively.

Vertica
Trunk

O \ 00
OpoOo0D; oooopooo
Opoo0; 0D000FOE!
Jpoon; oo oon
%D-D ooooEmoo

Horizontd
Trunk

[]

ninin] [S=S=i=E:jigisls
0000 0088000
00000 00000000

Figure 2.6: Single-trunk Steiner Tree wirelength model

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 18

In a horizontal trunk case shown in Figure 2.6(a), the wirelength of net V; can
be calculated as follows. Initially, a single horizontal line is drawn at the mean po-
sition (ZNN;) of all terminals’ y-coordinate of net N;. Next, vertical wire segments
are drawn from each terminal of Net N; to the horizontal trunk. The wirelength

in of the net N; on x-coordinate is therefore obtained by:

sz = TmazN; — TminN; + Z (ytj o ENZ) (21)
t;EN;

TmaznN; and Ty, are defined as following:

zie = max{zy,, t; € N;} (2.2)
i = min{zy,,t; € N;} (2.3)

In order to obtain the accurate wirelength of net N;, we have to calculate the
wirelength of net N; on the y-coordinate by using a vertical trunk drawn at the
mean y position (7N;). Figure 2.6(b) shows a vertical trunk with x-coordinate wire

segments from the terminals that can be calculated using the following formulas:

Lxl = YmazN; — YminN; + Z (.th o gNZ) (24)
t;EN;

where

YN = maz{y,,t; € N;} (2.5)

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 19
y']\r,‘f” = min{ytj,tj € N;} (2.6)

Combining the above two formulas, the final single-trunk Steiner tree wirelength

of net N; is calculated as:

Ly, == (LY, + L¥) (2.7)

N =

Bounding Box Wirelength Model
Although the STST model provides an accurate estimation of wirelength, the com-
plexity of STST model makes it impractical. The bounding box wirelength model is
a widely used approximation technique to estimate the wirelength of a net [Shah91].
In general, it greatly shortens the computation time required by estimation, com-
pared to the STST model. The approximate wirelength of a net is computed by half
the perimeter of the smallest bounding box (rectangle) that encloses all terminals
of the net, as shown in Figure 2.7.

For a net N; with n terminals, the maximum (x, y) coordinate and the mini-
mum (x,y) coordinate from the Manhattan net structure are first determined. The

wirelength estimation of net V; is calculated by equation (2.8):

LNi = (‘T%la;v - xrzyllm + 1) + (yrjr\z{az - yTZX;n + 1) (28)

The wirelength determined by this method is equivalent to that calculated by
the STST model when nets contain two or three terminals. For nets with more
than three terminals, this method usually underestimates the actual wirelength

necessary to connect all terminals. Therefore a ¢(7) factor [Chen93] is required to

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 20

(Xmax, Y max)

Mﬁ.vmm

Figure 2.7: Bounding box wirelength model

compensate for the underestimation. The value of q(i) relates to the fanout number
of net “i”. The factor q(i) is 1 for nets with 3 or fewer terminals and gradually
increases to 2.79 for nets with 50 terminals [Betz99]. The calculation of ¢(i)’s value

for fanout nets is given by the following equation [Betz00]:

q(7) = 2.7933 + 0.02616 x (Terminal Number — 50) (2.9)

Based on Equations 2.8 and 2.9, a linear bounding box cost function for FPGA

placement can be expressed with the following formula:

Nnpets

Costypoy = »_ q(i) x Ly, (2.10)
i=1

According to experimental results, this cost function provides good results in

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 21

reasonable time [Betz99]. Throughout this thesis, Equation 2.10 will be used to

estimate wirelength resulting from solving the placement problem.

2.3 Heuristic Search Techniques

Due to the practical importance of combinatorial optimization problems, many
search techniques have been developed to tackle them [Shah91]. However, none of
these techniques can solve NP-hard combinatorial optimization problems in poly-
nomial times [Gare79]. Practically, search techniques attempt to generate good
solutions in reasonable time at the cost of sacrificing solution quality.

Local Search is a basic search technique that iteratively attempts to achieve
improvements by only accepting better solutions in an appropriately defined neigh-
bourhood of the current solution. Instead of exhaustively searching the whole space
of possible solutions, Local Search limits the exploration within the local neighbour-
hood. Accordingly, Local Search is capable to converge to an improved suboptimal
solution very quickly. However, it can easily get trapped in a local optimal solution,
which is usually far away from the global optima.

Meta-heuristics were developed and introduced [Osma96] to efficiently and effec-
tively explore the search space, by combining basic heuristic methods within higher
level frameworks. A meta-heuristic is formally defined as an iterative generation
process which guides a subordinate heuristic by combining intelligently different
concepts for exploring and exploiting the search space. Learning strategies are
used to structure information in order to find efficiently near-optimal solutions

[Osma96]. These subordinate heuristics can be either simple local search heuristics

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 22

or constructive based procedures.

As high-level strategies, meta-heuristics attempt to converge to high-quality so-
lutions in reasonable time, by combining underlying more problem specific knowl-
edge. Unlike local search techniques, meta-heuristic techniques either allow deteri-
orating moves, or generate good starting solutions for the local search rather than
random initial solutions. These mechanisms enable them to escape from local op-
tima and hopefully reach near-optimal solutions. Due to these advanced features,
meta-heuristic techniques are considered excellent candidates to solve the FPGA

placement problem.

2.3.1 Genetic Algorithms

Genetic Algorithms were proposed by [Holl75] and have become a common solver
for several combinatorial optimization problems. Today, Genetic Algorithms are ap-
plied to many scientific and engineering fields such as artificial intelligence [Osma96],
strategy planning [Blum03], genetic synthesis [Osma96] and VLSI design [Mazu99],
based on the mechanisms of evolution and natural selection. The evolutionary
mechanisms of Genetic Algorithms always reserve the best offspring obtained from
the parent solutions for a next generation of mating, such that the fittest individuals
are encouraged to survive and reproduce through the evolutionary process.
Genetic Algorithms encode parameter sets for the representation of the actual
problems, which can be in the form of binary strings. Each parameter set is consid-
ered an individual which represents a candidate solution. Rather than working with
only a single solution, Genetic Algorithms explore a large population of solutions

by using crossover and mutation as the search mechanisms. In addition, selection

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 23

and replacement methods are also important genetic operators to create new and
improved individuals by making copies of the better individual and removing the
worse individual in the previous population. While the cycle of genetic operations
is iterated for a number of generations, the overall fitness of individuals in the popu-
lation tend to improve. Although the transformation of the population between the
generations is stochastic, it is a well-structured random search that makes use of all
the information obtained during the search and directs the algorithms to converge
to an optimal solution. Figure 2.8 illustrates how a population of binary strings

evolve in the Simple Genetic Algorithm.

[ndividual

 Crossover ‘111 (fitn&ss:OA)‘ |

\ 11100411} (fitness = 0.3

111001111 (fitmess=03) |

000110000 (ftness=0.2)	- /000110000 (ftness = 0.2)	- 000nT11 (fitness=05)	
\011001000 (fitness = 0.1) \ o \011001000 (fitness = 0.1) \		\011001000 (fitness = 0.1) \	
		i Mutation	
\ 000010011 (fitness = 0.4) \ L \ (00010011 (fitness = 0.4) }—4 0GL)10011 (fitness = 0.7) \ 3			
Popu|ati0n at Generation N New individuals at Generation N+1

Figure 2.8: Overview of simple Genetic Algorithms

The power of GAs comes from the fact that the technique is robust, and can deal
successfully with a wide range of problem areas, including those which are difficult
for other methods to solve. However the major drawback of genetic techniques
is that they require high computation time. In most cases, many generations or
iterations may have to be run on a large population to achieve good results. Another

problem of Genetic Algorithms is related to parameter tuning (i.e crossover rate,

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 24

mutation rate...). Furthermore, Genetic Algorithms are not guaranteed to obtain
the global optimal solutions, although global convergence can be achieved if they

assume infinite computation time [Mazu99].

2.3.2 Tabu Search

Tabu search was proposed in its current form by Fred Glover [Glov86] as an im-
portant optimization technique. Successful applications in many areas have made
Tabu Search one of the standard meta-heuristics used in practice due to its flexi-
bility and efficiency. Undoubtedly, iterative techniques play a key role in solving
optimization problems since no technique is able to converge directly to an optimal
solution for most optimization problems without consuming many iterations. Tabu
search can be considered as a neighbourhood search approach which searches for
better solution in the defined neighborhood solution space.

Basic ideas of Tabu search lie in the allowability mechanism that involves histor-
ical information to define if a move is forbidden or Tabu and guide the move from
the current solution to the next solution in the neighborhood. In order to improve
the efficiency of the exploration procedure, the systematic use of memory is an
essential feature of the Tabu Search technique. The memory is used to confine the
acceptance of the moves such that it is helpful to forbid the moves that may lead
to recently visited solutions. Aspiration, an important exploration feature within
Tabu Search, is used to temporarily release a solution from the move’s tabu status.
The role of aspiration is to increase the flexibility of the algorithms while allowing
the algorithm to escape local optima, and avoid cyclic behavior. Figure 2.9 shows

the components included in Tabu Search technique. Similar to the behaviour of

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 25

Simulated Annealing [Kirk83a], Tabu Search accepts non-improving moves which

help it escape from a local optimum.

(= (=)

Integration

Figure 2.9: Tabu search components

Tabu Search can be used as an iterative technique for FPGA placement by
transforming a feasible and initial placement into an improved and final placement.
The basic exploration of Tabu Search for FPGA placement is to move from the
current solution to the next solution which is the best one in the neighborhood
predefined. Even if this move is non-improving, it will still be accepted. If a move
is accepted for an arbitrarily defined number of previous iterations, it is deemed
not allowable or Tabu, since moving it again may put the routine into cycling. The

pseudo code given in Figure 2.10 illustrates the concept of Tabu Search.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 26

1. S = Create an initial solution;

2. Initialize the tabu memory;

3. Num_iteration = 1;

/*set the number of iterations*/)

4. While(stopping condition is not met)

5. { Generate a candidate set in current neighborhood;
/*Search the whole current neighborhood, put all*/
/*possible moves into a candidate set*/

6. Snew = SearchCandidateSet();

/*find the best solution in candidate set;

7 if (f(Snew) < £(S))

8. S = Snew;

9. Update tabu memory;

10. Num_iteration = Num_iteration + 1;

11. } /*end of while*/

12. return S;

Figure 2.10: Pseudo-code for basic Tabu Search

2.4 Heuristic Algorithms for FPGA Placement

FPGA placement is a well-known hard combinatorial optimization problem which
is NP complete [Shah91]. In the past few decades, several heuristic algorithms
have been developed to deal with the FPGA placement. The developed heuris-
tics attempt to achieve good solutions in acceptable time. The fundamental ob-
jective of these algorithms is to minimize the wiring area occupied by a digital
circuit and speed up the circuit to meet timing requirements. The placement al-
gorithms can be divided into three major classes: constructive technique [Mulp01],
min-cut (partitioning-based) technique [Liu98, Maid03], and iterative technique

[Nag95, Betz97, Sank99, Tess02, Chan03]. The taxonomy of the heuristic algo-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 27

rithms previously implemented is shown in Figure 2.11.

[Techniques for FPGA Placement]

\ ! !
[ConstructiveTechnique] [Partitioning-Based Technique] [Iterative Technique]

[Random Placement] [Cluster Seed Search] [Force-directed Algorithm] [Local Search] [Metaheuristics (SA, TS, GA GRASP)]

Figure 2.11: Taxonomy for FPGA Placement

Random Placement

Random placement techniques [Mulp01] are the easiest way to place a circuit onto
an FPGA chip by randomly scattering the logic block across the chip area. A
random placer algorithm can achieve a legal placement in the least amount of time
by simply randomly assigning the physical position of the logic blocks on the target
chip.

However, since random placement doesn’t optimize the location for the appro-
priate block to achieve the minimum wirelength, the final placement solutions are
unacceptable. Therefore, a random placement algorithm is often used to construct
a legal initial placement solution for other heuristic algorithms such as Simulated
Annealing, Tabu Search and Genetic Algorithms.

Force-Directed Algorithms

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 28

A force-directed placement algorithm was proposed for circuit layout in the 1960s
[Fisk71]. Force-directed placement algorithms compute the location where the
blocks should be placed in order to achieve its ideal placement. Force-directed
placement algorithms tend to move blocks in a direction of the total force until the
force between the blocks within the same net reaches a certain balance.

At first, a legal initial placement is generated randomly. Based on this initial
solution, all the logic blocks are moved to their own appropriate position. Only
one block at a time is selected according to the attractive force between any two
blocks in the net to which it connects. The magnitude of the force is determined by
the distance between the blocks. A block is then selected and moved to its “best
location” which is directly related to closest available location to the centroid of
all the other logic blocks to which it is connected [Mulp01]. If this “best location”
has been occupied by another logic block, the location of these two logic blocks
are swapped. Following the swap, the previously selected block is fixed, and the
location of this block is forbidden be used by any other block. The swap continues
until all the blocks are fixed. All the blocks are then set free and the process is
repeated until a stopping criteria is reached.

The main advantage of Force-Directed Algorithms is the fast convergence. With
fine tuned parameters and other strategies combined, Force-Directed Algorithm can
yield fairly good results [Shah91]. However, it can’t always guarantee to find an
optimal solution.

Partitioning-Based (Min-cut)Algorithm
As a major class of placement algorithms, Partitioning or Min-cut is based on the

Kernighan-Lin [Kern70a] and Fiduccia-Mattheyses algorithms [Fidu82]. Partitioning-

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 29

based or min-cut placement algorithms [Liu98, Maid03] use a divide-and-conquer
strategy to reduce the problem space by repeatedly partitioning the problem into
subproblems. In such a recursive process, while the target FPGA is continuously di-
vided, the algorithm attempts to determine the proper location for the logic blocks
occupied by the digital circuit in either part, such that the minimum number of nets
cut by the partition can be achieved. The partition procedure terminates when all
logic blocks required by the digital circuit are placed onto the target FPGA with
least placement cost.

Undoubtedly Min-cut or partitioning-based placement algorithms can run in a
comparatively short time compared with iterative improvement algorithms [Huan97].
However these techniques do not directly optimize the placement problem in terms
of wirelength. They may achieve a sub-optimal wirelength cost which is an im-
portant issue in FPGA placement. Therefore, they can be combined with other
heuristic techniques to improve the quality of the final FPGA placement.
Simulated Annealing (SA)
Simulated Annealing Algorithm was proposed in 1983 by Kirkpatrick [Kirk83a]. It
mimics the annealing process used to gradually cool molten metal to produce high-
quality metal objects [Kirk83b]. It is the most well-developed technique for FPGA
placement today. A lot of work [Nag95, Betz97, Sank99, Tess02, Chan03] has been
done on Simulated Annealing algorithm for FPGA placement. In this work, VPR
(Versatile Placement and Route) [Betz97] is considered to be state-of-art-tool for
FPGA placement.

The basic process in Simulated Annealing is to accept all random moves with

a controlled probability, which could increase or decrease the cost. A new solution

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 30

always generated from the neighborhood of the current solution. The acceptance
probability of a move is controlled by a specific parameter “I” that resembles
the temperature in metal crystallization. The parameter “T” is used to control the
acceptance probability of the cost increasing moves. In most of the implementations
of this algorithm, the acceptance probability is given by e#, where AC' is the
cost increase. Initially, “T” is set high so that all moves can be accepted. “T”
gradually drops, as the process progresses, so that the acceptance probability for
bad moves decreases proportionally. At the final phase, “T” becomes so small that
only improving solutions are allowed to be accepted. Although SA is used to obtain
very high quality solution, it requires a larger number of iteration to converge to a

near optimal solution.

2.4.1 VPR — Versatile Place and Route

VPR (Versatile Place and Route) [Betz97], based on Simulated Annealing, is a
well-known package for producing high-quality placement and routing results for
FPGAs. In order to achieve the best performance, VPR not only inherits good
features from work done by [Huan86, Lam88, Swar90], but also creates its own
temperature update scheme and terminating criteria. A novel incremental net
bounding box update method is implemented to speed the evaluation process of
swapping two blocks. An initial layout is constructed by assigning CLBs and Pads
required by the circuit on an FPGA chip. The unoccupied blocks on the FPGA are
marked as empty. The pseudo code for Simulated Annealing algorithm is shown in
Figure 2.12.

According to [Huan86], the initial temperature is set to 20 times the standard

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

31

1. P = InitRandomPlacement();

2. T = SetInitTemperature();

3. Rymis = SetInitSearchRange();
/*Riimat is set to the whole chip initially*/

4. while(ExitCriterion() == false) {
/*Outloop not done yet*/

5. while(InnerLoopCriterion()== false) {
/*innerloop not done yet*/
6. Pcandidate = GenerateMove(Pcurrent, Rlimit);

/*swap with current search range*/

7. AC = COSt(Pcandidate) - COSt(Pcurrent);
/* evaluate the pairwise swap*/
8. r = GetRandomNumber(0,1);
obtain a random number between 0 and 1 */
9. if (r<eT)
10. Peyrrent = Pcandidate; /*accept solution */

/* probability for good swap (AC < 0) is 1, so the */

/* bad swap (AC >0) is e 7. while */

11. } /*end of inner loop*/
12. UpdateTemperature(T);
13. UpdateSearhRang(Rjimit);

14. } /*end of outer loop*/
15. return the solution

/*obtain the final placement P*/

/*create a new solution from previous one by random pariwise*/

/*improved solution is always accepted. probability for*/

/*T is very high, all bad swaps are accepted likely. T */
/*drops gradually and finally no more bad swaps are accepted™/

Figure 2.12: Pseudo-code for Simulated Annealing

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 32

deviation in cost after a set of Nyexs swap is evaluated, where Nyers is the total
number of CLBs and input and output pads required by the circuit. The following
equation is used to calculate the number of new configurations attempted at each

temperature:

SwapsPer = inner Num X (Nblocks)% [Swar90] (2.11)

where the default value of the scaling factor innerNum is 10. The temperature
“T” is set so high that it ensures almost all initial swaps are accepted. The decreas-
ing rate of temperature relates to the frequency of change in cost. The placement
quality depends on the number of inner iterations which also affects the execution
time as the process continues.

Since the VPR placer targets a wide variety of circuits, the temperature “T”
must be updated according to the size of the circuit. The use of the temperature
update factor o automatically adjusts the annealing schedule of the VPR placer.
The new temperature “I” is obtained by 7,4 X a. Table 2.1 shows the value of the

temperature update factor o according to the acceptance rate of swaps at the final

temperature.
Acceptance Rate | Temperature Update Factor
(M) (@)
M > 0.96 0.5
0.8 < M <0.96 0.9
0.15< M <0.8 0.95
M <0.15 0.8

Table 2.1: VPR temperature update schedule

The current range limiter Ry, jimi is controlled by the previous range limiter

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 33

R, 1imit and the previous acceptance rate M:
P

Rcur_limit = Rp're_limit X (1 —0.44 + M) (212)

where Ryre yimit € [1, max_dimension]. All block movements are restricted in
this search window whose length is defined by Ry;,.;;- This search range gradually
shrinks, as the annealing process progresses. This range limiting mechanism enables
the VPR placer to effectively explore the solution space.

Finally, VPR placer uses Equation 2.13 to terminate the annealing process (the
parameter bbcost is calculated by Equation 2.10). The final temperature Tierminate
is related to the average placement cost. If the temperature drops below a certain

fraction of the average cost per net, the VPR placer terminates.

0.005 x bbcost
,-Tterminate <
NumberQO fNets

(2.13)

VPR employs a fast incremental bounding box update technique to shorten
CPU runtime. With these fine tuned parameters, VPR currently outperforms other

placement and routing tools in terms of solution quality.

2.4.2 Simultaneous Place and Route Strategy

This simultaneous placement and routing technique has been developed by Nag
and Rutenbar [Nag95] to target the Xilinx XC 4000 series FPGAs which contain
different wire segments. Unlike sequential place and route algorithms, the basic

idea of a simultaneous place and route strategy is to integrate full placement and

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 34

full detailed routing to solve the FPGA layout problem. Congestion estimation for
conventional place and route approaches is very difficult since each switch block
has only finite routing resources. It is possible for the simultaneous place and route
approach to obtain extremely dense and routable FPGA layouts by embedding a
full maze router into the inner loop of an annealing-based placer.

The placement algorithm is a Simulated Annealing algorithm with refined cost

function. The weighted cost function is given by:

Cost =W, x R+ W; xT (2.14)

Where R refers to the number of nets that lack a complete routing, “T” is the
worst-case delay on the slowest path in the current placement. W, and W, are the
weights of quantities “R” and “T” respectively. In order to achieve the maximal
performance optimization, this technique treats the individual LUTs and FF ! as
the placeable cells shown in Figure 2.13. Therefore, the move-set occurring during
the placement comprises the swapping of two single LUTs, two groups of LUTSs or
two CLBs. Since some moves of LUTs or groups of LUTs may cause an infeasible
placement solution, the verification of each move’s validity is carried out before a
disturbance occurs.

An incremental routing phase is performed during the placement process. Every
single placement swap results in a small set of affected nets being ripped up. These
nets are put into a global queue which is used to record the unrouted nets as the

annealer generates. At any intermediate stage, only previously unroutable nets

'LUTs and FF refer to look-up tables and flip-flop respectively.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 35

CLB

TS e T T
1 LO L4 intern ! 1
1=t j routing._ ;
K L1|L2 <0 L3 |5 |/ resourcesNy L8| L9 L7 |
- - ~ :

1 71
| T :
'{ S (Lo | L) | L4 L1 Loj;
1 1 1
L8 1| L3| L5 !
1 L7 Jv\ j\/!' __________ L _2___|

Figure 2.13: LUT swap during placement

and the current nets affected by the placement disturbance are rerouted by a fast,

cost-based maze router.

2.4.3 Hierarchical Approaches for FPGA Placement

Hierarchical techniques have been applied successfully on VLSI standard cell place-
ment [Mall89, Sun95, Arei01]. As the capacity of FPGAs tends to grow, FPGA
users can’t wait a long time for their design to compile, and therefore, efficient
placement tools are needed. In order to increase the speedup of the FPGA place-
ment process with high quality, hierarchical approaches have become appealing for
the design of large digital circuits on FPGAs [Sank99].

FPGA hierarchical placement includes two steps: (i) proceeding bottom-up clus-
tering (ii) top down improvement. In the first stage, based on module connectivity,
hierarchical placement algorithms cluster modules into subclusters gradually as seen

in Figure 2.14. Once all the required clustering is done, placement will be performed

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 36

Declust
Cluster]

,,,,,,,,,,,,,,,,,,,, Heuristic Algorithms

| I y Placement

,,,,,,,,,,,,,,,,,,,,

SecondLevel || |[| I]

,,,,,,,,,,,,,,,,,,,,

//Ejij‘ LI\ pecluster
Cluster

| | | [I 1

,,,,,,,,,,,,,,,,,,,,

AR 0000

,,,,,,,,,,,,,,,,,,,

Flat Level || || [] NN

,,,,,,,,,,,,,,,,,,,

O O ninlinln

,,,,,,,,,,,,,,,,,,,

nRnls 0000

,,,,,,,,,,,,,,,,,,,

Figure 2.14: Hierarchical Placement

at each level of the hierarchy to yield improvement. The placement heuristics for
all the clustered levels (levels other than the bottom level) behave in a top down
manner by placing blocks in the general regions where they belong [Du03]. In the
second stage, the de-clustering or flattening process is used to decomposes clusters
into logic blocks or clusters of lower levels, when the top down optimization at each
level is done. A high-quality final solution is obtained at the bottom (flat) clustering
level by only moving blocks in small regions. Since the complexity of the placement
at the highest level is reduced (with less number of modules), an improved quality
of the placement can be obtained in a short time. Figure 2.14 illustrates the
clustering/declustering process in hierarchical placement [Du03], which is used in

this thesis.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 37

Circuit || FPGA | Number of | Number of | Number of | Average

name | matrix CLBs I/O Pads Nets Fanout
e64 17x17 274 130 290 3.94
tseng 33x33 1047 174 1099 4.28
ex5p 33x33 1064 71 1072 4.73
alu4 40x40 1522 22 1536 4.52
seq 42x42 1750 76 1791 4.46
frisc 60x60 3556 136 3576 4.48
spla 61x61 3690 62 3706 4.73
ex1010 || 68x68 4598 20 4608 4.49
s38584.1 || 81x81 6447 342 6485 4.18
clma 92x92 8383 144 8445 4.61

Table 2.2: MCNC Benchmark circuit suite used as test cases

2.5 MCNC benchmark Circuits

In this thesis, all developed and implemented algorithms target an island-based
FPGA model with each CLB including a 4-input lookup table and a D flip-flop.
Ten MCNC [Yang91] benchmark circuits, shown in Table 2.2, are divided into
three categories: small, medium and large. The number of CLBs in these circuits
ranges from a few hundred to almost ten thousand. The scalability of benchmark
circuits is described in Section 4.5.1. These benchmark circuits have been broadly
used in many FPGA physical design publications [Betz97, Betz99, Sank99, Mulp01,

Part01].

2.6 Summary

Several issues related to FPGA placement have been described in this chapter. Ba-

sic concepts about the FPGA placement problem and wirelength models that play

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 38

a key role on the performance of CAD tools were described. A review of some
prior work devoted to FPGA placement was also introduced. The focus was on two
well-known FPGA placement and routing packages including Versatile Place and
Route and Sitmultaneous Placement and Routing. Finally, some insight on hierar-
chical approaches for FPGA placement was introduced. All heuristic techniques

proposed in this thesis will be tested on flat and hierarchical level structures.

Chapter 3

Constructive Based Methods

Most CAD tools for FPGA development place a lot of attention on the placement
process to achieve an efficient circuit mapping, which is critical to the routing
phase. Placement algorithms can be classified into two main categories: construc-
tive placement and iterative placement. Iterative heuristic algorithms for FPGAs
placement can obtain good results by repeatedly improving the placement solution
from a random initial starting point. Usually this random initial starting point
forces iterative techniques to take a large amount of CPU time to converge to a
suboptimal solution. The quality of initial solution therefore has a great effect
on the convergence of iterative improvement placement algorithms and may even
improve performance for hierarchical flows [Arei93].

Constructive placement techniques are excellent candidates to generate good
starting points in negligible amounts of time. These techniques have been success-
fully applied in ASIC design [Kang83, Yang02]. In constructive placement, a seed

cell is chosen and placed within the layout of the chip. Next, a cell is picked up from

39

CHAPTER 3. CONSTRUCTIVE BASED METHODS 40

a pool of unused cells (according to their connectivity to the previously placed cell)
and placed in an empty position near the initial seed cell. This process is repeated
until a legal placement solution is obtained. However, the quality of placement
solutions produced by constructive techniques is considered poor compared to final
solutions produced by iterative techniques.

In this chapter, several constructive heuristic algorithms are developed to cre-
ate initial legal placement quickly. The first is a simple cluster seed technique
explained in Section 3.1. Two more powerful constructive techniques-GRASP and
Partitioning-based approach are implemented and described in Section 3.2 and Sec-

tion 3.3 respectively.

3.1 Cluster Seed Search

Cluster Seed Search (CSS) is a constructive (cluster growth) based approach used to
build up an initial and legal placement. Cluster growth placement techniques have
been successfully applied to standard cell design [Yang02]. They are considered as
bottom-up methods that operate by choosing cells and placing them into a partial
placement [Karg86]. There are two main functions used by cluster growth: (i)
selection function and (ii) placement function. The selection function is responsible
for selecting the best candidate based on a connectivity metric. The placement
function decides the best location for the cells according to the availability of vacant

space in the area [Karg86].

CHAPTER 3. CONSTRUCTIVE BASED METHODS 41

3.1.1 Implementation

In traditional ASIC standard cell placement [Kang83, Yang02|, constructive algo-
rithms are generally based on primitive connectivity rules. Cell arrangement is
based on the degree of connectivity to the previously placed cells (most densely
connected first) [Shah91]. However, since the number of input and output pins
of each logic block is fixed, connectivity rules for traditional ASIC design do not
perform as well for FPGA design. Therefore in the FPGA placement, CSS uses
the fanout number as a criterion to select the best block and create an improved
initial and legal placement solution. A logic block with high fanout indicates that
this block belongs to a net which has more terminals. Moving these logic blocks
with high fanout together tends to shrink the bounding box of the net containing

more terminals with higher probability.

&% [

(b)

Figure 3.1: CSS in (a) standard cell design and in (b) FPGA design

CHAPTER 3. CONSTRUCTIVE BASED METHODS 42

Figure 3.1 illustrates the difference of CSS in standard cell design and FPGA
design. In Figure 3.1 (a), ¢; has higher physical connectivity to ¢3 than ¢y and c4,
and c3 is placed to the location closest to the seed cell ¢;. However in Figure 3.1

(b), l4 has a higher fanout than [, and I3, and 14 is placed to the location closest to

the seed CLB [;.

1. Seed = RandomSelectSeed();
/*randomly pick a block as a seed*/
2. SetLocationOfSeed();
/*place random seed at the first position of FPGA*/
3. While(Initial Solution Not Complete)
4. { CreateListOfFanoutNumber(Seed);
/* create the list of fanout number of blocks connected to the seed*/
5. Seed = SelectBestBlock();
/*select the block with the highest fanout number as the next seed*/
6. SetLocationOf Seed();
/*place current seed at the location close to the previously placed seed*/
7. } /* end of loop */
8. Return the solution

Figure 3.2: Pseudo-code for CSS

The pseudo-code for CSS is shown in Figure 3.2. Typically, a seed block is
selected randomly and placed on the FPGA fabric. The next block is then chosen
from the remaining unplaced blocks which are connected to the previously placed
seed block based on their fanout. The latter is placed at a vacant location closest
to the seed block, such that the wirelength is minimized. This current placed block
becomes the next seed for next selection. The process is repeated until an improved

initial and legal solution is constructed.

CHAPTER 3. CONSTRUCTIVE BASED METHODS 43

3.1.2 Experimental Results

The Cluster Seed Search (CSS) algorithm is run 10 times for all ten MCNC bench-
mark circuits presented in section 2.5. CSS was compared with randomly generated
initial solutions. As shown in Table 3.1, CSS achieves 6% improvement over small-
size circuits, 12% improvement over medium-size circuits and 20% improvement
over large-size circuits. On average 19% improvement is achieved over all ran-
domly placed circuits in a short period of time. The larger the circuit, the more
reduction in terms of wirelength that can be achieved. However, CSS obviously
results in poor quality of solutions compared to placements obtained by iterative

improvement methods.

Circuit ||Random | Avg. | Max | Min | Avg. | Cost Avg. | Max Min | CPU t.
name cost cost cost cost |impr. ||STDEV || CPU t.|CPU t.|CPU t.|STDEV
e64 7464 7010 | 7078 | 6992 | 6% 38 0.01 0.02 | 0.005 0
tseng 40947 || 35117 | 35754 | 34808 | 15% 211 0.06 0.07 0.05 0
exdHp 41876 || 37532 | 37802 | 37381 | 11% 388 0.05 0.06 0.04 0
alud 61041 54028 | 54902 | 53175 | 13% 629 0.08 0.09 0.08 0
seq 78292 69715 | 70226 | 69390 | 11% 340 0.11 0.13 0.11 0
M.avg | 55539 | 49060 | 49671 | 40349 | 11% 392 0.07 0.08 0.05 0
frisc 221754 ||178101 178902177393 | 20% 572 0.44 0.45 0.44 0
spla 233796 || 182433|183493|181525| 22% 703 0.48 0.52 0.47 0.01
ex1010 | 329351 | 266989 |270885|264977| 20% 2276 0.76 0.83 0.74 0.03
s38584.1| 554873 ||480735|482115|478670| 14% 1415 1.34 1.36 1.33 0.01
clma 792455 | 634721|639724|631368| 20% 3074 2.23 2.25 2.20 0.02
L.avg | 426446 ||348595|351023 (346786 19% 1608 1.05 1.08 1.03 0.02
| Avg || 236185 H 194623|196088|193567‘ 19% H 964 H 0.55 | 0.57 | 0.54 0

Table 3.1: Performance of Cluster Seed Search

CHAPTER 3. CONSTRUCTIVE BASED METHODS 44
3.2 GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) has been successful in
solving numerous combinatorial optimization problems [Feo95]. In operations re-
search, GRASP has been applied to solve scheduling problems [Bard89|, routing
problems [Rese97|, partitioning problems [Lagu94], location problems [Rese98] and
graph theoretic problems [Lagu98]. GRASP has also been utilized broadly and
practically in industrial fields such as transportation [Argu97|, telecommunication

[Pasi98] and electrical power systems [Bina98].

3.2.1 A Generic GRASP

The GRASP meta-heuristic is a multi-start or iterative process, in which each
iteration consists of a construction phase followed by a local search phase [Feo89,
Feo95]. Normally, an initial and feasible solution is built up in the constructive
phase. A local improving process follows up to explore the neighbourhood of this
initial solution and attempts to iteratively improve it. The best solution found in
the iteration is stored as the final result.

The pseudo-code of a generic GRASP algorithm is given in Figure 3.3. The
algorithm begins with an initial solution construction procedure immediately fol-
lowed by a local improvement procedure. The GRASP implementation terminates
after a number of iterations set by the parameter Max_Iteration. The construction
procedure as shown in Figure 3.3 is iterative, greedy and adaptive. The initial so-
lution is constructed by iteratively selecting elements one by one. The choice of the

next element to be added to the solution is decided by the order of all elements in

CHAPTER 3. CONSTRUCTIVE BASED METHODS

MainGRASP(Seed, Max Iteratrion)

ReadInputFile();

for i = 1 to Max Iteration do {
Sinitiae = ConstructionProcedure(Seed);
Snew = LocalSearchProcedure(Sipitiar);
SaveBestSolution (Syew, Spest);

}; /*end of for*/

RestoreBestSolution();

O Ot W=

ConstructionProcedure(seed)
1. S = InitializeSolution();

EvaluateCostOfSolution(S);

While (Initial solution not complete) {
GreedyCreateCandidateList(RCL);
s = RandomSelectionFromRCL();
S =SU(s);

ReevaluateCostOfSoluiton(S);
}; /*end of while*/

e B

LocalSearchProcedure(S;yitiar)
1. ReadInitialSolution(Sipitial);
2. While(local optimum not obtained) {
3. Snew = Locallmprovement(S);
4. }; /*end of while*/
5. ReturnSolution();

Figure 3.3: Pseudo-code for a generic GRASP

45

CHAPTER 3. CONSTRUCTIVE BASED METHODS 46

the list of the best candidate elements which is called the restricted candidate list
(RCL). Typically, a greedy function is used to guide the addition of each element
to the solution. This addition is based on such a criterion that the element to be
incorporated into the partial solution is chosen randomly from the RCL. GRASP
is adaptive since elements selected at any iteration in the construction phase are
a function of those previously selected. The improvement procedure normally is
composed of a local search process as shown in Figure 3.3. GRASP can also be
used in a hybrid meta-heuristic scheme. Instead of simple local search, Tabu Search

or Simulated Annealing may be implemented in GRASP as local search procedures.

3.2.2 GRASP for FPGA placement

As a meta-heuristic technique, GRASP has two main parameters that need tuning.
The first is the stopping criteria, and the second is the element selection method
in the restricted candidate list. Since only a few parameters need to be tuned, this
makes GRASP appealing to researchers.

The pseudo-code in Figure 3.4 illustrates the GRASP algorithm. The param-
eter Maz_Iteration is the number of iterations executed and Seed is used as the
initial point for the construction of the solution in each iteration. In the current
implementation, I/O pads are randomly distributed around the FPGA chip and an

I/O pad is selected as Seed in each iteration.

Initialization and Evaluation of Partial Solution
Unlike a generic GRASP algorithm mentioned in Section 3.2.1, GRASP starts with

a partial solution instead of an empty solution in each iteration, as shown in Figure

CHAPTER 3. CONSTRUCTIVE BASED METHODS

[N

©

>

10.

11.
12.

13.
14.

16.
17.

18.
19.

ReadArchtectureFile();
ReadNetlistFile();
/*read the input files needed for placement®/
for i =1 to Max Iteration do {
S = InitializationForConstruction(Seed);
/*randomly pick up a pad and put all CLBs at the location closest to it*/
EvaluatelInitialBBCost(S);
/*calculate the bounding box cost of this infeasible solution*/
while (Initial Solution contruction (S) not done) {
CreateCandidateList(RCL);
/*greedily create candidate list according to the order of */
/*bounding boz cost resulted in by setting all the unplaced */
/*CLB at the location closest to previously placed target block™/
TargetBlock = SelectBestBlock(RCL);
/*select from RCL the best block which will result in the least */
/¥increase in bounding box cost of the current partial solution™/
S = SetBestBlock(TargetBlock);
/*place selected best block close to the previous target block*/
ReevaluateBBCost(S);
/*recalculate the bounding boz cost of the partial solution™/
} repeat if a legal initial solution is not created yet
ReadInitialSolution(S);
/*ready for local search*/
while (local optimum not reached) {
S = DoLocallmprovement(S);
/*use local search technique to find the local optima */
} /*end of local search*/
SaveBestSolution(S);
/*save the best solution found so far*/
Y /*end of for*/
RestoreBestSolution(S);
/*find the best solution*/

Figure 3.4: Pseudo-code for GRASP on FPGA placement

47

CHAPTER 3. CONSTRUCTIVE BASED METHODS 48

3.5. At first, I/O pads are randomly placed around the FPGA chip, and their
location are not changed during the construction phase. Next, an I/O pad is chosen
randomly as the initial Seed for the construction process. Meanwhile, all the CLBs
are placed at the closest location to the initial Seed. These CLBs are moved, based

on the greedy function, until a legal complete placement solution is generated.

001 2 3 4.5 6 CLBsaray
01112345 I/O pads array
Seed [V (5] [v]
L whledl [voidBlock
3 ol (V] [V
ll 016 |0y |@3 @3«
= oy — — 1/O pad
Vv (v] [v] [v]
02| |12 22 32

S
: <‘ [
<
< |

Location in FPGA chip

A
=
—
=
—
-
=
—
w

(10) (20) (30 CLB

01 2 3 4 5 6 CLBsarray
03| 03) (03) (03)(03) (03): (03
0/1]2(3)4|5 |/O pads array
(L0)| (0.1) 3.0\ (03/(42) | (24

Initia representation of CLBsand 1/0 pads for the construction

Figure 3.5: Initialization in GRASP construction phase

Construction Phase

At each iteration of the construction phase, a set of candidate CLBs is chosen to be

CHAPTER 3. CONSTRUCTIVE BASED METHODS 49

added to the partial solution. While a CLB is incorporated into the partial solution
under construction, the incremental increase in wirelength cost of the new solution
is usually represented by the greedy function. The evaluation of all unplaced CLBs
by this function leads to the formation of a restricted candidate list (RCL), as shown
in Figure 3.6. A CLB that results in the smallest incremental wirelength is selected
to be placed to the closest location to the previously placed target CLB. Once the
best CLB is added to the partial solution, it is removed from the candidate list.

The process is repeated until the construction phase is completed.

‘0‘1‘2‘3‘4‘5k7u0padsarray
@0 | 01 GO 03 (42| 24

CLBsarray

0.1, 2 3 4.5 6.
1(03) ! (0,3) (0,3) (0,3)(0,3)(0,3) |(0,3):

CLBs

&)
g
~
ol
(00}
o
©
w

ON6 4 1 3 2 5
(23) 2 s

Next placed location Incremental cost

99 «——RCL

JO

v 5 \J
@4 M GA]™———_void Block
RICR 9

1/0 pad

1 Y Y v Y Location in FPGA chi
ot i
0 Vv 2
o & cLe

Figure 3.6: Example of RCL construction

Local Improvement Phase

Normally, placement solutions obtained by the construction phase are far from opti-

CHAPTER 3. CONSTRUCTIVE BASED METHODS 50

mum. To further explore the neighbourhoods of these solutions, local improvement
techniques usually reach a local optimal solution by iteratively swapping pairs of
CLBs resulting in better wirelength cost.

A Simple Local Search (SLS) technique and an Immediate Neighbourhood Local
Search (INLS) technique are further implemented as local improvement heuristics
for GRASP on the FPGA placement (to be discussed in more detail in Chapter
4). In SLS, the current solution tends to move to a better solution by accepting
the first improving swap of CLBs in the neighbourhood of the current solution. On
the other hand, in INLS technique, the best-improving strategy is applied where
the neighbourhood of current solution is limited to the adjacent area of the target
CLB. All immediate neighbours surrounding the target CLB are investigated and
the current solution is replaced by the best neighbour. As shown in Figure 3.3, the
algorithm terminates after it executes a number of iterations which is determined

by the parameter Max_Iterations.

3.2.3 Experimental Results

Table 3.2 shows the performance of GRASP based on pure construction phase where
no local improvement technique is performed. Two types of local search techniques
are embedded into GRASP, the first is Simple Local Search (SLS), and the second is
Immediate Neighborhood Local Search (INLS). Both algorithms will be presented in
more detail in the next chapter. Tables 3.3 and 3.4 show the performance of GRASP
based on SLS and GRASP based INLS respectively, by running GRASP 20 times
with Max _Iterations = 10 with different random Seeds. In most benchmarks, results

obtained indicate that GRASP based on SLS spends more time achieving better

CHAPTER 3. CONSTRUCTIVE BASED METHODS

o1

Circuit | Ave. | Max. | Min. Cost Ave. | Max. | Min. | CPU.t
name cost cost cost |STDEV | CPU.t|CPU.t|CPU.t |[STDEV
e64 6451 6690 6304 116 0.05 | 0.05 | 0.05 0.01
tseng || 30579 | 31847 | 29945 174 0.7 0.88 | 0.65 0.25
exop 33854 | 34576 | 32998 198 0.6 0.8 0.5 1.4
alud 48711 | 49271 | 48005 813 14 1.7 1.2 1.7
seq 63513 | 63976 | 63082 623 1.8 1.8 1.6 0.6
M.avg || 44164 |44917.5| 43507 452 1.12 | 1.29 | 0.99 0.99
frisc 165651 | 169587 | 161486 | 1261 6.7 7.5 5.2 2
spla 161950 | 163577 | 160141 | 2975 7.8 9.4 6.1 3.6
ex1010 | 245879 | 249241 [241945 3450 10 11.7 8.1 4
s38584.1 || 415661 | 428643 | 400045 | 8461 22 26 20 4.6
clma (613427616247 | 608654 | 6652 36 44 28 7.5
L.avg | 320514 | 325459 | 314454 | 4560 17 20 13 3

| Avg [178568] 181366 [175261] 2472 || 9 10 | 7 2 |

Table 3.2: Performance of GRASP based on pure construction phase only

Circuit | Ave. | Max. | Min. Cost Ave. | Max. | Min. | CPU.t
name cost cost cost |STDEV | CPU.t|CPU.t |CPU.t |[STDEV
e64 3507 | 3727 | 3371 147 0.9 0.9 0.9 0.05
tseng 13646 | 13896 | 13501 152 7.5 8 6.5 0.3
exop 19535 | 19920 | 19174 299 8 9.5 7.5 1.7
alu4 26004 | 26775 | 24314 | 1013 15 17 14 1.7
seq 35199 | 35860 | 34082 723 17 18 16 0.7
M.avg || 23596 | 24112 | 22767 546 12 13 12 1.1
frisc 88254 | 89594 | 85426 | 1641 66 70 64 4
spla 96299 | 99805 | 90960 | 3855 76 120 66 4.3
ex1010 || 120790|124904 115330 4059 98 106 95 9
s38584.1 || 147423 | 160100 | 123515 | 9710 255 276 242 26
clma |269330|277197 258250 7092 419 433 366 77
L.avg | 144419|150320|134696| 5271 182 201 166 31
| Avg [81998 | 85177 | 76792 | 2869 | 96 | 105 | 88 | 16 |

Table 3.3: Performance of GRASP based on SLS

CHAPTER 3. CONSTRUCTIVE BASED METHODS 52
Circuit | Ave. | Max. | Min. Cost Ave. | Max. | Min. | CPU.t
name cost cost cost |STDEV |CPU.t|CPU.t|CPU.t|STDEV
e64 || 3797 | 3952 | 3685 | 126 04 | 04 [04 | 0.01
tseng || 16349 | 17978 | 15192 | 165 5.1 6 5 0.08
ex5p | 20948 | 21324 | 20487 | 308 57 | 5.8 | 5.6 0.2
alud || 27213 | 27529 | 26845 | 266 12 13 12 1.1
seq || 37229 | 38805 | 36100 | 723 15 18 14 3.3
M.avg || 25434 | 26409 | 24656 | 365 94] 107 | 9 1.3
frisc [96495 | 99288 | 93883 | 1995 60 | 67 | 54 26
spla || 103765 | 108000 | 99488 | 3532 62 72 58 12
ex1010 | 135530 (141269 |130127| 4044 | 88 | 95 85 9
$38584.1 | 172593 179760 | 152512 | 11402 | 228 | 238 | 219 17
clma | 294316302476 | 285186 7063 || 400 | 410 | 350 41
L.avg [160539|166158|152229| 5607 | 167 | 176 | 153 21

| Avg [90823] 94038 | 86345 | 2962 | 87 | 92 | 80 | 11 |

Table 3.4: Performance of GRASP based on INLS

solutions than that based on INLS, by 8% average improvement in wirelength.
Figures 3.7 and 3.8 show the comparison of the random based technique, CSS and
GRASP used to generate initial solutions. Results obtained indicate that GRASP

builds up better initial solutions at the expense of more CPU time.

3.3 Partitioning Based FPGA Placement

Partitioning based methods, also referred to as min-cut techniques, have been suc-
cessfully applied in several areas (i.e VLSI design automation, parallel processing,
data mining and efficient storage of large databases on disks). Partitioning Based
FPGA Placement presented in this section is based on Peng’s Technical Report
[Du04]. The algorithm starts by randomly dividing the circuit into two blocks.

The partitioning algorithm is then applied to minimize the number of nets cut be-

CHAPTER 3. CONSTRUCTIVE BASED METHODS

4x10° [——1Random
V.. 4CSs
[CIGRASP
—~ 3x10°
1%}
o
o
X
o
m
2 2x10°
£
c
3
o
m
1x10°
0

Small

Figure 3.7: Cost of CSS

.,_\VIA | :

Medium Large-size

Size of Circuit

and GRASP construction phase

[__1Random
1 Css
10 4 [C_1GRASP

Bounding Box Cost

01+

T
Small

Figure 3.8: Time of CSS

T T T
Medium Large

Size of Circuit

and GRASP construction phase

93

CHAPTER 3. CONSTRUCTIVE BASED METHODS

tween the two partitions. This is applied in a recursive manner, as shown in Figure

3.9, until each partition contains a few blocks that are highly-connected.

new cut

Existing

|
0|0

S Ogjoio OO

00|00

][]
|

Figure 3.9: Partition based FPGA placement method

Iterative improvement methods used in the past are based on Fiduccia-Mattheyses
(FM) algorithm [Fidu82], Kernighan-Lin (KL) algorithm [Kern70b]. Local search
can be easily implemented and quickly converge to a local optima. In this thesis

an LS and SA are respectively implemented and their performance is investigated

and compared in the next section.

CHAPTER 3. CONSTRUCTIVE BASED METHODS 5%)

3.3.1 Implementation

In the SA based partitioning algorithm implementation, two blocks in different
partitions are selected and a swap is attempted. If the swap reduces the wirelength
cost (cuts), it is accepted; otherwise, the swap is accepted with a probability. The

selection of the two blocks is limited to the new partitions, as shown in Figure 3.10.

Blocks that are located in different
partitions are picked to be swapped

Figure 3.10: Recursive partitioning with SA algorithm

The cost function of SA is based on the cuts between two partitions. The start

temperature 7 is set to

TO =10 % COStim’tial (31)

CHAPTER 3. CONSTRUCTIVE BASED METHODS o6

The update of T is calculated by:

Tnew =0.9 % Told (32)

Furthermore, the number of swaps evaluated at each temperature is set to

MovePerT = (Nblocks)4/3 (3.3)

where Nyoers 18 the number of blocks existing in one partition. Finally, the pro-
gram terminates when no further improvement in cost can be achieved for five

temperature updates.

1. read the netfile;
2. select the partitioning algorithm;
/*SA or LS*/

3. while(PartitionSize > 1)

4. { perform new partitioning based on previous partitions;

5. while(allPartitionsAreOptimized == false)

6. perform SA to minimize the cuts between partitions;
Or perform LS to minize the cuts between partitions;

7. }

8. return final solution;

Figure 3.11: Partitioning based FPGA placement algorithm

In order to construct good initial solutions quickly, a local search based par-
titioning algorithm was also implemented. Similar to SA based partitioning al-
gorithm, local search based partitioning recursively evaluates and swaps blocks in
different partitions. To further speed up the algorithm, the blocks are randomly

chosen and evaluated for a swap. The algorithm terminates after it performs a

CHAPTER 3. CONSTRUCTIVE BASED METHODS o7

number of iterations. The pseudo code is shown in Figure 3.11.

3.3.2 Experimental Results

Experiments were conducted on ten benchmark circuits based on 10 runs. Table 3.5
shows the performance of the SA partitioning based FPGA placement algorithm.
The performance of LS is given in Table 3.6. On average, the solution quality
obtained by the SA based partitioning algorithm is better (130% improvement)
than that obtained by the LS partitioning scheme. This is achieved at the expense
of large CPU time. Figure 3.12 shows a comparison between the random based
approach, CSS, GRASP and Partitioning in term of cost and CPU time. It is clear
that Partitioning based approach achieves the best solution quality in a reasonable

time, compared to the other approaches.

Circuit | Avg. | Max | Min | Cost | Avg. | Max | Min |CPU t.
name cos | cost | cost |STDEV|CPU t.|CPU t.|CPU t.|STDEV
e64 || 3478 | 3529 | 3204 | 76 14 | 1.5 | 1.3 0
tseng | 11942 | 13109 | 11204 | 98 5 6 5 0
ex5p | 18467 | 19525 | 18113 | 126 5 5 5 0
alud | 23472 | 24784 | 22925 | 236 17 18 16 1
seq | 30782 | 31726 | 29837 | 195 19 20 19 1
M.avg || 21166 | 22286 | 20520 | 164 11 12 11 0
frisc | 68923 | 70293 | 67230 | 536 A7 49 44 3
spla || 73834 | 74922 | 72893 | 687 52 56 50 5
ex1010 | 83291 | 85302 | 82904 | 1249 || 84 90 77 8
538584.1(103847(108371|100283| 2837 || 179 | 188 | 165 23
clma [192843|203894|183283| 5023 | 329 | 374 | 308 | 37
L.avg [|104548][108556]101319] 2066 | 138 | 151 | 128 16
| Avg [/ 6108863546 59188 | 1106 | 74 | 8 | 69 | 8 |

Table 3.5: Performance of SA partitioning based placement

CHAPTER 3. CONSTRUCTIVE BASED METHODS o8

2.4x10 °

1.6x10 °

Bounding Box Cost
CPU Time(s)

8.0x10 * |

0.0 0

Random CSS GRASP Partitioning Random CSS GRASP Partitioning

Figure 3.12: Cost/Time of random based technique, CSS, GRASP and Partitioning

CHAPTER 3. CONSTRUCTIVE BASED METHODS
Circuit | Avg. | Max | Min | Cost | Avg. | Max | Min |CPU t.
name || cost | cost | cost |STDEV|CPU t./CPU t.|CPU t.|STDEV
e64 5271 | 5483 | 5074 | 104 0.1 0.1 0.1 0
tseng | 21028 | 23278 | 20293 | 194 0.4 0.5 0.4 0
exdp || 24282 | 25232 | 22392 | 274 0.5 0.5 0.5 0
alud || 37922 | 38283 | 37291 | 186 1.8 2.0 1.7 0
seq 52834 | 53412 | 52190 | 382 1.9 2.1 1.8 0
M.avg || 34017 | 35051 | 33042 | 259 1.2 1.3 1.1 0
frisc {{120129]121932{119272| 1009 4.3 4.6 4.0 0
spla ||132301|139288|128432| 941 4.3 4.5 4.0 0
ex1010 ||202193(203811|192384| 1219 5.8 6.1 5.4 0
$38584.1(1292384|299180(286332| 3039 7.5 7.7 7.2 0
clma ([472992|492382|459302| 4283 11.4 11.9 11.0 0
L.avg |[244003|251316|237104| 1898 6.7 7.0 6.3 0
| Avg [[136134|140227[132276] 1063 | 3.8 | 40 | 36 | 0

Table 3.6: Performance of LS partitioning based placement

99

Partitioning based placement algorithms are good from a “global” perspective,

but they do not directly attempt to minimize wirelength. Therefore, solutions

obtained are usually sub-optimal in terms of wirelength which can be concluded

from Table 3.5 and 3.6 respectively.

3.4 Constructive Techniques: A Comparison

3.4.1 Flat Level Evaluation

The performance of the different constructive based techniques discussed for FPGA

placement are compared based on the ten MCNC benchmarks. The comparison is

made in terms of solution quality (total wirelength) achieved by each method and

the CPU runtime. The Partitioning-based algorithm, CSS and GRASP are run to

CHAPTER 3. CONSTRUCTIVE BASED METHODS 60

create initial solutions. In this case, GRASP was limited to utilize the constructive
phase without performing any local improvement. Partitioning-based algorithm
is carried out based on simple local search. Table 3.7 shows results obtained by
running these algorithms 10 times. Although the results obtained by CSS are
inferior, it achieves 19% average improvement over the random based approach
in a short time. Partitioning-based algorithm achieves the best results with 44%
average improvement compared to random based placement. GRASP yields 25%
improvement over randomly generated solutions but suffers from large CPU time

overhead.

Circuit |Avg.random| Partition-F GRASP-F CSS-F
name | initial cost || Avg. | Avg.CPU || Avg. | Avg.CPU | Avg | Avg.CPU
cost |runtime(s)| cost |runtime(s)| cost |runtime(s)

e64 7542 5074 0.1 6451 0.05 6992 0.01
tseng 41286 20293 0.4 30579 0.7 34808 0.05
exdp 42301 22392 0.5 33854 0.6 37381 0.04
alu4 61504 37291 1.8 48711 1.4 53175 0.08

seq 79903 52190 1.9 63513 1.8 69390 0.11

M.avg 46489 33042 1.2 44164 1.1 48688 0.07
frisc 229152 ||119272 4.3 165651 6.7 177393 0.44
spla 236251 128432 4.3 161950 7.8 181525 0.47

ex1010 332664 (192384 2.8 245879 10 264977 0.74

s38584.1| 559870 ||286332 7.5 415661 22 478670 1.33
clma 796591 (459302 11.4 613427 36 631368 2.20

L.avg 430905 (237104 6.7 320513 16 346786 1.03

| Avg || 238697 [132276] 3.8 [178567] 8.7 193567 0.54 |

Table 3.7: Comparison between Partitioning, CSS and GRASP

Furthermore, hybrid based experiments were conducted by combining the lo-

CHAPTER 3. CONSTRUCTIVE BASED METHODS

61

cal improvement-INLS! with these constructive techniques. In this experimental

setup, initial solutions obtained by the constructive based techniques are followed

by INLS to further enhance the solution quality. Table 3.8 presents the results

by running these algorithms 10 times. GRASP based on INLS achieves on aver-

age 11% improvement, compared to Random + INLS. CSS combined with INLS

still consumes less CPU time and yields average 5% improvement. Partitioning-

based algorithm combined with INLS on the other hand achieves on average 12%

improvement.
Circuit |Random-INLS-F|GRASP-INLS-F|Partition-INLS-F||CSS-INLS-F
name | Avg. Avg. Avg. Avg. Avg. Avg. Avg | Avg.
cost | time(s) cost | time(s) || cost | time(s) cost [time(s)
e64 || 4004 0.04 3589 0.05 4001 0.12 3905 | 0.02
tseng | 15803 0.23 13933 0.53 14473 0.44 15729| 0.18
exop |[21352 0.24 19858 0.6 20061 0.51 20445| 0.22
alud | 28635 0.35 25160 1.22 26097 1.9 27517| 0.27
seq || 39096 0.50 35610 1.45 36671 2.1 37174| 0.36
M.avg || 26221 0.33 23640 0.9 24325 1.3 25216 0.26
frisc |{102901 1.28 92581 5.5 93088 4.6 94450| 1.04
spla [110372] 1.38 98455 5.95 95641 4.9 101296| 1.65
ex1010 |[138479 3.0 108885 8.8 111177 6.4 128115 3.72
s38584.1|204574 3.62 183201 20.1 183297 9.1 194362 3.94
clma (330038 6.07 297464) 35.6 |301505 13.9 318885 6.14
L.avg (177272 3.07 156117 15.1 156941 7.8 167421 3.31
| Avg [|99575] 161 |87873] 7.9 [88602] 44 [94180| 1.76 |

Table 3.8: A comparison between Partition/CSS/GRASP with INLS on flat level

LINLS refers to immediate neighbourhood local search which is described in section 4.1.2

CHAPTER 3. CONSTRUCTIVE BASED METHODS 62

3.4.2 Hierarchical performance

To investigate the performance of constructive based techniques on hierarchical
designs, the technique proposed by Peng [Du04] is used to perform the cluster-

ing/declustering based placement. In the hierarchical experimental setup, the level

used is L = 2 and the clustering size at each level is set to S = 4.

Circuit |Avg.random| Partition-h CSS-h GRASP-h
name | initial cost || Avg. | Avg.CPU || Avg. | Avg.CPU | Avg | Avg.CPU
cost |runtime(s)| cost |runtime(s)| cost |runtime(s)
e64 7542 4380 0.3 6032 0.01 6132 0.02
tseng 41286 13351 1.1 29059 0.1 26741 0.3
exbp 42301 18484 1.45 33987 0.1 32948 0.4
alud 61504 31739 5.2 47133 0.2 44765 0.8
seq 79903 40938 5.9 62598 0.3 61024 0.9
M.avg 46489 26128 3.5 43194 0.17 41368 0.6
frisc 229152 103359 12.5 165348 1.2 152365 3.9
spla 236251 113409 13 176709 1.4 170323 4.1
ex1010 332664 159489 174 255865 2.2 244079 6.1
s38584.1 559870 235380 24 419650 4.3 384880 15
clma 796591 409349 36 613284 7.6 593996 22
L.avg 430905 204197 20.1 326171 3.34 309128 10.2
| Avg [238697 [112988] 11.7 [[180966] 1.7 171724 54 |

Table 3.9: A comparison between Partition/CSS/GRASP on hierarchical placement

In this experimental setup, constructive based techniques are applied to the top
level of the hierarchy. The final solutions are obtained by simply declustering to
the flat level. Table 3.9 shows results obtained based on this hierarchical scheme.
Partitioning based algorithm achieves the best results with 53% on average im-
provement. CSS consumes the shortest time to achieve 24% improvement. GRASP

on the other hand achieves 28% improvement. Table 3.10 shows the comparison

CHAPTER 3. CONSTRUCTIVE BASED METHODS 63

Circuit Partition-h CSS-h GRASP-h
name || Avg.cost | Avg.CPU | Avg.cost | Avg.CPU | Avg.cost | Avg.CPU
Impro.% | Impro.% | Impro.% | Impro.% | Impro.% | Impro.%
e64 +15.1 -200 +13.7 0 +5 +60
tseng +34.2 -175 +16.5 -100 +12.6 +57
exHp +17.4 -190 +9.1 -150 +3 +33.3
alu4 +14.9 -189 +11.4 -150 +8.1 +42.8
seq +21.5 -211 +9.7 -173 +4 +50
M.avg +20.9 -191 +11.3 -142 +6.3 +45.4
frisc +13.4 -190 +6.8 -173 +8 +41.8
spla +12 -202 +2.7 -198 -5.2 +47.4
ex1010 +17.1 -200 +3.4 -197 +1 +39
s38584.1 | +18.8 -220 +12.3 -223 +7 +31.8
clma +10.8 -215 +3 -245 +3.2 +38.9
L.avg +14 -200 +6 -224 +3.6 +37
| Avg | +145 | 207 [+65 | -214 [438 [+379 |

Table 3.10: Comparison between hierarchical and flat constructive techniques

with their flat counterparts. GRASP achieves on average 4% improvement in wire-
length cost with 38% improvement in CPU runtime. CSS and partitioning-based
algorithm on the other hand consume more CPU time to yield respectively 7% and
14% improvement in wirelength cost.

INLS is also used in a hybrid experimental mode for the hierarchical placement.
In this experimental setup, initial solutions are obtained via the constructive based
techniques at the top level. INLS is then applied to improve the quality of so-
lution at this level. Gradual declustering is then performed and INLS is utilized
to further fine tune the search. Table 3.11 shows the performance of Partition-
Based/CSS/GRASP with INLS on the hierarchical placement. Table 3.12 shows
the comparison with their flat counterparts. It is clear from Table 3.12 that CSS

and partitioning-based algorithm achieve on average 15% and 19% improvement.

CHAPTER 3. CONSTRUCTIVE BASED METHODS

64

Circuit ||[Avg.random| Par-INLS-M CSS-INLS-M |GRASP-INLS-M
name | initial cost || Avg. | Avg.CPU | Avg. | Avg.CPU | Avg | Avg.CPU
cost [runtime(s)| cost |runtime(s)| cost | runtime(s)
e64 7542 3380 0.38 3620 0.09 3573 0.1
tseng 41286 12983 1.6 14170 0.5 13782 0.7
exbp 42301 17830 1.87 19943 0.57 19012 0.9
alu4 61504 23091 6.2 26309 0.8 25530 14
seq 79903 32932 7.1 35861 1.05 34606 1.75
M.avg 46489 21709 4.2 24070 0.73 23232 1.2
frisc 229152 83275 13.6 88033 3.15 80147 5.8
spla 236251 88633 17.2 98708 3.7 92198 6.68
ex1010 332664 || 91096 23.6 104627 5.99 95594 10.5
$38584.1|| 559870 ||136205| 30.1 147381 9.27 1138395 19.6
clma 796591 |[228753| 43.8 (266101 16.7 |247412 33.2
L.avg 430905 |[125592| 25.6 140970 7.8 130749 15.2
| Avg | 238697 | 71818 145 [80475] 4.2 |[75104] 81 |

Table 3.11: Comparison between Partition-Based/CSS/GRASP with INLS

Circuit || Partition-INLS-M CSS-INLS-M GRASP-INLS-M
name | Avg.cost | Avg.CPU || Avg.cost | Avg.CPU | Avg.cost | Avg.CPU
Impro.% | Impro.% | Impro.% | Impro.% | Impro.% | Impro.%
e64 +15.5 =217 +7.3 -350 +0.5 -100
tseng +10.3 -264 +9.9 -178 +1.1 -33
ex5p +11.1 -267 +2.5 -159 +4.3 -50
alu4 +11.5 -226 +4.4 -196 -1.4 -15
seq +9.8 -238 +3.5 -192 +2.8 -21
M.avg +10.7 -223 +4.6 -181 +1.7 -27.6
frisc +10.8 -196 +6.8 -202 +13.4 -3.6
spla +7.3 -251 +2.6 -124 +6.4 -10
ex1010 +18 -268 +18.3 -61 +12.2 -15.9
s38584.1 || +25.7 -230 +24.2 -135 +24.5 +2.5
clma +24.1 -215 +16.6 -172 +16.8 +6.8
L.avg +19.9 -228 +15.8 -136 +16.2 0
[Avg [+189 [-229 [+146 | -138 [+145 [-25 |

Table 3.12: Comparison between hierarchical and flat constructive techniques with

INLS

CHAPTER 3. CONSTRUCTIVE BASED METHODS 65

GRASP based on INLS takes 3% more CPU runtime to obtain a 14% improvement

in wirelength cost.

3.5 Summary

In this chapter, a new technique, cluster seed approach for FPGA placement
was proposed and implemented. In addition two meta-heuristics: GRASP and
Partitioning-based Algorithm were implemented and Compared. Although these
algorithms belong to the constructive based techniques, GRASP and Partitioning
are effective search technique that guides integrated local search to explore the so-
lution space. Based on fanout criteria, CSS generates a good starting point in a
trivial amount of time. In GRASP, a greedy construction method iteratively pro-
vides multi-starting solutions for the local search. The construction phase plays a
very important role for searching the landscape effectively. Partitioning achieves
the best results at the expense of CPU time, compared to CSS and GRASP.

In the next chapter, we focus on iterative based techniques for the FPGA place-
ment. An enhanced local search is developed and implemented in two different
ways. Immediate Neighbourhood Local Search limits exploration to adjacent areas
of the target block, while Simple Local Search limits exploration using an effective
window mechanism. Furthermore a Tabu Search technique and Genetic Algorithms

are implemented to enhance solution quality.

Chapter 4

Iterative Based Techniques

Iterative improvement based algorithms usually converge to suboptimal solutions
in reasonable amounts of time [Shah91]. Tterative placement approaches start with
an initial legal solution which can be generated either randomly or by construc-
tive based techniques. Meta-heuristics are iterative processes that efficiently pro-
duce high-quality solutions in reasonable amounts of time by guiding local search
to explore and exploit the solution space effectively. An improving neighbouring
solution with less cost is always accepted in an iterative heuristic. However for
non-improving moves (worse moves), the accepting criteria may vary by differ-
ent algorithms. Local search techniques in general tend to discard non-improving
moves. On the other hand the acceptance of such a non-improving solution in
meta-heuristic based techniques is accepted with certain criteria. The improve-
ment evaluation function returns an accepted solution from the neighbourhood of
the current solution, which need not be better than the current solution. The prob-

ability of the acceptance is usually determined by an additional parameter such

66

CHAPTER 4. ITERATIVE BASED TECHNIQUES 67

as T (temperature) in Simulated annealing, and H (the history of the search) in
Tabu Search. The appropriate randomness may guide a heuristic to converge on a
high-quality local optimal. On the other hand, excessive randomness may lead to
a large amount of time in examining poor solutions or revisiting solutions checked
before.

In this chapter, we investigate several iterative heuristic techniques for FPGA
placement. Two local search iterative improvement techniques are implemented to
obtain solutions fast for both flat/hierarchical designs. The first is Simple Local
Search (SLS) which uses a general iterative improvement strategy. SLS attempts to
achieve reduction in wire-length cost by swapping blocks in a window which limits
the swapping region. Initially the window is large, and as the heuristic progresses
the window shrinks in size. Local search is also implemented as an Immediate
Neighbourhood Local Search (INLS). This technique can achieve suboptimal solu-
tions in a very short period of time by swapping adjacent blocks surrounding the
selected blocks. Furthermore, several meta-heuristics are implemented to further
improve solution quality by effectively exploring the solution space. Tabu Search
(TS) attempts to efficiently explore the solution space without getting stuck at a lo-
cal optimal. A simple Simulated Annealing (SA) algorithm is also implemented and
its performance is compared with TS. Finally, we investigate Genetic Algorithms
for the FPGA placement. Genetic Algorithms effectively attempt to explore the
solution space by coordinately using crossover, mutation, selection and replacement

operators on a pool of initial solutions.

CHAPTER 4. ITERATIVE BASED TECHNIQUES 68
4.1 Local Search Techniques

As one of the most basic iterative heuristic methods, local search algorithms can find
approximate solutions to large-scale combinatorial optimization problems [Arts03].
The fundamental principle underlying a local search algorithm is that it always
moves from the current solution to the next improving solution within the neigh-
borhood in a greedy manner.

Local search algorithms attempt to improve the solution quality either stochasti-
cally or deterministically. The stochastic strategy always accepts the first improving
solution found during random evaluation. The deterministic strategy on the other
hand scans and evaluates the whole neighborhood and accepts the best available
solution. Typically, local search techniques terminate either by getting stuck in a

local minimum or after a predefined number of iterations have passed.

4.1.1 Simple Local Search

Simple Local Search (SLS) uses a simple iterative improvement strategy that swaps
blocks in a window which limits the region for swapping as shown in Figure 4.1.
Initially the window is set to some large value, usually spanning the whole FPGA
chip to enable the exploration of the solution space. As the algorithm progresses,
the window shrinks in size to finely tune the search (i.e. enable fine-tuned search).
In the current search window, two blocks are randomly selected and evaluated; the

swap of these blocks is accepted if the wirelength cost is reduced. The number of

CHAPTER 4. ITERATIVE BASED TECHNIQUES 69

iterations is defined by the following equation:

Niterati(ms =10 x (Nblocks)l.?’s (41)

where Nyocers is the total number of CLBs and I/O pads. By starting from an
initial legal solution, searching the whole neighborhood consumes considerable time

which is prohibitively large for NP-hard problems, while attempting to achieve

improvements.
Hal HaN L]
| Initial search
FPGA Chi R nE i window size
HN u R L]
L

‘ﬁk Findl search
| | window size

Figure 4.1: The search window of SLS

The pseudo-code for this strategy is shown in Figure 4.2. The complexity of
the algorithm is of order O(n) where n is the number of iterations. Since SLS uses a
non-deterministic strategy to move from the current solution to a neighbouring so-
lution, it attempts to accept the first improving solution. Although this stochastic

strategy makes local search algorithms run fast, it prevents the latter from find-

CHAPTER 4. ITERATIVE BASED TECHNIQUES 70

ing aggressively the best solution in the neighborhood. This may easily trap the

heuristic in sub-optimal solutions that are far away from the global optimal.

1. SetExitCriteria();

/*set iteration number®/

S = InitialPlacement();
/*create the initial solution™/
3. window = SetToWholeChip;
4. set Niteraion;
)
6

N

. while(Nyergion = 0) /*start of loop*/
. { Blockl = RandomSelectBlock(window);
/*randomly pick up the first block*/
7. Block2 = RandomSelectBlock(window);
/*random pick up the second block*/
8. C = Cost(Blockl) - Cost(Block2);
/*calculate the change of cost if swapping these two blocks*/

9. if(AC < 0) /*only accept the improving swaps*/
10. S = SwapPosition(Blockl,Block2);
11. Niteraion = Niteraion -1;

12. window = UpdateWindow (Njeretions);
/*update the size of the search window*/

13. } /* end of loop */
14. Return the final solution; /* get final placement solution S */

Figure 4.2: Pseudo-code for SLS

Searching within some local neighourhood of the current solution boosts the
exploration and exploitation ability of SLS. Figures 4.3 and 4.4 illustrate the effect
of window size on the efficiency of SLS. The size of the neighourhood has an impact
on possibilities of revisiting previous solutions. When the size of the search window

is too large, the efficiency of the search of SLS is mitigated.

CHAPTER 4. ITERATIVE BASED TECHNIQUES

1.7%10% o —4— tseng.net | R
] P
% 1.6x10"
Q
(@]
5 1 p—s
o
(=3 4
£ 1.6x10°
=}
=
=3 N
C% 4
o
1.6x10" A\ /
- A/A
T T T T T T T
[¢} 10 20 30

Search Window Size

Figure 4.3: Effect of the search window on medium-size circuits

1.1x10° —Oo— frisc.net o—"
/O/
/O
"(7‘) je)
o 5]
o 1.0x10 /
>
o
o | . S
S ~o /
=]
S
o 4 O
Q 9.9x10 /
O
o\ /
(&}
9.6x10* T . : . T ' T
o 20 40 60

Search Window Size

Figure 4.4: Effect of the search window on large-size circuits

CHAPTER 4. ITERATIVE BASED TECHNIQUES 72

4.1.2 Immediate Neighborhood Local search

An alternative local search method is developed to achieve adequate placement
solution quality in a short time. Limiting the scope of swaps within the region of
the original block position has been shown to give superior results compared to
unrestricted moves when a good initial placement exists [Lam88]. Therefore this
method doesn’t randomly pick up any pair of blocks in the whole neighborhood
region but checks the vicinity of target block and swaps the nearby blocks around
the target block as shown by Figure 4.5. The next seed block is chosen from
the immediate neighbors of the previously selected block, where the selection can
be based on either a deterministic or random criteria. As shown in Figures 4.6
and 4.7 respectively, INLS with deterministic seed selection achieves slightly better

performance than that achieved by random based selection.

I 00000
I 00000
7z O 00 00O
0 O 2, B [sdete
00O z-2 O
Doga|n
minlnNnlaln
O O]
CLB Trrrmmrrmrr Nearty Blocks

Figure 4.5: Searching Region of INLS

CHAPTER 4. ITERATIVE BASED TECHNIQUES

4

4.2x10 Deterministic Seed Selection

Random Seed Selection

. 3.5x10" -
[72}
o
(&
= J
S
m
2 2.8x10"
£
o
=1 J
=]
m

2.1x10"

T T T T T T T T
0.0 8.0x10° 1.6x10* 2.4x10* 3.2x10"

Iteration Number (circuit: tseng.net)

Figure 4.6: Block seed selection criteria on a medium-size circuit

Deterministic Seed Selection
8 1 Random Seed Selection

Bounding Box Cost

T T T T T
0.0 2.0x10 ° 4.0x10° 6.0x10 ° 8.0x10 ° 1.0x10°

Iteration Number(circuit:clma.net)

Figure 4.7: Block seed selection criteria on a large-size circuit

73

CHAPTER 4. ITERATIVE BASED TECHNIQUES

4.

5.

6.
7.

8.
9

3.4

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20. } /*end of loop*/

21. Return the final solution; /*get the improved initial solution™/

1. S = InitialPlacement();

2. while(ExitCriteria() = false); /*start of loop*/

for(i=0; i < NumberOfTotalBlocks; i++) /*start of inner loop*/
{ CreateListOfNearby(SeedBlock(i));

/*create the list of blocks around the selected block™/
for(j=0; j < NumberOfNearbyBlocks; j++)
/*search the adjacent neighbors*/
{ Candidate = SelectNearbyBlocks();
AC = Cost(Candidate) — Cost(SeedBlock(i));
/*calculate the change in the cost*/
if(AC<0) /*only accept the improving swaps*/
{ S = SwapPosition(SeedBlock(i),Candidate);
Break;
} /*avoid doing greedy search*/

if(no swap happen) /*avoid the early convergence*/
{ Candidate = randomSelectBlock();
AC = Cost(Candidate) — Cost(SeedBlock)
if(AC<0)
S = SwapPosition(SeedBlock(i),Candidate);

/*end of inner loop*/

Figure 4.8: Pseudo-code for INLS

74

The pseudo-code for INLS is shown in Figure 4.8 and the complexity is order

O(m) where m is the circuit size. In INLS algorithm, the neighborhood is limited

to a very small region — adjacent to the target block as shown in Figure 4.5. The

algorithm begins its search from any location of the FPGA layout. The first seed

block is chosen randomly and the next seed block is selected from the neighbors

of the previous seed block. In each iteration all the blocks’ adjacent are checked.

To further reduce the runtime, INLS swaps the current seed block with one of its

nearby blocks which could result in cost improvement. If no improvement can be

achieved, an alternative random block is chosen. This methodology is helpful to

expand the exploration space efficiently, as illustrated in Figure 4.9. The INLS

algorithm uses the greedy strategy to scan and evaluate the placement space and

CHAPTER 4. ITERATIVE BASED TECHNIQUES 75

accepts the best solution until no further improvement is obtained. This greedy
method can guarantee the best possible move in the solution space and eventually

reaches the local optima.

4.2x10*
INLS with Exploring Function
"""" INLS without Exploring Funtion

+~ 3.5x10"
7]
o
&)
=
o
m
2 28x10"
k]
c
>
o
m

2.1x10* 1

T T T T T T T T
0.0 8.0x10° 1.6x10* 2.4x10* 3.2x10*

Iteration Number (circuit: tseng.net)

Figure 4.9: Effect of the exploring function

4.1.3 Peformance of SLS and INLS

To evaluate the performance of SLS and INLS, both methods were implemented
and their performance was compared. Both methods start with either random
initial solutions or improved solutions constructed by CSS. The results in Tables
4.1 and 4.2 are obtained by running SLS and INLS 10 times for the ten MCNC
benchmark circuits. The results in Table 4.1 are based on random initial solutions.

Table 4.2 is similar except that initial solutions are based on the CSS constructive

CHAPTER 4. ITERATIVE BASED TECHNIQUES 76

method. Tables 4.1 and 4.2 confirm that both SLS and INLS are fast heuristics.
INLS achieves better improvement than SLS with less CPU time over medium
circuits. However for large circuits, INLS takes less CPU time to obtain the same

improvement as SLS.

Circuit Init. SLS-R INLS-R
name Cost Ave. Ave. | Ave. Ave. Ave. | Ave
cost Impr. | t(s) cost Impr. | t(s)
e64 7542 4006 47% 0.06 4004 47% 0.04
tseng 41286 16478 60% 0.32 15803 62% 0.23
exop 42301 21670 49% 0.33 21352 50% 0.24
alu4 61504 28797 53% 0.46 28635 53% 0.35
seq 79903 39080 51% | 0.62 39096 51% | 0.50
M.avg 46489 26506 43% 0.43 26221 44% 0.33
frisc 229152 || 102676 55% 1.67 || 102901 55% 1.28
spla 236251 || 111485 53% 1.74 110372 54% 1.38
ex1010 332664 || 138229 58% 2.38 138479 58% 3.0
s38584.1 || 559870 || 205301 63% 3.97 || 204574 64% 3.62
clma 796591 || 332142 58% 6.82 330038 59% 6.07
L.avg 430905 || 177967 | 59% 3.31 177272 60% 3.07
| Avg [238697 | 99986 | 58% | 1.88 [99575 | 59% | 1.61 |

Table 4.1: Performance of SLS and INLS

Experimental evaluation was also conducted of a hybrid technique that combines
the three methods together(CSS-SLS-INLS). In this experimental setup, initial solu-
tions are obtained via CSS. This is followed by SLS to explore (diversify the search)
the solution space. Finally, INLS was used to fine tune the search (intensify the
search). Table 4.3 compares CSS-SLS-INLS with solutions obtained by CSS-SLS
and CSS-INLS. Results obtained clearly indicate that this hybrid approach achieves

on average 10% improvement over the other individual heuristic approaches.

CHAPTER 4. ITERATIVE BASED TECHNIQUES

Circuit || Init sol CSS-SLS CSS-INLS
name CSS Ave. Ave. | Ave. Ave. Ave. | Ave.
cost | Impr. | t(s) cost | Impr. | t(s)
e64 6992 3904 4% | 0.1 3905 44% | 0.08
tseng 34808 16036 | 54% | 0.41 || 15729 | 55% | 0.34
exop 37381 21002 | 44% | 0.42 | 20445 | 45% | 0.35
alu4 53175 | 27956 | 47% | 0.56 | 27517 | 48% | 0.47
seq 69390 | 38062 | 45% | 0.81 || 37174 | 45% | 0.75
M.avg || 40349 | 25766 | 36% | 0.55 | 25216 | 38% | 0.47
frisc 177393 || 94479 | 47% | 2.09 || 94450 | 47% | 1.81
spla 181525 || 101300 | 44% | 2.13 || 101296 | 45% | 1.95
ex1010 | 264977 || 128431 | 52% | 2.82 || 128115 | 52% | 2.72
$38584.1 || 478670 || 194515 | 59% | 5.27 || 194362 | 60% | 4.94
clma 631368 | 319227 | 49% | 9.01 || 318885 | 50% | 8.04
L.avg | 346786 | 167594 | 52% | 4.26 | 167421 | 53% | 3.8
| Avg | 193657 | 94493 | 51% [2.34 [94180 | 52% | 2.07 |

Table 4.2: Comparison of SLS and INLS (CSS initial)

Circuit CSS-SLS CSS-INLS CSS-SLS-INLS
name Ave. Ave. Ave. Ave. Ave. Ave. | Ave.
cost t(s) cost t(s) cost Impr. | t(s)
e64 3904 0.1 3905 0.08 3647 7% 0.11
tseng 16036 | 0.41 15729 | 0.34 || 14059 11% 0.7
exdp 21002 0.42 20445 | 0.35 20076 2% 0.75
alu4 27956 | 0.56 || 27517 | 0.47 | 25927 6% 1.07
seq 38062 | 0.81 37174 | 0.75 || 35997 3% 1.5
M.avg 25766 | 0.55 || 25216 | 0.47 | 24014 5% 1.01
frisc 94479 2.09 94450 1.81 92098 2% 4.12
spla 101300 | 2.13 || 101296 | 1.95 | 100592 1% 5.2
ex1010 128431 | 2.82 || 128115 | 2.72 | 110097 | 14% 8.01
$38584.1 || 194515 | 5.27 || 194362 | 4.94 | 173668 | 11% 13.9
clma 319227 | 9.01 || 318885 | 8.04 || 272831 14% | 20.21
L.avg 167594 | 4.26 || 167421 | 3.8 149857 | 10% | 10.28
| Avg | 94493 | 2.34 || 94180 | 2.07 || 84898 | 10% | 5.56 |

Table 4.3: Performance of SLS, INLS and Hybrid

7

CHAPTER 4. ITERATIVE BASED TECHNIQUES 78
4.2 Simulated Annealing

In this section, a simple Simulated Annealing(SA) algorithm is implemented for
the FPGA placement. The pseudo code for FPGA placement is given by Figure
4.10. As a common meta-heuristic technique, the SA algorithm attempts to escape
from a local optima by accepting moves that deteriorates the object function with
a controlled probability. A heuristic function is used to determine the probability
of accepting a move, expressed as f = e~T" where “T” is a control temperature.
Initially, all moves are accepted while “T” is very high. As the search progresses
and “T” decreases accordingly, the chance for accepting a bad move mitigates. This
acceptance function also implies that a move causing small increase in wirelength is
more likely to be accepted than one causing a large increase. To intensify the explo-
ration of the problem space, SA employs a double loop. The outer loop is related to
parameter “T”, and the inner loop determines the number of neighbourhood moves

visited at each temperature.

4.2.1 Annealing Schedule

The Annealing schedule simply includes the initial temperature, the temperature
dropping rate, the number of inner iterations and the stopping criteria. Theoreti-
cally, the SA algorithm is able to converge with probability 1 to an optimal solution
if a certain annealing schedule is utilized [Kirk83a|. In practical implementations,
the SA algorithm uses a heuristic based annealing schedule, which no longer guar-
antees global convergence.

Initial Temperature

CHAPTER 4. ITERATIVE BASED TECHNIQUES 79

1. Pcurrent = InitialPlacement();
2. Evaluate(Pcurrent);
3. T = SetInitTemperature();
4. while(T > Tgna) { /*Outloop not done yet*/
5. while(InnerLoopExit()== false) { /*neighbourhood moves*/
6. Pcandidate = GenerateNewSolution (P current)
/*create a new solution from previoud one by ranodm pariwise*/
/*swap within the neighborhood*/
7. AC = Cost(P andidate) = COst(Pcurrent);
/* evaluate the pairwise swap*/
8. r = GetRandomNumber(0,1);
/*obtain a random number between 0 and 1 */
9. if (AC<0)OR (e T >r))
10. Pcurrent = Pcandidate;
/* accept new solution */
11. } /*end of inner loop*/
12. UpdateTemperature(T);
13. } /*end of outer loop*/
14. return the solution
/*obtain the final placement P*/

Figure 4.10: Simple SA pseudo-code for FPGA placement

The initial value of “T” is determined by the following equation:

Initial NetsCost
InitialT t =10 Du04 4.2
nitialTemperature * NotsNumber [Du04] (4.2)

where InitialNetsCost is the total wirelength of the initial placement solution and
NetsNumber is the number of nets in the circuit.
If the acceptance ratio X, defined as the number of accepted transitions divided

by the number of proposed iterations, is less than a given value X, double the

CHAPTER 4. ITERATIVE BASED TECHNIQUES 80

current value of “T;”. This process is continued until the acceptance ratio exceeds
Xo.

Inner Iteration

In our SA implementation, the number of solutions attempted at each temperature
is related to the circuit size. Therefore the number of pairwise moves is calculated

by the following equation:

InnerIteration = inner Num x (Ny22.)[Du04] (4.3)

where Nyer is the total number of CLBs and I/O pads in the circuit. The pa-
rameter innerNum can be controlled (users defined) to balance the CPU time and
placement quality.

Temperature Dropping Rate

Temperature dropping rate « is arbitrarily set to a constant value close to 0.99.
Stopping Criteria

A stopping criterion determines the final value of temperature “I” which is calcu-

lated as follows:

CurrentNetsCost
NetsNumber

FinalTemperature < 0.005 * (4.4)

where CurrentNetsCost is the total wirelength cost of the current placement solu-

tion and NetsNumber is the number of the nets in the specific circuit.

CHAPTER 4. ITERATIVE BASED TECHNIQUES 81

4.2.2 Experimental Results

SA is executed on 10 random initial solutions as shown in Table 4.4. SA is also
conducted about 10 times with the same parameter set by using good initial so-
lutions constructed by CSS, as shown in Table 4.5. It is clear that SA not only
achieves about 5% improvement in wirelength cost but also runs faster by starting
from good initial solutions, compared to runs based on random initial solutions.
The parameter settings used are summarized as following.

Simple Simulated Annealing Parameter Settings

Initial Temperature T;ni Temp doubled until X < 0.8
Final Temperature Ty, calculated by the equation 4.2.1
Innerlteration L, calculated by the equation 4.2.1
Temperature Decrease a 0.96

4.3 Tabu Search Technique

Tabu Search (TS) is considered a promising meta-heuristic to solve combinatorial
optimization problems [Blum03] with its ability to escape local minima and memory
to avoid cycling. In this section, a Tabu Search technique for the FPGA placement is
implemented and described. Tabu Search technique is used to guide the local search
to avoid getting trapped in local minima. Two local search techniques previously
described in section 4.1 are embedded into Tabu Search technique to solve the
FPGA placement problem.

The Tabu Search implementation for FPGA placement is illustrated by the

CHAPTER 4. ITERATIVE BASED TECHNIQUES 82

Circuit Ave. Max. | Min. Cost Ave. | Max. | Min. | CPU.t

name cost cost cost |STDEV | CPU.t | CPU.t | CPU.t | STDEV
e64-4lut || 3051 3100 | 2973 27 3.9 4 3.9 0.02
tseng 11258 | 11468 | 11038 157 19 19.5 19.1 0.14
exbp 17645 | 17877 | 17474 47 194 19.6 19.3 0.14
alud 21500 | 21616 | 21391 135 32 32.7 32.2 0.20
seq 27914 | 28487 | 27676 336 36.6 37.2 36.2 0.38
M.avg || 19579 | 19862 | 19395 169 27 27.4 26.8 0.22
frisc 65615 | 67075 | 64316 792 97.7 | 99.6 96.1 0.98
spla 72489 | 73549 | 71498 687 104 106 103 0.88
ex1010 || 78397 | 78960 | 77838 593 156 161 154 2.83
s38584.1 || 96831 | 97189 | 96323 451 228 250 216 19.7
clma || 182936 | 185089 | 179416 | 1374 362 394 319 38.6
L.avg | 99254 | 100372 | 97878 779 189 202 178 12.4
Avg 57764 | 58445 | 56994 460 105 112 100 62.9

Table 4.4: SA with random initial solutions

Circuit Ave. Max. | Min. Cost Ave. | Max. | Min. | CPU.t

name cost cost cost |STDEV | CPU.t | CPU.t | CPU.t | STDEV
e64-4lut || 3040 | 3091 2977 36 3.9 4.1 3.9 0.04
tseng 11165 | 11358 | 10793 185 19.2 19.4 18.9 0.16
exbp 17642 | 17885 | 17386 162 19.3 19.5 19.1 0.14
alu4 21480 | 21696 | 21295 136 32.1 32.4 31.7 0.23
seq 27796 | 27975 | 27558 153 36.7 | 36.8 36.4 0.15
M.avg || 19520 | 19728 | 19265 159 26.8 27 26.5 0.13
frisc 65359 | 66988 | 64080 835 96.4 97.9 94.4 1.11
spla 71472 | 72389 | 70587 615 103 104 102 0.70
ex1010 || 78282 | 78813 | 77720 438 152 158 149 3.86
s38584.1 || 96732 | 97104 | 96243 442 227 251 213 21.1
clma | 182134184230 (179001 | 4435 352 390 304 44.0
L.avg | 98795 | 99904 | 97526 1353 186 200 172 14.1
Avg 57510 | 58152 | 56767 743 104 111 97 7.2

Table 4.5: SA with CSS initial solutions

CHAPTER 4. ITERATIVE BASED TECHNIQUES 83

1. S = InitialSolution(construct method);
/*using different methods to create the initial solutions for iterative*/
/*tabu search technique, i.e cluster seed, random method*/
2. set local improvement methods;
set tabu move criteria and tabu_list = (J;
/*two local search methods: INLS and SLS */
/*two tabu move criteria are following:*/
/¥if anyone of a pair of blocks is in current tabu list, these blocks are tabu*/
/¥if both of a pair of blocks are in current tabu list, these blocks are tabu*/
3. set max_iterations and the size of tabu list ;
/*set the mazimum number of iterations*/
4. inner_iteration = 0; best_solution = S;
best_cost = Cost(S); best_ moves = 0;
5. while (inner_iteration - best_moves < max_iterations) {
6. inner_iteration = inner_iteration + 1;
7. target_block = RandomSelect(); /*randomly pick up a block*/
8 candidate_list = Neighborhood(target_block);
/*according to local search method, create the candidate list based*/
/*on neighborhood of target block */

9. target_move = selectBestMove(candidate_list);
/*select a pair of blocks from candidate list leading to the best cost*/
10. if (target_move ¢ tabu list){
11. S = update(S, target_move);
generate a new solution™/
12. best_move = best_move + 1;
13. tabu_list = addTabuList(target_move);
add this pair to Tabu list and remove the oldest pair in this list*/

14. } else if (Aspiration(target move) = True) {

/*Aspiration procedure*/
15. S = update(S, target_move);
16. best_move = best_move + 1;
17. tabu_list = addTabuList(target_move);
18. }
19. if(cost(S) < best_cost) {

/*update the information for stop criterion®/
20. best_cost = cost(S);
21. best_move = inner_iterations;
22. best_solution = S;
23. }

24. { /*end of while*/
25. return best_solution; /*get the final and improved solution™/

Figure 4.11: Pseudo-code of Tabu Search for FPGA placement

CHAPTER 4. ITERATIVE BASED TECHNIQUES 84

pseudo code in Figure 4.11. The algorithm explores the problem space by moving
from the current solution to the next best solution in the current neighborhood.
Initially, a target block is randomly chosen in the search window defined by the local
improvement method. All candidate blocks within the neighborhood of this target
block are exhaustively evaluated. Based on computed estimated gains, the best
block associated with the fittest gain is swapped with the target block if they are
not in the tabu list. The new solution is produced by the interchange of the target
block and the best block found in the candidate set, even if the move deteriorates
the solution. Only one tabu list, whose size Tj;,. is related to the size of the circuit,
is used to keep track of the last pair interchanges and determine whether a move
is tabu or not. The tabu list is introduced as a circular list in order to prevent
cycling. The addition of new move removes the oldest move kept in the tabu list.
To increase the flexibility of the algorithm, while preserving the basic features that
allow the algorithm to escape local optimal, aspiration is used to temporarily release

a solution from its tabu status.

4.3.1 Neighborhood Move

The neighborhood of local search is defined as the set of all solutions that can be
obtained by swapping the target block with all blocks in the search window. The
search window size depends on local search technique implementation. Immediate
Neighborhood Local Search (INLS) always constrains the move within the vicinity
of the target block. In Simple Local Search (SLS), the search window shrinks as
the search progresses. In the current implementation, a greedy method is used

to search the neighborhood in both local improvement approaches. Only the best

CHAPTER 4. ITERATIVE BASED TECHNIQUES 85

move found in the search window is evaluated to decide if the move is accepted by

the Tabu Search algorithm.

4.3.2 Tabu Criteria

To avoid the non-productive moves and improve the search efficiency, tabu restric-
tion (or penalty) is used to discourage the reverse of selected moves. In the current
FPGA placement implementation, two tabu criteria are introduced to determine if
a move is tabu. The first criteria “T'C1” treats a move to be tabu if either block
is on tabu list. The second criteria “TC2” prevents a move to take place if both
blocks are in the tabu list. Figures 4.12 and 4.13 show the effect of different tabu
criteria on medium-size and large-size circuits. Since TC2 reduces the search space
by setting the stringent Tabu condition than TC1, TC2 forces the algorithm to

converge earlier.

Medium circuit: alud4.net

T T T T T T T

6x10 ¢ — ------ Tabu Criteria TC1 (Either block in Tabu List) -

—— Tabu Criteria TC2 (Both blocks in Tabu List)

5x10 * — 1
Jr—
@D
=3 4 —
o
= a
S 4x10° - 4
(=21
= - —
=
= N
3 3x10* =~
o > B\

e
4 T W N N —
e i
2x10 * — 1
T T T T T T T T T
0.0 7.0x10 * 1.4x10 ° 2.1x10 ° 2.8x10 °

Number of Iterations

Figure 4.12: Effect of Tabu criteria on a medium-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 86

Large Circuit: frisc.net

T T T T T T T
2.25x10 5 - ---0--- Tabu Criteria TC1(Either block in Tabu list) T
° —O— Tabu Criteria TC2(Both blocks in Tabu list)
— 1.80x10 ° -
[72] -
o
(s}
> 1 -
o
oo
j=x 5
R 1.35x10 ° -
=}
[
=
3 J
2 J
y -
9.00x10 * T
ON
O\—“—@ﬁgig 1
T v T v T v T v T
0.00 2.50x10 ° 5.00%x10 ° 7.50%x10 ° 1.00x10 °

Number of Iterations

Figure 4.13: Effect of Tabu criteria on a large-size circuit

4.3.3 Tabu List Size

The tabu list size plays an important role in preventing cycling since it contains
historical information of previous iterations. The size of tabu list has a great effect
on the search efficiency. If the length of the list is too small, this might not prevent
cycling. On the other hand, a long size creates too many restrictions such that
it degrades the efficiency of the search. In practice, the size of the tabu list for
the FPGA placement often grows with the circuit size. However, since the FPGA
placement is an NP-hard optimization problem, it is difficult to find a proper value
that prevents cycling and at the same time not limit the exploring capability of
Tabu Search(TS). The experimental observations show that the best tabu list size

can be determined by the following equation:

CHAPTER 4. ITERATIVE BASED TECHNIQUES 87

Ncips + Npaps
Tsize = 4.5
Lmatriw x 4 ()

Where N¢p g, is the total number of CLBs, Npp, is the total number of pads, and
Lypairiz is the length of FPGA chip matrix. All the parameters in the equation are
empirically based on experimentations. Figures 4.14 and 4.15 show the effect of

tabu list size on different circuits.

Medium-Size Circuit: alud4.net

2.40x10" —
0x10 alua

2.28x10" —
—
[72)
o
(&)
>
(=]
[aa)
> a
S 2.16x10"° -
=)
—
=
o
[oa)

2.04x10° -

T T T T T T T T T T T T T
o 5 10 15 20 25 30

Tabu List Size

Figure 4.14: Effect of tabu list size on a medium-size circuit

4.3.4 Aspiration Criteria

The tabu restriction imposed by Tabu Search (TS) might be too stringent to allow
any exploration of the solution space. The aspiration criteria plays a crucial role

in allowing the algorithm to search promising regions within the problem space

CHAPTER 4. ITERATIVE BASED TECHNIQUES 88

Large-Size Circuit: frisc.net

7.20x10"
frisc
6.75x10" -
D
o
o J
>=<
o
o
= 6.30x10" -
=
=]
[
= -
[=]
o
5.85x10" —

o 5 10 15 20 25 30
Tabu List Size

Figure 4.15: Effect of tabu list size on a large-size circuit

that might lead to better solution quality. Usually, the tabu status of a move
may be dropped when the cost associated with a tabu move is less than the value
of aspiration function associated with the cost of the current move. However,
aspiration criteria used in this dissertation is based on the following criteria: a
tabu move status is overridden when its cost is better than the best cost found so
far during the search (note that a tabu move is not removed from tabu list even if
it is accepted during the aspiration phase). Figures 4.16 and 4.17 show the effect
of Tabu Search with/without the aspiration function. The aspiration mechanism
relaxes the tabu condition and improves the exploration capability of Tabu Search

technique.

CHAPTER 4. ITERATIVE BASED TECHNIQUES

Medium Circuit: alud4.net

v T v T v T v T v
LB
6.00x10 * — ----[--- With Aspiration h
—4— Without Aspiration
—
8 4
S 4.50x10
>
o .
fa)
p J
£]
=]
f =
=] a4
S 3.00x10 * o m\ 1
B\
A S P VAN =
i & B 4
1.50x10 * =4 v T v T v T v T
0.0 7.0x10 * 1.4x10 ° 2.1x10 ° 2.8x10 °

Number of Iterations

Figure 4.16: Effect of Tabu search with/without aspiration (Medium Circuit)

Large Circuit: frisc.net

2.5x10 ° v T v T v T v T v
J = -------- With Aspiration b
—4— Without Aspiration]
2.0x10 °
@D
o - -
(&}
>
o s 4
M 1.5x10 °
>
£ .
=)
= J
=
o .
fa)
1.0x10 ° — -
\B\
J i W A b
T v T v T v T v T
0.00 2.50x10 ° 5.00x10 ° 7.50%x10 ° 1.00x10 °

Number of Iterations

Figure 4.17: Effect of Tabu search with/without aspiration (Large Circuit)

CHAPTER 4. ITERATIVE BASED TECHNIQUES 90

4.3.5 Stopping Criteria

The effectiveness of iterative algorithms partially depends on the number of itera-
tions executed. If a larger number of iterations are allowed by iterative algorithms,
they can produce better solutions at the expense of longer CPU runtime, as shown
by Figure 4.18. The amount of iterations executed in Tabu Search is associated

with the size of the circuit and calculated by the following equation:

Iterationme: = o X (Nerps + Npads) (4.6)

where N g, is the total number of CLBs and Np,g4, is the total number of Pads
in the circuit. The parameter « is used to control the depth of the search. The
algorithm terminates when a number of iterations have passed without improving

the best solution found so far.

= - 5600

7.00x10* 2
—4— Wirelength
E —O— Runtime b
a 4200
6.65x10"

§ \ - :
= @
(= E
=} A - 2800 =]
2 6.30x10° \ S
5 2
S] \ G
(s3]
— 1400
5.95x10" —
/O
A
O/O
T T T T T T T = 0
(o] 1 2 3 4 5

CPU time and search depth in Tabu search

Figure 4.18: Evaluating the Stopping Criteria

CHAPTER 4. ITERATIVE BASED TECHNIQUES 91

4.3.6 Performance of Tabu Search for FPGA Placement

In order to investigate the performance of Tabu Search algorithm for FPGA place-
ment, the algorithm was run 20 times on ten MCNC benchmarks. Tabu Search in
effect guided two different neighborhood interchange algorithms, SLS and INLS re-
spectively. Tables 4.6 and 4.7 provide experimental results based on random initial
solutions. Table 4.8 presents a comparison between TS based on INLS and SLS.
It is clear from the tables that TS based on INLS outperforms TS based on SLS.
It achieves on average 12% improvement on medium-size circuits, 30% improve-
ment on large-size circuits and 28% average improvement on all circuits. Figure
4.19 indicates that TS guides INLS to converge to a better solution than SLS. The

parameter settings used for the implementation are as follows:

Tabu Search Parameter Settings

Tabu Criteria TC1 or TC2
Tabu List Size Tyize = ﬂ%%
Aspiration Override tabu status if better than best found so far

Stopping Criteria Iterationm,.. = a X (Ners + Npads)

In addition, Cluster Seed Search was used to provide good starting solutions
for Tabu Search. Tables 4.9 and 4.10 give results obtained by running the algo-
rithm 20 times. By starting from improved solutions, the algorithm achieves ap-
proximately on average 8% improvement compared to solutions based on random

starting points.

CHAPTER 4. ITERATIVE BASED TECHNIQUES

92

Circuit || Ave. | Max. | Min. Cost Ave. | Max. | Min. | CPU.t
name cost cost cost |STDEV ||CPU.t|CPU.t|CPU.t |STDEV
e64 3207 | 3471 | 3084 36 0.3 0.6 0.2 0.1
tseng 11515 | 12292 | 10752 236 2 3 1 0.6
exdp 17733 | 18684 | 17071 257 2 4 1 0.6
alu4 22325 | 23950 | 21259 504 4 6 2 1
seq 29793 | 33351 | 28381 878 5 8 2 2
M.avg | 20341 | 22069 | 19365 468 3 5 1.5 1
frisc 71828 | 75016 | 67555 | 2053 17 23 12 12
spla 77651 | 82175 | 74512 2635 24 31 17 4
ex1010 | 86293 | 90563 | 79346 | 4008 30 36 23 3
s38584.1 | 113884 | 124018 | 104001 | 5892 56 81 40 12
clma 211910215553 |204216| 4500 100 122 88 12
L.avg ||112313|117465|105926| 3817 45 58 36 8
| Avg | 64613] 67907 | 61017 | 2099 | 24 | 31 | 18 | 4 |
Table 4.6: TS Based on INLS with random initial solutions
Circuit || Ave. | Max. | Min. Cost Ave. | Max. | Min. | CPU.t
name cost cost cost |STDEV ||CPU.t|CPU.t|CPU.t |STDEV
e64 3355 | 3598 | 3172 103 7 9 6 0.6
tseng || 12546 | 13020 | 12253 248 96 112 82 8
exdp 18569 | 19114 | 17919 324 79 90 71 6
alu4 25124 | 25573 | 24830 200 92 103 79 7
seq 34085 | 35077 | 33096 555 160 185 143 14
M.avg || 22581 | 23196 | 22024 332 106 122 94 9
frisc 90769 | 92466 | 88873 | 1345 688 801 595 40
spla 99286 | 99798 | 99040 297 664 740 591 62
ex1010 | 115147{118984|109520| 4310 1398 | 1740 | 1141 236
s38584.1 || 174751 | 175943 | 172485 | 1963 3131 | 3538 | 2877 356
clma | 290146 | 293309 | 285695 | 3967 8749 | 9121 | 8225 218
L.avg | 154021|156098|151122| 2376 2925 | 3027 | 2685 128
| Avg | 86378 | 87687 | 84688 | 1331 | 1505 | 1564 | 1382 | 92 |

Table 4.7: TS Based on SLS with random initial solutions

CHAPTER 4. ITERATIVE BASED TECHNIQUES

93

Circuit TABU-SLS TABU-INLS Improvement
name | B.B.cost | CPU.t(s) || B.B.cost | CPU.t(s) || B.B.cost | CPU.t(s)
e64 3172 6 3084 0.2 3% 96%
tseng 12253 82 10752 1 12% 98%
exdp 17919 71 17071 1 5% 98%
alud 24830 79 21259 2 14% 79%
seq 33096 143 28381 2 14% 96%
M.avg 22024 94 19365 1.5 12% 97%
frisc 88873 595 67555 12 24% 97%
spla 99040 591 74512 17 25% 97%
ex1010 | 109520 1141 79346 23 27% 98%
s38584.1 || 172485 2877 104001 40 40% 98%
clma 285695 8255 204216 88 28% 99%
L.avg 151122 2685 105926 36 30% 98%
[Avg [84688 [1382 [61017 | 18 [28% | 9% |

Table 4.8: Comparison between TS based on INLS and SLS

Bounding Box Cost

7,500 —

6,000 —

4,500 —

3,000

— TS Based on INLS
TS Based on SLS

Figure 4.19: TS based on INLS and SLS(circuit: e64-4lut)

T
1.2x10°

Iterations

1.8x10°

CHAPTER 4. ITERATIVE BASED TECHNIQUES

94

Circuit || Ave. | Max. | Min. Cost Ave. | Max. | Min. | CPU.t
name cost cost cost |STDEV ||CPU.t|CPU.t|CPU.t |STDEV
e64 3127 | 3378 | 2993 51 0.4 0.9 0.2 0.1
tseng | 11014 | 12005 | 10097 226 2 3 1 0.6
exdp 16641 | 18809 | 16936 257 2 4 1 0.6
alu4 21660 | 23649 | 21062 427 3 5 2 1
seq 28651 | 32602 | 27864 811 5 8 2 1
M.avg || 19566 | 21766 | 18989 430 3 5 1.5 0.8
frisc 69310 | 75016 | 67555 | 2053 20 29 15 4
spla 72443 | 81808 | 73668 | 2356 21 30 16 6
ex1010 | 79920 | 90813 | 78463 | 4418 31 36 18 5
s38584.1 (101138 111617 | 93309 | 2736 59 69 37 6
clma | 191341199073 184121 | 6594 92 105 75 15
L.avg ||102830 (111665 | 99423 | 3631 44 53 32 7.2
| Avg | 59554 | 64877 | 57606 | 1992 | 24 | 30 | 20 | 39 |
Table 4.9: TS based on INLS with CSS initial solutions
Circuit || Ave. | Max. | Min. Cost Ave. | Max. | Min. | CPU.t
name cost cost cost |STDEV ||CPU.t|CPU.t|CPU.t |STDEV
e64 3351 | 3612 | 3094 108 7 9 6 0.6
tseng || 12593 | 13219 | 10867 368 92 101 84 5
exdp 18492 | 18849 | 17221 214 74 84 65 6
alu4 25025 | 25468 | 24478 335 94 109 84 7
seq 34073 | 34670 | 32673 349 160 179 142 14
M.avg | 22545 | 23051 | 21309 316 105 118 93 8
frisc 89629 | 91756 | 88380 | 1322 684 801 544 109
spla 98406 | 99200 | 96527 297 705 839 638 91
ex1010 | 100852 |108580| 96164 | 5399 1223 | 1370 | 1113 101
s38584.1 | 159394 | 162269 | 157332 | 1976 3228 | 3341 | 3085 127
clma | 264000 | 265571 261962 | 1849 8639 | 9196 | 8141 223
L.avg || 142456 | 145477140073 | 2168 2895 | 3109 | 2704 130
| Avg] 80581]82320 | 78869 | 1220 [1489 | 1602 | 1390 | 78 |

Table 4.10: TS based on SLS with CSS initial solutions

CHAPTER 4. ITERATIVE BASED TECHNIQUES 95

Circuit Rand-TS-INLS CSS-TS-INLS Improvement
name | B.B.cost | CPU.t(s) || B.B.cost | CPU.t(s) || B.B.cost | CPU.t(s)
e64 3207 0.3 3127 0.4 2% -33%
tseng || 11515 2 11014 2 1% 0%
exbp || 17733 2 16641 2 4% 0%
alud 22325 4 21660 3 3% 25%
seq 29793) 28651 5 4% 0%
M.avg 20341 3 20166 3 4% 0%
frisc 71828 17 69310 20 4% -18%
spla 77651 24 72443 21 ™% 13%
ex1010 86293 30 79920 31 7% -3%
s38584.1 | 113884 56 101138 59 11% -5%
clma 211910 100 191341 92 10% 8%
L.avg 112313 45 102830 44 8% 2%
[Avg | 64613 | 24 [59554 | 24 [8% | 0%]

Table 4.11: Comparison between TS with random/CSS initial solutions

4.4 Genetic Algorithms

In this section, a Genetic Algorithm for the FPGA placement is proposed and
the details of the implementation are further discussed. To observe the effect of
evolution operators on the performance of placement, several selection method and
replacement methods are investigated and implemented.

A Genetic Algorithm implementation for FPGA placement is illustrated in Fig-
ure 4.20. The algorithm starts by constructing a set of random initial placement
solutions that are coded as the (x,y) co-ordinates of the blocks in the FPGA chip
and are called chromosomes. Next, this initial/legal population is evaluated ac-
cording to the placement-specific fitness function. The binary tournament selection
method is applied to choose parents for reproduction. By exchanging part of the se-

lected parent’s structure, the Crossover operator transforms parents into two new

CHAPTER 4. ITERATIVE BASED TECHNIQUES 96

GA for FPGA Placement
1. Read Inputfiles ;
2. Set popSize, crossRate, mutateRate, geneSize;
3. Set selection method, replacement method;
4. Construct random initial and legal population;
5. While (geneSize is not reached)
6. For (i=1 to popsize/2)
7. Select_parents(chrom1,chrom2,selectMethod);
8. if (random(0,1) < crossover_rate)
10. if (random(0,1) < mutation_rate)
11. Mutation(offspring) and evaluate offspring;
12. End For
13. Replacement (selectMethod);
14. generation = generation 4+ 1;
15. End While
16. Return best placement solution;

Figure 4.20: A Genetic FPGA Placement Algorithm

individuals called offspring. Each offspring inherits partial features from their par-
ents. The Mutation operator follows up by randomly and incrementally changing
the genes contained in the offspring. The Mutation operator basically expands
the exploration capability of the Genetic Algorithm such that the search space
is not merely constrained into the finite population size. In this implementation,
the replacement method is implemented in several ways. The first implementation
attempts to replace the most inferior member of a population by a new superior
offspring. The second technique tends to replace the previous population with the
newly generated population. A one-point order crossover is used since traditional

crossover operators tend to genenrate infeasible solutions for the problem.

CHAPTER 4. ITERATIVE BASED TECHNIQUES 97

4.4.1 Encoding Mechanism

The encoding mechanism enables GA indirectly to deal with the optimization prob-
lem by utilizing the proper representation of the problem’s variables. A good encod-
ing method is very crucial for any GA implementation. In the current implemen-
tation, an FPGA placement solution string is represented by the (x,y) co-ordinates
of the blocks in the FPGA chip. Figure 4.21(b) illustrates the chromosome of an

encoded solution representing the actual placement solution given in Figure 4.21(a).

Occupied Block Empty Block

c3 c2 c9 c0

13| 23 63| |3 hlock| c5 €0 c3 el c6c2 €2 €3 ¢8 ¢l c9 5 cd ed c0 c7

X 111112222333344414

cl
32 Y |1234123412341234
5 B8] [t
(L1) 3] (@Y
(@) Placement solution () String encoding of solution

Figure 4.21: String encoding

CHAPTER 4. ITERATIVE BASED TECHNIQUES 98

4.4.2 Tournament Selection with/without Replacement

In Genetic Algorithms, the selection operator resembles nature’s survival of the
fittest mechanism. Superior solutions create more offspring and get higher chances
to survive in the evolution than inferior solutions. A variety of selection methods,
such as roulette wheel selection, stochastic universal selection and binary tourna-
ment selection [Mazu99], have been broadly applied in Genetic Algorithms. In
general, selection schemes provide the selection pressure (a drive force) to deter-
mine the rate of convergence. In order to avoid premature convergence to sub-
optimal solution, binary tournament selection is used to exert more selection
pressure in later generations when the fitness values of overall individuals become
similar. Binary tournament selection method can be performed with or without re-
placement respectively. Two individuals are chosen randomly from the population,
and the better individual with a higher fitness value is considered as a candidate.
The “Without Replacement” strategy sets aside the two individuals such that
they are not merged again into the pool. On the other hand, in the “With Re-
placement” selection, two individuals are immediately replaced into the current
population for further selection. Several experiments were carried out on circuits
with and without replacement schemes. As shown in Figures 4.22, 4.23 and 4.24, bi-
nary tournament selection “With Replacement” provides more selection pressure

than “Without Replacement”.

CHAPTER 4. ITERATIVE BASED TECHNIQUES 99

Small-Size Circuit: e64-4lut.net

7500
1 | === Binary Tournament Selection without Replacement
A Binary Tournament Selection with Replacement
7400 —
7300 —
—
1723 <
o
© 7200
>
(= <
o
S 7100
=]
= <
3
o 7000 —
6900 —
6800 T T T T T

v v v v v T
o 20 40 60 80 100
Generations

Figure 4.22: Effect of binary tournament selection with/without replacement on a
small-size circuit

Medium-Size Circuit: alud.net

a
6x10" — R I Binary Tournament Selecion without Replacement
Binary Tournament Selection with Replacement

6x10" —
-
w
o
o
= J
o
[aa]
= 4
.S 6x10" -
=)
=
o
[aa] 4
6x10" —

T T T T T T
o] 20 40 60 80 100

Generations

Figure 4.23: Effect of binary tournament selection with/without replacement on a
medium-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 100

Large-Size Circuit: frisc.net

5
2.27x10°—4 | e Binary Tournament Select without Replacement
Binary Tournament Select with Replacement

— s
8 2.25x10° —
(&)
>
o
o _
=
=
=
S
S 2.23x10°
o

2.20x10° T r T r T r T v T v T

o 20 40 60 80 100
Generations

Figure 4.24: Effect of binary tournament selection with/without replacement on a
large-size circuit

4.4.3 Crossover

Crossover is GA’s crucial operator to generate offsprings, following the selection
process. Pairs of individuals are chosen based on the selection strategy used from
the population and subjected to the crossover operator. Traditional crossover op-
erators that work well with bit string representation may yield illegal solutions
for the FPGA placement problem. Therefore, to keep the efficiency of the search
process, the order crossover operator [Mazu99] is utilized for the FPGA placement,
problem. Figure 4.25 illustrates “one-point order crossover” operator where each
pair of parents produces two children with a possibility equal to the crossover rate.
In this method, a single cut point is generated at random within the pair of parents.

The crossover operator then copies the array segment to the left point from one

CHAPTER 4. ITERATIVE BASED TECHNIQUES 101

parent to one offspring. It then attempts to fill the remaining part of the offspring
by scanning the other parent and taking those elements that were left out, in order
[Mazu99]. Following the selection process, the crossover operator is performed only

if a randomly generated number between 0 and 1 is less than crossover rate P, L.

Cut Point parent 1

cell | empty2| cdl3 | celd | cell5 | empty6 | cdl7 | cell8 | cell9

g parent2
. cdlg | empty2| cdl7 | cdll | cell9 | cell3 | empty6| cdl4 cell5

\ ~ o RN]\ N
S~ ~ ~ N
\ ~ ~ ~ N
~ < ~ N
\ ~ o ~ o ~ N
~
\ \\\ S S N
\ \\\ ~ o N ff .
\ SR - . offspring
\ - N ~
§ ~ < ~ o \\ AN
= - \
RN \A

cell | empty2| cdl3 | celd | cel5 | cell8 cel7 | cell9 | empty6

Figure 4.25: One-point order crossover for FPGA placement

4.4.4 Mutation

Following crossover, each offspring is subjected to the mutation operator with a
probability equal to the mutation rate P,. The mutation rate P,, defines the
probability of swapping the position of blocks pairwise in solutions. The mutation

operator in practice alters incrementally an offspring reproduced through crossover

! The crossover rate P, denote the probability of crossover.

CHAPTER 4. ITERATIVE BASED TECHNIQUES 102

and serves the key role of restoring gene materials lost from the population during
the selection process. It also plays a role of creating the gene values that were
not presented in the initial population. Figure 4.26 illustrates mutation in FPGA
placement, where the coordinate of a randomly selected pair of blocks is exchanged

based on the mutation probability.

V4 |
block index 3 6 2 8 7 1 5 4
X—coordinate 1 12 48 32 21 2 37 31
y—coordinate 0 20 50 30 0] 50 40 30
block index 3 6 1 8 7 2 5 4
xX—coordinate 1 12 48 32 21 2 37 31
y—coordinate 0] 20 50 30 0 50 40 30

Figure 4.26: Mutation process for FPGA placement

4.4.5 Replacement Method

Following mutation, the population of the next generation is created by combining
individuals of parents and offsprings based on a certain strategy. Two replacement
methods are applied in the FPGA placement. In order to keep the best individ-
uals within a population, an elitism replacement is used, where two parents and

two children are compared and the two fittest individuals are restored and injected

CHAPTER 4. ITERATIVE BASED TECHNIQUES 103

back into new population. The elitism strategy guarantees that the best individual
in the current parents and new offsprings always move to the subsequent gener-
ation automatically, protecting the search from regression. The second strategy,
non-elitism replacement, simply replaces the whole parent population with new
offsprings. Figures 4.27, 4.28 and 4.29 show the effect of elitism and non-elitism
replacement on the FPGA placement. It is clear from these figures that the re-
placement strategy based on elitism achieves far better results than those based on

no-elitism technique, especially at later stages of the search.

Small-Size Circuit: e64-4lut.net

Elitism Replacement
———————— Non-Elitism Replacement
7.36x10° o
D
f=3
O 3
<>§ 7.20x10°
o
o>
=
=
=
=
B 7.04x10° A
6.88x10° —

v v v v v T
o 20 40 60 80 100
Generations

Figure 4.27: Effect of elitism and non-elitism replacement on a small-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 104

Medium-Size Circuit: alud.net

a

6x10" — Elitism Replacement
————————— Non-Elitism Replacement

B 6x10”

S

(@]

>

(=] 4

[aa]

=

=

=

= 6x10"

=

(=3

o
6x10" —

v v v v v T
o 20 40 60 80 100
Generations

Figure 4.28: Effect of elitism and non-elitism replacement on a medium-size circuit

Large-Size Circuit: frisc.net

2.28x10°
ffffffff Non-Elitism Replacement
i Elitism Replacement
2.26x10° -
D
=1
(&) 4
>
o
m 5
=> 2.24x10° —
=
=}
|
= -
o
[a]
2.23x10° T R o

Generations

Figure 4.29: Effect of elitism and non-elitism replacement on a large-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 105

4.4.6 GA Parameter Tuning

To further enhance the performance of the GA proposed in section 4.4, the algo-
rithm was run for different population sizes, number of generations, crossover rates
and mutation rates. As shown in Figures 4.30 through 4.35, the performance of
the GA improves dramatically as the population size and number of generations
are increased. Figures 4.33 through 4.35 also indicate that the Genetic Algorithm
shows a very rapid improvement in the beginning of the search and ultimately lev-
els off at the later stages of the search. Hence, if high-quality placement is not an
essential issue, the pure Genetic Algorithm can be terminated at an early stage.
The effect of crossover rate is illustrated in Figures 4.36, 4.37 and 4.38. The higher
the crossover rate (close to 100%), the better the quality of the solution achieved.
However, the reverse can be said about the effect of the mutation rate as shown
in Figures 4.39 4.40 and 4.41. A too low or too high mutation rate possibly can
deteriorate solution quality.

In order to investigate the performance of GA with improved initial solutions,
we inject a portion of good initial solutions into a random initial population. The
good initial solutions are constructed by the GRASP technique. Experiments con-
ducted on small, medium and large size circuits (as illustrated in Figures 4.42,
4.43 and 4.44) indicate that the quality of solutions obtained by the GA technique
are enhanced by the injection of high performance individuals within the initial
population. However, increasing the number of good initial solutions may lead to
premature convergence and prevent the GA from diversifying the search and limit

the exploration capability of the algorithm.

CHAPTER 4. ITERATIVE BASED TECHNIQUES

Bounding Box Cost

Bounding Box Cost

Small-Size Circuit: e64-4lut.net

6x10° —

6x10°

1

6x10°

1

1

6x10°

cRate:99% mRate:1.2% gSize:100

T

T v T v T v T v T
20 40 60 80 100

T T T T T

T T
120 140 160 180

T

T
200 220
Population Size

Figure 4.30: Effect of population size on a small-size circuit

Medium-Size Circuit: alud.net

5.8x10" —

5.8x10" —

5.8x10" —

5.7x10" —

5.7x10" —

cRate:99% mRate: 1.2% gSize:100

v v v T v T v T v T v T v T
20 40 60 80 100 120 140 160 180 200
Population Size

Figure 4.31: Effect of population size on a medium-size circuit

106

CHAPTER 4. ITERATIVE BASED TECHNIQUES 107

Large-Size Circuit: frisc.net

| cRate:99% mRate:1.2% gSize:100
2x10° -
8 2x10° -
(&)
>=<
o .
o
=
= 2x10° -
|
=
o
3 J
2x10° -
M T M T M T M T M T
40 80 120 160 200
Population Size
Figure 4.32: Effect of population size on a large-size circuit
Small-Size Circuit: e64-4lut.net
pSize:50 cRate:99% mRate:1.2
7.4x10° —
B
o
O 7.2x10°
>
o
m
f=2] -
f
£
|
=
B 7.0x10°
6.8x10° r T r T r T v T v
o 20 40 60 80 100

Generation Size

Figure 4.33: Effect of generation size on a small-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 108

Bounding Box Cost

Bounding Box Cost

Medium-Size Circuit: alud4.net

a
6x10" + pSize:50 cRate:99% mRate:1.2%
6x10" —
6x10" —
6x10" — |
v T v T v T v T v
o 20 40 60 80 100
Generation Size
Figure 4.34: Effect of generation size on a medium-size circuit
Large-Size Circuit: frisc.net
2.28x10° -
pSize:50 cRate:99% mRate:1.2%
2.25x10° -
2.23x10° -
2.21x10° L
v T v T v T v T v

o 20 40 60 80 100
Generation Size

Figure 4.35: Effect of generation size on a large-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 109

Small Circuit: e64-4lut.net

pSize:50 mRate:1.2% gSize:100

6x10° -
g 6x10° -
(&)
>
(= 4
o
>
= R
T 6x10°
=
o
m -

6x10° -

M T M T M T M T M T
0.0 0.2 0.4 0.6 0.8 1.0
Crossover Rate
Figure 4.36: Effect of crossover rate on a small-size circuit
Medium-Size Circuit: alud.net
1 pSize:50 mRate:1.2% gSize:100

5.9x10" -
[<3}
©T 5.8x10" —
o
>
o .
e}
>
= a
= 5.8x10 -
—
=
o
m -

5.8x10" -

T T M T M T

v v T v
0.0 0.2 0.4 0.6 0.8 1.0
Crossover Rate

Figure 4.37: Effect of crossover rate on a medium-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 110

Large-Size Circuit: frisc.net

] pSize:50 mRate;1.2% gSize:100
2.211x10°
@ J
C
o
XS 2.195x10°
o
()]
= J
=}
j
=
(= 5
m 2.178x10°
2.162x10° —
T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Crossover Rate
Figure 4.38: Effect of crossover rate on a large-size circuit
Small-Size Circuit: e64-4lut.net
] pSize:50 cRate:99% gSzie:100
6.2x10° —
B 6.2x10°
&}
>=<
S J
o
g 3
S 6.1x10°
f
=
o -
o
6.0x10° —
v T v T v T v T v T v
0.00 0.03 0.06 0.09 0.12 0.15

Mutation Rate

Figure 4.39: Effect of mutation rate on a small-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 111

Medium-Size Circuit: alud.net

5.8x10% - pSize:50 cRate:99% gSzie:100
*g‘ 5.8x10" -
o
>
(= 4
[=a)
=2}
k=
2 5.8x10" 1
=
o
[=a)

5.7x10" -

M T M T M T M T M T
0.00 0.03 0.06 0.09 0.12 0.15
Mutation Rate
Figure 4.40: Effect of mutation rate on a medium-size circuit
Large-Size Circuit: frisc.net
e pSize:50 cRate:99% gSize:100

2x10° -
D
S

5

= 2x10°
o
[~a)
= .
|
£
j =
3 2x10°+
[~a)

2x10° —

T M T T M T

v v T v
0.00 0.03 0.06 0.09 0.12 0.15
Mutation Rate

Figure 4.41: Effect of mutation rate on a large-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 112

Small-Size Circuit: e64-4lut.net

6.5x10°
| pSize:20 cRate:99% mRate:1.2% gSize:100
6.0x10° -
—
[72] -
o
(&)
3 3
R 5.5x10°
>
=
=) .
—
=
@
5.0x10° -
4.5x10° -+ v

T v T v T v T v T
0.0 0.1 0.2 0.3 0.4 0.5

Good Initial Solution Rate

Figure 4.42: Effect of injecting good solutions on a small-size circuit

Medium-Size Circuit: alu4.net

6.0x10"
| pSize:20 cRate: 99% mRate:1.2% gSize:100

5.4x10%
D
o .
(&)
>
@ a
= 4-8x10%
=
e}
j
= J
o
[~a)

4.2x10% -

T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Good Initial Solution Rate

Figure 4.43: Effect of injecting good solutions on a medium-size circuit

CHAPTER 4. ITERATIVE BASED TECHNIQUES 113

Large-Size Circuit: frisc.net

pSize:20 cRate:99% mRate:1.2% gSize:100

Bounding Box Cost

T T T T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Good Initial Solution Rate

Figure 4.44: Effect of injecting good solutions on a large-size circuit

4.5 Iterative Techniques and Metaheuristics: A

Comparison

4.5.1 Flat Level Evaluation

In this section, our goal is to investigate the performance of iterative based al-
gorithms and metaheuristics explained earlier on flat level designs. Experiments
conducted were based on both random initial solutions and good starting points
constructed by CSS. The parameter settings for Simple SA were described in sec-
tion 4.2.2 and those settings for T'S were described in section 4.3.6. The parameter
settings for GA are as follows: population size 50, generation size 200, crossover

rate 99%, mutation rate 1.2%. In addition, the GA uses binary tournament selec-

CHAPTER 4. ITERATIVE BASED TECHNIQUES 114

tion with replacement and elitism replacement methods. We also plot placement
solutions and corresponding CPU runtime on different sizes of benchmark circuits.
As shown in Table 4.12, Figures 4.45 and 4.46, Tabu search based on INLS achieves
comparable results to those achieved by Simple SA in a fraction of CPU runtime
required by Simple SA. Moreover, the quality of solutions obtained by TS based
on INLS are competitive with those obtained by VPR for small and medium sized
circuits in less CPU time. Immediate neighborhood local search takes less time to
obtain the acceptable quality of placement solutions. Experimental results shown
in Figure 4.13 clearly indicate that good starting points enable iterative based tech-
niques to obtain better solutions than randomly generated solutions. In the GA,
the crossover and mutation operators do not guarantee that the quality of offsprings
are superior to those of parents in each generation. This phenomena lead GA to
converge earlier than expected. Figure 4.46 also indicates that CPU time required

by the GA increases exponentially as the size of benchmark circuits becomes larger.

Circuit || Random SLS INLS Simple SA || TS-INLS GA VPR
name initial || Ave. |Ave.| Ave. [Ave.| Ave. |Ave.| Ave. [Ave.| Ave. |Ave.| Ave. |Ave.
cost cost | t(s) || cost | t(s) | cost | t(s) || cost |t(s) || cost |t(s) || cost |t(s)

e64 7542 4006 | 0.06 | 4004 |0.04| 2973 | 3.9 || 3084 | 0.2 | 6142 | 2.5 | 2858 | 13
tseng 41286 | 16478 | 0.32| 15803 | 0.23 || 11038 [19.1| 10752 | 1 | 36588 | 16 || 9394 | 71
exdp 42301 | 21670 | 0.33 | 21352 | 0.24 || 17474 |19.3| 17071 | 1 | 39499 | 18 | 16227 | 70
alud 61504 | 28797 | 0.46 || 28635 | 0.35 || 21391 | 32.2 | 21259 | 2 | 57977 | 49 | 19161 | 104
seq 79903 | 39080 | 0.62 | 39096 | 0.50 || 27676 | 36.2 || 28381 | 2 || 73656 | 89 || 24736 | 142
M.avg | 46489 | 26506 | 0.43 || 26221 | 0.33 | 19395 | 26.8 || 19365 | 1.5 || 51930 | 43 | 17380 | 97
frisc 229152 (102676 | 1.67 || 102901 | 1.28 || 64316 | 96.1 || 67555 | 12 |209470| 368 | 51256 | 392
spla 236251 | 111485|1.74|[110372|1.38 | 71498 | 103 || 74512 | 17 | 211482 401 | 61046 | 414
ex1010 || 332664 | 138229 2.38 || 138479 3.0 || 77838 | 154 || 79346 | 23 | 295597 | 534 | 65493 | 554
s38584.1 | 559870 | 205301 3.97 ||204574 | 3.62 || 96323 | 216 || 104001 | 40 | 519922 |1352| 64925 | 905
clma 796591 1332142 6.82 (1330038 | 6.07 || 179416 | 319 || 204216| 88 || 736508 |4230| 140391 |1332
L.avg | 430905 || 177967 | 3.31 | 177272 | 3.07 || 97878 | 178 |/105926| 36 | 394595 |1377| 76802 | 720

[Avg | 238697 [99986 | 1.88 || 99575 [1.61 || 56994 | 100 || 61017 | 18 [218683] 706 || 45639 | 400 ||

Table 4.12: Comparison between iterative techniques based on random solutions

CHAPTER 4. ITERATIVE BASED TECHNIQUES 115

Circuit || Initial SLS INLS |Simple SA|TABU-INLS GA
name |jsolutions| Ave. |Ave.| Ave. |Ave.| Ave. [Ave.| Ave. | Ave. || Ave |Ave.
by CSS || cost [t(s)| cost |t(s)| cost |t(s)| cost | t(s) || cost |t(s)

e64 6992 3904 | 0.1 || 3905 |0.02{ 2977 | 3.9 || 2993 | 0.2 5873 | 3

tseng || 34808 | 16036 [0.41| 15729 |0.18|| 10793 |18.9| 10097 | 1 33648 | 19
exdp 37381 | 21002 (0.42] 20445 {0.22] 17386 {19.1| 16936 | 1 36903 | 20
alu4 53175 || 27956 |0.56 27517 |0.27|| 21295 |31.7| 21062 | 2 52651 | 53
seq 69390 || 38062 (0.81| 37174 |0.36|| 27558 | 36.4 | 27864 | 2 67152 | 94

M.avg || 40349 | 25766 |0.55| 25216 [0.26| 19265 |26.5| 18989 | 1.5 | 47566 | 46
frisc || 177393 | 94479 |2.09|| 94450 |1.04 | 64080 [94.4| 67555 | 15 |/183632| 382
spla || 181525 {|101300{2.13||101296|1.65|| 70587 | 102 | 73668 | 16 |189344| 421

ex1010 || 264977 ||128431(2.82|128115|3.72| 77720 | 149 | 78463 | 18 ||261837| 573

$38584.1| 478670 (|194515|5.27((194362|3.94 | 96243 | 213 || 93309 | 37 {|470019(1402
clma || 631368 |319227]9.01|318885|6.14|179001| 304 || 184121 75 ||672630]|4395

L.avg || 346786 ||167594|4.26|(167421|3.31|| 97526 | 172 || 99423 | 32 |1355492|1434

| Avg | 193657 [94493 [2.34][94180 |1.76]| 56767 | 97 | 57606] 20 [197360] 736 |

Table 4.13: Comparison between iterative techniques based on CSS

4.5.2 Hierarchical Performance

Hierarchical design tends to reduce the complexity of circuits by clustering them
into less complicated and easily solvable representations. In this section, the hier-
archical performance of iterative techniques is also investigated. In the hierarchical
experimental setup, the clustering scheme is the clustering level L = 2 and clus-
tering size at each level S = 4. Firstly, the clustering technique proposed by Peng
[Du03] groups blocks into clusters. The algorithms performs the placement on this
top level. Next, the current hierarchical placement solution is declustered to the
flat level. Finally, the algorithms are carried out over the flat level with the same
parameter sets.

Table 4.14 provides the results of hierarchical placement, including placement

CHAPTER 4. ITERATIVE BASED TECHNIQUES 116

9.0x10°

6.0x10° o

3.0x10° o

Bounding Box Cost

0.0 3.0x10° 6.0x10° 9.0x10°
Circuit Size

Figure 4.45: Wirelength comparison of iterative techniques

4.50x10 ° - —®— SLS.t
—a— INLS.t
SALt
1 —<— TS\t
GAt
B
o 300x10
£
=
o
> .
x
>
o
O 1.50x10°
0.00 - e & & & &
T T T T T T T T T T
0.0 2.0x10° 4.0x10° 6.0x10 ° 8.0x10°

Circuit Size

Figure 4.46: CPU time comparison of iterative techniques

CHAPTER 4. ITERATIVE BASED TECHNIQUES 117

quality and CPU time, obtained by SLS, INLS, Simple SA, TS based on INLS and
GA. Experimental results from Table 4.14 based on 10 runs indicate that INLS
outperforms SLS by limiting the exploring neighbourhood to the adjacent region.
Undoubtedly, SA achieves the best solution quality in all approaches. TS achieves
comparable solution quality to SA, especially on small and medium sized circuits.

On the other hand, GA produces the worst results compared to other techniques.

Circuit | Random SLS-h INLS-h SSA-h TABU-h GA-h

name initial Ave. | Ave. Ave. | Ave. Ave. | Ave. Ave. | Ave. Ave | Ave.
cost cost t(s) cost t(s) cost t(s) cost t(s) cost t(s)

e64 7542 3777 0.1 3713 | 0.08 | 2998 3.8 3205 | 0.18 || 4255 2.8
tseng 41286 14443 | 0.6 14016 | 0.4 | 11553 | 15 10969 | 0.9 | 20635 | 17
exbp 42301 20574 | 0.6 || 20266 | 0.5 17780 | 14 17710 | 0.8 | 25313 | 19
alud 61504 26539 | 0.8 || 26590 | 0.7 | 21487 | 21 22475 | 1.7 || 33392 | 51
seq 79903 36561 | 1.1 36016 | 0.8 | 29074 | 27 30641 | 2.2 || 49632 | 92

M.avg 46489 24539 0.8 24222 0.6 19973 19 20048 1.3 32243 45
frisc 229152 91952 2.8 89583 2.1 65441 75 70273 9 126278 | 376
spla 236251 112595 | 1.9 | 115121 | 2.1 71587 84 76578 13 139022 | 410

ex1010 332664 || 109906 | 3.8 96918 4.1 78676 | 116 81164 19 201646 | 549

s38584.1 || 559870 | 166510 | 8.1 150715 | 5.4 98878 | 183 | 109376 | 38 296683 | 1382
clma 796591 280122 | 9.1 || 276081 | 8.9 185041 | 250 | 210853 | 73 432928 | 4289

L.avg 430905 || 152215 | 5.2 | 145683 | 4.5 99524 | 141 | 109648 | 30 237311 | 1401

[Avg | 238697 | 86296 | 2.9 | 82901 | 2.5 | 58051 | 79 | 63324 | 16 | 131978 | 718 |

Table 4.14: Comparison between hierarchical iterative techniques

Table 4.15, Figure 4.47 and Figure 4.48 give the comparison with its flat coun-
terparts evaluated earlier. For local search techniques, SLS and INLS achieve re-
spectively 13% and 14% average improvement in wirelength cost with about 55%
increase in CPU time. Simple SA and TS based on INLS mitigate 10% to 20%
CPU time to obtain good placement solutions that deteriorate by 3%. Hierarchical
GA achieves 40% average improvement in solution quality with a slight increase in

CPU time, compared to a flat GA implementation.

CHAPTER 4. ITERATIVE BASED TECHNIQUES 118

Circuit SLS-h INLS-h SSA-h TS-h GA-h
name ||A.cost|A.CPU|A.cost|/A.CPU||A.cost|A.CPU|A.cost|A.CPU|A.cost|A.CPU
Imp%| Imp% ||Imp% | Imp% |Imp%| Imp% | Imp% | Imp% ||[Imp% | Imp%
e64 +6 -67 +7 | -100 || -0.8 | +2.5 || -3.9 | +10 || +30 | -12
tseng || +13 | -88 +12 | -74 -4.6 | +22 -2 +10 || +44 -6
exbp +5 -82 +5 | -108 -2 +27 || -3.6 | +20 || +36 | -5.6
alud || +7.8| -74 || +7.1| -100 | -04 | +34 -5 +15 || +42 -4
seq +6.4| -77 || +7.8| +60 || -5.1 | +25 || -7.9 | +10 || +33 | -3.4
M.avg | +7.5| -86 || +7.6| -81 -3 +29 || -3.5 | +13 || +38 | -4.7
frisc || +10 | -68 +13 | -64 -1.7 | +22 -4 +25 || +40 | -2.2
spla -0.9 -9 -4.3 | -52 -0.1 | +19 || -2.7 | +24 || +34 | -2.3
ex1010 || +21 | -60 +30 | -37 -1.1 | 425 || -2.3 | +18 || +32 | -2.8
s38584.1|| +19 | -104 | +26 | -49 26 | +16 | -5.1 | +5 +43 | -2.2
clma || +16 | -33 +17 | +46 || -3.1 | +22 || -3.2 | +17 || +41 | -14
L.avg || +14 | -57 || +22 | -47 -1.7 | +21 || -3.5 | +17 || +40 | -1.7

| Avg [[+13] 54 [+17] 55 [-1.9] +21 [-3.7] +11 [+40 | -1.7 |

Table 4.15: Comparison between hierarchical and flat iterative techniques

s
3.2x10 —&— SLsflat

—A— TS-flat
SLS-hierarchical
—k— TS-hierarchical

2.4x10 ° o

1.6x10 °

Bounding Box Cost

8.0x10 * o

0.0 3.0x10° 6.0x10 ° 9.0x10°
Circuit Size

Figure 4.47: Flat cost hierarchical cost obtained by iterative based tenchniques

CHAPTER 4. ITERATIVE BASED TECHNIQUES 119

90 -
—&— SLS-flat hal

—#— TS-flat
SLS-hierarchical
—— TS-hierarchical

60 —

)
[<5)
£
[
2 =
8 30 //
A
1%?// x
¥
,/)< 5 @
0 m—aweteE— ————@— &
T T T T T T T
0.0 3.0x10° 6.0x10 ° 9.0x10 °

Circuit Size

Figure 4.48: Flat CPU time vs hierarchical CPU time by iterative based tenchniques

4.6 Summary

In this chapter, several iterative algorithms for FPGA placement have been inves-
tigated. Novel local search algorithms incorporating new features from the tradi-
tional local search algorithms were introduced. These features enable LS to run
faster and achieve better results than the traditional local search algorithms over
some circuits. If this local search is combined with the other new algorithm — Clus-
ter Seed Search, its performance surpasses that of traditional local search. A Tabu
Search technique was further developed for the FPGA placement. By employing
the novel local search technique within TS, the latter achieves high-quality place-
ment solutions with reasonable CPU time. A Genetic Algorithm implementation
was also introduced to solve FPGA placement problems. Results obtained by the
GA approach were inferior to those obtained by the other Meta-heuristics. There

could be several explanation to this: (i) the encoding method is inefficient (ii) one

CHAPTER 4. ITERATIVE BASED TECHNIQUES 120

point crossover is unable to produce better offsprings (iii) the selection methods
used might be driving GA to converge prematurely. A final comparison of all de-
veloped heuristic techniques was carried out on flat/hierarchical designs. Results
obtained indicate that the developed SLS and INLS approaches perform better in
the hierarchical paradigm at the expense of more CPU time. However, the T'S and
SA based on the hierarchical approach worsened the solution quality but gained

speedup of 21% and 11% on average respectively.

Chapter 5

Conclusions and Future Work

The logic capacity of an FPGA device will keep growing according to Moore’s law
[Trim94], and the complexity of circuit designs based on FGPA will increase ac-
cordingly. The time to compile a design is increasingly becoming a major concern
for FPGA users. Placement plays a critical role in the design process, and the com-
putational time for placement has a great impact on the effectiveness and efficiency
of FPGA design tools. Therefore, it is necessary to develop new algorithms to yield
good placement solutions in reasonable amounts of time.

In this thesis, several meta-heuristic algorithms for FPGA placement are pre-
sented and investigated. Heuristic techniques are classified into two categories:
constructive based algorithms and iterative based techniques. Three constructive
methods including Cluster Seed Search (CSS), Greedy Random Adaptive Search
Procedure (GRASP) and Partition Based algorithms have been developed and com-
pared. Four iterative methods including Simple Local Search (SLS), Immediate

Neighbourhood Local Search (INLS), Tabu Search technique (TS), Simulated An-

121

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 122

nealing (SA) and Genetic Algorithm (GA) have been investigated and applied to
flat and hierarchical designs.

Cluster Seed Search (CSS), as a constructive based method, can be implemented
in trivial time. In the common VLSI cell placement, constructive placement algo-
rithms are generally based on primitive connectivity. However in the FPGA place-
ment, CSS uses the fanout number criteria to select the best block and create an
improved initial and legal placement solution. GRASP is composed of two basic
phases: a solution construction phase and local improvement phase. The simplic-
ity of implementing GRASP makes it suitable to deal with the FPGA placement
problem. Partitioning based approaches on the other hand run in a comparatively
short time by using a divide-and-conquer strategy to reduce the problem space
by repeatedly partitioning the problem into subproblems. Obviously, constructive
based algorithms result in poor quality of placement (which cannot be accepted as
the final solution). Good starting points can help heuristic techniques to converge
quickly. Experimental results indicate that local search approaches starting from
improved initial solutions can achieves on average 10% improvement over heuristic
approaches starting from random initial starting points.

Two enhanced local search techniques for FPGA placement were studied and
investigated. The first is implemented as a Simple Local Search (SLS) which uses
the simplest iterative improvement strategy. SLS attempts to achieve reduction in
wirelength cost by swapping blocks in a window which limits the swapping region.
The second implementation is based on an Immediate Neighbourhood Local Search
(INLS) paradigm. This technique can achieve high-quality solutions quickly by

swapping adjacent blocks around the selected blocks. These local improvement

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 123

techniques greatly mitigate the runtime in FPGA placement process, while yielding
acceptable quality of placements. To further enhance solution quality, a Tabu
Search (TS) technique was applied to the FPGA placement. Experimental results
indicate that Tabu Search (TS) based on INLS outperformed that based on SLS.
The effectiveness of Tabu Search relies heavily on the definition and size of tabu
list and stopping criteria. T'S based on SLS and INLS achieves on average 65% and
75% improvement respectively. On the other hand, SLS and INLS yield on average
58% and 59% improvement. With fine tuned parameters, Tabu Search was capable
of providing promising placement results. To explore solution space effectively, A
Genetic Algorithm was implemented and investigated for the FPGA placement.
The application of GA on hierarchical designs proved to be effective where it was

possible to achieve 40% on average improvement compared to flat GA.

5.1 Future Work

Similar to other design styles, FPGA design requires tradeoffs. Users may be will-
ing to trade placement quality for reduction in runtime. Our work investigates the
performance of different meta-heuristic techniques for the FPGA placement. How-
ever several areas within this research can be further investigated and improved
upon.

In the future, SLS performance can be further investigated by utilizing the adap-
tive block selection. When the window is large, blocks are randomly selected. As
the window decreases in size, the selection strategy becomes deterministic. Another

interesting area for future work involves the hierarchical and hybrid implementa-

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 124

tion of different heuristic techniques. A hierarchical approach allows the placement
algorithms to operate on a reduced problem size by packing FPGA modules into
clusters. Computation time is greatly reduced by an order of magnitude compared
to operating on flat levels. The hybridization of meta-heuristic algorithms provides
very powerful search methods for the FPGA placement. By applying different
search techniques on each hierarchical level, high-quality placement solutions can
be obtained in a short time. Furthermore, current techniques may be modified
easily to solve more complex dynamic placement reconfigurable architecture en-
vironments. The parallelization of the placement algorithms is yet an interesting
area worth investigation. By making use of the power of distributed/parallelled
processors, a large job can be subdivided into smaller parts that can be executed

in parallel which can greatly shorten the overall execution time.

Appendix A

Acronym Glossary

ASIC: Application-Specific Integrated Circuit

CAD: Computer-Aided Design

CSS: Cluster Seed Search

FPGA: Field-Programmable Gate Array

GA: Genetic Algorithm

GRASP: Greedily Randomized Adaptive Search Procedure
INLS: Immediate Neighbourhood Local Search

MCNC: Microelectronic Corporation of North Carolina
SLS: Simple Local Search

SSA: Simple Simulated Annealing

TS: Tabu Search

VLSI: Very Large Scale Integration

VPR: Versatile Placement and Routing tool for FPGAs

125

Appendix B

Routing Results

The quality of placement solutions greatly impacts the following routing process
that is also crucial to FPGA design. To investigate the effect of placement quality
on the routing process, VPR routing package is used to route placement solutions
obtained by iterative based techniques. Table B.1 shows the wirelength of solutions

and the track number required indicating successful routing.

Benchmark SLS \ INLS TABU SSA VPR
Circuit VV.Iength‘N.track‘ VV.length‘N.track V\’.length|N.track VV.length|N.track \V.length|N.track
Small-Size(e64) 4105 12 4063 11 3108 9 3071 9 2858 8
Medium-Size(teng)|| 17354 13 16851 12 11329 10 10818 9 9394 7
Large-Size(frsic) || 112539 | 27 106681 | 25 68817 16 65734 15 51256 13

Table B.1: Routing results

126

Bibliography

[Arei01]

[Arei93]

[Argu97]
[Arts03]
[Bao04]

[Bards9)]

[Betz00]

[Betz97]

[Betz99]

[Bina9s]

S. Areibi, M. Thompson, and A. Vanneli, “A clustering untility based ap-
proach for asic design,” In 14th Annual IEEFE International ASIC/SOC
Conference, pp.12-15, September, 2001.

S. Areibi and A. Vannelli, “Circuit partitioning using a tabu search
approach,” In IEEFE International Symposium on Circuits and Systems,
pp. 1643-1646, 1993.

M.F Arguello, J.F Bard, and G.Yu, “A grasp for aircraft routing in
response to groundings and delays,” pp. 211-228, 1997.

E. Arts and J. K. Lenstra, Local Search in Combinatorial Optimization,
Princeton University Press, 2003.

Xiaojun Bao and Shawki Areibi, “Constructive and local search tech-
niques for fpga placement,” In IEEE, CCECE Conference, May 2004.

J.F. Bard and T.A. Feo, “Operations sequencing in discrete parts man-
ufacturing,” pp. 249-255, 1989.

V. Betz and J. Rose, “Vpr and t-vpack: Versatile pack-
ing, placment and routing for fpgas package ver 4.30,”
http://www.eecg.toronto.edu/ vaughn/chanllenge/challenge.html,
2000.

Vaugh Betz and Jonathan Rose, “VPR.: A new packing, placement and
routing tool for fpga research,” In Proceedings of the 1997 IEEE/ACM
international conference on Computer-aided design, 1997.

Vaughn Betz, Jonathan Rose, and Alexander Marquardt, Architecture
and CAD for Deep-Submicon FPGAs, Kluwer Academic Publishers,
1999.

S. Binato, G.C Oliveira, and J.L. Araujo, “A greedy randomized adap-
tive search procedure for transmission expansion planning,” 1998.

127

BIBLIOGRAPHY 128

[Blum03]

[Brow92]

[Cart86]

[Chan03]

[Chan96]

[Chen92]

[Chen93]

[Cong94|

[Du03]

[Du04]
[Feo89]
[Feo95]

[Fidu82]

[Fisk71]

Christian Blum and Andrea Roli, “Metaheuristics in combinatorial op-
timization: Overview and conceptual comparison,” In ACM Computing
Survey, pp. 268-308, September 2003.

S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate
Arrays, Kluwer Academic Publishers, 1992.

W. Carter, “A user programmable reconfigurable gate array,” In Pro-
ceedings of Custom Intergrated Circuits Conference, pp. 233-235, May.
1986.

Pak K. Chan and Martine D. F. Schlag, “Placement: Parallel place-
ment for field-programmable gate arrays,” In Proceedings of the 2003
ACM/SIGDA eleventh international symposium on Field programmable
gate arrays, February 2003.

Y. W Chang, D. Wong, and C.Wong, “Universal switch modules for
fpga design,” In ACM transactions on Design Automation of Electronic
Systems, vol, 1, pp, 80-101, January, 1996.

K.C. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar, “Dag-map:
Graph-based fpga technology mapping for delay optimization,” Septem-
ber, 1992.

C. Cheng, “A accurate and efficient placement routability modeling,” In
ICCAD, pp. 422-425, 1993.

J. Cong and Y. Ding, “Flowmap: An optimal technology mapping algo-
rithm for delay optimization in loopup-table based fpga designs,” Jan-
uary, 1994.

Peng Du, “A fast heuristic technique for fpga placement based on multi-
level clustering,” In M.A.Sc. Thesis, University of Guelph, Department
of Computer & Information Science, 2003.

Peng Du, “Partitioning based fpga placement,” In Technical Report,
Univerisity of Guelph, April 2004.

T.A. Feo and M.G.C Resende, “A probabilistic heuristic for a computa-
tionally difficult set covering problem,” pp. 67-71, 1989.

T.A. Feo and M.G.C Resende, “Greedy randomized adaptive search pro-
cedures,” pp. 109-133, 1995.

C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for im-
proving network partitions,” In Proceedings of the nineteenth design au-
tomation conference, January 1982.

Fisk, C. M., Mattheyses, and R.M., “Accel: Automated circuit card
etching layout,” In Proceedings of IEEE, November, 1971.

BIBLIOGRAPHY 129

[Fran91a]
[Fran91b)]
[Gare79]

[Glov86]

[HO4]

[Holl75]
[Huan86|

[Huan97]

[Kang03]
[Kang83|
[Karg86]

[Kern70a]

[Kern70b]

[Kirk83a]
[Kirk83b

[Lagu94|

R. Francis, J. Rose, and Z. Vranesic, “Technology mapping lookup table-
based fpgas for performance,” 1991.

R. Francis, J. Rose, and Z.Vranesic, “Chortle-crf: Fast technology map-
ping for lookup table-based fpgas,” 1991.

M.R. Garey and D.S. Johnson, “A guide to the theory of np-
completeness,” In Computers and Intractability, 1979.

F. Glover, “Future paths for integer programmingand links to artificial
intelligence,” In Computers and Operations Research, pp. 1276-1290,
1986.

Sun H and S. Areibi, “Global routing for vlsi standard cells,” In
Canadian Conference on Electrical and Computer Engineering (CCECE
2004), May 13 2004.

J.H. Holland, “Adaptation in natural and artifiical systems,” In Uni-
veristy fo Michigan Press, 1975.

M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, “An efficient gen-
eral cooling schedule for simulated annealing,” pp. 381-384, 1986.

D. Huang and A. Kahng, “Partitioning-based standard-cell global pla-
caement with an exact objective,” In Proceedings of ACM international
symposium on Physical Design, April 1997.

Sung-Mo Kang and Yusuf Leblebici, CMOS Digital Intergrated Circuits
Analysis and Design, Mc Graw Hill, 2003.

S. Kang, “Linear ordering and application to placement,” pp. 457-464,
1983.

P.G. Karger and B.T. Preas, “Automatic placement: A review of current
techniques,” pp. 622-629, Las Vegas, Nevada, 1986.

B. W. Kernighan and S. Lin, “An efficient heuristic procedure for par-
titioning graphs,” In Bell System Technical Journal, Feburary, 1970.

B.W. Kernighan and S. Lin, “An efficient heuristic procedure for par-
titioning graphs,” In The Bell Systerm Technical Journal, pp. 291-307,
1970.

S. Kirkpatrick, C. Gelant, and M. Vecchi, “Optimization by simulated
annealing,” In Science, May, 1983.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simu-
lated annealing,” In Science, May, 1983.

M. Laguna, T.A. Feo, and H.C. Elrod, “A greedy randomized adaptive
search procedure for the two-partition problem,” pp. 677-687, 1994.

BIBLIOGRAPHY 130

[Lagu98|
[Lam8s]

[Liu98]

[Maid03]

[Mall89]
[Mazu99]

[Mulp01]

[Nag95]

[Osma96]

[Part01]

[Pasiog]

[Prea88]

[Rese97]

[Rese98]

M. Laguna and R. Marti, “Grasp and path relinking for 2-layer straight
line crossing minimization,” 1998.

J. Lam, J. Delosme, and C. Sechen, “Performance of a new annealing
schedule,” In IEEFE transactions on Computer-Aided, March 1988.

Huiqun Liu, Kai Zhu, and D. F. Wong, “Circuit partitioning with com-
plex resource constraints in fpgas,” In Proceedings of the 1998 ACM sizth
international symposium on Field programmable gate arrays, March
1998.

Pongstorn Maidee, Cristinel Ababei, and Kia Bazargan, “Compilation
techniques for reconfigurable devices: Fast timing-driven partitioning-
based placement for island style fpgas,” In Proceedings of the 40th con-
ference on Design automation, June 2003.

S. Mallela and L.K. Grover, “Clustering based simulated annealing for
standard cell placement,” 1989.

Pinaki Mazumber and Elizabeth M. Rudnick, Genetic Algorithms for
VLSI Design, Layout and Test Automation, Prentice Hall PTR, 1999.

Chandra Mulpuri and Scott Hauck, “Runtime and quality tradeoffs in
fpga placement and routing,” In Proceedings of the 2001 ACM/SIGDA
ninth international symposium on Field programmable gate arrays,
February 2001.

Sudip Nag and Rob Rutenbar, “Performance-driven simultaneous place
and route for island-style fpgas,” In Proceedings of the 1995 IEEE/ACM
international conference on Computer-aided design, December 1995.

[LH. Osman and G. Laporte, “Metaheuristics: A bibliography,” In Ann.
Oper. Res, pp. 513623, 1996.

G. Parthasarathy, M. Marek-Sadowska, A. Mukherjee, and A. Singh,
“Interconnect complexity-aware fpga placement using rent’s rule,” In
Proc. of System Level Interconnect Prediction, March, 2001.

E.L Pasiliao, “A greedy randomized adaptive search procedure for the
multi-criteria radio link frequency assignment problem,” Department of
ISE, Univeristy of Florida, 1998.

Bryan Preas and michael Lorenzetti, “Physical design automation of vlsi
systems,” The Benjamin/Cummings Publishing Company, Inc, 1988.

L.I.P. Resende and M.G.C Resende, “A grasp for frame felay pvc rout-
ing,” 1997.

M.G.C Resende, “Computing approximate solutions of the maximum
covering problem using grasp,” pp. 161-171, 1998.

BIBLIOGRAPHY 131

[Rose91]

[Sank99]

[Shah91]

[Sun95]

[Swar90]

[Tess02]
[Trim94]

[Tsen92]

[Yang02]

[Yang91]

J. Rose and S. Brown, “Flexibility of interconnection stuctures for field-
programmable gate arrays,” In JSSC, pp, 475-478, March, 1991.

Yaska Sankar and Jonathan Rose, “Trading quality for compile time:
ultra-fast placement for fpgas,” In Proceedings of the 1999 ACM/SIGDA
seventh international symposium on Field programmable gate arrays,
February 1999.

K. Shahookar and P. Mazumder, “Vlsi cell placement techniques,” In
ACM Computing Surveys (CSUR), June 1991.

W. Sun and C. Sechen, “Efficient and effective placement for very large
circuits,” In IEEFE transactions on Computer-Aided Design Automation
Conference, vol. 14 No.3, PP. 349-359, March 1995.

W. Swarz and C. Sechen, “New algorithms for the placement and routing
of macro cells,” In ICCAD, 1990.

Russell Tessier, “Fast placement approaches for fpgas,” 2002.

Stephen M. Trimberger, Field-Programmable Gate Array Technology,
Kluwer Academic Publishers, 1994.

B. Tseng, J. Rose, and S. Brown, “Using architectural and cad inter-
action to improve fpga routing architecture,” In ACM Workshop on
FPGAs, pp 3-8, 1992.

Z. Yang and S. Areibi, “Global placement for vlsi standard cell design,”
pp. 243-247, San Diego California, November 2002.

S. Yang, “Logic synthesis and optimization benchmarks,” In Technical
Report, Microelectronics Center of North Carolina, 1991.

