

Sequential/Parallel Global Routing Algorithms for VLSI Standard

Cells

A Thesis

Presented to

The Faculty of Graduate Studies

of

The University of Guelph

by

HAO SUN

In partial fulfilment of requirements

for the degree of

Masters of Science

April, 2004

c©Hao Sun, 2004

2

ABSTRACT

Sequential/Parallel Global Routing Algorithms for VLSI Standard

Cells

Hao Sun

University of Guelph, 2004

Advisor:

Professor Shawki Areibi

Global routing is an important and time consuming step in VLSI physical design

automation. In order to effectively solve this problem, three standard cell global routers

are presented in the form of (i) a Sequential Heuristic Global Router (SHGR) (ii) a

Hierarchical Heuristic Global Router (HHGR) and (iii) an Integer Linear Programming

(ILP) based Global Router (ILP-GR).

The objective of SHGR is to find the minimum cost path for each net by enumerating

a set of possible 2-bend routes. It achieves 16% improvement over wirelength obtained

by placement based on Half Perimeter Wire Length (HPWL) method. HHGR is a pre-

processing technique that provides good routing estimations in reasonable time. It can

predict the routability of circuits and reduces CPU time on average by 82.5% compared

with SHGR. ILP-GR formulates the global routing problem as two Integer Linear Pro-

gramming (ILP) models. These ILP models are further relaxed to Linear Programming

(LP) models to reduce computation time. ILP-GR overcomes the net-ordering problem

and provides optimal solutions which can be used as upper bounds for other global routers.

It achieves on average an improvement of 6.7% over wirelength solutions produced by the

SHGR technique.

In addition, SHGR and ILP-GR are also parallelized by using the Message Passing

Interface (MPI) library to speed up the running time and achieve better performance. The

parallel algorithms are evaluated on a distributed network of Sun-blade 2000 workstations.

Experimental work shows promising results where good speedups are obtained and the

total channel density reduced on average by 1.59% through parallel implementations.

Acknowledgements

My sincere thanks go to Dr. Shawki Areibi for his support and advice throughout

this research. Without his help, this work would never have been possible.

Thanks should also go to Sharcnet for the financial and technical support.

i

To

my family

whose love and encouragement helped accomplish this

thesis.

ii

Contents

1 Introduction 1

1.1 Overview of VLSI Design Process 2

1.2 Research Motivations . 4

1.3 Overview of the Approach . 8

1.4 Contributions . 9

1.5 Thesis Organization . 10

2 Background 11

2.1 Physical Design and Circuit Layout 11

2.1.1 Layout Strategies and Styles 15

2.2 Graph Theory . 18

2.2.1 Grid Graph model . 20

2.2.2 Connection Pattern . 22

2.2.3 Minimum Spanning Tree (MST) 25

2.2.4 Netlist and Admissible Routes 27

2.3 Global Routing for Standard Cell Design 28

2.4 Parallel Programming . 31

iii

2.4.1 Classification . 31

2.4.2 Shared Memory and Distributed Memory 33

2.4.3 Amdahl’s Law and Parallel Speedup 33

2.5 MCNC Benchmarks . 34

2.6 Summary . 36

3 Literature Review 37

3.1 Sequential Approaches . 38

3.1.1 Two-terminal Sequential Algorithms 39

3.1.2 Multi-terminal Algorithms 42

3.2 Concurrent Approaches . 47

3.2.1 Hierarchical Based Approaches 47

3.2.2 Integer Programming Based Approaches 51

3.3 Summary . 54

4 Heuristic/ILP-based Routing Algorithms 55

4.1 A Sequential Heuristic Global Router (SHGR) 56

4.1.1 Cost Array Routing Model 56

4.1.2 SHGR Implementation . 57

4.1.3 Experimental Results . 61

4.2 A Hierarchical Heuristic Global Router (HHGR) 64

4.2.1 HHGR Implementation . 65

4.2.2 Experimental Results . 67

4.3 An ILP Based Global Router (ILP-GR) 69

4.3.1 Minimal Rectilinear Steiner Tree (MRST) 70

iv

4.3.2 ILP Formulation . 74

4.3.3 Linear Relaxation . 83

4.3.4 Parameter Tuning . 86

4.4 Summary . 93

5 Parallel Implementation 95

5.1 Parallel Implementation of SHGR 96

5.1.1 Distribution of Cost Array 98

5.1.2 Wire Assignment Strategy 99

5.1.3 Cost Array Update . 100

5.2 Parallelization of ILP-GR . 101

5.2.1 Parallel Implementation . 102

5.2.2 Wire Assignment Strategy 102

5.3 Experimental Results . 106

5.4 Summary . 108

6 Conclusions and Future Directions 110

6.1 Conclusions . 111

6.2 Future Work . 113

A Glossary 114

B CPLEX Solver 116

B.1 Introduction to CPLEX . 116

B.2 Using CPLEX to Solve ILP/LP Problems 117

v

C MPI 120

C.1 Introduction to MPI . 120

C.2 MPI Datatypes and Basic Functions 120

C.3 MPI Core Functions . 121

Bibliography 124

vi

List of Tables

2.1 MCNC benchmarks . 35

2.2 The chip dimension of MCNC benchmark circuits 35

4.1 Wirelength and time of SHGR . 62

4.2 Wire length comparison between the placement CAD tool and the

SHGR . 62

4.3 CPU Time comparison between SHGR and HHGR 67

4.4 Wirelength comparison between SHGR and HHGR 67

4.5 Number of pins in the nets for MCNC benchmark circuits 73

4.6 Comparison of Steiner ILP1/Steiner ILP2 to generate Steiner Trees 74

4.7 Comparison of wire length between Model 1 and Model 2 82

4.8 Comparison of the number of tracks between Model 1 and Model 2 83

4.9 Comparison of net conneciton ILP/LP models 86

4.10 Comparison of channel density ILP/LP models 87

4.11 Comparison of Dual Simplex and Primal-Dual Barrier Optimizers . 91

4.12 Wirelength comparison between SHGR and ILP-GR 91

4.13 CPU time comparison of SHGR and ILP-GR 93

vii

5.1 Speedup of the parallel heuristic router 106

5.2 Speedup of the ILP based router 106

5.3 Parallelism improves the total density 107

C.1 The basic MPI datatypes . 121

viii

List of Figures

1.1 VLSI Design Flow . 2

1.2 Interconnection delay. 5

1.3 Power consumption related to interconnection capacities. 6

1.4 Solution strategy for Global Routing. 8

2.1 Physical design cycle . 12

2.2 Multilevel cluster hierarchy . 13

2.3 Terminology for VLSI routing problem. 14

2.4 Difference between global routing and detailed routing 15

2.5 Gate-Array layout and Standard-Cell layout 16

2.6 General-Cell layout and Full-Custom layout 18

2.7 Illustration of a graph G=(V,E) 19

2.8 Layout of a chip with a grid-graph to represent the modules. 20

2.9 A standard cell design circuit and its coarse grid graph representation. 22

2.10 Interconnection patterns . 23

2.11 Approximation wire estimation and congestion 24

2.12 A Minimum Spanning Tree Algorithm 25

2.13 An example of MST construction 26

ix

2.14 A netlist consists of two nets. 27

2.15 Channel density and total density. 29

2.16 Feedthrough cell and wire . 30

2.17 Example of two nets that span multiple rows. 31

2.18 Parallel Models . 32

3.1 Methodologies for global routing. 38

3.2 Maze routing algorithm . 39

3.3 Line probe routing algorithm . 41

3.4 The Hanan grid and the set of Hanan points. 43

3.5 Hanan’s theorem. 44

3.6 Comparison of the rectilinear in 2-geometry and in 4-geometry . . 45

3.7 A floorplan and its preprocessed cut-tree 48

3.8 Pin configuration and net types in 2x2 cell array. 50

4.1 Cost Array model . 57

4.2 Sequential Heuristic Algorithm . 58

4.3 A 5-point net is decomposed into four 2-point segments 59

4.4 Four Possible Permutations Between Cluster A and Cluster B . . . 59

4.5 2-bend Algorithm to find routes between point (0,0) and (C,R) . . 60

4.6 2-bend Routes in a 2x3 Grid Graph 61

4.7 Wirelength comparison of SHGR and HPWL 63

4.8 A 3 level cluster seed placement . 64

4.9 Hierarchical heuristic algorithm . 65

4.10 A net is cut into segments . 66

x

4.11 CPU time comparison of SHGR and HHGR 68

4.12 Wirelength comparison of SHGR and HHGR 69

4.13 Minimum Spanning Tree (MST) and Minimum Rectilinear Steiner

Tree (MRST). 70

4.14 Algorithm to find a set of Steiner trees 71

4.15 Function Find SteinerTree() . 72

4.16 Example of the net connection model 77

4.17 Example of the channel density model 81

4.18 Wirelength comparison of SHGR and ILP-GR 92

4.19 CPU time comparison of SHGR and ILP-GR 94

5.1 Parallel heuristic algorithm . 97

5.2 Distribution of the Cost Array . 99

5.3 Wire assignment strategy . 100

5.4 The parallel implementation in the whole global routing process . . 103

5.5 ILP based parallel algorithm . 104

5.6 Center partition wire assignment 105

5.7 Speedup obtained by parallelizing SHGR on large benchmark circuits 107

5.8 Speedup obtained by parallelizing ILP-GR on large benchmark circuits108

xi

Chapter 1

Introduction

The last few decades brought explosive growth in the electronics industry due to

the rapid advances in integration technologies and the different benefits of large-

scale system design. Integrated circuits today consist of hundreds of millions of

transistors. This manufacturing capability and complexity, combined with the eco-

nomic benefits of large electronic systems, are forcing a revolution in the design of

these systems and challenging system designers who are involved in the design of

integrated circuits. Due to the tremendous increase in complexity, automating the

design process has become a crucial issue [HU85a].

The phrase associated with the task of automatically designing a circuit using

Computer Aided Design (CAD) tools is called Design Automation (DA). The ob-

jective of the DA research field is to fully automate the tasks of designing, verifying,

and testing a circuit. For a complicated problem in the modern VLSI design, an

appropriate approach is to use a divide-and-conquer strategy in which the whole

design task is broken down into several sub-tasks [Sher99]. These sub-tasks are

1

CHAPTER 1. INTRODUCTION 2

then more manageable to be solved using mathematical and heuristic techniques.

1.1 Overview of VLSI Design Process

The VLSI design process is generally divided into a sequence of phases: System

Specification, Functional Design, Logic Design, Circuit Design, Physical Design,

Fabrication and Testing. These phases are illustrated in Figure 1.1 and are briefly

described below [Sher99].

According to the specification the main
functional units of the chip are identified.

Implementation of logic blocks are physically
arranged in the layout area.

 specification

Functional Design

Logic Design

Circuit Design

Physical Design

Fabrication/Testing

Functional units are described in terms of

functionality and the physical size of the chip).

boolean equations and logic.

Customers specify constraints (performance,

Logic is designed based on a certain technology

Design is fabricated and tested

and realized using transistors.

Figure 1.1: VLSI Design Flow

• Specification: Starts with a set of requirements for the circuit, which in-

CHAPTER 1. INTRODUCTION 3

cludes what the system will do, how the system will be divided into com-

ponents and how these components work together. This process outputs

specifications for the size, speed, power and functionality of the circuit.

• Functional Design: Identifies and estimates the interconnect requirements

between the units, area, power and other parameters of each component.

• Logical Design: Decides how each component of the system will be ex-

pressed logically. Hardware description languages (HDL), such as VHDL and

Verilog, are generally used to give the structural/behavioral description.

• Circuit Design: Maps the logic blocks to available physical circuit blocks

in the circuit topology and creates a technology-dependent description of the

circuit. At this level, the whole circuit is implemented as transistors.

• Physical Design: Physically realizes the circuit by converting the circuit

representation of each component into a geometric representation (also called

a layout). Connections between different components are also expressed as

geometric patterns. The end result of physical design is a placed and routed

design, from which the photolithography masks can be derived for chip fab-

rication. The physical design problem is an NP-hard problem, therefore it

is usually broken down into several sub-problems, referred to as partitioning,

floorplanning, placement and routing. This thesis is mainly concerned with

the global routing problem that follows module placement.

• Fabrication and Testing : In the final step of VLSI design the circuit is

tested to ensure that all criteria are satisfied, the wafer is manufactured and

CHAPTER 1. INTRODUCTION 4

the chip is packaged and tested.

1.2 Research Motivations

Over the past few decades, fabrication technique advances have decreased transistor

feature size in VLSI circuits significantly, meanwhile, the scale of integration has

increased dramatically. These changes lead to a corresponding increase in the num-

ber of interconnections inside a chip. These interconnections occupy the valuable

chip area resources and consequently degrade the chip performance. Global routing

is an extremely important and time consuming phase in the VLSI physical design

cycle. For a VLSI circuit containing over 100,000 cells and nets, global routers can

easily take many hours to route nets within the circuit.

The first motivation of this thesis is to develop efficient global routing algo-

rithms, which can produce near optimal solutions that tend to minimize the rout-

ing area and improve the circuit performance. In VLSI standard cell design, the

total area of a chip consists of the active area used by cells, the routing area, the

unused area and the pin area. Normally unused area and pin area have minimal

effects on chip size. Therefore, reduction in chip size is only possible by reducing

the active area and routing area. The minimization of routing area is crucial due

to the following factors:

• Yield and Cost: The minimization leads to smaller die sizes, which can

result in a larger number of dies per wafer and increase the percentage uti-

lization of a wafer. The cost of a chip is dependent on the yield, which depends

on the die sizes.

CHAPTER 1. INTRODUCTION 5

• Delay: Delay is one of the most important factors to affect the performance

of a chip. With the technology moving to deep sub-micron design rules, the

interconnection delay has become the dominant factor in determining the

circuit speed [Kang03]. It has been reported that the interconnection delay

can consume from 50% to 70% of the clock cycle in many cases [Bako90].

Therefore, a reduction in the interconnection delay will have an important

impact on the overall performance of the circuit, as illustrated in Figure 1.2.

Most of the previous researches aimed at yielding the minimum chip area and

the shortest wire length are usually referred to as area-driven global routing.

However, in submicron chip design, shorter wire length does not yield better

performance. This is due to fact that the delay at the sink pins depends on

the distance between the source and sink pins as well as the total wire length.

delay/ns

1.0

0.1
1.0 0.5 0.25

interconnect

gate delay

delay

minimum feature
size/um

Figure 1.2: Interconnection delay.

• Power Consumption: The increasing prominence of portable systems and

wireless applications require low power consumption of chips [SKan03]. The

CHAPTER 1. INTRODUCTION 6

average power consumption in conventional COMS digital circuits can be

expressed as follows:

P = αT · Cload · V
2
DD · fCLK (1.1)

where Cload includes internal capacitances associated with the gate’s tran-

sistors and external capacitances related to wire interconnections. With the

technology advancing to sub-micron design, the leakage power that is re-

lated to the interconnection capacities has become the dominant factor in

determining the overall power consumption, as seen in Figure 1.3 [Horg04].

Therefore, the need to limit power consumption can be achieved by reducing

wire interconnections.

Power/W

Size/um0.25 0.18 0.13 0.09 0.065

100

200

250

150

50

������ ���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��������������

	�	
�
 ���
���
���
���

Active Power

Leakage

Figure 1.3: Power consumption related to interconnection capacities.

• Congestion: Congestion is widely addressed in global routing algorithms

[Kris02], since a congested area can degrade the performance of the global

CHAPTER 1. INTRODUCTION 7

router and even yield unroutable results. In global routing, congestion and

delay are two competing objectives [Hu00].

The second motivation is to make use of the current high-performance hard-

ware to solve complex and large global routing problems efficiently. Sequential

based CAD algorithms have been successfully used in VLSI design for many year.

However, with the increasing complexity of the VLSI chips, conventional sequential

approaches face difficulty to follow this trend. Since using high-performance mul-

tiprocessor systems is becoming more feasible for researchers, parallel algorithms

are put forward to meet the new challenges in VLSI design field. The necessity of

parallel algorithms can be attributed to the following:

• Shortening the Runtime: It is normal for a circuit today to have over

100 million transistors and gates. The large number of transistors and gates

become a burden on sequential CAD tools. Since parallel processing can

reduce computation time dramatically, it can be used extensively for VLSI

CAD based applications.

• Solving Larger Sized Problem: Since the number of gates on a chip

is increasing, conventional sequential CAD tools will reach at some point a

memory limitation. However, parallel algorithms handle this kind of problem

by distributing the computation among several processors.

• Achieving Better Quality: VLSI CAD problems are mainly formulated as

combinatorial optimization problems that are NP-complete [Kahn95]. There-

fore, heuristics are often used to solve these problems. By using parallel

CHAPTER 1. INTRODUCTION 8

algorithms, it has been observed that better quality results can be obtained

[Bane94].

1.3 Overview of the Approach

In order to effectively solve the global routing problem, three standard cell global

routing techniques are presented in the form of (i) a heuristic approach, (ii) an

Integer Linear Programming (ILP) based approach and (iii) a hierarchical based

approach. As illustrated in Figure 1.4, the heuristic approach and the ILP based

approach utilize solutions obtained from the flat placement approach. They are

further parallelized to speed up the running time and achieve better performance.

The hierarchical approach on the other hand transforms solutions obtained from

hierarchical placement solution into routing estimations of reasonable quality.

Experimental results show excellent performance from all three global routers.

In addition, good speedups and solution qualities are obtained from the parallel

implementation. The average speedup achieved is 5 on six processors, and the total

density is reduced by an average of 1.59% as well.

1.4 Contributions

The main contributions of this dissertation are summarized as follows:

• Explore the feasibility of a sequential heuristic approach to effectively solve

global routing for large circuits in reasonable time [Sun04].

CHAPTER 1. INTRODUCTION 9

Circuit Placement

Detailed or Channel Routing

Placement
 Flat Hierrarchical

 Placement

Parallel Implementation

Heuristic Approach
 Sequential

ILP Formulaton

Estimation Model
 Hierarchical

Research Approach

Figure 1.4: Solution strategy for Global Routing.

• Investigate an effective generation mechanism of Minimal Rectilinear Steiner

Trees (MRST) that is further used by the proposed global routing techniques.

• Development of ILP-based models which produce optimal solutions and ac-

cordingly overcome the net-ordering problem. Solutions obtained by these

models can be utilized as upper bounds on results obtained by heuristics.

• Intelligent parallel implementation of the above mentioned algorithms to solve

large benchmarks and reduce the execution time.

• Development of a novel hierarchical estimation global routing technique based

CHAPTER 1. INTRODUCTION 10

on hierarchical placement to predict routability for VLSI ASIC design.

1.5 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 introduces the

necessary background that defines the concept of global routing for standard cell

design. It also briefly reviews graph theory and parallel programming techniques.

Chapter 3 reviews previous work on the global routing problem, including sequential

and concurrent approaches. In chapter 4, a Sequential Heuristic Global Router

(SHGR), a Hierarchical Heuristic Global Router (HHGR) and an Integer Linear

programming (ILP) based Global Router (ILP-GR) are implemented. In chapter 5,

the parallel implementations of SHGR and ILP-GR are presented. Finally, chapter

6 provides conclusions and future work.

Chapter 2

Background

This chapter gives a detailed background on physical design automation in general

and global routing in particular. It also reviews graph theory and parallel pro-

gramming techniques. In addition, several test circuit benchmarks [Kozm91] are

introduced at the end of this chapter.

2.1 Physical Design and Circuit Layout

Physical design automation is the process of mapping structural representations into

layout representation of circuits. Structural representations describe the system in

terms of logic components and their interconnects. Layout representations define

circuits in terms of a set of geometric objects which specify the dimensions and

locations of transistors and wires on a silicon wafer. As seen in Figure 2.1, physical

design is usually divided into the following steps:

• Partitioning: In this phase, a circuit is partitioned into several smaller

11

CHAPTER 2. BACKGROUND 12

Partitioning

b

c

e

a

d

Placement

Routing

b

c

e

a

d

cutline 2

cutline 3

cutline 1

(b)

(c)

(a)

Figure 2.1: Physical design cycle

blocks/sub-circuits according to their features and connectivity. The objective

of partitioning is to reduce the complexity of mapping a circuit onto Multiple

Chip Modules (MCM). It is also used as a preprocessing stage for circuit

placement [Sher99]. Figure 2.1(a) shows that the input circuit is partitioned

into five blocks/sub-circuits with several nets cut between partitions.

• Floorplanning and Placement: The modules in a chip may have variable

shapes and dimensions. The positioning or placement of these variable mod-

ules onto the silicon wafer is called floorplanning [Leng90a]. Placement is the

process of assigning modules to the silicon wafer such that the wire lengths

CHAPTER 2. BACKGROUND 13

between modules and the area of the chip is minimized. Figure 2.1(b) shows

that the five blocks (a, b, c, d and e) obtained from partitioning phase are

placed onto the circuit.

Both flat and hierarchical placement approaches are used for circuit place-

ment [Yang03]. Hierarchical placement approaches can significantly reduce

the complexity of the circuit and improve the performance of the design

process. Circuit clustering plays a fundamental role in hierarchical designs.

Clustering in steps tends to reduce the circuit size gradually by adding inter-

mediate levels to the hierarchy. This technique is often called “multi-level”

or “hierarchical” clustering.

cluster

cluster de−cluster

de−cluster

Level n

Level 1

Level 0
(Flat)

Clusters obtained from
cells in previous level

Figure 2.2: Multilevel cluster hierarchy

As seen in Figure 2.2, multi-level clustering is a two-step procedure, first

proceeding bottom-up, and then top-down. The bottom-up procedure is a

clustering phase that involves the grouping of highly connected cells. The

top-down procedure then determines the location for all the clusters, and

CHAPTER 2. BACKGROUND 14

consequently the location of cells within those clusters [Kary97].

• Routing: Following the placement phase, the pins belonging to different

nets have to be connected according to certain criteria. In general, the rout-

ing phase is to map these netlists into an actual physical geometry. The main

objective of this phase is to minimize the total routing area without violat-

ing the constraints [Sher99]. Figure 2.3 illustrates some terms used for the

routing problem. The top and the bottom rows are called “top boundary”

and “bottom boundary”. The term “channel” refers to the area between the

two boundaries. In a net, the horizontal segment is called a “trunk” and the

vertical is called “branch”. The horizontal line on the circuit along which a

trunk is placed is called a “track”. A “via” is used to connect a wire segment

in two different layers.

Lower boundary

Tracks

Terminals

Upper boundary ViasTrunks

Branches

 Channels

Figure 2.3: Terminology for VLSI routing problem.

Routing is normally performed in two stages. The first stage, called global

routing, determines the channels through which a connection will run. As

CHAPTER 2. BACKGROUND 15

illustrated in Figure 2.4 (a), global routing assigns channel1 to Net1 and

channel2 to Net2. The second stage, called detailed routing, fixes the

precise paths that a wire will take. As illustrated in Figure 2.4 (b), the exact

geometric layout (tracks and branches) is given within the assigned channels.

In general, global routing decomposes a large routing problem into small,

manageable problems for detailed routing.

Modules Modules

(a) (b)

Channel 2

Channle 1

Channel 2

Channle 1Net1

Net2

Net1

Net2

Figure 2.4: (a) Global routing. (b) Detailed routing.

Global routing is an extremely important and time consuming phase in the

VLSI physical design cycle. The routing time complexity depends heavily on

layout strategies which will be introduced next.

2.1.1 Layout Strategies and Styles

Physical design is an extremely complex process and even after breaking the entire

process into several conceptually easier steps, it has been shown that each subtask

is computationally NP-hard [Hana85]. However, market requirements demand a

quick time-to-market and high yield. As a result, restricted models and design

styles are used in order to reduce the complexity of VLSI physical design. The

CHAPTER 2. BACKGROUND 16

Fixed rows of basic cells

Pads

(A) GATE ARRAY LAYOUT (B) STANDARD CELL LAYOUT

Pads

Variable

Height

Channels

Feedthrough

Variable

Length

Rows

Variable

Width Cells

Figure 2.5: Gate-Array layout and Standard-Cell layout

classification and comparison of layout styles is given in [Ueda86]. Currently, the

most popular VLSI physical design styles are gate-array, standard-cell, general-cell,

and full-custom design.

2.1.1.1 Gate-Array Design

In gate-array design, the entire wafer is prefabricated with an array of identical

gates or cells. As shown in Figure 2.5 (a), the cells are separated by both vertical

and horizontal spaces called vertical and horizontal channels. The name “gate-

array” signifies the fact that each cell may simply be a gate, such as a 2 input

OR gate [SKan03]. A special case of the gate array is the Field Programmable

Gate Array (FPGA) topology. In FPGA technology, all wires and interconnections

are manufactured on the chip, and programmable switches are fabricated into the

interconnections. The desired design can be implemented by programming the

CHAPTER 2. BACKGROUND 17

interconnections between the wires and gates. Since the entire physical chip is

pre-fabricated, the turn-around time is fast. It is also well suited for automated

design due to its highly regular layout style. However, FPGAs are not space-

efficient since all the wires and switches manufactured are generic to allow different

interconnections. Furthermore, current routing technology used by FPGAs adds a

significant delay to interconnections [Babb93].

2.1.1.2 Standard-Cell Design

In standard-cell layout (as seen in Figure 2.5 (b)), the cells are uniform and have

a rectangular shape with similar heights and different widths. The cells have fixed

connections on the left and right side (clocks and/or power) that abut with each

other and are placed in horizontal rows [Sher99]. The global routing phase deter-

mines where the wires switch between the rows of standard-cells. These locations

are called feedthroughs. This design style is well-suited for moderate size circuits and

medium production volumes. It provides a compromise between reasonable design

time and production size because it uses a pre-designed standard cell library.

2.1.1.3 General-Cell Design

As seen in Figure 2.6 (a), the general-cell layout style is a generalization of the

standard-cell layout style. The cells (available from a library or constructed as

required by the design team) may be large and irregularly shaped [Sher99]. Auto-

matic placement of general-cell designs is complicated since the cells are represented

as two dimensional objects and their sizes and shapes can vary widely. Automatic

routing is also more difficult (compared to standard-cells and gate-arrays) since the

CHAPTER 2. BACKGROUND 18

Channel

Horizontal

Vertical
Channel

(A) GENERAL CELL LAYOUT (B) FULL CUSTOM LAYOUT DESIGN

Figure 2.6: General-Cell layout and Full-Custom layout

channels may interact in complex ways.

2.1.1.4 Full-Custom Design

This method is characterized primarily by the absence of constraints on the design

process. It usually requires a hand-crafted level of automation since the lack of

constraints makes synthesis tools difficult to develop [Sher99]. Full-custom design

as seen in Figure 2.6 (b) is time-consuming, thus the method is inappropriate for

large circuits. However, the full-custom method is widely used for smaller cells that

are input to synthesis tools for high performance designs.

2.2 Graph Theory

The global routing problem is usually studied as a graph problem where either a

grid graph or a gridless graph model can be used [Leng90b]. A graph is a pair

of sets G = (V, E), where V is a set of vertices and E are edges. A graph can

CHAPTER 2. BACKGROUND 19

be non-weighted or weighted. In a weighted graph, each edge is associated with a

weight value. Figure 2.7 illustrates a graph G with vertices and edges.

v2
v3

v4

v5

v1

e1 e2

e3

e4

e5

e6

Edges

Vertices

Figure 2.7: Illustration of a graph G=(V,E)

Two vertices are adjacent if there is a direct path, or an edge, between them.

For example, vertices v1 and v3 are adjacent such that e2 = (v1, v3) is an edge. A

tree is a connection between a subset of vertices of the graph which has no cycles.

For example, edges e1, e2, e3 and e4 construct a tree which connects vertices v1, v2,

v3, v4 and v5. However, edges e1, e2, e3, e5 and e6 are not considered as a tree due

to the formation of a cyclic path.

The solution to a graph problem usually requires searching the graph by explor-

ing all vertices. There are two important graph search techniques:

• breadth-first search: A graph is explored as broadly as possible by visiting

a vertex, and then immediately visiting all vertices adjacent to it.

CHAPTER 2. BACKGROUND 20

• depth-first search: A graph is explored as deeply as possible by visiting a

vertex, and then recursively performing depth-first search on each adjacent

vertex.

2.2.1 Grid Graph model

A grid graph model gives an accurate description of the routing area [Sher99], where

vertices are potential positions of pins and edges are connections between pins. For

standard cell layout style, each module of the circuit is represented by a vertex of

the graph. If module ci and cj are placed adjacent to each other after the placement

phase, then there is an edge connecting the vertices that represent ci and cj. Let

G′ = (V ′, E ′) be the grid graph. Each edge in E ′ has unit capacity.

(a) (b)

Figure 2.8: Layout of a chip with a grid-graph to represent the modules.

Figure 2.8 (a) shows the practical layout of a chip, and Figure 2.8 (b) show its

corresponding grid-graph with 15 vertices. The number of vertices is determined

by Rx (the row with maximum number of modules in the chip) and the number of

cell rows in the chip. If a row does not have the same number of cells as Rx, empty

CHAPTER 2. BACKGROUND 21

vertices are inserted in the designated row to make the grid-graph have the same

number of vertices per row.

2.2.1.1 Coarse Versus Fine Grid Graph

In a grid graph G′, since every module is represented by a vertex, the total number

of nets to be routed tend to increase in size. Although it accurately describes

the circuit, the consequent increase in the number of constraints can result in high

computational complexity. Therefore, a coarse grid graph can be constructed based

on the grid graph G′. To create a coarse grid graph, G′ is first cut into several

subgraphs, where each forms a vertex in the coarse grid graph. Let G = (V, E)

represent the coarse graph. If vertices vi and vj are adjacent, then there is an edge

between the vertices. The edge capacity of G is the number of wires that can be

placed across the boundaries of two adjacent vertices. Each vertex in G is called a

global cell [Hu85b].

The coarse grid graph gives a high level abstraction to the global routing problem

by grouping a number of neighboring cells together. If two neighboring cells are

in the same horizontal row and are connected by the same net, they are clustered

together to form a global cell. The net segment that connects the two cells is

also absorbed into the same global cell. A coarse grid graph tends to reduce the

complexity of the global routing problem, but on the other hand decreases the

precision of the graph and degrades the routing performance.

In standard cell design, the construction of a coarse grid graph is illustrated

in Figure 2.9. The number of rows in the coarse grid graph is determined by the

former placement technique, the vertex in the coarse grid graph or a global cell, is

CHAPTER 2. BACKGROUND 22

CBA

global cells

V1

(a) (b)

Figure 2.9: A standard cell design circuit and its coarse grid graph representation.

a collection of cells from the original circuit. For example, vertex V1 groups cells A,

B and C together. Since the row number is pre-determined, the number of columns

determines the precision of the graph.

2.2.2 Connection Pattern

Global routing attempts to assign specific areas for each net within the circuit. One

objective of global routing for standard cell design is to determine a connection

pattern to connect all nets without violating resource constraints. The connection

pattern is defined by positions for feedthroughs, pins to be connected, and channels

for net segments to connect the pins.

There are several interconnection patterns to connect the pins of cells. A

Minimum Rectilinear Steiner Tree (Figure 2.10(a)) gives the shortest route for

connecting all pins. It allows wires to meet or branch at any point along its length

besides the pin locations. However, computing both the optimum branching points

and the resulting optimal route from the branching points to the pins increases com-

plexity. Usually, Minimum Spanning Tree connections and Chain Connections

CHAPTER 2. BACKGROUND 23

are used as alternative interconnection topologies. In a Minimum Spanning Tree

(Figure 2.10(b)), wires begin and end only at the pin locations. The construction

of a Minimum Spanning Tree will be discussed in section 2.2.3. In the Chain

Connections (Figure 2.10(c)) method, there are no branches, since each pin is

connected to the next in the form of a chain. These two connections are easy to im-

plement, but the trade off is that the interconnects through all the pins are longer.

Source-to-sink Connections (Figure 2.10(d)) consider the critical path length be-

tween the source and sink pins and are used in timing-driven global routing.

(a) (b)

(c) (d)
Figure 2.10: (a) Minimum Rectilinear Steiner Tree. (b) Minimum Spanning Tree.
(c) Chain Connections. (d) Source-to-Sink Connections

A cost function is used to measure and compare the interconnections by calcu-

lating the estimated wire length. Thus the objective of a global router is to choose

the optimal connection wiring patterns that minimize the overall cost function. An

CHAPTER 2. BACKGROUND 24

efficient and widely used method to estimate the wire length is the Half Perimeter

Wire Length (HPWL) method, in which the wire length is approximated by half of

the smallest bounding rectangle enclosing all the pins, as shown in Figure 2.11. For

all two-terminal and three-terminal nets this method gives accurate wire length,

provided that the routing does not go beyond the bounding rectangle. For the nets

which have more than three terminals, the yielded wire length underestimates the

actual wire length. The HPWL method can also provide the best estimation for the

Steiner tree wiring scheme. In practical circuits, two-terminal and three-terminal

nets constitute over 98% of the nets in a circuit, thus using the HPWL method is

considered to be a good estimation technique [Shah91].

������������

�������
�

�������
�

���
�

Cells

Bounding Box

HPWL

Figure 2.11: Approximation wire estimation and congestion

CHAPTER 2. BACKGROUND 25

2.2.3 Minimum Spanning Tree (MST)

The Minimum Spanning Tree problem is formulated as follows: given a graph

G = (V, E), select a subset of edges E ′ ⊆ E, such that E ′ constructs a tree which

connects all the vertices V and the total cost of edges
∑

ei∈E′ w(ei) is the minimum

cost, where w(ei) is the cost of the edge ei.

Kruskal’s Algorithm
1. Start;
2. Order all edges in increasing weight;
3. Start with N sets, where each set Ti

represents a node ;
4. While (there are edges connecting different sets)

Choose the shortest edge Eij

which connects two different sets Ti and Tj;
Merge Ti, Tj and Eij into set Ti;

End While
5. End;

Figure 2.12: A Minimum Spanning Tree Algorithm

Kruskal’s algorithm [THC90] is one of several techniques used to construct Min-

imum Spanning Trees. Its pseudo-code is illustrated in Figure 2.12. For a given

graph G = (V, E), Kruskal’s algorithm first orders all edges in increasing weight

and assigns each vertex to a set Ti. Each set represents a partial spanning tree.

Next, it chooses the remaining smallest weight edge E(ij), where i and j are from

different sets Ti and Tj. By merging the two sets together a new set is created. This

selection continues until there are no remaining edges to be added to the spanning

tree. The complexity of Kruskal’s algorithm is O (E lg E) [THC90], where E is the

number of edges.

Figure 2.13 gives an example of constructing an MST using Kruskal’s algorithm.

CHAPTER 2. BACKGROUND 26

There are 6 sets in the beginning:{A}, {B} {C} {D} {E} and {F}. First, edge

E(de) is selected from the ordered edge list, the two sets{D} and {E} are merged

into a new set {D, E}. Next, edge E(ab) is selected, the two sets {A} and {B} are

merged into a new set {A, B}. As the same edge selection process continues, edge

E(ec), edge E(ef) and edge E(ac) are subsequently selected. The final MST with

minimum cost is found (as seen in Figure 2.13 (f)) using five edges with an optimal

cost of 18 units.

3 5

6
7 4

5

42

A

B C

D

E

F

3 5

6
7 4

5

42

A

B C

D

E

F

3 5

6
7 4

5

42

A

B C

D

E

F

3 5

6
7 4

5

42

A

B C

D

E

F

3 5

6
7 4

5

42

A

B C

D

E

F

3 5

4
5

42

A

B C

D

E

F

(a) (b)

(c) (d)

(e) (f)

Figure 2.13: An example of MST construction

CHAPTER 2. BACKGROUND 27

2.2.4 Netlist and Admissible Routes

A netlist provides information about the connectivity of the circuit. It shows the

wiring requirement of a circuit and consists of a set of nets. Each net is identified

by a name and a list of pins or terminals (as seen in Figure 2.14). The name usually

specifies the type of the wire as being either global or local. Figure 2.14 shows a

netlist in a standard cell layout which consists of two nets.

net1

net2

terminals/pins

M1 M3 M76 M2 M7

M4 M28 M5 M9

M8 M38 M27 M17 M23

Figure 2.14: A netlist consists of two nets.

An admissible route is a path that a net can take in the final layout [Behj02].

For any net, there are several admissible routes. Theses routes can be defined

by a certain connection pattern such as a Minimum Spanning Tree (MST) or a

Minimum Rectilinear Steiner Tree (MRST). However, for a net with a large number

of terminals, it is not feasible to consider all possible routes. Usually a subset of all

routes can be categorized as admissible routes.

CHAPTER 2. BACKGROUND 28

2.3 Global Routing for Standard Cell Design

As explained earlier, standard cell design consists of a set of logic library cells

arranged in rows. The space between two rows is referred to as a channel which

is an open-ended region with pins on the top and bottom boundaries. Routing for

standard cell design is normally performed within channel areas.

There are two objectives of global routing for standard cell design. The first

is to determine a net connection pattern without violating resource constraints,

as discussed in section 2.2.2. The second objective is to minimize channel den-

sity. Total density is normally used to measure routing area. The local density

of a channel at a given x-coordinate is the number of nets that intersect a vertical

line segment which passes through that channel at the coordinate [Sher99]. The

channel density is the maximum local density over all x. The total density of a

standard cell layout is the sum of channel densities over all channels. The area

required by the chip is a function of the longest cell row and the total channel den-

sity. Therefore, minimizing the total channel density is considered as an important

objective of global routing.

For example the chip presented in in Figure 2.15 has four rows of cells and five

channels. The channel densities for channels two, three and four are 7, and for

channels one and five are 5 and 6 respectively, producing a total channel density of

32 (7+7+7+5+6=32).

The standard-cell design style does not impose any restriction on channel heights

and therefore this guarantees 100% routability. When needed, feedthroughs can

be inserted into the cell row to provide vertical interchannel connection. Insert-

CHAPTER 2. BACKGROUND 29

Channel 5

Channel 2

Channel 1

Channel 3

Channel 4

Figure 2.15: Channel density and total density.

ing feedthroughs to cell rows except the longest row does not change the width

of the chip. In a typical two layer standard cell design, one layer is used for

horizontal channel segments, and the second is used for vertical connections be-

tween the cell and the channel segments in the same channel. These vertical tracks

are called feedthroughs which accomplish the interchannel connections. Normally,

feedthroughs are realized in two ways:

• By making use of the built-in feedthrough wires (Figure 2.16(a)) that may

be available within a standard cell. Feedthrough wires cross the cell without

CHAPTER 2. BACKGROUND 30

any relationship to the functional circuitry [JRos88]. The pair of pins on the

ends of a feedthrough wire are called equivalent pins.

• By making use of feedthrough cells(Figure 2.16(b)) which are inserted be-

tween functional cells. Feedthrough cells are standard cells that contain no

logic and only vertical feedthrough wire(s) [JRos88].

(b)

Feedthrough
Wire

(a)

Equivalent Pins

Figure 2.16: (a) A two input NAND gate standard cell with a feedthrough wire.
(b)A feedthrough cell.

Figure 2.17 shows two nets that span multiple rows. Net1 needs two feedthrough

cells inserted to complete the connection. Net2 uses the built-in feedthroughs such

that no more feedthrough cells are inserted. The cells that Net2 passes through in

the second and third row have equivalent pins on the top and bottom of the cells.

CHAPTER 2. BACKGROUND 31

net 1

net 2

Figure 2.17: Example of two nets that span multiple rows.

2.4 Parallel Programming

High performance computers are increasingly in demand by engineering discipline in

general and VLSI CAD in particular. Achieving high performance depends not only

on using faster hardware but also on major improvements in computer architecture

and processing techniques. Research and development of multiprocessor systems

are aimed at improving throughput, reliability, flexibility and availability.

Conventional sequential algorithm based CAD will finally reach its limitation in

the future. It is becoming a necessity to develop parallel algorithms to solve complex

combinatorial optimization problems. Parallel algorithms vary in performance and

depend heavily on the architecture of the parallel computer to be used.

2.4.1 Classification

Parallel systems can be classified into SIMD and MIMD architectures by instruction

delivery mechanism and data stream. SIMD stands for single-instruction, multiple-

data and MIMD stands for multiple-instruction, multiple-data.

CHAPTER 2. BACKGROUND 32

if CPU0
 x=4
else
 x=5

y: 3
x: 4

CPU0

 x=4
else
 x=5

if CPUn

CPUn

y: 3
x: 5

 x=4
else
 x=5

if CPU1

CPU1

y: 3
x: 5

y: 3
x: 4

CPU0

z=x+y

c: 7

CPU1

if c>0

call
function()

CPUn

call function()

CPU

ALU ALU

y:
z:

x: 6

1 y:
z:

x: 9

2

ALU

y:
z:

x: 3

7

z=x+y

x: 4 y: 3

c: 7

function()
{
}

z=x+y

CPU0 CPU1

if c>0

CPUn

call function()

(a)

(b)

(c) (d)

Figure 2.18: (a) Single Instruction Multiple Data (SIMD) (b) Distributed Memory
Multiple Instruction Multiple Data (MIMD) (c) Shared Memory Multiple Instruc-
tion Multiple Data (MIMD) (d) Single Program Multiple Data (SPMD)

In a SIMD (Figure 2.18 (a)) parallel processor, a central controller broadcasts

the same instruction to different processors, and each processor executes the in-

struction on its own data. In an MIMD multiprocessor, processors execute different

instructions on different data. MIMD can also be further classified into two mod-

els by the memory organization: distributed memory MIMD(Figure 2.18 (b)) and

shared memory MIMD (Figure 2.18 (c)). The memory organization is discussed in

the following section. Single program Multiple Data (SPMD) (Figure 2.18 (b)) is

a special case of MIMD. In this parallel model, the same program is executed on

CHAPTER 2. BACKGROUND 33

several processors according to different conditions.

2.4.2 Shared Memory and Distributed Memory

MIMD multiprocessors are classified as either being shared memory or distributed

memory architectures [Bane94]. In a shared memory computer, processors can have

access to all memory locations, and therefore communications and synchronization

are low. However, no more than one processors can access the same data at the

same time. In a distributed memory MIMD computer, each processor has its own

local memory and works without considering to be blocked by other processors.

Communication is largely increased when each processor tends to broadcast mes-

sages informing other processors of current changes.

2.4.3 Amdahl’s Law and Parallel Speedup

The most commonly used metric to measure parallel processing performance gain is

parallel speedup [Sun90]. Speedup has two different definitions. The first referred

to as absolute speedup, focuses on speedup achieved to solve a problem on N pro-

cessors. Absolute speedup compares the best sequential algorithm with the parallel

algorithm under consideration. On the other hand, relative speedup considers in-

herent parallelism of the parallel algorithm. It is the ratio of elapsed time of the

parallel algorithm on one processor to the elapsed time of the parallel algorithm on

N processors.

The relative speedup has been used more commonly to evaluate the parallel

performance gain and its formulation is given by Amdahl′s law. Ideally, an al-

CHAPTER 2. BACKGROUND 34

gorithm distributed among N processors would complete in 1/N time, leading to

an N times increase in parallel performance. However, any given parallelized al-

gorithm will contain a serial portion. These portions can not run any faster on a

number of processors than on a single processor. Let T (N) be the time required to

complete the task on N processors, the relative speedup can then be defined as:

S(N) =
T (1)

T (N)
(2.1)

In many cases, since the time T (1) has both a serial portion Ts and a parallelized

portion Tp, the speedup can be further defined as:

S(N) =
T (1)

T (N)
=

Ts + Tp

Ts + Tp/N
(2.2)

According to the equations given above, The parallel time can not be decreased

by a factor of 1/N , since the serial time remains constant no matter how many

processors a programmer utilizes to run the algorithm.

2.5 MCNC Benchmarks

The global routing algorithms implemented in this thesis are tested on the MCNC

benchmarks [Kozm91]. These benchmarks are widely used to verify the effectiveness

of algorithms for VLSI physical design subproblems such as partitioning, placement

and routing.

CHAPTER 2. BACKGROUND 35

Circuit # nets # cells # pads # pins

fract 147 125 24 876
struct 1920 1888 64 10814
prim1 1133 752 81 5614
ind1 2478 2271 814 19186
prim2 3817 3014 107 22371
bio 5742 6417 97 41886
ind2 13419 12142 495 95818
ind3 21938 15059 374 136084

avq.small 22124 21854 64 152334
avq.large 25384 25114 64 165374

Table 2.1: MCNC benchmarks

Table 2.1 shows the statistics of MCNC benchmarks, which consists of test

circuits ranging in size from 147 cells to 25,000 cells. It lists the number of nets,

cells, pads and pins for each circuit. Table 2.2 lists the number of rows, chip width

and chip height for each circuit.

Circuit No. rows Width (Microns) Height (Microns)

fract 6 828 754
struct 21 2404 2610
prim1 16 5231 5250
ind1 15 3085 3672

prim2 28 11354 7350
bio 46 5339 5162
ind2 72 14998 14456
ind3 54 28169 26880
avq.s 80 9343 9338
avq.l 86 9502 9918

Table 2.2: The chip dimension of MCNC benchmark circuits

The circuits are grouped into three classes according to their sizes: small,

medium and large, the small size group includes fract, struct and prim1 circuits,

CHAPTER 2. BACKGROUND 36

the medium group includes ind1, prim2 and bio circuits, and the large one consists

of ind2, ind3, avq.small, avq.large circuits.

2.6 Summary

Due to the high complexity of the VLSI design process, it is broken down into several

more manageable smaller tasks. One of these sub-tasks is physical design, which

is still considered complex. As a result, this complexity is handled by dividing

the physical design problem into more tractable sub-tasks and global routing is

one of these sub-tasks. Physical design automation highly depends on the layout

style used. Different layout styles, such as full-custom, gate-array, and standard-

cell layouts can achieve different trade-offs among speed, cost, fabrication time, and

degree of design automation. Background material on global routing phase, parallel

programming techniques and test benchmarks were also introduced in this chapter.

Chapter 3 will briefly review previous work on the global routing problem.

Chapter 3

Literature Review

This chapter briefly reviews previous work and research on the VLSI global routing

problem. There are mainly two distinct methodologies for global routing: sequen-

tial techniques and concurrent techniques (as illustrated in Figure 3.1). Sequential

techniques tend to route nets according to certain sequences, and are further clas-

sified into two-terminal and multi-terminal algorithms. Two-terminal algorithms

include maze router algorithms [Lee61], line-probe router algorithms [KMik68] and

shortest path based algorithms [Sher99]. Multi-terminal algorithms are mainly

based on Steiner tree techniques. Concurrent techniques on the other hand route

all nets concurrently, and are classified to belong to either Integer Programming

based algorithms or hierarchical based algorithms.

37

CHAPTER 3. LITERATURE REVIEW 38

Sequential Approaches

Global Routing Algorithms

Concurrent Approaches

Multi−terminal AlgorithmsTwo−terminal Algorithms

Maze Routing
Algorithms Algorithms

Line Probe

Based Algorithms
Shortest Path

Integer Programming
Based Algorithms

Hierarchical Based
 Algorithms

Based Algorithms
Steiner Tree

Figure 3.1: Methodologies for global routing.

3.1 Sequential Approaches

Sequential routing algorithms [Sher99], as the name implies, route nets in a sequen-

tial manner by ordering nets according to their priority. The quality of a sequential

global router largely depends on the ordering of nets. Once a net is routed, it

occupies resources in the form of tracks and feedthroughs. Therefore nets routed

later can not use the occupied resources. Determining a good net order prior to

the routing process is a very important task for sequential global routers. Usually,

the nets are sequenced according to their criticality, perimeter of the bounding

rectangle and number of terminals [Sher99]. Since nets with high priority often

play key roles in determining the performance of the circuit, following the net order

CHAPTER 3. LITERATURE REVIEW 39

determination, these nets are routed first. A brief review of sequential approaches

will be introduced next.

3.1.1 Two-terminal Sequential Algorithms

Maze routing algorithms are the most widely used for routing two-terminal nets

[Moor59]. Lee [Lee61] introduced the first grid expansion maze routing algorithm

for a two terminal net on a grid graph. This routing heuristic uses a breadth-first-

search method (BFS) to explore the grid graph. In order to find the shortest path

between a source point “S” and a target “T”, the maze global router first constructs

several initial paths at “S” and then expands them until one path reaches “T” (as

seen in Figure 3.2).

Obstacle

 S

T

Initialization

Obstacle

 S

T

Obstacle

 S

T

Obstacle

 S

T

Obstacle

 S

T

Obstacle

 S

T

1st Expansion 2nd Expansion

3rd Expansion 4th Expansion 5th Expansion

Figure 3.2: Maze routing algorithm

CHAPTER 3. LITERATURE REVIEW 40

When the target is reached, a retrace phase begins to retract all vertices which

identify the path. Maze routing algorithms are simple and can guarantee finding

the shortest routes between any two pins if such route exists [Souk78]. However,

there are some major drawbacks of sequential maze routing algorithms. Firstly,

they tend to pick a shorter path with many bends and vias, instead of a longer

path with fewer bends. Vias occupy valuable routing space so they enlarge the

whole chip area and cause delays [Sher99]. In the worst case, maze routing might

require to explore all vertices in the grid graph to find a shortest path which has

space complexity O (n2), where n is the number of vertices. Furthermore, maze

routing heuristics usually require a large amount of memory and their performance

degrades rapidly when the size of the grid increases in size[Sher99].

To overcome the drawbacks of maze routing algorithms, line-probe routing algo-

rithms [KMik68] were developed. Line-probe routing algorithms perform instead a

bidirectional search. Straight search lines are extended from both source point “S”

and target “T” in all four directions, as illustrated in Figure 3.3. If a search line

extended from source meets a line extended from target, then a path is constructed.

In some cases, these trial lines may hit some obstacles. To escape obstacles, new di-

rections are extended for some base points on the trial lines. The space complexity

of line-probe algorithm is O (L), where L is the number of line segments. Obvi-

ously, line-probe algorithms are faster than maze routing algorithms by reducing

the space complexity [Sher99]. However, they may not produce the shortest path

between two points since they are greedy in nature.

Shortest Path Based approaches use Dikjstra’s Algorithm [Dijk59] to route two-

terminal nets. Given a routing graph G = (V, E), Dikjstra’s Algorithm can find the

CHAPTER 3. LITERATURE REVIEW 41

Obstacle

 S

T

Initialization

Obstacle

 S

T

Obstacle

 S

T

Obstacle

 S

T

1st Extension

2nd Extension 3rd Extension

Figure 3.3: Line probe routing algorithm

shortest path in G joining a source point “S” and a target point “T”, where S ∈ V

and T ∈ V . When evaluating the length of an edge in the path, the algorithm uses

a factor α (α > 1) that tends to increase the length of a congested edge in order to

reduce edge congestions.

The maze routing and line-probe algorithms are not originally designed to route

multi-terminal nets, however, several approaches have been proposed to extend

them to solve multi-terminal routing problems [Sech88]. In these approaches, the

multi-terminal nets are decomposed into several two-terminal segments, and each

segment is routed by using either a maze router or a line-probe algorithm.

CHAPTER 3. LITERATURE REVIEW 42

3.1.2 Multi-terminal Algorithms

For a multi-terminal net, finding its shortest connection is usually achieved by con-

structing Minimum Spanning Trees (MST) or Minimum Rectilinear Steiner Trees

(MRST), which were explained in section 2.2. The Minimum Spanning Tree is

the shortest path to connect the nets with each edge only starting or ending at pin

locations. The Minimum Steiner Tree problem can be stated as: given a set P

of n points, find a set S of Steiner points such that the Minimum Spanning Tree

(MST) over P ∪ S has minimum cost.

Hanan [Hana85] showed that all possible Steiner points must lie within the

bounding box of the outer most nodes of a net. He also showed that any Minimum

Rectilinear Steiner Tree (MRST) can be found over the subgrid which is formed

by the intersection of the vertical and horizontal lines drawn at each node in the

net. These intersecting points are called Hanan points. Figure 3.4 shows a point set

in solid dots and the corresponding Hanan grid and points. Figure 3.5 illustrates

the existence of MRSTs within Hanan points.

In TimberWolf 3.2 [Sech86], the global router tends to perform the optimization

in two steps: in the first stage, every net is connected by a Minimum Spanning

Tree based on wire length. This is followed by an iterative algorithm (simulated

annealing with temperature = 0) to further improve the assignment of net segments

to channels. The goal of the global router is to connect all nets while minimizing

the total number of wiring tracks. As a typical sequential algorithm, the net order

problem is one of the main disadvantages of such a technique. Moreover, the global

router in Timbewolf 3.2 is not capable of predicting congested areas in channels

CHAPTER 3. LITERATURE REVIEW 43

hannan points
point set

Figure 3.4: The Hanan grid and the set of Hanan points.

when the net segments are added.

In [KW88], K. Lee improved the TimberWolf global router by constructing ef-

ficient Steiner trees. The router considers the features of the row based layout

placement, such as equivalent pins and built-in feedthroughs, and generates the

L-switchable segments to construct the Steiner tree. The new global router im-

proves performance by using a more accurate interconnection model. Thus the

total channel density and congestion are reduced.

In [Sarr89], a global router was proposed to find the Steiner min-max trees.

This is a two-step algorithm where the first step involves finding a net order for all

nets. Each net is given a net number according to a function of bounding length,

priority and multiplicity. In the second step, an optimal Steiner min-max tree is

found for each net. The Steiner tree whose maximum weight edge is minimized can

contribute to minimizes traffic in the densest channel.

CHAPTER 3. LITERATURE REVIEW 44

(b)(a)
Figure 3.5: There always exits an MRST with Hanan points chose from the inter-
section of all the horizontal and vertical lines through all the points

S. Miriyala [SM91] proposed a heuristic algorithm which produces optimal so-

lutions for the Steiner tree problem in presence of obstacles. There are two steps

in this algorithm. Initially, an upper bound is produced if the terminals are on the

boundary of rectangle. Following that, a rectilinear steiner tree is found within the

bound produced by the previous step.

In [Swar93], a row-based global router is proposed for standard cell circuits. Its

main feature is the dynamic modification of Steiner trees produced. This row-based

global router explicitly minimizes chip area, and also takes timing constraints into

account.

Some non-rectilinear approaches [SB91] have also been proposed that can reduce

the cost of the optimal trees by 10%-12%. Non-Rectilinear Steiner tree based

algorithm uses a non-rectilinear geometry. An example of the derivation of a Steiner

tree for a simple two-terminal net in a 4-geometry is shown in Figure 3.6 (b), while

Figure 3.6 (a) shows the derivation of a Steiner tree for the same net in rectilinear

geometry. Clearly, the tree length in 4-geometry is shorter than the one in the

CHAPTER 3. LITERATURE REVIEW 45

rectilinear geometry.

(b)(a)

Figure 3.6: (a) 2-geometry. (b) 4-geometry.

Other previous research focused on pre-processing techniques that tend to esti-

mate the wire length to shorten the running time of the following stages. Research

in [Pedr89] proposed an interconnection length estimation model for standard cell

layouts. The prediction of interconnection helps to determine the routability of the

proposed logic design or to evaluate the quality of placement and global routing

algorithms.

In [Cho00], Jun Dong C. proposed a wiring space and length estimation ap-

proach. It divides the routing region into a top-down quad-tree hierarchy. A lower-

bound density of cells and an upper-bound are obtained for the worst case of cells.

Assume d0 is the estimated lower density in a m × m two-dimensional array and

α + β = 1, the total wire length is (2α + β)4m2d0/3. Where α is the percentage of

CHAPTER 3. LITERATURE REVIEW 46

diagonal combinations and β is the percentage of adjacent combinations of nets in

a quadrisection map.

Furthermore, in order to obtain better solutions for sequential approaches, some

improvement heuristics are developed to improve congestion and channel densities.

These approaches are developed mainly for gate arrays; however, it provides a frame

work that can be adopted for standard cell design. Many recent global routers are

two phase heuristics: a coarse routing phase followed by a refinement phase. One

such routing technique is developed by Ting and Tien [Ting83] for gate arrays. The

basic idea of the heuristic is as follows:

• Route every net as if it were the first net to be routed; i.e. pay no attention

to boundary overflow conditions;

• After all nets have been routed, identify the boundaries that are overflowed

and the amount of overflow;

• Identify the nets that use these overflow boundaries and form a bipartite

graph with one part of the vertices representing the nets and the other part

of the vertices representing the overflowed boundaries. An edge connects a

net vertex to a boundary vertex if the net uses that boundary. The bipartite

graph shows the supply-demand situation among boundaries and nets. A

subset of the nets are selected for rerouting in a “greedy” manner.

CHAPTER 3. LITERATURE REVIEW 47

3.2 Concurrent Approaches

Concurrent approaches can avoid the net-ordering problem which degrades the per-

formance of sequential approaches by routing all nets simultaneously. Furthermore,

concurrent approaches have a global view of the chip area therefore they can predict

congestion. Concurrent approaches are classified into hierarchical based algorithms

and Integer Programming (IP) based algorithms.

3.2.1 Hierarchical Based Approaches

Hierarchical approaches partition the circuit area into sub-regions which are called

global cells. Global routing problems are solved for each global cells and then the

solutions are combined together.

A hierarchical based routing approach was first proposed by Burstein and Pelavin

[Burs83], and was enhanced by Heisterman and Lengauer [Heis91]. In this approach,

the whole routing area can be represented by a cut tree. As seen in Figure 3.7,

the root of the cut tree is the entire chip and its children are bipartitions of the

chip. The grand children of the root are bipartitions of its children, and so on. Let

the entire chip be arranged in an array of cells. A cell is a module placed onto the

silicon wafer. At each level of the hierarchy, a node is divided into a 2x2 supercell.

Each net is represented by a set of cells which is called terminal cells. If a supercell

is a terminal cell for net k, then at least one pin of the net is located somewhere in

this supercell. Each supercell contains a maximum of one pin per net, thus if a net

lies within a supercell, it is not routed at that level.

The hierarchical routing heuristic starts at the root of the tree and visits each

CHAPTER 3. LITERATURE REVIEW 48

A B C DD

A B

C

Figure 3.7: A floorplan and its preprocessed cut-tree

node until it reaches the leafs of the tree, i.e. the bottom of the hierarchy. At each

node, a 2x2 grid routing problem is solved by using integer programming. Before

attempting the next level, the solutions for all nodes in this level of the cut-tree are

combined. The resulting routing influences the definition of the routing problems

for the nodes in the next lower level.

In [Brou90] a global router called PHIGURE hierarchically decomposes the

whole process into separate independent tasks. These sub-tasks are suitable for

parallel execution and adaptive simplex solution to add feedthroughs and adjust

channel heights for row-based layout. The main disadvantage of this approach

is that it only targets specific parallel architectures in the form of shared mem-

ory multiprocessors. In addition, congestions are ignored during the feedthrough

assignment.

The hierarchical approach is further investigated in [Heis91]. The global prob-

CHAPTER 3. LITERATURE REVIEW 49

lem is decomposed into small integer problems. These problems are classified into

different cases where some simple routable nets are prerouted. This preprocessing

method reduces the whole problem size thus yields a reduction of the processing

time.

An alternative hierarchical approach called 2x2 cell routing was proposed by

Marek Sadowska [Kuh86]. The hierarchical global router uses 2x2 cells to enumer-

ate all possible types of nets as well as connections that may occur. In Fig. 3.8

a complete tabulation of nets and connections is introduced with six types of 2-

terminal nets, four types of 3-terminal nets and one type of 4-terminal nets. Each

type of a k-terminal net represents the possible pin configuration in the 2x2 su-

percells. For each net type, there are various possible connections. Let k(i) be

the number of nets and p(i, j) denote the jth possibility to route a net of type i.

The global routing problem can be expressed as follows: for i = 1, 2, . . . , 11, find

the number of nets of which type i can be realized in each possibility to complete

the routing. Let x(i, j) denote the number of nets of type i using the j th possi-

bility. The values of x(i, j) can be determined by solving the integer programming

problem.

Let Xi be the number of overflowed nets of type i.

Let V1, H1, V2, and H2 be boundaries.

Let v1, h1, v2, and h2 denote channel capacities at the V1, H1, V2, and H2

boundaries respectively.

H̃1 = {(i,j) | p(i,j) crosses vertical boundary H1}.

CHAPTER 3. LITERATURE REVIEW 50

�� ���� �� ������ 	�	
 ������

�
�
����

����
����

������
������

�������
�

�������
� ������������

������ � �
!�!!�!"�""�"
#�##�#$�$$�$

%�%%�%&�&&�& '
'
(()�))�)** +

+
,, -�--�-.. /

/
00

1�11�12
2

3�34�4
5�55�56�66�6

7�78
9�99�9:�::�:

;�;<

=�=>�>
?�?@�@ A�AB

C�CD
E�EF G�GH�H

I�IJ
K�KL M�MN�N

O�OP
Q�QR S�ST�T

UU�VV
WW WW�XX XX

YYZZ [\
]]^^

__`` aa�bb
cc cc�dd dd

eeffgg�hh
ii ii�jj jj

kkll

m�mn�n o�op
q�qr�r

s�st u�uv�v
w�wx

y�yz {�{|
}�}~

���� ������
����

����
������

������
���������������
� ������

���������������
�����

�������
�

���
�

����
�

¡�¡¢
£¤

¥�¥¦�¦
§�§§�§¨�¨¨�¨
©�©ª
««¬
¬ ­�­®

¯�¯¯�¯°
° ±�±²�²
³³´
´ µ�µµ�µ¶�¶¶�¶

·�·¸�¸
¹�¹¹�¹º�ºº�º
»¼

½�½½�½¾
¾

¿�¿À
Á�ÁÁ�ÁÂ�ÂÂ�Â
ÃÄ

Å�ÅÅ�ÅÆ�ÆÆ�Æ
Ç�ÇÈ�È
É�ÉÉ�ÉÊ
Ê

ËÌ

Í�ÍÎ�Î
ÏÐ

k(1)

k(2)

k(3)

k(4)

k(5)

k(6)

k(7)

k(8)

k(9)

k(10)

k(11)

p(1,1) p(1,2)

p(2,1) p(2,2)

p(3,1) p(3,2)

p(4,1) p(4,2)

p(5,1) p(5,2)

p(6,1) p(6,2)

p(7,1) p(7,2) p(7,3)

p(8,1) p(8,2) p(8,3)

p(9,1) p(9,2) p(9,3)

p(10,1) p(10,2) p(10,3)

p(11,1) p(11,2) p(11,3) p(11,4)

Figure 3.8: Pin configuration and net types in 2x2 cell array.

CHAPTER 3. LITERATURE REVIEW 51

H̃2, Ṽ1, and Ṽ2 are defined similarly.

y1, y2, y3 and y4 denote the number of free capacities on the V1, H1, V2 and H2

boundaries, respectively.

The integer program is formulated as following:

min
11∑

i=1

Xi (3.1)

max
4∑

i=1

yi (3.2)

Subject to

Xi +
∑

j

x(i, j) = k(i) ∀i = 1, 2, . . . , 11. (3.3)

∑

(i,j)∈Ṽ1

x(i, j) + y1 = v1 (3.4)

∑

(i,j)∈H̃1

x(i, j) + y2 = h1 (3.5)

∑

(i,j)∈Ṽ2

x(i, j) + y3 = v2 (3.6)

∑

(i,j)∈H̃2

x(i, j) + y4 = h2 (3.7)

Equation 3.3 is a necessary condition for a feasible routing solution. Equations

3.4, 3.5, 3.6 and 3.7 are the capacity constraints respectively. This model is small

enough that it can be solved by using general integer programming techniques but

at the expense of large CPU time.

CHAPTER 3. LITERATURE REVIEW 52

3.2.2 Integer Programming Based Approaches

Integer Programming approaches formulate the global routing problem as a 0/1

Integer Programming (IP) problem such that the objective is to connect each net

simultaneously without violating the constraints.

Hu and Shing [Hu85b] first proposed a Linear Programming (LP) formulation

of the global routing problem. They used column generation techniques to produce

potential candidates. This approach has two limitations: the problem size was very

large and thus using the Simplex method to solve the LP was slow.

R.M. Karp [RK87] developed an algorithm to solve the Integer Linear Pro-

gramming (ILP) formulated global routing problem using a randomized rounding

technique. At first, an initial solution is found with the use of a linear program

solver. Next, by rounding any fractional numbers in the solution to 0 or 1 using a

randomized technique the final solution was obtained. The main drawback of this

approach is that it can not handle multiple pin nets correctly, although it finds the

global routing solutions of all nets simultaneously.

A. Vannelli [Vann91] extended Hu and Shing’s Linear Programming (LP) model

by reducing the complexity of the global routing problem. In this work, a new

Linear Programming (LP) solution technique called interior point method [?] was

introduced to solve the problem efficiently. Since interior point methods explore the

inner spheres of the LP polytope (linear constraints), it is faster than the standard

simplex-based algorithm. To further reduce the problem size and speed up the

running time, only minimal rectilinear spanning trees or near minimal rectilinear

spanning trees are selected.

CHAPTER 3. LITERATURE REVIEW 53

In [Behj02], a global routing approach that combines wire length and congestion

estimation was proposed. First a set of MST is constructed for each net. Next,

an Integer Linear Programming (ILP) model is formulated with the objective of

minimizing the wire length. Congestion estimation is incorporated in the objec-

tive function. Finally, the ILP model is relaxed as a Linear Programming (LP)

model which is solved using Interior Point algorithms. A rounding algorithm was

developed to turn the fractional solutions of the LP problem to integer solutions.

Related to linear programming (LP) approaches, global routing problems can be

considered as an extension of network flow graph models [Baza77]. Vertices in these

graph models are the pins to be connected, and each edge consists of a capacity

equal to the number of nets to be routed through the corresponding channel. After

all flows are generated, the network flow algorithm is executed to determine the

number of nets that may be distributed through a channel.

A single-commodity flow formulation for global routing problem was first pro-

posed by Meixner and Lauther [Meix90]. This global router combines network flow

with linear assignment technique. First, the network flow is obtained by a steiner

tree heuristic based algorithm and wires are distributed to channels concurrently.

Next, feedthroughs and bridges are assigned to associated nets through linear as-

signment. This approach not only reduces the computation complexity but also

guarantees integer solutions if the capacities of the edge are integers. However, the

main drawback is that the net ordering problem dominates in its flow generating

algorithm.

R.C. Carden [Card91] developed a multiterminal, multicommodity flow algo-

rithm for their global router. This approach is based on Shahrokhi and Matula’s

CHAPTER 3. LITERATURE REVIEW 54

epsilon bound algorithm [Shah88] which yields the fractional flow solution in a rela-

tively short execution period. First a discrete net connection with an error bound is

produced from the optimal fractional solution. Next, an iterative procedure is used

to improve the final results. However, due to the high computation complexity, this

algorithm may not be solved in polynomial time. Furthermore, this approach can

not guarantee an optimal solution.

Yet another linear programming (LP) related approach was presented in [Cong98].

This global router continuously decomposes the whole global routing problem into

smaller subproblems and allows at most four bends for each net. For each level, a

solution can be found by a two-stage approach of small sized LP followed by min-

cost flow networks. First, the routing area is partitioned into four square sub-area

and a Linear Programming algorithm is utilized to compute the density contribu-

tion on the cutting edges. Next, the problem is formulated as a network flow and

solved by a min-cost flow technique [Sarr94]. The running time is reduced by using

the two-stage algorithm. Since only four-bend nets are allowed, the problem size

of the LP at each level is also reduced.

3.3 Summary

In this chapter, several approaches for global routing were reviewed. Two classes of

techniques, namely sequential approaches and concurrent approaches were identi-

fied and discussed. Sequential approaches are able to solve global routing problems

efficiently. However, they suffer from the net-ordering problem. This problem is

avoided via concurrent approaches by routing nets simultaneously. From this brief

CHAPTER 3. LITERATURE REVIEW 55

review, two sequential heuristic approaches in addition to an Integer Linear Pro-

gramming (ILP) based approach are to be implemented in the next chapter.

Chapter 4

Heuristic/ILP-based Routing

Algorithms

Global routing is an NP-hard problem that cannot be solved exactly in polynomial

time [Blan85]. Therefore, heuristic methods are used to find a good solution in rea-

sonable time. This chapter presents a Sequential Heuristic Global Router (SHGR)

which can effectively solve the global routing problem. Based on SHGR, a novel Hi-

erarchical Heuristic Global Router (HHGR) is implemented by using the multi-level

clustering technique which can provide routing estimations in reasonable time.

Heuristic approaches usually suffer from the net-ordering problem. Although

good performance can be achieved by SHGR and HHGR, it is hard to find a good

net order that guarantees an optimal solution [Cong92]. In addition, only 2-bend

routes are allowed which underestimate the actual wire length.

Therefore, an Integer Linear Programming based global router (ILP-GR) is also

proposed in this chapter. The ILP-GR considers all nets simultaneously to avoid

56

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 57

the net-ordering problem. Furthermore, it connects nets by constructing Minimum

Rectilinear Steiner Trees (MRST), which produce shorter wire length.

All the algorithms are tested on Sun-blade 2000 workstation under Solars oper-

ating system. Statistics of several MCNC benchmarks were introduced in section

2.5. These benchmarks are selected since they are widely used in verifying VLSI

physical design algorithms to solve partitioning, placement and routing problems.

4.1 A Sequential Heuristic Global Router (SHGR)

4.1.1 Cost Array Routing Model

In order to solve the standard cell global routing problem, the standard cell layout

is represented as a Cost Array routing model [JRos88]. As illustrated in Figure 4.1,

each possible routing position in a channel is an element in the Cost Array. The

vertical dimension is set to the number of rows plus 1 and its horizontal dimension

is set to the width of the routing grid. Let Pij be the position at channel i and

routing cell j. There are two constraints for each element in the Cost Array:

• Hij: The number of horizontal wires passing through Pij.

• Vij: The number of vertical wires traversing Pij.

The total cost of a path P can then be defined as:

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 58

Cost(P) =
∑

P

(Hij + Vij) (4.1)

}

}

}y
y

x

Vij,Hij

Circuit Cost Array

}

}row1

row2

row3

row4
x

Channel 1

Channel 2

Channel 3

Channel 4

Channel 5

Figure 4.1: Cost Array model

4.1.2 SHGR Implementation

The main objective of SHGR is to find the minimum cost path for each net. Its

pseudo-code is illustrated in Figure 4.2. For each two-terminal net, the minimum

cost path is selected by exploring a set of all possible 2-bend routes [JRos88]. For

the remaining multi-terminal net, the wire is first decomposed into several two-point

segments using a Minimum Spanning Tree (MST) algorithm. Next the minimum

cost path is determined for every two-point segment. The complexity of SHGR

is O (WS), where W is number of wires and S is the number of the two-point

segments. The detailed SHGR algorithm is discussed as follows:

1. For a multi-terminal net, a Minimum Spanning tree (MST) is constructed to

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 59

Sequential Heuristic Algorithm
1. Start
2. Read Circuit information and build cost array;
3. While (wire queue not empty)
4. If (2-terminal wire)

Explore all possible 2-bend routes;
Find the minimum cost path;

5. Else
Decompose wire into 2-point segments;
Forall 2-point segments

Explore all possible 2-bend routes;
Find the minimum cost path;

End Forall
Combine all 2-point paths back together;

6. End If
7. End While
8. End

Figure 4.2: Sequential Heuristic Algorithm

connect all pins. Each edge in this MST is considered as a two-point segment.

As illustrated in Figure 4.3, a 5-terminal wire is decomposed into a set of 4

two-point segments: {A, B}, {A, C}, {A, D} and {D, E}

2. The two-point segments are further decomposed into permutations. In the

standard cell design style, each pin has its electrically equivalent pin which is

usually on the opposite side of the cell (as demonstrated previously in Figure

2.16). Connecting either pin will produce the same electrical output (such a

pin pair is called a cluster). A permutation is a route between the two clusters

of a two-point segment. As illustrated in Figure 4.4, cluster A has a pair of

equivalent pins A1 and A2, cluster B has a pair of equivalent pins B1 and

B2. Between the two clusters, there are four possible permutations p1, p2, p3

and p4. These four permutations have the same electrical output, but p2 has

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 60

A

B

C

D

E

A

B

A

C

D

E

A

D

Segment 1

Segment 2

Segment 3

Segment 4

A MST for a 5−terminal net

Figure 4.3: A 5-point net is decomposed into four 2-point segments

the minimum cost.

A1

A2
B1

B2

Cluster B

Cluster A

p2

 p3

p4

p1

Standard Cell Rows

Figure 4.4: Four Possible Permutations Between Cluster A and Cluster B

3. A low-cost path in the cost array, in which each element represents a possible

routing position, is found for each permutation by evaluating a subset of the

two-bend routes [AN87] between each pin pair. The process of constructing

two-bend routes is illustrated in Figure 4.5.

Given a two-point segment (provided the coordinates of two points are left-

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 61

2-bend Algorithm
1. Start
2. For (row=0; row < R; row++)

wire1 start=(0,0); wire1 end=(0,row);
wire2 start=(0,row); wire2 end=(C,row);
wire3 start=(C,row); wire3 end=(C,R);

3. End For loop 1
4. For (col=0; col < C; col++)

wire1 start=(0,0); wire1 end=(col,0);
wire2 start=(col,0); wire2 end=(col,R);
wire3 start=(col,R); wire3 end=(C,R);

5. End For loop 2
6. End

Figure 4.5: 2-bend Algorithm to find routes between point (0,0) and (C,R)

most pin P (0, 0) and right-most pin P (C, R)), each two-bend connection nor-

mally consists of 3 wire segments combined together: wire1, wire2 and wire3.

These wire segments can be determined by loop1 and loop2. Loop1 generates

the principally horizontal routes (bend only at the left and right extremes).

Principally horizontal routes are first evaluated since they make the best use

of the channels. When wire1 has the same row number as point P (0, 0), its

start position and end position are (0,0). Wire1 is actually a point, therefore

only wire2 and wire3 exist in this two-bend wire. Loop2 generates the prin-

cipally vertical routes (bend only at the upper and lower extremes). When

wire1 has the same column number as point P (0, 0), it is a point and there

are only two wire segments in this two-bend wire. The complexity of this

algorithm is O (Max(C, R)), where C is the number of columns and R is the

number of rows.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 62

Figure 4.6 gives an example of the result of constructing all possible 2-bend

routes between two pins in a 2×3 grid graph. Figure 4.6 (a) shows the prin-

cipally horizontal routes, and Figure 4.6 (b) shows the principally vertical

routes.

(a) Principally horizontal routes

(b) Principally vertical routes

Figure 4.6: (a)Routes Generated by Loop 1 (b)Routes Generated by Loop 2

4. All 2-bend routes produced for each segment are traced back. They are com-

bined together to form the final connection of the MST tree which connects

all pins in the netlist.

5. The wire is put into the cost array such that array elements are updated and

later wires can take the cost constrains into account.

4.1.3 Experimental Results

Table 4.1 lists the wire lengths and execution time yielded by SHGR. It is tested

on MCNC benchmarks from the small circuits such as fract and struct to large

circuits such as avq.small and avq.large.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 63

Circuit Nnets WireLength (µ) time (s)

fract 147 21822 0.1
struct 1920 448438 2.2
prim1 1133 891798 4.5
ind1 2478 1650600 130

prim2 3817 4201487 150
bio 5742 6327872 326
ind2 13419 50216723 1411
ind3 21938 93136107 1734

avq.small 22124 7739168 12679
avq.large 25384 8477116 12639

Table 4.1: Wirelength and time of SHGR

Circuit Placement Tool SHGR Improvement (%)

fract 33187 21822 34.2 %
struct 494832 448438 9.3 %
prim1 930533 891798 4.2 %
ind1 2130137 1650600 22.5 %
prim2 6192874 4201487 32.1 %
bio 6555340 6327872 3.5 %
ind2 54470116 50216723 7.8 %
ind3 100886561 93136107 7.7 %

avq.small 9646996 8023029 15.2 %
avq.large 11023017 8477116 23.1 %
average 19236359 17311113 16.0 %

Table 4.2: Wire length comparison between the placement CAD tool and the SHGR

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 64

��������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

������
�
�
���
0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

prim2 bio ind2 ind3 avq.s

W
ir

el
en

gt
h

Circuit

Wirelength Comparison of SHGR and HPWL

SHGR

HPWL

avq.l

Figure 4.7: Wirelength comparison of SHGR and HPWL

Table 4.2 and Figure 4.7 show that SHGR achieves an improvement of 16% over

wirelength yielded by placement results based on HPWL. As discussed in chapter

2, HPWL method underestimates the actual wirelength. However, SHGR still

produces shorter wirelength than HPWL based global router, since it considers the

position of equivalent pins. The pin can be connected through its corresponding

equivalent pin on the other side of the cell. Therefore the distance is possibly

shorter than the path routed by HPWL, which only connects the pin through the

actually pin location.

From the experimental results, it can be concluded that SHGR produces better

solutions than the placement based on HPWL method. The shorter wirelength

yielded and reasonable CPU running time make it an efficient and useful global

router for VLSI circuits from small sized to large sized problem.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 65

4.2 A Hierarchical Heuristic Global Router (HHGR)

As the complexity of a VLSI circuit increases, a hierarchical improvement approach

becomes essential to shorten the design process. As stated in section 2.1, circuit

clustering plays a fundamental role in hierarchical designs. Identifying highly con-

nected components in the netlist can significantly reduce the complexity of the

circuit and improve the design time and quality.

Cluster

Cluster

 De−cluster

 De−cluster

a supercell

Level 2

L evel 1

Flat level

1 2 3

4

5

6

7

8 9

Figure 4.8: A 3 level cluster seed placement

A Hierarchical Heuristic Global Router (HHGR) is implemented in this thesis

which is based on the Sequential Heuristic Global Routing technique. The main

objective is to find the minimum cost path by enumerating a set of possible 2-bend

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 66

routes. However, HHGR routes a subset of wires at different hierarchical levels. For

example, as illustrated in Figure 4.8, the number of hierarchical levels used is 3. At

level3, there are 4 wires: wire1, wire2, wire3 and wire4. HHGR only needs to find

the minimum cost paths for these 4 wires. Next at level2, only wire5 and wire6

need to be routed. Finally at the flat level, the same routing process continues,

and the remaining wires (wire7, wire8 and wire9) are routed by HHGR.

4.2.1 HHGR Implementation

Hierarchical Heuristic Algorithm
1. Start
2. Circuit clustering;
3. For (level=N; level ≥ 0; level−−)
4. While (wire queue not empty)
5. If (all pins in one super cell)

Wire is hold up to next level;
6. Else if (only some pins in one super cell)

Decompose wire into several segments;
Use SHGR to route the segments within the current level;
Other wire segments are hold up to the next level;

7. Else
Use SHGR to route wire;

8. End If
9. End While
10. End For loop
11. End

Figure 4.9: Hierarchical heuristic algorithm

The pseudo-code of HHGR is presented in Figure 4.9. Following hierarchi-

cal placement, N hierarchical levels are obtained using the multi-level clustering

technique. In a top-down direction, at each level, HHGR retrieves wires from a

wire queue. If the locations of all pins are in one super cell, this wire will be passed

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 67

Segment 2

Supercell 1 Supercell 2

Supercell 4Supercell 3

Supercell 5

p1 p2

p3 p4 p5

Hierarchical Level i

Segment 1

Segment 3

Figure 4.10: A net is cut into segments

to the next lower level. If only some pins are in one super cell, the wire will be cut

into several segments. Some segments are held until the next level while others are

routed by SHGR at the current level.

Figure 4.10 shows an example of cutting a 5-pin wire into 3 segments at leveli.

There are 5 super cells at the current hierarchical level i. Two pins p1 and p2 are

in super-cell3, and pins p3, p4 and p5 are in super-cell5. Therefore, the wire is cut

into three segments: S1 : {p1, p2}, S2 : {p2, p3} and S3 : {p3, p4, p5}. Pins in S1

and S3 are located in their own super cells. Thus these two segments are passed to

the next leveli−1, while SHGR is used to find the minimum cost path for S2.

At leveli−1, the same process continues until the flat level representation is

reached. At the flat level all wires are routed and the minimum cost 2-bend routes

are found for each wire until the wire queue is empty.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 68

Circuit Heuristic Hierarchical Improvement(%)

prim1 4.5 0.3 94 %
ind1 130 2 83 %

prim2 150 6 96 %
bio 326 30 91 %
ind2 1411 62 95 %
ind3 1734 108 91 %

avq.small 12679 2565 80 %
avq.large 12639 2243 82 %
average 3634.2 423.7 89 %

Table 4.3: CPU Time comparison between SHGR and HHGR

4.2.2 Experimental Results

Table 4.3 and Figure 4.11 compares HHGR with SHGR (3 hierarchical levels) in

terms of CPU processing time.

Circuit Heuristic Hierarchical Improvement (%)

prim1 891798 1013446 -13.6 %
ind1 1650600 1929884 -16.9 %
prim2 4201487 4418238 -5.2 %
bio 6327872 6593101 -4.2 %
ind2 50216723 50032892 0.3 %
ind3 93136107 98364933 -5.6 %
avq.s 7739168 9519822 -23.0 %
avq.l 8477116 9836109 -16.0 %

average 20626434 22713553 -9.2 %

Table 4.4: Wirelength comparison between SHGR and HHGR

For some small MCNC benchmarks such as fract and struct, since the CPU

times used by both routers are very small, they are not listed in this section. As

seen in Table 4.3, obviously HHGR is faster than SHGR. The CPU time is reduced

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 69

���������� ���
���
���
��� �����

�����
���
��� ���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�

�

�

�

�

�

�

�

�

�

�
������������

0

2000

4000

6000

8000

10000

12000

14000

bio ind2 ind3 avq.s

W
ir

el
en

gt
h

Circuit

CPU time Comparison of SHGR and HHGR

HHGR

SHGR

avq.l

Figure 4.11: CPU time comparison of SHGR and HHGR

by 89% on average. Since the construction of MSTs in SHGR has the largest

computation time in the heuristic, by cutting a large net into several small ones

and routing them at different levels can dramatically shorten the execution time.

However, wirelengths produced by HHGR are on average 9.2% longer than

SHGR, as seen in Table 4.4 and Figure 4.12. Since constructing MSTs for different

portions of a net can not guarantee the same optimal solution as that obtained by

constructing one MST for the whole net.

Although HHGR degrades the solution quality by producing longer wirelength,

it is still a useful global router due to the short CPU time. In some cases, circuits are

not able to be routed because of bad placement output. Therefore it is important

to predict the routability of a circuit in a very short time before the routing phases

starts. HHGR is suitable as an estimation models since it give a reasonable routing

solution in a short time. Thus it can be used as a pre-processing tool during

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 70

������ ���
���
���
���
���
���

���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�

�

�

�

�

�

�

�

�

�

�

������������

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

9e+07

1e+08

bio ind2 ind3 avq.s

W
ir

el
en

gt
h

Circuit

Wirelength Comparison of SHGR and HHGR

SHGR

HHGR

avq.l

Figure 4.12: Wirelength comparison of SHGR and HHGR

hierarchical placement to provide routing estimation information.

4.3 An ILP Based Global Router (ILP-GR)

An ILP Based Global Router (ILP-GR) is proposed here to avoid the net-ordering

problem that other sequential routers usually suffer from. Furthermore, ILP-GR

produces shorter wire length by constructing Minimum Rectilinear Steiner Trees

(MRST).

An ILP-GR is implemented as follows: First, a set of MRSTs are generated and

a binary variable is assigned to each tree. Next, an Integer Linear Programming

(ILP) model is formulated with all the necessary constraints. To further reduce

computational complexity, integer constraints are relaxed and the problem is solved

as a Linear Programming (LP) model. Finally, the relaxed LP problem is solved

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 71

by using an LP solver from ILOG (CPLEX) [SA01].

4.3.1 Minimal Rectilinear Steiner Tree (MRST)

The Minimum Steiner Tree problem can be defined as follows: Given a set P of n

points, find a set S of Steiner points such that the Minimum Spanning Tree (MST)

over P ∪ S has minimum cost.

In most cases, since rectilinear geometry is used for circuit layout, the Minimum

Rectilinear Steiner Tree (MRST) is the most widely accepted connection pattern.

Usually it can be derived from a Minimum Spanning Tree (MST). Hwang [Hwan76]

has shown that the ratio of the cost of an MST to that of an optimal MRST is no

greater than 3
2
. Figure 4.13 shows an MST and an MRST for the same four-pin

net.

(a) (b)

Pa

Pb

Pc

Pd

Pa

Pb

Pc

Pd

Steiner points

Figure 4.13: (a)A Minimum Spanning Tree (MST) for a fixed net. (b)A Minimum
Rectilinear Steiner Tree (MRST) for a fixed net.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 72

4.3.1.1 Construction of Minimal Rectilinear Steiner Trees

For each given net, provided the maximum number of Steiner points is Max S,

a recursive function Find SteinerTree() is developed to generate the MRST. The

possible Steiner points are added to the point set iteratively until there are no more

available Steiner points left. The algorithm is illustrated in Figure 4.14.

Steiner Tree Generation
1. Start
1. Read subgrid information;
3. while (S ≤ Max S)

Find SteinerTree(Row, Col, S, S+P);
S=S+1;

4. End While
5. End

Figure 4.14: Algorithm to find a set of Steiner trees

The Find SteinerTree() procedure visits all the candidate Steiner points s in

set S and all the pins in set P . Its main objective is to find a spanning tree in

the point set P ∪ S. As illustrated in Figure 4.15, it uses the getNextSteinPoint()

procedure to compute the next available Steiner point s in set S. If Steiner points

are available, the recursive loop continues. Otherwise, the function Find MST()

takes the point set P ∪S as input and returns its corresponded Minimum Spanning

tree. The complexity of the Find SteinerTree() is O ((P + S)2), and the complexity

of finding a set of Steiner Trees is O (Max S(P + S)2).

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 73

Find SteinerTree()
1. Start
2. S=S-1;
3. While (get nextSteinPoint(currRow,currCol))
4. If (S > 0)

Find SteinerTree(currRow, currCol, S, S+P);
5. Else

Found A Tree=do MinTree(S+P);
If (Found A Tree)

add to TreeSet();
Find the minimum cost path;

End If
6. End If

End While
7. End

Figure 4.15: Function Find SteinerTree()

4.3.1.2 Size of the Steiner Tree Set

The number of Steiner trees generated for each net depends on terminals in the

net. It is impossible to include all the possible Steiner trees for point set P ∪

S. Generating all possible Steiner trees for a net results in a large number of

variables and constraints, which enlarges the optimization problem size. Moreover,

the problem of finding a Steiner tree is NP-hard and consequently computation

time increases exponentially as the size of the point set P ∪ S increases [Gare79].

Practically, only a subset of the whole Steiner tree set needs to be explored.

Finding an appropriate size of the Steiner tree subset is critical and therefore two

approaches have been investigated. The first (Steiner ILP1) attempts to construct

trees proportional to the terminals in the net. The second approach (Steiner ILP2)

is more conservative where only 10 trees are generated for all types of nets.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 74

Table 4.5 highlights the number of nets and their composition in terms of number

of terminals for MCNC benchmark circuits. For fract circuit the total number

of trees generated by the approach Steiner ILP1 is: (10 × 70) + (20 × 44) +

(30 × 14) + (40 × 13) + (50 × 6) = 2820. On the other hand the number of

trees generated by the approach Steiner ILP2 is limited to 1470. Table 4.6 shows

the corresponding number of trees generated for all circuits. Obviously, the tree

set generated by Steiner ILP1 is much larger than Steiner ILP2 but has higher

potential of achieving shorter wirelength. However, the main disadvantage is the

high computation time. It is clear from Table 4.6 that although the small tree

set degrades the solution quality, the running time to generate Steiner Trees is

shortened by almost 50%. Therefore, considering the time and quality factor, the

approach Steiner ILP2 is selected to generate the Steiner Trees in this thesis. The

number of trees is fixed as 10 since experimental results show tree subset in this

size produces good solution qualities in a reasonable time.

Circuit Nnets # 2-terminal # 3-terminal # 4-terminal # 5-terminal # others

fract 147 70 44 14 13 6
struct 1920 737 1151 0 0 32
prim1 876 463 235 70 27 81
ind1 2478 1601 401 150 78 248

prim2 3136 1942 365 203 192 434
bio 5742 3998 870 427 184 263
ind2 13419 9585 1851 294 447 1242
ind3 21938 12438 4973 1923 1518 1086

avq.small 22124 13654 6136 1478 712 144
avq.large 25384 16914 6136 1478 712 144

Table 4.5: Number of pins in the nets for MCNC benchmark circuits

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 75

Circuit Approach Steiner ILP1 Approach Steiner ILP2
Ntrees Wirelength(µ) Time(s) Ntrees Wirelength(µ) Time(s)

fract 2820 21475 0.7 1470 21840 0.3
struct 30390 398771 32 19200 402382 5.7
prim1 15560 807580 60 8760 830365 9.1
ind1 44050 1474582 398 24780 1509809 169

prim2 62190 4087895 779 31360 4151385 197
bio 90700 5214987 2498 57420 5266555 488
ind2 221670 42755375 6287 134190 45032892 2175
ind3 396550 90467584 7259 1219380 92599062 3042

avq.small 339820 6938163 28573 221240 7085894 15271
avq.large 371880 7627771 29550 253840 7762927 15423

Table 4.6: Comparison of Steiner ILP1/Steiner ILP2 to generate Steiner Trees

4.3.2 ILP Formulation

The Integer Linear Programming (ILP) formulation of the global routing problem

is adapted and modified from the work of [Vann91]. Two ILP models are formu-

lated in this thesis which are the “net connection model” and the “channel density

model” respectively. A CPLEX interface to the current placement tool (SC3) is

implemented to automate the process.

4.3.2.1 Net Connection Model

Wire length is an important factor to evaluate the performance of a global router.

The objective of the net connection ILP model is to maximize the net connection

benefit such that the total wire length is shortened. Let N be the set of all nets,

for each net i ∈ N , there are several possible connections, where each is a tree in

a set of rectilinear Steiner trees T 1
i , . . . , T k

i . A variable yi is associated with each

tree which connects a net. It is set to “1” if that particular tree is used, otherwise

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 76

it is set to “0”. However, only one tree is finally selected to connect this net. The

selection of one and only one routing tree for this net is imposed by the following

constraint:

∑

yj∈Tk

yj = 1, k = 1, 2, . . . |N |. (4.2)

A (0,1) matrix [aij] is used to record all possible trees to connect nets. Given a

grid graph with m arcs, the number of rows is set to m. The ith row represents the

corresponding ith arc in the grid graph and each column corresponding to different

ways of connecting a net. The aij element in matrix A can be expressed as:

aij =





1 if tree j is constructed by arc i

0 otherwise
(4.3)

The main objective of ILP-GR is to find the possible connection patterns to

connect all nets without violating the resource capacity constraints. Let n be the

number of all generated Steiner Trees. For each net, assume the capacity on the

edge ei is ci, the net connection ILP formulation can be expressed as:

Maximize
n∑

j=1

bjyj. (4.4)

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 77

subject to

∑

yj∈Tk

yj = 1, k = 1, 2, . . . |N | (ROUTING)

∑
aijyj ≤ ci, 1 = 1, 2, . . .m

yj ∈ {0, 1}

Where bj is the benefit of connecting a net by tree yj. Maximizing the net

connection benefits eventually leads to minimum wirelength which in place yields

higher performance chips. The value for bj can be determined by wirelength. Let

MaxWirelength be the maximum wirelength for all trees in all nets and bj defined

as:

bj = (MaxWirelength + 1) − (wirelength of tree j) (4.5)

Figure 4.16 shows a simple global routing formulation example. The circuit

has 3 modules and 2 nets. Net1 contains modules 1, 2 and 3, and Net2 contains

modules 1 and 2. There are 7 edges (e1, e2 e3, e4, e5, e6 and e7) with capacities (c1,

c2, c3, c4, c5, c6 and c7).

Net1 can be routed by four trees:

Tree1: (y1) is connected by edges e1, e2, e3, e6, wirelength is 4;

Tree2: (y2) is connected by edges e2, e5, e7, wirelength is 3;

Tree3: (y3) is connected by edges e2, e4, e6, wirelength is 3;

Tree4: (y4) is connected by edges e1, e3, e4, e6, wirelength is 4.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 78

Module 1 Module 2

Module 3

(Capacity c2)e2 e5 (Capacity c5)

(Capacity c7)
e7

(Capacity c1)

e1

e4 (Capacity c4)

e3 e6
(Capacity c6)(Capacity c3)

Tree#1(y1) Tree#2(y2)

Figure 4.16: Example of the net connection model

Net2 can be routed by two trees:

Tree1: (y5) is connected by edges e2, wirelength is 1;

Tree2: (y6) is connected by edges e1, e3, e4, wirelength is 3;

The values for bj can be calculated by using equation 4.5. Thus the net connec-

tion model can be formulated as:

Max y1 + 2y2 + 2y3 + y4 + 4y5 + 2y6

subject to:

y1 + y2 + y3 + y4 ≤ 1

y5 + y6 ≤ 1

y1 + y4 + y6 ≤ c1

y1 + y2 + y3 + y5 ≤ c2

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 79

y1 + y4 + y6 ≤ c3

y3 + y4 + y6 ≤ c4

y2 ≤ c5

y1 + y3 + y4 ≤ c6

y2 ≤ c7

yj ∈ {0, 1}

4.3.2.2 Channel Density Model

For a standard cell circuit, the width of the chip is already determined by the

maximum of the row widths, therefore the area of the chip is minimized by reducing

the area between rows [Sher99]. As previously stated in section 2.3, such routing

areas are measured by the channel density. The objective of the channel density

ILP model is to minimize the total channel density such that the produced chip

area is optimal.

Let C be the number of channels and the channel densities be z1, . . . , zC respec-

tively which are integers in (0, D). Thus the objective function of ILP formulation

can be expressed as:

Minimize
C∑

k=1

zk (4.6)

For each net there are several possible connection trees, the selection of one

and only one routing tree for it is same as the equation 4.2 used in net connection

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 80

model:

∑

yj∈Tk

yj = 1, k = 1, 2, . . . |N |. (4.7)

A (0,1) matrix [aij] is used to record all possible trees vertically passing through a

position in the cost array. Given m arcs, the number of rows of matrix [aij] is set to

m and the value of each arc is calculated in the cost array. The ith row represents

the corresponding ith arc in the grid graph and each column corresponding to

different ways of connecting a net. The aij element in matrix A can be expressed

as:

aij =





1 if tree j is constructed by arc i

0 otherwise
(4.8)

Similar to the matrix [aij], a (0,1) matrix [bij] is used to record all possible trees

which may use one of the tracks. Given the number of track arcs is h, The bij

element in matrix B can be expressed as:

bij =





1 if tree j is constructed by track arc i

0 otherwise
(4.9)

Therefore, the formulation to minimize the total channel density can be ex-

pressed as:

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 81

Minimize
C∑

k=1

zk (4.10)

subject to

∑

yj∈Tk

yj = 1, k = 1, 2, . . . |N | (ROUTING)

∑
aijyj ≤ ci, i = 1, 2, . . .m

∑
bijyj ≤ zk, i = 1, 2, . . . h

(or
∑

bijyj − zk ≤ 0, i = 1, 2, . . . h)

yj ∈ {0, 1}

0 ≤ zk ≤ D, zk is an integer

To illustrate the channel density model, as seen in Figure 4.17, modules 1 and 2

are placed in the first row, and module 3 is placed in the second row. Edges e2 and

e5 form the channel1 and edges e3 and e6 form the channel2. The two nets Net1,

Net2 and six trees y1, y2, y3, y4, y5 and y6 are similar to those in Figure 4.16.

Assume the number of tracks in each channel (z1 and z2) can not exceed 2, the

channel density model to minimize the number of tracks can be expressed as:

Min z1 + z2

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 82

Module 1 Module 2

Module 3

(Capacity c7)
e7

(Capacity c1)

e1

e4 (Capacity c4)

e3 e6

Tree#1(y1) Tree#2(y2)

e2 e5

(tracks z2) (tracks z2)

(tracks z1) (tracks z1)

Channel 1

Channel 2

Figure 4.17: Example of the channel density model

subject to:

y1 + y2 + y3 + y4 ≤ 1

y5 + y6 ≤ 1

y1 + y4 + y6 ≤ c1

y3 + y4 + y6 ≤ c4

y2 ≤ c7

y1 + y2 + y3 + y5 ≤ z1

y1 + y4 + y6 ≤ z2

y2 ≤ z1

y1 + y3 + y4 ≤ z2

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 83

yj ∈ {0, 1}

0 ≤ z1 ≤ 2, z1 is an integer

0 ≤ z2 ≤ 2, z2 is an integer

4.3.2.3 Experimental Results

The objective of Model1 (net connection model) is to produce the shortest wire-

length by maximizing the net connection benefit. However in order to get the

shortest wirelength, the yielded chip area is expected to be suboptimal. On the

other hand, Model2 (channel density model) minimizes the total channel density

and chip area, while producing wirelengths that are suboptimal.

As seen in Table 4.7, the wirelength produced by Model2 (channel density

model) is longer than Model1 (net connection model). It shows that the net connec-

tion model tends to choose routes which yield shorter wirelengths instead of smaller

channel densities. Table 4.8 compares the total channel density produced by Model1

and Model2. Obviously, Model2 (channel density model) produces smaller channel

density.

Circuit Model 1 Model 2 Difference(%)

prim1 830365 841537 1.34 %
ind1 1509809 1520373 0.7 %
prim2 4151835 4188721 0.89 %
bio 5266555 5367362 1.91 %
ind2 45032892 45524948 1.09 %
ind3 92599062 92643742 0.05 %

avq.small 7085894 7234845 2.10 %
avq.large 7762927 7873837 1.43 %

Table 4.7: Comparison of wire length between Model 1 and Model 2

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 84

Circuit Model 1 Model 2 Difference(%)

prim1 178 174 2.30 %
ind1 454 450 0.89 %

prim2 1098 1082 1.46 %
bio 592 582 1.72 %
ind2 1442 1426 1.11 %
ind3 2579 2553 1.02 %

avq.small 1372 1358 1.03 %
avq.large 1704 1687 1.00 %

Table 4.8: Comparison of the number of tracks between Model 1 and Model 2

The net connection ILP model and channel density ILP model emphasis different

objectives for the global routing problem. The selection of ILP models depends

on the performance requirements given in the specification. If the wirelength is

the main factor to be evaluated, the net connection ILP model is used, otherwise

the channel density ILP model is selected. In the future, the two models can

be combined together as a single multi-objective ILP model. The combined ILP

formulation targets at finding optimal solutions that seek to shorten the wirelength

and minimize the channel density at the same time.

4.3.3 Linear Relaxation

The CPU time required to solve the ILP problem increases exponentially as the

problem increases in size since it is NP-hard. In order to reduce the computation

complexity, the formulated ILP problem can be relaxed as a Linear Programming

(LP) problem. The LP relaxation is performed by replacing integer constraints on

the variable with linear boundary constraints.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 85

4.3.3.1 Relaxed Net Connection Model

Based on definition 4.4, by removing integer constraints on variable yj, the relaxed

net connection formulation is defined as:

Maximize
n∑

j=1

bjyj. (4.11)

subject to:

∑

yj∈Tk

yj = 1, k = 1, 2, . . . |N | (ROUTING)

∑
aijyj ≤ ci, 1 = 1, 2, . . .m

0 ≤ yj ≤ 1

For the global routing problem, each yj is a non-negative variable, therefore the

constraint equation 0 ≤ y ≤ 1 is redundant since it is enforced by the constraint

∑
yj = 1. To further reduce the number of constraints, the LP problem can be

expressed as:

Maximize
n∑

j=1

bjyj. (4.12)

subject to:

∑

yj∈Tk

yj = 1, k = 1, 2, . . . |N | (ROUTING)

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 86

∑
aijyj ≤ ci, 1 = 1, 2, . . .m

0 ≤ yj

4.3.3.2 Relaxed Channel Density Model

Similarly, by replacing integer constraints on variables yj and zk with linear bound-

ary constraints, based on definition 4.10, the relaxed channel density formulation

is defined as:

Minimize
C∑

k=1

zk (4.13)

subject to

∑

yj∈Tk

yj = 1, k = 1, 2, . . . |N | (ROUTING)

∑
aijyj ≤ ci, i = 1, 2, . . .m

∑
bijyj − zk ≤ 0, i = 1, 2, . . . h

0 ≤ yj

0 ≤ zk ≤ D

4.3.3.3 Experimental Results

Solutions of the relaxed LP models may be non-integral. The fractional solution

yj for each net represents how much of tree yj is used to route the net. These

fractional values have no physical meaning, and therefore the yj for each net has to

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 87

be rounded to an integer value. If the difference between ILP and its relaxed LP

solution is small, the rounded LP solution can be used to replace the ILP solution.

Circuit ILP formulation LP Relaxation
value Wirelength(µ) Time(s) Wirelength(µ) Time(s)

prim1 830365 0.5 830365 0.4
ind1 1509809 0.6 1509809 0.4
bio 4151835 1.2 4151835 0.8

prim2 5266555 8.1 5266555 6.5
ind2 45032892 28.1 45032892 21.6
ind3 92599062 78.2 92599062 56.3

avq.small 7085894 142.1 7085894 113.0
avq.large 7762927 156.3 7762927 121.3

Table 4.9: Comparison of net conneciton ILP/LP models

As seen in Table 4.9, the produced wirelengths of the net connection model are

similar for both the ILP and the relaxed LP version. In Table 4.10, the total channel

densities of the LP model are smaller than the ILP model and they are non-integral.

However, the difference is small and the non-integral solution can be rounded to an

integer solution. In addition, as seen in both Table 4.9 and Table 4.10, the CPU

time is largely reduced by relaxing the ILP models to LP models. Therefore, in this

thesis relaxed LP formulations are used to solve the global routing problem since

they reduce the CPU running time without degrading the solution quality.

4.3.4 Parameter Tuning

The ILP problem and the relaxed LP problem can be solved by using different

parameters within the CPLEX solver. The selection of an appropriate set of pa-

rameters has an effect on CPU time used by the solver. For the global routing

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 88

Circuit ILP formulation LP Relaxation
tracks Time(s) tracks Time(s)

prim1 174 2.14 173.2 0.4
ind1 450 6.60 448.3 0.4
bio 1082 21.2 1080.4 10.7

prim2 582 28.3 581.1 16.3
ind2 1426 72.9 1424.8 33.3
ind3 2553 278.2 2548.9 152.5

avq.small 1358 345.1 1355.7 213.0
avq.large 1687 353.7 1685.2 222.1

Table 4.10: Comparison of channel density ILP/LP models

problem, the Mixed Integer Optimizer is used for the ILP formulation. Whereas

the Dual Simplex Optimizer, the Primal Simplex Optimizer and Barrier Optimizer

are used for the LP formulation.

4.3.4.1 Mixed Integer Optimizer

The Mixed Integer Optimizer can be used to optimize the ILP global routing prob-

lem which contains integer variables. This optimizer solves a series of subproblems

by exploiting a branch & cut algorithm. To manage these subproblems efficiently,

ILOG CPLEX builds a tree in which each subproblem is a node. The root of the

tree is an LP relaxation of the original ILP problem.

The Mixed Integer Optimizer will find cuts when the solution has one or more

fractional variables. Cuts are constraints that cut away areas of the feasible region

of the relaxation containing fractional solutions. If one or more fractional variables

still exist after cuts are added, CPLEX branches on a fractional variable to generate

two new subproblems, each with more restrictive bounds on the branching variable.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 89

The Mixed Integer Optimizer repeats the process until an all-integer solution is

found.

Several parameters have to be adjusted to find a feasible solution:

• Cutoff: CPLEX cuts off nodes when the value of the objective function

associated with the subproblem at that node is worse than the cutoff value.

The lowercutoff (when maximizing the objective function) is set to 100000

in this thesis.

• Emphasis: This parameter specifies whether CPLEX should emphasize fea-

sibility or optimality as it solve the problem. If emphasis is set to “0”, CPLEX

tends to find a proved optimal solution with less considering the processing

time. Otherwise, with a setting of “1”, the first feasible but not a proved

optimal solution is found.

• Backtrack: If the optimizer emphasis on proving optimality, backtrack is set

to find feasible solutions more frequently. It is set to “1” in this thesis.

• Node Select Strategy: This parameter sets the rule for selecting the next

node to process when backtracking. It is set to “0” to choose the most recently

created node; set to “1” to choose the node with the best objective function

for the associated LP relaxation; set to “2” to select the best estimate of the

integer objective value that would be obtained from a node once all integer

in-feasibilities are removed. In this thesis, node selection strategy is set to

“2”.

• Variable Selection Strategy: This parameter sets the rule for selecting

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 90

the branching variable at the node which has been selected for branching.

The maximum in-feasibility rule chooses the variable with the largest frac-

tional value while the minimum in-feasibility rule chooses the variable with

the smallest fractional rule. It can set to values as follows: (i) value “-1”

leads more quickly to a first integer feasible solution; (ii) value “0” selects the

best rule based on the problem and its progress; (iii) value “1” forces larger

changes in the tree; (iv) value “2” is derived for pseudo-shadow prices; (v)

value “3” is a computationally less-intensive form of pseudo costs. It is set to

“2” in this thesis.

• Starting Algorithm: Determines the algorithm to be used to solve the

initial relaxation of the ILP problem. It can be set to values as follows: (i)

set to “1” to select Primal Simplex; (ii) set to “2” to select Dual Simplex;

(iii) set to “3” to select Network optimizer; (iv) set to “4” to select Barrier

with crossover (v) set to “5” to select Barrier without crossover.

4.3.4.2 Optimizers for LP Problem

ILOG CPLEX offers several different optimizers for LP problems, they are listed

as follows:

• Dual Simplex Optimizer: A linear programming problem can be stated

in primal or dual form, if the dual problem has an optimal solution, it has

a direct relationship to an optimal solution of the primal model. CPLEX

Dual Simplex Optimizer uses this relationship to produce an optimal solution

of the given LP problem. Dual simplex method is the default method for

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 91

CPLEX to solve an LP problem.

• Primal Simplex Optimizer: Using Primal Simplex Optimizer is also an

effective way to solve linear programming problems. But primal simplex

method has been surpassed by dual simplex method at optimizing a linear pro-

gramming due to recent advances in the dual simplex method. However, this

optimizer is still used, since it works better on some certain problems where

the number of variables are much larger than the number of constraints. It

can also be used to give solutions to those problems which can not be solved

by dual simplex method.

• Primal-Dual Barrier Optimizer: Primal-Dual Barrier Optimizer works

efficiently in large and sparse problems (for example, more than 1000 rows or

columns, relatively few nonzeros per column). It exploits a primal-dual loga-

rithmic barrier algorithm to generate a sequence of strictly positive solutions

to a problem.

4.3.4.3 Experimental Results

The ILP formulations (equation 4.4 and equation 4.10) and their relaxed ver-

sions (equation 4.12 and equation 4.13) contain a larger number of constraints

than variables, simplex based algorithms are slow in solving such problems(skewed

problems). Compared with Vannelli’s work [Vann91], which adopts interior point

method, ILP-GR uses the built-in optimizers of CPLEX to automatically solve ILP

problems. It is easy to implement and also produces promising solutions. In this

thesis, two CPLEX optimizers: the Dual Simplex Optimizer and the Primal-Dual

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 92

Barrier Optimizer are utilized to solve relaxed LP models.

Circuit Dual Simplex Primal-Dual Barrier
time(sec) time(sec)

prim1 0.37 0.37
ind1 0.41 0.40
prim2 0.51 0.78
bio 7.64 6.51
ind2 28.1 21.6
ind3 57.9 56.3

avq.small 128.1 113.0
avq.large 131.5 121.3

Table 4.11: Comparison of Dual Simplex and Primal-Dual Barrier Optimizers

In Table 4.11, these two optimizers are compared in terms of the running time

(use the net connection model). The Primal-Dual Barrier Optimizer is faster on

most circuits especially the larger circuits. From the experimental results, it can be

concluded that Primal-Dual Barrier optimizer is suitable to solve skewed problems.

Circuit SHGR ILP-GR Improvement(%)

fract 21822 21187 2.9 %
struct 448438 434832 3.0 %
prim1 891798 830365 6.9 %
ind1 1650600 1509809 8.5 %

prim2 4201487 4151385 1.2 %
bio 6327872 5266555 16.7 %
ind2 50216723 45032892 10.3 %
ind3 93136107 92599062 0.6 %
avq.s 7739168 7085894 8.4 %
avq.l 8477116 7762927 8.4 %

average 17311113 16469490 6.7 %

Table 4.12: Wirelength comparison between SHGR and ILP-GR

Table 4.12 and Figure 4.18 compare SHGR with ILP-GR (use the net connection

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 93

model) in terms of the produced wirelength. As seen in Table 4.12, ILP-GR achieves

an improvement by 6.7% over the wirelength yielded by SHGR. It proves that by

constructing MSRTs to connect nets and being independent on the net ordering,

the ILP based approach can improve the solution qualities of the global routing

problem. ILP-GR provides the optimal bound for other global routers evaluating

their own solutions.

���
���
���
��� ���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

	�	�	
�

4.5e+07

5e+07

5.5e+07

6e+07

6.5e+07

7e+07

7.5e+07

8e+07

8.5e+07

9e+07

9.5e+07

ind2 ind3 avq.s

W
ir

el
en

gt
h

Circuit

Wirelength Comparison of SHGR and ILP−GR

SHGR

ILP−GR

avq.l

Figure 4.18: Wirelength comparison of SHGR and ILP-GR

However, in order to obtain shorter wirelength ILP-GR consumes longer CPU

time to construct MRSTs and solve formulated ILP problems. As seen in Table

4.13 and Figure 4.19, ILP-GR is compared with SHGR in terms of the CPU time.

Obviously, ILP-GR increases the CPU time by an average of 26.8%, since MRST

construction and ILP problem are both time-consuming processes. This limits the

application of ILP-GR on large sized circuits. Therefore, as circuits increase in size,

the selection of ILP-GR should be avoided.

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 94

Circuit SHGR ILP-GR Improvement(%)

fract 0.1 0.3 -66.7 %
struct 2.2 5.7 -61.4 %
prim1 4.5 9.4 -52.1 %
ind1 130 169 -23.1 %
prim2 150 198 -10.7 %
bio 326 489 -33.3 %
ind2 1411 2192 -35.6 %
ind3 1734 3094 -56.1 %
avq.s 12679 15289 -17.1 %
avq.l 12639 15444 -18.2 %

average 2908 3689 -26.8 %

Table 4.13: CPU time comparison of SHGR and ILP-GR

4.4 Summary

In this chapter, a Sequential Heuristic Global Router (SHGR), a Hierarchical

Heuristic Global Router (HHGR) and an Integer Linear Programming (ILP) based

Global Router (ILP-GR) were designed and implemented.

The main objective of SHGR was to decompose a multi-point wire into two-

point segments using a Minimum Spanning Tree (MST) algorithm and find the

minimum cost paths by enumerating a set of possible 2-bend routes. The standard

cell layout features are considered in this global router. It takes advantage of the

electrical equivalent pins and channels to find the optimal routes. HHGR routes the

nets at different hierarchical levels and can be considered as a pre-processing model

that provides good routing estimations in reasonable time. The ILP-GR considers

all nets concurrently so as to avoid the net-ordering problem and constructs a set

of Minimal Rectilinear Steiner Trees (MRST) for each net. It formulates the global

routing problem as two Integer Linear Programming (ILP) models: net connection

CHAPTER 4. HEURISTIC/ILP-BASED ROUTING ALGORITHMS 95

�����
�����
�����
����� �����

�����
���
��� �����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

	�	�	
�
�

0

2000

4000

6000

8000

10000

12000

14000

16000

ind2 ind3 avq.s

W
ir

el
en

gt
h

Circuit

CPU time Comparison of SHGR and ILP−GR

ILP−GR

SHGR

avq.l

Figure 4.19: CPU time comparison of SHGR and ILP-GR

ILP model and channel density ILP model. These ILP models were further relaxed

as Linear Programming (LP) models to reduce computation complexity. To speed

up the running time and achieve better performance, parallel implementations of

SHGR and ILP-GR routers are introduced in the next chapter.

Chapter 5

Parallel Implementation

The Sequential Heuristic Global Router (SHGR) and the ILP-based Global Router

(ILP-GR) developed and introduced in chapter 4 are capable to find good solutions

efficiently. However, as the complexity of VLSI circuit increases, efficiency limita-

tions will exist. Therefore, developing parallel algorithms to solve large-size global

routing problems is a necessity.

Parallelization of SHGR and ILP-GR approaches will be introduced in this

chapter. The parallel algorithms are implemented by using the Message Passing

Interface (MPI) technique. The MPI is a collection of message-passing libraries

designed to enable distributed processing and is available for a wide range of archi-

tectures. MPI is further explained in Appendix C.

The rest of this chapter is organized as follows: Section 5.1 presents the parallel

implementation of SHGR. It discusses the parallel programming paradigms and

wire assignment strategy. Section 5.2 proposes the parallel implementation of ILP-

GR. This is followed with experimental results and analysis in section 5.3. Finally,

96

CHAPTER 5. PARALLEL IMPLEMENTATION 97

section 5.4 summarizes the topics discussed in this chapter.

5.1 Parallel Implementation of SHGR

The implementation of parallel algorithms varies depending on the parallel hard-

ware architecture. Two possible parallel programming approaches have been inves-

tigated in this thesis to parallelize the Sequential Heuristic Global Router (SHGR):

1. Shared memory implementation: This parallel approach is naturally derived

from the sequential algorithm implementation. The cost array is placed in a

global shared memory that can be accessed by all processors. Since informa-

tion is shared among processors, the wire assignment strategy is simplified.

Wires are assigned to each processor using a distributed loop, in which the

processors are repeatedly assigned wires for routing. In this model of compu-

tation, there is no need for communicating the updated cost array informa-

tion, thus reducing the implementation complexity and the network traffic.

However, the wire assignment strategy does not consider taking advantage of

locality to further reduce the network traffic.

2. Distributed memory implementation: In this parallel mode, the cost array is

not globally shared. Each processor has its own copy of the cost array that

can not be accessed by other processors. Normally, the cost array is divided

into several regions where each is assigned to an appropriate processor. The

wire assignment strategy considers the locality factor (wires are assigned to

these processors according to their localities). Following the routing of wires,

processors broadcast their local changes to other processors and an update is

CHAPTER 5. PARALLEL IMPLEMENTATION 98

Parallel Heuristic Algorithm
1. Start
2. Initialization;
3. Read Circuit information and build cost array;
4. Partition cost array into regions;
5. If (wirelength < ThresholdCost)

Assign wire according to the upmost pin;
6. Else

Hold wire into the wire waiting queue;
7. End If
8. Forall processors
9. While (not done)
10. While (current wire queue not empty)

Pick up a wire and route it;
Compute the delta array;
Send/Receive updated information;
Update cost array;

11. End While
12. If

Pick up a wire from the wire waiting queue;
13. End If
14. end While
15. End Forall
16. End

Figure 5.1: Parallel heuristic algorithm

made to each copy of the cost array. In this mode of operation, waiting time

caused by blocking is avoided since processors work independently. However,

communication between the processors tends to increase rapidly. The outline

of this parallel routing heuristic is illustrated in Figure 5.1. Its complexity is

O (W), where the W is the number of wires.

Since it is easy to scale parallel algorithms from smaller number of processors to

larger number of processors, also due to the availability of a distributed network of

CHAPTER 5. PARALLEL IMPLEMENTATION 99

SUN Sparc stations, a distributed memory parallel mode is adopted to parallelize

the sequential global router in this thesis.

5.1.1 Distribution of Cost Array

As stated previously, in distributed parallel architectures, all processors access their

own copies of the cost array. Therefore the cost array is usually divided into several

approximately equal-sized regions. One possible cost array distribution strategy is

to assign a region to every processor and each being responsible for routing the

wires within the designated region. When a wire extends to a different region, the

task is passed to the processor which owns that region. This implementation may

lead to load unbalance if several wires were located in a single region of the cost

array. Furthermore, it is likely that several wires will extend to other regions which

might cause a huge communication bottleneck.

To reduce the network traffic, an alternative cost array distribution strategy

is proposed in this thesis. The cost array is divided into a number of approx-

imately equal-sized regions. The division considers the standard cell row based

layout feature. Each region may consist of several rows and channels and is owned

by a specific processor (i.e. region-owner-proc). Each region-owner-proc has a

global view of the whole array as illustrated in Figure 5.2. A new data structure

“delta array” is added to keep track of the changes of the cost array. This strategy

can effectively reduce the network traffic which is caused by passing the extended

wires tasks. The detailed wire assignment and data update strategy are discussed

next.

CHAPTER 5. PARALLEL IMPLEMENTATION 100

CPU1
Cost Array

CPU0
Cost Array

CPU2
Cost Array

CPU3
Cost Array Each processor

has a view of
whole cost array

Each processor
owns a part of
cost array

Figure 5.2: Distribution of the Cost Array

5.1.2 Wire Assignment Strategy

The wire assignment strategy takes locality into account as its main feature. The

first goal of the assignment strategy is to determine the region that a wire belongs

to. The region where the up-most pin of the wire resides is treated as the principle

region. Next, the wire is assigned to the region-owner-proc which owns the region.

As illustrated in Figure 5.3, the up-most pin of wire1 resides in region0. Thus

wire1 belongs to region0, and therefore assigned to the region-owner-proc CPU0.

In most cases, wires assigned to a processor are likely to extend into regions

owned by other processors. This will initiate the requirements of the cost array

updates between processors. The sender processor (i.e. the region-owner-proc)

must broadcast routing information to related receiver processors. As illustrated in

Figure 5.3, wire1 is owned by CPU0, but extends to the regions owned by CPU2

and CPU3. The routing task is performed by the region-owner-proc CPU0. When

CPU0 routes the wire outside its owned region, CPU2 and CPU3 are notified that

certain channels and feedthroughs are utilized in their owned regions.

CHAPTER 5. PARALLEL IMPLEMENTATION 101

CPU2 CPU3
Cost Array

CPU1
Cost Array

sent to CPU1
Updates

Updates sent to CPU2 wire 1

Cost Array
CPU0

Cost Array

Figure 5.3: Wire assignment strategy

In order to balance the number of wires assigned to each processor, a threshold

parameter “ThresholdCost” is introduced whose value is based on the length of

wires. A wire is assigned to the region-owner-proc according to its up-most pin

location if the wire length is lower than “ThresholdCost”. Otherwise, it will be put

into a queue and stored until the final step of the wire assignment. In the final step,

the pending wires are assigned to the processors to even the balance load ignoring

locality.

5.1.3 Cost Array Update

Since each processor has its own local distributed memory, it can only directly

access positions in its copy of the cost array. In order to realize changes made to

the cost array by other processors, communications and synchronizations must be

initiated. A method that can be used to perform the cost array updates is to pass

the information to other processors immediately after each wire is routed. The

CHAPTER 5. PARALLEL IMPLEMENTATION 102

update packet contains coordinates of the start and end points of each segment of

the wire as well as its wire length. However, sending each wire updating information

can generate a large amount of network traffic. For very large circuits (which

contain a large number of wires) updating information after routing each wire is

quite costly.

In order to reduce the network traffic and track the changes, a new data structure

“delta array” is added. The “delta array” is used to notify other processors of the

changes made to the cost array between updates. It has the exact same dimensions

as the cost array. Following the routing of wires, the “delta array” is computed

to track the changes made to a couple of wires. The sender processor checks the

“delta array” to construct an update packet which is a bounding box that contains

all the changes within a certain region and the coordinates of the bounding box.

5.2 Parallelization of ILP-GR

As described in chapter 4, ILP-GR produces a set of possible Minimal Rectilinear

Steiner trees (MRST) to connect the terminals of each net. However, considering

all possible trees for a net results in a large number of variables and constraints

which complicates solving the optimization problem. Moreover, the Steiner tree

generating algorithm is computationally expensive and time consuming [Gare79].

Therefore, by taking advantage of distributed architectures, a parallel version of

ILP-GR is implemented to meet this challenge.

CHAPTER 5. PARALLEL IMPLEMENTATION 103

5.2.1 Parallel Implementation

The parallel ILP based algorithm takes the distributed memory Single Instruction

Multiple Data (SIMD) parallel model. Since no parallel version of the CPLEX

solver is available, only a subset of ILP-GR (Steiner Tree generation task) is paral-

lelized in this thesis.

As illustrated in Figure 5.4, the algorithm consists of three phases:

1. Phase t1 (initialization phase): All processors from CPU0 to CPUn read the

netlist information from the placement CAD tool. The complete netlist is

partitioned into sub-lists and assigned to related processors.

2. Phase t2: Each processor is assigned a subtask from the previous phase t1.

For all the processors except CPU0, after all the possible MRST sets are

produced, the data is sent to CPU0. CPU0 receives results and combines

them into a single entity.

3. Phase t3: The combined data from phase t2 is used to formulate the global

routing problem as an ILP problem. The ILP problem is relaxed and solved

by the CPLEX solver.

The parallel implementation of phase t1 and t2 is illustrated in Figure 5.5.

5.2.2 Wire Assignment Strategy

Provided there are N nets in a circuit, the number of pins associated with net i is

ni, and each net has a weight value associated with it. In order to partition the nets

and distribute them among the processors, the nets are first sorted according to

CHAPTER 5. PARALLEL IMPLEMENTATION 104

 End

 Start

Read netlist info

(CPU0)

Read netlist info

(CPUn)
.

Construct Steiner tree

(CPU0)

Construct Steiner tree

(CPUn).

MIP Formulation

(CPU0)

Solve Prblem(CPLEX)

(CPU0)

.

t1

t2

t3

(CPUn)(CPU0)

Wire assignment Wire assignment

Most time−consuming
phase

Figure 5.4: The parallel implementation in the whole global routing process

their weights. Given p processors, the nets are assigned to each processor until the

number of pins is larger than the average number
∑N

1 ni/p. There are two possible

wire or net assignment strategies for the ILP based global router.

1. Center partition: The pins of a net may be located anywhere among the rows

of a circuit. Usually the pins located at the same rows will be connected

by putting tracks within channels. Since nets that stay around the same

rows tend to put tracks into the same channel, there will be more runtime

CHAPTER 5. PARALLEL IMPLEMENTATION 105

ILP Parallel Algorithm
1. Start
2. All processors read circuit information;
3. Assign nets to each processor;
4. If (rank==0)

Processor CPU0 generates Steiner Trees;
Update Steiner tree set;
Processor CPU0 receives tree data from all other processors;

5. End If
6. If (rank > 0)

Processor CPUi generates Steiner Trees;
Update Steiner tree set;
Processor CPUi sends tree data to Processor CPU0;

7. End If
8. End

Figure 5.5: ILP based parallel algorithm

interaction between those vertically close nets. Therefore, the net weight is

calculated based on this relationship. Assume the number of pins on net i is

ni and the position of a pin is (xj, yj), where j = 1, ..., ni. The center of the

net is given by: (
∑ni

1 xj/ni,
∑ni

1 yj/ni). Since the execution time on finding

vertical routes tends to be longer, the weight w of the net can be derived from

the y coordinate of its center, where w =
∑ni

1 yj/ni. As seen in Figure 5.6,

net i has four pins: p1 (1, 0), p2 (2, 0), p3 (3, 2) and p4 (2, 2). Its center is

calculated as (2, 1) and its weight is 1.

2. Pin number weight partition: This strategy sorts and assigns the nets accord-

ing to the number of pins on the net such that larger nets are assigned more

weights. Assume the number of pins on net i is ni, a weight −nα
i is given

to this net, where α is a positive number. Experimental results show that a

value for α within the range of 1.5 is adequate. Following the sorting stage,

CHAPTER 5. PARALLEL IMPLEMENTATION 106

0 1 2 3 5

p1(1,0) p2(2,0)

Row0

Row1

Row2

center(2,1)

p4(2,2) p3(3,2)

Figure 5.6: Center partition wire assignment

the nets are evenly distributed to each processor in a round-robin manner.

The center partition strategy attempts to balance the work loads by only con-

sidering the assignment of equal-sized load of pins to each processor. However,

constructing the MRST has the largest computation complexity in the global rout-

ing algorithm. Even if each processor works on the same number of pins, the work

load may not be balanced since some processors are assigned large nets. For exam-

ple, both CPU0 and CPU1 are assigned 10 pins. CPU0 has 5 two-pin nets, CPU1

has 1 two-pin net and 1 eight-pin net. Even though the number of pins is balanced

among the two processors, the work load of CPU1 is much larger because construct-

ing MRST for the eight-pin net becomes the dominant part of the computation. In

order to balance the work load efficiently, the pin number weight partition strategy

is used in this thesis.

CHAPTER 5. PARALLEL IMPLEMENTATION 107

5.3 Experimental Results

The parallelization of SHGR and ILP-GR shows good solution quality. Table 5.1

and Table 5.2 list speedups obtained by parallelizing the two global routers on 2, 4

and 6 processors (can easily scale up to more processors).

Circuit 2 procs 4 procs 6 procs

prim1 1.94 3.27 3.60
ind1 1.91 3.71 5.20
bio 1.95 3.87 5.28

prim2 1.89 3.85 5.16
ind2 1.94 3.89 5.49
ind3 1.98 3.79 5.31

avq.small 1.82 3.72 5.24
avq.large 1.77 3.65 5.11

Table 5.1: Speedup of the parallel heuristic router

Circuit 2 procs 4 procs 6 procs

prim1 1.95 3.29 3.60
ind1 1.91 3.68 5.21
bio 1.90 3.87 5.22

prim2 1.90 3.80 5.11
ind2 1.84 3.79 5.29
ind3 1.91 3.81 5.14

avq.small 1.87 3.65 5.01
avq.large 1.72 3.61 5.08

Table 5.2: Speedup of the ILP based router

In Figure 5.7 and 5.8, the plots of speedups on several medium and large circuits

(prim2, ind3, avq.small and avq.large) are given. The x-axis is the number of

processors utilized, the y-axis is the value of speedup.

CHAPTER 5. PARALLEL IMPLEMENTATION 108

1.5

2

2.5

3

3.5

4

4.5

5

5.5

2 3 4 5 6 7

Sp
ee

du
p

No. of Processors

Speedup obtained by parallelizing SHGR

prim2
ind3

avq.s
avq.l

Figure 5.7: Speedup obtained by parallelizing SHGR on large benchmark circuits

According to Amdahl′s law (discussed in Section 2.4.3), ideal linear speedups

are impossible due to the existence of serial portions within programs. As seen

from Figure 5.7 and 5.8, almost linear speedups are achieved by the parallel imple-

mentations on both global routers.

Circuit Total Channel Density
Before Parallel After Parallel Improve %

ind1 450 439 2.44%
prim2 582 573 1.54%
bio 1082 1071 1.01%
ind2 1426 1412 0.98%
ind3 2553 2534 0.74%

avq.small 1358 1341 1.20%
avq.large 1687 1660 1.59%
average 1305 1290 1.36%

Table 5.3: Parallelism improves the total density

In addition, by exploiting locality in the task assignment, the parallel imple-

CHAPTER 5. PARALLEL IMPLEMENTATION 109

1.5

2

2.5

3

3.5

4

4.5

5

5.5

2 3 4 5 6 7

Sp
ee

du
p

No. of Processors

Speedup obtained by parallelizing ILP-GR

prim2
ind3

avq.s
avq.l

Figure 5.8: Speedup obtained by parallelizing ILP-GR on large benchmark circuits

mentations also improve the total density performance which in place leads to a

chip area reduction. Table 5.3 shows that the total density is reduced on average

by 1.59% when parallelizing the heuristic global router.

From the discussion above, the parallel implementations can be used to solve

very large sized global routing problems, where the traditional serial algorithms

meet the timing limitation. Moreover, due to the architecture of distributed mem-

ory parallel mode, they are easy to scale from 6 processors to run on more processors

such that the CPU time is further shortened.

5.4 Summary

In this chapter, two parallel algorithms were implemented achieving good speedups

and solution quality. Due to the fact that a network of SUN Sparc stations was

CHAPTER 5. PARALLEL IMPLEMENTATION 110

available, the distributed memory parallel mode was adopted for both algorithms.

With respect to the Sequential Heuristic Global Router (SHGR), the wire assign-

ment and updating strategy were discussed. A new parameter “ThresholdCost”

and data structure “delta array” were introduced to balance the work load and re-

duce the network traffic. Two wire assignment strategies for the ILP-based Global

Router (ILP-GR) were introduced in the form of: center partition and pin num-

ber weight partition. In this thesis, the pin number weight partition strategy was

utilized due to its capability of balancing the work load.

Chapter 6

Conclusions and Future Directions

One objective of global routing is to determine interconnections between cells and

modules without violating resource constraints. As discussed in chapter 1, with the

technology moving to sub-micron rules the interconnection delay and capacitance

have become dominant factors in determining the circuit speed (delay) and power

consumption respectively. A reduction in the interconnection delay and power con-

sumption can be achieved by producing shorter wirelength. Yet another objective

of global routing is to minimize the chip area which can be achieved by a reduc-

tion in channel density. Since the produced wirelength and channel density have

important impacts on the global routing solutions, they are used to evaluate the

efficiency of implementations in this research.

111

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 112

6.1 Conclusions

In this thesis several global routers were proposed in the form of: a Sequential

Heuristic Global Router (SHGR), a Hierarchical Heuristic Global Router (HHGR)

and an ILP-based Global Router (ILP-GR). These routers were able to achieve

high quality solutions for the standard cell design style. To achieve better quality

and further reduce the running time parallel versions of SHGR and ILP-GR were

implemented. The contributions of each proposed global router and the parallel

implementations are summarized as follows:

• SHGR searches for the minimum cost path of each net by enumerating a set of

possible 2-bend routes. It is an efficient implementation that can be used for

large sized VLSI design circuits. On average a 16% improvement was achieved

over wirelength produced by placement based on HPWL. These results are

on average 6.7% away from optimal solutions produced by ILP models, which

is partially due to the net-ordering problem. In addition, SHGR constructs

MSTs to connect pins, which can not produce the shortest wirelength. How-

ever, the complexity to generate MSTs is linear, which enables SHGR to

consume less CPU time for large sized global routing problems.

• HHGR is a novel global routing technique which routes circuits at different

hierarchical levels. Compared with other previous hierarchical global routers,

such as [Burs83] [Heis91] and [Kuh86], it is based on a multiple-clustering

technique to build the hierarchical levels and can produce a good estimation

solution in short time. In most cases, it is necessary to predict the routability

for a VLSI design before the global routing phase starts. Therefore HHGR

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 113

has important practical values which can be used as a pre-processing global

routing model. Experimental results show that HHGR consumes on average

89% less CUP time than SHGR.

• ILP-GR formulates the global routing problem as two Integer Linear Pro-

gramming (ILP) models. It overcomes the net-ordering problem by routing

net simultaneously and also improves the solution quality by investigating the

effective generation of MRSTs. ILP-GR provides the optimal solution bound

which can be compared with other implementations. On average a 6.7% im-

provement is achieved over the wirelength solution produced by SHGR. How-

ever it consumes more CPU time which limits its use for large sized problems.

The selection of ILP-GR should be avoided as circuits increase in size.

• Parallel versions of SHGR and ILP-GR are also implemented in this dis-

sertation. As the complexity of VLSI design increases, developing parallel

algorithms to solve large sized global routing problems becomes necessary.

The distributed memory model is adopted in this thesis since the developed

parallel algorithms can be easily scaled to run on a large number of processors.

Solutions obtained indicate promising results where near linear speedups and

further improvement (on average 1.36%) over channel density can be achieved.

Therefore, parallel implementations can be easily adopted when serial imple-

mentations fail to obtain solutions in reasonable time.

CHAPTER 6. CONCLUSIONS AND FUTURE DIRECTIONS 114

6.2 Future Work

The two mathematical models of ILP-GR have different objectives, where the net

connection formulation is to produce the shortest wirelength and the channel den-

sity model seeks to generate the smallest channel density. In the future, the two

models can be combined together as a single multi-objective ILP model. The com-

bined ILP formulation targets at finding optimal solutions that seek to shorten the

wirelength and minimize the channel density simultaneously.

Future work should also include improving the Integer Linear Programming

(ILP) model by considering congestion minimization. A congested area has a large

number of nets passing through it, and may result in no feasible global routing

solution. The ILP based approach has a global view of the problem and can be uti-

lized to predict congested areas. The congestion estimation method should obtain a

priori information about routing areas of the circuit. This information is attached

to those trees which connect the nets passing through the congested area. The

additional trees for these nets will pass through routing areas which are potentially

less congested, thus, reducing the possibility of congestion.

Another interesting direction for future work involves improving the global rout-

ing model by incorporating timing information. With the advance in VLSI fabri-

cation technology, deep submicron design has become more and more popular, in

which the interconnection delay has produced a very huge impact on the circuit

speed. In many cases, the interconnection delay can even consume from 50% to

70% of the clock cycle [Bako90]. Therefore, in order to improve the circuit perfor-

mance, critical paths have to be seriously considered in future models.

Appendix A

Glossary

BFS : Breadth First Search

CAD : Computer Aided Design

CMOS : Complementary Metal Oxide Semiconductor

DA : Design Automation

FPGA : Field Programmable Gate Array

HHGR : Hierarchical Heuristic Global Router

ILP : Integer Linear Programming

ILP-GR : ILP-based Global Router

LP : Linear Programming

MCM : Multiple Chip Module

MCNC : Microelectronics Center of North Carolina

MIMD : Multiple-Instruction Multiple-Data

MPI : Message Passing Interface

MRST : Minimum Rectilinear Steiner Tree

115

APPENDIX A. GLOSSARY 116

MST : Minimum Spanning Tree

NP-hard : Non Deterministic Polynomial Hard

NP-complete : Non Deterministic Polynomial Complete

SHGR : Sequential Heuristic Global Router

SIMD : Single-Instruction Multiple-Data

SPMD : Single-Program Multiple-Data

VHDL : Very High Speed Integrated Circuit Hardware Description Language

VLSI : Very Large Scale Integration

Appendix B

CPLEX Solver

B.1 Introduction to CPLEX

ILOG CPLEX is a tool for solving linear programming (LP) problems, is defined

as:

Maximize (or Minimize) c1x1 + c2x2 + . . . + cnxn (B.1)

subject to a11x1 + a12x2 + . . . + a1nxn ~ b1

a21x1 + a22x2 + . . . + a2nxn ~ b2

am1x1 + am2x2 + . . . + amnxn ~ bm

with bounds li ≤ xi ≤ ui

ln ≤ xn ≤ un

117

APPENDIX B. CPLEX SOLVER 118

where ~ can be ≤, ≥, or =, and the upper bounds ui and lower bounds li may

be positive infinity, negative infinity, or any real number.

The data provided as input to this LP problem is:

Objectivefunctioncoefficients c1, . . . cn

Constraintcoefficients a11, . . . a1n

Right − handsides b1, . . . bn

Upperbounds u1 . . . un

Lowerbounds l1 . . . ln

The optimal solution that CPLEX returns is:

V ariables x1, . . . xn

B.2 Using CPLEX to Solve ILP/LP Problems

ILOG CPLEX consists of C and C++ libraries to solve linear programming and

related problems, it comes in three forms:

• CPLEX Interactive Optimizer: An executable program that can read

problem interactively or from input files which has standard formats, solve

the problem, and give the solution interactively or write the solution to output

files.

APPENDIX B. CPLEX SOLVER 119

• Concert Technology: A set of C++ libraries which enables the programmer

to embed CPLEX optimizer in applications written in C++.

• CPLEX Callable Library: A set Libraries that can be embedded into

applications written in C, Visual Basic and Java to solve the LP related

problems.

Because the global routing application is written in C, in this paper I will

describe how to incorporate the CPLEX Callable Library into C programs. By

embedding CPLEX Callable Library, developers can write applications to optimize,

modify and interpret the results of linear programming (LP) problem, mixed integer

programming (MIP) problem and other related problems.

In order to use the Callable Library, we need first initialize the ILOG CPLEX

environment, open the problem object and fill it with data, then certain optimizers

are selected to optimize the problems, at last, the application frees the problem

object and releases the ILOG CPLEX environment. The detailed explanation is

give as follows:

• Initialize the CPLEX Environment Before we use the Callable Library in

the application, we need initialize certain data structures which are required

by ILOG CPLEX. To initialize the CPLEX environment, the routine CPX-

openCPLEX() is used, it checks ILOG CPLEX license and then return a C

pointer to the ILOG CPLEX environment, the application then passed this

pointer to all the other CPLEX routines to be used.

• Open the Problem Object After initializing the ILOG CPLEX environ-

ment, we need open a problem object by calling routine CPXcreateprob(), it

APPENDIX B. CPLEX SOLVER 120

returns a C pointer to the problem object, this pointer is then passed to the

other CPLEX routines.

• Fill Data in Problem Object Once the problem object is opened, it needs

to be filled with data because the original object is empty, we have to put nec-

essary constraints, variables and coefficient matrix in it. The most used rou-

tines are CPXcopylp(), CPXnewcols(), CPXnewrows(), CPXaddcols(), CPX-

addrows() and CPXchgcoeflist().

• Optimize the Problem The core of using CPLEX is to optimize and solve

the given problem, once the problem object has been created and populated

with data, we can choose appropriate optimizer to solve it. There are sev-

eral different optimizer for linear programming (LP) problems and mix integer

programming (MIP) problems: Dual Simplex Optimizer, Primal Simplex Op-

timizer, Network Optimizer and Mixed Integer Optimizer.

• Free Problem and Release the CPLEX Environment After the op-

timal solution is produced, we need call routine CPXfreeprob() to destroy

the problem object and call routine CPXcloseCPLEX() to release the ILOG

CPLEX environment.

Appendix C

MPI

C.1 Introduction to MPI

Message Passing Interface (MPI) is a set libraries providing message passing support

for parallel/distributed applications. It is developed by an open forum (www.mpi-

forum.org) of vendors, users and researchers. Compared with the previous products,

MPI is a standardized open technique, it has very good scalability and memory is

local to process which makes debugging very easy. The goal of MPI is to develop a

widely used, practical, portable and efficient standard for writing message-passing

programs.

C.2 MPI Datatypes and Basic Functions

The MPI standard is intended to be used by those who want to write message

passing program in Fortran77 and C. There are two kinds of datatypes in MPI:

121

APPENDIX C. MPI 122

1. Basic datatype, which are predefined corresponding to the underlying lan-

guage, Table C.1 lists the MPI datatypes used in C programs.

2. Derived datatype, which are the new datatypes constructed by the users at

run time. These user defined datatypes include vector, array and struct etc.

Through these user defined datatype, MPI supports the communication of

complex data structures such as array sections and structures containing com-

binations of basic datatypes.

MPI datatype C datatype

MPI CHAR signed char
MPI SHORT signed short
MPI INT signed int
MPI LONG singed long int
MPI UNSIGNED CHAR unsigned char
MPI UNSIGNED SHORT unsigned short int
MPI UNSIGNED unsigned int
MPI UNSIGNED LONG unsigned long int
MPI FLOAT float
MPI DOUBLE double
MPI LONG DOUBLE long double
MPI BYTE
MPI PACKED

Table C.1: The basic MPI datatypes

C.3 MPI Core Functions

The basic communication mode of MPI is point to point communication, in which

the data transmission is between a pair of processes, one side is sending and the

APPENDIX C. MPI 123

other is receiving, the send and receive operations are the core operations in MPI.

The basic send and receive functions in MPI are MPI Send and MPI Recv. Func-

tion MPI Send send the data from source processor to target processor and function

MPI Recv receive the data from source processor.

Some other important core functions are:

1. MPI Init() Must be called before any other MIP functions, perform an initi-

ation for the MPI library.

2. MPI Finalize() Must be called after all MIP functions, perform the clean-up

for MPI library and free memory.

3. MPI Comm rank() Return the integer rank of the running process.

4. MPI Comm size() Return the integer number of processes.

A simple MPI program should at least contain these core functions, a ”Hello

World” example is given as follows:

int main(argc, argv)

int argc;

char **argv;

{

int rank, size;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

MPI_Comm_size(MPI_COMM_WORLD, &size);

APPENDIX C. MPI 124

printf("Hello world! I’m %d of %d\n",

rank, size);

MPI_Finalize();

return 0;

}

This ”Hello World” example first initiate the MPI library using the function

MPI Init. next it uses function MPI Comm rank() and MPI Comm size() to obtain

the total number of the processes and the integer rank of the each running process.

Finally, it calls function MPI Finalize() to clean up the MPI library.

Bibliography

[AN87] C.D. Thompson A. Ng, P. Raghavan, “A Language for Describing Rec-
tilinear Steiner Tree Configuration,” In Proc. 23rd Design Automation
Conference, pp. 319–320, June 1987.

[Babb93] J. Babb and R. Tessier, “Vitual Wires’ Overcoming Pin Limitations
in FPGA-based Logic Emulators,” In IEEE Workshop on FPGAs for
Custom Computing Machines, pp. , May 1993.

[Bako90] H.B. Bakoglu, Circuits , Interconnections, and Packaging for VLSI,
Addison-Wesley, 1990.

[Bane94] P. Banerjee, Parallel Algorithms for VLSI Computer-Aided Design,
Prentice Hall, Englewood Cliffs,NJ, 1994.

[Baza77] M.S. Bazaraa and J.J. Jarvis, Linear Programming and Network Flows,
New York, 1977.

[Behj02] Laleh Behjat, Thesis: New Modeling and Optimization Techniques for
the Global Routing Problem, University of Waterloo, 2002.

[Blan85] J.P. Blanks, “Near Optimal Quadratic Based Placement for a Class of IC
Layout Problems,” IEEE Circuits and Devices, vol. 1, No. 6, pp. 31–37,
September, 1985.

[Brou90] R.J. Brouwer and P. Banerjee, “PHIGURE: A Parallel Hierachical
Global Router,” In Proc. 27th Design Automation Conf., pp. 360–364,
Jun. 1990.

[Burs83] M. Burstein and R. Pelavin, “Hierarchical Wire Routing,” In IEEE
trans. Computer-Aided Design, Vol. CAD-2, pp. 223–234, Oct. 1983.

[Card91] R. Carden and C.K. Cheng, “A Global Router Using An Efficient Ap-
proximate Multicommodity Multiterminal Flow Algorithm,” In 28th
ACM/IEEE Design Automation Conf., pp. 316–321, 1991.

125

BIBLIOGRAPHY 126

[Cho00] Jun Dong Cho, “Wiring Space and Length Estimation in Two-
dimensional Arrays,” In Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, Volume: 19 Issue: 5, pp. 612 –615,
May 2000.

[Cong92] J. Cong and B. Preas, “A New Algorithm for Standard Cell Global
Routing,” Integration: the VLSI Journal, pp. 49–65, November 1992.

[Cong98] J. Cong and P. Madden, “Performance Driven Multi-Layer General Area
Routing for PCB/MCM Designs,” In Design Automation Conference,
pp. 356–361, IEEE, 1998.

[Dijk59] E. W. Dijkastra, “A note on two problems in connection with graphs,”
Numerische Mathematick, pp. 269–271, 1959.

[Gare79] M.R. Garey and D.s. Johnson, Computers and Intractability:A Guide to
the Theory of NP-completeness, Freeman, San Francisco,CA, 1979.

[Hana85] M. Hanan, “On Steiner’s Problem with Rectilinear Distance,” in VLSI
Circuit Layout: Theory and Design,T.C. Hu and E.S. Kuh, eds. IEEE,
pp. 133–138, 1985.

[Heis91] J. Heisterman and T. Lengauer, “The Efficient Solution of Integer Pro-
grams for Hierarchical Global Routing,” IEEE trans on Computer-Aided
Design, pp. 748–753, Jun. 1991.

[Horg04] Jack Horgan, “Low Power Soc Design,” In EDA weekly Review, pp. ,
May 2004.

[Hu00] Jiang Hu and S.S. Sapatnekar, “A Timing-Constrained Algorithm for
Simultaneous Global Routing of Multiple Nets,” In Computer Aided De-
sign, 2000. ICCAD-2000. IEEE/ACM International Conference on, pp.
99 –103, 2000.

[HU85a] T.C. HU and E. Kuh, “Theory and Concepts of Circuit Layout,” In
VLSI Circuit Layout:Theory and Design, pp. 3–18, IEEE PRESS, New
York, 1985.

[Hu85b] T.C. Hu and M. T. Shing, “A Decompsition Algorithm for Circuit Rout-
ing,” in VLSI Circuit Layout: Theory and Design,T.C. Hu and E.S.
Kuh, eds. IEEE, pp. 144–152, 1985.

[Hwan76] F. Hwang, “On Steiner Minimal Trees with Rectilinear Trees,” SIAM
Journal of Applied Mathematics, pp. 104–114, Jan. 1976.

[JRos88] J.Rose, “LocusRoute: A Parallel Global Router for Standard Cells,” In
Proc. of 25th DAC, pp. 189–195, Jun. 1988.

[Kahn95] A. Kahng and G. Robins, On Optimal Interconnects for VLSI, Kluwer
Academic, Boston, MA, 1995.

BIBLIOGRAPHY 127

[Kang03] S.M Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis
and Design, 3rd Edition, McGraw-Hill, 2003.

[Kary97] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hy-
pergraph Partioning: Application in VLSI Design,” In Proceedings of
35th DAC, pp. 526–529, ACM/IEEE, Las Vegas, Nevada, June 1997.

[KMik68] K.Mikami and K.Tabuchi, “A Computer Program for Optimal Routing
of Printed Circuit Connectors,” In IFIPS Proc.H47, pp. 1475–1478, 1968.

[Kozm91] K. Kozminski, “Benchmarks for Layout Synthesis - Evolution and Cur-
rent Status,” In Proceedings of The 28th DAC, pp. 265–270, IEEE/ACM,
Portland, Oregon, 1991.

[Kris02] J. Lou S. Thakur S. Krishnamoorthy and H.S. Sheng, “Estimating Rout-
ing Congestion Using Probabilistic Analysis,” In Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, Volume: 21
NO. 1, pp. 32–42, Jan. 2002.

[Kuh86] E.S. Kuh and M. Marek-Sadowska, Global Routing, in Layout Design
and Verification, T. Ohtsuki, ed., Elsevier Science Publishing, New York,
N.Y., 1986.

[KW88] Lee K.-W and C. Sechen, “A New Global Router for Row-based Layout,”
In in Proc. Int. Conf. on Computer Aided Design, pp. 180–183, Nov.
1988.

[Lee61] C.Y. Lee, “An Algorithm for Path Connection and Its Application,” IRE
Transactions on Elctronic Computers, pp. 346–365, 1961.

[Leng90a] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,
John Wiley & Sons, Chichester, England, 1990.

[Leng90b] T. Lengauer, Combitational Algorithms for Integrated Circuit Layout, J.
Wiley, New York, NY, 1990.

[Meix90] G. Meixner and U. Lauther, “A new Global Router Based on a Flow
Model and Linear Assignment,” In in Proc. Int. Conf. on Computer
Aided Design, pp. 44–47, 1990.

[Moor59] E.F. Moore, “The Shortest Path through a Maze,” Annals of the Harvard
Computation Laboratory, pp. 185–292, 1959.

[Pedr89] M. Pedram and H. Preas, “Interconnection Length Estimation for Op-
timized Standard Cell Layouts,” In in Proc. Int. Conf. on Computer
Aided Design, pp. 390–393, 1989.

[RK87] R.L. Rivest R.M. Karp, F.T. Leighton, Global Wire Routing in Ttwo-
demensional Arrays.Algorithmica, 2:113-129,1987, 1987.

BIBLIOGRAPHY 128

[SA01] ILOG S.A., ILOG CPLEX 7.5 Users Manual, ILOG S.A. R&D office,
1661 Route des Dolines, 06560 Valbonne, 2001.

[Sarr89] C. Chiang M. Sarrafzadeh and C.X. Wong, “A Powerful Global Router:
Based on Steiner Min-Max Trees,” In in Proc. Int. Conf. on Computer
Aided Design, pp. 2–5, 1989.

[Sarr94] C. Chiang M. Sarrafzadeh and C.X. Wong, “A Powerful Global Router:
Based on Steiner Min-Max Trees,” Trans. on CADICS, IEEE, pp. 1461–
1469, 1994.

[SB91] H. Chen S. Burman and N. Sherwani, “Improved Global Routing Using
λ-Geometry,” In The Proceedings of 29th Annual Allerton Conference
on Communications,Computing, and Controls, pp. , Oct. 1991.

[Sech86] C. Sechen and A. Sangiovanni-Vincentelli, “TimberWolf3.2: A New
Standard Cell Placement and Global Routing Package,” In IEEE De-
sign Automation Conf., pp. 432–439, 1986.

[Sech88] C. Sechen, VLSI Placement and Global Routing Using Simulated An-
nealing, Academic Press, Boston, MA, 1988.

[Shah88] F. Shahrokhi and D.W. Matula, The Maximum Concurrent Flow Prob-
lem, pp. , Manuscript, New Mexico Tech, Jan. 1988.

[Shah91] K. Shahookar and P. Mazumder, “VLSI Cell Placement Techniques,”
ACM Computing Surveys, vol. 23, No. 2, pp. 143–220, 1991.

[Sher99] N. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer
Academic, Boston, MA, 1999.

[SKan03] S.Kang and Y. Leblebici, CMOS Digital Integrated Circiuts, The
McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, New York,
NY 10020, 2003.

[SM91] J. Hashmi S. Miriyala and N. Sherwani, “Switch Steiner Tree Problem in
Presence of Obstacles,” In 28th Int. Conf. on Computer Aided Design,
pp. 596–599, Nov. 1991.

[Souk78] J. Soukup, “Fast Maze Router,” In Proceedings of 15th Design Automa-
tion Conference, pp. 100–102, IEEE, 1978.

[Sun04] Hao Sun and Shawki Areibi, “Global Routing for VLSI Standard Cell,”
In Canadian Conference on Electrical and Computer Engineering, pp. ,
May 2004.

[Sun90] X. Sun and L. M. Ni, Another View on Parallel Speedup, Michigan State
University, East Lansing, MI 48824-1027, 1990.

[Swar93] William Swartz and Carl Router, “A New Generalized Row-Based
Global Router,” In Proc. of ICCAD, pp. 491–498, 1993.

BIBLIOGRAPHY 129

[THC90] R.L. Rivest T. H.. Cormen, C. E.Leiserson and C.Stein, Introduction to
Algorithms, The MIT Press, Five Cambridge Center, Cambridge, MA
01142, 1990.

[Ting83] B. Ting and B. Tien, “Routing Techniques for Gate Array,” In IEEE
trans. Computer-Aided Design ,Vol. CAD-2, pp. 301–312, Oct. 1983.

[Ueda86] K. Ueda, R. Kasai, and T. Sudo, “Layout Strategy, Standardization, and
CAD Tools,” Layout Design and Verification, North-Holland, pp. 1–54,
1986.

[Vann91] A. Vannelli, “An Adaptation of the Interior Point Method for Solving
the Global Routing Problem,” IEEE trans on Computer-Aided Design,
pp. 193–203, February 1991.

[Yang03] Z. Yang, Thesis: Area/Congestion-driven Placement for VLSI Circuit
Layout, University of Guelph, 2003.

