

A RECONFIGURABLE HARDWARE IMPLEMENTATION OF

GENETIC ALGORITHMS FOR VLSI CAD DESIGN

A Thesis

Presented to

The Faculty of Graduate Studies

of

The University of Guelph

by

GURWANT KAUR KOONAR

In partial fulfilment of requirements

for the degree of

Master of Science

July, 2003

c©Gurwant Kaur Koonar, 2004

2

ABSTRACT

A RECONFIGURABLE HARDWARE IMPLEMENTATION OF

GENETIC ALGORITHMS FOR VLSI CAD DESIGN

Gurwant Kaur Koonar

University of Guelph, 2003

Advisor:

Professor Shawki Areibi

The use of integrated circuits in high-performance computing, telecommunications

and consumer electronics has been growing at a very fast pace. Due to increasing com-

plexity of VLSI circuits, there is a growing need for efficient CAD tools. Partitioning is

a technique, widely used to solve diverse problems occuring in VLSI CAD. Several tech-

niques (heuristics) are available to solve the circuit partitioning problem ranging from

local search technique to advanced Meta-heuristics.

A Genetic Algorithm (GA) is a robust problem solving method based on natural

selection and can be used for solving a wide range of problems, including the problem of

circuit partitioning. Although, a GA can provide very good solutions for the problem of

circuit partitioning, the amount of computations and iterations required for this method

is enormous. As a result, software implementations of GA can become extremely slow for

large circuit partitioning problems. An emerging technology capable of providing high

computational performance on a diversity of applications is reconfigurable computing, also

known as adaptive computing, and FPGA-based computing. Implementing algorithms

directly in hardware, on the level of circuits, significantly reduces the control overhead

and large speedups can be obtained.

In this research, an architecture for implementing Genetic Algorithms on an FPGA

is proposed. The architecture employs a combination of pipelining and parallelization to

achieve speedups over software based GA. The proposed design was coded in VHDL and

was functionally verified by writing a testbench and simulating it using ModelSim. The

design was synthesized on Virtex part xcv2000e using Xilinx ISE 5.1. The GA processor

proposed in this thesis achieves more than 100× improvement in processing speed as

compared to the software implementation. The proposed architecture is discussed in

detail and the results are presented and analyzed.

Acknowledgements

I would like to express my gratitude to my advisors Dr. Shawki Areibi and Dr. Med-

hat Moussa for their invaluable assistance with this thesis and guidance throughout

my graduate studies. I would also like to thank Dr. Bob Dony for being in my com-

mittee. Special thanks to my loving husband for his support and advice throughout

this research. Without his help, this work would never have been possible. Finally,

I would like to thank my parents who encouraged me and gave me the will to

continue.

i

To

my family

whose love and encouragement helped accomplish this

thesis.

ii

Contents

1 Introduction 2

1.1 Reconfigurable Hardware . 4

1.2 Genetic Algorithms . 7

1.3 Motivation . 9

1.4 Contributions . 12

1.5 Thesis Outline . 13

2 Background 14

2.1 Overview of Circuit Partitioning(CP) 14

2.1.1 0-1 Linear Programming Formulation of Netlist Partitioning 16

2.1.2 Complexity of Circuit Partitioning 18

2.1.3 Heuristic Search Techniques 19

2.1.4 Benchmarks . 21

2.2 Genetic Algorithm (GA) as an optimization method 23

2.2.1 Characteristics of Genetic Search 23

2.2.2 Main Components of Genetic Search 24

2.2.3 GA Implementation . 30

iii

2.2.4 Mapping Genetic Algorithm to Hardware 34

2.3 Overview of Field Programmable Gate Arrays 34

2.4 Overview of Reconfigurable Computing Systems 38

2.5 Previous work in Hardware based GA 41

2.5.1 Specific Architectures to speed GA 42

2.6 Summary . 50

3 Architecture 51

3.1 System Specifications and Constraints 51

3.2 System Architecture . 54

3.2.1 Detailed Internal Architecture 57

3.2.2 Core Generics . 63

3.2.3 Core Memories . 64

3.2.4 Pin Description . 65

3.3 Representation for Circuit-Partitioning 68

3.4 Selection Module . 69

3.4.1 Pin Description . 70

3.4.2 Functional Description . 70

3.5 Crossover and Mutation Module . 74

3.5.1 Pin Description . 74

3.5.2 Functional Description . 74

3.6 Fitness Module . 80

3.6.1 Pin Description . 80

3.6.2 Functional Description . 82

iv

3.7 Main Controller Module . 85

3.7.1 Pin Description . 85

3.7.2 Functional Description . 85

3.8 Simulation and Verification . 93

3.9 Summary . 98

4 Implementation and Mapping 99

4.1 Overview and System Operation of RPP 99

4.2 Implementation Details . 101

4.2.1 System Description for Top level Implementation 102

4.2.2 Functional description of the Logic-module FPGA design . . 104

4.2.3 Address Mapping . 109

4.3 Results and Conclusions . 109

4.4 Summary . 111

5 Conclusions and Future Directions 113

5.1 Future Work . 114

5.1.1 Architecture Enhancements 114

5.1.2 Platform-mapping Enhancements 115

A Introduction to AMBA Buses 116

A.1 Overview of the AMBA specification 116

A.2 A typical AMBA-based microcontroller 117

A.3 Terminology . 119

A.4 Introducing the AMBA AHB . 120

v

A.4.1 Overview of AMBA AHB operation 122

A.4.2 Basic Transfer . 123

A.4.3 Address Decoding . 125

A.4.4 AHB Bus Slave . 126

A.4.5 AMBA AHB signal list . 126

B Overview of Rapid Prototyping Platform 130

B.1 Overview of the Integrator/AP . 130

B.2 Overview of Core Module . 134

B.3 Overview of Logic Module . 137

B.4 Rapid Prototyping Platform Design Flow 138

C VHDL Code 141

C.1 GaTop.vhd . 141

C.2 test bench.vhd . 147

Bibliography 156

vi

List of Tables

2.1 Benchmarks used as test cases . 22

2.2 Statistical information of benchmarks 22

3.1 Register address map . 60

3.2 Generics used in the design . 63

3.3 Core Memories . 64

3.4 Pin description of Top level GA processor(part1) 66

3.5 Pin description of Top level GA processor(part2) 67

3.6 Pin description of Selection Module 71

3.7 Pin description of Crossover Module 75

3.8 Pin description of fitness Module 81

3.9 Pin description of Main Controller(part1) 86

3.10 Pin description of Main Controller(part2) 87

3.11 Default GA parameters . 93

3.12 Software Fitness Results . 94

3.13 Hardware Fitness Results . 94

3.14 Performance results for Hardware GA and Software GA for different

Generation Count . 95

vii

3.15 Performance results for Hardware GA and Software GA for different

population size . 96

3.16 Synthesis Report . 97

4.1 RPP test results with different generation counts for different Bench-

marks . 110

A.1 AMBA AHB signals(part1) . 128

A.2 AMBA AHB signals(part2) . 129

viii

List of Figures

1.1 Trade-off between flexibility and performance. 5

1.2 Overall Design Flow . 10

2.1 Illustration of circuit partitioning 15

2.2 Representation schemes and genetic operators 26

2.3 Genetic Operators . 29

2.4 A generic Genetic Algorithm . 31

2.5 Field Programmable Gate Arrays 35

2.6 FPGA with a two dimensional array of logic blocks. 36

2.7 Configurable Logic Block. 37

2.8 Design Steps for Reconfigurable Computing. 40

3.1 Hardware software Design Comparison. 55

3.2 Architecture for the Genetic Algorithm Processor. 58

3.3 Interaction of Host with Genetic Algorithm Processor. 59

3.4 CMlength Register . 60

3.5 NetNum Register . 61

3.6 PopSiz Register . 61

ix

3.7 GenNum Register . 62

3.8 CrossoverRate Register . 62

3.9 MutationRate Register . 63

3.10 Pin description of top level GA Processor 65

3.11 Representation of chromosome and netlist for circuit-partitioning. . 68

3.12 Pin description of Selection Module 69

3.13 Detailed description of Selection Module. 72

3.14 State Diagram of Selection Module 73

3.15 Pin description of Crossover and Mutation Module 76

3.16 Address generation for the Chromosome Memory. 77

3.17 Detailed Description of Crossover and Mutation Module. 78

3.18 Detailed Description of Crossover and Mutation Module logic. . . . 79

3.19 Pin description of Fitness Module 80

3.20 Fitness Calculation. 83

3.21 Detailed Description of Fitness . 84

3.22 Pin description of Main Controller Module 88

3.23 Control Register write Timings . 89

3.24 Control Input data and control Timings 89

3.25 Core output data and control timings 89

3.26 Single port memory access timings 90

3.27 Dual port memory access timings 90

3.28 Detailed Description of Main Controller. 91

3.29 State Diagram of Main Controller Module 92

x

1

4.1 Connection of Host to Rapid Prototyping Platform 101

4.2 System Description for Top Level Implementation 103

4.3 System Description of the Logic-module FPGA 105

4.4 AHB Top Level Controller . 106

4.5 System level Implementation Flow Diagram 108

4.6 Address Mapping In Logic Module 109

4.7 Fitness plots for different benchmarks. 111

A.1 A typical AMBA System. 118

A.2 Basic Transfer . 124

A.3 Address Decoding System. 126

A.4 AHB Bus Slave Interface . 127

B.1 ARM Integrator/AP Block Diagram 131

B.2 Functional Block Diagram of System Controller FPGA on ARM In-

tegrator/AP . 132

B.3 System Bus Architecture For Rapid Prototyping Platform 134

B.4 Block Diagram For Core Module 135

B.5 FPGA functional Diagram for Core Module 136

B.6 FPGA functional Diagram for Logic Module 137

Chapter 1

Introduction

The last decade has brought an explosive growth in the technology for manufac-

turing integrated circuits. Integrated circuits with several million transistors are

now common place. This manufacturing capability, combined with the economic

benefits of large electronic systems, is forcing a revolution in the design of these

systems and providing a challenge to those people interested in integrated system

design. As the size and complexity of digital systems increases, more computer

aided design (CAD) tools are introduced into the hardware design process. The

early paper-and-pencil design methods have given way to sophisticated design en-

try, verification, and automatic hardware generation tools. The use of interactive

and automatic design tools has significantly increased the designer’s productivity

with an efficient management of the design project and by automatically perform-

ing a huge amount of time-extensive tasks. The designer heavily relies on software

tools for nearly every aspect of the development cycle, from the circuit specification

and design entry to the performance analysis, layout generation and verification.

2

CHAPTER 1. INTRODUCTION 3

A large subset of problems in VLSI CAD is computationally intensive, and future

CAD tools will require even more accuracy and computational capabilities. The

complexity of digital systems imposes two main limitations in design implementa-

tion: (a) due to the huge size of a digital circuit, it cannot be implemented as single

device, (b) electronic design automation (EDA) tools often cannot handle the com-

plexity of the digital circuits with hundreds of thousands of gates and flip flops or

the runtime of the software may become unreasonable large. A way to solve these

problems is to partition the entire circuit into a set of sub-circuits, which are then

further processed with other design tools or are implemented as a single device.

Since these problems are NP-hard, they consume a lot of CPU time to partition

a circuit with millions of transistors. Therefore, there is need to accelerate this

process which is achieved by mapping algorithms in hardware.

An emerging technology capable of providing high computational performance

on a diversity of applications is reconfigurable computing, also known as adaptive

computing, or FPGA-based computing. The evolution of reconfigurable computing

systems has been mainly considered as a hardware-oriented design. Research has

been focusing on configuring the hardware to implement a particular algorithm and

on developing hardware devices that can be efficiently reconfigured for particular

applications. The advances in reconfigurable computing architecture, in algorithm

implementation methods, and in automatic mapping methods of algorithms into

hardware and processor spaces form together a new paradigm of computing and

programming that has often been called ‘Computing in Space and Time’ or ‘Com-

puting without Computer’.

CHAPTER 1. INTRODUCTION 4

1.1 Reconfigurable Hardware

Computer designers are faced with the fundamental trade-off between flexibility

and performance. The architectural choices for computing elements span a wide

spectrum, with general purpose (GP) processors and application-specific integrated

circuits (ASICs) at opposite ends. GP processors are not optimized to a specific

application; they are flexible due to their versatile instruction sets. ASICs are

dedicated hardware devices as they are designed specifically to perform a given

computation. For a given task, ASICs achieve higher performance, require less

silicon area, and are less power-consuming than processors. They lack, however, in

flexibility. Whenever the applications changes, a new ASIC must be developed.

In the last decade, a new class of architectures has emerged that promises to

overcome this traditional trade-off and achieve both the high performance of ASICs

and the flexibility of GP processors. The hardware of these reconfigurable comput-

ers is not static but adapted to each individual application. The first commer-

cially available devices for implementing such computers were SRAM-based field-

programmable gate arrays (FPGAs)[Hauc98].The main characteristic of Reconfig-

urable Computing (RC) is the presence of hardware that can be reconfigured to

implement specific functionality more suitable for specially tailored hardware than

on a simple uniprocessor. RC systems join microprocessors and programmable

hardware in order to take advantage of the combined strengths of hardware and

software. They have been used in applications ranging from embedded systems to

high performance computing.

The principal benefits of reconfigurable computing are the ability to execute

CHAPTER 1. INTRODUCTION 5

GP

PROCESSORS

ASICs

RECONFIGURABLE

COMPUTING

PERFORMANCE

FLEXIBILITY

Figure 1.1: Trade-off between flexibility and performance.

larger hardware designs with fewer gates and to realize the flexibility of a software-

based solution while retaining the execution speed of a more traditional, hardware-

based approach. This makes doing more with less a reality. The significant ad-

vantage of reconfigurable computing has been achieved mainly because of three

reasons:

1. Implementing of algorithms directly in hardware, on the level of circuits,

thus, without control overhead. As a result, the performance is better than

in conventional processors.

2. Parallelism is the nature of hardware. Implementing algorithms in hardware

means the massive use of parallelism. As the computing space is large and

reconfigurable, the high degree of parallelism and efficient implementation are

easily achievable.

3. The flexible, fast and risk-minimized way to synthesize application-specific

CHAPTER 1. INTRODUCTION 6

multi-purpose hardware (“time-to-market”).

Therefore, reconfigurable computing [Comp02] is intended to fill the gap be-

tween the hardware(ASICs) and software(General Purpose(GP) Processors), achiev-

ing potentially much higher performance than software, while maintaining a higher

level of flexibility than hardware as shown in Figure 1.1.

Reconfigurable hardware refers to the use of any electronic hardware system

that can be changed in structure either statically(between applications) or dynam-

ically (during an application) without the addition of physical hardware elements.

It can be implemented using any technology that allows the structure of hardware

to change using only electrical signals. Early examples of reconfigurable hardware

can be seen in the application of programmable logic devices (PLDs) and systems

incorporating sets of fixed components whose interconnections can be changed by

reconfiguring a crossbar or interconnection device. In the context of this thesis,

reconfigurable hardware refers to the use of Field Programmable Gate Array as

the basic hardware element to be reconfigured. FPGAs generally consist of sets of

flexible gates, registers, and memories whose function and interconnection are con-

trolled through the loading of SRAMs(Static Random Access Memory). FPGAs are

able to support both static (reconfiguration between applications) and dynamic (re-

configuration during application execution) reconfiguration since all that is needed

to change the hardware is to reload the controlling SRAMs with the appropriate

configuration bits.

CHAPTER 1. INTRODUCTION 7

1.2 Genetic Algorithms

A Genetic Algorithm (GA) is an optimization method based on natural selection

[Gold89]. It effectively seeks solutions from a vast search space at reasonable com-

putation costs. Before a GA starts, a set of candidate solutions, represented as

binary bit strings, are prepared. This set is referred to as a population, and each

candidate solution within the set as a chromosome. A fitness function is also defined

which represents the problem to be solved in terms of criteria to be optimized. The

chromosomes then undergo a process of evaluation, selection, and reproduction.

In the evaluation stage, the chromosomes are tested according to the fitness func-

tion. The results of this evaluation are then used to weight the random selection

of chromosome in favor of the fitter ones for the final stage of reproduction. In this

final stage, a new generation of the chromosomes are ”evolved” through genetic

operations which attempt to pass on better characteristics to the next generation.

Through this process, which can be repeated as many times as required, less fit

chromosomes are gradually expelled from a population and the fitter chromosomes

become more likely to emerge as the final solution.

Genetic Algorithms have been recognized as a robust general-purpose optimiza-

tion technique. But application of GAs to complex problems can overwhelm soft-

ware implementations of GAs, which may cause unacceptable delays in the opti-

mization process. This is true in various applications of GA where the search space

is very large. Therefore, hardware implementation of GA would be applicable to

problems too complex for software-based GAs. Moreover, the nature of GAs and

their applicability naturally leads them for hardware implementation, thus obtain-

CHAPTER 1. INTRODUCTION 8

ing a great speedup over software implementation [Koza97].

Since a GA engine requires certain parts of its design to be easily changed

(e.g. the function to be optimized, different sets of parameters), a hardware-based

Genetic Algorithm was not feasible until field-programmable gate arrays [Brow92]

were developed. Reprogrammable FPGAs are essential for the development of a

hardware genetic algorithm system.

Various empirical analysis of software-based GAs indicates that a small number

of simple operations and the function to be optimized are executed frequently during

the run. These operations account for 80-90% of the total execution time. If m is

the population size (number of strings manipulated by the GA in one iteration) and

g is the number of generations, a typical GA would execute each of its operations

mg times. For complex problems, large values of m and g are required, so it is

imperative to make the operations as efficient as possible. Work by Spears and De

Jong [Jong89] indicates that for NP-complete problems, m=100 and values of g on

the order of 104-105 may be necessary to obtain a good result and avoid premature

convergence to a local optimum. Pipelining and parallelization can help provide

the desired efficiency, and these are easily done in hardware. This is made possible

with reconfigurable hardware.

The main goal of the research reported in this thesis is to propose an architec-

ture for implementing Genetic Algorithm(GA) that can employ a combination of

pipelining and parallelization to achieve speed-ups. This research demonstrates the

feasibility of solving the circuit-partitioning problem using a hardware based GA. It

also demonstrates the usefulness of a GA processor by comparing the performance

of a hardware based GA with that of a software-based GA.

CHAPTER 1. INTRODUCTION 9

This work builds upon other research in reconfigurable hardware systems, which

improve system performance by mapping some or all software components to hard-

ware using reprogrammable FPGAs. The design flow for this thesis is shown in

Figure 1.2

1.3 Motivation

Partitioning is a technique widely used to solve diverse problems occurring in VLSI

CAD. Applications of partitioning can be found in logic synthesis, logic optimiza-

tion, testing, and layout synthesis [?]. This work has been motivated by the need to

provide digital system designers with the capability of implementing large circuits

that either cannot be processed with the optimization tools or do not fit into a single

device. Therefore, in this research, the circuit partitioning problem is solved using

GA and the wide range of applications of circuit partitioning, which motivated this

work are described below.

High-quality partitioning is critical in high-level synthesis. To be useful, high-

level synthesis algorithms should be able to handle very large systems. Typically,

designers partition high-level design specifications manually into procedures, each

of which is then synthesized individually. However, logic decomposition of the

design into procedures may not be appropriate for high-level and logic-level synthe-

sis. Different partitionings of the high-level specifications may produce substantial

differences in the resulting IC chip areas and overall system performance.

Some technology mapping programs use partitioning techniques to map a circuit

specified as a network of modules performing simple Boolean operations onto a

CHAPTER 1. INTRODUCTION 10

Software Implementation of

GA for Circuit Partitioning

Synthesis

System Verification

Mapping on RPP

Architecture Functional

Adjustments

Profiling, Identifying

Bottlenecks

System Specifications

Design of Internal

Architecture for GA

Simulation
Adjust System

Architecture

Specifications

met?

Verification

O.K?

Verification

O.K?

NO

NO

YES

YES

YES

NO

Figure 1.2: Overall Design Flow

CHAPTER 1. INTRODUCTION 11

network composed of specific modules available in an FPGA.

Since the test generation problem for large circuits may be extremely intensive

computationally, circuit partitioning may provide the means to speed it up. Gen-

erally, the problem of test pattern generation is NP-complete. To date, all test

generation algorithms that guarantee finding a test for a given fault exhibit the

worst-case behavior requiring CPU times exponentially increasing with the circuit

size. If the circuit can be partitioned, then the worst-case test generation time

would be reduced.

Partitioning is often utilized in layout synthesis to produce and/or improve

the placement of the circuit modules. Partitioning is used to find strongly con-

nected sub-circuits in the design, and the resulting information is utilized by some

placement algorithms to place in mutual proximity components belonging to such

sub-circuits, thus minimizing delays and routing lengths.

Another important class of partitioning problems occurs at the system design

level. Since IC packages can hold only a limited number of logic components and ex-

ternal terminals, the components must be partitioned into sub-circuits small enough

to be implemented in the available packages.

Therefore, it is very clear from the above mentioned applications, that circuit

partitioning is very useful in present day scenario. Moreover a GA can effectively

explore the solution space. Therefore, GA optimization techniques help in finding

optimal solutions for the circuit partitioning problem. Although, a GA can provide

very good solutions for the problem of circuit partitioning, the amount of compu-

tations and iterations required for this method is enormous. As a result, software

implementations of a GA can become extremely slow for large circuit partitioning

CHAPTER 1. INTRODUCTION 12

problems. But larger speedups have been observed when frequently used software

routines are implemented in hardware by way of FPGAs. This design is also im-

plemented on FPGAs. FPGAs were used because they are reprogrammable and

thus can be easily changed to fit the current application. This reprogrammability

is essential in a general purpose GA engine because certain GA modules require

changeability. Thus a hardware based GA is both feasible and desirable.

Therefore, this research focusses on designing the hardware for a GA (GA Pro-

cessor), which is used for the circuit partitioning problem. Also, this GA Processor

developed for circuit partitioning, can be used as an accelerator for other problems

with small modifications.

1.4 Contributions

The main contributions of this research can be summarized as follows:

• Development of a Genetic Algorithm Processor in hardware that is used to

solve the problem of circuit partitioning.

• Achievement of more than 100 times improvement in processing speed as

compared to software implementation with GA Processor.

• Use of pipelined architectures in order to improve speed.

• Implementation and mapping of this architecture on Rapid Prototyping Plat-

form to verify its functionality in actual hardware.

• Flexibility of the architecture as some of the modules in this design can be

CHAPTER 1. INTRODUCTION 13

re-used for other problems as well. Therefore, this design can be extended for

other applications, other than circuit partitioning.

• Use of configurable parameters (generics) which can easily change the memory

address and data bus widths during compilation time. This enables the use

of almost any memory chip along with the design.

• Achievement of the speed of hardware, while retaining the flexibility of a

software by this architecture, due to reprogrammability of FPGAs.

• The research done in this thesis has resulted in publications which have been

included in technical reports [?] and conference proceedings [?].

1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2 more background on Genetic

Algorithm, FPGAs, Circuit partitioning and Reconfigurable Computing is pre-

sented. Previous hardware implementations of Genetic Algorithms are also de-

scribed. Chapter 3 describes an architecture for implementing a GA in hardware

for the circuit partitioning problem in detail. Chapter 4 explains the mapping and

implementation of the proposed architecture. Finally, Chapter 5 presents conclu-

sions and possible avenues for future work. Details of AMBA specification and

Rapid Prototyping Platform are given in Appendix A and Appendix B, respec-

tively. The VHDL code for the testbench and the top level file is given in Appendix

C and the code for rest of the modules is in [?].

Chapter 2

Background

This chapter begins with a more detailed description of circuit partitioning, genetic

algorithms, Field Programmable Gate Arrays (FPGAs) and reconfigurable com-

puting. Earlier work in mapping frequently used software routines to hardware for

speed purposes is described. Finally, previous work in hardware based GAs with

specific architectures is presented.

2.1 Overview of Circuit Partitioning(CP)

Circuit partitioning is the task of dividing a circuit into smaller parts [?]. It is

an important aspect of layout for several reasons. Partitioning can be used di-

rectly to divide a circuit into portions that are implemented on separate physical

components, such as printed circuit boards or chips. The objective is to partition

the circuit into parts such that the sizes of the components are within prescribed

ranges and the complexity of connections between the components is minimized [?].

14

CHAPTER 2. BACKGROUND 15

Figure 2.1 consists of six modules and five nets. Nets connect different modules.

The circuit is to be partitioned into two blocks. Before swapping modules, three

nets were cut. As can be seen in Figure 2.1, after swapping modules between the

two blocks we end up minimizing the number of signal nets that interconnect the

components between the blocks(i.e. one cut).

Figure 2.1: Illustration of circuit partitioning

A natural way of formalizing the notion of wiring complexity is to attribute to

each net in the circuit some connection cost, and to sum the connection costs of all

nets connecting different components. A more important use of circuit partitioning

is to divide up a circuit hierarchically into parts with divide-and-conquer algorithms

for placement, floorplanning, and other layout problems. Here, cost measures to

be minimized during partitioning may vary, but mainly they are similar to the

connection cost measures for general partitioning problems.

As the size of present-day computer chips become larger (i.e., chips containing

more than ten million transistors in sub-micron areas), the importance of obtaining

near-optimal layouts that efficiently place and route the signals becomes increas-

ingly important. Partitioning is a ”key” approach in reducing the connectivity

CHAPTER 2. BACKGROUND 16

between areas of the chip so that modules can be more efficiently ”placed” and

”routed” to reduce wire-length, congestion, and increase the speed of the overall

design. Among the different objectives that may be satisfied by the desired parti-

tioning are:

1. The minimization of the number of cuts,

2. The minimization of the deviation in the number of elements (inputs, logical

gates, outputs and fanout points) assigned to each partition.

In this research, GAs are used to solve the circuit-partitioning problem.

2.1.1 0-1 Linear Programming Formulation of Netlist Par-

titioning

A standard mathematical model in VLSI layout associates a graph G = (V, E)

with the circuit netlist, where vertices in V represent modules, and edges in E

represent signal nets. The netlist is more generally represented by a hypergraph

H = (V, E ′), where hyperedges in E ′ are the subsets of V contained by each net

(since nets often are connected to more than two modules). In this formulation,

we attempt to partition a circuit with nm modules and nn nets into nb blocks

containing approximately nm

nb
modules each; (i.e. we attempt to equi-partition the

V modules among the nb blocks), such that the number of uncut nets in the nb

blocks is maximized.

Defining:

xik =















1 if module i is placed in block k

0 otherwise

CHAPTER 2. BACKGROUND 17

yjk =















1 if net j is placed in block k

0 otherwise

So the linear integer programming (LIP) model of the netlist partitioning problem

is given by maximizing the number of uncut nets in each block;

Max
nn
∑

j=1

nb
∑

k=1

yjk (2.1)

s.t. (i) Module placement constraints:

nb
∑

k=1

xik = 1, ∀i = 1, 2, . . . , nm

(ii) Block size constraints:

nm
∑

i=1

xik ≤
nm

nb

, ∀k = 1, 2, . . . , nb

(iii) Netlist constraints:

yjk ≤ xik, where

1 ≤ j ≤ nn

1 ≤ k ≤ nb

i ∈ Net j

(iv) 0-1 constraints:

xik ∈ {0, 1}, 1 ≤ i ≤ nm; 1 ≤ k ≤ nb

yjk ∈ {0, 1}, 1 ≤ j ≤ nn; 1 ≤ k ≤ nb

CHAPTER 2. BACKGROUND 18

The net placement constraints determine if a net (wire) j is placed entirely in block

k or if it is not. In problem (LIP) we maximize the number of uncut nets in the nb

blocks. This is equivalent to the netlist partitioning problem where we minimize

the number of wires connecting the nb blocks.

2.1.2 Complexity of Circuit Partitioning

At the basis of all partitioning problems are variations of the following combinatorial

problem.

Hypergraph Partitioning [?]

Instance: An undirected hypergraph G = (V,E)

with vertex weights w : V → IN ,

edge weights l : E → IN ,

and a maximum cluster size B ∈ IN

Configurations: All partitions of V into subsets V1, . . . , Vm where m ≥ 2.

Legal configurations: All partitions such that

∑

v∈Vi
w(v) ≤ B, ∀i = 1, . . . , m.

Cost functions: c(V1, . . . , Vm) =

∑

e∈E(|{i ∈ {1, . . . , m}|Vi ∩ e 6= φ}| − 1)l(e)

The legal configurations are the partitions in which each cluster Vi has a total

vertex weight not exceeding B. The weights of the vertices represent the block sizes,

and the weights on the edges represent connection costs. The maximum cluster size

B is a parameter that controls the balance of the partitions.

The Hypergraph Partitioning problem is NP-complete even if B ≥ 3 is fixed and

w ≡ 1, l ≡ 1 [?]. The problem is only weakly NP-complete if G is restricted to be

CHAPTER 2. BACKGROUND 19

a tree [?]. In this case there is a pseudo-polynomial time algorithm that solves the

problem in time O(nB2). If G is a tree and all edge weights are identical, or if G

is a tree and all vertex weights are identical [?], then the problem is in P.

2.1.3 Heuristic Search Techniques

It has been shown that graph and network partitioning problems are NP-Complete[?].

Therefore, attempts to solve these problems have concentrated on finding heuristics

which yield approximate solutions in polynomial time. Heuristic methods can pro-

duce good solutions (possibly even an optimal solution) quickly. Often in practical

applications, several good solutions are of more value than one optimal one. The

first and foremost consideration in developing heuristics for combinatorial prob-

lems of this type is finding a procedure that is powerful and yet sufficiently fast

to be practical (many real life problems contain more than 100,000K modules and

nets). For the circuit partitioning problem several classes of algorithms were used

to generate good partitions. Kernighan and Lin (KL) [?] described a successful

heuristic procedure for graph partitioning which became the basis for most mod-

ule interchange-based improvement partitioning heuristics used in general. Their

approach starts with an initial bisection and then involves the exchange of pairs of

vertices across the cut of the bisection to improve the cut-size. The main contri-

bution of the Kernighan and Lin algorithm is that it reduces the danger of being

trapped in local minima that face greedy search strategies. The algorithm deter-

mines the vertex pair whose exchange results in the largest decrease of the cut-size

or in the smallest increase, if no decrease is possible. The exchange of vertices is

made only tentatively where vertices involved in the exchange are locked temporar-

CHAPTER 2. BACKGROUND 20

ily. The locking of vertices prohibits them from taking part in any further tentative

exchanges. A pass in the Kernighan and Lin algorithm attempts to exchange all

vertices on both sides of the bisection. At the end of a pass the vertices that yield

the best cut-size are the only vertices to be exchanged. Computing gains in the KL

heuristic is expensive; O(n2) swaps are evaluated before every move, resulting in a

complexity per pass of O(n2 log n) (assuming a sorted list of costs).

Fiduccia and Mattheyses (FM) [?] modified the Kernighan and Lin algorithm

by suggesting to move one cell at a time instead of exchanging pairs of vertices,

and also introduced the concept of preserving balance in the size of blocks. The

FM method reduces the time per pass to linear in the size of the netlist (i.e O(p),

where p is the total number of pins) by adopting a single-cell move structure, and

a gain bucket data structure that allows constant-time selection of the highest-gain

cell and fast gain updates after each move.

Krishnamurthy [?] introduced a refinement of the Fiduccia and Mattheyses

method for choosing the best cell to be moved. In Krishnamurthy’s algorithm

the concept of look-ahead is introduced. This allows one to distinguish between

such vertices with respect to gains they make possible in later moves. Sanchis

[?] uses the above technique for multiple way network partitioning. Under such a

scheme, we should consider all possible moves of each free cell from its home block

to any of the other blocks, at each iteration during a pass the best move should be

chosen. As usual, passes should be performed until no improvement in cutset size

is obtained. This strategy seems to offer some hope of improving the partition in

a homogeneous way, by adapting the level gain concept to multiple blocks. In gen-

eral, node interchange methods are greedy or local in nature and get easily trapped

CHAPTER 2. BACKGROUND 21

in local minima. More important, it has been shown that interchange methods fail

to converge to “optimal” or “near optimal” partitions unless they initially begin

from “good” partitions [?]. Sechen [?] shows that over 100 trials or different runs

(each run beginning with a randomly generated initial partition) are required to

guarantee that the best solution would be within twenty percent of the optimum

solution. Hadley, et al. [?] also show that starting from good partitions that are

generated by an eigenvector approach, using this interchange method on the one

partition yields better results than starting from 30 random partitions.

2.1.4 Benchmarks

Some of the benchmarks used in this thesis to evaluate the performance of the GA

partitioning are presented in Table 2.1. Chip1-Chip4 circuits are taken from the

work of Fiduccia & Mattheyses [?]. The rest are taken from the MCNC gate array

and standard cell test suite benchmarks [?]. As seen in the table these netlists vary

in size from 200 to 15000 nodes and 300 to 20000 nets. Tables 2.1-2.2 provide some

information on the number of nets incident on each cell and the number of cells

that are contained within a net, and the average and maximum node degree and

net sizes. Node Degree describes the max number of nets connected to a module

and Net Size describes the maximum number of modules connected with a net.

In Table 2.2, the column (Nets Incident on Cell) summarizes and describes the

statistics of cells with only 1 net, cells with 2 nets cells and so on . The second

column describes the statistics of nets with 2, 3 modules connected and so on.

CHAPTER 2. BACKGROUND 22

Circuit Nodes Nets Pins Node Degree Net Size
MAX x σ MAX x σ

net9 mod10 10 9 22 3 2.2 0.4 3 2.4 0.49
net12 mod15 15 12 30 3 2.0 0.5 3 2.5 0.50
net15 mod10 10 15 48 9 4.8 2.3 10 3.2 1.94

Pcb1 24 32 84 7 3.5 1.35 8 2.63 1.19
Chip3 199 219 545 5 2.73 1.28 9 2.49 1.25
Chip4 244 221 571 5 2.34 1.13 6 2.58 1.00
Chip2 274 239 671 5 2.45 1.14 7 2.80 1.12
Chip1 300 294 845 6 2.82 1.15 14 2.87 1.39
Prim1 832 901 2906 9 3.50 1.29 18 3.22 2.59
Prim2 3014 3029 11219 9 3.72 1.55 37 3.70 3.82
Bio 6417 5711 20912 6 3.26 1.03 860 3.66 20.92

Table 2.1: Benchmarks used as test cases

Circuit Nets Incident on Cell Cells Incident on Net
1 2 3 ≥ 5 2 3 4 5-19 ≥ 20

net9 mod10 55% 55% 44% 44% 80% 20% 20% 20% 20%
net12 mod15 50% 50% 50% 50% 13% 73% 13% 13% 13%
net15 mod10 40% 40% 40% 6% 20% 10% 20% 30% 20%

Pcb1 20% 62.5% 28.1% 3.1% 29.1% 25% 25% 12.5% 0.0%
Chip3 20% 31% 14% 8.5% 83% 1.8% 6.8% 8.6% 0.0%
Chip4 23% 47% 7% 3.3% 64% 24% 4.5% 7.2% 0.0%
Chip2 20% 41% 20% 6.6% 57% 17% 18% 8.5% 0.0%
Chip1 11% 37% 17% 5.3% 55% 24% 8.5% 12.1% 0.0%
Prim1 5.6% 18% 25% 19.3% 55% 26% 6.9% 12.1% 0.0%
Prim2 1.4% 15% 42% 23.9% 61% 12% 6.7% 19.9% 0.4%
Bio 0.03% 13% 70% 10.5% 69% 16% 7.5% 5.3% 2.2%

Table 2.2: Statistical information of benchmarks

CHAPTER 2. BACKGROUND 23

2.2 Genetic Algorithm (GA) as an optimization

method

A genetic algorithm is a natural selection-based optimization technique [?]. The

basic goal of GA is to optimize fitness functions. The algorithms are called genetic

because the manipulation of possible solutions resembles the mechanics of natu-

ral selection. These algorithms which were introduced by Holland [?] in 1975 are

based on the notion of propagating new solutions from parent solutions, employ-

ing mechanisms modeled after those currently believed to apply in genetics. The

best offspring of the parent solutions are retained for a next generation of mating,

thereby proceeding in an evolutionary fashion that encourages the survival of the

fittest.

2.2.1 Characteristics of Genetic Search

There are four major differences between GA-based approaches and conventional

problem-solving methods [?]:

1. GAs work with a coding of the parameter set, not the parameters themselves.

2. GAs search for optima from a population of points, not a single point.

3. GAs use payoff (objective function) information, not other auxiliary knowl-

edge such as derivative information used in calculus-based methods.

4. GAs use probabilistic transition rules, not deterministic rules.

CHAPTER 2. BACKGROUND 24

These four properties make GAs robust, powerful, and data-independent [Gold89].

A GA is a stochastic technique with simple operations based on the theory of nat-

ural selection. A simple GA starts with a population of solutions encoded in one

of many ways. Binary encodings are quite common and are used in this thesis for

circuit partitioning problem. The GA determines each string’s strength based on

an objective function and performs one or more of the genetic operators on certain

strings in the population. The basic operations are selection of population members

for the next generation, “mating” these members via crossover of “chromosomes,”

and performing mutations on the chromosomes to preserve population diversity so

as to avoid convergence to local optima. The crossover and mutation operators are

crucial to any GA implementations as will be explained in section 2.2.2.3. Finally,

the fitness of each member in the new generation is determined using an evalu-

ation (fitness) function. This fitness influences the selection process for the next

generation. The GA operations selection, crossover and mutation primarily involve

random number generation, copying, and partial string exchange. Thus they are

powerful tools which are simple to implement. Its basis in natural selection allows

a GA to employ a “survival of the fittest” strategy when searching for optima. The

use of a population of points helps the GA avoid converging to false peaks (local

optima) in the search.

2.2.2 Main Components of Genetic Search

There are essentially four basic components necessary for the successful implemen-

tation of a Genetic Algorithm. At the outset, there must be a code or scheme that

allows for a bit string representation of possible solutions to the problem. Next, a

CHAPTER 2. BACKGROUND 25

suitable function must be devised that allows for a ranking or fitness assessment of

any solution. The third component, contains transformation functions that create

new individuals from existing solutions in a population. Finally, techniques for

selecting parents for mating, and deletion methods to create new generations are

required.

2.2.2.1 Representation Module

In the original GA’s of Holland [?], each solution may be represented as a string

of bits, where the interpretation of the meaning of the string is problem specific.

As can be seen in Figure 2.2a, one way to represent the partitioning problem is

to use group-number encoding where the j th integer ij ∈ {1, . . . , k} indicates the

group number assigned to object j. This representation scheme creates a possibility

of applying standard operators [?]. However an offspring may contain less than k

groups; moreover, an offspring of two parents, both representing feasible solutions

may be infeasible, since the constraint of having equal number of modules in each

partition is not met. In this case either special repair heuristics are used to mod-

ify chromosomes to become feasible, or penalty functions that penalize infeasible

solutions, are used to eliminate the problem. These schemes will be explained in

detail in Section 2.2.3.2. The second representation scheme is shown in Figure 2.2b.

Here, the solution of the partitioning problem is encoded as n + k − 1 strings of

distinct integer numbers. Integers from the range {1, .., n} represent the objects,

and integers from the range {n + 1, . . . , n + k − 1} represent separators; this is a

permutation with separators encoding. This representation scheme leads to 100%

feasible solutions [?], but requires more computation time due to the complexity of

CHAPTER 2. BACKGROUND 26

M7M6M5M3M8M4M2M1

BLOCK 1BLOCK 0

(b) Permutation with Separator Encoding.

(a) Group Number Encoding

01110100

M8M7M6M5M4M3M2M1

Figure 2.2: Representation schemes and genetic operators

the unary operator involved.

2.2.2.2 Evaluation Module

Genetic Algorithms work by assigning a value to each string in the population

according to a problem-specific fitness function. It is worth noting that nowhere

except in the evaluation function is there any information (in the Genetic Algo-

rithm) about the problem to be solved. For the circuit partitioning problem, the

evaluation function measures the worth (number of cuts) of any chromosome (par-

tition) for the circuit to be solved and this is the most time consuming function for

this problem.

2.2.2.3 Reproduction Module

This module is perhaps the most significant component in the Genetic Algorithm.

Operators in the reproduction module, mimic the biological evolution process, by

CHAPTER 2. BACKGROUND 27

using unary (mutation type) and higher order (crossover type) transformation to

create new individuals. Mutation as shown in Figure 2.3c is simply the introduction

of a random element, that creates new individuals by a small change in a single

individual. When mutation is applied to a bit string, it sweeps down the list of bits,

replacing each by a randomly selected bit, if a probability test is passed. On the

other hand, crossover recombines the genetic material in two parent chromosomes

to make two children. It is the structured yet random way that information from

a pair of strings is combined to form an offspring.

Crossover begins by randomly choosing a cut point K where 1 ≤ K ≤ L, and L is

the string length. The parent strings are both bisected so that the leftmost partition

contains K string elements, and the rightmost partition contains L − K elements.

The child string is formed by copying the rightmost partition from parent P1 and

then the leftmost partition from parent P2. Figure 2.3 shows an example of applying

the standard crossover operator (sometimes called one-point crossover) to the group

number encoding scheme. Increasing the number of crossover points is known

to be multi-point crossover. The mutation and crossover operators as described

above, apply for the first representation scheme “group number encoding”. These

operators are modified for the “permutation with separator encoding” scheme. A

mutation in this case, would swap two objects (separators excluded). The crossover

operator considered is the partially matched crossover (PMX) [?]. As shown in

Figure 2.3d, PMX builds an offspring by choosing a sub-partition of a solution from

one parent, and preserving the position of as many modules as possible from the

other parent. A sub-partition of the solution is selected by choosing two random cut

points, which serve as boundaries for swapping operations. Figure 2.3e illustrates

CHAPTER 2. BACKGROUND 28

this process in detail. Generally, the results of the Genetic Algorithms based on

permutation with separators encoding are better than those based on group-number

encoding, but take a longer time to converge [?].

2.2.2.4 Population Module

This module contains techniques for population initialization, generation replace-

ment, and parent selection techniques. The initialization techniques generally used

are based on pseudo-random methods. The algorithm will create its starting pop-

ulation by filling it with pseudo-randomly generated bit strings.

Strings are selected for mating based on their fitness, those with greater fit-

ness are awarded more offspring than those with lesser fitness. Parent selection

techniques that are used, vary from stochastic to deterministic methods. The prob-

ability that a string i is selected for mating is pi, the ratio of the fitness of string

i to the sum of all string fitness values, pi = fitnessi
∑

j
fitnessj

. The ratio of individual

fitness to the fitness sum denotes a ranking of that string in the population. The

Roulette Wheel Selection method is conceptually the simplest stochastic selection

technique used. The ratio pi is used to construct a weighted roulette wheel, with

each string occupying an area on the wheel in proportion to this ratio. The wheel

is then employed to determine the string that participates in the reproduction. A

random number generator is invoked to determine the location of the spin on the

roulette wheel. In Deterministic Selection methods, reproduction trials (selection)

are allocated according to the rank of the individual strings in the population rather

than by individual fitness relative to the population average.

Generation replacement techniques are used to select a member of the old pop-

CHAPTER 2. BACKGROUND 29

(c) PMX Operator (for permutation with separators encoding)

Unknown

Mapping

=X

=

STEP4: Use Mapping to fill the rest of PositionsSTEP3: Fill Posistions (no Conflict)

)2843,71

5

56(O2

O1

O2 (

O1 (

O2 (

O1 (

)3618,472(

)2x43,75x6

One point crossover

STEP2: Swap Segments Between Cut Points

)x618,472x

STEP1: Two Cut Points

1
0
-

111

000

111

000

(b) Standard Crossover Operator (for group number encoding)

110Child2:

001Child1:

000Parent1:

11

(a) Standard Mutation Operator

1100

0011

0101

.001.894.473.760

.840.005.096.120

.373.266.102.801

0100

0011

0101

Chromosome
New

Bit
New

Numbers
Random

Chromosome
Old

Parent1: 1

P1 (1 2 5 7 , 3 4 6 8) x x 7 4 , 8 1 x x)

)xx43,75xx)2318,4756P2 (

Figure 2.3: Genetic Operators

CHAPTER 2. BACKGROUND 30

ulation and replace it with the new offspring. The quality of solutions obtained

depends on the replacement scheme used. Some of the replacement schemes used

are based on: (i) deleting the old population and replacing it with new offsprings

(GA-dop), (ii) replacing parent solutions with sibling (GA-rps), (iii) replacing the

most inferior members (GA-rmi) in a population by new offsprings. Variations to

the second scheme use an incremental replacement approach, where at each step

the new chromosome replaces one randomly selected from those which currently

have a below-average fitness. The quality of solutions improve using the second

replacement scheme. The reason is that this replacement scheme maintains a large

diversity in the population.

2.2.3 GA Implementation

Figure 2.4 shows a simple Genetic Algorithm. The algorithm begins with an encod-

ing and initialization phase during which each string in the population is assigned a

uniformly distributed random point in the solution space. Each iteration of the ge-

netic algorithm begins by evaluating the fitness of the current generation of strings.

A new generation of offspring is created by applying crossover and mutation to pairs

of parents who have been selected based on their fitness. The algorithm terminates

after some fixed number of iterations.

2.2.3.1 Parameters affecting the performance of Genetic Search

Running a Genetic Algorithm entails setting a number of parameter values. Finding

settings that work well on one’s problem is not a trivial task. If poor settings are

used, a Genetic Algorithm’s performance can be severely impacted. Central to

CHAPTER 2. BACKGROUND 31

GENETIC ALGORITHM
1. Encode Solution Space
2.(a) set pop size, max gen, gen=0;

(b) set cross rate, mutate rate;
3. Initialize Population.
4. While max gen ≥ gen

Evaluate Fitness
For (i=1 to pop size)
Select (mate1,mate2)
if (rnd(0,1) ≤ cross rate)
child = Crossover(mate1,mate2);

if (rnd(0,1) ≤ mutate rate)
child = Mutation();

Repair child if necessary
End For
Add offsprings to New Generation.
gen = gen + 1

End While
5. Return best chromosomes.

Figure 2.4: A generic Genetic Algorithm

these components are questions pertaining to appropriate representation schemes,

lengths of chromosome strings, optimal population sizes, and frequency with which

the transformation functions are invoked.

Choosing the population size for a Genetic Algorithm is a fundamental decision

faced by all GA users. On the one hand, if too small a population size is selected, the

Genetic Algorithm will converge too quickly to a poor solution. On the other hand,

a population with too many members results in long waiting times for significant

improvement, especially when evaluation of individuals within a population must

be performed wholly or partially in serial. Regarding the reproduction module,

experimental data confirms that mutation rates above 0.04 are generally harmful

CHAPTER 2. BACKGROUND 32

with respect to on-line performance. The absence of mutation is also associated

with poorer performance, which suggests that mutation performs an important

service in refreshing lost values. Good on-line performance is associated with high

crossover rate combined with low mutation rate.

Therefore, GA has many variables associated with its implementation. Many

of the parameters available to a GA are:

1. The initial population members (usually randomly generated),

2. The initial population size,

3. The size of the population members,

4. The population’s encoding scheme,

5. The stopping criterion (e.g. number of generations),

6. The scheme used for selection and replacement of population members,

7. The initial seed for pseudo-random number generator,

8. The mutation and crossover probabilities,

9. The fitness function.

2.2.3.2 Performance of Genetic Algorithm

Two methods for solving the problem of producing infeasible solutions using the Ge-

netic Algorithm were introduced in section 2.2.2.1. The first is based on a penalty

function, where infeasible solutions are penalized such that their fitness is decreased

CHAPTER 2. BACKGROUND 33

according to the deviation from the feasible solution required. The second method

is based on repairing the infeasible solutions produced by crossover and mutation.

To repair a corrupted chromosome, one could either use a simple repair scheme

where extra genes belonging to a certain block are randomly moved to other un-

balanced blocks, or a more efficient repair scheme is used, where genes are moved

to unbalanced blocks such that the gain is increased (cut-net size is decreased).

Many other operators and variations of genetic algorithms exist. Some other

GA operators are:

1. Multi-Point crossover which allows more than two strings to mate and gener-

ate offsprings,

2. Inversion which reverses a substring of a given string,

3. PMX, OX and CX which are permutation crossover operators used in the

travelling salesman problem.

Finally, hybrid schemes can be used to improve GA performance by using the GA

to approach a fit solution but using specialized local optimization methods armed

with problem specific knowledge to arrive at a final solution. Therefore, GA is an

efficient optimization algorithm. It explores to investigate new and unknown areas

in the search space to find global maximum. Genetic Algorithms have been applied

to many areas. Some successful GA applications include VLSI layout optimization,

job shop scheduling, function optimization and the travelling salesman problem

(TSP).

CHAPTER 2. BACKGROUND 34

2.2.4 Mapping Genetic Algorithm to Hardware

The nature of GA operators is such that GAs lends themselves well to pipelining and

parallelization. For example, selection of population members can be parallelized

to the practical limit of area of the chip(s) on which selection modules are imple-

mented. Once these modules have made their selections, they can pass the selected

members to the modules, which perform crossover and mutation, which in turn

pass the new members to the fitness modules for evaluation. Thus a coarse-grained

pipeline is easily implemented. This capability for parallelization and pipelining

helps in mapping GA to hardware.

2.3 Overview of Field Programmable Gate Ar-

rays

Field Programmable Gate Arrays(FPGAs) are an inexpensive user-programmable

device, which allows rapid design prototyping [Brow92]. The user programmability

allows for short time to market of hardware designs. They offer more dense logic

and less tedious wiring work than discrete chip designs and faster turn around than

sea-of-gates, standard cell, or full-custom design fabrication. FPGAs are generally

composed of logic blocks which implement the design’s logic, I/O cells which connect

the logic blocks to the chip pins and interconnection lines which connect logic blocks

together with I/O cells as shown in Figure 2.5.

The input/output blocks (IOBs) provide the interface between the package pins

and internal signal lines. The programmable interconnect resources provide routing

CHAPTER 2. BACKGROUND 35

Figure 2.5: Field Programmable Gate Arrays

paths to connect the inputs and outputs of the Configurable logic blocks (CLBs)

and IOBs onto the appropriate networks. Customized configuration is established

by programming internal static memory cells that determine the logic functions

and internal connections implemented in the FPGA.

Figure 2.6 depicts a FPGA with a two-dimensional array of logic blocks that

can be interconnected by interconnect wires. All internal connections are composed

of metal segments with programmable switching points to implement the desired

routing. An abundance of different routing resources is provided to achieve efficient

automated routing. There are four main types of interconnect, of which three are

distinguished by the relative length of their segments: single-length lines, double-

length lines and Longlines. (NOTE: The number of routing channels shown in the

figure is for illustration purposes only; the actual number of routing channels varies

CHAPTER 2. BACKGROUND 36

Figure 2.6: FPGA with a two dimensional array of logic blocks.

with the array size.) In addition, eight global buffers drive fast, low-skew nets most

often used for clocks or global control signals. The principal CLB elements are

shown in Figure 2.7. Each CLB contains a pair of flip-flops(FF), logic for boolean

functions(H) and two independent 4-input function generators(F,G). These function

generators have a good deal of flexibility as most combinatorial logic functions need

less than four inputs. Configurable Logic Blocks implement most of the logic in

an FPGA. The flexibility and symmetry of the CLB architecture facilitates the

placement and routing of a given application.

Programming of these components is allowed with the use of static RAM cells,

anti-fuses, EPROM transistors or EEPROM transistors.

Xilinx FPGAs use static RAM technology to implement hardware designs. Be-

cause of this they are reprogrammable and frequently used in prototyping and other

areas where reprogrammability is useful. Commonly used Xilinx FPGAs today are

from the Virtex-II Pro family, which is Xilinx’s most advanced line of FPGAs.

Although field programmable gate arrays were introduced a decade ago, they

CHAPTER 2. BACKGROUND 37

Figure 2.7: Configurable Logic Block.

have only recently become more popular. This is not only due to the fact that

programmable logic saves development cost and time over increasingly complex

ASIC designs, but also because the gate count per FPGA chip has reached numbers

that allow for the implementation of more complex applications (e.g. VirtexE,

Virtex-II Pro etc. FPGAs have million of gates).

Many present day applications utilize a processor and other logic on two or more

separate chips. However, with the anticipated ability to build chips with over ten

million transistors, it has become possible to implement a processor within a sea of

programmable logic, all on one chip. Such a design approach allows a great degree

of programmability freedom, both in hardware and in software. CAD tools could

decide which parts of a source code program are actually to be executed in software

and which other parts are to be implemented with hardware. The hardware may be

needed for application interfacing reasons or may simply represent a co-processor

used to improve execution time.

FPGA designs can be created in a number of ways, including graphical schematic

CHAPTER 2. BACKGROUND 38

component layout (Powerview) and hardware description languages such as ABEL,

VHDL, and Verilog. VHDL (VHSIC hardware description language) can be used

either for behavioral modeling of circuit designs or for logic synthesis using either

behavioral or structural descriptions [Skah96], [Yala01], [Bhas99]. Since writing

structural circuit descriptions is like trying to describe a circuit using text instead

of a schematic editor, the real advantage of VHDL is seen only in its behavioral

synthesis potential.

2.4 Overview of Reconfigurable Computing Sys-

tems

Due to its potential to greatly accelerate a wide variety of applications, reconfig-

urable computing has become a subject of a great deal of research. Its key feature

is the ability to perform computations in hardware to increase performance, while

retaining much of the flexibility of a software solution.

Reconfigurable systems [Comp02] are usually formed with a combination of

reconfigurable logic and a general purpose microprocessor. The processor performs

the operations that cannot be done efficiently in reconfigurable logic, while the

computational cores are mapped to reconfigurable hardware. This reconfigurable

logic can be supported by either FPGAs or other custom configurable hardware.

Reconfigurable computing involves manipulation of the logic within the FPGA at

run-time. In other words, the design of the hardware may change in response to

the demands placed upon the system while it is running. Here, the FPGA acts as

an execution engine for a variety of different hardware functions, some executing

CHAPTER 2. BACKGROUND 39

in parallel, others in serial.

The design process in a reconfigurable hardware involves first partitioning the

design into sections to be implemented on hardware and software. The portion of

design which is to be implemented on hardware is synthesized into a gate level or

register transfer level circuit description. This circuit is mapped onto logic blocks

within the reconfigurable hardware during the technology mapping phase. These

mapped blocks are then placed into a specific physical block within the hardware,

and the pieces of the circuit are connected using the reconfigurable routing. After

compilation, the circuit is ready for configuration onto the hardware at run-time.

Nowdays, various tools are available which can automatically compile all these steps

and the designer requires very little effort to use the reconfigurable hardware. The

complete design process is shown in the Figure 2.8.

Reconfigurable architectures [Bond00] have mostly evolved from FPGAs. But

FPGAs use fine grained architectures with pathwidths of 1 bit. These architectures

are much less efficient because of huge routing area overhead and poor routability.

Due to single bit wide configurable logic block, it includes just a few gates. For

function selection it needs 4 or more flip flops with at least 4 gates per flip flop

of configuration RAM. Using FPGA as a computing element several CLBs are

united to form a several bit-wide datapath. Therefore, fine granularity FPGAs use

only about 1% chip area for active logic circuits and about 90% for wiring, from

which major part is used for reconfigurable routing areas. It has shown that on

applications with large data elements, fine grained devices pay much more area

for interconnect than coarse-grained devices which have pathwidths greater than 1

bit. Coarse-grained architectures can be more area efficient. These architectures

CHAPTER 2. BACKGROUND 40

DESIGN

SPECIFICATIONS

ALGORITHM DESIGN &

ANALYSIS

SYSTEM ARCHITECTURE

DESIGN

(HW/SW Partitioning)

HDL CODING

FUNCTIONAL

SIMULATION

SYNTHESIS

PLACE/

ROUTE

SW

DEVELOPMENT

HW/SW INTEGRATION

DESIGN

CONSTRAINTS

HW IP

LIBRARY

SW IP

LIBRARY

CO-VERIFIVATION

TIMING

SIMULATION

Figure 2.8: Design Steps for Reconfigurable Computing.

CHAPTER 2. BACKGROUND 41

provide word level datapaths and powerful and very area-efficient datapath routing

switches. A major benefit is the massive reduction of configuration memory and

configuration time, as well as drastic complexity reduction of the placement and

routing problem. Several architectures are outlined in [RHar97], [Cher94], [RKre95]

Reconfigurable computing has several advantages. First, it is possible to achieve

greater functionality with a simpler hardware design. Because not all of the logic

must be present in the FPGA at all times, the cost of supporting additional features

is reduced to the cost of the memory required to store the logic design.

The second advantage is lower system cost. On a low-volume product, there will

be some production cost savings, which result from the elimination of the expense of

ASIC design and fabrication. However, for higher-volume products, the production

cost of fixed hardware may actually be lower. Systems based on reconfigurable

computing are upgradable in the field. Such changes extend the useful life of the

system, thus reducing lifetime costs.

The final advantage of reconfigurable computing is reduced time-to-market.

There are no chip design and prototyping cycles, which eliminates a large amount

of development effort. In addition, the logic design remains flexible right up until

(and even after) the product ships. Therefore, reconfigurable platforms and their

applications are heading from niche to mainstream, bridging the gap between ASICs

and microprocessors.

CHAPTER 2. BACKGROUND 42

2.5 Previous work in Hardware based GA

The past several years have seen a sharp increase in work with reconfigurable hard-

ware systems. Reconfigurability is essential in a general-purpose GA engine because

certain GA modules require changeability (e.g. the function to be optimized by the

GA). Thus a hardware-based GA is both feasible and desirable. In the present sur-

vey, a set of research papers on hardware implementations of GA have been studied

and analyzed. The results of the analysis are presented here-forth.

2.5.1 Specific Architectures to speed GA

The key to the hardware implementation of the GA is to divide the algorithm into

sub-sections and perform the latter using dedicated hardware modules in parallel.

The various architectures are discussed in the following sections.

2.5.1.1 Splash 2 reconfigurable Computer

In [Paul95], the GA is implemented in hardware on a Splash 2 reconfigurable com-

puter. The problem selected for implementation is the famous Traveling Salesman

Problem. Splash2 is a reconfigurable computer consisting of an interface board and

a collection of processor array boards. Its basic unit of computation is the pro-

cessor, which consists of four Xilinx 4010 FPGA’s and associated memories. The

functions performed by various FPGA’s are as follows:

1. FPGA-1 performs the Roulette Wheel Selection, which involves choosing pairs

from the memory, based upon fitness.

2. FPGA-2 performs the crossover depending upon crossover probability.

CHAPTER 2. BACKGROUND 43

3. FPGA-3 calculates the new fitness of tours formed by crossover and randomly

selects tours for mutation and sends the tour pairs and their fitness to FPGA4.

4. FPGA-4 writes the new population into the memory.

A 4-processor island model of parallel computation is developed for parallelizing

the algorithm, which outperformed the performance of 1-processor, 4-processor

Trivial, and 8-processor trivial architecture [Paul95]. The architecture proposed in

[Paul95] has the following advantages:

1. The individual data objects manipulated by the algorithm are small.

2. The requirements for Splash 2 parallel GA (SPGA) are modest, consisting of

small word addition, subtractions, and comparisons.

3. The additional work required to create parallel implementations of the algo-

rithm is minimal.

In [Paul96] Paul Graham and Brent Nelson further analyzed the performance dif-

ferences between Hardware and Software versions of Genetic Algorithm in solving

TSP. The hardware implementation consisted of 4 FPGA’s and associated mem-

ories arranged in bi-directional pipeline as explained in [Paul95]. C++ code was

used for software implementation of SPGA and comparisons of two implementa-

tions showed that the hardware performs up to 50 times the work per cycle. The

hardware features responsible for its advantages are:

1. Hard-wired control

2. Memory hierarchy efficiency

CHAPTER 2. BACKGROUND 44

3. Parallelism

The factors having the most effect on the improved hardware performance are as

follows:

1. Parallel execution of selection operation used in the hardware implementa-

tions as opposed to a serial selection in software version.

2. Address instructions, branching instructions introduce a lot of overhead in

software implementation. In hardware, this overhead is eliminated by use of

dedicated state machines and address counters.

3. Parallelism in performing the crossover and mutation operations results in a

1.5 to 2 times increase in performance for hardware.

4. A little bit of the performance increase comes as a result of faster generation

of random numbers in the hardware implementation.

2.5.1.2 The Xilinx XC6216

The Xilinx XC6216 was used to accelerate the GA performance in [Koza97]. It

accelerated the most time-consuming fitness task of GA by embodying each indi-

vidual of evolving population into hardware. A 16 step-sorting network for seven

items was evolved using XC6216 in which sequence of comparison exchange opera-

tors were executed in fixed order. FPGA was used for fitness measurement task and

the host computer performed all the tasks. The use of Xilinx XC6216 has several

advantages over previously available FPGA’s for fitness measurement task of GA.

They are:

CHAPTER 2. BACKGROUND 45

1. It streamlines the downloading task because of the configuration bits in the

address space of host processor.

2. Encoding scheme for configuration bits is public.

3. Encoding Scheme for configuration bits is simple thereby accelerating the

technology mapping, placement, routing, and bit creation tasks.

4. It is invulnerable to damage. Most FPGAs are vulnerable to damage caused

by combinations of configurations bits that connect contending digital signals

to the same line. Invulnerability to damage is needed in order to make FPGAs

practical for inner loop of the genetic algorithm.

Therefore, this research demonstrated how massive parallelism of rapidly recon-

figurable Xilinx XC6216 FPGA can be exploited to accelerate the computationally

bundersome task of fitness calculation of genetic programming.

2.5.1.3 ARMSTRONG III-The MIMD Multicomputer

Complex and expensive hardware is employed to attain the speedups. For exam-

ple, SPLASH2 uses a collection of processor array boards connected to Sun Spark

workstation via an interface card [Paul95]. Another example is the ARMSTRONG,

which is a MIMD (Multiple Instruction Multiple Data) multicomputer with recon-

figurable resources [Sitc]. It consists of an array of processor boards. Each board

consists of microprocessor, memory, and FPGAs. These machines are regarded as

reconfigurable computers, developed for general computation. The implementa-

tion still suffers from memory latency limiting the operating clock frequency. The

CHAPTER 2. BACKGROUND 46

memory bottleneck is inevitable since GA requires a large memory to store the

population. As a result, high-speed memory may be used making the hardware ex-

pensive or low-cost memory reducing performance. The purpose of Armstrong III

projects is to show that an architecture consisting of a small set of reconfigurable

resources augmenting a host microprocessor has real advantages. In particular, it

has been shown that this architecture is well-suited for computationally intensive

algorithms. The results show that Armstrong III node can perform three times

faster than a 60 Mhz workstation.

2.5.1.4 Compact GA

In contrast to the Simple GA, the Compact GA is more suitable for hardware imple-

mentation [Chat01]. The Compact GA represents a population as an L-dimensional

vector, where L is the chromosome length. Thus the compact GA manipulates this

vector instead of the actual population. This dramatically reduces a number of bits

required to store the population. With this representation, it is practical to use

registers for a probability vector. The Compact GA executes one generation per

three clock cycles for one-max problem. So design, though simple, runs about 1000

times faster than the software executing on a workstation. The compact GA theo-

retically simulates the oder-one behaviour of Simple GA using binary tournament

selection and uniform crossover. Therefore the Compact GA cannot absolutely

replace Simple GA for all classes of problems.

CHAPTER 2. BACKGROUND 47

2.5.1.5 Systolic Architectures

Though FPGA’s helped in solving the implementation issues associated with spe-

cial purpose systems but the costs associated with designing such systems are still

significant. So design of systolic architecture was proposed in [IMBla] as a means

of mitigating the costs. Systolic Array is an arrangement of processors in an array

(often rectangular) where data flows synchronously across the array between neigh-

bours, usually with different data flowing in different directions. Each processor at

each step takes in data from one or more neighbours (e.g. North and West), pro-

cesses it and, in the next step, outputs results in the opposite direction (South and

East). Special appeal of systolic arrays is that they can be derived mechanically

by provably correct and (in a sense) optimal synthesis methods. These methods

transform algorithmic descriptions that do not specify concurrency or commmuni-

cation, usually functional or imperative programs, into functions that distribute the

program’s operations over time and space. This process is called systolic design.

The distribution functions can then be refined further and translated into a de-

scription for fabrication of a VLSI chip or into a distributed program for execution

on a programmable processor array. Also there were many advantages of using this

approach:

1. Architectures are modular and expandable.

2. Design route is fast and manageable.

3. Large or small instantiations of a particular design can be implemented by

reconfiguring the FPGA.

CHAPTER 2. BACKGROUND 48

4. The design is massively parallel and significant throughput can be achieved.

In this design four systolic arrays formed a macro-pipeline, which were used

to implement the operators. But the design does not concentrate on the fitness

function calculation, which in general proves to take the majority of time.

In [IMBlb] a parallel hardware random number generator for use with a VLSI

genetic algorithm-processing device was proposed. The design uses a systolic array

of mixed congruential random number generators. The generators are constantly

re-seeded with the outputs of the proceeding generators to avoid significant biasing

of the randomness of the array, which would result in longer times for the algorithm

to converge to the solution. The design uses a number of custom systolic arrays

to achieve the selection and reproduction of a population of chromosomes. The

advantages of using the design are:

1. Massive parallelism

2. Data re-use

3. Uni-directional data flow between cells

4. Preserves independence of random sequences generated by re-seeding each

element with the output of each element after each number has been produced.

2.5.1.6 PAM (Programmable Active Memory) Architecture

Bertin et.al. [PBer93] worked with a programmable active memory (PAM) archi-

tecture which composed of a 55 array of Xilinx XC3090 FPGAs and supporting

CHAPTER 2. BACKGROUND 49

hardware, all combined to act as a co-processor to a host system. Compiling and

running an application on PAM architecture consisted of:

1. Identifying the critical computations best suited for hardware implementa-

tions.

2. Implementing and optimizing the hardware part on the PAM.

3. Implementing and optimizing the software part on the host system.

After testing on different applications it was found that the performance of PAM

implementation was competitive with supercomputer implementation of the same

application but was upto 100 times cheaper in dollars per operation per second.

But many complex applications are beyond the reach of current PAM technology.

2.5.1.7 Other Reconfigurable Architectures

In evolutionary computation, evolutionary operations are applied to a large number

of individuals (genes) repeatedly. The computation can be pipelined (evolutionary

operators) and parallelized (a large number of individuals) by dedicated hardware,

and high performance is expected. However, details of the operators depend on

given problems and vary considerably. Systems with Field Programmable Gate

Arrays can be reconfigured and realize the most suitable circuits for given prob-

lems. In [Maru00], it was shown that a co-processor system with a Virtex FPGA

can achieve high performance in evolutionary computations by utilizing the two fea-

tures of FPGA. First, agents in evolutionary computation models which are usually

expressed using short bit-strings can be stored in distributed select RAMs of Virtex

CHAPTER 2. BACKGROUND 50

FPGAs very efficiently. Second, the partial reconfiguration and readback functions

of the FPGAs make it possible to exploit parallelism without thinking about cir-

cuits for data I/O. Gokhale [MGok91] developed a programmable linear logic array

called SPLASH that was applied to many areas, including one-dimensional pattern

matching between DNA sequence and a library sequences. Splash greatly outper-

formed several more expensive alternatives, including the P-NAC, a CM-2 and a

Cray-2. It consisted of 32 Xilinx XC3090 and 32 memory chip. Also in [Maru01],

it was shown that a hardware system with two FPGAs and SRAMs, achieved 50

times of speedup compared with a workstation (200MHz) in some evolutionary

computation problems.

The use of reconfigurable hardware for the design of GA was also seen in projects

such as [Scot94], [Rint00], [Wirb84]. In Stephan Scott’s behavioral-level implemen-

tation of a GA [Scot94], the targeted application was optimization of an input

function. In [Rint00], a GA was designed and implemented on a PLD, using Al-

tera hardware description language(AHDL). In [Wirb84], a number of GAs were

designed and implemented in a text compression chip.

2.6 Summary

In this chapter, it is concluded from the literature that hardware GA yields a signif-

icant speedup over software GA due to pipelining, parallelization and no function

call overhead. This is useful when GA is used for real-time applications. Thus

a hardware implementation exploits the reprogrammability of FPGA’s, which are

programmed via a bit pattern stored in a static RAM and are thus easily reconfig-

CHAPTER 2. BACKGROUND 51

ured.

Genetic Algorithms have been applied to many areas. Some successful GA appli-

cations include VLSI layout optimization, function optimization and the travelling

salesman problem (TSP). In the next chapter, the architecture used for mapping

genetic algorithms into hardware for circuit partitioning is explained.

Chapter 3

Architecture

This chapter describes an architecture of a genetic algorithm processor along with

the functional description of each module. The design is used to solve the problem of

circuit-partitioning. The representation used to solve circuit-partitioning problem

is also described. The VHDL code for top-level file and testbench for the design is

given in Appendix C and the code for other modules explained in this chapter is in

[?].

3.1 System Specifications and Constraints

The GA Processor proposed in this research, was designed as per the following

system specifications and constraints.

1. One of the main goals of the hardware based GA is to reduce the processing

time as compared to the software implementations. In [Scot94], a hardware

design for the GA is proposed which can be implemented on a single FPGA.

52

CHAPTER 3. ARCHITECTURE 53

The processing time for this hardware implementation is approximately 3-4

times less than the time taken by the software implementation. The architec-

ture proposed in this research should be able to reduce the processing time

by at-least the same factor. The improvement in processing speed acheived

by the proposed architecture is provided in Section 3.8.

2. An equally important contraint for the hardware implementation is the amount

of hardware resources needed. Although there are architectures available in

literature which use multiple FPGA’s to perform the different GA operations

in parallel, such a hardware solution may become too costly, and hence much

less practical to use. The architecture proposed in this research should be im-

plemented on a single FPGA, thus reducing the hardware resources needed.

In order to further minimize the hardware resources, the area/gate utilization

of the FPGA should be as small as possible. This would enable the imple-

mentation to be performed on a small-sized FPGA or additional blocks to be

implemented on the same large-sized FPGA.

3. The design should be easily configured for different sized problems during

synthesis. This ensures that the same RTL code can be used for a wide

range of applications, thus making it easier for portability. In RTL code, this

can be acheived by using generics or parameters, of which the hardware can

be changed based upon the size of the application. These generics can be

changed at the time of digital synthesis. The generics used in the proposed

design are given in Table 3.2.

4. The design should be modular. This means that the design should be split

CHAPTER 3. ARCHITECTURE 54

up into smaller modules, each designed to perform a well defined and well-

partitioned function. This makes the design easier to debug, understand, and

also helps in the design-reuse methodology such as a local search accelerator

can be integrated with it in the future to act as a memetic processor.

5. The design should have control registers with simple read/write interface for

changing operational parameters during run-time. The parameters that can

be changed for different problem-sets are population size, generation count,

number of modules in the netlist, number of nets in the netlist, crossover rate,

and mutation rate. In order to solve problems with large number of nets and

modules, the registers for number of nets and modules are each chosen to

be 16-bit wide. This allows support for problems with number of nets and

modules, each less than or equal to 65536. All other registers are chosen to

be 8-bit wide. This allows population size and generation count to be less

or equal to 256, and crossover and mutation rates to vary between 0 and

255/256, with any increments of 1/256. Details about the control registers

are provided in Section 3.2.1.1.

6. In order to store the input netlist and intermediate populations, memory

blocks have to be used. These memory blocks should be external to the core

(main proposed architecture), and can be implemented either as on-board

memory chips, or block-RAMs that are available on the FPGA. As explained

in Section 3.3, each chromosome and each net is represented using the number

of bits which is equal to the number of modules. Since the number of modules

can be as high as 65536, each chromosome and net-representations have to

CHAPTER 3. ARCHITECTURE 55

be split into memory words, widths of which are determined by the data-bus

widths of the available memory blocks. Although, this results in a much more

complex architecture, it allows the design to solve large problems while taking

into account the practical limitations of memory blocks.

7. The concept of this architecture can be extended to hardware-software co-

design approach by utilizing an ARM processor with an FPGA module.

Therefore, this design is implemented on RPP, which has VirtexE xcv2000E,

FPGA on it.

8. The fitness function is the most time consuming operation in GA, therefore

it should be implemented in hardware.

3.2 System Architecture

The architecture for the GA processor is designed by identifying the various steps

used in the GA and finding a mapping for each of these steps in hardware. The

comparison between the software steps and the equivalent hardware steps followed

in this research are shown in Figure 3.1.

The proposed architecture (core) for implementing the genetic algorithm in

hardware uses a processing-pipeline for performing the computationally extensive

parts of the algorithm. The current design is specifically optimized towards solving

the circuit-partitioning problem.

The design partitioning is performed in such a way that each block performs

a well-defined function, thus making it easier to re-use some of the blocks for a

CHAPTER 3. ARCHITECTURE 56

Initialize the GA

parameters

Create Initial

Population and

calculate Fitness

Select two

parents

Perform

Crossover and

Mutation

Replace initial

population with the

new population

End of

Population?

End of Generation

Count?

Output the final

population and

final fitness

Yes

No

Yes

No

Loads GA parameters in GA

Processor

Loads the netlist data to the GA

Processor

GA Processor generates the random initial

population and loads them into the Parent

Address Space of Chromosome Memory

Fitness module in GA Processor calculates

the fitness of Parent chromosomes and

loads the fitness memory

Selection module in GA Processor

performs Tournament Selection and

generates addresses of two parents

Crossover/Mutation module generates two offsprings

using the selected parents and stores them into Child

Address Space of Chromosome Memory

Population

Count Done?

Swap the Parent and Child

Address Spaces

Generation

Count Done?

Fitness module in GA Processor calculates

the fitness of Parent chromosomes and

loads the fitness memory

GA Processor outputs the final

chromosomes with the corresponding

fitness values

Read netlist from

benchmark data

HARDWARE IMPLEMENTATION

SOFTWARE IMPLEMENTATION

No

No

Yes

Yes

Figure 3.1: Hardware software Design Comparison.

CHAPTER 3. ARCHITECTURE 57

different type of optimization problem. A common controller approach is followed

in which a central main controller generates the control signals for all the other

blocks in the design. Separate blocks are used to perform the selection, crossover

and mutation, and fitness calculation. The main controller is used to schedule the

operations of these blocks using an “enable/disable” signal for each block. Each

block notifies the main controller when the task is completed using a “done” signal.

Please note that contrary to some of the architectures proposed in the past, the

fitness module is also implemented in hardware. Since fitness calculation is the

most time consuming operation in the GA, the added complexity arising from the

hardware implementation of fitness is out-weighed by the improvement in processing

speed acheived over the software implementation of fitness calculation.

The design waits for an active high pulse on the “StartGA” input before per-

forming any computations. After receiving a “StartGA” pulse, the main con-

troller generates a random initial population and stores it into the chromosome

memory (Section 3.2.3). Following this, the main controller enables the selection,

crossover/mutation, and fitness modules in sequence, until all the generations are

complete. When all the generations are processed, the main controller outputs the

chromosomes with the corresponding fitness values for the final population. Af-

ter all the results are generated by the core, an active high pulse on the output

“GADone” is generated by the core, signalling the end of processing for the corre-

sponding problem. Since different blocks share the accesses to the same memories,

a memory-mux is used to multiplex the memory-accesses from different blocks. In

addition to these, the control registers are implemented as an independent block.

These registers are accessible through the simple CPU interface (Section 3.2.1.1).

CHAPTER 3. ARCHITECTURE 58

In order to make the implementation easier, the memory blocks required by

the core are implemented as block-RAMs on the xcv2000E FPGA. If the data-

bus widths of the memory blocks are increased (based upon the generic input),

the processing time is reduced. This is because the core is able to process wider

data-words in parallel. However, if the data-widths of block-RAMs are increased,

the address-bus widths are decreased, thus limiting the size of the problems that

can be solved. This reduction in the address-bus width as a result of increase

in the data-bus width, is characteristic to the block-RAM instantiation in Xilinx

FPGA’s. Therefore, there has to be a trade-off between the increase in processing

speed and the size of problem that can be solved by the GA processor. During

implementation, the block-RAMs are chosen to have 8-bit wide data-bus. This is

due to the relatively small size of benchmarks, increasing the data-bus widths to

16-bits does not have a big impact to the processing speed.

Theoretically, there is no limit on the size of the problem the core can handle,

but since the core requires external RAM for storing the netlist information, the

size of the RAM is directly proportional to the product of number of nets and cells

(modules) in the design. Too big problems would require a correspondingly large

amount of external RAM.

3.2.1 Detailed Internal Architecture

The block diagram of the GA processor is shown in Figure 3.2. The selection

module selects the parents with good fitness from Fitness memory and sends the

addresses of the parents selected to Crossover and Mutation module. The Crossover

and Mutation module performs crossover and mutation on the parents. The Fitness

CHAPTER 3. ARCHITECTURE 59

Module generates fitness values for each of the generated chromosomes. The Main

Controller generates control signals for all the blocks,

Figure 3.2: Architecture for the Genetic Algorithm Processor.

meanwhile the Control Registers have to be loaded with ‘legal’ values using the

CPU interface. After loading the control registers, an active high pulse on the Start

control input starts the GA process.

After receiving the Start signaling, the core accepts the netlist from the top-

level inputs. The input netlist is stored in the Netlist memory, from where it is

read repeatedly by the core to compute the fitness. After receiving the input netlist

(based upon the number of nets stored in Control Registers), the core generates the

initial population randomly and stores it into the Chromosome memory. The Selec-

tion module uses Tournament Selection to select two parents. Memory addresses of

these two parents are used by the Crossover and Mutation module to perform the

CHAPTER 3. ARCHITECTURE 60

genetic operations. The Crossover and Selection module stores the two generated

children into the Chromosome memory. After the new population is generated, the

fitness module computes the fitness of each of the elements of the new population,

and stores the fitness into the Fitness memory. The new population replaces the

parent population but the best individual from the parent population is taken to

the next generation. After the number of generations are executed (based on Con-

trol Register value), the core outputs the final population along with the fitness of

each chromosome.

The general description of interaction of the genetic algorithm processor with

the host is as shown in the Figure 3.3. The control registers value and the input

netlist are loaded from the host computer and stored in control registers and netlist

memory. The following sections describe the different control registers used, their

Workstation

GENETIC

ALGORITHM

PROCESSOR

FM
 CM
 NM

Control

Register

Interface &

Data I/O

FPGA

Figure 3.3: Interaction of Host with Genetic Algorithm Processor.

address maps, and the architecture of each of the sub-blocks.

CHAPTER 3. ARCHITECTURE 61

3.2.1.1 Control Registers

The core uses a set of control registers, which can be programmed using the CPU

interface. The register address map is provided in Table 3.1.

Table 3.1: Register address map

Address Register Size Description

0x00-0x01 CMLength 2x8 Chromosome Length
0x02-0x03 NetNum 2x8 Number of nets
0x04 PopSiz 1x8 Population size
0x05 Gen Num 1x8 Generation Count
0x06 CrossoverRate 1x8 Crossover rate
0x07 MutationRate 1x8 Mutation rate

1. CMLength Register

Description: This register stores the chromosome length in terms of number

D7
 D6
 D5
 D4
 D3
 D2
 D1
 D0

CMLength

CMLength

D15
 D14
 D13
 D12
 D11
 D10
 D9
 D8

Figure 3.4: CMlength Register

of Chromosome memory data words CMDataWidth.

Address: 0x00-0x01

Reset Value: 0x0000

Access: Write

2. NetNum Register

Description: This register stores the number of nets in terms of Netlist

CHAPTER 3. ARCHITECTURE 62

D7
 D6
 D5
 D4
 D3
 D2
 D1
 D0

NetNum

NetNum

D15
 D14
 D13
 D12
 D11
 D10
 D9
 D8

Figure 3.5: NetNum Register

memory data words CMDataWidth. Note that the data word size of the

netlist memory is the same as that for the chromosome memory.

Address: 0x02-0x03

Reset Value: 0x0000

Access: Write

3. PopSiz Register

Description: This register stores the Population Size in terms of chromo-

D7
 D6
 D5
 D4
 D3
 D2
 D1
 D0

PopSiz

Figure 3.6: PopSiz Register

some per population.

Address: 0x04

Reset Value: 0x00

Access: Write

4. GenNum Register

Description: This register stores the number of generations, which the core

has to generate before sending the output population and fitness.

CHAPTER 3. ARCHITECTURE 63

D7
 D6
 D5
 D4
 D3
 D2
 D1
 D0

GenNum
Not Used

Figure 3.7: GenNum Register

Address: 0x05

Reset Value: 0x00

Access: Write

5. CrossoverRate Register

Description: This register stores the Crossover rate ranging from 0 to 255.

D7
 D6
 D5
 D4
 D3
 D2
 D1
 D0

CrossoverRate

Figure 3.8: CrossoverRate Register

Percentage crossover rate is obtained by dividing this register value by 255.

Therefore, 0 represents 0 percentage, and 255 represents 100 percent crossover

rate.

Address: 0x06

Reset Value: 0x00

Access: Write

6. MutationRate Register

Description: This register stores the Mutation rate ranging from 0 to 255.

Percentage Mutation rate is obtained by dividing this register value by 255.

Therefore, 0 represents 0 percentage, and 255 represents 100 percent Mutation

rate.

CHAPTER 3. ARCHITECTURE 64

D7
 D6
 D5
 D4
 D3
 D2
 D1
 D0

Mutation Rate

Figure 3.9: MutationRate Register

Address: 0x07

Reset Value: 0x00

Access: Write

3.2.2 Core Generics

The design is coded in VHDL and uses the generics shown in Table 3.2. These

generics helped in making general models instead of making specific models for

many different configurations of inputs and outputs. Generics pass the information

into a design description from its enviornment and helps to reconfigure. Therefore,

testing can be done with different sets of data(different benchmarks).

Table 3.2: Generics used in the design

Generic Name Description Default

FMAddrWidth Fitness memory address width. 9
This gives two times maximum
size supported.

FMDataWidth Fitness memory data width. 8
CMDataWidth Chromosome memory data width. 8

This represents word size of
chromosome memory.

CMField Number of bits used to represent 8
the length of chromosome.

MaxNetNumBits Number of bits used to represent 8
maximum number of nets.

CHAPTER 3. ARCHITECTURE 65

3.2.3 Core Memories

The external RAM modules used by the core are listed in Table 3.3. The netlist

memory stores the input netlist, chromosome memory stores the randomly gener-

ated chromosomes for parent and child population and fitness memory stores fitness

of parent and child population.

Table 3.3: Core Memories

Memory Size Description

Netlist 2(MaxNetNumBits+CMField) It stores a binary sequence of length of
Memory ×CMDataWidth chromosome for each net. Each bit in the

sequence denotes if that net is connected
to corresponding cell in the netlist or not.
This is single address port synchronous
RAM.

Chromosome 2(FMAddrWidth+CMField+1) It stores population elements for the
Memory ×CMDataWidth parent as well as child population. The

address space is divided into two halves.
Each half stores either parent or child
population. This is dual address port
synchronous RAM.

Fitness 2(FMAddrWidth+1) It stores fitness of parent and child
Memory ×CMDataWidth population. This is also divided into

two parts for storing parent and child
population. This is single address
port synchronous RAM.

CHAPTER 3. ARCHITECTURE 66

3.2.4 Pin Description

The pin description of top level GA processor is described in Table 3.4 and Table 3.5

and shown in Figure 3.10. It describes all the top level inputs and outputs of the

GA Processor.

Clk

ResetN

StartGA

NetlistVld

NetlistIn

PopOut

PopOutVld

FitnessOut

GADone

C
P

U
A

d
d

r

C
P

U
D

at
a

C
P

U
W

r

N
M

A
d

d
r

N
M

D
at

aR
d

N
M

D
at

aw
r

N
M

R
d

E
n

b

N
M

W
rE

n
b

C
M

A
d

d
rR

d

C
M

A
d

d
rW

r

C
M

D
at

aR
d

C
M

D
at

aW
r

C
M

R
d

E
n

b

C
M

W
rE

n
b

F
M

A
d

d
r

F
M

D
at

aR
d

F
M

D
at

aW
r

F
M

R
d

E
n

b

F
M

W
rE

n
b

GENETIC
ALGORITHM
PROCESSOR

Netlist
Memory

Chromosome
Memory

Fitness
Memory

Figure 3.10: Pin description of top level GA Processor

CHAPTER 3. ARCHITECTURE 67

Table 3.4: Pin description of Top level GA processor(part1)

Pin Name Direction Description

Clk Input System Clock
ResetN Input Active low asynchronous reset

Control Register Interface

CPUWr Input Control Register write enable
CPUAddr[3:0] Input Control register address bus
CPUData[7:0] Input Control register data bus

Top-level control and data interface signals

StartGA Input Active high input signal to start GA
NetlistVld Input Active high control input indicating

that input data NetlistIn is valid.
NetlistIn Input Input netlist in words. For each
CMDataWidth-1:0 net, the netlist contains a sequence of

1’s and 0’s which is of size of a chromosome.
PopOut Output Final generated population elements
CMDataWidth-1:0 in form of words.
PopOutVld Output Output control signal indicating that

PopOut and FitnessOut are valid.
FitnessOut Output Output fitness of each output
FMDataWidth-1:0 chromosome.
GADone Output Active high pulse indicating end of GA

Chromosome Memory Interface

CMAddrRd Output Chromosome memory read address bus
FMAddrWidth+CMField-1:0
CMDataRd Input Chromosome memory read data bus
CMDataWidth-1:0
CMRdEnb Output Active high read enable for the

Chromosome memory
CMAddrWd Output Chromosome memory write address bus
FMAddrWidth+CMField-1:0
CMDataWr Output Chromosome memory write data bus
CMDataWidth-1:0
CMWrEnb Output Active high write enable for the

Chromosome memory

CHAPTER 3. ARCHITECTURE 68

Table 3.5: Pin description of Top level GA processor(part2)

Pin Name Direction Description

Netlist Memory Read Interface

NMAddr Output Netlist memory address bus
FMAddrWidth+CMField-1:0
NMDataRd Input Netlist memory read data bus
CMDataWidth-1:0
NMRdEnb Output Active high read enable for the

Netlist memory
NMDataWr Output Netlist memory write data bus
CMDataWidth-1:0
NMWrEnb Output Active high write enable for the

Netlist memory

Fitness Memory Write Interface

FMAddr Output Fitness memory address bus
FMAddrWidth-1:0
FMDataRd Input Fitness memory read data bus
FMDataWidth-1:0
FMRdEnb Output Active high read enable for the

Fitness memory
FMDataWr Output Fitness memory write data bus
FMDataWidth-1:0
FMWrEnb Output Active high write enable for the

Fitness memory

CHAPTER 3. ARCHITECTURE 69

3.3 Representation for Circuit-Partitioning

In order to solve the circuit-partitioning problem using GA, the following repre-

sentation is used. Each chromosome contains a sequence of 1’s and 0’s, each bit

corresponding to a distinct cell in the netlist. A ‘1’ at a location in the sequence

means that the corresponding cell lies in the partition number 1. Similarly, a ‘0’

implies that the cell is present in the partition number 0 as shown in Figure 3.11.

Therefore, the length of the chromosome is the number of modules in the circuit.

1
 1
 1
 1
 0
 0
 0

M0
 M1
 M2
 M3
 M6
M4
 M5
 M7

PARTITION 0

NET 1

0
 1
 0
 1
 1
 1
 0
 0

0

CHROMOSOME

REPRESENTATION

NET 1

REPRESENTATION

M0
M1
M2
M3
M4
M5
M6
M7

PARTITION 1

Figure 3.11: Representation of chromosome and netlist for circuit-partitioning.

Since there are practical limitations to word sizes of physical memories, the chro-

mosome is stored in the memory in the form of smaller words, words corresponding

to one chromosome being stored consecutively. The netlist is stored into the netlist

memory in a similiar manner. Each net in the netlist has an entry in the netlist

memory which is as wide as the number of modules. For each net, 1’s are placed

in the bit positions corresponding to the modules to which the net is connected

as shown in Figure 3.11. A detailed description of how the proposed netlist and

CHAPTER 3. ARCHITECTURE 70

chromosome representations are used for fitness calculation, is given in section 3.6.2.

3.4 Selection Module

The selection module shown in Figure 3.12 performs Tournament selection on the

initial population by reading four random fitnesses from the Fitness memory and

outputs the addresses of two parents corresponding to the better two of the four

parents.

SELECTION
MODULE

SelectionEnb

HighBank

Reset

Clk
Parent1Addr

Parent2Addr

FMDataRdFMRdEnbFMAddrRd

PopSiz

Fitness Memory
Interface

C
ro

ss
o

ve
r

M
o

d
u

le
In

te
rf

ac
e

Control Registers

M
ai

n
 C

o
n

tr
o

lle
r

In
te

rf
ac

e

SelectionDone

Figure 3.12: Pin description of Selection Module

CHAPTER 3. ARCHITECTURE 71

3.4.1 Pin Description

Pin diagram and pin description of Selection Module are shown in Figure 3.12 and

Table 3.6.

3.4.2 Functional Description

The Selection module upon receiving an active high SelectionEnb signal from Main

Controller performs the following functions:

1. Generates four random addresses for the fitness memory and reads four fitness

values from either the low or high memory bank indicated by the HighBank

signal. The selection module uses an instantiation of an LFSR based Random

Number Generator [IMBlb].

2. The Selection Module compares two pairs of fitnesses and selects the best

from each pair.

3. The addresses of the best two fitnesses are latched and held stable on the out-

put signals Parent1Addr and Parent2Addr until the next time when selection

module is enabled.

4. These two addresses (with zeros padded in LSB’s) represent the starting ad-

dresses of the two-parent chromosome stored in the Chromosome memory.

5. At the end of selection of two parents, the selection module generates an

active high pulse on the SelectionDone output signal.

CHAPTER 3. ARCHITECTURE 72

Table 3.6: Pin description of Selection Module

Pin Name Direction Description

Clk Input System Clock
ResetN Input Active low asynchronous reset

Control Register Interface

PopSiz Input Population size from control registers

Main Controller Interface

SelectionEnb Input Selection enable from main controller
(Active high)

SelectionDone Output Selection done signal generated by the selection
module signifying the end of selection process
for two parents. (Active high)

HighBank Input Signal from main controller indicating if the
the parent population is stored in the lower
or the higher bank in memory. If HighBank
high, it indicates that the parent population is
stored in the second half of the chromosome
memory. In this case the children are stored
in the first half of the memory.

Crossover Module Interface

Parent1Addr Output Starting address of first selected parent
[FMAddrWidth-2:0] chromosome in the Chromosome

memory.
Parent2Addr Output Starting address of second selected parent
[FMAddrWidth-2:0] chromosome in the Chromosome memory.

Fitness Memory Read Interface

FMAddrRd Output Fitness memory read address bus from
FMAddrWidth-1:0 selection module
FMDataRd Input Fitness memory read data bus
FMDataWidth-1:0
FMRdEnb Output Active high read enable for the

Fitness memory

CHAPTER 3. ARCHITECTURE 73

Internally, the Selection Module consists of a Random Number Generator, a

Comparator for comparing unsigned integers, registers to latch the generated ran-

dom addresses, and a control state machine as shown in Figure 3.13. The control

state machine generates control/enable signals for different blocks in the module.

The state diagram for the Selection Module is shown in Figure 3.14.

RANDOM NUMBER

GENERATOR

ADDRESS

REGISTER1

ADDRESS

REGISTER2

FITNESS

REGISTER1

FITNESS

REGISTER2

PARENT

REGISTER1

PARENT

REGISTER2

SELECTION

CONTROL

STATE

MACHINE

FITNESS COMPARATOR

FMDataRd

FMAddrRd

FMRdEnb

Parent1Addr
 Parent2Addr

FITNESS

REGISTER DEMUX

ADDRESS

SELECTION MUX

PARENT

REGISTER DEMUX

ADDRESS

REGISTER DEMUX

Main

Controller

Interface

Control

Registers

Figure 3.13: Detailed description of Selection Module.

CHAPTER 3. ARCHITECTURE 74

stIdle

stGenerateAddr1

stGenerateAddr2

stReadFitness1

stReadFitness2

stCompareFitness

stStoreParent

Reset

Parent2Rst = '1'

SelectionEnb = '1'

FMAddrRdInt = Rand;
FMRdEnbInt = '1';

GenerateRand = '1';
Addr1WrEnb ='1';
Addr1In = Rand;

FMAddrRdInt = Rand;
FMRdEnbInt = '1';

GenerateRand = '1';
Addr2WrEnb ='1';
Addr2In = Rand;

Fitness1WrEnb ='1';
Fitness1In = FMDataRd;

Fitness2WrEnb ='1';
Fitness2In = FMDataRd;

Parent2Set = '1';
if(Parent2 ='0')
 Parent1WrEnb ='1';
else
 Parent2WrEnb='1'
end
If(Fitness1LTFitness2)
 ParentIn = Addr1;
else
 ParentIn = Addr2;

stPreIdle

Parent2 = '1'

Parent2 = '0'

SelectionDoneInt ='1'

Figure 3.14: State Diagram of Selection Module

CHAPTER 3. ARCHITECTURE 75

3.5 Crossover and Mutation Module

The Crossover Module performs the crossover and mutation operations on the two

parent chromosomes, the starting addresses of which are generated by the Selection

Module. The chromosome memory is divided into two parts, namely the low bank,

and the high bank. The parent population is stored into one of the banks and the

child population generated by the crossover and mutation module is stored into the

other bank.

3.5.1 Pin Description

The pin diagram and pin description are shown in Figure 3.15 and Table 3.7.

3.5.2 Functional Description

When an active high pulse on CrossoverEnb input is received, the following func-

tions are performed by the Crossover and Mutation module:

1. One word of the chromosome for each of the parents is read from the Chro-

mosome memory based upon theParent1Addr and Parent2Addr generated

by the Selection Module. After reading one word of chromosome for each

of the parents, the chromosome-word counter is incremented. The Chro-

mosome memory address for each of the parents is generated by appending

the chromosome-word counter value to the Parent1Addr and Parent2Addr as

shown in Figure 3.16.

2. The crossover module generates a random crossover mask for each word of the

CHAPTER 3. ARCHITECTURE 76

Table 3.7: Pin description of Crossover Module

Pin Name Direction Description

Clk Input System Clock
ResetN Input Active low asynchronous reset

Control Register Interface

CrossoverRate[7:0] Input Crossover Rate
Mutation Rate[7:0] Input Mutation Rate
CMLength[CMField-1:0] Input Chromosome length

Main Controller Interface

CrossoverEnb Input Crossover enable from main controller
(Active high)

CrossoverDone Output Crossover done signal generated by the
Crossover and mutation module signifying
the end of Crossover and mutation process.
(Active high)

HighBank Input Signal from main controller indicating if the
parent population is stored in the lower or
the higher bank in memory.‘1’ indicates High
bank is used for the parent population.

Selection Module Interface

Parent1Addr Output Starting address of first selected parent
[FMAddrWidth-2:0] chromosome in the chromosome

memory.
Parent2Addr Output Starting address of second selected parent
[FMAddrWidth-2:0] chromosome in the Chromosome memory.

Chromosome Memory Read/Write Interface

CMAddrRd Output Chromosome memory read address bus
FMAddrWidth+CMField-1:0 from crossover module
CMDataRd Input Chromosome memory read data bus
CMDataWidth-1:0
CMRdEnb Output Active high read enable for the

Chromosome memory
CMAddrWr Output Chromosome memory write address bus
FMAddrWidth+CMField-1:0 from crossover module
CMDataWr Output Chromosome memory write data bus
CMDataWidth-1:0
CMWrEnb Output Active high write enable for the

Chromosome memory

CHAPTER 3. ARCHITECTURE 77

CROSSOVER/MUTATION
MODULE

Clk

CrossoverDone

ChildAddr1

ChildAddr2

C
M

D
at

aR
d

C
M

R
dE

nb

C
M

A
dd

rR
d

Parent1Addr

Parent2Addr
C

M
A

dd
rW

r

C
M

W
rE

nb

C
M

D
at

aW
r

Crossover
Rate

Mutation
Rate

CMLength

HighBank

CrossoverEnb

ResetN

Control Registers

S
el

ec
ti

o
n

 M
o

d
u

le
In

te
rf

ac
e

Chromosome Memory
Interface

M
ain

 C
o

n
tro

ller
In

terface

Figure 3.15: Pin description of Crossover and Mutation Module

parents. The crossover and mutation rates supplied by the control registers

are compared to an internally generated random number of 8 bits as shown

in Figure 3.17. If the value of this random number is less than the crossover

and mutation rates, these operations are performed, otherwise the parents are

copied to the children. The resulted chromosomes are repaired based upon

the number of cells present in each partition. This is done by reading the

chromosome word-by-word as it is stored in the chromosome memory and

counting the numbers of 1’s and 0’s. A random number is generated which

will select a random bit in a chromosome. The bit is flipped based upon the

difference of number of 1’s and 0’s. The results of the crossover and mutation

CHAPTER 3. ARCHITECTURE 78

Parent1Addr
 Word Counter

FMAddrWidth-1 bits
 CMField bits

HighBank

1 bit

Parent2Addr
 Word Counter
HighBank

Figure 3.16: Address generation for the Chromosome Memory.

are stored word-by-word into the Chromosome memory. The starting child

addresses Child1Addr and Child2Addr are obtained from the Main Control

State Machine. Write addresses for the Chromosome memory are generated

in a similar manner as depicted in Figure 3.16, except that the HighBank

is inverted, and Parent1Addr and Parent2Addr are replaced with Child1Addr

and Child2Addr, respectively.

3. Steps 1 and 2 are repeated until the chromosome word counter reaches the

length of the chromosome denoted by the control register CMLength. The sig-

nal CrossoverDone is asserted high signaling the Main Control State Machine

the end of crossover process.

Internally, the crossover module consists of a chromosome word counter, which

is CMField bits wide and trivial combinatorial logic to perform the crossover and

mutation operations as shown in Figure 3.18. Also, the module contains an instan-

tiation of the Random Number Generator. The same random number is used as a

mask for uniform crossover as well as for determining the crossover and mutation

probabilities as shown in Figure 3.17.

CHAPTER 3. ARCHITECTURE 79

DELAY

CROSSOVER

LOGIC

MODULE

X-OVER

COMPA-

RATOR

MUTATION

COMPA-

RATOR

RANDOM

NUMBER

GENERATOR

MUTATION

LOGIC

MODULE

MUTATION

LOGIC

MODULE

DELAY

MUX

MUX

MUX

MUX

MUX

XoverMask

CMDataRd

MutationRate

CrossoverRate

CMDataWr

MutationMask

Xover-

Enable

Mutation-

Enable

Child1Word

Child2Word

CHROMOSOME

WORD

COUNTER

Parent1Addr

Parent2Addr

Child1Addr

Child2Addr

CMAddrRd

CMAddrWr

Concatenation Operator

Figure 3.17: Detailed Description of Crossover and Mutation Module.

CHAPTER 3. ARCHITECTURE 80

Parent1Word

Parent2Word

XoverMask

Child1Word

Child2Word

<0>
 <0>

<0>
<0>

<0>

<1>

<1>

<1>

<1>

<1>

CROSSOVER LOGIC MODULE

Parent1Bit

Parent2Bit

MaskBit

Child1Bit

Child2Bit

XOR

XOR

MUTATION LOGIC MODULE

ChromosomeIn

ChromosomeOut

MutationMask

<1>

<1>

<0>

<1>

<0>

<0>

Figure 3.18: Detailed Description of Crossover and Mutation Module logic.

CHAPTER 3. ARCHITECTURE 81

3.6 Fitness Module

The fitness module computes the fitness of the randomly generated population

during initialization. Also, once a complete new population is generated by the

crossover and mutation module, the Fitness module generates fitness values for

each of the generated chromosomes.

3.6.1 Pin Description

The pin diagram of Fitness module is shown in Figure 3.19 and Table 3.8 gives the

pin description.

FITNESS
MODULE

HighBank
Reset

Clk

C
M

D
at

aR
d

C
M

R
dE

nb

C
M

A
dd

rR
d

N
M

A
dd

rR
d

N
M

R
dE

nb

N
M

D
at

aR
d

N
um

O
fN

et
s

P
si

ze

C
le

ng
th

Control Registers

FitnessEnb

F
M

A
dd

rW
r

F
M

W
rE

nb

F
M

D
at

aW
r

Fitness Memory
Write Interface

Chromosome
Memory Read

Interface

Netlist Memory
Read Interface

FitnessDone M
ain

 C
o

n
tro

ller
In

terface

Figure 3.19: Pin description of Fitness Module

CHAPTER 3. ARCHITECTURE 82

Table 3.8: Pin description of fitness Module

Pin Name Direction Description

Clk Input System Clock
ResetN Input Active low asynchronous reset

Control Register Interface

NetNum Input Number of nets
[MaxNetNumBits-1:0]
PopSiz[7:0] Input Population Size
CMLength[CMField-1:0] Input Chromosome length

Main Controller Interface

FitnessEnb Input Fitness enable from main controller
(Active high)

FitnessDone Output Fitness done signal generated by the
Fitness module (Active high)

HighBank Input Signal from main controller indicating if
the parent population is stored in the lower
or the higher bank in memory. ‘1’ indicates
High bank is used for the parent population.

Chromosome Memory Read Interface

CMAddrRd Output Chromosome memory read address bus
FMAddrWidth+CMField-1:0 from crossover module
CMDataRd Input Chromosome memory read data bus
CMDataWidth-1:0
CMRdEnb Output Active high read enable for the

Chromosome memory

Netlist Memory Read Interface

NMAddr Output Netlist memory address bus
FMAddrWidth+CMField-1:0
NMDataRd Input Netlist memory read data bus
CMDataWidth-1:0
NMRdEnb Output Active high read enable for the

Netlist memory

Fitness Memory Write Interface

FMAddr Output Fitness memory address bus
FMAddrWidth-1:0 from fitness module
FMDataWr Output Fitness memory write data bus
FMDataWidth-1:0
FMWrEnb Output Active high write enable for the

Fitness memory

CHAPTER 3. ARCHITECTURE 83

3.6.2 Functional Description

Upon receiving the FitnessEnb signal from the Main Controller, the Fitness module

performs the following functions:

1. For each net, determine if the present chromosome partitioning generates a

cut. For each chromosome the fitness accumulator is reset to 0. The chro-

mosome and the net are read word-by-word from the Chromosome and the

Netlist memory, respectively. For each word of the chromosome and the net,

a simple bit-wise AND operation followed by OR operation is performed as

shown in Figure 3.20.

This generates the information that based upon the present word of chromo-

some, which partition does the net lie in. At any point if the net is found

to be present in a particular partition, the bit representing the presence of

net in that partition is latched, and not overwritten for any subsequent word

operations. At any time, if both of these bits are a ‘1’, that determines a

cut. In this case the fitness accumulator is incremented by one. This pro-

cess is repeated for each word, until the word counter reaches the length of

chromosome.

2. At any time during the computations of a net, if it is found that there is a

cut, no further words are read from the memory. This eliminates the time

wasted by reading redundant information from the Chromosome and Netlist

memories.

3. A chromosome counter keeps track of the number of chromosomes processed.

CHAPTER 3. ARCHITECTURE 84

AND

AND

OR

OR

Latch

Latch

AND

Chromosome

Netlist

Partition 1 Result

Partition 0 Result

NetIn Partition1

NetIn Partition2

EN

EN

NetIsCut

0
0

0
 0

0
0
 0
0

0
 0

0
 0

0
 0
 0
 0

1
 1
 1
 1
 1
 1
 1
 1

1
 1
 1
 1
1
 1
 1
 1

0
 0
0
 0
0
 1
 1
 1
 1
 0
0
 0
0
 0
 0
 0

Bit-Wise AND
 Bit-Wise AND

Net 1

Chromosome 1

Net 1

Chromosome 1

8

8

8

8

Bit-Wise OR
 Bit-Wise OR

NetIn Partition1
 NetInPartition2

+

Fitness

Figure 3.20: Fitness Calculation.

CHAPTER 3. ARCHITECTURE 85

If this counter reaches PopSiz, FitnessDone signal is asserted signaling the

end of Fitness generation to the Main Controller. No further processing is

done until the FitnessEnb signal is asserted again by the Main Controller.

Internally, the Fitness module consists of a word counter of width CMField,

a net counter of width MaxNetNumBits, a population counter of width 8 bits, a

fitness accumulator, and a state machine, which generates control signals to these

blocks as shown in Figure 3.21. In addition to these, there are register flags for

each partition, which indicate if the chromosome is present in the corresponding

partition. Fitness module also keeps track of the best fitness encountered along

with the corresponding chromosome. Both the best fitness and the chromosome

are stored and updated in the fitness memory. These are downloaded, when GA

processor finishes the computations.

CHROMOSOME

WORD

COUNTER

NETLIST

COUNTER

POPULATION

COUNTER

FITNESS CONTROL STATE MACHINE

 FITNESS CALCULATION

Control Register

Interface

Main Controller

Interface

Netlist Memory

Interface

Chromosome

Memory Interface

Fitness Memory

Interface

Figure 3.21: Detailed Description of Fitness

CHAPTER 3. ARCHITECTURE 86

3.7 Main Controller Module

The main controller generates control signals for rest of the blocks of the design. It

also reads the input netlist from the top-level inputs and loads it into the Netlist

memory. At the end of all the generations, the main controller outputs the final

population along with fitness of each chromosome.

3.7.1 Pin Description

Pin description is shown in Table 3.9 and Table 3.10 and pin diagram in Figure 3.22.

It depicts the top level interface, memory interface, selection module interface,

crossover module interface and fitness module interface.

3.7.2 Functional Description

The Main Controller performs the following functions:

1. After receiving the active high pulse on StartGA, the Main Controller starts

reading the input netlist using the input handshake signals. For timing dia-

grams refer to Figure 3.23, Figure 3.24, Figure 3.25, Figure 3.26, Figure 3.27.

2. After loading the netlist into the Netlist memory, the Main Controller gen-

erates random chromosomes and initializes the Chromosome memory with

random population.

3. Next, the main Controller enters a loop in which the three functions of Fitness

calculation, chromosome selection, and crossover and mutation operations are

carried out in sequence until the generation counter inside the Main controller

CHAPTER 3. ARCHITECTURE 87

Table 3.9: Pin description of Main Controller(part1)

Pin Name Direction Description

Clk Input System Clock
ResetN Input Active low asynchronous reset

Top-Level Interface

StartGA Input Active high input signal to start GA
NetlistVld Input Active high control input indicating

that input data NetlistIn is valid.
NetlistIn Input Input netlist in words. For each net,
CMDataWidth-1:0 the netlist contains a sequence of 1’s

and 0’s which is of size of a chromosome.
PopOut Output Final generated population elements
CMDataWidth-1:0 in form of words.
PopOutVld Output Output control signal indicating that

PopOut and FitnessOut are valid.
FitnessOut Output Output fitness of each output
FMDataWidth-1:0 chromosome.
GADone Output Active high pulse indicating end of GA

Control Register Interface

GenNum[5:0] Input Number of generations
NetNum Input Number of nets
[MaxNetNumBits-1:0]
PopSiz[7:0] Input Population Size
CMLength[CMField-1:0] Input Chromosome length

Fitness Module Interface

FitnessEnb Input Fitness enable to fitness module
(Active high)

FitnessDone Output Fitness done signal generated by the
Fitness module (Active high)

HighBank Input Signal from main controller indicating if
the parent population is stored in the lower
or the higher bank in memory.‘1’ indicates
High bank is used for the parent population.

Fitness Memory Read Interface

FMAddr Output Fitness memory address bus
FMAddrWidth-1:0
FMDataRd Input Fitness memory read data bus
FMDataWidth-1:0
FMRdEnb Output Active high read enable for the

Fitness memory

CHAPTER 3. ARCHITECTURE 88

Table 3.10: Pin description of Main Controller(part2)

Pin Name Direction Description

Crossover and Mutation Module Interface

CrossoverEnb Input Crossover enable to crossover module
(Active high)

CrossoverDone Input Crossover done signal generated by the
Crossover and mutation module signifying
the end of Crossover and mutation process.
(Active high)

Child1Addr Output Starting address in chromosome memory
[FMAddrWidth-2:0] where child1 has to be stored.
Child2Addr Output Starting address in chromosome memory
[FMAddrWidth-2:0] where child2 has to be stored

Selection Module Interface

SelectionEnb Output Selection enable to Selection module
(Active high)

SelectionDone Input Selection done signal generated by the
selection module signifying the end of
selection process for two parents.
(Active high)

Chromosome Memory Read/Write Interface

CMAddrRd Output Chromosome memory read address bus
FMAddrWidth+CMField-1:0
CMDataRd Input Chromosome memory read data bus
CMDataWidth-1:0
CMRdEnb Output Active high read enable for the

Chromosome memory
CMAddrWd Output Chromosome memory write address bus
FMAddrWidth+CMField-1:0
CMDataWr Output Chromosome memory write data bus
CMDataWidth-1:0
CMWrEnb Output Active high write enable for the

Chromosome memory

Netlist Memory Write Interface

NMAddr Output Netlist memory address bus
FMAddrWidth+CMField-1:0
NMDataWr Output Netlist memory write data bus
CMDataWidth-1:0
NMWrEnb Output Active high write enable for the

Netlist memory

CHAPTER 3. ARCHITECTURE 89

Main Controller

C
M

D
at

aR
d

C
M

R
dE

nb

C
M

A
dd

rR
d

N
M

A
dd

rR
d

N
M

R
dE

nb

N
M

D
at

aR
d

F
M

A
dd

rW
r

F
M

W
rE

nb

F
M

D
at

aW
r

Fitness Memory
Write Interface

Chromosome
Memory Read

Interface

Netlist Memory
Read Interface

Clk

ResetN

StartGA

Netlist Vld

Netlist In

PopOut

PopOutVld

FitnessOut

GADone

C
M

D
at

aW
r

C
M

W
rE

nb

C
M

A
dd

rW
r

P
op

S
iz

G
en

N
um

N
et

N
um

C
M

Le
ng

th

HighBank

SelectionEnb

SelectionDone

CrossoverEnb

CrossoverDone

Child1Addr

Child2Addr

FitnessEnb

FitnessDone

T
o

p
-l

ev
el

 IO
's

Control Registers

F
itn

ess
M

o
d

u
le

In
terface

C
ro

sso
ver

M
o

d
u

le
In

terface

S
electio

n
M

o
d

u
le

In
terface

Figure 3.22: Pin description of Main Controller Module

reaches the generation count loaded into GenNum control register. With each

generation, the generation count is incremented by one.

4. At the end of the last generation, the Main Controller enables the Fitness

module for one last time and outputs the final population and final fitness

using the top-level output signals.

The state diagram of the main controller state machine is shown in Figure 3.29

and the detailed description is shown in Figure 3.28.

CHAPTER 3. ARCHITECTURE 90

Clk

CPUWr

CPUAddr

CPUData

Register

Write

Operation

Din

Figure 3.23: Control Register write Timings

Clk

NetlistVld

NetlistIn

StartGA

Figure 3.24: Control Input data and control Timings

Clk

GADone

StartGA

PopOutVld

PopOut

FitnessOut

Figure 3.25: Core output data and control timings

CHAPTER 3. ARCHITECTURE 91

Clk

WrEnb

AddrWr
Addr
 AddrRd

Valid Data
DataWr

RdEnb

DataRd
 Valid Data

Memory

Write

Operation

Memory

Read

Operation

Figure 3.26: Single port memory access timings

Clk

WrEnb

AddrWr
AddrWr

Valid Data
DataWr

RdEnb

DataRd
 Valid Data

Memory

Write

Operation

Memory

Read

Operation

AddrRd
 AddrRd

Figure 3.27: Dual port memory access timings

CHAPTER 3. ARCHITECTURE 92

CHROMOSOME

COUNTER

POPULATION

COUNTER

NETLIST

COUNTER

GENERATION

COUNTER

CHILD

COUNTER

MAIN CONTROLLER STATE MACHINE

RANDOM

NUMBER

GENERATOR

Top Level

IO’s

Selection

Module Interface

Crossover Module

Interface

Fitness Module

Interface

Control Register

Interface

Fitness Memory

Interface

Chromosome

Memory Interface

Netlist Memory

Interface

Figure 3.28: Detailed Description of Main Controller.

CHAPTER 3. ARCHITECTURE 93

stIdle

Reset

stload Netlist

stInitializePop

stFitness

stSelection

stCrossover

StartGA ='1'

AddrCntDone='1'
PopCntDone='1'

FitnessDone='1'
&&

 GenCntDone = '0'

SelectionDone='1'

if (NetlistVld =1)
 AddrCntEnb ='1';
 NMAddrWrInt = AddrCnt;
 NMWrEnbInt ='1';
 NMDataWrInt = Netlist;

AddrCntRst ='1';
LoadAddrCnt = '1';
AddrCntMax=PSize*CLength;

AddrCntEnb ='1';
GenerateRand ='1'
CMAddrWrInt ='1';
CMWrEnbInt ='1';
CMDataWrInt=Rand(7:0);

RstHighBank ='1';
Rst all Counters
LoadAddrCnt ='1';
AddrCntMax=
 NumOfNets*Clength;

FitnessEnb ='1';
GenerationCntEnb ='1';

ChildCntRst ='1';

SelectionEnb ='1';

CrossoverEnb ='1';

stOutputResults

stPreIdle

CrossoverDone='1'
&&

ChildCntDone='0'

CrossoverDone='1'
&&

ChildCntDone='1'

ToggleHighBank ='1';
ChildCntEnb ='1';
GenCntEnb ='1';

ChildCntEnb ='1';

CMCntEnb='1'
PopCntEnb='1'
CMRdEnbInt='1'
PopOutInt=CMDataRd
FMRdEnbInt='1'
FitnessOutInt=
 FMDataRd
PopOutVldInt=
CMRdEnbIntD2

FitnessDone='1'
&&

 GenCntDone = '1'

GADoneInt= '1'

AddrCntDone='1'

Figure 3.29: State Diagram of Main Controller Module

CHAPTER 3. ARCHITECTURE 94

3.8 Simulation and Verification

The proposed design was coded in VHDL. It was functionally verified by writing a

testbench and simulating it using ModelSim and synthesizing it on Virtex xcv2000e

using Xilinx ISE 5.1. The optimization criterion kept during synthesis was time.

The Hardware GA processor was compared with software implementation for dif-

ferent benchmarks with default GA parameters shown in Table 3.11.

Table 3.11: Default GA parameters

Parameters Parameter value

Population Size 20
Generation Count 20
Crossover Rate 0.99
Mutation Rate 0.01
Crossover Type Uniform
Selection Type Tournament

The results of the fitness (number of cuts) in software, for different benchmarks

are shown in Table 3.12. This table describes the average and minimum fitness

during initialization and at the end of final generation. It also tells about the best

fitness encountered during the runs for different generations. These results are

compared with the hardware results for fitness. The results for fitness in hardware

are shown in Table 3.13. It can be seen that the hardware and software results

for fitness are comparable. The differences are due to different random number

generation.

Tests were run assuming the clock frequency of 50MHz. The results obtained

for different generation counts and population size are given in Table 3.14 and Ta-

CHAPTER 3. ARCHITECTURE 95

Table 3.12: Software Fitness Results

Benchmarks Initial Initial Final Final Best
Average Minimum Average Minimum Fitness
Fitness Fitness Fitness Fitness

net9 mod10 6 3 1 1 1
net12 mod15 7 4 1 1 1
net15 mod10 11 8 4 4 4

Pcb1 20 16 9 9 9
Chip3 123 107 17 12 10
Chip4 130 119 46 37 35
Chip2 152 136 46 39 39
Chip1 184 172 38 27 20
Prim1 564 538 109 93 87
Prim2 1942 1897 255 200 188
Bio 3388 3313 295 223 216

Table 3.13: Hardware Fitness Results

Benchmarks Initial Initial Final Final Best Best
Software Software Software Software Software Hardware
Average Minimum Average Minimum Fitness Fitness
Fitness Fitness Fitness Fitness

net9 mod10 6.4 3.0 1.0 1.0 1.0 1.0
net12 mod15 7.5 4.0 1.0 1.0 1.0 2.0
net15 mod10 11.5 8.0 4.2 4.0 4.0 4.0

Pcb1 20.0 16.0 9.0 9.0 9.0 10.0
Chip1 184 172 38 27 20 22
Chip3 123 107 17 12 10 12

CHAPTER 3. ARCHITECTURE 96

Table 3.14: Performance results for Hardware GA and Software GA for different
Generation Count

Benchmarks Generation Software Hardware e Time(ms)
Count Time (ms) CMDataWidth CMDataWidth

(8bit) (16 bit)

net9 mod10 20 100 0.53 0.45
Nnets=9 60 300 1.60 1.35

Nmods=10 100 600 2.60 2.26

net12 mod15 20 200 0.67 0.57
Nnets=12 60 400 2.03 1.71
Nmods=15 100 600 3.38 2.86

net15 mod10 20 200 0.82 0.69
Nnets=15 60 400 2.46 2.07
Nmods=10 100 800 4.10 3.46

Pcb1 20 200 1.86 1.63
Nnets=32 60 600 5.58 4.91
Nmods=24 100 900 9.30 7.20

Chip1 20 1700 73.56 40.50
Nnets=294 60 4800 222.82 121.25
Nmods=300 100 8100 373.63 202.32

Chip3 20 1200 38.41 23.23
Nnets=239 60 3400 115.06 69.52
Nmods=274 100 5900 190.55 116.23

CHAPTER 3. ARCHITECTURE 97

Table 3.15: Performance results for Hardware GA and Software GA for different
population size

Benchmarks Population Software Hardware Time(ms)
Size Time (ms) CMDataWidth CMDataWidth

(8bit) (16 bit)

net9 mod10 20 100 0.53 0.45
Nnets=9 60 300 1.59 1.34

Nmods=10 100 600 2.58 2.24

net12 mod15 20 200 0.67 0.57
Nnets=12 60 400 2.01 1.70
Nmods=15 100 700 3.36 2.84

net15 mod10 20 200 0.82 0.69
Nnets=15 60 500 2.44 2.06
Nmods=10 100 800 4.08 3.44

Pcb1 20 200 1.86 1.63
Nnets=32 60 700 5.58 4.82
Nmods=24 100 1100 9.30 7.20

Chip1 20 1700 73.56 40.50
Nnets=294 60 4900 218.24 122.25
Nmods=300 100 8800 362.92 203.60

Chip3 20 1200 38.41 23.23
Nnets=239 60 3800 114.32 69.36
Nmods=274 100 5700 189.21 115.32

CHAPTER 3. ARCHITECTURE 98

ble 3.15, respectively. Smaller benchmarks (Table 3.13 are used because size of the

memory governs the size of benchmark data. In order to prove the concept and

verify the design, smaller benchmarks are used, thus removing the requirement of

using large FPGA. The remaining GA parameters were assigned the default values

given in Table 3.11. From the simulations results, it is clear that the hardware im-

plementation is much faster than the software version. The software results shown

in Table 3.14 and Table 3.15 were achieved using SUN ULTRA10 440 MHz proces-

sor system. As seen, the speed increases to approximately 50 times the software

implementation. This tremendous increase in speed for hardware implementation is

mainly attributed to the fact that, during fitness evaluation, if a cut is determined

for a net at any time, the remaining words for that net and the chromosome are

not read from the memory. This eliminates the time wasted by reading redundant

information from the Chromosome and Netlist memories. The hardware processing

speed can further be increased by increasing the Chromosome memory data bus

width because this enables more computations to be performed in parallel.

Table 3.16: Synthesis Report

Device Virtex xcv2000e
Slices 334 out of 19200 (1.7%)
CLB’s 167
Equivalent Gate Count 6044
Max Clock Frequency 123 MHz

Synthesis results are shown in Table 3.16. It is evident from Table 3.16 that

minimal hardware resources are utilized. Since the simulation results shown in

Table 3.14 and Table 3.15 are obtained by assuming a 50 MHz clock frequency,

CHAPTER 3. ARCHITECTURE 99

the improvement in speed can be increased to more than 100 times the software

implementation with a maximum tolerable clock frequency of 123 MHZ.

3.9 Summary

In this research, a GA Processor is designed which is used to solve circuit parti-

tioning problem. The architecture employs a combination of pipelining and par-

allelization to achieve speedups over software based GA. Results produced by the

proposed architecture are very encouraging. At a frequency of 123 MHz, 100 times

improvement in processing speed over software implementation is achieved. Min-

imal amount of hardware resources are utilized. The area/gate utilization of the

FPGA is small (Table 3.16), thus reduces the hardware resources needed. More-

over, the architecture proposed is implemented on a single FPGA. The design uses

the configurable parameters (generics), using which the hardware can be changed

based upon the size of the application the hardware is required to support. This

makes the architecture flexible. Since some of the modules in the design can be re-

used for other problems as well, the design is modular. The operational parameters

like population size, generation count etc. can be easily changed during run-time,

as the design has control registers with simple read/write interface. Therefore, it is

clear from the discussion that the proposed design was able to meet all the system

specifications and requirements.

After simulation and synthesis this architecture was mapped onto CMCs Rapid

Prototyping Platform(RPP) to verify its functionality on actual hardware. The

implementation and mapping of the design is explained in the next chapter.

Chapter 4

Implementation and Mapping

In the previous chapter a detailed architecture of a GA Processor was presented

and verified. This architecture can be mapped onto reconfigurable hardware plat-

form. This chapter describes the system operation of the Rapid Prototyping Plat-

form(RPP) and discuses the implementation details for the proposed architecture

on this platform. It is crucial to understand the architecture of the RPP, in order

to efficiently implement and map the GA processor. The detail functionality of

each block of RPP is explained in Appendix B. In order to implement and map the

GA Processor onto RPP, more modules were designed. The functionality of each

module is described in this chapter and the VHDL code for these modules is in [?].

4.1 Overview and System Operation of RPP

In this section, the CMC’s Rapid-Prototyping Platform (RPP) is explained which

was used to map the Genetic Algorithm Processor on actual hardware. CMC’s

100

CHAPTER 4. IMPLEMENTATION AND MAPPING 101

Rapid-Prototyping Platform (RPP) consists of hardware and software components

to enable the prototyping and design of complex, embedded systems based around

an ARM7TDMI microprocessor. The RPP features two daughtercards, both housed

on the same motherboard (ARM’s Integrator/AP board). The two daughtercards

are:

1. The ARM7TDMI microprocessor core(core module)

2. The ARM Integrator LM-XCV600E+ module which is a re-programmable

hardware module, featuring a Xilinx Virtex-2000E FPGA that enables designs

of up to 2 million FPGA gates(Logic module).

The ARM’s Integrator/AP board(motherboard) allows stacking multiple core

(e.g., ARM7, ARM9) and logic (Xilinx or Altera) modules, as well as the addition

of PCI cards for I/O. CMC provides and supports the RPP as a single ARM7TDMI

and Xilinx module system. Because the RPP provides a software-programmable

microprocessor as well as a hardware module, the design flow for the RPP involves

both software and hardware design flows and tools.

In addition, there is the ARM Multi-ICE unit which is used to communicate

between the host PC and either the logic module or core module as shown in Fig-

ure 4.1. Multi-ICE is the Embedded-ICE logic debug solution for ARM. It enables

to debug software running on ARM processor cores that include the Embedded-ICE

logic. It provides the software and hardware interface between a Joint Test Action

Group (JTAG) port on the hardware using a small interface unit and a Windows

or UNIX debugger using the ARM Debug Interface (RDI) running on the work-

station. It consists of an interface unit that connects the parallel port of the host

CHAPTER 4. IMPLEMENTATION AND MAPPING 102

Workstation

CORE

MODULE

LOGIC

MODULE

MULTI-ICE

Connection

Integrator/AP

Motherboard

Figure 4.1: Connection of Host to Rapid Prototyping Platform

PC to the JTAG interface of an ASIC that includes the debug and Embedded-ICE

capability. Also, a 128 MB SRAM DIMM is installed on the core module to expand

the available processor memory.

In brief, Multi-ICE is used to communicate between the host PC and either the

logic module or core module. It programs the ARM processor by downloading the

programs in C and also downloads the design to FPGA in logic module which is

written in VHDL code from the host PC. The communication between the core

module, the motherboard and logic module is through the standard AMBA buses

(AHB, APB and ASB). The different components are explained briefly in Appendix

B.

4.2 Implementation Details

In the previous chapter, the details of the architecture of GA processor were ex-

plained. In order to implement and map the GA Processor on RPP, additional

CHAPTER 4. IMPLEMENTATION AND MAPPING 103

modules are required for interfacing system bus with GA Processor. This section

describes the implementation details for the GA Processor.

4.2.1 System Description for Top level Implementation

The GA Processor is tested and implemented on CMC’s Rapid prototyping Plat-

form. The main blocks which are involved during implementation are shown in

Figure 4.2

1. The core module: The core module contains the ARM processor and a

memory controller FPGA. The host computer programs the ARM processor

using the Multi ICE. The ARM processor configures the memory controller

and tests the ZBT SRAM which is located on logic module. The core module

FPGA implements the system bus bridge. The system bus bridge provides

the AMBA interface between the memory bus on the core module and the

system bus on the motherboard. It allows the processor to access the interface

resources on other modules and the motherboard. The details of AMBA

specification is given in Appendix A. SDRAM is used for memory expansion

and it also provides support for Dual In Line Memory Modules(DIMMs).

2. The Logic module: The Logic Module contains Xilinx xcv2000E VirtexE

FPGA and 1MB ZBT SRAM. When the complete system for GA Processor

is synthesized for Xilinx VirtexE family and target device of xcv2000E , a .bit

file is generated. This file is implemented to logic module FPGA using Multi

ICE. In addition there is a 1MB ZBT SRAM, which stores the complete data

for the design(including netlist and GA parameters).

CHAPTER 4. IMPLEMENTATION AND MAPPING 104

SYSTEM CONTROLLER FPGA

ARM

PROCESSOR

MEMORY

CONTROLLER

FPGA

SD
 -

RAM

ZBT SRAM

XILINX-

xcv2000E FPGA

AMBA System Bus

Communication

CORE MODULE
 LOGIC MODULE

Integrator/AP Motherboard

Figure 4.2: System Description for Top Level Implementation

CHAPTER 4. IMPLEMENTATION AND MAPPING 105

3. The Integrator/AP(motherboard): These two modules(core module and

logic module) are stacked on Integrator/AP. The motherboard contains sys-

tem controller FPGA that implements the system bus interface to core and

logic modules. It also provides clock generators that supplies clock for the

system bus.

4.2.2 Functional description of the Logic-module FPGA de-

sign

In order to test and implement the GA Processor as part of complete system, it

is implemented on VirtexE FPGA xcv2000E, along with GA Controller, AHB Top

Level Controller, and a multiplexer as shown in Figure 4.3. A description of the

modules inside the FPGA is explained below:

1. AHB Top Level Controller: This block receives the input from the ARM

processor via AMBA system bus. The netlist and GA parameters are loaded

into ZBT SRAM. ARM processor writes to the control register which en-

ables the bit called EnbGACtl in this register to start the GA process. After

enabling theEnbGACtl bit, ARM keeps on polling the value of this bit via

AMBA. If this bit is ‘0’, the ARM processor starts reading the output data

(population and fitness) from the ZBT SRAM. This data is then displayed

on the standard output-monitor of the host, where it can be verified. The

connection between the host and Rapid Prototyping Platform is with Multi

ICE.

The AHB Top Level controller contains all high speed peripherals, decoder

CHAPTER 4. IMPLEMENTATION AND MAPPING 106

GA PROCESSOR

GA

CONTROLLER

AMBA TOP

LEVEL

CONTROLLER

MULTIPLEXER

ZBT SRAM

CM
 FM
 NM

FPGA

Input

From

System

Bus

AMBA

Figure 4.3: System Description of the Logic-module FPGA

CHAPTER 4. IMPLEMENTATION AND MAPPING 107

and all necessary support and glue logic to make a working system as shown

in Figure 4.4.

ADDRESS

DECODER

AHB TO APB

BRIDGE

AHB SSRAM

CONTROLLER

REGISTER

PERIPHERAL

INTERRUPT

CONTROLLER

AHB

SYSTEM

BUS

Figure 4.4: AHB Top Level Controller

2. GA Controller: This block communicates between GA Processor, ZBT

SRAM and AHB Top Level Controller. When the ARM processor enables the

bit EnbGACtl of the control register through the AHB Top Level Controller,

GA controller starts loading the GA parameters and netlist from ZBT SRAM

to GA processor after generating theStartGA signal for GA Processor and

executes all its operations. Finally, it sends the output data to GA Controller,

which further sends the data to ZBT SRAM for storage. After data has been

stored completely in ZBT RAM, GACtlReset signal is sent to AHB Top Level

controller. This signal disables the EnbGACtl signal and the output is sent

to the host computer.

3. Multiplexer: It multiplexes the control and data signals generated by GA

CHAPTER 4. IMPLEMENTATION AND MAPPING 108

Controller and AHB Top Level Controller for ZBT RAM. It also multiplexes

the data and control signals of ZBT SRAM generated for these two blocks.

Select is done based upon the EnbGACtl signal which indicates that GA

Controller is active.

Figure 4.5 shows the system level flow diagram for implementation on RPP.

CHAPTER 4. IMPLEMENTATION AND MAPPING 109

Load Netlist and Control Register

values into ZBTRAM

Write ‘1' into ‘EnableGACtl’ bit of GA

Controller Register

Read Enable GA Controller Register

Read Final Population from ZBTRAM

START

END

Check ‘EnableGACtl’ bit of GA

Controller Register

Read Control Register values from

ZBTRAM and load GA Processor

registers

Generate ‘StartGA’ pulse to start

GA Processor

Load Netlist data into GA

Processor from ZBTRAM

Read Final Population from GA

Processor and write into ZBTRAM

Reset ‘EnableGACtl’ bit in Control

Register

SOFTWARE

YES

NO

NO

YES

Is ‘EnableGACtl’

bit =’1' ?

Is ‘EnableGACtl’

bit =’1' ?

HARDWARE

Figure 4.5: System level Implementation Flow Diagram

CHAPTER 4. IMPLEMENTATION AND MAPPING 110

4.2.3 Address Mapping

The memory map for the logic module is shown in the Figure 4.6. This shows the

locations to which the logic module are assigned by the main address decoder on

motherboard. The diagram also shows how the whole design decodes the address

space for logic module.

LOGIC MODULE 0

LOGIC MODULE 1

LOGIC MODULE 2

LOGIC MODULE 3

CORE MODULE ALIAS

MEMORY

PCI

CORE MODULE /

MOTHERBOARD MEMORY

AND PERIPHERALS

BUS ERROR RESPONSE

SSRAM

INTERRUPT CONTROLLER

LM REGISTERS

0XF0000000

0XE0000000

0XD0000000

0XC0000000

0XC0000000

0XC1000000

0XC2000000

0XC20FFFF

0XCFFFFFF

Figure 4.6: Address Mapping In Logic Module

4.3 Results and Conclusions

The complete system was tested and verified on the RPP for different benchmarks

data. Tests were performed for different generation counts and average and best

CHAPTER 4. IMPLEMENTATION AND MAPPING 111

fitness results were obtained. The implementation results obtained on the RPP were

verified for best fitness, average fitness, and solution feasibility by writing a result-

checker program in C. Table 4.1 shows the test results for different benchmarks

with population size of 16 and different generation counts.

Table 4.1: RPP test results with different generation counts for different Bench-
marks

Benchmarks Generation Count Average Fitness Best Fitness

Pcb1 2 16.8 14.0
Nnets=32 4 18.5 14.0
Nmods=24 6 15.0 11.0

8 13.7 11.0
10 12.0 10.0
12 10.4 10.0
14 10.0 10.0

net9-mod10 2 4.8 1.0
Nnets=9 4 3.7 1.0

Nmods=10 6 1.6 1.0
8 1.0 1.0
10 1.0 1.0

net12-mod15 2 6.7 3.0
Nnets=12 4 5.3 3.0
Nmods=15 6 4.2 2.0

8 2.5 2.0
10 2.0 2.0
12 2.0 2.0

net15-mod10 2 9.4 6.0
Nnets=15 4 7.9 6.0
Nmods=10 6 6.7 4.0

8 5.8 4.0
10 4.4 4.0
12 4.0 4.0
14 4.0 4.0

The plots for average and best fitness results for the different benchmarks are

CHAPTER 4. IMPLEMENTATION AND MAPPING 112

shown in Figure 4.7.

2 4 6 8 10 12 14
8

10

12

14

16

18

20

22

F
itn

es
s

Generation Count

pcb1 Results

Average Fitness
Best Fitness

2 4 6 8 10
0

1

2

3

4

5

6

F
itn

es
s

Generation Count

net9_mod10 Results

Average Fitness
Best Fitness

2 4 6 8 10 12
0

2

4

6

8

F
itn

es
s

Generation Count

net12_mod15 Results

Average Fitness
Best Fitness

2 4 6 8 10 12 14
3

4

5

6

7

8

9

10

11
F

itn
es

s

Generation Count

net15_mod10 Results

Average Fitness
Best Fitness

Figure 4.7: Fitness plots for different benchmarks.

4.4 Summary

In this chapter, GA processor is implemented and mapped onto RPP. Since block-

RAMs internal to the FPGA are used as chromosome, netlist, and fitness memories,

there is a restriction on the size of problems that can be solved by the RPP im-

CHAPTER 4. IMPLEMENTATION AND MAPPING 113

plementation. However, just to prove the concept and to verify that the design is

implemented correctly in hardware, the sizes of the block-RAMs used are sufficient.

A more practical way of implementing would be to use memories external to the

FPGA, as in this case there would not be a strict restriction on the size of problem

that can be solved by the implemented design. However, such an implementation

would require a more complex memory-interface timing constraints and maybe a

dedicated circuit-board designed specifically for the GA hardware.

One of the major challanges in hardware implementation is that the observabil-

ity of the internal signals in the design is greatly reduced. In order to facilitate

debugging of the design, internal states of the state-machines were made observ-

able to the ARM processor through the AMBA interface. These debug signals

were implemented in the form of a control register in the peripheral address space

of the APB. Having such debug signals greatly helped the debugging stage of the

implementation.

Chapter 5

Conclusions and Future Directions

In view of the increasing complexity of VLSI circuits[?], there is a growing need for

sophisticated CAD tools to automate the synthesis, analysis, and verification steps

in the design of VLSI systems.

In this research a new architecture for implementing the genetic algorithm in

hardware is proposed. Although the architecture is designed specifically to solve

the circuit-partitioning problem, some of the modules in the design can be re-used

for other problems as well which makes the design to be modular. These include the

Selection Module, Crossover Module, the LFSR based random number generator,

and most of the Main Controller. The design takes into account the practical

limitations of memory data bus imposed by the memory chips available. In order

to enable the use of almost any memory chip along with the design, the design uses

configurable parameters (generics) which can easily change the memory address

and data bus widths during compilation time.

The functional correctness of the design was verified by using Modelsim simula-

114

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 115

tor. The simulation was used to analyze its performance and identify its bottleneck.

The design was synthesized for a maximum clock frequency of 123 MHz on Virtex

xcv2000e. At this frequency the design achieves more than 100 times improvement

in processing speed over the software implementation. These improvements were

due to pipelined architectures. It is also evident from the synthesis results that min-

imal hardware resources are utilized. The architecture proposed in this research is

implemented on a single FPGA, thus reducing the hardware resources needed.

Therefore, due to reprogrammability of FPGAs, the proposed architecture pos-

sessed the speed of hardware while retaining the flexibility of a software implemen-

tation. This GA processor can be useful in many applications where software-based

GA implementations are too slow.

5.1 Future Work

There are many ways to extend the proposed design by simple modifications in the

internal architecture and the platform implementation.

5.1.1 Architecture Enhancements

This design was used to solve two-way circuit partitioning problem with tourna-

ment selection and uniform crossover. Other Genetic Algorithm operators could be

implemented like, multi-point cross-over, partially mapped crossover and different

selection methods as well. The design can be extended to solve multi-way circuit

partitioning problem. The design can also be enhanced by incorporating a local

search engine to create a hybrid memetic GA. The chromosome representation used

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 116

in this project requires a relatively large amount of external memory to store the

population and netlist. Alternate chromosome representations can be explored in

order to reduce the memory requirements.

5.1.2 Platform-mapping Enhancements

Hardware/software co-design can be implemented in which the reconfigurable pro-

cessors will integrate processor cores and reconfigurable units, much closer than

today’s devices do. The results of such an implementation can be compared with

those of the current implementation.

In the present implementation, the different memories used by the GA processor

are implemented using FPGA’s block-RAMs. This limits the size of the problem

that can be solved using this hardware. In order to design a more generic hardware

which can solve large-sized problems, these memories can be implemented external

to the FPGA using on-board memory chips.

Appendix A

Introduction to AMBA Buses

A.1 Overview of the AMBA specification

The Advanced Microcontroller Bus Architecture (AMBA) specification defines an

on chip communications standard for designing high-performance embedded micro-

controllers.

Three distinct buses are defined within the AMBA specification:

1. The Advanced High-performance Bus (AHB).

2. The Advanced System Bus (ASB).

3. The Advanced Peripheral Bus (APB).

A test methodology is included with the AMBA specification which provides an

infrastructure for modular macrocell test and diagnostic access.

1. Advanced High-performance Bus (AHB):

117

APPENDIX A. INTRODUCTION TO AMBA BUSES 118

The AMBA AHB is for high-performance, high clock frequency system mod-

ules. The AHB acts as the high-performance system backbone bus. AHB

supports the efficient connection of processors, on-chip memories and off-chip

external memory interfaces with low-power peripheral macrocell functions.

AHB is also specified to ensure ease of use in an efficient design flow using

synthesis and automated test techniques.

2. Advanced System Bus (ASB):

The AMBA ASB is for high-performance system modules. AMBA ASB is

an alternative system bus suitable for use where the high-performance fea-

tures of AHB are not required. ASB also supports the efficient connection

of processors, on-chip memories and off-chip external memory interfaces with

low-power peripheral macrocell functions.

3. Advanced Peripheral Bus (APB):

The AMBA APB is for low-power peripherals. AMBA APB is optimized

for minimal power consumption and reduced interface complexity to support

peripheral functions. APB can be used in conjunction with either version of

the system bus.

A.2 A typical AMBA-based microcontroller

An AMBA-based microcontroller typically consists of a high-performance system

backbone bus (AMBA AHB or AMBA ASB), able to sustain the external memory

bandwidth, on which the CPU, on-chip memory and other Direct Memory Ac-

APPENDIX A. INTRODUCTION TO AMBA BUSES 119

cess (DMA) devices reside. This bus provides a high-bandwidth interface between

the elements that are involved in the majority of transfers. Also located on the

high performance bus is a bridge to the lower bandwidth APB, where most of the

peripheral devices in the system are located as shown in Figure A.1.

Figure A.1: A typical AMBA System.

AMBA APB provides the basic peripheral macrocell communications infras-

tructure as a secondary bus from the higher bandwidth pipelined main system bus.

Such peripherals typically:

1. Have interfaces which are memory-mapped registers

2. Have no high-bandwidth interfaces

3. Are accessed under programmed control.

APPENDIX A. INTRODUCTION TO AMBA BUSES 120

The external memory interface is application-specific and may only have a narrow

data path, but may also support a test access mode which allows the internal AMBA

AHB, ASB and APB modules to be tested in isolation with system-independent

test sets.

A.3 Terminology

The following terms are used throughout this specification.

1. Bus cycle: A bus cycle is a basic unit of one bus clock period and for the

purpose of AMBA AHB or APB protocol descriptions is defined from rising-

edge to rising-edge transitions. An ASB bus cycle is defined from falling-edge

to falling-edge transitions. Bus signal timing is referenced to the bus cycle

clock.

2. Bus transfer: An AMBA ASB or AHB bus transfer is a read or write

operation of a data object, which may take one or more bus cycles. The bus

transfer is terminated by a completion response from the addressed slave. The

transfer sizes supported by AMBA ASB include byte (8-bit), halfword (16-bit)

and word (32-bit). AMBA AHB additionally supports wider data transfers,

including 64-bit and 128-bit transfers. An AMBA APB bus transfer is a read

or write operation of a data object, which always requires two bus cycles.

3. Burst operation: A burst operation is defined as one or more data transac-

tions, initiated by a bus master, which have a consistent width of transaction

to an incremental region of address space. The increment step per transac-

APPENDIX A. INTRODUCTION TO AMBA BUSES 121

tion is determined by the width of transfer (byte, halfword, word). No burst

operation is supported on the APB.

A.4 Introducing the AMBA AHB

AHB is a new generation of AMBA bus which is intended to address the require-

ments of high-performance synthesizable designs. It is a high-performance system

bus that supports multiple bus masters and provides high-bandwidth operation.

AMBA AHB implements the features required for high-performance, high clock

frequency systems including:

1. Burst transfers

2. Split transactions

3. Single-cycle bus master handover

4. Single-clock edge operation

5. Non-tristate implementation

6. Wider data bus configurations (64/128 bits).

Bridging between this higher level of bus and the current ASB/APB can be done

efficiently to ensure that any existing designs can be easily integrated. An AMBA

AHB design may contain one or more bus masters, typically a system would contain

at least the processor and test interface. However, it would also be common for a

Direct Memory Access (DMA) or Digital Signal Processor (DSP) to be included as

APPENDIX A. INTRODUCTION TO AMBA BUSES 122

bus masters. The external memory interface, APB bridge and any internal memory

are the most common AHB slaves. Any other peripheral in the system could also be

included as an AHB slave. However, low-bandwidth peripherals typically reside on

the APB. A typical AMBA AHB system design contains the following components:

1. AHB Master: A bus master is able to initiate read and write operations by

providing an address and control information. Only one bus master is allowed

to actively use the bus at any one time.

2. AHB slave: A bus slave responds to a read or write operation within a given

address-space range. The bus slave signals back to the active master the

success, failure or waiting of the data transfer.

3. AHB arbiter: The bus arbiter ensures that only one bus master at a time

is allowed to initiate data transfers. Even though the arbitration protocol is

fixed, any arbitration algorithm, such as highest priority or fair access can

be implemented depending on the application requirements. An AHB would

include only one arbiter, although this would be trivial in single bus master

systems.

4. AHB decoder: The AHB decoder is used to decode the address of each transfer

and provide a select signal for the slave that is involved in the transfer. A

single centralized decoder is required in all AHB implementations.

APPENDIX A. INTRODUCTION TO AMBA BUSES 123

A.4.1 Overview of AMBA AHB operation

Before an AMBA AHB transfer can commence the bus master must be granted

access to the bus. This process is started by the master asserting a request signal

to the arbiter. Then the arbiter indicates when the master will be granted use of the

bus. A granted bus master starts an AMBA AHB transfer by driving the address

and control signals. These signals provide information on the address, direction

and width of the transfer, as well as an indication if the transfer forms part of a

burst. Two different forms of burst transfers are allowed:

1. Incrementing bursts, which do not wrap at address boundaries.

2. Wrapping bursts, which wrap at particular address boundaries. A write data

bus is used to move data from the master to a slave, while a read data bus is

used to move data from a slave to the master.

Every transfer consists of:

1. An address and control cycle

2. One or more cycles for the data.

The address cannot be extended and therefore all slaves must sample the address

during this time. The data, however, can be extended using the HREADY signal.

When LOW this signal causes wait states to be inserted into the transfer and allows

extra time for the slave to provide or sample data.

During a transfer the slave shows the status using the response signals, HRESP[1:0]:

APPENDIX A. INTRODUCTION TO AMBA BUSES 124

1. OKAY: The OKAY response is used to indicate that the transfer is progress-

ing normally and when HREADY goes HIGH this shows the transfer has

completed successfully.

2. ERROR: The ERROR response indicates that a transfer error has occurred

and the transfer has been unsuccessful.

3. RETRY and SPLIT: Both the RETRY and SPLIT transfer responses indicate

that the transfer cannot complete immediately, but the bus master should

continue to attempt the transfer.

In normal operation a master is allowed to complete all the transfers in a particular

burst before the arbiter grants another master access to the bus. However, in order

to avoid excessive arbitration latencies it is possible for the arbiter to break up a

burst and in such cases the master must re-arbitrate for the bus in order to complete

the remaining transfers in the burst.

A.4.2 Basic Transfer

An AHB transfer consists of two distinct sections:

1. The address phase, which lasts only a single cycle.

2. The data phase, which may require several cycles. This is achieved using the

HREADY signal.

Figure A.2 shows the simplest transfer, one with no wait states.

APPENDIX A. INTRODUCTION TO AMBA BUSES 125

Figure A.2: Basic Transfer

APPENDIX A. INTRODUCTION TO AMBA BUSES 126

A.4.3 Address Decoding

A central address decoder is used to provide a select signal, HSELx, for each slave

on the bus. The select signal is a combinatorial decode of the high-order address

signals, and simple address decoding schemes are encouraged to avoid complex

decode logic and to ensure high-speed operation. A slave must only sample the

address and control signals and HSELx when HREADY is HIGH, indicating that

the current transfer is completing. Under certain circumstances it is possible that

HSELx will be asserted when HREADY is LOW, but the selected slave will have

changed by the time the current transfer completes. The minimum address space

that can be allocated to a single slave is 1kB. All bus masters are designed such that

they will not perform incrementing transfers over a 1kB boundary, thus ensuring

that a burst never crosses an address decode boundary. In the case where a system

design does not contain a completely filled memory map an additional default

slave should be implemented to provide a response when any of the nonexistent

address locations are accessed. If a NONSEQUENTIAL or SEQUENTIAL transfer

is attempted to a nonexistent address location then the default slave should provide

an ERROR response. IDLE or BUSY transfers to nonexistent locations should

result in a zero wait state OKAY response. Typically the default slave functionality

will be implemented as part of the central address decoder. Figure A.3 shows a

typical address decoding system and the slave select signals.

APPENDIX A. INTRODUCTION TO AMBA BUSES 127

Figure A.3: Address Decoding System.

A.4.4 AHB Bus Slave

An AHB bus slave responds to transfers initiated by bus masters within the system.

The slave uses a HSELx select signal from the decoder to determine when it should

respond to a bus transfer. All other signals required for the transfer, such as the

address and control information, will be generated by the bus master and are shown

in Figure A.4.

A.4.5 AMBA AHB signal list

This section contains an overview of the AMBA AHB signals (see Table A.1 and

Table A.2). All signals are prefixed with the letter H, ensuring that the AHB signals

are differentiated from other similarly named signals in a system design.

APPENDIX A. INTRODUCTION TO AMBA BUSES 128

Figure A.4: AHB Bus Slave Interface

APPENDIX A. INTRODUCTION TO AMBA BUSES 129

Table A.1: AMBA AHB signals(part1)

Name Source Description

HCLK Clock source This clock times all bus transfers. All signal
timings are related to the rising edge of HCLK.

HRESETn Reset controller The bus reset signal is active LOW and is
used to reset the system and the bus.This is
the only active LOW signal.

HADDR[31:0] Master The 32-bit system address bus.
HTRANS[1:0] Master Indicates the type of the current transfer,which

can be NONSEQUENTIAL, SEQUENTIAL, IDLE
or BUSY.

HWRITE Master When HIGH this signal indicates a write transfer
and when LOW a read transfer.

HSIZE[2:0] Master Indicates the size of the transfer, which is
typically byte (8-bit), halfword (16-bit) or
word (32-bit). The protocol allows for larger
transfer sizes up to a maximum of 1024 bits.

HBURST[2:0] Master Indicates if the transfer forms part of a
burst. Four, eight and sixteen beat bursts are
supported and the burst may be either
incrementing or wrapping.

HPROT[3:0] Master The protection control signals provide
additional information about a bus access
and are primarily intended for use by any
module that wishes to implement some level
of protection. The signals indicate if
the transfer is an opcode fetch or data
access, as well as if the transfer is a
privileged mode access or user mode access.
For bus masters with a memory management
unit these signals also indicate whether
the current access is cacheable or bufferable.

APPENDIX A. INTRODUCTION TO AMBA BUSES 130

Table A.2: AMBA AHB signals(part2)

Name Source Description

HWDATA[31:0] Master The write data bus is used to transfer
data from the master to the bus slaves
during write operations. A minimum data
bus width of 32 bits is recommended.
However, this may easily be extended
to allow for higher bandwidth operation.

HSELx Decoder Each AHB slave has its own slave select
signal and this signal indicates that
the current transfer is intended for the
selected slave. This signal is simply
a combinatorial decode of the address bus.

HRDATA[31:0] Slave The read data bus is used to transfer
data from bus slaves to the bus master
during read operations. A minimum data
bus width of 32 bits is recommended.
However, this may easily be extended
to allow for higher bandwidth operation.

HREADY Slave When HIGH the HREADY signal indicates that
a transfer has finished on the bus.
This signal may be driven LOW to
extend a transfer.

HRESP[1:0] Slave The transfer response provides additional
information on the status of a transfer.
Four different responses are provided,
OKAY,ERROR, RETRY and SPLIT.

Appendix B

Overview of Rapid Prototyping

Platform

B.1 Overview of the Integrator/AP

The Integrator/AP is the motherboard and supports up to four processors on plug-

in modules and provides clocks, bus arbitration and interrupt handling for them.

It also provides operating system support with flash memory, boot ROM and input

and output resources. The major features on the Integrator/AP (motherboard) are

as follows and the architecture is shown in Figure B.1

The system controller FPGA provides system control and interface as shown in

Figure B.2.

1. System controller FPGA that implements:

• System bus interface to core and logic module from the motherboard.

131

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 132

Figure B.1: ARM Integrator/AP Block Diagram

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 133

Figure B.2: Functional Block Diagram of System Controller FPGA on ARM Inte-
grator/AP

• System bus arbiter provides bus arbitration for a total of six bus

masters, five of which can be core and logic modules.

• Interrupt controller handles interrupts which originate from periph-

eral controllers, from PCI bus, and from devices on any attached logic

modules.

• Peripheral input and output controllers

• Three counter/timers

• Reset controller initializes the Integrator/AP when the system is reset.

• System status and control registers allows software configuration

and control of the operation of Integrator/AP.

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 134

2. Clock generator that supply clocks for system bus, UARTs etc.

3. 32MB flash memory

4. 256KB boot ROM

5. 512KB SSRAM

6. Two serial ports (RS232DTE)

7. System expansion, supporting core and logic modules

8. PCI bus interface, supporting expansion on board

9. External bus interface (EBI), supporting memory expansion

In the system bus as shown in Figure B.3, there are three main system buses

(A [31:0], C [31:0], D [31:0]) routed between system controller FPGA on the ARM

Integrator/AP and FPGA’s on core and logic modules. In addition there is a fourth

bus B [31:0] routed between connectors.

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 135

Figure B.3: System Bus Architecture For Rapid Prototyping Platform

B.2 Overview of Core Module

The major components on the core module are as follows and the block diagram is

shown in figure B.4

1. ARM7TDMI microprocessor core

2. Core module FPGA that implements:

• SDRAM controller

• System bus bridge

• Reset controller

• Interrupt controller

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 136

Figure B.4: Block Diagram For Core Module

• Status, configuration and interrupt registers

3. Volatile memory comprising:

• Up to 256MB of SDRAM (optional)

• 256KB SSRAM

4. SSRAM controller

5. Clock generator

6. System bus connectors to motherboard and other modules

7. Multi-ICE, logic analyzer and optional trace connectors.

The core module FPGA contains five main functional blocks as shown in Fig-

ure B.5:

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 137

Figure B.5: FPGA functional Diagram for Core Module

1. SDRAM controller: The core module provides support for a single 16,32,64,128

or 256 MB SDRAM DIMM(Dual In Line Memory Modules).

2. Reset controller: This enables the core module to be reset as a standalone

unit or as part of an Integrator development system.

3. System bus bridge: It provides an asynchronous bus interface between the

local memory bus and system bus connecting the motherboard and other

modules.

4. Core module registers: These are status, configuration and interrupt registers.

5. Debug communication interrupts: The ARM7TDMI processor core incorpo-

rates EmbeddedICE hardware and provides a debug communications data

register that is used to pass data between the processor and JTAG equip-

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 138

ment.

B.3 Overview of Logic Module

The logic module is designed as a platform for developing Advanced Microcon-

troller Bus Architecture (AMBA) Advanced System Bus (ASB), Advanced High

performance bus (AHB) and Advanced Periphal Bus (APB) periphals for use with

ARM cores. The logic module comprises the following and Figure B.6 shows the

architecture:

Figure B.6: FPGA functional Diagram for Logic Module

1. Altera or Xilinx FPGA

2. Configuration PLD and flash memory for storing FPGA configurations

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 139

3. 1MB ZBT SSRAM

4. Clock generators and reset sources

5. JTAG, trace and logic analyzers connectors

6. System bus connectors to motherboard and other modules which is imple-

mented according to AHB or APB specifications.

B.4 Rapid Prototyping Platform Design Flow

1. Design Specifications: The design flow starts with a set of design re-

quirments and system specifications, detailing the function of the system, as

well as the constraints such as clock speed, power, and operating conditions.

2. Algorithmic Design and Analysis: In the next step, the specifications

are translated into a high-level, algorithmic description of the system. This

algorithmic design and analysis step is usually implemented in C/C++. The

algorithmic description helps to fully understand the function of the system,

before architectural details are developed.

3. System Architecture Design: After optimizing the algorithm at high level,

the implementation process begins, where functional units are mapped to

various architectural units. This design process requires tools like Cadence’s

virtual Component Co-design(VCC). In a parallel activity, system architec-

ture is modeled with appropriate estimates on timing, power etc.In brief,

hardware/software partitioning partitioning is done at this stage.

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 140

4. Hardware:

• HDL Coding: The hardware design flow uses a hardware description

language (HDL), VHDL or Verilog, to create that portion of system

design. The complete hardware sub-system is specified as individual

blocks, interconnected by wires/buses. Design blocks can be regular

RTL code, state diagrams, flow charts, truth tables, or hierarchical block

diagrams.

• Functional Simulation: Once HDL is coded, it is verified through

functional simulation(using a simulator such as Synopsys VSS or Ca-

dence NC-Sim or Mentor Graphics Modelsim). The Testbench is cre-

ated alongside the HDL. This simulation is technology-independent, and

contains no timing or power data. The HDL code is modified and re-

simulated until the function is verified.

• Synthesis: After, functional simulation synthesis maps the RTL code

to logic gates. Tools like FPGA Compiler II from Synopsys perform

this task, using the constraints on timing etc., to optimize the design.

Using gate-level delays, designers can perform back-annotated timing

simulation. Re-using the functional testbench, this step confirms that

synthesis has not altered the design’s functionality. This simulation also

contains accurate timing information, therefore it can be determined if

actual design will operate within the constraints.

• Place and Route: After synthesis placement and routing is done using

Xilinx Design tools. This step maps the logic gates from synthesis to

APPENDIX B. OVERVIEW OF RAPID PROTOTYPING PLATFORM 141

functional units on the FPGA. The output of this step is a bitstream

file, which is a complete map of the design, configured for a particular

Xilinx part (e.g., Virtex 2000E-PQ540-6). This file can be downloaded

to the corresponding Xilinx part for the operation.

5. Software: Occuring parallel to the hardware design flow, the software de-

velopment design flow creates the code that runs on the microprocessor in

the system (in the RPP case, this is an ARM7TDMI microprocessor). Soft-

ware development can involve several tools, including a real-time operating

system (RTOS), instruction-set simulator (ISS), and code development tools

(C/C++ compiler, linker, and assembler).

Appendix C

VHDL Code

C.1 GaTop.vhd
library ieee;
library work;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use work.components.all;

entity GaTop is
generic
(
-- Fitness memory address/data width
FMAddrWidth : integer := 9;
FMDataWidth : integer := 8;
-- Chromosome memory data width
CMDataWidth : integer := 8;
-- Width of chromosome field in CMAddr bus
CMField : integer := 3;
-- Maximum bits used for number of nets
MaxNetNumBits : integer := 8

);
port
(
ResetN : in std_logic;
Clk : in std_logic;
-- CPU Interface
CPUWr : in std_logic;
CPUAddr : in std_logic_vector(3 downto 0);
CPUData : in std_logic_vector(7 downto 0);
-- Data and Control IO’s
StartGA : in std_logic;

142

APPENDIX C. VHDL CODE 143

NetlistVld : in std_logic;
NetlistIn : in std_logic_vector(CMDataWidth-1 downto 0);
PopOut : out std_logic_vector(CMDataWidth-1 downto 0);
PopOutVld : out std_logic;
FitnessOut : out std_logic_vector(FMDataWidth-1 downto 0);
GADone : out std_logic;
-- Netlist Memory access signals
NMAddr : out std_logic_vector(MaxNetNumBits+CMField-1 downto 0);
NMDataWr : out std_logic_vector(CMDataWidth-1 downto 0);
NMWrEnb : out std_logic;
NMDataRd : in std_logic_vector(CMDataWidth-1 downto 0);
NMRdEnb : out std_logic;
-- Chromosome Memory access signals
CMAddrRd : out std_logic_vector(FMAddrWidth+CMField-1 downto 0);
CMDataRd : in std_logic_vector(CMDataWidth-1 downto 0);
CMRdEnb : out std_logic;
CMAddrWr : out std_logic_vector(FMAddrWidth+CMField-1 downto 0);
CMDataWr : out std_logic_vector(CMDataWidth-1 downto 0);
CMWrEnb : out std_logic;
-- Fitness Memory access signals
FMAddr : out std_logic_vector(FMAddrWidth-1 downto 0);
FMDataRd : in std_logic_vector(FMDataWidth-1 downto 0);
FMRdEnb : out std_logic;
FMDataWr : out std_logic_vector(FMDataWidth-1 downto 0);
FMWrEnb : out std_logic

);
end entity GaTop;

architecture rtl of GaTop is

-- Selection Module signals
signal SelectionEnb : std_logic;
signal HighBank : std_logic;
signal SelectionDone : std_logic;
signal Parent1Addr : std_logic_vector(FMAddrWidth-2 downto 0);
signal Parent2Addr : std_logic_vector(FMAddrWidth-2 downto 0);

-- Crossover Module signals
signal CrossoverEnb : std_logic;
signal CrossoverDone : std_logic;
signal Child1Addr : std_logic_vector(FMAddrWidth-2 downto 0);
signal Child2Addr : std_logic_vector(FMAddrWidth-2 downto 0);

-- Fitness module signals
signal FitnessEnb : std_logic;
signal FitnessDone : std_logic;

-- CPU Registers
signal CMLength : std_logic_vector(CMField-1 downto 0);
signal NetNum : std_logic_vector(MaxNetNumBits-1 downto 0);
signal PopSiz : std_logic_vector(FMAddrWidth-2 downto 0);
signal GenNum : std_logic_vector(5 downto 0);

APPENDIX C. VHDL CODE 144

signal CrossoverRate : std_logic_vector(7 downto 0);
signal MutationRate : std_logic_vector(7 downto 0);

-- Memory Controller signals
-- Selection Module memory access
signal FMAddrRdSM : std_logic_vector(FMAddrWidth-1 downto 0);
signal FMDataRdSM : std_logic_vector(FMDataWidth-1 downto 0);
signal FMRdEnbSM : std_logic;
-- Crossover Module memory interface
signal CMAddrRdCM : std_logic_vector(FMAddrWidth+CMField-1 downto 0);
signal CMAddrWrCM : std_logic_vector(FMAddrWidth+CMField-1 downto 0);
signal CMDataRdCM : std_logic_vector(CMDataWidth-1 downto 0);
signal CMDataWrCM : std_logic_vector(CMDataWidth-1 downto 0);
signal CMRdEnbCM : std_logic;
signal CMWrEnbCM : std_logic;
-- Fitness module memory interface
signal NMAddrRdFM : std_logic_vector(MaxNetNumBits+CMField-1 downto 0);
signal NMDataRdFM : std_logic_vector(CMDataWidth-1 downto 0);
signal NMRdEnbFM : std_logic;
signal CMAddrRdFM : std_logic_vector(FMAddrWidth+CMField-1 downto 0);
signal CMDataRdFM : std_logic_vector(CMDataWidth-1 downto 0);
signal CMRdEnbFM : std_logic;
signal FMAddrWrFM : std_logic_vector(FMAddrWidth-1 downto 0);
signal FMDataWrFM : std_logic_vector(FMDataWidth-1 downto 0);
signal FMWrEnbFM : std_logic;
-- Main Controller memory interface
signal NMAddrWrMC : std_logic_vector(MaxNetNumBits+CMField-1 downto 0);
signal NMDataWrMC : std_logic_vector(CMDataWidth-1 downto 0);
signal NMWrEnbMC : std_logic;
signal CMAddrRdMC : std_logic_vector(FMAddrWidth+CMField-1 downto 0);
signal CMDataRdMC : std_logic_vector(CMDataWidth-1 downto 0);
signal CMRdEnbMC : std_logic;
signal CMAddrWrMC : std_logic_vector(FMAddrWidth+CMField-1 downto 0);
signal CMDataWrMC : std_logic_vector(CMDataWidth-1 downto 0);
signal CMWrEnbMC : std_logic;
signal FMAddrRdMC : std_logic_vector(FMAddrWidth-1 downto 0);
signal FMDataRdMC : std_logic_vector(FMDataWidth-1 downto 0);
signal FMRdEnbMC : std_logic;

begin

U0_selection : selection
generic map
(
FMAddrWidth => FMAddrWidth,
FMDataWidth => FMDataWidth

)
port map
(
ResetN => ResetN,
Clk => Clk,
PopSiz => PopSiz,

APPENDIX C. VHDL CODE 145

SelectionEnb => SelectionEnb,
HighBank => HighBank,
SelectionDone => SelectionDone,
Parent1Addr => Parent1Addr,
Parent2Addr => Parent2Addr,
FMAddrRd => FMAddrRdSM,
FMDataRd => FMDataRdSM,
FMRdEnb => FMRdEnbSM

);

U0_crossover: crossover
generic map
(
FMAddrWidth => FMAddrWidth,
CMDataWidth => CMDataWidth,
CMField => CMField

)
port map
(
ResetN => ResetN,
Clk => Clk,
CMLength => CMLength,
CrossoverRate => CrossoverRate,
MutationRate => MutationRate,
CrossoverEnb => CrossoverEnb,
HighBank => HighBank,
CrossoverDone => CrossoverDone,
Child1Addr => Child1Addr,
Child2Addr => Child2Addr,
Parent1Addr => Parent1Addr,
Parent2Addr => Parent2Addr,
CMAddrRd => CMAddrRdCM,
CMAddrWr => CMAddrWrCM,
CMDataRd => CMDataRdCM,
CMDataWr => CMDataWrCM,
CMRdEnb => CMRdEnbCM,
CMWrEnb => CMWrEnbCM

);

U0_Fitness: Fitness
generic map
(
FMAddrWidth => FMAddrWidth,
FMDataWidth => FMDataWidth,
CMDataWidth => CMDataWidth,
CMField => CMField,
MaxNetNumBits => MaxNetNumBits

)
port map

ResetN => ResetN,
Clk => Clk,

APPENDIX C. VHDL CODE 146

CMLength => CMLength,
NetNum => NetNum,
PopSiz => PopSiz,
FitnessEnb => FitnessEnb,
HighBank => HighBank,
FitnessDone => FitnessDone,
NMAddrRd => NMAddrRdFM,
NMDataRd => NMDataRdFM,
NMRdEnb => NMRdEnbFM,
CMAddrRd => CMAddrRdFM,
CMDataRd => CMDataRdFM,
CMRdEnb => CMRdEnbFM,
FMAddrWr => FMAddrWrFM,
FMDataWr => FMDataWrFM,
FMWrEnb => FMWrEnbFM

);

U0_ControlReg: ControlReg
generic map
(
FMAddrWidth => FMAddrWidth,
CMField => CMField,
MaxNetNumBits => MaxNetNumBits

)
port map
(
Clk => Clk,
ResetN => ResetN,
CPUWr => CPUWr,
CPUAddr => CPUAddr,
CPUData => CPUData,
CMLength => CMLength,
NetNum => NetNum,
PopSiz => PopSiz,
GenNum => GenNum,
CrossoverRate => CrossoverRate,
MutationRate => MutationRate

);

U0_MemMux: MemMux
generic map
(
FMAddrWidth => FMAddrWidth,
FMDataWidth => FMDataWidth,
CMDataWidth => CMDataWidth,
CMField => CMField,
MaxNetNumBits => MaxNetNumBits

)
port map
(
SelectionActive => SelectionEnb,
CrossoverActive => CrossoverEnb,

APPENDIX C. VHDL CODE 147

FitnessActive => FitnessEnb,
FMAddrRdSM => FMAddrRdSM,
FMDataRdSM => FMDataRdSM,
FMRdEnbSM => FMRdEnbSM,
CMAddrRdCM => CMAddrRdCM,
CMAddrWrCM => CMAddrWrCM,
CMDataRdCM => CMDataRdCM,
CMDataWrCM => CMDataWrCM,
CMRdEnbCM => CMRdEnbCM,
CMWrEnbCM => CMWrEnbCM,
NMAddrRdFM => NMAddrRdFM,
NMDataRdFM => NMDataRdFM,
NMRdEnbFM => NMRdEnbFM,
CMAddrRdFM => CMAddrRdFM,
CMDataRdFM => CMDataRdFM,
CMRdEnbFM => CMRdEnbFM,
FMAddrWrFM => FMAddrWrFM,
FMDataWrFM => FMDataWrFM,
FMWrEnbFM => FMWrEnbFM,
NMAddrWrMC => NMAddrWrMC,
NMDataWrMC => NMDataWrMC,
NMWrEnbMC => NMWrEnbMC,
CMAddrRdMC => CMAddrRdMC,
CMDataRdMC => CMDataRdMC,
CMRdEnbMC => CMRdEnbMC,
CMAddrWrMC => CMAddrWrMC,
CMDataWrMC => CMDataWrMC,
CMWrEnbMC => CMWrEnbMC,
FMAddrRdMC => FMAddrRdMC,
FMDataRdMC => FMDataRdMC,
FMRdEnbMC => FMRdEnbMC,
NMAddr => NMAddr,
NMDataWr => NMDataWr,
NMWrEnb => NMWrEnb,
NMDataRd => NMDataRd,
NMRdEnb => NMRdEnb,
CMAddrRd => CMAddrRd,
CMDataRd => CMDataRd,
CMRdEnb => CMRdEnb,
CMAddrWr => CMAddrWr,
CMDataWr => CMDataWr,
CMWrEnb => CMWrEnb,
FMAddr => FMAddr,
FMDataRd => FMDataRd,
FMRdEnb => FMRdEnb,
FMDataWr => FMDataWr,
FMWrEnb => FMWrEnb

);

U0_MainController: MainController
generic map
(

APPENDIX C. VHDL CODE 148

FMAddrWidth => FMAddrWidth,
FMDataWidth => FMDataWidth,
CMDataWidth => CMDataWidth,
CMField => CMField,
MaxNetNumBits => MaxNetNumBits

)
port map
(
ResetN => ResetN,
Clk => Clk,
StartGA => StartGA,
NetlistVld => NetlistVld,
NetlistIn => NetlistIn,
PopOut => PopOut,
PopOutVld => PopOutVld,
FitnessOut => FitnessOut,
GADone => GADone,
CMLength => CMLength,
NetNum => NetNum,
PopSiz => PopSiz,
GenNum => GenNum,
SelectionEnb => SelectionEnb,
HighBank => HighBank,
SelectionDone => SelectionDone,
CrossoverEnb => CrossoverEnb,
CrossoverDone => CrossoverDone,
Child1Addr => Child1Addr,
Child2Addr => Child2Addr,
FitnessEnb => FitnessEnb,
FitnessDone => FitnessDone,
NMAddrWr => NMAddrWrMC,
NMDataWr => NMDataWrMC,
NMWrEnb => NMWrEnbMC,
CMAddrRd => CMAddrRdMC,
CMDataRd => CMDataRdMC,
CMRdEnb => CMRdEnbMC,
CMAddrWr => CMAddrWrMC,
CMDataWr => CMDataWrMC,
CMWrEnb => CMWrEnbMC,
FMAddrRd => FMAddrRdMC,
FMDataRd => FMDataRdMC,
FMRdEnb => FMRdEnbMC

);
end architecture rtl;

C.2 test bench.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

APPENDIX C. VHDL CODE 149

use std.textio.all;
library work;
use work.components.all;

entity test_bench is
generic
(
-- Generic values
FMAddrWidth : integer := 9;
FMDataWidth : integer := 8;
CMDataWidth : integer := 16;
CMField : integer := 8;
MaxNetNumBits : integer := 10;
CMSize : integer := 131072; -- 2^17
FMSize : integer := 512;
NMSize : integer := 131072*2; -- 2^18
-- Input files
NetlistInFile : string := "./dat/chip3.dat";
-- Output files
FitnessOutFile : string := "./dat/FitnessOut.dat";
PopulationOutFile : string := "./dat/PopulationOut.dat"

);
end test_bench;

architecture behav of test_bench is

constant Clk_period : time := 20 ns;

-- Component declaration

component SpRam
generic
(
AddrWidth : integer := 9;
DataWidth : integer := 9;
MemSize : integer := 512

);
port
(
Clk : in std_logic;
RdEnb : in std_logic;
WrEnb : in std_logic;
Addr : in std_logic_vector(AddrWidth-1 downto 0);
DataRd : out std_logic_vector(DataWidth-1 downto 0);
DataWr : in std_logic_vector(DataWidth-1 downto 0)

);
end component;

component DpRam
generic
(
AddrWidth : integer := 9;

APPENDIX C. VHDL CODE 150

DataWidth : integer := 9;
MemSize : integer := 512

);
port
(
Clk : in std_logic;
RdEnb : in std_logic;
WrEnb : in std_logic;
AddrRd : in std_logic_vector(AddrWidth-1 downto 0);
AddrWr : in std_logic_vector(AddrWidth-1 downto 0);
DataRd : out std_logic_vector(DataWidth-1 downto 0);
DataWr : in std_logic_vector(DataWidth-1 downto 0)

);
end component;

-- Function declarations
function ceil(x,y : integer) return integer is
begin
if(x = y*(x/y)) then

return (x/y);
else

return (x/y + 1);
end if;

end;

type tnetvec is array(25600 downto 0) of std_logic;

-- Signal declaration

signal Clk : std_logic := ’0’;
signal ResetN : std_logic;
-- CPU Interface
signal CPUWr : std_logic;
signal CPUAddr : std_logic_vector(3 downto 0);
signal CPUData : std_logic_vector(7 downto 0);
-- Data and Control IO’s
signal StartGA : std_logic;
signal NetlistVld : std_logic;
signal NetlistIn : std_logic_vector(CMDataWidth-1 downto 0);
signal PopOut : std_logic_vector(CMDataWidth-1 downto 0);
signal PopOutVld : std_logic;
signal FitnessOut : std_logic_vector(FMDataWidth-1 downto 0);
signal GADone : std_logic;
-- Netlist Memory access signals
signal NMAddr : std_logic_vector(MaxNetNumBits+CMField-1 downto 0);
signal NMDataWr : std_logic_vector(CMDataWidth-1 downto 0);
signal NMWrEnb : std_logic;
signal NMDataRd : std_logic_vector(CMDataWidth-1 downto 0);
signal NMRdEnb : std_logic;
-- Chromosome Memory access signals
signal CMAddrRd : std_logic_vector(FMAddrWidth+CMField-1 downto 0);
signal CMDataRd : std_logic_vector(CMDataWidth-1 downto 0);

APPENDIX C. VHDL CODE 151

signal CMRdEnb : std_logic;
signal CMAddrWr : std_logic_vector(FMAddrWidth+CMField-1 downto 0);
signal CMDataWr : std_logic_vector(CMDataWidth-1 downto 0);
signal CMWrEnb : std_logic;
-- Fitness Memory access signals
signal FMAddr : std_logic_vector(FMAddrWidth-1 downto 0);
signal FMDataRd : std_logic_vector(FMDataWidth-1 downto 0);
signal FMRdEnb : std_logic;
signal FMDataWr : std_logic_vector(FMDataWidth-1 downto 0);
signal FMWrEnb : std_logic;

begin

Clk <= not Clk after Clk_period/2;

pStim:
process
file FitnessF : text is out FitnessOutFile;
file PopOutF : text is out PopulationOutFile;
file NetlistInF : text is in NetlistInFile;
variable tline : line;
variable toutline : line;
variable JUST : SIDE := right;
variable FIELD : WIDTH := 7;
variable val,i,j,k : integer;
variable vnets : string(10 downto 1) := " nets = ";
variable vmodules : string(13 downto 1) := " modules = ";
--variable vcolon : character := ’:’;
variable vcolon : string(3 downto 1) := " : ";
-- GA parameters
variable vCMLength : integer := 100;
variable vNetNum : integer := 100;
-- Supported values of PopSiz are 2,4,8,16,32,64,128,256
variable vPopSiz : integer := 40;
variable vGenNum : integer := 20;
variable vCrossoverRate : integer := 200; --0.78%
variable vMutationRate : integer := 1; -- 0.0039%

variable vtmpvec : std_logic_vector(15 downto 0);
variable vnetvec : tnetvec;
variable vflag : integer;
variable vcmcnt : integer;

begin
CPUWr <= ’0’;
CPUAddr <= conv_std_logic_vector(0,4);
CPUData <= conv_std_logic_vector(0,8);
StartGA <= ’0’;
NetlistVld <= ’0’;
NetlistIn <= conv_std_logic_vector(0,CMDataWidth);

-- Supply reset
ResetN <= ’0’;

APPENDIX C. VHDL CODE 152

wait until(Clk’event and Clk = ’1’);
wait until(Clk’event and Clk = ’1’);

ResetN <= ’1’;
wait until(Clk’event and Clk = ’1’);
wait until(Clk’event and Clk = ’1’);

-- Read parameters from file
readline(NetlistInF, tline);
readline(NetlistInF, tline);
read(tline,vnets);
read(tline,vNetNum);
readline(NetlistInF, tline);
read(tline,vmodules);
read(tline,vCMLength);
vCMLength := ceil(vCMLength,CMDataWidth);

readline(NetlistInF, tline);
readline(NetlistInF, tline);
readline(NetlistInF, tline);

-- Load control registers

CPUWr <= ’1’;
-- Load vNetNum LSB (Addr 2)

vtmpvec := conv_std_logic_vector(vNetNum-1,16);
CPUAddr <= conv_std_logic_vector(2,4);
CPUData <= vtmpvec(7 downto 0);
wait until(Clk’event and Clk = ’1’);
-- Load vNetNum MSB (Addr 3)
CPUAddr <= conv_std_logic_vector(3,4);
CPUData <= vtmpvec(15 downto 8);
wait until(Clk’event and Clk = ’1’);
-- Load vCMLength LSB (Addr 0)
vtmpvec := conv_std_logic_vector(vCMLength-1,16);
CPUAddr <= conv_std_logic_vector(0,4);
CPUData <= vtmpvec(7 downto 0);
wait until(Clk’event and Clk = ’1’);
-- Load CMLength MSB (Addr 1)
CPUAddr <= conv_std_logic_vector(1,4);
CPUData <= vtmpvec(15 downto 8);
wait until(Clk’event and Clk = ’1’);

-- Load vPopSiz (Addr 4)
vtmpvec := conv_std_logic_vector(vPopSiz-1,16);
CPUAddr <= conv_std_logic_vector(4,4);
CPUData <= vtmpvec(7 downto 0);
wait until(Clk’event and Clk = ’1’);

-- Load vGenNum (Addr 5)
vtmpvec := conv_std_logic_vector(vGenNum-1,16);
CPUAddr <= conv_std_logic_vector(5,4);
CPUData <= vtmpvec(7 downto 0);

APPENDIX C. VHDL CODE 153

wait until(Clk’event and Clk = ’1’);
-- Load vCrossoverRate (Addr 6)
vtmpvec := conv_std_logic_vector(vCrossoverRate,16);
CPUAddr <= conv_std_logic_vector(6,4);
CPUData <= vtmpvec(7 downto 0);
wait until(Clk’event and Clk = ’1’);

-- Load vMutationRate(Addr 7)
vtmpvec := conv_std_logic_vector(vMutationRate,16);
CPUAddr <= conv_std_logic_vector(7,4);
CPUData <= vtmpvec(7 downto 0);
wait until(Clk’event and Clk = ’1’);
CPUWr <= ’0’;
CPUAddr <= conv_std_logic_vector(0,4);
CPUData <= (others => ’0’);
wait until(Clk’event and Clk = ’1’);

-- Start genetic algorithm
StartGA <= ’1’;
wait until(Clk’event and Clk = ’1’);
StartGA <= ’0’;
wait until(Clk’event and Clk = ’1’);

-- Load netlist data

for i in vNetNum-1 downto 0 loop

-- Initialize vnetvec to zeros
for j in vCMLength*CMDataWidth-1 downto 0 loop
vnetvec(j) := ’0’;

end loop;

-- Read net from the file
readline(NetlistInF, tline);
read(tline,val);
read(tline,vcolon);
vflag := 0;
while (vflag = 0) loop
read(tline,val);
if(val /= -1) then
vnetvec(val) := ’1’;

else
vflag := 1;

end if;
end loop;
for i in vCMLength-1 downto 0 loop
NetlistVld <= ’1’;
for j in CMDataWidth-1 downto 0 loop
NetlistIn(j) <= vnetvec(CMDataWidth*i+j);

end loop;
wait until(Clk’event and Clk = ’1’);

end loop;
end loop;

APPENDIX C. VHDL CODE 154

NetlistVld <= ’0’;
NetlistIn <= conv_std_logic_vector(0,CMDataWidth);
wait until(Clk’event and Clk = ’1’);

-- Store the outputs
vcmcnt:= 0;
wait until(Clk’event and Clk = ’1’);
while(GADone = ’0’) loop

if(PopOutVld = ’1’) then
--write(tline, PopOut);
--write(tline, "sdafgsdf");
if(vcmcnt = vCMLength-1) then
vcmcnt := 0;
-- Store population element
writeline(PopOutF,tline);
-- Store fitness
write(tline, conv_integer(’0’&FitnessOut));
writeline(FitnessF,tline);

else
vcmcnt := vcmcnt + 1;

end if;
end if;
wait until (Clk’event and Clk = ’1’);

end loop;

assert(false) report"End of tb!!" severity failure;
wait;

end process;

-- Component instantiation
U0_GaTop: GaTop
generic map
(
FMAddrWidth => FMAddrWidth,
FMDataWidth => FMDataWidth,
CMDataWidth => CMDataWidth,
CMField => CMField,
MaxNetNumBits => MaxNetNumBits

)
port map
(
ResetN => ResetN,
Clk => Clk,
CPUWr => CPUWr,
CPUAddr => CPUAddr,
CPUData => CPUData,
StartGA => StartGA,
NetlistVld => NetlistVld,
NetlistIn => NetlistIn,
PopOut => PopOut,
PopOutVld => PopOutVld,

APPENDIX C. VHDL CODE 155

FitnessOut => FitnessOut,
GADone => GADone,
NMAddr => NMAddr,
NMDataWr => NMDataWr,
NMWrEnb => NMWrEnb,
NMDataRd => NMDataRd,
NMRdEnb => NMRdEnb,
CMAddrRd => CMAddrRd,
CMDataRd => CMDataRd,
CMRdEnb => CMRdEnb,
CMAddrWr => CMAddrWr,
CMDataWr => CMDataWr,
CMWrEnb => CMWrEnb,
FMAddr => FMAddr,
FMDataRd => FMDataRd,
FMRdEnb => FMRdEnb,
FMDataWr => FMDataWr,
FMWrEnb => FMWrEnb

);

-- Chromosome/population memory
CM_Mem: DpRam
generic map
(
AddrWidth => FMAddrWidth+CMField,
DataWidth => CMDataWidth,
MemSize => CMSize

)
port map
(
Clk => Clk,
RdEnb => CMRdEnb,
WrEnb => CMWrEnb,
AddrRd => CMAddrRd,
AddrWr => CMAddrWr,
DataRd => CMDataRd,
DataWr => CMDataWr

);

-- Fitness memory
FM_Mem: SpRam
generic map
(
AddrWidth => FMAddrWidth,
DataWidth => FMDataWidth,
MemSize => FMSize

)
port map
(
Clk => Clk,
RdEnb => FMRdEnb,
WrEnb => FMWrEnb,

APPENDIX C. VHDL CODE 156

Addr => FMAddr,
DataRd => FMDataRd,
DataWr => FMDataWr

);

-- Netlist memory
NM_Mem: SpRam
generic map
(
AddrWidth => MaxNetNumBits+CMField,
DataWidth => CMDataWidth,
MemSize => NMSize

)
port map
(
Clk => Clk,
RdEnb => NMRdEnb,
WrEnb => NMWrEnb,
Addr => NMAddr,
DataRd => NMDataRd,
DataWr => NMDataWr

);
end behav;

Bibliography

[Bhas99] J. Bhasker, A VHDL Primer, Prentice Hall, Upper Saddle River, New
Jersey, 1999.

[Bond00] Kiran Bondalapati and Viktor K. Prasanna, “Reconfigurable computing:
Architectures, models and algorithms,” 2000.

[Brow92] S.D. Brown, R.J. Francis, J. Rose, and Z.G. Vranesic, Field-
Programmable Gate Arrays, Kluwer Academic Publishers, USA, 1992.

[Chat01] Chatchawit and Prabhas, “A hardware implementation of compace ge-
netic algorithm,” In Proceedings of the 2001 IEEE Congress on Evolu-
tionary Computation, pp. 624–629, Seoul, Korea, May 2001.

[Cher94] D. Cherepacha and D. Lewis, “A datapath oriented architecture for fp-
gas.,” 1994.

[Comp02] Katherine Compton and Scott Hauck, “Configurable computing: A sur-
vey of systems and software,” ACM Computing Surveys, vol. 34, No. 2,
pp. 171–210, June 2002.

[Gold89] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Welsey Publishing Company, Read-
ing,Massachusetts, 1989.

[Hauc98] Scott Hauck, “The future of reconfigurable systems,” 1998.

[IMBla] I.M.Bland and G.M.Megson, “A systolic array genetic algorithm, an
example of systolic arrays as a reconfigurable design methodology,” .

[IMBlb] I.M.Bland and G.M.Megson, “Systolic random number generation for
genetic algorithms,” .

[Jong89] K.A. De Jong and W.M. Spears, “Using genetic algorithms to solve np-
complete problems,” In J.David Schaffer, editor, Proceedings of the Third
International Conference on Genetic Algorithms, pp. 124–132, Morgan
Kaufmann Publishers, 1989.

157

BIBLIOGRAPHY 158

[Koza97] John R. Koza, Forrest h Bennett III, Stephen L Jeffrey L, Martin A, and
David Andre, “Evolving computer programs using rapidly reconfigurable
field-programmable gate arrays and genetic programming,” 1997.

[Maru00] Tsutomu Maruyama, Yoshiki Yamaguchi, Akira Miyashita, and Tsu-
tomu Hoshino, “A co-processor system with a virtex fpga for evolu-
tionary computation,” pp. 240–249, Institute of Engineering Mechanics,
University of Tsukuba, Japan, 2000.

[Maru01] Tsutomu Maruyama, Terunobu Funatsu, and Tsutomu Hoshino, “A
field-programmable gate-array system for evolutionary computation,”
In IPSJ FPL98, editor, Special issue on parallel processing, Institute of
Engineering Mechanics, University of Tsukuba, Japan, 2001.

[MGok91] M.Gokhale, W.Holmes, A. Kosper, S.Lucas, R. Minnich, D. Sweely, and
D. Lopresti, “Building and using a highly parallel programmable logic
array,” In IEEE Computers, pp. 81–89, January 1991.

[Paul95] PaulGraham and Brent Nelson, “A hardware genetic algorithm for the
travelling salesman problem on splash2,” 1995.

[Paul96] PaulGraham and Brent Nelson, “Genetic algorithms in software and in
hardware- a performance analysis of workstation and custom computing
machine implementation,” In IEEE Symposium on FPGAs for custom
Computing Machines, pp. 216–225, Reconfigurable Logic Laboratory,
Brigham Young University, Provo, UT, USA, 1996.

[PBer93] P.Bertin, D.Roncin, and J. Vuillemin, “Programmable active memories:
A performance assessment,” 1993.

[RHar97] R.Hartenstein, “The microprocessor is no more general purpose.,” 1997.

[Rint00] Tommi Rintala, “Hardware implementation of ga,” September 20 2000.

[RKre95] R.Kress, “A datapath synthesis system for reconfigurable datapath ar-
chitecture.,” 1995.

[Scot94] Stephen Donald Scott, A hardware based genetic algorithm Master’s the-
sis, University of Nebraska, August 1994.

[Sitc] Sitcoff and Waazlowski, “Implementing a genetic algorithm on a parallel
custom computing machine,” .

[Skah96] K. Skahill, VHDL for Programmable Logic, Addison Wesley, Reading,
Massuchusetts, 1996.

[Wirb84] Loring Wirbel, “Compression chip is first to use genetic algorithms,” pp.
17, December 1984.

[Yala01] S. Yalamanchili, Introductory VHDL From Simulation to Synthesis,
Prentice Hall, Upper Saddle River, New Jersey, 2001.

