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Abstract

This thesis examines background classification systems for hearing aids in four

stages. In the first stage, the K-nearest neighbours classifiers (KNN), hidden

Markov models (HMM), artificial neural networks (ANN) and ANNs with win-

dowed input (WANN) are assessed for functionality. All of these classifiers appear

to be suitable for this task. However, the WANN gives the best results. In the

second stage K-means clustering and self-organizing maps (SOMs) are used to find

appropriate classes. The classes selected are in-car, traffic, birds, water washing,

water running, office noise, restaurant noise, shopping and music. In the third stage

feature selection is used on a large candidate set from literature. Feature selection is

done using sequential forward floating search (SFFS) and using Euclidean distance

as the distance metric. In the final stage, the classifiers are tested using the classes

and feature vector selected. These are tested against a simpler feature vector from

literature. The simple feature vector is able to give better results that the selected

feature vector in most cases. The WANN has an average accuracy of 65.6% and a

best-run accuracy of 80.0% using a sample window size of three. Using a selected

nine-feature vector, the ANN is able to attain an average accuracy of 68.2% and a

best-run accuracy of 74.4%. Better results may be able to be attained through the

use of a different distance metric. The ANN and the WANN both appear to be the

good classifiers for this task.
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Chapter 1

Introduction

Hearing loss affects more than one million Canadians [1] and the prevalence of

hearing loss increases with age [2]. Health Canada suggests that more than 30%

of Canadians over the age of 65 are affected by hearing loss, making it the most

common sensory impairment for people in this age category [3]. Health Canada

also suggests that many teenagers and young adults are also starting to suffer some

permanent hearing loss due to exposure to excessive noise [4].

There are three major types of hearing loss: sensorineural, conductive and

mixed. Conductive hearing loss occurs when the transmission of sounds from the

outer ear canal to the inner ear is blocked. Sensorineural loss occurs from damage

to the inner ear or the auditory nerves. Mixed hearing loss is a combination of sen-

sorineural and conductive. While conductive loss can usually be corrected medically

or surgically, sensorineural loss is permanent and cannot be corrected surgically [5].

Additionally, conductive hearing loss is often flat across the spectrum, or has more

loss occurring in the lower frequencies [6]. This is easier to correct because it can be

1
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solved by simple amplification. Sensorineural hearing loss, however, is often worse

in the higher frequencies. Since correcting conductive loss is trivial, most current

hearing aid research focuses on sensorineural hearing loss.

Hearing loss is a problem that is quite prevalent, and is likely going to become

worse as our exposure to excessive noise increases. Unfortunately, many people with

hearing loss either do not know about their loss or choose not to wear corrective

devices for their loss. There are a number of reasons for this, including social

factors; however, one of the most common reasons is the perception that hearing

aids are not effective or can actually make hearing more difficult.

Patients with hearing aids often complain of a number of different problems.

One of the most common is difficulty hearing in areas with background noise. The

amplification of hearing aids works for both foreground and background noises,

which can make hearing foreground noises more difficult in noisy environments.

Additionally, people with hearing loss already require a higher signal to noise ratio

(SNR) to hear correctly, and the combination of these two factors can greatly reduce

the ability to actually distinguish sounds [7]. Using noise reduction techniques

can also cause problems with distinguishing speech, as some techniques can also

eliminate speech cues. This results in an increase in SNR, but no increase in

intelligibility [8, 9].

As algorithms and processing techniques become more complex, more and more

signal processing systems are moving towards digital signal processing. Digital

signal processing offers a number of advantages over traditional analog processing

techniques. Because digitally implemented filters can be fitted more closely to
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the peaks and valleys required in the frequency spectrum for each patient, the

speech could be made more crisp. Digital filters are more easily adjusted, which

would allow the use of a single, general filter bank that can be customized for

each patients frequency loss. Digital filters are also able to handle more complex

algorithms, such as adaptive and statistical filtering, which can be used to decrease

noise and feedback and enhance speech signals.

Digital hearing aids can easily handle and switch between the multiple data

inputs required for microphone array and binaural processing (see Section 2.1.3),

and handle the multiple programs and functions required for environment specific

programming and environment classification (see Chapter 3).

Research on manual multi-program hearing aids has shown that patients benefit

from using different hearing aid program in different locations [10]. However, these

require the user to adjust the hearing aid manually, usually with a small switch on

the hearing aid. This can be difficult for elderly patients who may also suffer from

reduced dexterity due to arthritis or other conditions. This also requires the user to

first identify that the hearing aid is not working properly and test different programs

to find the correct settings. Using an automatic adjustment system would be much

easier for users and would result in fewer incidents where the user was unable to

properly hear. It would also allow the hearing aid to incorporate more complex

adjustable systems, such as incorporating multiple noise reduction programs for

different noise environments. An example of a noise reduction system using an

environment classifier is shown in Figure 1.1. In this diagram, the dashed box

indicates the portion of the system that is being investigated in this thesis.
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Figure 1.1: An illustration of a sample microphone-array-based noise reduction
system that could be used in a hearing aid. The dashed box indicates the portion
of the system that is considered in this thesis, including the selection of the classifier
itself as well as the inputs and the outputs

In order for the hearing aid to adjust automatically, an audio environment

classification system is required, which can identify the current audio environment

from the incoming noise. This thesis investigates audio environment classifiers for

hearing aids. The thesis examines the type of classifier that should be used, as

well as the audio features that should be used for input and different types of

audio environments that should be classified in this system. The classifiers tested

in this thesis are the K-nearest neighbours classifier, the multi-layer perceptron

and the hidden Markov model. Additionally, this thesis investigates the effect of

using a multi-layer perceptron with windowed input. This technique has been used

for prediction applications, but has not been applied to the classification of audio

samples.

Although a number of researchers have examined different classification algo-

rithms for audio environment classification and different related problems, few have

used a formal feature selection technique to select a set of input features. This the-

sis uses a formal feature selection technique to select the inputs from a large set

of candidate features from literature. Additionally, the majority of the studies in
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this area simply assume the audio classes that are used as outputs. Some studies

have logically justified the choices, but no studies have examined the output classes

in a formal manner. This thesis investigates the types of output classes using a

clustering technique.

The remainder of this thesis is structured as follows. Chapter 2 presents some

background information on hearing aids and the algorithms used in this research,

including information on pattern classification algorithms, clustering algorithms

and feature selection algorithms. Chapter 3 presents a literature review of recent

environment classification studies including suggested classifiers, classes and input

features. Chapter 4 presents and discusses the methods and results from the initial

tests of the classifiers for functionality. Chapter 5 presents and discusses the meth-

ods and results used to select a set of audio environments to use as output classes.

Chapter 6 presents the approach taken to audio feature selection and presents and

discusses the results. Chapter 7 discusses the methods used to test the entire sys-

tem together and the discusses the results of the tests. Chapter 8 presents the

conclusions and recommendations from this thesis.



Chapter 2

Background

Hearing impairment is characterized not only by reduction in loudness at different

frequencies (attenuation loss), but also by a difficulty in separating signals in closely

spaced frequencies. Hence, patients with hearing loss require a higher SNR than a

person with normal hearing in order to achieve the same level of intelligibility [11, 7].

In a study of hearing impaired patients with hearing aids, the largest complaint was

the difficulty of hearing in areas with background noise [7]. To compensate for this,

noise reduction techniques are often implemented in hearing aids.

This chapter will give an overview of the current techniques used for noise

reduction. It will also present the basic algorithms for the techniques used in this

thesis, including the algorithms for the classifiers, clustering and feature selection.

6
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2.1 Filtering

Many different noise reduction techniques have been investigated, but no one tech-

nique is able to perfectly reconstruct a signal in all situations. Some filtering tech-

niques are non-adaptive systems, where the characteristics of the filter are unchang-

ing. Others are adaptive filters that adjust their weights based on the incoming

signal. Both of these techniques have their own advantages and disadvantages.

Several of these techniques are discussed next.

2.1.1 Non-adaptive filters

Non-adaptive filters do not change as the incoming signal changes. This is a simpler

design than an adaptive filter, and does not suffer from instability, which can occur

in adaptive systems. However, since non-adaptive filters do not change with time,

the noise reduction ability of the filter may vary greatly as the external environment

changes.

Automatic gain control (AGC) is a fairly simple noise reduction technique. AGC

adjusts the gains of the frequency bands by comparing the statistics of the signal in

each band to the statistics of pure noise in that band [12]. Unfortunately, although

AGC is able to increase the overall SNR of the signal, it does not actually improve

intelligibility as it also removes important speech cues from the signal [9].

Spectral subtraction is a technique that is similar to AGC. The statistics of noise

are estimated and then the noise spectrum is subtracted from the output signal.

Unfortunately, spectral subtraction also removes speech cues, again improving the

SNR but not the intelligibility [13].
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An alternate to filtering based on the frequency characteristics is to use mod-

ulation filtering. Since speech usually has much more amplitude modulation than

noise, the gain in a band can be adjusted based on the amount of signal modulation.

However, this type of a filter tends to leave artifacts, called “musical noise”, which

is not desirable in a hearing aid. [14].

A Wiener filter is an optimal filter and can be used to separate noise and speech

[15]. When tested for hearing aids, Wiener filters were found to only improve intel-

ligibility for half the hearing impaired patients, and actually decreased intelligibility

for all non-hearing impaired subjects [13]. Clearly, this filter is not an ideal solution

since half the users would receive no benefit, and the signal may actually become

less intelligible for users with little hearing loss.

Whitmal and Rutledge propose a noise reduction system based on wavelets. The

method improves intelligibility for flat-loss subjects, but does not seem to benefit

patients with sloped loss [16]. This technique does not appear to be appropriate for

hearing aids, as most flat-loss subjects suffer from conductive hearing loss, which

is normally caused by some type of a physical blockage in the ear. This type of a

loss can be corrected through surgery or by simple volume amplification [5]. Most

hearing aid users have sloped hearing loss, therefore this technique would not benefit

the majority of users.

2.1.2 Adaptive filters

Adaptive filters can theoretically give a better performance in more situations,

as their weights can be adjusted to better match the external noise environment.
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However, they do have several disadvantages. Firstly, it is possible for an adaptive

filter to become unstable [17]. Secondly, adaptive filters do not tend to work well in

reverberant areas (areas with echo), where the desired signal can be reflected and

form part of the background noise. Accordingly, adaptive filters are prone to signal

cancellation in reverberant areas [18, 13].

The Widrow-Tsypkin self-adaptive filter has been used in hearing aids [9], but

requires prior knowledge of the noise signal. Its performance also degrades con-

siderably when the noise and signal come from the same direction [9]. A single-

microphone extension of the Widrow-Tsypkin approach is the Sambur filter [9].

This filter, however, makes the assumption that speech is highly correlated and

noise is uncorrelated. This assumption does not hold for unvoiced consonants,

which are important speech cues. It also does not hold for correlated noise, which

occurs in reverberant areas. This filter is therefore not an appropriate choice for a

hearing aid [9].

Graupe, Basseas and Grosspietsch [9] propose a different type of self-adaptive

filter, called the Zeta filter, which is based on time rather than frequency. The

system seemed to improve intelligibility in laboratory tests [9].

Magotra et. al [19] also developed an adaptive noise reduction system called a

“real-time adaptive correlation enhancer (RACE)”. This filter was found to improve

speech discrimination ability in patients [19].

Although these noise reduction systems seem promising, neither study specif-

ically mentioned the performance in reverberant areas. Unfortunately, adaptive

filters do not tend to perform well in reverberant areas [18, 13].
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2.1.2.1 Summary

Table 2.1 lists the advantages and disadvantages of the examined noise reduction

systems. It is clear that noise reduction is a complex problem. Currently no

noise reduction technique exists that is robust enough to handle all noise situations

required in a hearing aid, although some techniques are promising in certain situ-

ations. Current research is looking less to a single filter solution and more towards

multiple microphone or multiple environment solutions. These types of solutions

are discussed further in sections 2.1.3 and Chapter 3 respectively.

2.1.3 Microphone Arrays

Many common noise reduction techniques are able to increase the SNR of a signal

but do not improve intelligibility because the filters also remove speech cues. Mi-

crophone array processing is one of the more successful techniques thus far because

they are able to preserve speech cues. The standard noise reduction techniques

mostly rely on frequency domain processing and make assumptions about the fre-

quency spectrum of noise. Conversely, microphone arrays filter sounds spatially,

making the assumption that the signal is coming from a specific direction. Noise

can be modeled and subtracted from the signal by filtering spatially based on phase

[21]. This increases the SNR of signals from the look direction, usually assumed to

be the front. Most importantly, microphone arrays do not seem to have the same

intelligibility problems as frequency based noise reduction techniques [18].

A study by Hamacher [22] looked at the delay-subtract beamformer and com-

pared it to monaural and binaural spectral subtraction filtering techniques. The
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Technique Adaptive? Advantages Disadvantages

High pass [20] no •simple •not all noise is
low frequency
•can remove speech
components

AGC [9] no •common technique •does not improve
for gain intelligibility

Modulation [14] no •improves SNR •leaves ‘musical noise’
artifacts

Spectral no •improves SNR •does not improve
subtraction [13] intelligibility
Wiener filter [13] no •very common filter •does not work

for all users
•decreases intelligibility
for normal hearing
patients

Wavelets [16] no •improves SNR •only improves
intelligibility for
flat loss patients

Widrow-Tsypkin [9] yes •well tested •requires prior
knowledge of the
noise signal
•performance degrades
when signal and noise are
from the same direction

Sambur [9] yes •improves SNR •assumptions do not
hold for correlated
noise or unvoiced
consonants

Zeta [9] yes •improved SNR •no tests with
and intelligibility reverberation

RACE [19] yes •improves speech •no tests with
discrimination reverberation

Table 2.1: Advantages and disadvantages of different noise reduction techniques



CHAPTER 2. BACKGROUND 12

study found that the binaural spectral subtraction was more effective than sim-

ple monaural spectral subtraction, but that a delay-subtract approach was more

effective than the simple filtering techniques [22].

Kates has authored or co-authored a number of papers studying the superdirec-

tive beamformer [23, 18, 24]. In [23], Kates compares the superdirective beamformer

to the delay-and-sum beamformer, and found that the superdirective array was able

to give an additional 5 dB of array gain over the delay-and-sum. The superdirective

beamformer is recommended in all three publications.

Wittkop and Hohmann [25] found that beamformers had difficulty dealing with

diffuse noise. To combat this problem, they developed a simple environment classi-

fication system to determine if there was diffuse noise in the signal and adjust the

beamformer accordingly [25]. This is an interesting application of environment clas-

sification. Although Wittkop and Hohmann suggest using the classifier to adjust

a pre-processor, this idea of combining a classifier with a beamformer could easily

be applied to the beamformer itself, using an environment classifier to change the

weights in a beamformer, rather than using a fully adaptive system. This would re-

duce the instances of signal cancellation found in adaptive system, but would still

allow the beamformers to use the environment specific weights required in some

beamformers. A number of weights could be pre-programming for the different

environments and a set of weights could be selected based on the classifier output.
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2.2 Classification Techniques

Audio environment classification aims to determine the type or class of a certain

background noise, from several different possible background noise types. As dis-

cussed in [25], it is possible to combine microphone array processing with an envi-

ronment classification system to improve the performance. Using an environment

classifier also allows the use of more than one static set of weights in a beamformer.

This allows some differentiation between different sound environments, without

using a fully adaptive system.

Many of the more sophisticated classification techniques are intelligent systems

that formulate rules or patterns for the classification through machine learning.

Supervised learning techniques use a set of training vectors consisting of the input

vector and a class designation to train the classifier. Alternately, unsupervised

techniques do not require that the input vectors be pre-labelled, but instead create

classes from the patterns in the data itself. Supervised techniques are more common

for classifiers, which require that input vectors be designated as part of a pre-set

class, whereas unsupervised techniques are more common for clustering algorithms,

which aim to determine the possible classes in a set.

In this thesis, several classification techniques are examined: K-nearest neigh-

bours (K-NN), multi-layer perceptrons (MLP), hidden Markov models (HMM) and

MLPs using windowed input (WMLP).
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a) 1-NN b) 3-NN

Figure 2.1: 1-NN and 3-NN implementations of the K-NN algorithm. In the 1-NN
the class assigned is the class of the closest training vector. In the 3-NN the class
assigned is that of the majority of the three closest training vectors.

2.2.1 K-Nearest Neighbours

The K-nearest neighbours classifier uses a relatively simple technique to determine

the class of a new input. The training vectors are simply stored in the classifier,

instead of being used to adjust the model. For every new input, the distance

between the input vector and each of the training vectors is calculated using a

suitable distance metric, usually Euclidean distance. The class of the new input is

determined as the majority class of the K closest training vectors. For example,

for a 1-NN system, the class of the input vector is the class of the closest training

vector. For a 3-NN system, the class of the input vector is the class of the majority

of the three closest training vectors. This is illustrated in Figure 2.1. In the case

of a tie, the class is recursively calculated using k− 1 points, until a class is found.

This is illustrated in Figure 2.2.

The K-NN classifier is very simple, but is computationally expensive. Please see
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a)
2-NN with no tie

b)
2-NN with a tie. Class is calculated

using 1-NN (K-1).

Figure 2.2: 2-NN classifier with and without a tie situation. When there is no tie
(a), so the class assigned is the class of the two closest vectors. When there is a
tie (b), the furthest vector is eliminated and the class is calculated from the closest
K − 1 vectors.

Section 7.2.1.3 for further discussion. If too few points are used, the classes are not

properly represented by the training set. However, as the number of training vectors

increases, both the computation time and the memory requirements increase. This

type of classifier is more suited to simple classification problems with relatively few

training vectors.

2.2.2 Multi-layer perceptrons

Multi-layer perceptrons are computational models that mimic the behaviour of

biological nervous systems, which are based on the firing of neurons. A neuron

receives excitory and inhibitory input in the form of neurotransmitters. If the signal

is above a certain threshold, the neuron sends a signal to other neurons via its axon.

The neurons are highly interconnected, and the overall signal is determined by the

output of more than one neuron at a time.
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Figure 2.3: Fully-connected three-layer feedforward neural network. The parame-
ters Vij are the weights from the input layer (i) to the hidden layer (j), Wjk are
the weights from the hidden layer (j) to the output layer (k), T are the threshold
values.

In a computer system, the neuron is represented by a mathematical function.

The excitory and inhibitory systems are represented by positive and negative inputs

from the other nodes in the network. The inputs are weighted and summed to

represent the incoming neurotransmitter action. In a biological cell, if this value

passes a certain threshold value, then the neuron would transmit, otherwise it would

not. In a computer system, the threshold value is simply added to the input and

the value is passed through a sigmoid output function. A feedforward network

assembles the nodes in layers. The input layer is connected to the input vector,

with one node for each of the N input terms. The output layer is used to indicate

the class of the input vector. Hidden layers are between the input and output layers

and the nodes each layer are connected through a weight matrix. The architecture

used in this thesis is a fully-connected model, as illustrated in Figure 2.3.
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In this thesis, the MLP is trained using backpropagation. This is a super-

vised learning technique that uses the error at the output to adjust the weight and

threshold values of the nodes. The error term is propagated backwards through the

network to adjust the thresholds and weights of the hidden layer. First the input is

propagated forward through the network to determine the output with the current

weights. During the testing phase, only the forward phase is completed. The value

at the input node is simply the value of the input vector. The values of the hidden

and output nodes are calculated as [15]:

bj = fβ

(

N
∑

i=1

aiwij + tbj

)

(2.1)

where bj is the jth node in the current layer, ai is the ith node in the previous layer,

wij is the weight from ai to bj, N is the number of nodes in the previous layer, tbj

is the threshold for bj and fβ is the sigmoid activation function. This formula is

used to calculate the values of each node in each layer. The values of the nodes in

the output layer give the calculated class.

The error at the output node is calculated from the difference between the

calculated and desired outputs as [15]:

ek = bj(1 − bk)(b
d
k − bk) (2.2)

where ek is the error at node k in the output layer, bk is the calculated value at

node k, and bdk is the desired value of node bj.
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The error at the hidden layers is calculated from the output layer error as [15]:

ei = bi(1 − bi)





N
∑

j=1

wijej



 (2.3)

where ej is the error at node j in the hidden layer, bj is the calculated value at node

j, wjk is the weight from the current hidden node to node k in the output layer,

and ek is the error at node k in the output layer.

Once all the error terms are calculated, the weights and thresholds can be

adjusted based on the error as [15]:

∆wij(n) = αbiej + η∆wij(n− 1) (2.4)

where ∆wij gives the change in the weight going from node i in one layer to node j

in the next, bi is the value at node i, ej is the error at node j and α is the learning

rate constant, which is a positive constant between zero and one that is used to

control the rate of learning. A smaller constant will take longer to train but give

more accurate results; a larger constant trains more quickly, but is less accurate.

The parameter η is a positive rate constant in the range of zero to one that is used

to determine the impact of the previous change on the current change.

The threshold values can be adjusted as [15]:

∆t(n) = αej + η∆t(n− 1) (2.5)

where ∆t gives the change in the thresholds, t is the threshold value at the current
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Figure 2.4: four-state, fully connected Markov model represented as a graph

node, α is the learning rate constant, and ej is the error at the current node.

The weights are adjusted after each vector, and the training is stopped after a

certain number of epochs of training. Once the training is terminated, the perfor-

mance can be assessed on a test set using the final weights and thresholds.

2.2.3 Hidden Markov Models

Hidden Markov models are stochastic signal models that are based on Markov

chains. A Markov chain is a discrete, stochastic process that has the Markov

property, which dictates that the current state of the system is dependent only on

the current inputs and the previous state [26].

Markov models can be represented as graph representing the states as nodes,

and giving the transition probabilities between each state as the directed edges on

the graph. An example of a Markov model graph is shown in Figure 2.4.

In the regular Markov model, the states are visible, and the probabilities can
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be determined exactly using the state transition matrix. A hidden Markov model

is an extension of the regular Markov model, but the actual states are hidden and

cannot be accessed directly. Instead, the model generates observable sequences that

can be used to estimate the state of the system. The model is extended to include

observation probabilities within each of the states. The probability of seeing a

particular observation is the product of the probability of being in a certain state

and the probability of that state generating that particular output, summed across

all the possible states. It is not possible to generate a definite probability of being

in a certain state, as multiple states can generate the same observations, and an

observation sequence can be generated using many different state chains.

Hidden Markov models are characterized by a number of different parameters.

These parameters are listed and explained below:

1. N is the number of states in the model. These are hidden, but remain a part

of the model.

2. Q is the number of possible observations. Because each observation has a

probability associated with it, the number of possible different observations

is finite. This is also called the codebook size.

3. A = {aij} is the state transition matrix, where aij is the probability of a

transition from state i to state j

4. B = {bj(Ot)} is the probability observation matrix, where bj(Ot) is the prob-

ability of having observation Ot in state j.
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5. π = {πi} is the initial state probability matrix, where πi is the probability of

being in state i at time t = 1.

The entire model can be represented by these properties. As a short form, the

model can be represented as:

λ = (A,B, π) (2.6)

where λ represents the entire model [26].

The input to the HMM is a set of input vectors from time t = 1 to t = T .

The initial state probability is π. At each t the model changes from state to state

based on the probabilities described in matrix A. As the states change, the model

generates observations based on the probabilities described in B. The probability

of the model generating a certain observation sequence can be calculated from these

values. An input is classified by training one HMM for each possible class. The

class of an input is the class of the HMM with the highest probability.

There are three phases associated with training an HMM [26].

1) Phase 1 - Determining the probability of a certain set of observations being

generated by a certain modelλ = (A,B, π) (P (O|λ))

2) Phase 2 - Finding the most probable state sequence, given a certain model

λ = (A,B, π) and an observation sequence

3) Phase 3 - Training the model to better match the desired output sequence,

attempting to maximize P (O|λ)

Each of these three phases has a well-known solution that is used in this thesis.

The first phase is solved using the forward-backward algorithm, the second phase is
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solved using the Viterbi algorithm, and the third phase is solved using the Baum-

Welch algorithm.

2.2.3.1 Forward-Backwards Algorithm

The first problem is fairly simple to solve, as it just requires the multiplication

of probabilities and no readjustment. This problem is solved using the ‘forward-

backwards’ algorithm. This algorithm estimates the forward probability, starting

at time t = 1 with the initial probabilities π. The forward probability is a joint

probability of generating the observation sequence O = {O1, O2, . . . , Ot} up to the

current time t and being in a certain state at time t [26].

The forward probabilities are calculated in two stages. The α1 values are first

initialized as [26]:

α1 = πibi(O1) (2.7)

The remaining α values are calculated recursively as [26]:

αt+1(j) =

[

N
∑

i=1

αt(i)aij

]

bj(Ot+1) (2.8)

where N is the number of states in the model, aij is the transition probability from

state i to state j and bj(Ot+1) is the probability of state j generating the observation

Ot+1.

The probability of the model generating the entire sequence of observations can

be calculated by summing the α values at time t = T . Each αT (i) is the probability

of generating the entire observation sequence and being in a certain state. The sum
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of the α values across i, gives the probability of generating the entire sequence and

being in any final state [26].

P (O|λ) =
N
∑

i=1

αT (i) (2.9)

The backwards probability is the probability of generating the observation se-

quence from t = t + 1 to the end time t = T . The backwards probability is the

joint probability of being in a certain states at a certain time and having a certain

observation sequence from time t = t to t = T .

The backwards calculation starts from time t = T and progresses backwards.

The βT values are initialized to 1, and the remaining β values are calculated recur-

sively as [26]:

βt(i) =
N
∑

j=1

aijbj(Ot+1)βt+1(j) (2.10)

2.2.3.2 Viterbi Algorithm

No exact solution exists to the second problem, since the states are hidden. The

Viterbi algorithm attempts to find the single best state sequence, by maximizing

P (Q,O|λ), where Q is the state sequence.

The Viterbi algorithm makes use of a new variable that can be used to explain

the optimization criteria. The probability of being in state i at time t given the

observation sequence and the model is given as γt(i) and is determined as [26]:

γt(i) =
αt(i)βt(i)

P (O|λ)
(2.11)
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since the product of αt(i) and βt(i) gives the probability of being in state i at time

t and having the entire observation sequence and P (O|λ) is the probability of the

observation sequence given the model.

A new variable, δ, is defined to track the highest probability paths. The δ value

for a certain time t and certain state i gives the highest possible probability along

a single path that ends at state i at time t. Mathematically [26]:

δt(i) = max
q1,q2,...,qt

P (q1q2 . . . qt = i, O1O2 . . . Ot|λ) (2.12)

Another variable, ψ is used to track the actual state that had the maximum

value tracked by δ. The δ and ψ values are calculated recursively, starting at t = 1.

Once all the values are calculated, the best state sequence is backtracked from the

final value, using the states in ψ.

2.2.3.3 Baum-Welch Algorithm

Adjusting the model is actually the most difficult of the three phases, and even

the widely used Baum-Welch method does not guarantee finding a globally optimal

solution, as it only performs local optimization. Another variable, ξ is defined for

the Baum-Welch algorithm. This variable describes the probability of being in state

i at time t and being in state j at time t + 1 as [26]:

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

P (O|λ)
(2.13)
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This variable relates to the γ value as [26]:

γt(i) =
N
∑

j=1

ξt(i, j) (2.14)

since γ describes the probability of being in state i at time t.

The π values can be re-estimated directly from γ1 since both describe the ex-

pected number of times the system is in state Si at time t = 1 [26]:

πi = γ1(i) (2.15)

Summing γ over t gives the expected number of transitions from state i over all

t, and summing ξ over t gives the expected number of transitions from state i to

state j. These values can be used to re-estimate the A terms, since A is the state

transition matrix, and is simply the probability of transitioning to another state

from a known state. The new A values are calculated as [26]:

aij =

∑T−1
t=1 ξt(i, j)
∑T−1

t=1 γt(i)
(2.16)

The B probabilities give the probability of observing a certain value when in a

certain state. Hence, the B probabilities are re-estimated as the expected number

of times the system is in a certain state and observing a certain value, divided by

the total number of times it is in that state. The new B values are calculated as

[26]:

bj(k) =

∑T−1
t=1 γt(j), S.T. Ot=vk

∑T−1
t=1 γt(j)

(2.17)
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2.3 Clustering Techniques

Clustering is the processes of organizing items into groups whose members are

related in some way. Clustering is related to classification in that both divide

unknown inputs into classes. However, whereas classification aims to put input

vectors into pre-defined classes, clustering aims to determine appropriate classes

based only on the input data. Because of this, clustering techniques often use

unsupervised training techniques.

K-means clustering is a relatively simple algorithm that aims to create K clus-

ters from the data set by grouping data vectors that are close together and separat-

ing vectors that are far apart. Unfortunately, the user is required to determine how

many clusters should be used. The self-organizing map creates a more continuous

map, but does not distinguish individual clusters.

2.3.1 K-means Clustering

K-means clustering works by dividing samples into the closest of a number of ran-

domly placed clusters, and then adjusting the placement of the clusters based on

the samples in the cluster until they converge.

The system is initialized using K random centroid values that represent the

centres of the clusters. For each input vector, the distance is calculated between

the vector and each of the centroids. In this thesis, Euclidean distance is used

(see Section 2.4.2). The vector being classified is assigned to the cluster with the

closest centroid. Once each of the vectors is assigned, the centroid of each cluster is

updated to be the mean of all the vectors in the cluster. The algorithm is stopped
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Initialize N centroid values randomly

while(change>threshold){

for each input vector i{

min = MAX_FLOAT

argmin = 0

for each centroid j{

distance = Euclidean distance (i,j)

if(distance < min){

min = distance

argmin = j

}

}

assign vector i to cluster argmin

}

change = 0

for each centroid j{

oldval = j

j=average of all inputs assigned to j

change = change + abs(oldval-j)

}

}

write out all input vectors in each cluster

Figure 2.5: Pseudocode for K-mean clustering algorithm

once a certain threshold is reached. Pseudocode is presented in Figure 2.5.

This algorithm is logically very simple, but can produce different results in

different runs because of the random initialization. Additionally, because the K

value must be determined before the program is run, the K-mean process does

not give any information about how many clusters are actually appropriate for the

system.
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2.3.2 Self-organizing Maps

A self-organizing map (SOM) is a type of neural network that uses unsupervised

learning. The SOM gives a spatial representation of the input data in two dimen-

sions. This shows the general relationship between different samples, and does not

require that the number of clusters be predetermined. A SOM contains many nodes

organized in either a square or a honeycomb pattern. The value of each node is a

vector that is the same size as the input vector. These values are initialized ran-

domly, and the training of the map is based on the distance between the node and

the input.

The learning algorithm is a competitive algorithm. First the distance is calcu-

lated between the input vector and each node. Any distance measure can be used;

however, the Euclidean distance is very commonly used for the SOM, and it is the

distance measure used in this thesis (see Section 2.4.2). The node with the smallest

distance to the input vector is then used as the base of the update. The closest

node is called the best matching unit (mc). The best matching unit and the nodes

in a defined neighbourhood (Nc) around the best matching unit are all updated to

bring them closer to the input vector, and all other nodes are left unchanged. The

update is performed as follows [27]:

mi(t+ 1) =















mi(t) + α(t)[x(t) −mi(t)] for i ∈ Nc

mi(t) for i /∈ Nc

(2.18)

where mi is the value of node i, x(t) is the input vector, Nc is the neighbourhood

and α is the adaptation gain, where 0 < α < 1 and alpha decreases with time.
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The neighbourhood variable can also be changed with time. The training of the

SOM is performed in two separate stages. The first stage is the ordering stage. In

this stage, the neighbourhood variable is large, so that a large number of nodes are

changed. These global scale changes affect the placement of the different regions

in the map and define how different inputs relate to each other on the SOM. The

second stage of training is the convergence stage. In this stage, both the neighbour-

hood variable and the α value are kept low. This has the effect of making small

changes to a local area, changing how similar nodes are related, without making

large changes to an area’s placement on the map [27].

Once the iterations are complete, each node is labelled with the class of the clos-

est training vector, which produces a continuous map showing the relative closeness

of each of the classes. The algorithm does denote discrete groups, but groups can

be selected logically from the map.

2.4 Feature Selection Techniques

Feature selection is used to determine which features can best be used to separate

the data, given a set of candidate features. The technique used to perform the

feature selection is the sequential forward floating search (SFFS). This is a more

general version of the sequential forward search (SFS) and plus-l minus-r selection

techniques [28]. In [28], Zongker and Jain compare the SFFS algorithm to SFS,

generalized SFS, plus-l minus-r and Min-max algorithms, as well as a branch-and-

bound. They found that the SFFS algorithm gives results that are better than the

SFS, generalized SFS and plus-l-minus-r and comparable to branch-and-bound but
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much faster. The backwards versions of the search are also tested and the results

are comparable. Hence SFFS is used for this thesis.

SFFS requires a measure of the significance of each of the features, which is done

using Fisher’s interclass separability criterion and also using Euclidean distance.

2.4.1 Fisher’s Interclass Separability Criterion

The ideal subset of features maximizes the inter-class variation (variation between

different classes), but minimizes the intra-class variation (variation of the samples

within a single class). Fisher’s interclass separability criterion is a measure of both

the inter and intra-class variation. It is measured as [29]:

J = trace[(Qb +Qw)−1Qb] (2.19)

where J is Fisher’s criterion, Qw is the within-class scatter, and Qb is the between

class scatter. The parameter Qw is defined as [29]:

Qw =
1

CN

C
∑

j=1

N
∑

i=1

(wij −Mj)(wij −Mj)
T ) (2.20)

where C is the number of classes, N is the number of samples in each class, wij is

the vector containing the feature values for the ith sample in class j, and Mj is the

vector containing the mean value for each feature within class j.

Qb is defined as [29]:

Qb =
1

C

C
∑

j=1

(Mj −M)(Mj −M)T (2.21)
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where M is the vector containing the mean value for each feature between all classes.

2.4.2 Euclidean Distance

The Euclidean distance between two vectors A and B in Euclidean Space of size N

is calculated as:
√

√

√

√

N
∑

i=1

(ai − bi)2 (2.22)

2.4.3 Sequential Forward Floating Search Procedure

The sequential forward floating search algorithm is a bottom-up search method

that extends the sequential forward search (SFS) algorithm. The SFS algorithm is

a sub-optimal search algorithm that was introduced as a way to perform feature

selection without using a full search. However, the SFS procedure suffers from

nesting problems, where features selected in one stage cannot be later unselected.

The SFS algorithm was later generalized to the Plus-l-Minus-r search methods,

which corrected the nesting problem of the SFS algorithm. However, there is no

theoretical way to determine the l and r values. Instead, the SFFS algorithm allows

these values to change or “float” throughout the training [30].

Two separate papers by Pudil et. al [30] and Zongker and Jain [28] have looked

at the SFFS algorithm and compared it to other search methods. Both papers found

that the SFFS algorithm and its backwards counterpart the sequential backward

floating algorithm (SBFS) give approximately the same results. Additionally, both

papers found that the SFFS gave results that were very close to optimal and took

less time to train than other tested methods.
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Figure 2.6: Flow chart illustrating the sequential forward floating search algorithm
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The SFFS algorithm is illustrated in Figure 2.6. The full set of features is

denoted as Y , and Xk is used to denote the set of k selected features. The algorithm

proceeds in three stages. The algorithm starts with an empty feature set X0 = ∅.

In the first stage, the most significant feature with respect to Xk in the set Y −Kk

is added to form the set Xk+1 = Xk +xk+1. This stage is repeated until k = 2. The

significance of a feature fj in the set Y −Xk with respect to the set Xk[30]:

Sk+1(fj) = J(Xk + fj) − J(Xk) (2.23)

In the second stage, the least significant feature in Xk+1 is found. From the

criterion, the significance of a feature xk in the set of features Xk is defined as [30]:

Sk−1(xj) = J(Xk) − J(Xk − xj) (2.24)

If this is the feature that was added in stage one, it is kept and the algorithm

returns to the first stage. If it is not, the feature is removed from the set to form

set X ′
k. If k = 2 then the algorithm returns to the first stage. If not, it proceeds to

stage three.

In stage three, features continue to be excluded from the set. Again, the least

significant feature is found. The algorithm first calculates J(X ′
k − xs) and J(X ′

k −

xstage1), where xstage1 is the feature added in stage one, and xs is the least significant

feature in the set X ′
k. If J(X ′

k−xs) < J(X ′
k−xstage1) then xs is eliminated otherwise

the algorithm goes back to stage one. After the elimination, if k = 2 then the

algorithm returns to stage one. If not, it continues with stage three.
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The algorithm stops when the algorithm enters stage one and k is equal to a

pre-determined number of features.

2.5 Summary

This chapter gave an overview of the current techniques used for noise reduction.

It also presented the basic algorithms for the techniques used in this thesis.

Microphone arrays appear to be the most promising technique for noise reduc-

tion. Many microphone arrays, and some other noise reduction systems use the

signal autocorrelation in their calculations. Hence, the classes selected in this work

are selected based on the signal autocorrelation.

The classifiers used in this thesis are the K-nearest neighbours, the multi-layer

perceptron and the hidden Markov model. Clustering techniques are used to pick a

candidate set of classes and the algorithms used for this are the self-organizing map

and K-means clustering. Feature selection is used to pick a good set of features for

the classifier to use, and the algorithms used for this is the sequential forward float-

ing seach. This is tested using two different distance metrics: Euclidean distance

and Fisher’s interclass separability criterion.
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Literature Review

3.1 Introduction

Many of the noise reduction techniques presented in Chapter 2 rely on knowledge of

the spectral shape of noise, or similar characteristics. Similarly, many microphone

arrays use information about the correlation of the noise to set the weights for

the beamformer. Unfortunately, different noise situations have different frequency

spectra and correlations, and a single noise reduction technique may not work well

in all situations. A common solution to this problem is to use adaptive noise

reduction techniques; however, adaptive systems are subject to signal cancellation

in reverberant areas [31]. Another possible solution is to use pre-set, non-adaptive

weights and switch between these weights by using an environment classification

system.

It has been shown in [32] that different hearing aid users have different prefer-

ences for their hearing aid settings, and these preferences change as the listening

35
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environment changes. There is a measurable increase in intelligibility when multi-

ple programs are used and, given the opportunity, hearing aid users will use several

different programs [33, 10]. Clearly, there is a precedent and a need for automatic

switching hearing aids.

In a 1993 study [34], Ringdahl shows that patients with hearing aids use a

average of 3.4 ± 1.1 different programs for at least an hour each day, and 4.3 ±

1.2 programs for at least one half hour each day. This is actually a relatively

small number of programs, considering the wide range of environmental sounds

encountered each day. Kates [10] suggests that six clusters would be a reasonable

number for a hearing aid classification unit. This will require that different audio

environments be clustered together to form a relatively small number of classes.

This chapter will examine some of the current literature on audio environment

classification, looking at the types of classifiers used, the classes that are used as

output and the types of features used for input.

3.2 Classifiers

The classification of audio environments has been studied by a number of different

researchers looking at many different classifiers. These techniques differ not only

in the type of classifier used but also in the classifier configuration, the features

used as input and the audio environments tested. The classifiers used range from

relatively simple rule-based classifiers to more complex ANNs and HMMs.
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3.2.1 K-nearest Neighbours

One of the simplest classifiers tested is the K-nearest neighbours (K-NN) classifier.

The distance measure used and the numbers of neighbours both contribute to the

final accuracy of the system. This is a logically simple classification procedure, but

it is actually quite computationally expensive since it requires the calculation of

the distance to every point in the training set. Often, K-NN classifiers are used as

a basis for comparison for more sophisticated classification techniques.

A 1-NN classifier was tested by Peltonen et al. using six separate classes of noise

and was found to have a recognition rate of only 68.6% [35]. The performance of

the more sophisticated classifiers was much better, indicating that 1-NN classifier

is likely too simple for environment classification. The performance of a K-NN

classifier may be improved by using a different K value, or a different feature

vector. However, it is unlikely that a simple K-NN classifier will be able to deliver

the performance required in an environment classification system for a hearing aid.

This classifier remains a good basis for comparison, due to the relative simplicity

of its implementation, and its well-understood functionality. The K-NN classifier

forms a good baseline of performance for more sophisticated classifiers.

3.2.2 Bayes Classifiers

A naive Bayes classifier is another simple classifier that has been used for environ-

ment classification. A naive Bayes classifier is based on probabilities. A Bayesian

network is used to determine the probability of an event given a certain known set

of inputs [36].
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In [37], Buchler et. al. tested a Bayes classifier against a rule-based classifier,

an ANN and an HMM for classification of speech, noise, speech-in-noise and music.

Both the ANN and the HMM performed better than the Bayes. However, the

authors note that the Bayes classifier is faster than either model, and hence may

be a good choice if the computation time is limited.

3.2.3 Gaussian Mixture Models

A slightly more complex type of classifier is the Gaussian mixture model (GMM)

classifier. This classifier models the different environment classes as mixtures of

different Gaussian probability density functions, with varying properties. An initial

estimate of the system is iteratively corrected, most often using an expectation-

maximization algorithm. The mixtures are trained on known sets of data, and the

unknown samples are classified in the class with the highest probability [38].

Gaussian mixture models are a fairly common type of classifier, but they are

relatively simple, so they tend to be used only for comparison to other types of

classifiers. Malkin and Waibel compared a GMM classifier to a neural network

[39], Ravindran and Anderson compared GMMs to an AdaBoost classifier [40] and

Peltonen et. al. compared GMMs to K-NN classifiers [35]. The results of all of

these studies indicate that the GMM is the weaker of the tested classifiers. It does

not appear that the GMM is the best classifier for this task.
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3.2.4 Hidden Markov Models

In two separate papers, Nordqvist and Leijon examine the use of HMMs to classify

different audio environments. In [41], an HMM is used to classify a telephone en-

vironment. The study uses a two-stage HMM. The first stage is used to classify a

telephone and face-to-face speech in quiet and noise environments. The classifica-

tion is based mostly on signal modulation, since telephones are band-limited. The

second classifier is used to determine the individual parts of the signal, speech or

noise. The classifier was able to distinguish between the two environments, and the

switching takes 10-15 seconds. However, the classification rate is very dependent

on the conversation style.

This study shows potential uses for HMMs in both environment classification

and in noise reduction. The environment classification part of the study is very

limited, however, as only two different environments are compared. The time re-

quired to change is also quite large, as the user would need to be on the telephone

for 15-20 seconds before having the hearing aid switch. This might make it difficult

to hear the first part of the telephone conversation. This is an important part of

the conversation if the user is attempting to verify the identity of the person on the

line. Additionally, although the HMM uses the signal modulations in the model,

there is no comparison to a classifier based solely on the signal modulation.

A second study by Nordqvist and Leijon [33] uses HMMs to classify three differ-

ent audio environments: speech in multi-talker babble, speech in traffic and clean

speech. The paper uses the same two-stage classifier as the first study, where one

classifier is used to determine the environment and a second classifier is used to
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pick out the individual parts of the signal. An individual HMM is used for each en-

vironment, and the output is the HMM having the highest probability. The system

was able to give hit rates from 96.7% to 99.5%, with false alarm rates from 0.2% to

1.7%. The classifier produced a change in output within five to ten seconds after

an abrupt change in the audio environment. The system may have some difficulty

in reverberant environments, where clean speech is classified as speech in babble.

The number of environments tested is fairly limited. However, the results are very

encouraging.

In both of their studies [33, 41], Nordqvist and Leijon use a two-stage classifier,

with one stage used to separate the speech and noise parts of the signal. This type of

an application is well suited to noise reduction techniques. In a similar application,

Sheikhzadeh et. al. [42] use HMMs for speech enhancement and compare the

performance of the HMM to spectral subtraction and Weiner filtering. The HMM is

a continuous, autoregressive HMM. The HMM performed better than the standard

methods in both objective and subjective tests. However, it was a more complex

system to implement, which can be costly in a hearing aid since it runs on very low

power.

A similar classification problem is the classification of music samples. Pollastri

and Simoncelli applied HMM classification to the problem of music classification

in their 2001 study, attempting to use HMMs to determine the composer of an

unknown music piece. The study attempted to classify the music of four classical

composers (Dvorak, Mozart, Beethoven and Stravinsky) and one pop composer

(the Beatles). HMMs were chosen because music is time dependent and HMMs are
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able to incorporate time-dependent features. The HMM used was a linear left-right

HMM and testing showed good performance using 12 classes. Increasing the size

of the codebook used did increase the accuracy, although this increase flattened

after a certain point, indicating that there is a near-optimal number of codebook

values for a certain network. The HMM consistently outperformed the regular

Markov model. The best performance attained was 42% correct, which seems very

low. However, human music experts were only able to correctly identify 48.16%

of unknown samples. Overall, the performance of the HMM is approaching the

performance of a human expert, which is good for such a complex problem.

3.2.5 Artificial Neural Networks

An alternate to the HMM classifiers is to use an artificial neural network. Neural

networks are well suited to classification tasks, and would therefore be a good match

for this application.

Buchler et. al. [37] studied both HMMs and neural networks for sound environ-

ment classification, and compared them to the performance of a minimum distance

and a Bayes classifier. The study found that the HMM was the most successful

model for environment classification with an 88% accuracy rate, followed closely by

the neural network with an 87% accuracy rate. These two models are very close in

performance, therefore it is difficult to definitively claim that the HMM is a better

classifier. The performance of both the minimum distance and Bayes classifiers was

much worse. Interestingly, the HMM and the neural network functioned best using

different sets of signal features. This is discussed further in Section 3.3.
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Shau, Xu and Kankanhalli [43] also studied an HMM implementation and com-

pared it to a support vector machine (SVM), which is another type of neural net-

work. Their work looked at determining the genre of unknown music samples. The

framing of the samples was done based on the intrinsic rhythm of the samples,

which better captures the natural structure of the genre, and can be used to track

the movement of the piece in time. Classification was done using one five-state

HMM for each genre. The classifier was able to distinguish between pop, country,

jazz and classical genres with 89% accuracy. The performance of the HMM was

actually slightly worse than the performance of the support vector machine, but

the HMM offers the advantage of being more easily able to add new genres, since it

does not require retraining the entire system. This is actually an interesting point

that holds true for environment classification as well. A neural network would re-

quire an entirely new set of weights if one new class was added, whereas an HMM

network is fairly easily expanded by adding a new model to the system.

Temko and Nadeu [44] studied the classification of 16 different audio events

found in meeting rooms. The study compared a GMM and an SVM. They also

experimented using different clustering schemes for the SVM, using a standard

clustering algorithm, and a clustering algorithm similar to a binary tree imple-

mentation. The best results were obtained using the SVM with the new proposed

clustering scheme, with a hit rate of 88.29%.

Both Dagli [45] and Felton and Wang [46] use neural networks for music genre

classification. Dagli uses a radial basis function neural network to identify seven

different genres and gives an overall accuracy of 90%. Felton and Wang use an
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SVM to identify seven different genres. The results from this study were a bit more

disappointing, with hit rates from 40% to 95% depending on the genre.

Neural networks have also been used for relatively smaller classification tasks.

Khan, Al-Khatib and Moinuddin [47] looked at classifying speech and music from

unknown audio samples. They used a multi-layer perceptron feed-forward network,

trained using back-propagation, and were able to attain a 96.6% accuracy using

ten hidden nodes. This is an impressive accuracy rate. However, there are a small

number of possible classes used in this implementation, so it is likely unreasonable to

expect this high an accuracy rate when classifying a larger number of environments.

A similarly impressive result was achieved by Bugatti, Flammini and Migliorati

[48] using neural networks for the same problem. The study compares a neural

network to a Bayesian classifier for the task of classifying speech and music data

from unknown samples. A pre-processor is used to remove silent segments and

create the feature vectors.

The neural network is a multi-layer perceptron, trained using the Levenberg-

Marquardt method. The total error rate of the neural network is only 6%, compared

to the error rate of 17.7% for the Bayesian filter. Music misclassifications made up

the vast majority of the error rate for the neural networks. Most of the misclassi-

fications were for rap music, which has strong speech components. Unfortunately,

the two classifiers used vastly different feature vectors for the Bayesian and neural

network classifiers, so it is possible that some of the difference in their performance

came also from the features used to describe the audio sample. The feature vector

for the Bayesian classifier is very short and derives mostly from a single feature,
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whereas the feature vector used for the neural network is very extensive.

3.2.6 Summary

Both the HMM and the neural network classifiers appear to have potential for audio

environment classification. The multi-layer perceptron neural network is the most

common and appears to perform well. The GMM does not appear to perform as

well as the other potential classifiers. The K-NN also does not tend to perform

well. However, since it is one of the simplest classifiers, it provides a good baseline

against which to compare other classifiers.

3.3 Feature Vectors

Each of the models discussed require an input representing the signal. It is possible

to use frames of signal itself, or the frequency spectrum. However, this is not

always the best way to represent the signal for classification, and it often quite a

large representation. Normally, a signal can be classified using a smaller number of

inputs by characterizing the signal using different features.

The representation of the signal as a vector of features has been the topic of a

number of different papers. The set of features selected need to represent the signal

and distinguish it from signals in other classes, hence the feature vector selected will

be dependent on the signals being represented, and the classes used. For example,

identifying white noise from speech babble can often be accomplished using just

the mean frequency. Classifying single-talker speech from multi-talker babble can

often be accomplished using a feature including the signal modulation. The best
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set of features is also dependent on the type of classifier used [37].

Some papers use a relatively simple set of features. Dagli [45] uses one of the

simplest feature sets, consisting of the FFT data. Felton and Wang [46] also uses the

FFT, but also includes a spectrogram and the Mel-frequency cepstral coefficients

(MFCCs). Most often, however, the FFT is not included directly and instead the

signal is represented by a number of features that are used to characterize the

spectrum.

In [10] Kates presents and analysis of variance (ANOVA) on a set of four features

for audio environment classification. The paper suggests using three frequency do-

main features, mean frequency and slope of the high and low frequency components,

as well as the envelope modulation of the signal. The mean frequency is defined as

the first moment of the signal, and the slopes of the high and low frequencies are

the log spectrum curve fits of the frequencies above and below the mean frequency.

The envelope modulation was originally defined as the ratio of the mean to the

standard deviation of the mean magnitude within a certain frequency bin. It was

found, however, that the envelope modulation was relatively steady, and therefore

could be simplified as the ratio of the mean to the standard deviation of the mean

magnitude of the entire signal.

In ANOVA tests, Kates found that each of the features described was signifi-

cant, and their interactions were not significant, indicating they each represented

a distinct part of the signal. When testing the feature vector with a real classifier,

Kates was able to achieve better than 90% accuracy when using less than seven

clusters [10]. The features used in Kates’ paper are often used as at least part of



CHAPTER 3. LITERATURE REVIEW 46

the feature vector in other papers on classification.

Another very common feature for classification are the Mel Frequency Cepstral

Coefficients (MFCCs). A cepstrum is the DCT or FFT of the dB representation

of the signal. The Mel scale is a frequency representation of a signal that corre-

sponds to the human auditory system, emphasising the lower frequencies. Hence

the MFCCs of a signal are the discrete cosine (DCT) or Fourier Transform (FFT) of

logarithm of the signal (dB representation) transformed into the Mel scale. Linear

cepstral coefficients can be used by not transforming the signal first into the Mel

scale, and simply taking the DCT or FFT of the dB representation [49].

A paper by Malkin and Waibel [39] used 64 MFCCs and the mean frequency.

The feature vector was tested using both a GMM and a neural network classifier,

and the study found that the best error rate was 22.21% using the neural network

with 16 hidden nodes, and the best rate for the GMM was 22.43%. A combination

of the two classifiers was able to give an error rate of 19.95%. The use of MFCCs

in the feature vector is actually quite common when using a GMM classifier. The

hit rate for this study is quite low in comparison to some of the other studies,

indicating that MFCCs or GMMs may not be a good representation or classifier

for environment classification.

Shao Xu and Kankanhalli [43] used MFCCs and LPC derived cepstrum coeffi-

cients as well as their delta and acceleration values as a feature vector for an HMM

classifier used to classify music by genre. Their system was able to give an accuracy

of 89%. However, both the problem and classifier were different, so these results

cannot be directly compared with the study of Malkin and Waibel.
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Ravindran and Anderson [40] also did some work using MFCCs and GMMs.

The study used a model of the human auditory system to generate features, and

compared the new feature vector to a feature vector comprised of MFCCs, using

GMM and AdaBoost classifiers. For the human auditory model, the basilar mem-

brane (BM) is modelled as a filterbank with 128 bands from 180 Hz to 7246 Hz. A

spatial derivative and half-wave rectifier models the cochlear nucleus (CN), and a

temporal integration over 8 ms represents the central auditory neurons. The fea-

tures used are the discrete cosine transform of the log of the model. The human

auditory feature vector performed better than the MFCC feature vector, with the

best performance from the AdaBoost classifier. This is an interesting approach to

the feature vector selection, since it is based on a model of the human auditory

system. Unfortunately, the feature vector consists of 128 features, since the BM

is modelled as a 128-band filterbank. The frame size on the system is only 8 ms,

which would require a both a large classifier and very fast processing of the input

to generate the feature vector. Because a hearing aid is limited in its power usage,

such a large feature vector requiring fast processing is not possible. Because it

uses a filterbank, however, it may be possible to eliminate some of the additional

processing by combining it with the frequency response shaping already required

by the hearing aid.

A paper by Peltonen et. al. [35] also examined the use of different feature

vectors for classification, using a K-NN and a GMM classifier. The study examined

a large number of potential features in three different categories, and attempted to

determine a good combination of these features. The features tested were grouped
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into three different categories: time domain features, frequency domain features and

linear prediction and cepstral coefficients. The time domain features consisted of the

zero crossing rate (number of zero voltage crossings in a frame) and the short time

average energy within a frame. The frequency domain features consisted of the band

energy ratio (ratio of the energy in a certain band to the total energy), the spectral

centroid (the first moment of the spectrum, similar to the mean frequency in the

Kates paper [10]), the bandwidth (width of the range of frequencies), the spectral

roll-off point (the frequency at which a certain amount of the power spectrum is

contained in the lower frequencies), and the spectral flux (change of the shape of

the power spectrum between frames). The linear prediction and cepstral features

consist of the linear prediction coefficients (LPCs) found using autocorrelation,

and the cepstral coefficients and MFCCs, both derived from the LPCs. The best

classification rate was 68.4%, which was found with a 1-NN classifier, using the

band-energy, the flux, the roll-off and the centroid of the signal. Interestingly,

MFCCs did not make up part of the best feature vector, which may support the

conclusion drawn by Ravindran and Anderson in their paper [40], which suggested

that there were more relevant features than just the MFCCs of the signal.

A classification rate of just 68.4% is actually quite a low classification rate

compared to some of the other studies. This may be because a 1-NN classifier is

an extremely simple classifier. A 1-NN classifier is very dependent on the data set.

In [44], Temko discusses classification of meeting room events with an SVM. The

features suggested in the paper are from three categories. In the perceptual-spectral

category, the features used are the zero-crossing rate, the short time energy, the
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subband energies in four subbands, pitch and the spectral flux between two adjacent

frames, measured in four subbands. In the cepstral-based category, 12 MFCCs

from 20 bands are used, not including the 0th coefficient. A last category used is

the FFT-based spectral parameters, which are based on the log of the filterbank

energies.

Some of the features that have been suggested by both Peltonen et. al.[35]

and Temko [44] are actually quite common features for audio classification. In

[47], Khan, Al-Khatib and Moinuddin provide a short survey of previous literature,

looking at possible features. The list of possible features is fairly long and includes

low energy frames, roll-off point of the spectrum, spectral flux, zero crossing rate,

spectral centroid, four Hz modulation energy, cepstral residual, pulse metric, cep-

stral coefficients, amplitude, pitch, harmonic coefficients, MFCCs, log energy, line

spectral frequencies (LSF) and differential LSF (DLSF). The variance and delta

values of many of these features are also included in many feature vectors. The

authors decided to use a feature vector consisting of some previously used features,

and some new features. The feature vector used consisted of the percentage of low

energy frames, the RMS of a low-pass response, the spectral flux, the mean and

variance of the discrete wavelet transform, the difference of maximum and mini-

mum ZCR and the LPCs. Using this feature vector, they were able to attain an

accuracy of 96.6% on a neural network classifier used to identify speech and music.

Several of these features are also used in a study by Bugatti, Flammini and

Migliorati [48]. The authors also used classifiers to identify speech and music. For

a Bayesian classifier, the authors used the variance of the ZCR, the third order
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moment of the ZCR and the difference between the number of ZCR samples above

and below the mean. For the neural network classifier, they used the spectral flux,

the standard deviation of the short-term energy, the minimum short-term energy,

the product of the mean and standard deviation of 86 centroid values, the mean and

standard deviation of the cepstrum coefficients, the ratio of high-frequency power

to the whole-spectrum power and syllabic frequency. They were able to attain an

error rate of 6.0% on the neural network, but the Bayesian classifier gave a much

higher error rate of 17.7%.

Buchler et. al. [37] looked at a different set of features in four different cate-

gories: amplitude modulation, spectral profile, harmonicity and amplitude onsets.

Amplitude modulation can be described in terms of the width of the amplitude

histogram, the modulation spectrum of the frequency envelope in three ranges, or

as in Kates [10], as the logarithmic ratio of the mean to the standard deviation of

the magnitude across an observation interval. The spectral frequency is described

here by the spectral centre of gravity and the fluctuations of the spectral centre

of gravity. Pitch is modeled by tonality and pitch variance, but the authors do

not use the pitch value itself. A pitch is detected if there is a peak above 20% of

the signal energy within 50-500 Hz. When a pitch exists, the signal is harmonic,

when there is no pitch it is inharmonic. Tonality is the ratio of the harmonic to

inharmonic periods over time, and pitch variance is only a measure of the harmonic

parts. Amplitude onsets are calculated using the envelope of the signal in 20 Bark

bands, using a time constant of 10 ms. An amplitude onset is identified as either

a 7 dB or a 10 dB difference between 5.8 ms frames. Four features are used to
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describe the amplitude onsets: onset mean and variance of the onset strength in

an observation interval of one second, number of common onsets across bands, and

the relation of high to low frequency onsets. Beat can also be determined in this

way by determining the steady onsets over a longer period of time.

A number of different classifiers were tested, and the best feature vector de-

pended on the classifier used. The best performance was an HMM using a feature

vector consisting of tonality, amplitude width, centre of gravity, fluctuation of cen-

tre of gravity, the onset mean and the number of common onsets between bands. A

two-layer perceptron with two hidden nodes was only slightly worse, using tonality,

amplitude width, centre of gravity, fluctuation of the centre of gravity, number of

common onsets between bands, and the beat. Tonality was considered important,

as were at least one of the amplitude modulation features. The spectral features

of centre of gravity and fluctuation of the centre of gravity and at least one onset

feature can improve the score. The beat feature was not considered to be important

[37]. This work demonstrates and describes a large number of possible features for

use in a classifier, and shows how the feature vector is changed as the classifier

characteristics are changed.

As demonstrated by Buchler et. al. [37], the feature vector is dependent on the

type and characteristics of the classifier used. To cope with this problem, Feldbusch

[50] describes a heuristic for feature selection that incorporates the classifier as the

features are tested. In this case, the classifier tested is a neural network. Finding a

good feature vector is important since the signal must be fully described to achieve

a good performance. Research has also shown, however, that the performance
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degrades when too many features are used, so the problem is more difficult than

simply identifying all the possible ways to describe a signal. Unfortunately, this

makes finding an optimal feature subset an NP-hard problem, which is why a

heuristic method is described in this paper. There are generally two ways to find

a feature vector for a system. A fitter measures the performance of the feature

vector based only on the data itself, whereas a wrapper incorporates the classifier

and measures the performance of the feature vector for each particular classifier.

Because neural networks must be trained, it is not efficient to build a wrapper

around a neural network. Instead, a wrapper is built around a fast statistical

classifier whose classification rate corresponds to the classification rate found from

a neural network. The list of features tested and the final features selected are not

discussed. However the paper indicates a means of performing feature selection.

The selection of a feature vector is an NP-hard problem [50]. Most papers

suggest different possible features and different considerations; however, it is likely

that a good feature vector will need to be determined through a heuristic approach.

A summary of the features vectors is presented in Table ??

3.4 Audio Environment Classes

Although there has been a fair amount of work done on determining a good feature

vector for the classifier, there has actually been very little work dedicated to deter-

mining a good set of classes to actually use in a hearing aid. Most of the papers

referenced in this section either do not discuss the classes used at all, or mention

the classes used, but do not discuss the reasons for using those classes. This is
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actually a very significant decision since it will directly affect how well a user can

hear in certain situations. It is important to determine how many classes should be

used, which classes are important, which classes are similar enough that they can

be clustered together. Additionally, it is important to determine how environments

will be classified if they span multiple classes, for example, a crowded bar with both

speech babble and music.

In his 1995 paper [10], Kates suggests that six separate environment classes

should be able to cover the requirements for the average hearing aid user. Based on

research with manual multi-programmable hearing aids, it was found that patients

use 3.4±1.1 programs for at least one hour every day, with 4.3±1.2 programs in use

for at least one half hour every day. Users also identified three important classes

of noise that should be included in a classification program: outdoors (nature),

automobile travel (in-car) and shopping. In his study, Kates used 11 different

noise environments that were then clustered: apartment, babble, dinner, dishes,

Gaussian, printer, traffic, typing, sentence, siren and vent. Kates found that the

apartment and traffic noise were very similar, likely because the majority of the

noise in the apartment comes from traffic. Ventilation noise was also found to be

quite close to both the apartment and traffic noise. Typing, printer and dishes were

also found to be quite similar, likely because they are all percussive noises.

Other studies have looked less closely at the actual clustering, and just assumed

several classes of noise. In [33] Nordqvist and Leijon look at classifying speech in

traffic noise, speech in multi-talker babble and speech in quiet. In [41], they look

at speech in quiet and in traffic noise in a face-to-face environment and over the
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telephone. Ravindran and Anderson [40] examine four classes of noise in five envi-

ronments. The classes used were speech, music, noise and speech in noise, and the

five environments were social (babble), in-car, office, industrial and traffic. Buchler

et. al. [37] use the same classes and environments. Peltonen et. al. also use

five environments, but their selection is slightly different: outdoors, vehicles (traf-

fic), public/social (babble), office/meeting room/quiet room, home and reverberant

spaces.

There is some consensus on some of the clusters to be used. Traffic appears

in many of the studies, and the outdoors environment also likely includes some

traffic components for cityscapes. The in-car environment also appears in two

studies [40, 37], and likely includes some aspects of the traffic noise, but in a more

enclosed environment. Office noise similarly appears in a number of the studies

[37, 40, 35], and likely includes a component of typing noise as well. The industrial

environment used by Buchler et. al.[37] and Ravindran and Anderson [40] would

also likely include some percussive noise. Speech babble or social settings are also

very common, most likely because it is a background that is often identified as

troublesome for hearing aid users. Music is also likely an important environment

to identify as listening to music would likely require a flatter response from the

hearing aid, and less noise reduction to avoid cancelling part of the sound.

Overall, however, there seems to be little work on identifying and clustering

audio environments for this application. The classes used in each study are sum-

marized in Table ??.
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3.5 Summary

Table ?? presents a summary of the classifiers, feature vectors and classes discussed

in this literature review, along with the final test results. Overall, the HMM and

the ANN both appear to be good candidates for audio classification. Much of the

work has focused on the selection of a good classifier and although many different

classes of audio samples have been tested, most authors have selected the classes

based on prior knowledge of the problem, rather than through a formal technique.

Similarly, although many features have been suggested, few authors have used a

formal feature selection technique to choose their input features. Hence, this work

will focus on the use of a more structured approach to the selection of the classes

and features, as well as the selection and testing of an appropriate classifier.



Chapter 4

Initial Classifier Tests

1

This research focuses on the development of an environment classifier that can

be used in a hearing aid. This thesis examines answers several questions related to

classifier systems:

1. Which type of classifier would work well for this application?

2. What is a reasonable set of output classes for the classifier?

3. What features should be used as input to the classifier?

The project is divided into four different stages. Each stage of the research is

presented in a separate chapter, as the results of each stage influence the methods

of the proceeding stage. Each chapter presents the methods, results and discussion

for its respective stage. The stages of the research are:

1Portions of this chapter have been published in [51] and have been accepted for publication
in the International Journal of Information Technology and Intelligent Computing

56
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1. Assessing the different classifiers for functionality (this chapter)

2. Determining the desired output classes (Chapter 5)

3. Performing feature selection using the selected output classes (Chapter 6)

4. Testing the candidate classifiers using the selected classes and features (Chap-

ter 7)

4.1 Methods

Initial tests are performed using MLP, HMM and an MLP with windowed input

in order to test the effectiveness of using the windowed input with the MLP. This

section presents the features and data set and classifier configurations used for these

tests. These algorithms are developed in C++ using the Microsoft .NET compiler.

4.1.1 Features

The feature vector for the initial tests is based on those suggested by Kates in

[10]. The feature vector consists of the mean frequency, the high and low frequency

slopes and the envelope modulation of the sample. The features are calculated on

a 200 ms frame. These features are described in detail in Chapter 6.

The regular MLP uses a single frame of the signal to determine the class, and

the HMM uses a sequence of five frames, consisting of one second of audio input.

The windowed MLP uses a variable window size of two to five frames.
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4.1.2 Data Set

The data set for the initial tests is taken from the Freesounds database at the

Universitat Pompeu Fabra [52], and white noise generated in MATLAB. The files

are separated into one-second segments. Each class is taken from 37 one-second

segments. For the MLP, which only requires one frame of data per input, each

one-second segment is further separated into four 250 ms segments. From each

250 ms segment, one 200 ms frame of features was extracted. The windowed MLP

and the HMM each require more than one frame per input, hence each one-second

segment is used to produce a single set of two to five input vectors.

4.1.3 K-nearest Neighbours

The K-NN is tested with 100 different K values from one to 100. Two thirds of

the data set is used as training vectors and one third is used for testing. This gives

a sufficient amount of data to train the algorithms, while still retaining some data

for testing.

4.1.4 Non-windowed MLP

The network model used is a three-layer (one hidden layer) feed-forward percep-

tron, trained by back-propagation. Previous research has shown that a four-layer

network (two hidden layers) works well for classification as it can match an arbi-

trary classification boundary [53]. A more recent study by Guang-Bin et. al. [54]

shows that a three-layer perceptron net (one hidden layer) can also match an arbi-

trary boundary. In this work, a three-layer MLP is used because it is smaller and
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therefore requires less power. Additionally, early tests performed as part of this

work show that the four-layer network is actually more difficult to train as it tends

to get stuck in local minima in the error space.

The input to the network is four nodes, with one node per feature. The output

of the network is four nodes, with each node corresponding to a single class. This

output coding is selected over a binary-coded output because in a binary output,

two different classes can have one or more output node that is the same. This implies

a connection between these classes that may not actually exist. Additionally, using

a one output per class configuration allows the system to indicate an unknown class.

The number of hidden nodes is variable. Since the initialization for the weights

and thresholds is random, the results of 50 separate training runs are averaged to

produce the results. The run with the best performance on the test set is also

saved. The network is tested using different numbers of hidden nodes (four to ten),

and different numbers of training epochs (10,000 to 30,000).

4.1.5 Hidden Markov Model

The hidden Markov model implementation is slightly different than the MLP im-

plementation, since a separate HMM is required for each audio class. The set of

four HMMs makes up a model set, and the class of the input vector is determined

as the HMM with the highest probability in the set.

The model used is a fully-connected model. In [33], Nordqvist and Leijon use

a fully connected HMM for audio environment classification, which assumes that

any state may transfer to any other state, and any state may be the initial state.
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However, Rabiner assumes a left-right configuration for a similar application, in

speech recognition. A left-right model only has state transitions to higher states,

and the initial state is always the first state [26, 55]. In speech recognition, however,

the order of the sounds matters, whereas in an audio environment the ordering is

mostly random. Therefore, the fully-connected model is a logical choice for this

application.

The state transition matrix (A) and the initial state probabilities (π) are ini-

tialized randomly. However, it has been shown that observation probability matrix

(B) benefits from a better initial estimate [26], hence the observations are first

clustered to give initial estimates for B, using K-means clustering.

A discrete model is used, hence the values used in the B matrix are determined

using a vector consisting of codebook values. The actual input values are quantized

to their codebook values before they are input into the B matrix. The B matrix

contains the probabilities for each different vector, as opposed to simply holding

the probabilities for each of the individual inputs. This allows the model to capture

the relationship between the different inputs, but also greatly increases the size of

the B matrix.

The HMMs are much more consistent since the initialization for the B matrix

is deterministic. Therefore, the results are generated by averaging five HMMs. The

model with the best accuracy on the test set is also saved. The HMMs are trained

using different number of classes (three or four) and different numbers of codebook

values (four to six). The number of classes is restricted to four since beyond this

number the initialization of the B matrix becomes difficult. The HMMs are also
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tested with different number of training iterations, from 10 to 30.

4.1.6 Windowed MLP

Although both MLPs and HMMs can match input patterns to output classes,

HMMs have a theoretical advantage over MLPs as they can also track time-based

changes. The MLP does not naturally contain a time-based component. The MLP

can be adjusted to have a time-based component by using a windowed input. In a

windowed MLP, the input to the MLP is modified to include past inputs by adding

more nodes to the input layer, as seen in Figure 4.1.

When the input is windowed, the size of the input window must be considered

as an additional parameter. In this case, the position of the sample in the window

is not important since, in the vast majority of cases, the background is stationary.

Therefore, the network is used to classify the background from the full sequence of

inputs. In cases where the background is non-stationary, the change will propagate

through the system, and should only cause a disturbance in the windows containing

samples from more than one environment. For this system, the window is limited to

five samples, which is only one second of data. Any disturbances could theoretically

be smoothed using an averaging filter at the output.
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Figure 4.1: MLPs using normal and windowed input vectors

4.2 Results and Discussion

4.2.1 K-nearest Neighbours

The training and testing set accuracies are presented in Figure 4.2. The training

set has the highest accuracy (100%) with a 1-NN classifier and the accuracy tends

to decline as the K value increases. This occurs because the value being tested is

actually a part of the set it is being compared against. For the training set the

1-NN value is the input itself and the class will therefore always be correct.

For the testing set, the set with the highest accuracy is the 8-NN. The 8-NN

gives an accuracy of 81.8% for the testing set and an accuracy of 93.2% for the

training set. However, all classifier values between 6-NN and 14-NN are above

80.7% for the testing set, which is only a 1.1% difference in accuracy. The 2-NN

classifier also has an accuracy of 80.7%. However, the accuracy tends to decrease

for K values larger than 14. Because the results are so dependent on the training

set, it is difficult to say that 8-NN is generally the best K value for this application.

Realistically, any small K value would likely produce similar results. For this thesis,

however, the 8-NN classifier is used for comparison.
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Figure 4.2: Accuracy of the K-NN classifier with different K values for the initial
tests

selected
actual babble traffic typing white
babble 37.5% 62.5% 0% 0%
traffic 8.3% 89.6% 2.1% 0%
typing 0% 0% 100% 0%
white 0% 0% 0% 100%

Table 4.1: Confusion matrix for the 8-NN classifier for the initial tests

The confusion matrix for the 8-NN is presented in Table 4.1. It is clear from

this table that the 8-NN has difficulty separating the babble and traffic classes.

The accuracy of this classifier for the babble class is only 37.5%, which is clearly

not suitable for this application.
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4.2.2 Non-windowed MLP

The average accuracy of the MLP is actually quite low, ranging from 75.5% to 78.8%

accuracy on the testing set, depending on the number of hidden nodes and the

number of training epochs. The best-run values are much higher than the average

values, ranging from 84.9% to 92.7% accuracy on the testing set. This large range

indicates that the MLP is not a very reliable technique. Neural networks are able

to find local minima in the error space, but not a global minimum. Accordingly, it

is possible to generate models that do not fully converge to an acceptable solution

for the training set. This may be part of the reason for the relatively low average

accuracy.

There is no definite trend with respect to the number of training epochs. A

20,000 epoch training period is selected for comparison, as it is the midrange of the

tested values.

From the graph in Figure 4.3, it can be seen that there are also very few definite

trends with respect to the number of hidden nodes. There is a very slight decrease

in both best-run and average accuracy for networks with more than seven hidden

nodes. The network with five hidden nodes (trained with 20,000 epochs) is selected

for comparison. For this model, the best-run accuracy for the testing set is 89.1%.

Using these weights, the accuracy on the training set is 90.5%. The average accuracy

achieved is 78.6% for the testing set and 95.4% for the training set. This model is

selected because it has fewer than seven nodes, and the smallest difference between

the average and best-run accuracy, making the model slightly more reliable than

the others. It also has the smallest difference between the best-run accuracy for the
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Figure 4.3: Accuracy of MLP using different number of hidden nodes for the initial
tests

training and testing set, indicating that this model is more robust than the other

models.

Practically, however, the number of hidden nodes does not greatly affect the final

accuracy, and any relatively small number of hidden nodes would be an appropriate

selection.

The accuracy of the 8-NN is actually better than the average accuracy of the

non-windowed MLP. However, the best-run results of the MLP are better than

the K-NN, which indicates that with proper training the MLP is likely the better

choice.

The confusion matrix for the best run of the five-hidden node matrix is presented

in Table 4.2. The matrix shows that the majority of the confusion is between

the babble and the traffic classes. This observation holds true for all network
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selected
actual babble traffic typing white unknown
babble 87.5% 6.2% 0% 0% 6.2%
traffic 10.4% 75.0% 4.2% 0% 10.4%
typing 0% 4.2% 93.8% 0% 2.1%
white 0% 0% 0% 100% 0%

Table 4.2: Confusion matrix for the best-run of the five-hidden node MLP for the
initial tests

configurations for both the testing and the training sets. This is similar to the

problem encountered with the K-NN classifier and may be an indication that the

features used in these tests are not sufficient to properly separate these two classes.

4.2.3 Hidden Markov model

The average accuracy of the HMM is higher than the MLP, ranging from 72.7%

to 86.8% on the testing set. The best runs of the HMMs also range from 72.7%

to 86.8% accuracy. The majority of the HMMs have an average accuracy that is

the same as the best-run accuracy, and those that are not the same differ only

by the classification of one sample. This indicates that the models converged to

a similar result every time they are trained. The training of the HMMs is clearly

more reliable than the MLPs. This is likely because the initialization for the HMMs

is not completely random, but is based on a K-means clustering process.

The results from the HMM tests show that the number of training iterations

has little effect on the final accuracy of the model. The largest difference between

models trained for different iterations is only 2.3%, and the majority of the models

see no change in accuracy as the number of training iterations is changed. The
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a) Codebook size = 4 b) Codebook size = 6

Figure 4.4: Accuracy of the HMM using different numbers of classes for two HMMs
with codebook sizes of four and six for the initial tests

number of training iterations required for the HMM is much smaller than that

required by the MLP. However, the training time is still relatively long as the

matrices are much larger than the matrices found in the MLP.

There also appears to be little difference in accuracy between models with dif-

ferent numbers of states, particularly when using a smaller number of codebook

values, as seen in Figure 4.4. As the number of codebook values increases, the ac-

curacy of both the two-state and four-state models decrease slightly. The four-state

models are more difficult to initialize with the K-means clustering, which may be

an indication that there are not actually four distinct states in all the environments

being classified. Overall, the three-state model appears to be the best model.

The parameter that has the greatest effect on the performance is the number of

codebook values. The results are relatively similar for codebooks with three, four

and six quantized values. However, the performance of the codebook with five values

is significantly lower, as seen in Figure 4.5. It is possible that the codebook with

five values separates or combines a cluster of input vectors that would otherwise be



CHAPTER 4. INITIAL CLASSIFIER TESTS 68

Figure 4.5: Accuracy of the HMM using different codebook sizes for a three-class
HMM for the initial tests

classified differently. The four-value codebook is selected for comparison because it

is the most accurate for the three-class model. It is also a relatively small codebook,

making it faster to train and easier to fit in the relatively small memory found on

DSP-based hearing aids.

The confusion matrix for the HMM implementation is shown in Table 4.3. It

is clear from Table 4.3 that the HMM also has difficulty classifying the babble

sound class. However, the HMM most often confuses babble with typing. This is

a further indication that different features may be needed to properly classify the

babble class.
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selected
actual babble traffic typing white
babble 54.5% 0% 45.4% 0%
traffic 9.1% 90.9% 0% 0%
typing 0% 0% 100% 0%
white 0% 0% 0% 100%

Table 4.3: Confusion matrix for the best-run set of the three-class four-codebook
value HMM for the initial tests

Figure 4.6: Accuracy of the windowed MLP vs. window size

4.2.4 Windowed MLP

Testing with the non-windowed MLP shows that for the four-input network, a

network with five hidden nodes is a good model. Using the results from the non-

windowed MLP tests, the windowed MLPs are set so that the ratio of hidden nodes

to input nodes is 5:4. Window sizes from two to five samples were tested, and the

results are presented in Figure 4.6.
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Results indicate that even a small window provides a significant increase in

accuracy over the non-windowed MLP. The testing set best-run accuracies are be-

tween 95.8% and 97.9% depending on the window size, compared to 89.1% for the

non-windowed MLP, and 86.4% for the HMM. Additionally, the average accuracy is

increased significantly to between 94.2% and 96.9%. The windowed MLP is clearly

more accurate than both the non-windowed MLP and the HMM.

The difference between the average and best-run accuracy for the non-windowed

MLP is 10.5%. The windowed MLPs show a difference of only 1.0% to 3.7%. This

indicates that the windowed MLP will produce more consistent results.

One of the major benefits of the windowed MLP is that it is robust. Although

the non-windowed MLP is able to generalize in certain cases, the average accuracies

for the training and testing sets are quite different. For the non-windowed MLP,

the difference between the average accuracy for the training and testing sets is

16.9%. For the windowed MLP, this difference is reduced to 5.8% for the two-

sample window, and just 3.1% for the five-sample window.

The average accuracy increases slightly as the window size is increased. How-

ever, the best-run accuracy is relatively flat, with the two, four and five-sample

windows having a best-run accuracies of 97.9%, and the three-sample window hav-

ing a slightly lower best-run accuracy at 95.8%. The reliability also increases slightly

as the window size increases. The larger window size is therefore likely easier to

train, but the smaller window sizes are also capable of achieving excellent accuracy.

Although the larger windows are slightly more accurate on average, the two-

sample window was selected for comparison since it is smaller and therefore has
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selected
actual babble traffic typing white unknown
babble 100% 0% 0% 0% 0%
traffic 8.3% 91.7% 0% 0% 0%
typing 0% 0% 100% 0% 0%
white 0% 0% 0% 100% 0%

Table 4.4: Confusion matrix for the best run of the two-sample windowed MLP for
the initial tests

a smaller computational load, and easier to store on the relatively small memory

found in a hearing aid.

The confusion matrix for the MLP using window size of two samples is presented

in Table 4.4. There is only one misclassified sample, which is a traffic sample that is

misidentified as babble. This is similar to the problems seen in the non-windowed

MLP.

4.2.5 Comparison of Classifiers

The final accuracy of all three systems for the initial tests is presented in Table 4.5.

The windowed MLP has the best accuracy for both the average and the best-run

models. It is also the most general model. For a single set of training data the

K-NN is the most reliable model because it is not trained. Of the trained models,

the HMM is the most reliable, since the difference in accuracy between different

training runs of the same model is very small. The windowed MLP is more reliable

than the non-windowed MLP. Overall, the initial tests indicate that the windowed

MLP is a good choice for audio environment classification.
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Testing set Training set
Classifier average best-run* average best-run*

KNN 81.8% 81.8% 93.2% 93.2%
MLP 78.6% 89.1% 95.4% 90.5%
HMM 86.4% 86.4% 92.3% 92.3%
WMLP 94.2% 97.9% 100.0% 100.0%

Table 4.5: Accuracy of three classifiers for the initial tests. *Note that best-run
indicates the run giving the highest accuracy on the testing set.



Chapter 5

Selection of Audio Classes

It is necessary to determine what type of classes would be useful for a hearing aid

user. Because microphone arrays have shown so much promise as a way to remove

noise (please see Section 2.1.3), this environment classification system is intended

for use with a noise reduction system based on a superdirective microphone array.

The intent of the class selection is to pick a set of logical, useful classes that

reduce the overlap between different sets of weights, but still cover a wide variety

of sounds. This chapter presents the methods used to perform this class selection

and present and discusses the results of this procedure.

5.1 Methods

In order to select candidate classes, a clustering algorithm is used on a large

database of sounds. These clustering algorithms are used to determine which classes

can be grouped and which should be separated.

73
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Figure 5.1: Procedure for the selection of output classes

The sounds being clustered are 1 s clips, tagged with one or more of 28 different

possible tags. The clustering is performed using a SOM and a K-means clustering

algorithm. The classes are logically selected using the output of both of these

clustering algorithms. This process is illustrated in Figure 5.1.

K-means clustering separates the data into K distinct clusters, where K is

chosen before the algorithm is started. This algorithm is simple and quite common,

but the choice of K can affect the results. The SOM does not give distinct clusters,

but can show how closely samples are related to each other. Using a combination

of a clustering algorithm that gives distinct clusters and an algorithm that gives a

more fuzzy set of clusters gives a better overall representation of the samples.

5.1.1 Data set

It is necessary that the data set for the selection of the classes represent a large

variety of classes. It also needs to contain samples with more than one type of

sound. For example, classes with both traffic and footsteps, or restaurant noise

and babble. The data set is taken from the British Broadcasting Corporation

environmental sound CDs. The sounds from the CDs are transferred to wav format
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at 16 kHz. This sampling rate is chosen because sampling in a hearing aid is often

performed at 16 kHz in order to conserve power. This is important because the

autocorrelation of the signal is based on the signal lags and would therefore change

as the sampling rate of the signal changed.

The audio files are divided into 1 s samples. One second is selected because

it allows a sufficient number of samples to calculate the required features, but is

still fast enough to properly track a person who is moving through different sound

environments.

These samples are then identified as containing one or more of 28 different

possible sounds. A summary of the samples used is presented in Table 5.1. The

table denotes the number of samples used where the tagged sound is the only sound

in the sample, the number where the tagged sound appears in combination with

one or more other sounds, and the number of recordings those samples were drawn

from. An effort is made to adjust the number of samples from each tag to generate a

sample set that is more evenly balanced across the tags. However, some tags occur

much more frequently and therefore appear in many more sounds in combination,

and some tags appear only in a very small number of samples. The babble and

footsteps samples appear in a large number of samples in combination because these

sounds are so prevalent. Similarly, the nature tag is also quite prevalent because

this tag was used to denote any rural, outdoor sound. Many of the subcategories

of nature (eg. birds, water sounds) appear more in combination because they are

also tagged as being nature sounds.

An effort was also made to ensure that samples were taken from as wide an
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Figure 5.2: SOM honeycomb pattern. The black node is the best matching node,
the grey nodes are the immediate neighbourhood (Nc = 1)

assortment of recording as possible. There are, however, still many sounds that are

taken from only a single or a small number of recordings, simply because there are

no other recordings available in the set.

Because the weights in a beamformer are usually based on the autocorrelation

of the signal, the clustering is also based on the autocorrelation of the signal.

MATLAB is used to take the signal autocorrelations and create the data files for

the clustering algorithms.

5.1.2 Self-Organizing Map

A SOM is used to find clusters of similar sounds that could be put together to form

a class of sounds. The SOMs are trained on the autocorrelation of the signal, using

5, 10 and 20 lags. The map used is a honeycomb pattern, which gives an immediate

neighbourhood (Nc = 1) of six cells. This is illustrated in Figure 5.2.

The SOM training proceeds in two stages, and the α and Nc values change at

different rates in each of these stages. The first stage is the ordering stage and it

is trained for 3000 iterations. The neighbourhood size is reduced linearly from 1
4

of
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Table 5.1: Summary of the samples used for clustering
tag alone combo recordings
in-car 40 40 7
in-bus 20 30 3
in-train 20 9 1
in-subway 20 13 1
car signal 0 10 2
nature 20 117 9
birds 10 57 10
geese 0 10 1
farm animals 0 10 1
dog 0 33 1
water splashing 2 28 1
water washing 0 27 1
water running 0 25 1
traffic 30 42 14
train/tram 30 1 2
subway station 25 0 1
footsteps 40 166 21
babble 40 352 29
children 20 71 11
laughter 8 40 14
applause 25 2 2
office noise 9 30 1
restaurant noise 7 83 5
electronic sounds 20 7 6
music 30 75 16
shopping noise 15 60 4
phone ring 0 10 1
industrial 60 0 15
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the size of the map to three. The α value is reduced linearly from 0.9 to 0.1. The

intent of the ordering stage is to make large, coarse changes to map, which changes

the locations of groups of samples. By starting the neighbourhood at 1
4

of the map

size, large portions of the map are changed at one time. By starting the alpha value

at 0.9, these changes are fairly large, which allows the samples to change the shape

of the map.

The second stage is the convergence stage and it is trained for 6000 iterations.

The neighbourhood size is reduced linearly from three to one, and the α value

is reduced linearly from 0.1 to zero. This stage is intended to make small-scale

changes within the groups, so the distance between adjacent samples is reduced.

Hence, the neighbourhood and size of the changes is small. This stage is trained

for longer than the ordering stage because the changes themselves are smaller.

The final output maps each cell on the map to the closest input vector. The

map itself is drawn with an outer hexagon indicating the average distance to its

neighbouring cells as a greyscale value, and an inner hexagon with a colour indi-

cating the input vector tags. The average and maximum distance between cells is

also recorded. Because there are a large number of different tags and combinations

of tags, it is not possible to show each of the different combinations as a different

colour since it would require using colours that are very similar. Instead, a map is

drawn for each different tag, with different colours indicating different combinations

that include that tag. This also allows an easy comparison of how well each tag

is clustered, and whether or not the combination of tags affects the clustering for

each tag. These are discussed at length in Appendix A.
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5.1.3 K-means clustering

K-means clustering is also used to cluster the sounds. The algorithm is run until

the total change in the centroid distances is less than 0.001. Within each cluster,

the number of each different tag combination is counted, and this is sorted by tag

and written to a file.

5.2 Results and Discussion

The SOM and K-means clustering give a general indication of how the samples

should be divided. However, the divisions are imperfect as the sample set is quite

complex. The division of the samples changes as configuration of the classifier and

the input changes.

In general, the number of groups in which a tag appears in the K-means clus-

tering increases as the number of autocorrelation lags increases, and as the total

number of groups increases. This makes sense intuitively since the group spread

would logically increase as the total number of groups increases, since there are

more divisions between the groups. The increase in the group spread as the num-

ber of autocorrelation lags increases likely occurs because none of the sounds tested

are excessively reverberant. Hence, it is likely that in the larger autocorrelation

matrices, the correlation of the later values is quite low for the majority of the

samples. The later lags of all the samples would be similar, making grouping more

difficult.

A similar trend is seen in the SOM tests, where the spread of each tag increases
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as the number of autocorrelation lags increases. Both the 50×50 and the 100×100

maps are large enough to capture the clustering of the tags. Even the smaller 50×50

map has more nodes than input vectors, and the 100×100 map tends to have large

areas that are essentially unused and covered by the same input vector.

Using the information from both the SOM and the K-means clustering gives a

good indication of which tags can be combined and which form their own clusters.

A detailed discussion of each tag can be found in Appendix A.

The results show that although in-car, in-bus and in-train sounds are similar,

traffic is actually not very similar to in-car sounds and is therefore grouped sepa-

rately. Car turn signal do not affect the car noise, and a combination of car noise

and music tends to be dominated by the car noise. Hence, car noise and music

combination samples are grouped with car noise.

The “nature” category is actually made of a number of subcategories that should

be grouped separately: birds, water washing and water running. Similarly, sounds

containing babble do not form a coherent cluster. Hence, babble sounds are clus-

tered into three sub-categories: office noise, restaurant noise and shopping noise.

These categories are sufficiently changed by secondary sounds, therefore samples

that have a combination of the babble sounds and a secondary noise are clustered

with the primary babble sound.

The applause category is well clustered, but is not a sufficiently common sound

to warrant its own group. Electronic sounds are not well clustered, and are not

considered sufficiently important to group separately. These are grouped with the

primary sounds where appropriate. Industrial sounds are also not well clustered.
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These sounds are not used for training as it is unlikely that a hearing-impaired

person would wear a hearing aid in such a location.

The following nine classes are therefore used in this thesis:

1. in-car, in-bus, in-train, car signal

2. traffic, in-subway, subway station

3. birds, dog, farm animals

4. water washing

5. water running

6. office noise, phone ring

7. restaurant noise

8. shopping noise

9. music



Chapter 6

Feature Selection

6.1 Methods

This section discusses the features tested and the algorithms used for feature se-

lection. Section 6.1.2 describes each of the features tested. These features are all

taken from literature and have been tested by other authors for audio classifica-

tion problems. Section 6.1.3 presents the implementation of the feature selection

algorithm.

The selection of input features is based on the output classes. A number of

different features are selected for testing from literature. Each feature is extracted

from each audio file in the updated database. These features are then passed to

a feature selection algorithm that selects some appropriate features. This is then

used to generate the final file for testing. This process is illustrated in Figure 6.1

82
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Figure 6.1: Procedure for the selection of input features

Table 6.1: Summary of the samples used for feature selection
tag samples recordings
in-car 50 7
traffic 50 11
birds 50 6
water washing 50 1
water running 50 1
shopping 50 4
restaurant 50 5
office noise 50 1
music 50 10

6.1.1 Data Set

The data set for the feature selection is also taken from the British Broadcasting

Corporation CDs. The sound samples are manually re-tagged as being part of one

of the classes defined in the class selection process and a data set is chosen. Please

see Section 5.2 for more information on the classes used. The data set consists of

50 samples from each class. A summary of the samples used is presented in Table

6.1
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6.1.2 Features

Each feature is extracted from a 1 s sample of background noise. Because some

systems track time-based changes, some require that more than one set of features

be extracted from the sample. In this case, the sample is subdivided into smaller

time segments and a feature is extracted from each time segment. Since the largest

set of features tested is five, the smallest time segment used to calculated a feature

is 200 ms. A study by Kates [10] uses 200 ms as a sample time for calculation

of features because it is approximately the minimum time required for a human

to register a change in loudness. The time required for a person to detect signal

fluctuation is much smaller. Hence, a feature calculation time of 200 ms or greater

should be sufficient for a feature to capture signal changes at least as well as a

human.

The features tested in this work are described below.

6.1.2.1 Mean Frequency, Centre of Gravity, Spectral Centroid

Mean frequency, centre of gravity and spectral centroid are common terms for the

same feature. This feature is used a number of different studies [10, 37, 35]. Buchler

also uses the fluctuations of the spectral centre of gravity [37].

The mean frequency is the first moment of the log frequency spectrum. It

gives a general description of the frequencies in which the majority of the signal is

contained. The mean frequency [10] is calculated as:

Fmean =

∑N/2
k=1 |Fk|

∑N/2
k=1

|Fk|
fk

(6.1)
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where Fmean is the mean frequency as an FFT bin index, fk is the frequency at

index k, |Fk| is the magnitude of the frequency response at index k, and N is the

number of samples in the frame.

6.1.2.2 High and Low Frequency Slopes

This feature vector is described by Kates [10]. The high and low frequency compo-

nents are separated by the mean frequency. The slopes of the high and low frequency

components give a general description of the shape of the spectrum about the mean.

The slope of both the low and high frequencies is determined by least-squares fit

to the log frequency response [10]. Both are given in the form:

y(k) = a0 + a1log2(k) (6.2)

where a0 is a constant, and a1 gives the slope in dB/octave.

For the low frequency [10], parameters a0 and a1 are calculated as:
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(6.3)

where k is the FFT bin index, |Fk|db is the magnitude in dB of the FFT bin index,

and L is the FFT bin index just below the mean frequency.

The high frequency slope is calculated in a similar manner, but using the fre-

quencies above the mean.
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6.1.2.3 Envelope Modulation, Spectral Modulation, Modulation Depth

Envelope modulation, spectral modulation and modulation depth describe very

similar features in a number of studies. In [10], Kates uses the term “envelope

modulation”, in [41] Nordqvist and Leijon use the term “spectral modulation”,

and in [37], Buchler et. al. describe the “modulation depth” in three bands, from

0-4 Hz, from 4-16 Hz and from 16-64 Hz. All of these features describe how the

amplitude of the signal changes over time.

The most thorough description of this feature comes from Kates [10]. The

envelope modulation describes the change in the magnitude of the signal over time.

This feature was originally intended to describe the changes in each frequency band.

However, Kates determined in his study that this was not significantly better than

the average modulation across all bands [10]. The envelope modulation therefore

describes how the mean magnitude changes over time.

A short (200 ms) background noise segment is required to determine the en-

velope modulation. This 200 ms segment is further divided into 6.4 ms segments,

starting 3.2 ms apart, which gives a 50% overlap in the smaller segments. Both of

these numbers come directly from the Kates study [10], and are based on human

auditory perception. An average human takes 3.5 to 10 ms to detect a gap in a

noise segment, depending on the person, the frequency and whether the noise is

wideband or narrowband. A time segment of 6.4 ms falls directly in this range.

Similarly, 200 ms is used because it is approximately the time required for a human

to properly detect the loudness of a signal.

The average magnitude across all frequencies is calculated for each 6.4 ms seg-
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ment. The mean magnitude and the standard deviation are calculated across the

time segments, and the envelope modulation is given as the mean magnitude over

the standard deviation measured across the segments.

This is calculated as:

menv =
µ

σ
(6.4)

where menv is the envelope modulation, µ is the mean of the segment means, σ is

the standard deviation of the segment means, and where µ is calculated as

µ =
1

M

M
∑

i=1

µ6.4i (6.5)

and

σ =

√

√

√

√

1

M

M
∑

i=1

(µ6.4i − µ) (6.6)

where M is the number of 6.4 ms segments and µ6.4i is the mean magnitude of the

6.4 ms segment i.

6.1.2.4 Linear Prediction Coefficients

Several studies use the linear prediction coefficients (LPCs) directly as a feature

[47, 35]; however, many studies choose instead to use the cepstral coefficients derived

from the LPCs [33, 43, 48]. Please see Section 6.1.2.5 for more information on LPC

derived cepstral coefficients. Peltonen et. al. use both the LPCs and the cepstral

coefficients [35].

The LPCs are the coefficients that would be used in a linear predictor filter.

A linear predictor attempts to predict the next sample from M previous samples.
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The LPCs are derived using the Wiener-Hopf [56] equations as:

R
−→
Wf = −→r

where R is the MxM autocorrelation matrix of the previous M samples, −→r is the

1xM cross-correlation of the previous sample with the past M samples, and
−→
Wf are

the M LPCs. The LPCs can be easily calculated in MATLAB using the built-in

function [57].

This feature was tested using LPCs of orders two to six.

6.1.2.5 Cepstral Coefficients

The word cepstrum is taken from the word ‘spectrum’ by reversing the first four

letters. Cepstral coefficients are very common for speech processing and therefore

also likely have some application in environment classification. The cepstral co-

efficients, however, are closely related to both the LPCs and the Mel-Frequency

Cepstral Coefficients (MFCCs). MFCCs are discussed further in Section 6.1.2.6.

A cepstrum is found by taking the inverse Fourier transform of the log of the

absolute value of the Fourier Transform of the system [58]:

c(n) =
1

2π

∫ π

−π
log|S(ejω)|ejωndω

where c(n) are the cepstral coefficients, and S(ejω) is the fourier transform of the

signal.

This feature is tested using 16 and 32 bands.
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Figure 6.2: Frequency in Mel vs. frequency in Hz

6.1.2.6 Mel-Frequency Cepstral Coefficients (MFCCs)

The Mel-Frequency Cepstral Coefficients (MFCCs) are similar to the linear cepstral

coefficients except that the log of the frequency response is first transformed into

the Mel scale, using a triangular Mel-scale filterbank.

The Mel scale is a frequency representation of a signal that corresponds to the

human auditory system, emphasizing the lower frequencies. Hence the MFCCs of

a signal are the discrete cosine (DCT) or Fourier transform (FFT) of logarithm of

the signal (dB representation) transformed into the Mel scale. Conversion to the

Mel scale can be accomplished using the approximation [59]:

m = 2595 log10

(

1 +
f

700

)

(6.7)

where m is the frequency in Mels and f is the frequency in Hz. This produces the

curve shown in Figure 6.2.

The MFCCs are the discrete cosine transform of the Mel-scaled log amplitude
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of the frequency response. This is calculated in a number of steps.

1. Use an FFT to obtain the frequency response.

2. Take the log amplitude of the frequency response.

3. Transform to the Mel scale using the triangular Mel filterbank.

4. Take the DCT of the resulting signal.

The Mel filterbank is a bank of triangular filters used to transform the signal

into N Mel components, where N is the number of filters in the filterbank. The

filterbank is defined by the staring and ending frequencies, and the number of

filters N . For this project, the starting frequency is 0 Hz, the ending frequency is

the Nyquist frequency.

To create the filterbank, the starting and ending frequencies are transformed

into Mel frequencies, using equation 6.7. N equally spaced centres are then placed

between the start and end Mel frequencies. These are transformed back into Hz,

and the centres are used to create overlapping triangular filters, as shown in Figure

6.3. The N Mel coefficients are obtained from the frequency response as [59]:

Xmel(i) =
∑

k=1

M log10 |Xhz(k)|f(i, k) (6.8)

where Xmel(i) is the ith Mel coefficient and 1 ≤ i ≤ N , k is the frequency bin index

and M is the number of frequency components (order of the FFT), |Xhz(k)| is the

magnitude of the frequency response at bin index k, and f(i, k) is the ith triangular

Mel filterbank filter at frequency bin k.

This feature is tested using 16 and 32 bands.
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Figure 6.3: Mel filterbank with 16 filters and sampling frequency of 16 kHz

6.1.2.7 Onset features

Buchler et. al. [37] describe a number of onset features used in their paper and

note that having at least one onset feature improves the accuracy of the classifier.

An onset occurs when the magnitude of a band increases by more than a set

threshold value between two frames. These are counted in discrete frequency bins.

The conversion to dB is calculated as follows:

|XdB(i, t)| = 20 log10

(

|X(i, t)|

|X0|

)

(6.9)

where |XdB(i, t)| is the magnitude of the frequency component in frequency bin

i at time t in dB, |X(i, t)| is the magnitude of the frequency component in frequency

bin i at time t, and X0 is a reference level. In this case X0 is set to one for simplicity,

because the onset is the difference between two time frames, and the X0 terms will

cancel.

Three different types of onset features are tested in this thesis. The number
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of onsets feature gives the number of onsets counted within each bin. This gives

one feature per bin. The onset strength is simply the magnitude of the onset in

dB. The mean of the onset strengths is the mean across all frames and all bins,

which gives a single feature for the whole time segment. Similarly, the variance of

the onset strengths is also calculated across all bins and times, also giving a single

feature.

All three onset features are assessed using onset strengths of 5 dB, 7 dB and 10

dB, and using 16 and 32 frequency bands.

6.1.2.8 Pitch and Tonality

The pitch is the measure of the major frequency components of the sound. Pitch is

used by Pollastri and Simoncelli [60] in their study of composer classification, but

no environmental classification studies have been found that directly use pitch as

a feature. Buchler et. al. [37] use the tonality feature, but do not actually use the

pitch value as part of the feature.

There are a number of different techniques that can be used to detect a pitch,

including techniques based on the zero crossings, autocorrelation, cepstral coeffi-

cients or using maximum likelihood techniques. However, one of the most common

techniques is the harmonic product spectrum (HPS) technique, which offers the

benefit of being relatively simple and computationally inexpensive. A single note

contains both the fundamental frequency and harmonic components that occur at

integer multiples of the fundamental frequency. The idea behind HPS is that the

fundamental frequency can be enhanced and more easily located by shifting the

harmonic components back and multiplying the signals together. Because they oc-
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Figure 6.4: The harmonic product spectrum algorithm. Taken from [61]

cur at integer multiples of the signal, they can be shifted back to the fundamental

frequency by downsampling.

The signal is first windowed and transformed into the frequency domain using

an FFT. Then, multiple copies of the signal are down sampled from 1 to N , where

N is the number of harmonics to be considered. These are multiplied together, and

the fundamental frequency is found as the maximum frequency component. This

is illustrated in Figure 6.4

In some cases, there is not a strong peak value, which indicates that there is no

strong pitch in the signal. Buchler et. al. use a slightly different pitch detection

method, based on the signal autocorrelation, but define a pitch to be a peak at 20%

between 50 Hz and 500 Hz. A similar approach is taken in this study; however, the

range is changed to be from 100 Hz to 1000 Hz. This change is made since 50 Hz

is still quite a low frequency; especially since 60 Hz noise is common. The top of

the frequency range is changed to 1000 Hz since 500Hz is actually quite low. For

example, a concert-tuned A note is 440 Hz.

The threshold is set to be 20% of the signal energy. The signal energy is calcu-



CHAPTER 6. FEATURE SELECTION 94

lated from the FFT as:

E =
M
∑

i=1

|X(i)|2 (6.10)

where M is the order of the FFT, and |X(i)| is the magnitude of the frequency

component at index i. Hence, there is a pitch if the magnitude of the frequency

component at the pitch frequency is at least 20% of the signal energy.

Tonality is a feature based on the ratio of harmonic to inharmonic frames. A

harmonic frame is a frame where there is a pitch, and an inharmonic frame is a

frame with no pitch. In this work, this feature is changed to be the ratio of harmonic

frames to the total number of frames in the signal. This is because it is possible

to have a segment with no inharmonic frames, which would result in a division by

zero.

In this study, pitch is also tested as a potential feature. If pitch is, in fact, not a

useful feature for this type of application, then the feature selection algorithm will

not select it.

These features are both assessed using three and five harmonics in the pitch

calculation.

6.1.2.9 Zero Crossing Rate Features

The zero crossing rate (ZCR) is the number of times in a frame that the energy

of a signal changes signs (positive to negative or negative to positive). The zero

crossing rate itself is found using simple counting techniques.

The zero crossing rate was used directly as a feature by Peltonen et. al. for

environmental classification [35] and Temko and Nadeu in the classification of meet-
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ing room sounds [44]. Khan et. al. also used a ZCR feature (difference between

the minimum and maximum ZCR) in their study of speech and music classification

[47].

6.1.2.10 Spectral Rolloff

Peltonen et. al. [35] use the spectral rolloff point as a features. The spectral

rolloff point is defined as the frequency below which a certain percentage of power

spectrum is contained. This is calculated simply by finding the power spectrum

and summing until the spectral rolloff point is reached.

This feature was tested using percentages of 80%, 85% and 90%.

6.1.2.11 Bandwidth or Spectral Width

Peltonen et. al. [35] included the bandwidth as a feature in their neural network

and GMM classifier study. Buchler et. al. [37] also studied the spectral width as a

feature.

The bandwidth is the frequency range that a certain percentage of the signal

occupies. Starting from the low frequencies, the power values are summed. The

lower limit of the bandwidth is found as the frequency index when the cumulative

sum is:

Blow =
1

2
(1 − B%) (6.11)

where B% is the percentage of the signal used to determine the bandwidth. The
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upper limit is found when the cumulative sum is:

Bhigh = B% +Blow (6.12)

The bandwidth is found as the difference between Blow and Bhigh, normalized

by the size of the FFT.

This feature was tested using percentages of 80%, 85% and 90%.

6.1.2.12 Line Spectral Frequencies

The line spectral frequencies (LSF) are discussed as a possible feature vector in

the paper by Khan, Al-Khatib and Moinuddin [47]. The line spectral frequencies

represent the same information as the LPC, but in a different form. The LSF are

often used when the information in an LPC needs to be quantized, for example for

transmission [62].

A polynomial of size M is called palindromic if

am = aM−m (6.13)

where a are the weights of the polynomial. It is called antipalindromic if

am = −aM−m (6.14)

If a polynomial has all of its roots on the unit circle, then it is either palindromic

or antipalindromic. However, not all palindromic or antipalindromic polynomials

have all their roots on the unit circle [62].
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Additionally, any real polynomial of order M can be represented as a sum of

a palindromic polynomial and an antipalindromic polynomial of order M + 1 [62].

The process of finding the LSF essentially consists of finding these two polynomials.

If all the zeros of the polynomial are inside the unit circle, then the zeros of the

palindromic and antipalindromic polynomials are on the unit circle and are inter-

leaved with one root at 0 and one at π. Because the zeros are on the unit circle,

the roots can be defined by their angles [62]. These occur in pairs at the positive

and negative angles, with one pair at 0 and π, hence the LSF can be defined by

a set of coefficients of size M. In MATLAB, these can be found simply using the

“poly2lsf” function.

This feature was tested using LSFs of orders two to six.

6.1.2.13 Wavelets

A wavelet is a different type of basis function that is used to represent a signal.

Whereas an FFT has bands that are uniformly spaced across all frequencies, wavelet

coefficients are not uniformly spaced. Instead, the frequency space is subdivided

so that there is a higher resolution in the higher frequencies [56]. This gives a

good representation overall since there is actually more information in the higher

frequencies, and also gives a good representation for hearing aids since human

hearing is roughly logarithmic and also has higher resolution in the high frequencies.

A simple wavelet decomposition can be attained using a series of two-channel

filterbanks (downsampled high and low-pass filters). The first stage of the wavelet

comes from this filterbank. A second filter then further subdivides the high-pass

portion of the signal, and the low-pass portion becomes the next stage of the wavelet
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function. This is continued for the rest of the signal [56].

A study by Khan et. al. [47] uses the mean and variance of the wavelet transform

as a feature in the classification of speech and music.

MATLAB provides functions to perform wavelet transforms. In this work, a

simple Haar wavelet is used. The mean and variance of the wavelet transform are

tested as features.

6.1.2.14 Percentage of Low Energy Frames

This feature is used by Khan et. al. [47] for the classification of speech and music.

The energy of the signal can be found by taking the FFT of a frame, and then

squaring the magnitude. A frame is considered to be low-energy if its value is

below a certain percentage of the average. For this work, this feature was tested

using a threshold of 10%, 15% and 20% of the average.

6.1.2.15 Short-Time Energy

The short-time energy of the spectrum is the total energy from the whole spectrum

within one frame. Peltonen et. al. [35] use the short-time energy averaged across a

number of frames, whereas Temko and Nadeu [44] use the short-time energy from

every frame. These are, however, essentially the same feature. Bugatti et. al. use

the minimum short term energy from a number of frames as a feature.

6.1.2.16 Band Energy Ratio, Subband energies

The feature set used by Peltonen et. al. [35] includes the band energy ratio, which is

the ratio of the energy in one band to the energy of the entire spectrum. Temko and
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Nadeu [44] use the subband energies directly (not as a ratio), but this essentially

gives the same feature. For this feature, the signal is first passed though an FFT,

and then the signal is divided into a certain number of bands by averaging the

frequencies in the band. This feature was tested using 16 and 32 bands.

6.1.2.17 Autocorrelation

The autocorrelation of a signal is a measure of the similarity of past samples to the

current sample. Because the clustering is based on the autocorrelation of the signal,

it would make sense that the autocorrelation would be able to properly separate

the samples. The autocorrelation is calculated as:

R = E[−→u (n− 1)−→u H(n− 1)] (6.15)

where R is the autocorrelation, −→u (n−1) is the sample at time n−1, E denotes the

expectation operator, and H denotes the Hermitian transpose. The expectation is

approximated as the average across the segments.

This feature is tested using 5, 10, 15 and 20 lags.

6.1.3 Feature Selection

In this thesis, the features are selected using the SFFS algorithm (please see section

2.4.3).

Fisher’s interclass separability criterion and the Euclidean distance are both

tested as the distance measure for the SFFS.

Because Fisher’s interclass separability criterion requires inverting a matrix,
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there is a possibility that a certain set of features will not result in an invertible

matrix and it will not be possible to find the significance of the feature. In this

case, the function returns a very low J value to discourage the use of this feature,

since a non-invertible matrix is normally caused by having features that are linearly

dependent. Since this means that the features are redundant, it is not desirable

include both features in the final set.

When using the Euclidean distance, the distance measure is calculated as the

average distance between the class means.

For features that have more than one value (eg. a 16-bin MFCC), each part of

the feature is assessed individually. This is because it is not necessarily the case

that all parts of the feature are equally important. In this way, it is possible to

have a feature that is only one part of a larger feature. For example, it may be

possible to have a feature that is one bin of a 16-bin MFCC.

The SFFS is first run to find feature sets of three to five features. This will give

a reasonably sized model that can easily be implemented in a hearing aid. These

features are tested in all the candidate classifiers. SFFS is then used to find sets of

six to nine features, which are tested with the K-NN and the best classifier from

the three to five sets.
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6.2 Results and Discussion

6.2.1 Fisher’s Interclass Separability Criterion

There are several difficulties with using SFFS with Fisher’s interclass separability

criterion. There are several features with a very small amount of scatter, and little

separation between the classes. These features tend to be selected by the feature

selection algorithm because the within-class scatter is very small.

There also appears to be some problem with this criterion when dealing with

redundancy. Because the large majority of these features are related to each other

in some way, there are a large number of feature sets that result in non-invertible

matrices. It was originally thought that there would be a relatively small number

of these matrices, hence these cases are simply trapped and given a very low score.

However, even with only three or four features, the majority of the features sets

become non-invertible. In two of the five-feature sets the final set is actually non-

invertible. The feature set contains the first two features in the set, which are likely

part of the set simply because of their placement.

It is clear from these results that using Fisher’s interclass separability criterion

with SFFS does not result in a workable set of features. Hence, the features selected

using this distance metric are not tested with the classifiers.

6.2.2 Euclidean Distance

The features selected by SFFS using Euclidean Distance are presented in Table

6.2. These features are more reasonable than the features selected with Fisher’s



CHAPTER 6. FEATURE SELECTION 102

interclass separability criterion. The features selected using Euclidean distance are

mostly nested, with the exception of the single-feature frame going from three to

four features. The features are almost all autocorrelation features, and one onset

feature that appears in every set. Unfortunately, the set includes four of the same

autocorrelation features with different numbers of lags (5, 10, 15 and 20). These

are actually the same feature. Because this distance measure includes no measure

of redundancy, the same autocorrelation feature (autocorrelation at five lags) is

picked out up to four times in the same set.

The original sets are tested with the classifiers; however, these features are

clearly not the ideal set of features. Hence, the redundant features are removed

from the set manually and the SFFS is re-run without the redundant features

included. The features selected from these new sets are presented in Table 6.3.

The actual distances between the class means are presented in Figures 6.5 and

6.6. In both cases, the average distance between the classes decreases as the number

of features increases. This is likely because the best features are added first, and

adding more features actually decreases the distance between the classes. The

distance also decreases slightly as the number of samples in the window decreases.

The distances for the feature sets that include the redundant features are larger

than the distances for the feature sets without repeated features, simply because

including a feature with a large distance twice will obviously result in a larger

distance than a smaller distance feature.

Overall, the distances between the class means for the features selected with

SFFS are much larger than the average distance for the Kates’ vector. The average
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Table 6.2: Features selected using SFFS and Euclidean distance
number of features

window 3 features 4 features 5 features
1 no. onsets no. onsets no. onsets

10 dB 16 bands 6 10 dB 16 bands 6 10 dB 16 bands 6
autocorr 5 lags 4 autocorr 5 lags 5 autocorr 5 lags 5
autocorr 5 lags 5 autocorr 10 lags 5 autocorr 10 lags 5

autocorr 15 lags 5 autocorr 15 lags 5
autocorr 20 lags 5

2 no. onsets no. onsets no. onsets
2 dB 16 bands 6 10 dB 16 bands 6 10 dB 16 bands 6

autocorr 5 lags 5 autocorr 5 lags 5 autocorr 5 lags 5
autocorr 10 lags 5 autocorr 10 lags 5 autocorr 10 lags 5

autocorr 15 lags 5 autocorr 15 lags 5
autocorr 20 lags 5

3 no. onsets no. onsets no. onsets
10 dB 16 bands 6 10 dB 16 bands 6 10 dB 16 bands 6
autocorr 5 lags 5 autocorr 5 lags 5 autocorr 5 lags 5
autocorr 10 lags 5 autocorr 10 lags 5 autocorr 10 lags 5

autocorr 15 lags 5 autocorr 15 lags 5
autocorr 20 lags 5

4 autocorr 5 lags 4 autocorr 5 lags 4 autocorr 5 lags 4
autocorr 5 lags 5 autocorr 5 lags 5 autocorr 5 lags 5
autocorr 10 lags 5 autocorr 10 lags 5 autocorr 10 lags 5

no. onsets no. onsets
10 dB 16 bands 6 10 dB 16 bands 6

autocorr 20 lags 5
5 autocorr 5 lags 5 autocorr 5 lags 5 autocorr 5 lags 5

autocorr 10 lags 5 autocorr 10 lags 5 autocorr 10 lags 5
autocorr 15 lags 5 autocorr 15 lags 5 autocorr 15 lags 5

no. onsets no. onsets
10 dB 16 bands 6 10 dB 16 bands 6

autocorr 20 lags 5
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Table 6.3: Features selected using SFFS and Euclidean distance with redundant
features removed

number of features
window 3 features 4 features 5 features
1 no. onsets no. onsets no. onsets

10 dB 16 bands 6 10 dB 16 bands 6 10 dB 16 bands 6
autocorr 20 lags 4 autocorr 20 lags 4 autocorr 20 lags 4
autocorr 20 lags 5 autocorr 20 lags 5 autocorr 20 lags 5

autocorr 20 lags 6 autocorr 20 lags 6
autocorr 20 lags 7

2 no. onsets no. onsets no. onsets
10 dB 16 bands 6 10 dB 16 bands 6 10 dB 16 bands 6
autocorr 20 lags 4 autocorr 20 lags 4 autocorr 20 lags 4
autocorr 20 lags 5 autocorr 20 lags 5 autocorr 20 lags 5

autocorr 20 lags 6 autocorr 20 lags 6
autocorr 20 lags 7

3 no. onsets no. onsets no. onsets
10 dB 16 bands 6 10 dB 16 bands 6 10 dB 16 bands 6
autocorr 20 lags 4 autocorr 20 lags 4 autocorr 20 lags 4
autocorr 20 lags 5 autocorr 20 lags 5 autocorr 20 lags 5

autocorr 20 lags 6 autocorr 20 lags 6
autocorr 20 lags 7

4 autocorr 20 lags 4 autocorr 20 lags 4 autocorr 20 lags 4
autocorr 20 lags 5 autocorr 20 lags 5 autocorr 20 lags 5
autocorr 20 lags 6 autocorr 20 lags 6 autocorr 20 lags 6

no. onsets no. onsets
10 dB 16 bands 6 10 dB 16 bands 6

autocorr 20 lags 7
5 autocorr 20 lags 4 autocorr 20 lags 4 autocorr 20 lags 4

autocorr 20 lags 5 autocorr 20 lags 5 autocorr 20 lags 5
autocorr 20 lags 6 autocorr 20 lags 6 autocorr 20 lags 6

no. onsets no. onsets
10 dB 16 bands 6 10 dB 16 bands 6

autocorr 20 lags 7
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Figure 6.5: Euclidean distance between class means for features selected with SFFS
using Euclidean distance with redundant features not removed

Figure 6.6: Euclidean distance between class means for features selected with SFFS
using Euclidean distance with redundant features removed
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Table 6.4: Additional features selected to create six to nine feature sets using SFFS
and Euclidean distance with redundant features removed

number of features
window 6 features 7 features 8 features 9 features
1 no. onsets no. onsets no. onsets

10 dB 16 - 8 7 dB 16 - 12 autocorr 2 7 dB 16 - 13
2 no. onsets no. onsets no. onsets

10 dB 16 - 8 7 dB 16 - 12 7 dB 16 - 13 autocorr 2
3 no. onsets no. onsets no. onsets

10 dB 16 - 8 7 dB 16 - 12 autocorr 3 5 dB 16 - 13
4 no. onsets no. onsets no. onsets

10 dB 16 - 8 7 dB 16 - 12 10 dB 16 - 7 autocorr 8
5 no. onsets no. onsets

10 dB 16 - 8 7 dB 16 - 13 autocorr 3 autocorr 8

Table 6.5: Euclidean distance between class means for six to nine feature sets
selected with SFFS using Euclidean distance with redundant features removed

number of features
window 6 7 8 9

1 5.8521 5.3742 5.0023 4.6825
2 5.7745 5.2989 4.9228 4.6039
3 5.7284 5.2565 4.8716 4.5582
4 5.7091 5.2292 4.8042 4.5261
5 5.7011 5.2111 4.8223 4.5079

distance between class means for the Kates’ vector is only 1.7584.

Sets of six to nine vectors are also selected for testing with the best classifier

from the three to five feature sets. These sets are all nested, so the additional

features added to the set are presented in Table 6.4.

The distances for the six to nine features sets are presented in Table 6.5. Similar

to the three to five feature sets, the distance between the class means decreases as

the number of features increases and as the number of sample windows increases.

The within-class scatter for Kates’ feature vector and the SFFS vectors with the
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Table 6.6: Scatter of different features sets, calculated as average distance of samples
to class mean

Kates SFFS (redundant removed)
t f=4 f=3 f=4 f=5 f=6 f=7 f=8 f=9
1 0.35903 0.75623 0.93707 1.0611 1.2504 1.3919 1.5597 1.6515
2 0.35713 0.72381 0.89759 1.0314 1.2141 1.3631 1.5253 1.6241
3 0.33402 0.70762 0.87864 1.0244 1.2004 1.3562 1.5024 1.6351
4 0.36767 0.61453 0.88635 1.0021 1.1822 1.3631 1.5203 1.5916
5 0.36194 0.59827 0.86761 0.9798 1.1651 1.3152 1.4493 1.5169

redundant features removed. These are calculated by taking the average distance

of each sample to the class mean. The results are presented in Table 6.6. From

these results, it can be seen that the scatter for Kates’ feature vector is smaller

than the scatter for the SFFS vectors. The effect of the scatter on the models is

discussed further in Section 7.2.4.

6.3 Summary

Although Fisher’s interclass separability criterion is theoretically sound, it runs

into practical problems with matrix inversion when used on a real set with more

than one feature being evaluated at a time. Hence, the system is tested using

the features selected with Euclidean Distance. However, Euclidean distance has

problems with redundancy of the features, which are removed manually to produce

the final feature set. However, this is clearly not an ideal solution to the problem.

Additionally, neither measure is able to account for the computational complex-

ity of the features. Because the feature extraction will need to be implemented in

hardware, the ideal selection criterion would account for the computational com-
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plexity of the features. For example, selecting features that use a smaller number

of bands, or features that require a smaller amount of time to evaluate.

The feature selected with Euclidean distance tend to be autocorrelation features,

which is logical since these features are used in the class selection. This is also an

indication that the class selection is logical, since the distance between the class

means using autocorrelation features is large.



Chapter 7

Overall System Testing

This chapter discusses the final tests of the system, using the classes and features

selected in Chapters 5 and 6 and the classifiers tested in Chapter 4.

7.1 Methods

The features selected in the feature selection are tested against the features used in

Kates’ study[10]. This provides a baseline to assess these features, and also allows

for comparison against the initial tests with different classes. The algorithms are

developed in C++ using the Microsoft .NET compiler.

7.1.1 Data set

The data set used for the final tests is the same data set used for the feature

selection. Please see Section 6.1.1 for more information.

109
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7.1.2 Features

The features are first clipped to within 1.5 standard deviations of the mean to avoid

skewing the normalization with outlying samples. Next, the samples are normalized

between zero and one.

Feature selection is performed separately for each sample window size. Hence,

for the features selected with SFFS, each sample window size is tested with the

features selected for that size.

7.1.3 K-folds Validation

The testing is performed using K-folds validation. In this type of testing, the entire

data set is divided into K roughly equal sized parts. The tests are run K different

times, each time using K− 1 parts for training and one part for testing. This gives

a better indication of the real performance because the testing and training sets

are more varied.

For this thesis, a K of five is selected for the K-folds testing. For the MLP

and the WMLP, the initialization is random, so there is more variation in the

tests. Hence, each of the K-folds tests is run five times, for a total of 25 tests per

model. The HMM initialization is based on a K-means clustering and is therefore

less random. Hence, each K-folds test is run two times, for a total of ten tests per

model.

7.1.4 Artificial Neural Network

The class selection process gives nine different classes (please see Chapter 5).
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For the tests with the features selected by Kates [10], there are four inputs. The

non-windowed MLP is tested with SFFS features selected from the single-sample

window. It is tested with sets of three to five features selected using Euclidean

distance.

The models are tested with four to twelve hidden nodes. Each model is trained

for 10,000 epochs, as the initial tests show that this amount of training is sufficient

(please see Section 4.2.2).

7.1.5 Hidden Markov Model

For the tests with the features selected by Kates [10], there are four inputs. The

non-windowed MLP is tested with SFFS features selected from the five-sample

window as this is the window size used for the HMM. It is tested with sets of three

to five features selected using Euclidean distance.

Each model is tested with two to four states and four to seven codebook values.

They are trained for ten iterations each, which is shown to be sufficient training in

the initial tests (please see Section 4.2.3).

7.1.6 Windowed MLP

For the tests with the features selected by Kates [10], there are four inputs for each

time delay. Hence, each MLP has 4W inputs, where W is the window size. Each

network is tested with window sizes of two to five.

In the initial tests, the best number of hidden nodes in the non-windowed MLP

is used to set the number of hidden nodes in the windowed MLP by maintaining
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the same ratio of input to hidden nodes. However, it is not necessary to maintain

the same ratio for the windowed tests, as this can become a large number of hidden

nodes. Instead, each windowed MLP is tested with the same number of hidden

nodes as the best non-windowed (10), the same ratio (10W ) and a number midway

between these points (5(W + 1)). Although not every possible number of nodes is

tested, this gives an indication of a good range for the hidden layer.

The non-windowed MLP is tested with SFFS features selected from the window

size corresponding to the window size used in the WMLP. It is tested with sets

of three to five features selected using Euclidean distance. The number of hidden

nodes is varied similarly to the tests with Kates’ feature vector, by using the same

number of hidden nodes as the best run of the non-windowed, the same ratio and

the midway point.

7.2 Results and Discussion

7.2.1 K-nearest Neighbours

7.2.1.1 Kates’ feature vector

The results from the K-nearest neighbours classifier indicate that this test set is

more difficult to properly classify than the initial test set. There are a few major

reasons for this decrease in accuracy. Firstly, the number of groups has increased.

This makes the task of classification more difficult because there are more ways

that a sample could be misclassified. The classes used in the initial study were

also quite distinct from each other, particularly the white noise class, which has a
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very different profile than naturally occurring sounds. The new grouping of sounds

contains classes that are relatively similar to each other. Additionally, the samples

themselves are less clean, and contain combinations of different sounds. This can

also make the classification more difficult as several samples may contain similar

sounds.

The results of the test set are presented in Figure 7.1. The average accuracy

denotes the average for that KNN across all sets tested using K-folds validation.

The best-run is the best of the K-folds sets. The average accuracies on the testing

set range from 57.1% to 67.1%. The best-run accuracies range from 62.2% to 73.3%.

Similar to the initial tests, the performance on the training set decreases as the K

value increases, for the reasons discussed in Section 4.2.1.

The highest average accuracy (67.1%) and the highest best-run accuracy (73.3%)

both occur at a K value of three. However, all the K values up to eight have an

average accuracy that is within 2.9%. Any relatively small K value would likely

be a good choice for this application. The accuracy gradually decreases as the K

value increases.

The best-run set of the 3-NN set is presented in Table 7.1. The sound of water

washing is clearly one of the easiest to classify. All of the samples in the category

are correctly classified, and only one sample is incorrectly classified as being in this

category. There is some confusion with the traffic category being misclassified as in-

car noise, which is likely because these two categories both contain a large amount

of engine noise. There is also a fair amount of confusion between the shopping,

office and restaurant noise, likely because all three of these categories contain a
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Figure 7.1: Accuracy of KNN with different K values using Kates’ feature vector

selected
actual in-car traffic birds washing running office restaurant shopping music
in-car 70.0% 0% 0% 0% 0% 10.0% 0% 20.0% 0%
traffic 30.0% 70.0% 0% 0% 0% 0% 0% 0% 0%
birds 0% 0% 80.0% 10.0% 0% 0% 0% 0% 0%

washing 0% 0% 10.0% 90.0% 0% 0% 0% 0% 0%
running 0% 0% 0% 0% 100% 0% 0% 0% 0%

office 10.0% 10.0% 0% 0% 0% 50.0% 20.0% 10.0% 0%
restuarant 0% 10.0% 20.0% 0% 0% 0% 60.0% 10.0% 0%
shopping 0% 10.0% 10.0% 0% 0% 0% 10.0% 70.0% 0%

music 10.0% 0% 10.0% 0% 10.0% 0% 0% 0% 70.0%

Table 7.1: Confusion matrix for the best-run 3-NN using Kates’ feature vector

significant amount of babble noise.

7.2.1.2 Inputs selected with SFFS

The KNN results for the inputs selected with SFFS and without the redundant

features removed are presented in Figure 7.2. The results for the four and five

feature vectors are very similar because the feature added to create the five-feature

vector is actually the same as one of the features in the four-feature vector (please
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Figure 7.2: Average accuracy of KNN on the testing set with different K values
using the input vector selected with SFFS using Euclidean distance with redundant
features included

see Section 6.2.2 for further discussion). The results for the three-feature vector are

actually higher than for the four and five feature vectors, which may be because the

average distance between the classes is actually larger for the three-feature vector

(please see Section 6.2.2).

The highest average accuracy for the three-feature vector occurs when the K

value is five (71.1%), and the highest best-run accuracy occurs when the K value

is four (75.6%). For the four and five-feature vectors, the highest average (68.0%)

and best-run (77.8%) accuracies both occur when the K value is eight. Overall,

however, any relatively small K value will likely give acceptable results. Because

the results for the three-feature vector are better on average, the three-feature,

5-NN is used for comparison.
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selected
actual in-car traffic birds washing running office restaurant shopping music
in-car 90.0% 0% 0% 0% 0% 10.0% 0% 0% 0%
traffic 20.0% 30.0% 10.0% 0% 0% 20.0% 10.0% 10.0% 0%
birds 0% 10.0% 50.0% 10.0% 0% 10.0% 20.0% 0% 0%

washing 0% 0% 0% 100% 0% 0% 0% 0% 0%
running 0% 0% 0% 0% 100% 0% 0% 0% 0%

office 0% 0% 0% 0% 0% 90.0% 10.0% 0% 0%
restuarant 0% 0% 0% 0% 10.0% 10.0% 80.0% 0% 0%
shopping 10.0% 0% 10.0% 0% 0% 0% 0% 80.0% 0%

music 0% 10.0% 20.0% 0% 10.0% 0% 0% 10.0% 50.0%

Table 7.2: Confusion matrix for the best-run of the three-feature 5-NN using the
feature vector selected with SFFS with redundant features

The confusion matrix for three-feature 5-NN is presented in Table 7.2. It is clear

from this matrix that the KNN has some difficulty separating the traffic class. This

is not unexpected as most of the features used are autocorrelation features, and the

SOM has already shown that the autocorrelation for the traffic class is not always

tightly clustered. Similarly, this model also has difficulty separating the bird class.

The two water classes are very well separated, as is the office noise class. There

is, however, some difficulty separating the music class. Overall, however, the KNN

performs much better with this feature vector than with the Kates vector.

The results when the repeated features are manually removed are slightly better.

In this set of tests, the best average accuracy for the three-feature set occurs using

the 5-NN (71.1%) and the best average accuracy for the four and five-feature sets

both occur using the 4-NN (72.0% and 72.4% respectively). The overall best-run

accuracy for the three-feature set is the 4-NN (75.6%), the four-feature set is the

3-NN (77.8%) and the five-feature set is the 6-NN (77.8%). Overall, this set follows

a similar pattern to the previous feature sets in that all of the relatively small

K values have similar accuracies, and any relatively small K would be a suitable

choice for this algorithm. The accuracy tends to decrease slightly as the K values
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Figure 7.3: Average accuracy of KNN on the testing set with different K values
using the input vector selected with SFFS using Euclidean distance with redundant
features removed

are increased, as demonstrated by see Figure 7.3. Because the five-feature 4-NN

gives the best average results, it will be used for comparison.

The confusion matrix for the best run of the five-feature 4-NN using the SFFS

feature vector with the redundant features removed is presented in Table 7.3.

Clearly the in-car, water washing and water running categories are well classified.

These are also the most tightly clustered samples in the SOM and in the K-means

clustering. Since similar features are being used, this is expected. The traffic cat-

egory is not well classified, with spread across a number of different categories.

Two of the samples are misclassified as in-car noise, which is likely because these

samples both contain engine noise. Similarly, there is some confusion between the

office, shopping and restaurant noises, likely because these all contain babble. The
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selected
actual in-car traffic birds washing running office restaurant shopping music
in-car 100% 0% 0% 0% 0% 0% 0% 0% 0%
traffic 20.0% 40.0% 10.0% 0% 0% 10.0% 10.0% 10.0% 0%
birds 0% 30.0% 60.0% 0% 0% 10.0% 0% 0% 0%

washing 0% 0% 0% 100% 0% 0% 0% 0% 0%
running 0% 0% 0% 0% 100% 0% 0% 0% 0%

office 0% 0% 20.0% 0% 0% 80.0% 0% 0% 0%
restuarant 0% 0% 0% 0% 0% 20.0% 80.0% 0% 0%
shopping 0% 0% 10.0% 0% 0% 10.0% 0% 80.0% 0%

music 0% 0% 0% 20.0% 10.0% 10.0% 10.0% 10.0% 40.0%

Table 7.3: Confusion matrix for the best-run of the five-feature 4-NN using the
feature vector selected with SFFS with redundant features removed

music category is also difficult to properly identify, with samples being incorrectly

identified as being in a number of different categories.

The KNN is also tested using larger feature vectors, also selected using SFFS

with the redundant features removed. These results are presented in Figure 7.4. It

can be seen in this figure that as the number of inputs is increased, the accuracy

of the system also increases. This is not a large increase, but there is a pattern

that indicates that increasing the number of inputs may also help other classifiers

increase their accuracy.

The six-feature vector has the highest average and best-run accuracies with the

3-NN. Both the seven and eight feature vectors have the highest average accuracy

with the 1-NN and the highest best-run accuracy with the 5-NN. The nine-feature

vector has the highest average and best-run accuracy with the 5-NN. Similar to the

other tests, all the relatively small K values give similar results, and any relatively

small K would be appropriate.

The confusion matrix for the best run of the 5-NN using the nine feature vector

is presented in Table 7.4. The in-car category and both of the water categories

are very well classified. There is some difficulty classifying the traffic class, likely
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Figure 7.4: Average accuracy of KNN on the testing set with different K values
using the higher order input vector selected with SFFS using Euclidean distance
with redundant features removed
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selected
actual in-car traffic birds washing running office restaurant shopping music
in-car 100% 0% 0% 0% 0% 0% 0% 0% 0%
traffic 0% 70.0% 0% 0% 0% 10.0% 10.0% 0% 10.0%
birds 0% 0% 90.0% 0% 0% 0% 10.0% 0% 0%

washing 0% 0% 0% 100% 0% 0% 0% 0% 0%
running 0% 0% 0% 0% 100% 0% 0% 0% 0%

office 0% 20.0% 0% 0% 0% 80.0% 0% 0% 0%
restaurant 10.0% 0% 0% 0% 0% 10.0% 60.0% 20.0% 0%
shopping 0% 10.0% 0% 0% 0% 0% 10.0% 80.0% 0%

music 0% 0% 10.0% 0% 0% 0% 0% 10.0% 80.0%

Table 7.4: Confusion matrix for the best-run of the nine-feature 5-NN using the
feature vector selected with SFFS with redundant features removed

because this category contains a fairly large number of recordings and combination

sounds. It is also not as tightly clustered as other sounds in the SOM. There is

also some difficulty classifying the restaurant noise class. These sounds tend to be

misclassified as either office noise or shopping noise. This is likely because all of

these sounds contain babble noise and the restaurant noise was actually clustered

quite closely with these sounds.

7.2.1.3 Memory and Processing Requirements

Although the K-NN algorithm is logically simple, as the size of the training set

increases, the algorithm becomes more computationally expensive. Because the

input is compared to each training vector, the time required for computation is

directly related to the number of training vectors. The comparison is performed

on the basis of a distance measure; hence the computational complexity is also

dependant on the size of the input vector. If each input has N features, and there

are V training vectors, the K-NN classification will require NV multiplications,

additions and subtractions to calculate the distance between the input and every

training vector. It also requires V evaluations of a square-root function. Hence, the
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complexity of the K-NN is O(NV ). Since each training vector needs to be stored,

the algorithm also requires NV memory locations.

For these tests, 360 training vectors are used. When using Kates’ feature vector,

the number of inputs is four. Therefore, the total memory required is 1440 memory

locations. Each input requires 1440 multiplications, additions and subtractions,

and 360 evaluations of the square root function.

For the vector selected with SFFS with the redundant features not removed, the

best feature vector has three inputs. This model therefore requires 1080 memory

locations, 1080 multiplications, additions and subtractions and 360 evaluations of

the square root function. When the redundant features are removed, the five-feature

vector is the best model. This requires 1800 memory locations, 1800 multiplications,

additions and subtractions and 360 evaluations of a square root function. For

tests with larger feature vectors, the nine-feature vector is the best. This requires

3240 memory locations, 3240 multiplications, additions and subtractions and 360

evaluations of the square root function.

It is important to note, however, that these numbers are highly dependent on

the number of training vectors.

7.2.2 Artificial Neural Network

7.2.2.1 Kates’ feature vector

The new classes are first tested with the features suggested by Kates [10], which

consists of the mean frequency, the slopes of the high and low frequency components

and the envelope modulation. The accuracies for the models vary based on the



CHAPTER 7. OVERALL SYSTEM TESTING 122

Table 7.5: Ranges of accuracies for different classifiers

feature num. testing testing training training
model vector repeats? features avg. best avg. best

MLP Kates N/A 4 52.2% - 63.4% 62.2% - 76.7% 57.3% - 78.0% 59.2% - 82.2%
MLP SFFS yes 3 51.5% - 64.2% 58.9% - 68.9% 54.3% - 73.6% 54.3% - 73.6%
MLP SFFS yes 4 52.0% - 59.4% 60.0% - 68.6% 53.2% - 65.2% 54.4% - 66.9%
MLP SFFS yes 5 51.9% - 58.9% 57.8% - 65.6% 53.1% - 65.1% 51.9% - 67.5%
MLP SFFS no 3 54.3% - 64.0% 58.9% - 68.9% 55.8% - 73.7% 59.4% - 74.7%
MLP SFFS no 4 52.5% - 63.7% 60.0% - 70.0% 55.6% - 75.3% 59.7% - 77.5%
MLP SFFS no 5 52.6% - 64.0% 58.9% - 70.0% 55.0% - 75.8% 57.8% - 78.9%
HMM Kates N/A 4 53.6% - 59.7% 57.2% - 68.3% 53.6% - 59.7% 57.2% - 68.3%
HMM SFFS yes 3 40.1% - 46.6% 41.4% - 51.7% 39.9% - 45.4% 40.6% - 47.2%
HMM SFFS yes 4 49.6% - 56.6% 52.8% - 62.8% 48.9% - 63.1% 52.2% - 63.1%
HMM SFFS yes 5 49.6% - 56.6% 52.8% - 62.8% 52.7% - 63.3% 56.7% - 64.4%
HMM SFFS no 3 40.1% - 46.5% 41.1% - 51.1% 61.2% - 76.5% 63.9% - 77.2%
HMM SFFS no 4 49.3% - 58.2% 51.7% - 63.3% 61.2% - 76.5% 63.9% - 77.2%
HMM SFFS no 5 47.9% - 56.0% 51.7% - 62.2% 53.0% - 63.2% 56.7% - 64.4%
WMLP Kates N/A 4 54.5% - 65.5% 71.1% - 82.2% 86.1% - 92.7% 80.5% - 95.8%
WMLP SFFS yes 3 31.8% - 64.1% 44.4% - 68.9% 47.8% - 80.8% 34.7% - 75.0%
WMLP SFFS yes 4 39.1% - 58.9% 55.5% - 68.9% 64.5% - 87.5% 64.5% - 87.5%
WMLP SFFS yes 5 36.4% - 58.5% 51.1% - 66.7% 64.8% - 85.6% 63.3% - 82.2%
WMLP SFFS no 3 43.8% - 57.9% 55.6% - 70.0% 73.8% - 86.8% 60.0% - 88.9%
WMLP SFFS no 4 45.6% - 59.6% 61.1% - 75.6% 82.8% - 91.6% 81.1% - 90.3%
WMLP SFFS no 5 45.6% - 58.0% 61.1% - 71.1% 82.9% - 93.3% 75.3% - 93.1%

number of hidden nodes used. The ranges of accuracies for the MLP using Kates’

feature vector are presented in Table 7.5 on page 121.

The number of nodes used in the hidden layer changes the accuracy of the sys-

tem. The accuracy with a small number of hidden nodes is quite low, likely because

there are not enough weights to properly distinguish between all the categories. As

the number of hidden nodes increases, the accuracy increases. The accuracy peaks

at ten hidden nodes and then starts to decrease. Please see Figure 7.5. The average

accuracy on the testing set for a model with ten hidden nodes is 63.3% and the

best-run accuracy is 76.7%. The average accuracy on the training set is 75.5% and

the best-run accuracy is 77.5%.

The trend of the number of hidden nodes is similar to the initial tests. In the

initial tests a five node hidden layer is good for a four class MLP. Here, the best
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Figure 7.5: Accuracy of MLP with different number of hidden nodes using Kates’
feature vector

number of hidden nodes tested is ten, which is also one higher than the number of

output nodes.

The confusion matrix for the best run of the ten hidden node model is presented

in Table 7.6.

7.2.2.2 Inputs selected with SFFS

The MLPs are trained on three to five feature sets selected with SFFS and Euclidean

distance. In the first test, the MLP is trained on the sets that include redundant

features, in the second test, the MLP is trained on sets that have the redundant

features removed.

The ranges of accuracies for the MLP using the selected feature vectors are

presented in Table 7.5 on page 121.



CHAPTER 7. OVERALL SYSTEM TESTING 124

selected
actual in-car traffic birds washing running office restaurant shopping music unknown
in-car 70.0% 0% 0% 0% 0% 0% 0% 0% 0% 30.0%
traffic 0% 40.0% 0% 0% 0% 30.0% 0% 10.0% 0% 20.0%
birds 0% 0% 80.0% 0% 0% 0% 0% 0% 0% 20.0%

washing 0% 0% 10.0% 90.0% 0% 0% 0% 0% 0% 0%
running 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

office 0% 0% 0% 0% 0% 90.0% 0% 0% 0% 10.0%
restuarant 0% 0% 0% 10.0% 0% 0% 70.0% 0% 0% 20.0%
shopping 0% 0% 30.0% 0% 0% 0% 0% 60.0% 0% 10.0%

music 0% 0% 0% 0% 0% 10.0% 0% 0% 90.0% 0%

Table 7.6: Confusion matrix for the best-run of the ten node MLP using Kates’
feature vector

For the three-feature set, the model using 11 hidden nodes gives the best aver-

age and best-run accuracy on the testing set and 12 nodes gives the best average

accuracy on the training set. Please see Figure 7.6.

For both the four and five-feature sets, the using 12 hidden nodes gives the best

average accuracy for the testing set. For the four-feature set, using 11 nodes gives

the highest best-run accuracy. For the five-feature set, both the 11 and 12 node

best-run accuracies are the same and 12 nodes gives the best average and best-run

accuracy on the training set. Please see Figure 7.6.

The average accuracy of the 11 and 12 node models are very similar in all cases.

The 11-node model is used for comparison as this is the best three-feature model

and the three-feature model gives the best results out of the models tested. For the

set that includes the redundant features, this is likely because the addition of the

new features increases the complexity of the model without adding much additional

information. Please see Figure 7.7. This also allows for a direct comparison with

the models trained on Kates features [10].

The confusion matrix for the best run of the three feature set MLP with 11

hidden nodes is presented in Table 7.7. The classifier is able to easily classify both
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a) three-feature vector

c) five-feature vector

b) four-feature vector

Figure 7.6: Accuracy of the MLP for different SFFS feature vectors with repeated
features using different numbers of hidden nodes
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Figure 7.7: Accuracy of MLP with different sizes of SFFS feature vectors with the
redundant features included

of the water categories. The in-car category is also quite well classified. Restaurant

noise is often misclassified as being either office or shopping noise, likely because

these all contain babble. The shopping and office noise categories also have a num-

ber of misclassifications. Many of these are classified as being unknown samples.

The traffic category is not well classified, which may be because the traffic category

contains so many different sounds. Many of these sounds are categorized as un-

known, which may be an indication that the sample is being classified as being in

more than one category. There is also some difficulty classifying the birds category.

Both of these categories have a relatively large amount of spread in the SOM, which

is likely why the classifier has difficulty in their classification.

For the tests using the feature vector with the redundant features manually

removed, the average accuracy of the three feature testing set is highest with the
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selected
actual in-car traffic birds washing running office restaurant shopping music unknown
in-car 80.0% 0% 0% 0% 0% 0% 0% 20.0% 0% 0%
traffic 0% 50.0% 0% 0% 0% 10.0% 0% 0% 0% 40.0%
birds 0% 0% 60.0% 0% 0% 0% 0% 0% 0% 40.0%

washing 0% 0% 0% 90.0% 0% 0% 0% 0% 0% 10.0%
running 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

office 0% 20.0% 0% 0% 0% 50.0% 0% 0% 0% 30.0%
restaurant 0% 0% 0% 0% 0% 20.0% 50.0% 30.0% 0% 0%
shopping 0% 20.0% 0% 0% 0% 0% 0% 70.0% 0% 10.0%

music 0% 0% 0% 0% 0% 0% 0% 20.0% 70.0% 10.0%

Table 7.7: Confusion matrix for the best-run of the 11 node MLP using the features
vector selected with SFFS that includes redundant features

model that uses 11 nodes. The highest best-run accuracy is 68.9% and this accuracy

is attained using the 10, 11 and 12 hidden node models. The average accuracy of the

four feature testing set is highest with the 12-node model, and the best-run accuracy

is highest with the 10-node model. The average accuracy of the five feature testing

set is highest with the 12-node model, and the best-run accuracy is highest with

the 11-node model. Please see Figure 7.8. The 10, 11 and 12 node models all give

similar results and would all likely be acceptable models in a system. The 11-node

model is used for comparison to facilitate comparison with the other models

The average accuracy of the three-feature set is better than the four and five-

feature sets, but the difference is quite small. The best-run accuracies of the three

and four features sets are the same, and the best-run accuracy of the five-feature

set is slightly lower. Please see Figure 7.9. Hence, the three-feature set will be used

for comparison.

The confusion matrix for the three feature, 11 node MLP is presented in Table

7.8. From this matrix it can be seen that, similar to the MLP trained on the feature

set with redundant features included, this classifier also has difficulty classifying the

traffic and birds classes. It also has some difficulty with the restaurant class. The
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a) three-feature vector

c) five-feature vector

b) four-feature vector

Figure 7.8: Accuracy of the MLP for different SFFS feature vectors with repeated
features removed using different numbers of hidden nodes
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Figure 7.9: Accuracy of MLP with different sizes of SFFS feature vectors with the
redundant features removed

in-car class and both the water classes are all very well classified. This classifier

matches closely with the results from the SOM and K-means clustering, which is

unsurprising as they use similar inputs.

The MLP is also tested with larger feature sets selected with SFFS. The aver-

age accuracy of the testing sets of feature vectors with six to nine features range

from 66.3% to 68.2% and the best-run accuracies range from 72.2% to 74.4%. The

training set average accuracies range from 84.4% to 86.6% and the best-run accura-

cies range from 84.7% to 85.3%. The accuracy increases as the number of features

increases. These results are presented in Figure 7.10. This is an indication that

adding more features may increase the accuracy of the models, and the model has

not yet reached the point where the curse of dimensionality has become a problem.

Starting from Kates’ feature vector, adding more good features may increase the
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selected
actual in-car traffic birds washing running office restaurant shopping music unknown
in-car 90.0% 0% 0% 0% 0% 0% 0% 0% 0% 10.0%
traffic 10.0% 40.0% 10.0% 0% 0% 10.0% 0 10.0% 0% 20.0%
birds 0% 0% 40.0% 0% 0% 10.0% 10.0% 0% 20.0% 20.0%

washing 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
running 0% 0% 0% 0% 90.0% 0% 0% 0% 0% 10.0%

office 0% 0% 0% 0% 0% 80.0% 0% 0% 0% 20.0%
restaurant 10.0% 10.0% 0% 0% 0% 0% 40.0% 0% 0% 40.0%
shopping 0% 0% 0% 0% 0% 0% 0% 90.0% 0% 10.0%

music 0% 0% 0% 0% 10.0% 0% 0% 20.0% 50.0% 20.0%

Table 7.8: Confusion matrix for the best-run of the 11 node MLP using the features
vector selected with SFFS with redundant features removed

accuracy even further.

7.2.2.3 Memory and processing requirements

The memory requirements of the MLP are relatively small as compared to the other

classifiers tested. An MLP with Ni inputs, Nh hidden nodes and No output nodes

requires enough memory to store (NiNh)+ (NhNo) weights, and Nh +No threshold

values. Hence, the required memory size is:

MemMLP = Nh(Ni +No + 1) +No (7.1)

Since the system will be pre-trained before it is implemented in an actual hearing

aid, the classification system will only need to process the forward phase. Hence,

the required number of multiplications and additions is:

PMLP = Nh(Ni +No) (7.2)

In a DSP this can be implemented in a relatively small number of cycles using

the multiply-accumulate functions. Alternately, this could be implemented directly
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Figure 7.10: Accuracy of MLP using larger features vectors and 11 hidden nodes

in hardware and the nodes of each layer could be processed in parallel. Overall,

the computational load and memory requirements of the MLP are small and could

be easily implemented in a hearing aid chip. This makes the MLP a more suitable

choice than the K-NN, even though the accuracy of the non-windowed MLP and

the K-NN classifier are similar.

For the tests using Kates’ feature vector, there are four inputs, nine outputs and

the best model uses ten hidden nodes. This model therefore requires 149 memory

locations and requires 130 multiplications and additions to process each input.

For the tests using the feature vector selected with SFFS with repeated features

included, the best feature vector is the four-feature vector. The best model uses

11 hidden nodes, and there are four inputs and nine outputs. This model therefore

requires 163 memory locations and 143 multiplications and additions.
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For the tests with the redundant features removed, the best model also uses

the four-feature vector and 11 hidden nodes. It therefore also requires 163 memory

locations and 143 multiplications and additions.

For tests with larger features vectors, the best model uses the nine-feature vector

and 11 hidden nodes. It therefore requires 218 memory locations and 198 multipli-

cations and additions to evaluate each input.

7.2.3 Hidden Markov Model

7.2.3.1 Kates’ feature vector

The results from the HMM are actually slightly worse than the results from the

MLP and are much worse than the results obtained in the initial tests. The ranges

of accuracies for the HMM tested with Kates’ feature vector are presented in Table

7.5 on page 121.

The HMM still appears to be a more reliable model than the MLP. Within each

set, the average and best-run accuracies for the testing set are all the same, which

indicates that the HMM normally converges to a similar solution when trained on

a certain training set and using the same codebook and number of states.

The number of states used in the model has a slight effect on the accuracy of

the model, with three states giving the best accuracy. Please see Figure 7.11.

The number of codebook values used also has a small effect on the output. There

are no definite trends with respect to the number of codebook values. In the three-

state model, the highest average accuracy occurs in the model using seven codebook

values. However, the highest best-run accuracy occurs in the six-codebook value
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Figure 7.11: Accuracy of HMM with seven codebook values and different numbers
of classes using Kates’ feature vector

model. Please see Figure 7.12. For this thesis, the three-state model with seven

codebook values is used for comparison. This model is chosen because the best-run

accuracy on the testing set is closer to the average value, indicating that this model

is slightly more reliable. Additionally, the accuracies on the testing set are closer

to the accuracies on the training set, indicating that the model may generally be a

better fit and may work with a larger number of possible input vectors.

The confusion matrix for the best run of the testing set of the three-class, seven-

codebook value HMM is presented in Table 7.9. It is clear from this table that the

HMM has significant difficulty identifying samples in the traffic category. A large

number of these samples are misclassified as office noise or shopping noise. This

may be because some of the traffic samples also contain babble noise. However, it

appears that a large number of the errors in the HMM are misclassifications of a
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Figure 7.12: Accuracy of HMM with three classes and different numbers of code-
book values using Kates’ feature vector

sample as shopping noise, so this may also be simply that the HMM has difficulty

training this category. Similarly, the matrix also has some difficulty distinguishing

the in-car category, with many samples being misclassified as either restaurant or

shopping noise, and one sample being misclassified as traffic. It is unclear why sam-

ples would be misclassified as shopping or restaurant noise. However the traffic and

in-car categories contain similar sounds, which may explain this misclassification.

The water washing and water running categories are very well classified. This

is expected from their tight clustering in the SOM and K-means tests. The office

noise category is also quite well categorized, with one sample being misclassified

as restaurant noise. However, these categories are all taken from a relatively small

number of recorded tracks, which may also explain these good results.

There is some confusion between the restaurant and shopping noise categories,
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selected
actual in-car traffic birds washing running office restaurant shopping music
in-car 50.0% 10.0% 0% 0% 0% 0% 20.0% 20.0% 0%
traffic 0% 20.0% 0% 0% 0% 50.0% 0% 30.0% 0%
birds 10.0% 0% 60.0% 0% 0% 0% 0% 30.0% 0%

washing 0% 0% 10.0% 90.0% 0% 0% 0% 0% 0%
running 0% 0% 0% 0% 90.0% 0% 0% 10.0% 0%

office 0% 0% 0% 0% 0% 90.0% 10.0% 0% 0%
restuarant 0% 0% 0% 10.0% 0% 10.0% 40.0% 40.0% 0%
shopping 10.0% 0% 30.0% 0% 0% 0% 0% 60.0% 0%

music 0% 10.0% 0% 0% 0% 0% 0% 60.0% 30%

Table 7.9: Confusion matrix for the best-run of the three-class, seven-codebook
value HMM using Kates’ feature vector

likely due to the fact that both contain a significant amount of babble noise. The

HMM also has difficulty properly identifying the music category, most of which is

categorized as shopping noise.

7.2.3.2 Inputs selected with SFFS

For the feature sets that include redundant features, the three-feature set could

only be tested using two groups. Likely because of the relatively small number of

features, the initial clustering of the three and four group models is very difficult,

and these models could not be trained. The two group models can be trained. The

ranges of accuracies for the HMM using the selected feature vectors are presented

in Table 7.5 on page 121.

The accuracies of the testing sets of the four and five feature vector models are

both best with six codebook values for all numbers of states. The training sets are

all best when using seven codebook values. Please see Figure 7.13. The testing set

of the three-feature, two state model is best with seven codebook values. However,

because the four and five feature vector testing sets are best with six codebook

values, six codebook values are used for comparison.



CHAPTER 7. OVERALL SYSTEM TESTING 136

a) four-feature vector b) five-feature vector

Figure 7.13: Accuracy of four and five feature, four state HMM models with dif-
ferent numbers of codebook values using SFFS vectors with redundant features
included

The accuracies of the four and five feature vector models are both best with

four states. Please see Figure 7.14.

The accuracies of both the four and five feature vectors are very similar. This is

likely because the five-feature set includes a repeated feature from the four-feature

set. The accuracy of the four feature set is slightly better, most likely because

the same amount of information is being represented more compactly, which would

make the training somewhat easier. The four-feature set is also smaller.

The confusion matrix for the best run of the four-state six-codebook value HMM

using the four-feature vector that includes redundant features is presented in Table

7.10. It is clear from this matrix that the HMM has particular difficulty identifying

the restaurant and birds categories. There are also a significant number of non-bird

samples that are misclassified as being in the bird class. The bird category includes

a large number of samples that are combinations of many sounds, making this

category more difficult to classify. This may also be a problem with the training
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a) four-feature vector b) five-feature vector

Figure 7.14: Accuracy of four and five feature HMM models with different numbers
of states using a codebook size of six using SFFS vectors with redundant features
included

of this model. The fact that so many samples appear in this category can be an

indication that the training did not result in a model that was specific enough. The

samples in the restaurant category tend to be classified as being traffic or in-car

samples.

The model also has some difficulty identifying the office and traffic classes.

The office sounds tend to be misclassified as either shopping or restaurant noise,

which makes sense since all three include babble noise. The traffic class is difficult

to classify likely because the traffic class comes from a large number of different

recordings and includes many samples that are combinations of traffic and other

sounds.

The two water classes are identified easily, and there are also very few other

samples that are misclassified as being in one of these categories. This may be

because these categories do not include many combination samples, and also be-

cause these samples come from a very small number of recordings, making the test
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selected
actual in-car traffic birds washing running office restaurant shopping music
in-car 90.0% 0% 10.0% 0% 0% 0% 0% 0% 0
traffic 10.0% 50.0% 20.0% 0% 0% 0% 0% 20.0% 0
birds 10.0% 0% 10.0% 0% 20.0% 0% 0% 20.0% 40.0

washing 0% 0% 0% 100% 0% 0% 0% 0% 0
running 0% 0% 0% 0% 100% 0% 0% 0% 0

office 0% 0% 20.0% 0% 0% 50.0% 20.0% 10.0% 0
restaurant 20.0% 30.0% 10.0% 10.0% 0% 0% 20.0% 10.0% 0
shopping 0% 0% 10.0% 0% 0% 0% 10.0% 80.0% 0

music 0% 0% 10.0% 0% 0% 0% 0% 20.0% 70.0

Table 7.10: Confusion matrix for the best-run of the four state, six codebook value
HMM using the four-feature vector selected with SFFS with redundant features
included

a) four-feature vector b) five-feature vector

Figure 7.15: Accuracy of four and five feature, two state HMM models with different
numbers of codebook values using SFFS vectors with redundant features removed

samples more similar to the training samples.

For the feature sets that have the redundant features removed, the three-feature

set could again only be tested using two groups. Likely because of the relatively

small number of features, the initial clustering of the three and four group models

is very difficult, which makes these models more difficult to train.

Both the four and five-features sets have the best average accuracy with six

codebook values, regardless of the number of states. Please see Figure 7.15. They

are also both best when using two states in the models. Please see Figure 7.16.
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a) four-feature vector b) five-feature vector

Figure 7.16: Accuracy of four and five feature HMM models with different numbers
of states using a codebook size of six using SFFS vectors with redundant features
removed

The accuracies of both the four and five-feature vectors are very similar. This is

likely because the five-feature set includes a repeated feature from the four-feature

set. The accuracy of the four-feature set is slightly better, most likely because

the same amount of information is being represented more compactly, which would

make the training somewhat easier. The four-feature set is also smaller, which is

good for a hearing aid.

The confusion matrix for the best run of the two-state six-codebook value HMM

using the four-feature vector that includes redundant features is presented in Table

7.11. Similar to other HMM confusion matrices, the two water categories and the

in-car category are all well classified. The birds category is categorized very badly,

as is the traffic category. Both of these contain a large number of samples and

samples that are combinations of many different types of noises. There is also

confusion between the office, shopping and restaurant classes, all of which contain

babble noise.
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selected
actual in-car traffic birds washing running office restaurant shopping music
in-car 80.0% 0% 0% 0% 0% 10.0% 0% 10.0% 0%
traffic 10.0% 40.0% 0% 0% 0% 30.0% 10.0% 0% 10.0%
birds 0% 0% 20.0% 10.0% 0% 30.0% 0% 30.0% 10.0%

running 0% 0% 0% 90.0% 0% 0% 10.0% 0% 0%
washing 0% 0% 0% 0% 100% 0% 0% 0% 0%

office 0% 0% 0% 0% 0% 60.0% 10.0% 30.0% 0%
shopping 10.0% 10.0% 0% 0% 0% 10.0% 50.0% 20.0% 0%

restaurant 30.0% 0% 0% 0% 0% 10.0% 0% 60.0% 0%
music 0% 20.0% 0% 0% 20.0% 0% 0% 10.0% 50.0%

Table 7.11: Confusion matrix for the best-run of the two state, six codebook value
HMM using the four-feature vector selected with SFFS with redundant features
removed

The accuracy of these models is actually lower than the accuracy using Kates’

feature vector. The accuracy may be able to be improved by using a different

distance metric. This is discussed further in section 7.2.4.2.

Even though the results from the HMM are not as good as the MLP they are

more consistent. The best-run and average accuracies are much closer than for the

MLP or the WMLP. The models are also more general, as the results from the

testing and training sets are very similar.

7.2.3.3 Memory and processing requirements

HMMs normally require more memory and are more computationally expensive

then an equivalent MLP. One HMMs is used for each environment, hence for an M

environment system, M models are required.

For the HMM the B matrix is the most important factor in the memory size.

An HMM with N classes, a codebook size of Q and K inputs has a B matrix that is

QKN . Increasing the number of codebook values or the number of inputs therefore

increases the size of the HMM dramatically. Additionally, the A matrix requires N 2
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memory locations, and the π vector requires N . Hence, the total memory required

for an HMM classifier using M HMMs is:

MemHMM = MN(QK +N + 1) (7.3)

However, the amount of memory can be reduced in a number of ways. The B

matrix is clearly the largest part of the model. The B matrix can be significantly

reduced by not storing the probability of every possible vector, but by storing the

probability of each individual input and calculating the probability of the input

vector as a joint probability of each of the input vectors. This type of a model will

not capture the relationship between the different inputs, but uses a significantly

smaller amount of memory and should be able to capture different relationships

between the inputs by using different states. This would also allow the model

to be trained with a larger number of codebook values. However, this cannot be

implemented directly and would require retraining.

There is, however, an easy way to reduce the amount of memory used without

significantly changing the model. There are a large number of entries in the B

matrix that have a zero probability from the training set and B is therefore a sparse

matrix. These can be eliminated when this model is implemented in a hearing aid

and only the non-zero entries can be stored. This will reduce the amount of memory

required, but would require a slight change in the way that the B matrix is searched.

Once the system is implemented in a hearing aid, there will be no further train-

ing, but the probability of each model must still be calculated. This is done using

the forward probabilities. From equation 2.7, the model requires N multiplications
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for the initialization, and it also requires that N values be found in the B ma-

trix. From equation 2.8, the recursive calculation of the α values requires N 2T

multiplications, additions and searches of the A matrix, and NT multiplications

and searches of the B matrix. Finally, the calculation of the probability in equa-

tion 2.9 requires N additions. For all of the M models in the system, an HMM

classifier therefore requires MN(NT + 2) multiplications, MN(NT + 1) additions,

MN(T + 1) searches of the B matrix and MN 2T searches of the A matrix. The

actual computational time is therefore dependant on the search algorithm used;

however, it is clear that the HMM is significantly more computationally expensive

than the MLP.

For the tests using Kates’ feature vector, there are four inputs and nine models

required. The number of samples in the window is five. The best model uses three

states and seven codebook values. The model therefore requires 64935 memory

locations and each input requires 459 multiplications, 432 additions, 162 searches

of the B matrix and 415 searches of the A matrix.

For the tests using the feature vector selected with SFFS with repeated features

included, the best feature vector is the four-feature vector. The best model uses

four states and six codebook values. The model therefore requires 46836 memory

locations and each input requires 792 multiplications, 765 additions, 216 searches

of the B matrix and 720 searches of the A matrix.

When the redundant features are removed, the best feature vector is the four-

feature vector. The best model uses two states and six codebook values. The

model therefore requires 23382 memory locations and each input requires 216 mul-
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tiplications, 198 additions, 108 searches of the B matrix and 180 searches of the A

matrix.

7.2.4 Windowed MLP

7.2.4.1 Kates’ feature vector

Surprisingly, windowing the MLP does not increase the accuracy with the new

database. The ranges of accuracies for the windowed MLP using Kates’ feature

vector are presented in Table 7.5 on page 121.

The number of hidden nodes does not seem to have a large effect on the overall

accuracy. Using the same ratio of hidden nodes as the best MLP (largest number)

slightly increases the average accuracy on the testing set for all window sizes. Please

see Figure 7.17. When using the best-run accuracies, the highest accuracies occur

using the same number of hidden nodes as the best MLP (smallest number) in all

except the two-sample window model. However, the best-run results are based only

on a single case, which is not reliable. Therefore a model that uses the same ratio

of hidden nodes is used for comparison, as it is better on average.

The window size also affects the overall accuracy. As seen in Figure 7.18, both

the average and best-run accuracies for the testing set increase up to a sample

window of size three then decrease slightly. This decrease may be due to the

dimensionality problem, where the addition of extra features may actually decrease

the accuracy of the system.

Therefore, the system that will be used for comparison is the WMLP that uses

a sample window of size three and 30 hidden nodes (same ratio).
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a) average accuracy b) best-run accuracy

Figure 7.17: Average and best-run accuracy of WMLP on the testing set with
different numbers of hidden nodes

Figure 7.18: Accuracy of the WMLP using the same ration of hidden nodes as the
best MLP with different window sizes
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selected
actual in-car traffic birds washing running office restaurant shopping music unknown
in-car 100% 0% 0% 0% 0% 0% 0% 0% 0% 0%
traffic 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
birds 0% 0% 70.0% 30.0% 0% 0% 0% 0% 0% 0%

washing 0% 0% 0% 100% 0% 0% 0% 0% 0% 0%
running 0% 0% 0% 0% 100% 0% 0% 0% 0% 0%

office 30.0% 0% 0% 0% 0% 0% 50.0% 20.0% 0% 0%
restaurant 0% 0% 20.0% 0% 0% 0% 50.0% 30.0% 0% 0%
shopping 0% 0% 0% 0% 0% 0% 0% 100% 0% 0%

music 0% 0% 0% 0% 0% 0% 0% 0% 100% 0%

Table 7.12: Confusion matrix for the best-run of the 30 node WMLP using a window
size of three and Kates’ feature vector

The confusion matrix for the WMLP with a window size of three and 30 hidden

nodes using Kates’ feature vector is presented in Table 7.12. The in-car, traffic,

music and both water classes are very well classified. There is some confusion

with the birds class, which is likely due to the fact that the samples are so varied

and contain other sounds in combination. The office noise sound is very badly

classified. None of the samples are correctly classified, with most being identified

as being either restaurant or shopping noise. All the shopping noise samples are

correctly identified, but the restaurant noises are all categorized poorly. The initial

tests indicate that this feature vector has some difficulty identifying babble noises.

This is likely the cause for these misclassifications in this model.

7.2.4.2 Inputs selected with SFFS

The ranges of accuracies for the windowed MLP using the selected feature vectors

are presented in Table 7.5 on page 121.

Figure 7.19 shows the average accuracy of the testing set for the three, four

and five-feature sets using different numbers of hidden nodes. For the three-feature

set, it appears that using the same number of nodes as the best MLP gives the
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best results. For both the four and five feature sets, using either the same ratio

of hidden nodes, or the midway point gives better results. There does not appear

to be a clear pattern indicating which one is better. The midway point is selected

for comparison because it allows more flexibility. Particularly as the number of

input nodes and window size increases, using the same ratio of hidden nodes as

the non-windowed MLP becomes somewhat unreasonable. Using the midway point

reduces the number of nodes in the model, but still allows the hidden layer to grow

with the input layer. Because only three configurations are tested, it is likely that

a different number of hidden nodes will be able to produce better results. However,

the results from the models are all relatively similar so it is unlikely that testing

many different configurations would result in a large increase in accuracy.

Similar to the MLP, the WMLP trained on the three-feature set gives the best

accuracy. Please see Figure 7.19. However, windowing the input does not appear

to increase the accuracy of the model. The non-windowed MLP gives the best

results and the accuracy decreases as the window size increases. Please see Figure

7.20. This is in direct contradiction to the results achieved in the initial tests. This

also contradicts the results in the tests with Kates’ feature vector, which showed an

increase in accuracy for the two and three window tests. It is possible that with this

data set, there actually is very little temporal progression in the samples. Unlike

speech, background noise is fairly random in that certain sounds do not necessarily

follow others. Because Euclidean distance is not able to track the within-class

scatter, the autocorrelation features actually have a fairly large spread within each

class. With Kates’ feature vector the classes are closer together, but also have less
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a) three-feature vector b) four-feature vector

c) five-feature vector

Figure 7.19: Average accuracy of WMLP with three, four and five SFFS feature
sets with redundant features included with different numbers of hidden nodes
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spread. Since the spread is low, adding additional features in the form of a window

simply provides more information to the classifier. When samples are further apart,

if they do not follow a temporal progression, then adding additional information in

the form of a window may actually decrease the chances that the input vector will

match. The training will be more difficult, making a full match harder.

Additionally, although the SFFS is run on each different window size, the al-

gorithm is run on the individual pieces of data, not on the window as a whole.

Running the SFFS on the entire window may improve the data set for the win-

dowed classifiers.

For the feature vectors where the redundant features are manually removed, the

models are again tested with same numbers of hidden nodes as the best MLP. The

average testing set accuracies with different numbers of hidden nodes are presented

in Figure 7.21. Again, there is not a clear trend with respect to the number of

hidden nodes. The midpoint value is selected for the reasons described for the

previous models.

The window sizes for the different feature vectors are presented in Figure 7.22.

These are the values using the midway point of the hidden node values. From this

figure it can be seen that the three-feature vector and the window size of one (non-

windowed) again produce the best results for this set of tests. It is likely that this

distance measure is simple unsuitable for this particular model. Using a distance

metric that is more in line with the way the MLP functions would likely produce

better results.

The accuracy using these features sets is quite low. In fact, the accuracy is
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a) three-feature vector b) four-feature vector

c) five-feature vector

Figure 7.20: Average accuracy of WMLP with three, four and five SFFS feature
sets with redundant features included with different window sizes
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a) three-feature vector b) four-feature vector

c) five-feature vector

Figure 7.21: Average accuracy of WMLP with three, four and five SFFS feature
sets with redundant features removed with different numbers of hidden nodes
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a) three-feature vector b) four-feature vector

c) five-feature vector

Figure 7.22: Average accuracy of WMLP with three, four and five SFFS feature
sets with redundant features removed with different window sizes
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actually lower than when using Kates’ feature vector, which is not selected using any

type of formal feature selection algorithm. The distance metric used clearly does not

capture all the necessary aspects to improve the feature set. In the first set of tests,

the features selected clearly contain redundant information. Adding additional

features therefore adds very little extra information, but makes the classifiers more

complex and more difficult to train.

7.2.4.3 Memory and processing requirements

The windowed MLP is more computationally expensive and requires more memory

than the non-windowed MLP. For a windowed MLP with W sets of inputs, there

are WNi inputs and WNo hidden nodes. From equations 7.1 and 7.2, both the

memory and processing requirements are a function ofNiNh. Therefore, the amount

of memory and processing required by the windowed MLP is on the order of W 2

times the amount of memory required for a non-windowed MLP.

For the tests using Kates’ feature vector, there are four inputs that are windowed

and nine outputs. The best model uses a window size of three, which makes the

size of the input layer 12 nodes. The best models use a hidden layer that is midway

between having the same number and same ration of hidden nodes as the un-

windowed MLP. This gives 20 hidden nodes for this mode. This model therefore

requires 449 memory locations and 420 multiplications and additions to process an

input.

For the SFFS tests with redundant features not removed, the best feature vector

uses three features, and the best window size is two. This gives an input layer with

six nodes. The best model uses 17 hidden nodes. The model therefore requires 281
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memory locations and 255 multiplications and additions to process an input.

When the redundant features are removed, the three-feature vector is again

the best feature vector, and the best model also has a window size of two and

uses 17 hidden nodes. It therefore also requires 281 memory locations and 255

multiplications and additions to process an input.

7.3 Comparison of Classifiers

The final accuracies of the tested classifiers and their implementation details are

described in Table 7.13.

7.3.1 KNN

The size of the KNN is the second largest of the models. It is also highly dependent

on the training size. If more training vectors are added to increase the coverage of

the set, both the size and processing required will also increase.

Surprisingly, the KNN actually has the highest accuracy of the tested classi-

fiers, using the higher order feature vector selected using SFFS with the redundant

features removed. The nine-feature vector has an average accuracy of 77.6% and a

best-run accuracy of 84.4% using the 5-NN model. This is surprising considering

that the KNN is simplest of the tested classifiers. The accuracy of the model using

the feature vector from Kates was much lower, and the KNN did not have the

highest accuracy when it was tested with this feature vector. This large increase

in accuracy was not seen in the other classifiers, which all experienced a decrease

in accuracy. However, despite having good accuracy, the large amount of memory
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Table 7.13: Comparison of different models and feature vectors
model features parameters memory processing avg accuracy best accuracy
KNN Kates N = 4 1440 1440 mult 57.1% 62.2%

V = 360 1440 add
1440 sub
360 sqrt

KNN SFFS N = 3 1080 1080 mult 71.1% 75.5%
rep V = 360 1080 add

1080 sub
360 sqrt

KNN SFFS N = 5 1800 1800 mult 72.4% 76.7%
no rep V = 360 1800 add

1800 sub
360 sqrt

KNN SFFS N = 9 3240 3240 mult 77.6% 84.4%
extend V = 360 3240 add

3240 sub
360 sqrt

MLP Kates Ni = 4 149 130 mult 63.3% 76.7%
Nh = 10 130 add
No = 9

MLP SFFS Ni = 4 163 143 mult 58.9% 65.6%
rep Nh = 11 143 add

No = 9
MLP SFFS Ni = 4 163 143 mult 62.6% 68.9%

no rep Nh = 11 143 add
No = 9

MLP SFFS Ni = 9 218 198 mult 68.2% 74.4%
extend Nh = 11 198 add

No = 9

HMM Kates M = 4 64935 459 mult 59.7% 58.3%
N = 3 432 add
Q = 7 162 B
K = 4 405 A
T = 5

HMM SFFS M = 9 23382 216 mult 55.3% 61.1%
rep N = 2 198 add

Q = 6 108 B
K = 4 180 A
T = 5

HMM SFFS M = 9 46836 792 mult 61.0% 63.1%
no rep N = 4 756 add

Q = 6 216 B
K = 4 720 A
T = 5

WMLP Kates Ni = 12 669 630 mult 65.5% 80.0%
Nh = 30 630 add
No = 9

WMLP SFFS Ni = 6 281 255 mult 52.6% 66.7%
rep Nh = 17 255 add

No = 9
WMLP SFFS Ni = 6 281 255 mult 57.7% 68.9%

no rep Nh = 17 255 add
No = 9
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and processing required make the KNN algorithm impractical for use in a hearing

aid.

The discrepancy between the KNN improvement and the results from the other

classifiers is likely due to the distance metric used in the SFFS algorithm. The

increase for the KNN indicates that the SFFS is capable of picking a feature vector

set that can give good results. However, the distance metric is very simple and is

clearly not suitable. The KNN, however, matches well with this distance metric.

The KNN directly uses Euclidean distance in its calculation of the class. The

other classifiers do not use this measure so directly; hence these classifiers do not

experience the same increase in accuracy. In [37] Bucler et. al. note that different

classifiers perform best with different sets of input features. This is likely also

applicable to the feature selection techniques, where different distance metrics may

improve the performance of different classifiers. A better distance metric would

be able to account for a number of different potential problems, including within-

class scatter and redundancy of the features vectors, which was clearly seen in this

feature set. A more complex distance metric would ideally also be able to account

for issues other than accuracy, particularly that some features are more attractive

than others in that they require less processing to extract. Finding a good balance

between these desired traits, however, is something that will likely prove to be quite

challenging.
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7.3.2 HMM

The HMM, unfortunately, did not perform very well in any of the tests. There

may be a number of reasons for this poor performance. Firstly, the use of multiple

inputs means that using a large number of possible quantization values results in a

very large model. The way the HMM is updated requires that each individual input

vector have its own probability. This problem could likely be avoided by changing

the update procedure to track each feature’s probability independently, and com-

bining them to form an overall probability. The drawback of this approach would

be that the HMM would not be able to track the correlation between input vectors.

However, with a sufficient number of states in the model, this technique could work

well and would allow a significantly larger number of possible quantization values.

The HMM also requires the largest amount of memory. However, it is possible to

reduce this size by changing the way the B matrix is stored. Instead of storing the

individual probability for each input vector, the probability would be calculated as

the combined probability of each individual input. The size could also be reduced

by not storing the vectors that have zero probability.

Additionally, the tests with the WMLP show that using the larger data set, the

accuracy of the model decreases for a larger window. The HMM was tested with a

window of five. This may also be one of the reasons for the lower accuracy.

7.3.3 MLP

The MLP is actually able to generate reasonably good results using Kates’ feature

vector. The average accuracy is 63.4% and the best-run result has an accuracy of
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76.7%. Considering the number of classes and the fact that the data set is quite

diverse, this is a reasonable accuracy for this system. Using the features vectors

selected using SFFS actually produced worse results. This is likely due to the fact

that the distance metric used was quite simple. A different distance metric might

produce better results.

7.3.4 WMLP

Using a windowed MLP increases the accuracy for the models using Kates’ feature

vector when the window size is two or three. The window size of three gives

an average accuracy of 65.5% and a best-run accuracy of 71.1%. The accuracy

decreases for window sizes of four and five. However, windowing the input decreases

the accuracy in all cases for the feature vectors selected with SFFS.

There is an additional advantage to the MLP in that it is able to indicate when

a sample is unknown. Many of the misclassified samples are actually classified as

unknown. It is possible that these are actually being grouped into more than one

category. This at least gives an indication that the results should not be trusted.

It may also be possible to mimic this behaviour with the HMM by classifying

a sample as unknown if two or more environment models give results which are

within a certain threshold, or if the highest probability environment model has a

probability that falls below a certain threshold. These values would likely have to

be determined through trial and error.
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7.4 Summary

When using the SFFS feature vectors, as the window size on the MLP increases,

the accuracy of the model decreases. This is not the case when using Kates’ vector.

There may be a number of reasons for this difference. The initial tests show that

the Euclidean distance between the class means decreases as the window size is

increased. However, this trend is also seen in Kates’ vector. In all cases, Kates’

vector has a smaller Euclidean distance between classes than any of the SFFS

vectors and still performed better.

The issue of scatter may also be one of the reasons for the decline in accu-

racy for the windowed models when using SFFS. Background environments do not

necessarily contain a temporal component. Unlike speech, which does have a nat-

ural temporal progression, background noise can be somewhat random, and have

sounds that are specific to the model but do not necessarily follow or precede other

sounds. There is most likely at least some temporal progression in most of the

environments, but the windows operate on the order of 1 s, which may be too long.

The autocorrelation already contains a temporal component and also contains a

fairly large amount of scatter.

Since Kates’ feature vector has a relatively small amount of within-class scatter,

then each of the inputs should be relatively similar. The model would not have much

difficulty tracking the relationship between the different windows because they are

very similar and do not change much across the time frames. The training would be

relatively simple, and windowing the data would make it more likely that at least

one of the inputs would be close to the trained model. If the inputs contain a large
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amount of scatter, however, then the training would be more difficult. Windowing

the data would not be helpful as none of the inputs would necessarily be close to

the trained model.

Overall, the classes that are more scattered in the SOM and K-means clustering

tended to be the samples that were most often misclassified. This includes the

babble and the traffic classes. There was some confusion between the classes that

contained the most babble noise. These not only contain similar sounds, but are

also clustered within a relatively small region on the SOM and tend to be slightly

scattered. Conversely, the most tightly clustered sounds tended to be the most

easily classified.

Changing the implementation of the feature selection algorithm may help the

models to better classify some of these more difficult classes. The current algorithm

looks at the classes together. If one is already far away from the other classes,

the feature selection algorithm makes no differentiation between adding a feature

that increases the distance of that same class, or adding a feature that increases

the distance to another class. It may be better to apply the feature selection

individually to each class and produce a feature vector that consists of features

that are individually good at separating one or more classes. This would be more

similar to the way the HMM functions, where each class is evaluated separately in

its own model, as opposed to MLP which evaluates each of the classes together.

Given the extent of the scattering in the SOM and K-means clustering, it is

also possible that some of the samples actually have autocorrelation matrices that

are closer to different classes. In this case, they would be better removed using the
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weights for a different class, but would still appear as being misclassified. These

types of samples would be very difficult to evaluate in this classification system,

where samples are still categorized using logical classes. Perhaps a better solution

would be simply to identify which of the pre-set weights the samples is closest to,

by using the weights themselves or something similar as an input to the classifier.

The evaluation of the system could be done by connecting it to an actual noise

reduction model and evaluating the SNR and the intelligibility. This is clearly a

more complex system, but may yield good results with real-world sounds.



Chapter 8

Conclusions

This thesis examined environment classification for hearing aids. The work focuses

on identifying a good classifier for this application, identifying a reasonable set of

classes, and testing different features using a formal feature selection algorithm.

Initial tests are performed using KNN, MLP and HMM classifiers, as well as

an MLP with windowed input. For this initial phase, the classes and features are

assumed. The results indicate that the windowed MLP is a strong candidate for

this application. The data set, however, is somewhat limited and only four classes

were used.

Following the initial tests, SOM and K-means clustering are used to identify

candidate classes. Samples are tagged as containing one or more of 28 different

possible sounds. The final set of classes selected are in-car, traffic, birds, water

washing, water running, office noise, restaurant noise, shopping and music.

Feature selection is performed using SFFS and Euclidean distance and Fisher’s

interclass separability criterion. Fisher’s interclass separability criterion does not

161
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work for this application as it requires the inversion of a matrix and many combi-

nations are not invertible. The Euclidean distance is also not a distance metric for

this application, as it tends to select redundant classes. It also does not consider the

within-class scatter. A better distance metric would also consider the processing

power and memory required to calculate the features.

The classifiers are then tested using the selected classes and features selected

using Euclidean distance with and without the redundant features removed. These

results are compared against classifiers that use a simpler feature vector from Kates

[10]. The accuracy of the final tests are much lower than the initial tests in all cases,

likely due to the addition of more classes and a more varied sound database.

The selected features do not work as well as Kates’ feature vector in most cases.

A different distance metric might produce better results. More work is required in

this area.

With the feature vector from Kates, the windowed MLP gives the best results.

The HMM does not perform as well as either the windowed on the non-windowed

MLP. The WMLP with a window size of three is able to give an average accuracy

of 65.5% and a best-run accuracy of 80.0% on the testing set.

When using the SFFS feature vectors, the MLP performs better than the HMM

and the windowed MLP. However, the KNN actually gives the best results. This is

likely because the features are assessed using Euclidean distance, and this distance

metric is also directly used by the KNN. Of the trained models, the non-windowed

MLP has the best accuracy. It is able to achieve an average accuracy of 62.6% and

a best-run accuracy of 68.9% on the testing set, using the three-feature vector with
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the redundant features manually removed. Using a larger feature vector increases

the average accuracy of the MLP to 68.2% and gives a best-run accuracy of 74.4%

using a nine-feature vector. This is actually a slightly higher average accuracy than

the WMLP achieves using Kates’ feature vector.

There are three major contributions from this thesis:

1. The analysis of sound samples using clustering and the selection of a set of

output classes suitable for a hearing aid user.

2. The use of a formal feature selection technique to select features for the en-

vironment classifier

3. The testing of a multi-layer perceptron using windowed input.

Future work should focus on finding a more appropriate distance metric for

feature selection. The distance metric should account for both scatter and redun-

dancy, neither of which is accounted for with Euclidean distance. The results from

the KNN indicates that using a distance metric that is closely related to the clas-

sifier could also improve the performance. Another possibility is to change the

feature selection algorithm itself and allow the feature selection to pick a feature

based on its ability to differentiate an individual class that is not well represented.

Other future work should focus on the subjective results of the classification, by

combining the system with a noise reduction algorithm. It is possible that some of

the misclassified samples would actually be well removed with the weights selected

by the classifier. Using inputs that are related to the weights would allow an input

to be classified as being a good match to a particular set of weights, rather than as
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being part of a specific class.

Overall, this thesis shows that the MLP can work well for environment classifi-

cation. The accuracy is relatively high and it uses a smaller amount of memory and

processing power than other models. If the feature vector has a low scatter, win-

dowing the input can also be helpful. Clustering gives a reasonable set of candidate

classes that can likely be used for future work in this area. However, the distance

metric used for feature selection is clearly unsuitable for this application and future

work will need to focus on finding a new way to perform feature selection.
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Appendix A

Feature Selection

A.1 In-car

The in-car samples form a very cohesive group in all the different SOMs and in the

K-means clustering. An example SOM can be seen in Figure A.1.

In the K-means clustering, the in-car samples are always in single group for the

five-lag autocorrelation tests, for all numbers of groups (five to ten). The 10, 15 and

20 lag tests each have one or two samples in a different group, for all numbers of

groups. Overall, the K-means clustering also indicates that this is a very cohesive

category.

In all cases, both the in-car/music and the in-car/signal samples are clustered

with the in-car noise. This is also true for the SOM tests. Music samples not also

tagged as in-car do not form part of the cluster of the in-car samples. Samples

tagged as being in-car/music or in-car/car signal noise are therefore categorized

with in-car noise.
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Figure A.1: SOM distribution of in-car, in-bus and in-train samples using a 50x50
map and 20 autocorrelation lags

Surprisingly, the traffic category is not consistently clustered with the in-car

noise, either in the SOM or in the K-means clustering. Hence, traffic sounds are

not included in this category. This is discussed further in Section A.14.

A.2 In-bus

The SOM clustering indicates that the in-bus category is much more scattered

than the in-car. Generally, however, the in-bus category is clustered next to the
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in-car category, and the distance between these two categories is quite low, both

spatially and based on the distances between the adjacent node values. There are,

however, clusters of outlying samples that are not included with the main group

in several maps. This is illustrated in Figure A.1. Often these become clustered

near the traffic samples, which makes categorizing these samples more difficult. The

samples that include footsteps or babble do not create their own clusters, indicating

that the in-bus noise is the dominant noise for these samples. Therefore, samples

that include babble or footsteps do not need to be separated.

The K-means clustering also shows that the in-bus is a less cohesive category

than the in-car category. However, the majority of the in-bus samples are clustered

together in all of the K-means tests. The in-bus samples are clustered in at most

two categories in all cases, and the separation of the group tends to increase as the

number of autocorrelation lags increases. Samples including babble or footsteps

are not separated from the regular in-bus samples, which indicates that the in-bus

sounds are dominant.

In all cases of the K-means clustering, the cluster containing the majority of

the in-bus samples is the same as the cluster containing the majority of the in-car

samples. In all cases, if there are in-car samples that are separate from the main

group, the second group of in-bus samples is clustered in the same category as these

in-car samples. This is likely because the in-bus samples have the same types of

sounds as the in-car samples, including muffled motor noise and some reverberation

from being in an enclosed space.

The in-bus samples are therefore categorized with the in-car samples, and the
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samples including babble or footsteps are not be separated.

A.3 In-train

The SOM clustering indicates that the in-train category is more scattered than

the in-car category. Generally, however, a large portion of the in-train category

is located directly next to the in-car category. In most cases, the majority of the

in-train category is actually closer than the in-bus category. Please see Figure A.1.

The K-means also shows that the in-train is less cohesive than the in-car cat-

egory. The in-train samples are split between two or more categories in all of the

K-means tests. The number of samples not clustered in the main group tends to

increase as the number of autocorrelation lags increases.

In all cases of the K-means clustering, the category containing the majority of

the in-train samples is the same as the cluster containing the majority of the in-

car and in-bus samples. In all cases, the in-train samples that are separate from

the main grouping are clustered with the in-car and in-bus samples that are also

separate.

The samples containing babble or electronic sounds are not separate from the

main group in either the SOM or the K-means clustering. This indicates that the

in-train noise is dominant and the samples with babble or other noises should not

be separated.

From these tests, it appears that the in-train noises are similar to the in-bus

and in-car noises, likely because they all contain muffled motor noise and some

reverberation from being in an enclosed area. The in-train noises are therefore
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categorized with the in-car noises. Samples with babble or electronic noise are not

be separated.

A.4 In-subway

The samples from inside a subway train are actually further away from the in-car

samples than the in-train samples in the SOM clustering. The distance between the

in-car and the in-subway classes is further than the distance between the in-subway

and the traffic in most cases. The in-subway samples also appear to be close to the

subway station samples in most cases. However, the in-subway samples tend to be

quite spread out, and in some cases appear to be closer to the in-bus/in-train/in-

car samples, and sometimes appear to be closer to the traffic samples. Please see

Figure A.2.

The K-means clustering also shows the same spread, as the category is often

split into two or more clusters, often with a similar number of samples in each

category. In some cases the majority of the samples are categorized with the in-car

samples, other times they are categorized with the traffic samples.

There is no differentiation of the samples that also include babble or footsteps,

indicating that the subway noise is the dominant noise.

In all cases, the cluster with the largest number of in-subway samples also has

the largest number of subway station samples. This indicates that the in-subway

and subway station samples should be categorized together. This intuitively makes

sense, as the subway noise is present in both the in-subway and the subway station

samples.
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These should not be categorized with the in-car samples, as there is not a

strong correlation between these two categories. This may be because there is less

reverberation in subways than in cars, and because they use a different type of

engine, which would therefore create a different type of engine noise.

These samples will be clustered with the traffic samples, as the in-subway sam-

ples tend to be closer to the traffic samples than the in-car samples.

A.5 Car Turn Signal

The car signal noise occurs only in samples that are also tagged as in-car, since

this is the only time the signal noise would be audible. The SOM tests show the

car signal samples are normally near the edge of the in-car group, but they are not

separated by any other group. Please see Figure A.3. In the K-means tests, the car

signal samples are always categorized with the in-car samples.

The car signal samples are therefore categorized with the in-car samples. This is

logically correct as well, as the time it would take to switch the hearing aid weights

is more than one second, and car signals are not often on for much longer than this.

It is not desirable to switch the hearing aid program this often, as the user may

find it distracting.

A.6 Nature

The nature category is not a cohesive category in either the SOM or the K-means

clustering. It is likely that “nature” is too broad a category to properly account
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Figure A.2: SOM distribution of in-car, in-subway and subway samples using a
50x50 map and five autocorrelation lags
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Figure A.3: SOM distribution of in-car and in-car with car signal samples using a
100x100 map and five autocorrelation lags
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Figure A.4: SOM distribution of all nature samples using a 100x100 map and 10
autocorrelation lags

for everything heard in an outdoor/rural setting. There are, however, very cohesive

sub-categories, which are discussed further in Sections A.7, A.12 and A.13 below.

These separate groups are illustrated in Figure A.4.
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A.7 Birds

The samples with bird noise are quite well clustered in the majority of the tests,

but have a large spread in some cases. The SOM tests indicate that the addition

of geese to a sound sample is sufficient to create a separate cluster. The addition

of farm animals also creates a separate group in some cases, but in the majority

of the cases the addition of farm animals does not create a separate group. The

addition of dog sounds does not seem to create a separate group. This is discussed

further in Sections A.8, A.9 and A.10. Please see Figure A.4 for an illustration of

this.

In the K-means, the bird samples are always grouped into at least three, and

in most cases four or more different clusters. However, in the large majority of the

cases there is one group with a significant majority of the samples.

Bird sounds are also quite a common sound to hear in an outdoor environment

and this environment was identified by hearing aid users as being important [10].

These sounds therefore need to be included in the final model. Bird sounds are

therefore used as the basis for a cluster in the final system. Neither farm animal

sounds nor dog sounds are separated.

A.8 Geese

The samples with both geese and bird tend to be separate from the normal bird

sounds in the SOM. Please see Figure A.4 for an illustration of this separation.

In the K-means clustering, the geese sounds are most often clustered in the same
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cluster, or a maximum of two different clusters, with one or two outlying samples.

Conversely, the bird samples are often clustered into many different groups. There

does not appear to be a correlation between the grouping of the majority of the bird

samples and the grouping of the geese samples. It appears that the geese noises are

dominant and form their own cluster of sounds, separate from the bird sounds.

However, geese sounds are fairly uncommon, and do not tend to be continuous

sounds. Hence, it does not make logical sense to include a geese category, as the

hearing aid would not likely be able to switch programs in time to actually remove

the noise. Therefore, a geese category will not be included in the system, and the

birds category will be trained without geese sounds samples.

A.9 Farm Animals

In this database, the farm animal sounds always occur in conjunction with bird

sounds. In the majority of the SOMs, the farm animals are grouped with the bird

sounds. Please see Figure A.4. In some cases, the farm animals are somewhat

separate because the bird sounds are more spread out, and in some cases only some

of the farm animal sounds are separate.

In the K-means clustering, the farm animal sounds are clustered into at least

three different categories in all of the tested cases. However, the bird samples are

also clustered into a number of different categories. The farm animal samples do

not appear to be separate from the bird samples.

Hence, the farm animal samples will not be separated from the regular bird

samples for the final system.
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A.10 Dog

In this database, the dog sounds always occur in conjunction with bird sounds. In

the majority of the SOM tests, the dog samples are not separated from the main

cluster of bird sounds. Please see Figure A.4. However, this may also have been

because there are not many samples with the dog sound, and the dog is fairly quiet

in the samples. Tests where the dog sounds are more separate tend to have bird

sounds that are also less clustered.

In the K-means tests, the dog samples tend to be spread among more than one

cluster. However, the bird samples are also spread across a number of clusters.

Because of this spread, it is difficult to determine from the K-means clustering

whether or not these two categories are linked.

Because the dog sounds are clustered with the bird sounds on the SOM, the dog

samples will be clustered with the bird samples for training. This is also a logical

clustering as dog sounds are not continuous and it would not make sense to change

the hearing aid program for each dog bark.

A.11 Water Splashing

The samples that include the sound of water splashing are taken from a pool scene

with many children and adults talking. The water splashing sounds do not form

a cohesive group in either the SOM or the K-means clustering. The SOM tests

indicate that there is a large spread between the water splashing sounds. Please

see Figure A.5.
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Figure A.5: SOM distribution of water splashing, water washing and water running
samples using a 50x50 map and 15 autocorrelation lags

In the K-means tests, the water splashing sounds are always grouped into at

least three different clusters, and are grouped into four or more clusters in the

majority of the tests. The number of groups this category spans increases as the

number of autocorrelation lags increases, and also as the number of overall groups

increases.

The sounds of the water splashing appear to be dominated by the other sounds

in the samples. Overall, this does not appear to be a good basis for a category and

will therefore not be included in the training of the final system.
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A.12 Water Washing

The water washing sounds are tightly clustered in both the SOM and the K-means

clustering. In the SOM the sounds are always separated from other sounds by

higher-distance nodes, indicating that these sounds are not close to any other sound

in the sample set. Please see Figure A.5. However, these sounds all come from a

single track, which may partially explain this tight clustering.

The K-means clustering also shows that the water washing samples are very

tightly clustered. In the majority of the tested cases, the water washing samples

are all clustered in the same group. In some cases there are one or two samples

in a different group. The samples including bird sounds are not separate from the

main grouping in either the SOM or the K-means clustering. Overall, this group

appears to be quite cohesive, and quite different than all the other groups. Water

washing sounds are therefore used as the basis for a group of sounds.

A.13 Water Running

The water running sounds are tightly clustered in both the SOM and the K-means

clustering. In the SOM the sounds are always separated from other sounds by

higher-distance nodes, indicating that these sounds are not close to any other sound

in the sample set. Please see Figure A.5. However, these sounds all come from a

single track, which may partially explain this tight clustering.

The K-means clustering also shows that the water washing samples are very

tightly clustered. In the majority of the tested cases, the water running samples
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are all clustered in the same group. In some cases there are one or two samples in

a different group. This separation occurs when the number of autocorrelation lags

is large.

Surprisingly, the sound of water washing is quite different than the sound of

water running. In the SOM these two groups are separated by either a large number

of nodes, or by nodes that are a far distance apart. In all cases except one, these

are also clustered separately in the K-means clustering. Although these are both

water sounds, the sound of water running is fairly continuous and sounds similar

throughout the sample. The sound of water washing is more periodic and changes

throughout the sample. This would affect the autocorrelation, which may explain

why there is such a large difference in these samples.

A.14 Traffic

In some SOM tests, the traffic samples are spread across a large portion of the map.

This may be partially due to the fact that there are a large number of samples that

contain traffic sounds as secondary noises. However, in these cases even the samples

that contain only traffic noise have a great deal of spread. In other tests, the traffic

samples form a more cohesive cluster. Please see Figure A.6. The traffic noises

do not seem to be correlated with the in-car sounds. The placement of the traffic

samples is most often between the in-subway and the in-car sounds.

The K-means clustering also shows this spread. In all cases, the traffic samples

are placed into two or more separate categories, and in most cases the traffic is

clustered into three or more clusters. There does not appear to be a dominant
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a)spread b)clustered

Figure A.6: SOM distribution of in-car and traffic samples using a 50x50 map. a)
uses 5 autocorrelation lags and shows a map where the traffic samples are spread. b)
uses 15 autocorrelation lags and shows a map where the samples are more clustered.

cluster in any case. Additionally, the K-means clustering classifies some traffic

samples with the in-car samples, and some with the subway samples. This is

similar to the results from the SOM, which indicate that the traffic samples are

spread between these two groups.

The reasons for this large split are unclear. It is possible that the different types

of cars, different rates of acceleration or different numbers of cars in the audio scene

may produce different types of autocorrelation profiles for the samples.

However, despite this large spread, the traffic samples are used to form the basis

of a cluster simply because it is such a common and important sound. These are

clustered with the subway samples because they are quite close on the SOM.
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A.15 Train/Tram

In both the SOM and the K-means clustering, the train/tram samples are sometimes

clustered with the traffic samples, and are sometimes clustered with the in-car

samples. Training the network with the train/tram samples included in either one

of these categories would likely reduce the ability of the system to distinguish these

categories from each other. Hence, the train/tram samples will not be included in

the training of the system. In a real implementation of this system, a hearing aid

encountering these sounds would likely be categorize them as being in one of the

traffic or in-car categories, depending on which cluster the particular sound was

closest to.

A.16 Subway Station

The subway station samples are categorized with the in-subway samples. For fur-

ther discussion of the subway station samples, please see Section A.4.

A.17 Footsteps

The footsteps samples are spread across a large portion of each of the SOMs. Please

see Figure A.7. They are also spread across at least three clusters in all cases of

the K-means clustering. Even the samples containing only footsteps sounds are

clustered in two or more different clusters in all cases. The large spread may occur

because there are so many samples that include footsteps as a secondary sound that

they cover a large portion of the SOM and spread across many clusters simply due
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to their number. However, samples containing only footsteps are also not clustered

into a single region in the SOM or in a single group in the K-means clustering.

Samples that have footsteps in combination with other sounds tend to be clustered

with the primary sounds.

From this, it would appear that footsteps are not a good basis for a sound

cluster. Footsteps that occur in combination with other sounds should be clustered

with the primary sounds where appropriate. This is also logically appropriate for

a hearing aid, as footsteps are quite transient sounds, and it is not desirable to

change the hearing aid program each time there are footsteps that interrupt a

primary background sound.

A.18 Babble

The babble samples are also quite spread across the SOMs and are not consistently

clustered in the K-means. This may be partially due to the fact that there are a

large number of samples that contain babble.

However, babble does not appear to be a cohesive category of sound. The SOM

shows that the babble category is spread across the majority of the map (see Figure

A.8), and the K-means clustering shows babble samples in at least three different

categories in every run. It may be that “babble” is actually a more general case of

specific sound environments that include babble. This does not mean that babble

is not a problem for hearing aid users, but rather that it should likely be removed

differently depending on the external environment.

Therefore, babble is not included as a separate category itself, but is split into
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Figure A.7: SOM distribution of footsteps samples using a 50x50 map and five
autocorrelation lags
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several subcategories, each of which contain a large amount of babble noise. This

is discussed further is Sections A.22, A.23 and A.26.

A.19 Children

The samples that include children sounds are often either intermixed with the

babble samples, or are directly next to the babble samples. The samples are very

scattered in the SOM tests and are grouped into at least three different groups

in every K-means test. These groups are usually spread relatively evenly over a

number of these groups, with no one group having a noticeable majority of the

samples.

This group appears to be quite close to the babble group, and is not very

cohesive. This group should not be used as the basis of a group of sounds. Sounds

including children are included in other groups as appropriate.

A.20 Laughter

Laughter is not a cohesive category, and tends to be clustered with the primary

sound in the sample. There is a large spread in this category in all of the SOM

tests, and laughter tends to be dominated by the primary sound. Please see Figure

A.9.

In the K-means clustering, laughter samples are clustered in three or more

different categories in every K-means test, and the number of clusters with laughter

samples increases as the overall number of categories increases.
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Figure A.8: SOM distribution of babble samples using a 50x50 map and five auto-
correlation lags
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Overall, it appears that laughter samples should not be separated as their own

category, but should instead be classified with the primary sound where appropriate.

This also makes sense logically as laughter is often quite short in duration and it

would not be appropriate to switch the hearing aid program each time someone

laughed.

A.21 Applause

Applause is actually a very cohesive category. In the SOM tests, the applause

category is always highly cohesive, and does not appear to be correlated with any

other sound. Please see Figure A.10.

In the K-means clustering, the applause samples are also always heavily clus-

tered, with applause samples occupying only one category in the majority of cases.

In cases where the applause appears in more than one cluster, it is at most two

samples that are outliers.

However, logically, applause does not make a good basis for a category. Applause

would be heard only on rare occasions, and it is not likely that a user would be

attempting to hear a principle sound over the sound of applause. It also does

not appear to be similar to any other category, since it is not regularly clustered

with any other category in the K-means and does not regularly appear next to

any category in the SOM clustering. Hence, applause will not be included in the

training of the final classification system.
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Figure A.9: SOM distribution of laughter samples using a 50x50 map and 15 auto-
correlation lags



APPENDIX A. FEATURE SELECTION 198

Figure A.10: SOM distribution of footsteps samples using a 50x50 map and 10
autocorrelation lags



APPENDIX A. FEATURE SELECTION 199

A.22 Office Noise

The office noise samples form a relatively cohesive category in the majority of

the SOM tests. However, these groups are quite large and can be spread over a

relatively large portion of the map. Please see Figure A.11. The samples that

include the phone noises are somewhat separate from the other office noise samples

in the SOM, but are located next to the regular office noises. They are also not

normally separated in the K-means clustering. Please see Figure A.12.

In the K-means clustering, the office noises are always clustered into at least

three different groups, which is an indication that this group may not actually be as

cohesive as SOM tests indicate. However, there is usually one group that contains

a noticeable majority of the samples. The cluster with the majority of the samples

is different than the cluster with the majority of the shopping or restaurant noise

in the large majority of the tests.

For these reasons, the office noises will form the basis of a cluster, and will

be separated from the shopping and restaurant noises. The samples that contain

phone noise will not be separated. This also makes sense logically as the phone

ring sounds are not continuous and occur only infrequently. It would be difficult

and distracting to switch the hearing aid program each time this sound occurred,

especially since the duration of the phone sound is likely shorter than the time

it would take to switch the program. Additionally, phone ring sounds are likely

sounds that the user would like to hear.
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Figure A.11: SOM distribution of shopping, office and restaurant noise samples
using a 50x50 map and 15 autocorrelation lags
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Figure A.12: SOM distribution of shopping, office and restaurant noise samples
using a 50x50 map and 15 autocorrelation lags
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A.23 Restaurant Noise

Of the three main types of babble noise (restaurant noise, shopping noise and office

noise), the restaurant noise is the least cohesive category in the SOM tests. In

some cases the restaurant noise is relatively tightly clustered, but in other cases

there is a large spread. In the majority of the cases, the shopping noise samples are

clustered between the restaurant noise and the office noise, which indicates that

the restaurant noise and the office noise should not be clustered together if the

shopping noise is separate. Samples that include secondary noises do not appear to

be separated from the main group of restaurant noise samples. Please see Figure

A.11.

In the K-means clustering, the restaurant noises are always clustered into at

least three different groups, which is also an indication that this group is not very

cohesive. However, there is usually one group that contains a noticeable majority

of the samples. The cluster with the majority of the samples is different than the

cluster with the majority of the shopping or office noise in most cases.

Therefore, the restaurant noise is clustered separately from both the shopping

and office noise sounds, and the samples with the secondary sounds are not sepa-

rated.

A.24 Electronic Sounds

The electronic sounds have a large spread in all of the SOM tests. Please see Figure

A.13. The electronic sounds are also spread across a number of different groups in
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Figure A.13: SOM distribution of electronic sound samples using a 50x50 map and
five autocorrelation lags

all the K-means tests. This does not appear to be a very cohesive category.

Electronic sounds also tend to be infrequent and short, hence it would not make

sense to include these as a separate category. Instead, these types of sounds can be

grouped with the other sounds where appropriate.
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A.25 Music

The music category actually tends to be dominated by the other sounds in the

sample. There is a large correlation between the in-car samples and the in-car/music

samples in both the SOM and K-means tests. In both, the in-car and in-car/music

samples are categorized together in a separate cluster from the other music samples.

The sets of samples tagged as restaurant noise and music or shopping noise and

music are both also correlated. However, the correlation is not as strong as the

in-car samples. This may also be because the restaurant noise and shopping noise

samples are not as tightly clustered. However, the addition of the music clearly

does change the samples enough to create a separate cluster.

The samples with only music, however, do tend to be clustered in the SOM.

The K-means clustering process also tends to have one group that contains a large

majority of the samples of music. Therefore, music sounds that occur with another

sound will be classified with the primary sound, but sounds that are only music

will be clustered in their own group. This also makes sense logically as music that

occurs alone or as a primary sound is likely something that the user actually wants

to hear, and which would likely require different settings on the hearing as the

frequency range would be different.

A.26 Shopping Noise

In the SOM tests, the samples with shopping noise tend to be somewhat spread.

The samples either form large, long clusters, or two or three smaller clusters. In
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Figure A.14: SOM distribution of music samples using a 50x50 map and 15 auto-
correlation lags
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most cases, the shopping noise samples are between the office noise and restaurant

noise. Please see Figure A.11. In all cases, however, these clusters of shopping noise

appear to be separate. Additionally, samples that include secondary noises are not

separate from the main clusters, indicating that the shopping noise is actually the

primary sound in these samples. Please see Figure A.11.

In the K-means clustering, the shopping noise always spans at least three clus-

ters. There is normally a noticeable majority in one of the clusters. The clusters

occupied by the shopping samples are the same clusters as the restaurant noise

and office noise samples. However, the office noise and restaurant noise samples

normally have the majority of the samples in different clusters. Similar to the

SOM clustering, the samples with secondary noises do not form their own separate

clusters.

For these reasons, the shopping noise category is clustered separately from the

restaurant noise and office noise categories. The samples with secondary noises are

included with the shopping noise samples.

A.27 Phone Ring

The phone ring sounds occur in combination with office noise, and also in com-

bination with office noise/babble. The samples that include the phone ring noise

are somewhat separate from the office noise in the SOM, but they are normally

connected or in the same region. Please see Figure A.12. These samples are not

separate in the K-means clustering. Therefore the samples with the phone ring

sounds will be included with the office noise sounds for the final system. This also
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makes sense logically as the sound of a phone ringing is not constant and occurs

infrequently. It would be difficult and distracting to switch the hearing aid program

each time this sound occurred, especially since the duration of the phone sound is

likely shorter than the time it would take to switch the program. This category

would also be used very infrequently. Additionally, phone ring sounds are likely

sounds that the user would like to hear and should therefore not be removed.

A.28 Industrial

The industrial sounds do appear to be somewhat clustered in the SOM. However

the samples cover a relatively large area of the map, and they are usually located in

nodes which are neighbours, but where the distance between the nodes is relatively

large. Please see Figure A.15.

In the K-means clustering, the industrial samples are always distributed among

four or more groups, and the division between these groups is relatively even. It

does not appear that industrial sounds are a very cohesive group. They also do not

appear to be similar to any other group.

Because these sounds are quite diverse, industrial sounds should not be used to

form the basis of a cluster, and will therefore not be included in the final system.

Additionally, the sheer volume of most industrial workplaces would make it

difficult to use a hearing aid. Most industrial workplaces would also require their

own hearing protection. This type of environment is likely not a place where a user

would be attempting to use a hearing aid.
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Figure A.15: SOM distribution of industrial samples using a 50x50 map and 15
autocorrelation lags


