

A HANDEL-C IMPLEMENTATION OF THE

BACK-PROPAGATION ALGORITHM ON FIELD

PROGRAMMABLE GATE ARRAYS

A Thesis

Presented to

The Faculty of Graduate Studies

of

The University of Guelph

by

VIJAY PANDYA

In partial fulfilment of requirements

for the degree of

Masters of Science

August, 2005

c©Vijay Pandya, 2005

2

ABSTRACT

A HANDEL-C IMPLEMENTATION OF THE

BACK-PROPAGATION ALGORITHM ON FIELD

PROGRAMMABLE GATE ARRAYS

Vijay Pandya

University of Guelph, 2005

Advisor:

Dr.Medhat Moussa & Dr. Shawki Areibi

The Back-Propagation (BP) algorithm for building an Artificial Neural Net-

work (ANN) has been increasingly popular since its advent in the late 80’s. The

regular structure and broad field of application of the BP algorithm have drawn

researchers’ attention at attempting a time-efficient implementation. General Pur-

pose Processors (GPP) and Application Specific Integrated Circuits (ASICs) are

the common computing platforms to build an ANN based on the BP algorithm.

However such computing machines suffer from the constant need of establishing a

trade-off between flexibility and performance. In the last decade or so there has

been significant progress in the development of special kind of hardware, a reconfig-

urable platform based on Field Programmable Arrays (FPGAs). FPGAs are shown

to exhibit excellent flexibility in terms of reprogramming the same hardware and

at the same time achieving good performance by allowing parallel computation.

The research described in this thesis proposes several partially parallel archi-

tectures and a fully parallel architecture to realize the BP algorithm on an FPGA.

The proposed designs are coded in Handel-C and verified for its functionality by

synthesizing the system on Virtex2000e FPGA chip. The validation of the designs

are carried out on several benchmarks. The partially parallel architectures and the

fully parallel architecture are found to be 2.25 and 4 times faster than the software

implementation respectively.

i

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to my advisers

Dr. Medhat Moussa and Dr. Shawki Areibi for providing me with invaluable

guidance throughout the research. Without their patience, constructive criticism

and help this work would have not been possible.

Special thanks goes to my family, sister and my wife who have not only shown

great patience but supported and stood by me in difficult times.

i

Contents

1 Introduction 1

1.1 Motivation and Objectives . 3

1.1.1 Reconfigurable Computing 3

1.1.2 Objectives . 5

1.2 Contributions . 7

1.3 Thesis Outline . 10

2 Background 12

2.1 Field Programmable Gate Array . 12

2.1.1 Structure of FPGA . 14

2.1.2 Coupling and configuration approaches for FPGA 15

2.2 Artificial Neural Networks . 17

2.2.1 Learning in Artificial Neural Network 20

2.2.2 The Back-Propagation(BP) Algorithm 21

2.2.3 The Back-Propagation Parameter Setting 23

2.2.4 Transfer Function . 27

2.3 Summary . 30

ii

3 Literature Review 31

3.1 Neural Hardware . 31

3.1.1 Neurocomputers build from digital neurochips 34

3.1.2 Accelerator boards built from digital neurochips 36

3.2 ANN implementations on FPGAs 38

3.2.1 Mapping Algorithms onto FPGAs 39

3.3 Back-Propagation Algorithm on FPGAs 44

3.4 Sigmoid Function implementation 51

3.5 Neural Arithmetics/Data representation 59

3.6 Performance and Issues . 64

3.7 Summary . 66

4 Experimental Setup 70

4.1 System Specifications . 70

4.1.1 Software Specifications . 71

4.1.2 Hardware Specifications . 72

4.1.3 Development Path . 75

4.2 Benchmarks . 77

4.2.1 XOR Data Set . 78

4.2.2 Iris Data Set . 80

4.2.3 Cancer Data Set . 81

4.3 Evaluation Parameters . 82

4.3.1 Comparison Criteria . 82

4.3.2 The Error and the stopping criteria 83

iii

4.3.3 Performance measurement 85

4.4 Summary . 87

5 Serial Architectures 88

5.1 Fixed-point Number Representation 88

5.2 Linear Feedback Shift Register(LFSR) 91

5.3 Serial Implementations . 94

5.3.1 SIPEX . 100

5.3.2 SIPOB . 101

5.4 Results and Analysis . 104

5.5 Summary . 109

6 Parallel Architectures 110

6.1 Categorization of Parallel Architectures 111

6.2 Sigmoid Function Implementation 118

6.3 Structure of Data Storage in BlockRAMs 123

6.4 Partially Parallel Implementations 125

6.4.1 Categorization of Partially Parallel Architectures 125

6.4.2 Structure of Partially Parallel Architectures 131

6.4.3 PAROI . 136

6.4.4 PAROO . 136

6.4.5 PARIO . 142

6.4.6 Results and Analysis . 142

6.5 Fully Parallel Architecture . 148

6.5.1 Motivation . 149

iv

6.5.2 System Specification . 150

6.5.3 FPAR modules . 151

6.5.4 Results and Analysis . 159

6.6 Summary . 166

7 Conclusions and Future Work 168

7.1 Future Work . 171

A Glossary 173

B RC1000 Board 175

B.1 FPGA . 175

B.2 Memory . 177

B.3 Clocks . 177

B.4 Data Transfers . 178

B.5 Memory Banks on RC1000 Board 178

B.5.1 Arbitration . 179

B.5.2 Memory Access . 179

C Host Communication 182

D Memory Creation on the Virtex FPGA chip and EDIF 184

D.1 EDIF . 186

E An Overview of the Simulation and Synthesis Process 189

E.1 An overview of Simulation Process 189

E.2 An overview of Synthesis Process 192

v

F Clock Domains 193

F.1 Two clock Domains in the implementations 194

Bibliography 197

vi

List of Tables

3.1 Summary of various neural hardware 38

3.2 Summary of various BP algorithm implementation on FPGA 67

3.3 Summary of various BP algorithm implementation on FPGA Cont’d 68

4.1 ANN application fields . 78

4.2 Benchmarks . 78

4.3 XOR function . 79

5.1 Pseudo-Random sequence of 3-bit LFSR 92

5.2 XOR data set experiments for 0.0022 ASE 104

5.3 IRIS data set experiments for 0.03 ASE 104

5.4 Cancer data set experiments for 0.016 ASE 105

5.5 Weight Updates per Second . 106

5.6 Gate Counts for Benchmarks . 107

6.1 Various Sigmoid Function Implementations 123

6.2 Arithmetic Units for 5-3-3 topology of Iris Data-Set 130

6.3 XOR data set experiments for 0.0022 Average Sum squared Error . 145

6.4 IRIS data set experiments for 0.03 Average Sum squared Error . . . 145

vii

6.5 Cancer data set experiments for 0.016 Average Sum squared Error . 145

6.6 Convergence Vs. Sigmoid function realization: XOR data set 146

6.7 Weight Update per Second . 147

6.8 Gate Counts for Benchmarks . 147

6.9 XOR data set experiments for 0.0022 ASE 159

6.10 IRIS data set experiments for 0.03 ASE 159

6.11 Cancer data set experiments for 0.016 ASE 160

6.12 Weight Update per Second . 162

6.13 Gate Counts for Benchmarks . 162

B.1 Jumper 2 settings for Clock . 177

B.2 Jumper 3 settings for Clock . 177

viii

List of Figures

1.1 Performance Vs. Flexibility for various computing machines 6

1.2 Overall Design Approach . 8

2.1 Interconnection network in FPGA and a basic logic block, with 4-

input LUT, carry chain and D-type flip-flop 14

2.2 Neuron . 19

2.3 Architecture graph of Feed-Forward 2-layer network 21

2.4 Basic structure of a hardware neuron connected to three synapses . 23

2.5 Logistic Function . 28

2.6 Hyperbolic Tangent Function . 29

3.1 Taxonomy of digital neurohardware 32

3.2 Computing (a + b) + (c * d) . 50

3.3 Initial minimum structure of Sigmoid for PWL through CRI 54

3.4 Example of a Pulse Frequency Modulated signal 60

4.1 Pseudo code for Back-Propagation in Software 73

4.2 Dual-Port BlockSelectRAM in Virtex and VirtexE FPGAs 75

4.3 The path for the development of the architectures 76

ix

4.4 A pair of (a) linearly and (b) non-linearly separable patterns 79

4.5 Non-linearity of XOR function . 79

4.6 ANN for Iris Data Set . 80

5.1 16 bit Fixed-Point Number . 89

5.2 3-bit LFSR . 92

5.3 Reduced Fixed point number to Sigmoid input 95

5.4 Computation of the BP algorithm in Serial Fashion 97

5.5 ASM for the Feed-Forward stage in SIPEX and SIPOB 99

5.6 Look-Up table for Sigmoid function implemented in BlockRam . . . 102

5.7 Comparison of Clock Cycles per weight in SIPOB 107

6.1 Link/Layer level parallelism . 111

6.2 Branch-In and Branch-Out Multiplication 113

6.3 Branch-In Multiplication . 114

6.4 Branch-Out Multiplication . 115

6.5 Multi-Input Adder module . 116

6.6 Branch-In Addition . 117

6.7 Sigmoid Function . 119

6.8 Approximated Sigmoid Function . 120

6.9 A Sigmoid Function module . 121

6.10 Weight Storage in BlockRAMs . 124

6.11 PAROI . 128

6.12 PAROO . 129

6.13 PARIO . 130

x

6.14 The basic structure of a partially parallel architecture 133

6.15 ASM for Neuron Accumulation module in PAROI and PAROO . . 137

6.16 ASM for Hidden layer Gradient module in PAROI 138

6.17 ASM for Weight update module in PAROI and PAROO 139

6.18 ASM for Hidden layer Gradient module in PAROO and PARIO . . 140

6.19 The need for the duplication of weights 141

6.20 ASM for Neuron Accumulation module in PARIO 143

6.21 ASM for Weight Update module in PARIO 144

6.22 A Fully Parallel ANN . 150

6.23 The basic structure of a fully parallel architecture 152

6.24 Initialization Module . 153

6.25 Neuron Accumulation Module . 153

6.26 Linear Sigmoid Function Module 154

6.27 Error and Output Gradient Module 155

6.28 Hidden Layer Gradient Module . 156

6.29 Weight Update Module . 157

6.30 Multiplication and Branch-In Adder Module 158

6.31 Convergence Graph for the XOR benchmark for various Learning

Rates . 163

6.32 Convergence Graph for the Iris benchmark for various Learning Rates164

6.33 Convergence Graph for the Cancer benchmark for various Learning

Rates . 165

B.1 The block diagram of RC1000 board 176

xi

B.2 Architecture of SRAM banks . 180

B.3 Timing Diagram . 181

C.1 Communication between the host and the RC1000 board 182

C.2 Communication between Host and FPGA 183

D.1 BlockRAMs on VirtexE FPGA . 187

D.2 BlockRAMs on Virtex FPGA . 188

E.1 Hardware Target Design Flow . 190

E.2 Simulation Design Flow . 191

F.1 Multiple Clock Domain Design . 195

xii

Chapter 1

Introduction

An Artificial Neural Network (ANN) is an information-processing system based on

generalization of the human-brain biology. A human brain is an extremely power-

ful biological computer that is capable of processing huge amount of information

in parallel. This can be inferred from observing the ease by which a human brain

performs tasks such as reading a hand-written note, recognizing a face and listening

to music, all simultaneously. A human brain achieves such multi-tasking by having

a large number of biological processing elements, called neurons. Neurons are inter-

connected through connection-links called synapses to transmit and receive signals.

A typical human brain consists of 100 billion neurons [http] and an average 1000

to 2000 synapses per neuron. Such biological architecture in a human brain makes

up a complex neural network (NN).

An ANN is a natural attempt at realizing multi-processor system similar to the

biological neural network. However, the human brain is order of magnitude more

complex than any ANN implemented so far. The building block of an ANN is the

1

CHAPTER 1. INTRODUCTION 2

artificial neuron or processing element. The network is composed of highly intercon-

nected artificial neurons by synaptic weights and it performs useful computations

through a process of learning. Such an architecture is usually implemented using

electronic components or simulated in software on a digital computer. The learning

process involves adjusting the magnitude of signals passing through synapses. Such

process, also called training, gives ANN an ’experience’ by storing and processing

information. One of the most common methods of training an ANN is the Error-

Backpropagation Algorithm [Rume86].

The importance of the ANN can be realized from its remarkable ability to derive

meaningful information from complicated or imprecise data and extract patterns

and detect trends. A trained ANN can be considered an ’expert’ in the category of

information it has been given to analyze. Some of the basic advantages include:

• Adaptive learning: An ability to learn based on ‘experience’.

• Self-Organization: An ANN can create its own representation of the informa-

tion.

• Parallelism: An ANN is an inherently parallel processing system and hence

special hardware devices can be designed to exploit this characteristic.

An important limitation of using ANNs in various applications is the lack of

clear methodology to determine the network parameters before training starts

[Nich03]. Also, the speed by which training can be carried out is slow for the

Back-Propagation algorithm [Hayk99]. Hence, for many real-time applications,

ANNs would not be a suitable computing platform. The lack of performance of

ANNs in terms of speed is largely attributed to its implementation on conventional

CHAPTER 1. INTRODUCTION 3

computers. A conventional computer is a sequential computing machine and hence

is unable to exploit the inherent parallelism of ANNs. All these limitations will set

up a foundation for the motivation behind the research work carried out in this

thesis.

1.1 Motivation and Objectives

ANNs have been successfully used in a wide variety of applications. Some of the

applications include: speech recognition, image processing, signal processing, com-

munication financial prediction and control system design. The Broad field of

application demands a computing platform which can efficiently compute ANNs

and at the same time retain flexibility to accommodate various topologies. In other

words, there is a constant need of establishing a trade-off between performance and

flexibility in computation for ANNs. The emergence of reconfigurable hardware,

Field Programmable Gate Array (FPGA), has promised to attend such need and

has been establishing a cost-effective computing platform for many applications.

1.1.1 Reconfigurable Computing

Currently a computing machine can be implemented on one of two platforms:

General Purpose Processor (GPP) and Application Specific Integrated Circuits

(ASICs). GPP can execute any set of instructions to perform a computation. By

changing the software instructions we can implement different algorithms without

changing the hardware. This imparts excellent flexibility for various applications.

For example, personal computers can run a range of applications like word process-

CHAPTER 1. INTRODUCTION 4

ing, spreadsheet data application, graphics and image related application as well as

highly computational intensive CAD tool applications all using the same processor.

The downside of this flexibility is that performance must be tuned for a target set

of programs and as such may not be optimum for any single program. The sec-

ond platform ASICs are custom-made computing solutions for specific applications.

They are very fast and efficient when executing the exact computation for which

they are designed [Comp00]. Examples include custom designed graphic processors

to speed up image processing applications, high speed wireless networking chips

and power ICs to name a few. ASIC design for hardware realization of any kind

of circuit has good performance and proves cost-effective when fabricated in large

volume. The main disadvantage of this approach is that minor design changes

require costly rebuilding of new chips. Thus the resources needed to design and

synthesize the circuit would not be justified in case of small production volume of

ASIC chips. ASIC is custom designed for target application and it has excellent

performance but lacks flexibility due to the aforementioned problem. Hence it can

be said that GPPs have higher flexibility but poor performance for specific ap-

plication whereas ASICs have higher performance for target application but poor

flexibility for general-purpose applications.

There is also another problem associated with GPP as well as with some ASICs

having own instructions set. They exhibit sequential nature in processing appli-

cations. This is because a processor has to fetch each instruction from memory,

decode it’s meaning and execute it to perform a task. This serial execution of

operation doesn’t efficiently utilize the whole hardware and hence an individual

operation has high overheads.

CHAPTER 1. INTRODUCTION 5

To circumvent these problems, researchers in hardware design started to focus

more on special kind of platform called “Reconfigurable Hardware” a decade ago

to implement computational operation. Reconfigurable hardware refers to large

scale Complex Programmable Logic Device (CPLD) or Field Programmable Gate

Array (FPGA) chips. Reconfigurable hardware promises an intermediate trade-off

between flexibility and performance. Reconfigurable computing utilizes hardware

that can be customized at run-time to facilitate greater flexibility without compro-

mising performance [Bond00].

An FPGA provides a means to implement general-purpose applications on cus-

tomized hardware in a cost-effective way. This will ultimately achieve potentially

higher performance than software while maintaining a higher level of flexibility

than hardware. Another striking characteristic of an FPGA is its ability to ex-

ploit the parallelism that any application may have. This is because FPGAs can

perform computations in parallel using many active computing elements simulta-

neously, rather than sequentially reusing a small number of computing elements, it

achieves higher throughput [Deho00]. The preceding discussion about performance

and flexibility of various computing machines can be shown in Figure 1.1.

1.1.2 Objectives

The objective of this thesis is to investigate a trade-off between performance and

flexibility in implementing the Back-Propagation (BP) algorithm of ANN on re-

configurable hardware FPGA. Since an FPGA is capable of exploiting the inherent

parallelism of ANNs, the main objective will be to design a fully-parallel archi-

tecture and validate it for various benchmarks. To achieve this goal the following

CHAPTER 1. INTRODUCTION 6

Programmable DSP

ASIC

GPPs

FPGA

Flexibility

Performance

Figure 1.1: Performance Vs. Flexibility for various computing machines

objectives are identified:

• Perform detail review of literature and analyze various approaches for the

implementation of ANNs on hardware.

• Get acquainted with Hardware Programming Language (Handel-C) and re-

configurable hardware platform such as RC1000 board with Virtex1000/Virtex2000e

FPGA chip.

• Generate sequential architectures of ANNs to be implemented on FPGAs and

evaluate/verify the architectures using several benchmarks.

• Generate partially parallel and fully-parallel architectures of ANNs and eval-

uate the performance in terms of area and performance.

CHAPTER 1. INTRODUCTION 7

Handel-C is a high level language based on ANSI C for the implementation

of algorithms on hardware [Celo03]. It allows rapid development of multi-million

gate FPGA designs and system-on-chip solution compare to high development time

required in VHDL. Handel-C allows software engineers to design hardware with-

out much training. They can quickly translate a software algorithm into hardware

without having to learn about FPGA in detail [Mart02]. For example, a designer

of Handel-C doesn’t need to explicitly design state machines to synchronize the

sequence of operations. Also, Handel-C automatically deals with clock which ab-

stracts away much of the complexity of hardware design. The compilation and

debugging time is very low in Handel-C compared to VHDL. However [SCoe04]

has reported that Handel-C design uses more resources on an FPGA and takes

more time to execute than a VHDL design. Figure 1.2 represents the overall design

approach followed in this research.

1.2 Contributions

The following are the architectures developed to achieve the goal of implementing

the BP algorithm on FPGA for the research work.

• Two Serial Designs: SIPEX and SIPOB1 developed, based on the storage of

the initial parameters

• Three Partially Parallel Designs: PARIO, PAROO and PARIO developed,

based on the variety in the computation of Multiply-Accumulate for each

1Acronyms are described in Appendix A

CHAPTER 1. INTRODUCTION 8

Develop and Test

Software Implementation

Develop Sequential

Designs in Handel−C

Identify

Bottlenecks/Challenges

Develop Partially

Parallel

Designs in Handel−C

Develop Fully

Parallel

Designs in Handel−C

Compare Speed−Area

Performance

Identify Design

Parameters

Implementation of the Back−Propagation Algorithm

Figure 1.2: Overall Design Approach

CHAPTER 1. INTRODUCTION 9

stage of the algorithm

• A Fully Parallel Design: FPAR was developed to achieve high performance

• Publication of the above mentioned research in the International Conference

on Reconfigurable Computing and FPGAs, ReConFig’05 [VP05]

All of the above architectures are validated for three benchmarks:

• XOR data set: A smaller benchmark (toy problem) with network size of (3-

3-1)

• Iris data set: A comparatively medium benchmark (toy problem) with net-

work size of (5-3-3)

• Cancer data set: A larger benchmark (Real-World problem) with network

size of (10-11-2)

The FPAR architecture was not validated for the Cancer data set because of the

large hardware resources required due to synthesis. One of the important contri-

bution of the research work is the development of clear methodology for designing

partially and fully parallel architectures. Such methodology will provide basic foun-

dation on which future work can be based to further explore implementations of

ANNs.

Various results are obtained by successfully implementing the above mentioned

architecture on Virtex2000E FPGA chip. The results are analyzed for performance

based on the Weight Updates per Second (WUPS), the speed and the gate counts.

The software runs for the BP algorithm for the same benchmarks are carried out

on Dual-Processor PIII 800MHz PC.

CHAPTER 1. INTRODUCTION 10

1.3 Thesis Outline

The rest of the thesis is organized as following:

Background describes the basics of reconfigurable computing and such platform

consisting of FPGA. It also describes the basics of Artificial Neural Networks

(ANN) and the BP algorithm.

Literature Review reviews the various implementations of ANNs on hardware.

The chapter is divided into the ASIC and FPGA implementations of ANNs.

The section on FPGA implementation of ANNs is further divided to focus

more on the BP algorithm realization.

Experimental Setup describes various system specifications related to hardware

and software designs. It also describes the benchmarks used to validate the

hardware and software implementations of the BP algorithm.

Serial Architectures proposes several serial architectures for the BP algorithm.

The results obtained by validating the architectures for various benchmarks

are analyzed in detail. It also explains the Lookup Table (LT) approach for

the implementation of the sigmoid function.

Parallel Architectures proposes several partially parallel and a fully parallel ar-

chitectures for the BP algorithm. It introduces the concept of Branch-In and

Branch-Out mode of multiply-accumulate. A detail analysis is given for the

results obtained by validating the benchmarks.

CHAPTER 1. INTRODUCTION 11

Conclusion and Future Work concludes the thesis by describing the contribu-

tions made through the research work and some directions on the future work.

Chapter 2

Background

This chapter will shed some light on the background related to Artificial Neural

Networks (ANNs) and reconfigurable computing platform in the form of Field Pro-

grammable Gate Arrays (FPGAs). The basics of the Back-Propagation algorithm

will also be described in this chapter and the mathematical formula will be discussed

in detail.

2.1 Field Programmable Gate Array

FPGAs are integrated circuits that consist of arrays of configuration logic blocks

(CLBs) with an interconnection network of wires. Both the logic blocks and the

interconnection networks are configurable [Bond01]. These devices can be config-

ured and re-configured by the system designer through CAD tools, rather than by

the chip manufacturer [Xili93].

Evolution of FPGAs resembles much more with memory structures. The fuse

12

CHAPTER 2. BACKGROUND 13

based FPGAs came to existence first and it was analogous to PROM structure.

Other fuse based structure followed were Programmable Logic Array (PLA) and

Programmable Array Logic (PAL). Generally all these fuse based structures are

classified under the common term of Programmable Logic Device (PLD). Some of

the limitations associated with PLDs caused an emergence of RAM-based (volatile)

FPGAs. Currently available FPGAs are of this type in which programming a

RAM bits of CLB, a configuration can be achieved. FPGAs started to become

available in the late 80’s and in early 90’s. Since then researchers/designers began

to see reconfigurable computing engines enabled by FPGAs. While reconfigurable

architectures have only recently begun to show significant application viability,

the basic ideas have been around almost as long as the idea of programmable

general-purpose computing. In 1966 Jon Von Neuman, who is generally credited

with developing the conventional model for serial, programmable computing, also

envisioned spatial computing automata- a grid of simple cellular, building blocks

which could be configured to perform computational tasks [Deho96]. Minnick in

1971 reported a programmable cellular array using flip-flops to hold configuration

context. The turning point for reconfigurable hardware realized into an FPGA

appeared when it was possible to place hundreds of programmable elements on

a single chip [Deho96]. As Moore’s law states: “the number of transistors on an

integrated circuit would double approximately every 18 months”, today it is possible

to see FPGA with more than 10 million gates on a single chip.

CHAPTER 2. BACKGROUND 14

2.1.1 Structure of FPGA

Most current FPGAs are SRAM-based. This means that SRAM bits are connected

to the configuration points in the FPGA, and programming the SRAM bits will

tend to configure the FPGA. A typical FPGA has a logic block with one 4-input

LUT (Look up table), an optional D flip flop, and some form of fast carry logic.

The LUTs allow any function to be implemented, providing generic logic. The

flip-flop can be used for pipelining, registers, state holding functions for finite state

machines, or any other situation where clocking is required [Comp00]. Figure 2.1

shows the basic structure of a logic block of an FPGA.

CLB

CLB CLB

CLB

{

{

Horizontal
routing
channel

Vetical routing channel

Switching
Matrix

I1 I2 I3 I4

OUT

DFF

4−LUT

Carry Logic

Cin
Cout

Figure 2.1: Interconnection network in FPGA and a basic logic block, with 4-input
LUT, carry chain and D-type flip-flop

CHAPTER 2. BACKGROUND 15

2.1.2 Coupling and configuration approaches for FPGA

Reconfigurable systems are usually formed with a combination of reconfigurable

logic and a general-purpose microprocessor. The processor performs the operations

that cannot be done efficiently in the reconfigurable logic, such as loops, branches,

and possibly memory accesses [Comp00]. There are three different approaches for

FPGA to function in combination with the host processor. In the first approach,

a reconfigurable unit may be used as a coprocessor. In this case the coprocessor

performs computations without the constant supervision of a host processor. The

host processor initializes the reconfigurable hardware and sends necessary data for

computation and coprocessor works on it independently [Comp00]. Such integra-

tion allows in most case for both host and reconfigurable hardware to function

simultaneously due to less overhead of communication. This approach based on

combining a reconfigurable hardware to the host processor is called ‘tightly’ cou-

pled reconfigurable system. In the second approach, a reconfigurable unit can be

used as an attached processing unit. This is a less tighter configuration compared to

the first one. In this approach, host processor’s memory cache is not visible to the

attached reconfigurable unit. There is, therefore, a higher delay in communication

between the host processor and the reconfigurable hardware, such as when com-

municating configuration information, input data and results [Comp00]. However

such configuration allows for higher independence for computation as more CPU

bound operations can be shifted to the attached hardware. The third approach,

the most ‘loosely’ coupled form of combination, is an external stand alone reconfig-

urable hardware. This type of hardware communicates infrequently with the host

CHAPTER 2. BACKGROUND 16

processor. Each of these approaches has its advantages and disadvantages. The

tighter the integration of reconfigurable hardware with the host processor the more

it can be used in application with less overhead of communication. However it can

not operate independently for significant amount of time without an interruption

from the host. In addition, the amount of reconfigurable logic available in ‘tightly’

coupled form of hardware is often quite small. The more loosely coupled styles allow

for greater parallelism in program execution, but suffer from higher communication

overhead [Comp00]. This form of coupling is well suited for application in which

a portion of computation can be done in reconfigurable hardware for long period

of time without a great deal of communication. For a system in which there is a

tight coupling between host and reconfigurable hardware, it is extremely necessary

to divide the tasks to be performed in software and hardware. Such method of

implementation falls into hardware-software co-design for computation.

There are two different approaches for implementing reconfigurable logic on

FPGA chips. These are widely known as Compile Time Reconfiguration (CTR)

and Run Time Reconfiguration (RTR). CTR is a static implementation strategy

where each application consists of a single configuration. RTR is a dynamic imple-

mentation strategy where each application consists of multiple co-operating config-

uration [Deho00]. In CTR, once an operation commences the configuration doesn’t

change during processing. This approach is very similar to implementing an ap-

plication in ASIC. Whereas RTR uses dynamic allocation scheme that re-allocates

hardware during the execution of an application [Hutc95]. Each application con-

sists of multiple time-exclusive configurations for the FPGA. These configurations

are loaded during run-time of an application on the FPGA chip successively. This

CHAPTER 2. BACKGROUND 17

causes realization of new hardware for each configuration for particular portion of

an application. There are two models of RTR: Global and Local. Global RTR

allocates the whole FPGA resources (entire chip) for each configuration step. This

results in new hardware realization on FPGA during each configuration at run-time.

The designer’s task in implementing an application in global RTR is to divide the

application into roughly equal sized time-exclusive partitions to efficiently use the

resources on FPGA [Hutc95]. This is also called temporal partitioning of an ap-

plication. In local RTR, an application locally reconfigures subsets of the logic as

the application executes. It may configure any percentage of the reconfigurable

resources at any time. The organization of local RTR applications is based more

on a functional division of labor than the phased partitioning used by global RTR

applications [Deho00]. Once manual temporal partition is decided then global RTR

can be easily implemented. The local RTR implementation approach is presently

not available in CAD tools.

2.2 Artificial Neural Networks

For long Neurophysiologists, Neurosurgeons and psychiatrists all have put tremen-

dous effort to understand the structure of the human brain and its inherent ability

to build up its own rules through learning. Still much is unknown about how brain

trains itself to learn the information and store this knowledge as generally can be

referred as an “experience”.

In the human brain typical ‘neurons’, which are the basic processing elements

collect signal from the nervous system of the body through a host of fine structures

CHAPTER 2. BACKGROUND 18

called ‘dendrites’. The neurons send out spikes of electrical activities through a

long, thin wire known as an ‘axon’ which splits into thousands of branches. At the

end of each branch, a structure called ’synapse’ converts and imposes these activities

as ‘excitation’ or ‘inhibition’ on connected neurons. Consequently these neurons

propagate this information down to its axon. Learning occurs by changing the

effectiveness of the synapses so that the influence of a neuron on another changes.

Thus the brain, which is a neural network, is highly complex, nonlinear and parallel

computer. It has the capability of organizing neurons and modifying the scale of

electrical activities in synapses to perform certain computations. Figure 2.2 shows

the structure of a biological neuron.

Typically, neurons are five to six orders of magnitude slower than silicon gates;

events in a silicon chip occur in the nanosecond range, whereas biological neural

events occur in the millisecond range [Hayk99]. However the brain compensates for

the slow performance by having a staggering numbers of neurons and massive par-

allelism of activities between them. This has made the brain an extremely powerful

biological computer to outclass the fastest digital computer so far in performing

certain computations. Thus in the last two decades many artificial intelligence re-

searchers have shifted focus to realize brain like artificial neural network architecture

implementation on GPP or ASIC. The motto behind this move is the constrained

capability of the digital computer to operate the task sequentially. Conventional

computers use an algorithmic approach i.e. the computer follows a set of instruc-

tions in order to solve a problem. This algorithm/program is controlled by a single,

complex central processing unit, which carries out execution of instructions one at

a time, and store information at specific locations in memory. This is considered

CHAPTER 2. BACKGROUND 19

Figure 2.2: Neuron

quite insufficient in performing certain tasks.

Artificial neural network on the other hand processes the information in a similar

way the human brain does. Thus we can adopt the following definition for artificial

neural network viewed as an adaptive machine,

“An artificial neural network is a massively parallel distributed processor that has

natural propensity for storing experimental knowledge and making it available for

use. It resembles the human brain in two aspects:

• Knowledge is acquired by the network through a learning process.

• Inter-neuron connection strengths known as synaptic weights are used to store

the knowledge.” [Hayk99].

The process used to perform the learning is called a learning algorithm, the function

of which is to modify the synaptic weights of the network in an orderly fashion so

as to attend a desired design objective.

CHAPTER 2. BACKGROUND 20

ANNs have been used in many tasks such as speech, vision and knowledge

processing. ANNs also demonstrated their superior capability for classification and

function approximation problems. It also has great potential for solving complex

problems such as systems control, data compression, optimization problems and

pattern recognition.

2.2.1 Learning in Artificial Neural Network

There are several algorithms that have been devised to teach an ANN and ac-

cumulate the experience through training. These include Error-back-propagation

algorithm [Rume86], Radial basis function network [Broo88], boltzman learning al-

gorithm to name just a few. The basic fundamental idea behind all these algorithms

is the representation of knowledge in the form of training patterns to make network

understand and organize its synaptic weights. This knowledge or training is the

collection of several records of the data we wish to analyze, the network will run

through them by feeding into neurons and learn how the inputs of each record may

be related to the result. The very nature of each record or input depends on the

kind of application the user is using. The network then continually refines itself

by changing synaptic weights connecting various neurons until it can produce an

accurate response when given those particular inputs. After training several cases,

the network begins to organize itself to fit the data, much like a human brain learns

from example. If there exists any consistent relationship between the inputs and

result of each record, the network should be able to create internal mappings of

weights. Thus the change in synaptic weights drives the network to such a state

of ’experience’ that later on it would be able to produce the correct output when

CHAPTER 2. BACKGROUND 21

different input patterns (not encountered during learning) are applied. This char-

acteristic is widely known as generalization.

The Learning of a network can be achieved in ‘supervised’ or ‘unsupervised’

manner. Supervised learning involves applying training examples consisting of in-

put signals and corresponding desired responses. Whereas unsupervised learning

involves applying input signals only. The set of training patterns applied to a net-

work is called an “Epoch”. In training mode several epochs of patterns are applied

to a network. Generally patterns are randomized for every presentation of an epoch

to the network.

2.2.2 The Back-Propagation(BP) Algorithm

V2

Y
1

Y
2

V
1

V
1

V2

Y
1

Y
2

d
1

d
2

� ��

� ��

� �
� �

�
�

� ��

� �	 	

� �

� �

� �
� �
� �
� �

� ��

� ��

� ��

� ��

� ��

� ��

� ��

� �� �

 ! !

" "# #

$ $% %

& &'

(()

* *+

, ,-

.

.

.

.

.

.

.

.

.

.

.

.

/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /
/ / / / /

0 0 0 0 0 01 1 1 1 1 1
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 2 2 2

3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 3 3 3

4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4
4 4 4 4 4 4 4

5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5
5 5 5 5 5 5 5

x1

x2

xp

Σ

 Σ

 Σ

 Σ

 Σ

 Σ

 ϕ(.)

ϕ(.)

ϕ(.)

ϕ(.)

ϕ(.)

ϕ(.)

W: Weight Vector W: Weight Vector

Threshold=1 Threshold=1

d: Expected Output Vector

Input Layer Hidden Layer Output Layer

Figure 2.3: Architecture graph of Feed-Forward 2-layer network

A Multilayer feed forward network consists of an input layer, hidden layer and

CHAPTER 2. BACKGROUND 22

an output layer. This is also commonly known as multilayer perceptrons (MLPs).

MLPs have been applied successfully to solve some difficult and diverse problems by

training them in supervised manner with the “Error Back-propagation” [Rume86].

MLPs have distinctive characteristics of nonlinearity and high degree of connec-

tivity between different layers of network, determined by weights. Nonlinearity at

each layer of the network is satisfied by nonlinear transfer function. This activation

function has limiting value between 0 and 1.

Figure 2.3 shows the multilayer perceptrons for the Back-Propagation algorithm.

The Error back-propagation process consists of two passes through the different

layers of the network: a forward pass and backward pass. The synaptic weights,

weight vector [W], are initialized to store random values. In forward pass a training

pattern, a input vector [x], is applied to the input layer of MLPs. Input vector

is multiplied with synaptic weights and all multiplied values for each neuron are

accumulated. This generates neuron output or multiply-accumulate vector [V]. It

is passed through activation function generator to generate output within range

of 0 and 1 which also serves as an input to the hidden layer. Finally a set of

output is produced in response to the input at the output layer. During this

pass all weights remain fixed. Error is calculated by subtracting actual output

response from the desired output vector. In backward pass this error signal is back

propagated through output layer first and then hidden layer to generate gradients

for each layer. In weight update stage of the algorithm, gradient values along with

learning rate are used to generate change in weight values for the pattern. Once

all synaptic weights are updated a pattern is applied again and all the stages are

repeated again.

CHAPTER 2. BACKGROUND 23

Figure 2.4 shows a structure of a neuron in hardware connected to three synapses.

Input1

Input2

Input3 Accumulation

Neuron Output

Multiply−Accumulate

Synaptic Weight1

Synaptic Weight2

Synaptic Weight3

NonLinear Activation Function

Figure 2.4: Basic structure of a hardware neuron connected to three synapses

2.2.3 The Back-Propagation Parameter Setting

There are couples of parameters, which are important in implementing error back-

propagation: rate of learning and momentum term. The error back-propagation

algorithm changes the synaptic weights for different connections between neurons

in different layers. Steepest descent is the method to find the trajectory in weight

space starting from some random initial solution. The smaller the learning rate

parameter η, the smaller the change in weights in each iteration and smoother the

trajectory in weight space. Hence a network will learn slowly but search more

weight space meticulously. If learning rate parameter is too high, it will speed

up the learning of network resulting in large change in synaptic weights. This

can sometimes lead to an oscillatory behavior of network. A simple method of

CHAPTER 2. BACKGROUND 24

increasing the rate of learning and avoiding instability is to include a momentum

term to weight correction rule. In general weight correction rule can be given as

[Hayk99],

4Wij(n) = α4Wij(n− 1) + ηδ(n)y(n) (2.1)

where, 4Wij: change in weights for connection between neuron i and j in different

layer

α: Momentum term

η: Learning rate parameter (LR)

δ: Local gradient in weight space

y: Input to connection

n: Input pattern number

Momentum term is usually a positive number. It controls the feedback loop acting

around 4Wij. For adjustment of weight function to be convergent momentum

constant must be restricted to the range 0 < α < 1. Inclusion of momentum

in the back-propagation algorithm tends to accelerate descent in weight space in

steady downhill directions. This indirectly has stabilizing effect in case of oscillation

around minima. Momentum and learning rate parameters are typically adjusted

(usually decreased) as the number of iteration increases.

Hence, from the preceeding discussion and the Figure 2.3, the back-propagation

algorithm can be summarized as follows:

1. Initialization: Choose the topology of the network and randomly select all

weights and thresholds for connections in range of [-1,1].

2. Presentation of training examples: Present the network with an epoch

CHAPTER 2. BACKGROUND 25

of training examples. For each example in the set ordered in some fashion,

perform the forward and backward computation.

(a) Forward computation: Let a training example in an epoch be denoted

by [X,d], with input vector X applied to the input layer of nodes and ‘d’

is the expected output vector. The net internal activity of neurons of

the hidden layer can be written as:

Vj(n) =
p∑

i=1

(WjiXi + Threshold) (2.2)

where i is the previous layer of network to layer j and p is the number of

nodes in layer i. These outputs are passed through a sigmoidal function.

Hence the output of the hidden layer which also becomes input for output

layer can be given as:

Yj(n) =
1

(1 + e−Vj(n))
(2.3)

As this is propagated to the next layer, the output of which can be

calculated from equation 2.2 and 2.3. For every node in the output

layer, the error is calculated as,

ej = dj(n)− Yj(n) (2.4)

where j is the node in output layer

(b) Backward computation: By proceeding backward compute the local

CHAPTER 2. BACKGROUND 26

gradients.

(i) For output layer,

δj = ej(n)Yj(n)[1− Yj(n)] (2.5)

where j is the node in output layer and Yj is the actual output of

node j in output layer.

(ii) For hidden layer gradient can be given as,

δp = Yp(n)(1− Yp(n))
∑

k

δk(n)Wkp(n) (2.6)

where p and k are the nodes in the hidden and the output layer

respectively.

(c) Adjust the weights: Weights are adjusted as per the following formula,

∆Wji(n) = ηδ(n)y(n)

Wji(n + 1) = Wji(n) + ∆Wji(n)
(2.7)

where j is the node in next layer to i.

(d) Iteration: Iterate the whole process by presenting epoches of training

patterns until the average squared error of whole network over the entire

training set reaches an acceptably small value.

CHAPTER 2. BACKGROUND 27

2.2.4 Transfer Function

Computational elements or nodes in ANNs are characterized mainly by the type of

non-linearity they implement. In multi-layer perceptrons usually this non-linearity

is imparted by using an activation/Transfer function at output of each neuron.

Common examples of activation functions include Threshold (hard-limiter or step

function), pseudo-linear (ramp) functions, hyperbolic tangent functions and sigmoid

functions [Hert91]. A nonlinear activation function commonly used in (MLPs) is

the sigmoidal nonlinearity, a particular form of which is defined by the logistic

function

f(x) =
1

1 + e−βx
(2.8)

where, −∞ < x < ∞
The sigmoid function outputs a value that is close to zero for a low total input

value and close to one for a high input value. β is a threshold (scale) value that

can make the slope between zero and one steeper or shallow. Equations 2.3 and 5.2

are same when β = 1.

Figure 2.5 shows a plot of the logistic function.

The derivative of this function is

f ′(x) = f(x)× (1− f(x)) with β = 1

The non-linearity of the sigmoid function is important, since it helps make output

reachable to desired value. If the transfer function used is linear, each of the neuron

inputs would get multiplied by the same proportion during training. This could

CHAPTER 2. BACKGROUND 28

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.5: Logistic Function

cause an entire system to drift in weight-error space during training.

The hyperbolic function counterpart to the sigmoid is the hyperbolic tangent(tanh)

function. The hyperbolic tangent produces output in -1 to 1 range symmetric to

on both sides of zero. It can be described as following:

f(x) = tanh βx =
1− e−βx

1 + e−βx
(2.9)

The derivative of tanh function is

f ′(x) = (1− f 2(x)) with β = 1

CHAPTER 2. BACKGROUND 29

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Hyperbolic tangent sigmoid function

Figure 2.6: Hyperbolic Tangent Function

For most modeling tasks of the back-propagation algorithm, the sigmoid func-

tion is considered to be a baseline transfer function to measure results. The sigmoid

function will generally produce the most accurate model however it is slower in

achieving convergence [Chan04]. In certain models the use of tanh exhibits faster

learning but not so accurate results. Most of the researchers have chosen the sig-

moid function as transfer function for their implementation of the back-propagation

algorithm on hardware.

CHAPTER 2. BACKGROUND 30

2.3 Summary

In this chapter the background related to the Field Programmable Gate Arrays

and Artificial Neural Networks was described. Various configuration approaches of

an FPGA were explained in detail. The basics of Artificial Neural Networks was

described and detail formula for the back-propagation algorithm was explained in

later part of the chapter.

Chapter 3

Literature Review

There has been several attempts to implement an Artificial Neural network (ANN)

on hardware. In the next few sections, we will examine different approaches used

for realizing an ANN on hardware. In section 3.1 we will discuss various imple-

mentations of an ANN on ASICs. Section 3.2.1 will review the implementation

of some of the algorithms of an ANN on the FPGAs. Section 3.3 will discuss the

implementation and performance related issues of the back-propagation algorithm

on FPGAs.

3.1 Neural Hardware

Over the past few years, the development of dedicated neural hardware for various

applications has been carried out to speed-up ANN algorithms. The goal was

to achieve better performance over general purpose system by processing ANN

algorithms in parallel. Researchers have interchangeably described the term neural

31

CHAPTER 3. LITERATURE REVIEW 32

Digital Neurohardware

Accelerator Boards NeuroComputerNeuroChips

Microprocessor peripherals

Neurochips GP processor

Neurochips GP processorStandalone

Figure 3.1: Taxonomy of digital neurohardware

hardware as neurohardware in various literature.

Today, there is a wide range of commercially available neural network hardware

in the market. There is a huge diversity between the designs of these neurohard-

wares. The designs differ in various aspects such as architecture, type of the ap-

plications, numerical representation etc. Hence, for the better evaluation of the

existing neurohardware some kind of taxonomy is required. The categorization of

neurohardware is subjective and differs widely in existing literature. Our interest

of study is based on the taxonomy of digital neurohardware proposed by [Scho98].

Digital neurohardware can be classified by: system architecture, degree of paral-

lelism, neural network partition per processor, inter-processor communication and

numerical representation. The basic classification of neurohardware can be given

by Figure 3.1.

The neurohardware system architectures range from single stand-alone neu-

CHAPTER 3. LITERATURE REVIEW 33

rochip to full-fledged microcomputers [Scho98]. The heart of the neurohardware

system is neurochip which can serve as a stand-alone or microprocessor peripheral.

Accelerator boards are custom neuroprocessor boards generally connected to a PC

or workstation. Generally, accelerator boards are equipped with neurochip and

general processor. Neurocomputers are dedicated machines developed solely for

implementing neural functions. In the 80’s the basic idea of neurocomputer design

is to connect many general processors in parallel to allow for fast processing. The

emergence of the neurochips for implementing neural network algorithms made it

possible to design neurocomputers consisting of only neurochips.

Various architectures also differ in flexibility with which it can implement par-

allelism. The higher number of processing elements provides higher degree of paral-

lelism but at the cost of expensive chip-area. Depending on the number of process-

ing elements employed in the system, neurohardware can be classified from coarse

grained with fewer number of processing elements to fine-grained with almost one-

to-one implementation of processing nodes [Scho98].

Digital neurohardware also vary in numerical representation of arithmetic opera-

tions. Floating point implementations give higher precision but it is area consuming

and complex in implementation. Fixed point arithmetic is less complex and less

area consuming but it has lower precision. The fixed-point arithmetic can prove

beneficial when an ANN algorithm does not require high precision for implementing

certain applications. Other numerical representations such as pulse stream coding

are also used. There are several ways to map an ANN on processing elements. This

can be done by mapping neuron (n-parallel), synapses (s-parallel) or whole network

in parallel to each processing element. The key concepts of an efficient mapping

CHAPTER 3. LITERATURE REVIEW 34

are load balancing, minimizing inter-PE communications and less requirement of

synchronization between the PEs (Processing Elements) [Scho98]. In general, there

exist different types of neurohardware for an ANN algorithm implementation. The

choice of architecture depends on the application and an intended ANN algorithm.

In the following sections we will look into several examples of well-known neu-

rochips, accelerator boards and neurocomputers.

3.1.1 Neurocomputers build from digital neurochips

Digital neural ASICs are the most powerful and mature neurochips. Digital im-

plementation offers high precision, reliability and high programmability compare

to its analog counterparts. Following are the few examples of neurcomputers build

from the neurochips of some well-known vendors.

CNAPS: [Scho98]

CNAPS (Connected Network of Adaptive Processor) is a very well known neuro-

computer from Adaptive Solutions INC. Basic building block of this neurocomputer

is N6400 neurochip which consists of 64 PEs. These PEs are connected in cascade

by a broadcast bus in a SIMD (Single Instruction Multiple Data) mode. PEs employ

fixed point arithmetic for adders and multipliers. The standard system consists of

four N6400 chip on a board controlled by a sequencer chip. Each PE is equipped

with 4Kbytes of on chip SRAM to hold weights. There are also available two 8 bit

buses to allow input and output data broadcasting. The ANN is mapped n-parallel

on this chip to efficiently use limited capacity of data buses. One of the main fea-

tures of this architecture is its capability to implement various algorithms including

backpropagation, Kohonen self-organizing maps as well as image processing algo-

CHAPTER 3. LITERATURE REVIEW 35

rithms. Another advantage of this architecture is the scalability as additional N6400

chips can be easily added. Performance in implementation of an ANN algorithm is

generally measured in Connections Per Second (CPS). This architecture is claimed

to perform 1.6 GCPS (back-propagation) for 8 and 16 bit weights and 12.8 GCPS

for 1 bit weights. The developers claimed in 1994 that the CNAPS was the world’s

fastest learning machine.

SYNAPSE-1 [Scho98]

The basic building block of SYNAPSE-1 (Synthesis of Neural Algorithms on a par-

allel systolic engine) is Siemens’ MA-16 neurochip. It consists of eight MA-16 chips

connected in two parallel rings controlled by Motorola MC68040 processors. This

forms 2-dimensional systolic array of MA-16 chips arranged in two rows with four

columns. The weights are stored in off chip 128Mb DRAM. The neuron trans-

fer functions are calculated off-chip using look-up tables. An ANN algorithm can

be implemented with 16 bit fixed point numerical representation. Several algo-

rithms including backpropagation and Hopfield network have been successfully im-

plemented on the SYNAPSES-1.

Hitachi WSI [Heem95]

This is a wafer scale integration architecture aimed at implementing back-propagation

learning. On each silicon wafer (0.8µm CMOS technology) 144 neurons are inte-

grated. Eight silicon wafers are connected by a time-sharing hierarchical bus struc-

ture. Weights are stored with 16 bit precision, while activation values have a fixed

9-bit precision. Each neuron is mapped to a PE that contains one multiplier, sev-

eral adders and local on chip memory. Interconnection between neurons is achieved

by a global data bus while synchronization of processing units is achieved by a

CHAPTER 3. LITERATURE REVIEW 36

global control bus. NETtalk benchmark was run on Hitachi WSI with 203 inputs,

64 hidden units and 26 output units, resulting in a performance of 150MCUPS.

3.1.2 Accelerator boards built from digital neurochips

Accelerator boards are widely used neurohardware because they are cheap, simple

to connect to PC or workstation and easy to use. Accelerator boards generally

supplied with user friendly software tools. It can achieve speed one order of magni-

tude higher than sequential implementation. Generally accelerator boards work in

conjunction with PC as it can reside in the expansion slot (compatible with ISA or

PCI) of the PC or workstation. We will now review some commercially available

accelerator boards.

Ni1000 Recognition Accelerator Hardware: [hinT]

Ni1000 is a high speed classification engine for pattern recognition developed by

Nestor/Intel Corp. This recognition accelerator is a PC add-on board that has

been specifically developed for optical character recognition applications. Its ar-

chitecture consists of classifier, 16-bit microcontroller (Harvard architecture) and

bus interface to the host PC. The chip is compatible with commonly used RBF

algorithm like Restricted Coulomb Energy (RCE) as well as back-propagation al-

gorithm. The microcontroller has got 4k x 16 programmable flash memory to store

controller program, 256 x 16 general RAM and 32 bit timer. The Classifier consists

of math unit, distance calculation units (512) and Prototype Array (PA). The math

unit operates on 16-bit floating point (10-bit mantissa and 6-bit exponent) num-

bers. The Prototype Array (PA) of classifier stores upto 1000 prototypical vectors.

The distance calculation units to calculate distance between input vectors and pro-

CHAPTER 3. LITERATURE REVIEW 37

totype array of vectors. The accelerator can accept input vectors with maximum of

256 feature dimensions (5 bits each) and outputs up to 64 classes. Due to the tight

coupling between the PA and distance calculation unit, Ni1000 can classify 33,000

patterns per second. Ni100 is claimed to perform 8.2 billion CPS in pipelined op-

erating mode with 33 MHz clock.

NT6000 [Heem95]

NT6000 accelerator card is a neural network plug-in PC card that fulfill the need

for intelligent data acquisition [Heem95]. They are generally equipped with DSP

processor to speed up neural processing to 2 MCPS. The implemented neural net-

work algorithms on this system are back-propagation and Kohonen maps.

IBM ZISC [Heem95]

ZISC (Zero Instruction Set Computer) is a neurochip developed by IBM. It is mainly

used for pattern recognition applications. A single ZISC chip holds 36 neurons or

prototypes to implement an RBF network trained with RCE (or ROI) algorithm.

Currently ZISC ISA and PCI cards are available to work as plug-ins to PC. The

ISA card holds 16 ZISC chips with 576 prototypes. The PCI card can hold 19 chips

with 684 prototypes. PCI cards can process 165,000 patterns per second, where

patterns are 64 8-bit element vectors.

In summary, we have reviewed neural hardware on custom built computers

that could be either neurochip or accelerator board. The main goal of building

such computer as can be observed from the data is to achieve high performance.

Following table summarizes various neural hardware implementations with respect

to the speed, the algorithm implemented and the type of the computer.

CHAPTER 3. LITERATURE REVIEW 38

Neural Hardware Type Algorithm Performance No. of Processing
Elements/chip

CNAPS Neuro-Chip Back-Propagation 1.6 GCUPS 64
Self-organizing Map Max.

SYNAPSE-1 Neuro-Chip Back-Propagation 33 MCUPS Not
Hopfield Network mentioned

Hitachi WSI Neuro-Chip Back-Propagation 150 MCUPS 144
Ni1000 Accelerator Back-Propagation 8.2 GCUPS Not

Board RBF network Max. mentioned
NT6000 Accelerator Back-Propagation 2 MCPS Not

Board Kohonen map mentioned
IBM ZISC Accelerator RBF network Not 36

mentioned

Table 3.1: Summary of various neural hardware

3.2 ANN implementations on FPGAs

The ongoing revolutionary progress of microelectronics is the driving force behind

the constant development of new technical products. FPGAs are such kind of

innovation in the microelectronics for the computing applications. In the last decade

it has become common to realize computationally expensive algorithms on the

FPGAs. The continuous growth in the FPGA’s density has made possible to build

system-on-chip designs with a complexity of more than a million gates and an

internal RAM. Therefore, more recently the FPGAs have also proved an attractive

hardware platform for an area consuming ANN algorithms. Another advantage of

this device is its ability to combine programmability with the increased speed of

operation associated with parallel hardware solutions [Lysa94]. Various advantages

of implementing the ANN algorithms on the FPGAs than ASICs were discussed in

the previous chapter. In the next section we will review various implementations

CHAPTER 3. LITERATURE REVIEW 39

of ANN algorithms like SOM, RBF, associative memory on the FPGAs. Section

2.2 will describe various implementation of the error back-propagation algorithm

on the FPGAs.

3.2.1 Mapping Algorithms onto FPGAs

With respect to functionality an ANN can be distinguished for association, classifi-

cation and approximation [Poor02]. [Poor02] implemented an algorithm on FPGAs

for each functionality. They used dynamically reconfigurable hardware accelerator,

RAPTOR2000, to implement algorithms that are required for special application.

The RAPTOR2000 system consists of a motherboard and up to six application

specific modules. The motherboard provides communication infrastructure for the

modules to host via PCI bus. The six modules are connected in ring topology

for inter-communication. Each module consists of Xilinx Virtex XCV1000 FPGA

chip and 256Mbytes of SDRAM. All modules are connected to common local bus

for communication with other devices or modules and for communication with the

host via PCI bridge. The PCI bus bridge can work in slave serial mode in which

host configures the modules initially by downloading bitstream into the FPGAs.

An additional broadcast bus can be used for simultaneous communication between

the modules. For fast memory access of the host system, a dual port SRAM is used

which can be accessed by all modules. The reconfiguration of the module on the

RAPTOR2000 can be started by the host computer. The RAPTOR2000 is claimed

to have reconfiguration time of 20ms for each module.

[Poor02] chosen SOM (Kohonen maps) for classification task, NAM (Neural As-

sociative Memory) for association task and RBF for function approximation task

CHAPTER 3. LITERATURE REVIEW 40

to implement on the RAPTOR2000 system. For implementation of SOM five mod-

ules are applied. Four modules are used for implementing a matrix of PEs while

the fifth module is used as a matrix controller. The dual port SRAM is used to

store the input vectors. Using XCV1000 devices total 64 processing elements can

be achieved on a single module. In this case [Poor02] achieved the performance

of 11.3GCPS which is far better than 80MCPS achieved on a personal computer

(AMD athelon, 800MHz). [Poor02] also implemented the SOM algorithm on RAP-

TOR2000 system using different Xilinx Virtex devices. Arithmetic operations are

carried out in 16-bit precision fixed point representation. For the implementation

of NAM, RAPTOR2000 system is equipped with six modules. In this case each

module allows to realize 512 neurons. The neuron unit consists of a control unit,

neural processing unit, priority encoder and decoder and 128Mbytes SRAM. Syn-

thesis results showed a space consumption of 3200 CLBs for 512 neurons. The

neurons in this implementation can work at 50MHz and requires 5.4 µs for one

association.

There has been an FPGA implementation of novel kind of neural network model

that dynamically changes its size called FAST (Flexible Adaptable Size Topology)

by [PU96]. The main problems with most neural network models are the lack of

knowledge in determining number of layers, the number of neurons per layer and

how they will be interconnected [PU96]. The ontogenic neural networks aim at

overcoming this problem by offering the possibility of dynamically changing the

topology. The ART (Adaptive Resonance Theory) and GAR (Grow And Repre-

sent) are this kind of networks and the FAST has been derived from its concepts.

The FAST network consists of feed-forward fully connected two layers and learning

CHAPTER 3. LITERATURE REVIEW 41

is carried out in unsupervised fashion. This network is suitable for clustering or

categorizing the input data. A neuron in output layer is added when sufficiently

distinct input vector, determined from sensitivity region, is encountered. The sen-

sitivity region is determined by the distance between the input vectors and the

weight reference vectors. In the pruning stage depending on the overlap of sensi-

tivity regions between neighboring neurons, a neuron in the output layer is deleted.

The FAST neural network architecture is composed of 68331 micro-controller and

four Xilinx XC4013 FPGA chips. On these chips FAST neurons, sequencer and

I/O mapping registers are implemented. The FAST neuron is composed of three

different blocks for the execution of an algorithm: distance computation, learning

and pruning. Each neuron includes nine 8-bit adders and a single 8-bit shift-add

multiplier. It also includes random number generator for pruning process. The

sequencer is a finite state machine which controls the execution of the algorithm

in three different stages. The FAST neural network model is applied to a color

learning and recognition problem for digital images. This requires clustering of

image pixels by chromatic similarity properties. In this experiment pixels coor-

dinates of an image are randomly presented to the network, which results in the

segregation of the image into four clusters, one per output neuron. It is found that

every input vector can be categorized in 8µs. The result obtained with hardware

implementation closely resembles that obtained from software simulation.

[DAbr98] applied the Hopfield neural network on the FPGA to solve classical

constraint satisfaction problem: the N-queen problem. The goal of the N-queen

problem is to place N queens on an N x N chessboard in mutually non-attacking

positions. This involves certain constraint to be satisfied to place the queen safely

CHAPTER 3. LITERATURE REVIEW 42

on the chessboard. [DAbr98] mentioned that the implementation of the Hopfield

network on FPGA for this problem differs from other implementations in several

ways. First, the weights are small and can be represented using integers. This

significantly reduces the size of arithmetic units. Second, the neuron values are

restricted to 0 or 1. This removes the need for multiplier units as vector products

merely become conditional equations based on 0 or 1. The architecture of this

implementation consists of 16 XC4010 FPGA devices connected by 4 programmable

switches (FPICs) on an Aptix AP4 reconfigurable board. Using this configuration

it is possible to download a design consisting of up to 160,000 gates. The neurons

and their interconnections are specified in VHDL which is synthesized in Exempler

Logic’s Galileo system tools. The performance of this system is compared with

two other software simulations in ’C’ for 4,6 and 8 queens problem. The result

indicates that it is possible to gain between 2 to 3 orders of magnitude speedup

with hardware realization. [DAbr98] mentioned that constraints on the N-queen

problem are simpler than those found in real world scheduling applications.

There has also been an attempt to implement probabilistic neural network on the

FPGAs for classification problem. The automatic classification of space borne mul-

tispectral images is quite a computationally expensive process. The multispectral

images are obtained from sophisticated Earth Observing System (EOS) satellites

launched by NASA to understand the earth’s environment. One of the purposes of

the classification of these images is to divide the earth’s terrain into different classes

like urban, agricultural, forest land, barren etc. [Figu98] implemented a probabilis-

tic neural network (PNN) on FPGA to classify multispectral images captured from

LANDSAT-2 EOS satellite. The multispectral images are formed by scanners and

CHAPTER 3. LITERATURE REVIEW 43

represent set of images each corresponding to one spectral band. A multispectral’s

image pixel is represented by a vector of size equal to the number of bands [Figu98].

The PNN classifier algorithm involves computing the probability of each pixel to fit

into one of the classes. The equation for checking the probability requires complex

calculations for subtraction, multiplication and the exponential of image vectors.

The architecture of the PNN classifier consists of two XC 4013E FPGAs (termed

as XFPGA and YFPGA), each with 13000 gates, on X213 hardware accelerator

board. Due to the limited numbers of gates, fixed-point arithmetic is used for the

calculations. The width of the fixed-point data path was determined by simulating

variable bit operations in C. This way the weights values of 10 bits are found to

be satisfactory. The weight memory is mapped on SRAM of the YFPGA. The

YFPGA is also composed of subtraction unit, square unit and band accumulator

unit. The XFPGA unit consists of an exponential unit, a multiplier unit and a

class accumulator unit. Due to lack of space on the XFPGA, a class comparison

unit was moved to the host computer. A look-up table is used to calculate the

negative exponential. Both FPGAs can interface with the host through PCI bus.

This enables host to configure the data initially. The performance of this system is

compared with two software simulations carried out on DEC and Pentium machine.

The time required for the simulation of algorithm written in ’C’ on DEC machine

running at 200MHz and Pentium machine running at 166MHz are found to be 22

and 30 minutes respectively. By using X213 accelerator board with two FPGA

devices the time for implementation is reduced to 77 seconds yielding higher than

one order of magnitude speed up.

CHAPTER 3. LITERATURE REVIEW 44

3.3 Back-Propagation Algorithm on FPGAs

This section will describe various implementations of BP algorithm on single FPGA

or the custom card built of one or more FPGAs. We will discuss the features of

each architecture very briefly depending on the description provided in the referred

papers. We will also focus on the type of arithmetic schemes used by various re-

searchers for the computation of BP algorithm on FPGA. We will also elaborate

on various available approaches for the implementation of the non-linear activa-

tion function. At last, a section will take on the issues pertaining to the perfor-

mance/cost of already implemented designs.

The backpropagation(BP) algorithm is widely used for training multi-layer feed-

forward neural network. It has been a popular choice for implementing an ANN on

the FPGAs for its regular structure and the broad field of applications.

[Eldr94] implemented the BP algorithm on Xilinx XC3090 FPGA using custom

built Run-Time Reconfiguration Artificial Neural Network (RRANN) architecture.

The RRANN architecture divides the BP algorithm into the sequential execution of

three stages known as Feed-Forward, Back-Propagation and Weight-Update. The

RRANN contains one global controller on one FPGA and neural processing units

on rest of the available FPGAs. The global controller is responsible for sequencing

the execution of various stages and providing the initial parameters to the neural

processors. Each neural processor consists of 6 hardware neurons and local hard-

ware subroutines implemented with state machines [Eldr94]. The datapath of the

architecture mainly consists of a broadcast bus, error bus and control bus. The

broadcast bus is a time-multiplexed data bus on which global controller places one

CHAPTER 3. LITERATURE REVIEW 45

input value at a time. The neural processors read this value, do the weight multi-

plication for neurons in the first hidden layer. After the multiplication is complete,

the product is accumulated with previous input iterations, and the next input is

broadcasted over the bus. This is basically a partially parallel architecture in which

each hardware neuron requires one multiplier only. The backpropagation stage is

carried out by broadcasting error values back through the network in a manner

suitable to the availability of weight values. This avoids the requirement of weight

duplication, had the BP stage been carried out in a similar fashion as feed-forward

stage. The weight update stage executes in a similar manner to the feed forward

stage.

[Beuc98] designed RENCO (REconfigurable Network COmputer) to implement

the BP algorithm on four Flex 10K130 FPGAs and Motorola microprocessor(68360).

The processor bus is connected to all four FPGAs, each has its own memories

(SRAM and DRAM). The processor is directly connected to an EPROM storing

an operating system, as well as a DRAM and a Flash memory. [Beuc98] chose the

Hand-written character recognition, a classification problem, to implement using

BP algorithm on FPGAs. The hardware implementation of the design employs

partially parallel architecture. [Beuc98] pointed out the difficulties in developing

fully-parallel network as waste of hardware resources and scalability since such a

hardware would require a multiplier for each connection (synapses). Hence, time-

multiplexed interconnected scheme was developed which provides a good trade-off

between speed and scalability/resources. The BP algorithm is divided into five

sequentially executed stage for reconfiguration purpose. The network initialization

and error computation are two extra stages in this approach from the one used

CHAPTER 3. LITERATURE REVIEW 46

by [Eldr94]. A design based on a fine-grained FPGA implementation of an ANN

by [Lysa94] is a novel approach to combine previously reported design ideas. The

design is implemented on Atmel AT6005 FPGAs, the only reconfigurable platform

available at that time. Each layer in the design consists of maximum of four neu-

rons. Pulse-stream arithmetic is used to provide an efficient mapping of the network

on FPGA. This technique is discussed in more detail in next section. The neuron

activation function is a simple binary step function rather than the sigmoid func-

tion which is more complex to implement on hardware [Lysa94]. Synaptic weights

have a resolution of four bits. [Lysa94] implemented reconfiguration of the network

for each layer. Hence, after processing of a network layer is complete, the neuron

outputs are latched and the FPGA is reconfigured to load the next layer.

A hardware-software co-design approach to implement an ANN on reconfig-

urable devices and GPP, a flexible design platform LIRMM, was developed by

[Molz00]. It is based on a signal processer to implement the software part of a

given application and two reconfigurable devices (XC4013E FPGA - Xilinx) to im-

plement the hardware part of the same application. The software part is described

using the C programming language and the hardware part is described using VHDL.

The hardware part is responsible for propagation of the input patterns which es-

sentially covers Feed-forward and Back-Propagation stage. Whereas the software

part is responsible for updating the synaptic weights and communication with host.

Author has not described in detail about the purpose behind such kind of partition

in hardware and software part. The design features a static topology with two

neurons in the input layer, three in the hidden layer and one in the output layer(2-

3-1 structure). The activation function is implemented by means of lookup tables.

CHAPTER 3. LITERATURE REVIEW 47

The input values are represented in a 4-bit fixed-point format, where 1 bit is used

for sign and three bits for the fractional part. The values of the synaptic weights

are represented by a 10-bit fixed-point number, where 1 bit represents sign, 4 bits

integer and 5 bits fraction. A typical application in the processing image area was

used as a validation benchmark. The task consists in locating letters of a given

image, pre-processed to 16 gray levels to fit in input codification. Authors worked

on different bit sizes for fractional part of the weights and found that 5 bits are

a good trade-off between area and correctness of classification of the image. The

results obtained in this paper are not compared with software performance. [Li04]

also implemented the BP algorithm on FPGA with hardware/software co-design

approach. [Li04] built the fixed-point library in VHDL for numeric computations.

[Osso96] also attempted at implementing error-backpropagation algorithm on

user-programmable Xilinx FPGAs. Authors described the possibilities of processing

in a layered neural network can be Node level parallelism and Link (Synapses) level

parallelism. Node parallelism requires one multiplier per neuron, as all neurons in

a layer work in parallel and accumulate partial sum at a time. Link parallelism

is the highest degree of parallelism that can be reached in a neural network. All

connections of a neuron to other neurons are calculated at the same time by having

same no.of multiplier as the synapses. The authors used node level parallelism to

implement 3-3-1 backpropagation network in four Xilinx 4013 and one Xilinx 4005

FPGAs. The data transmission between layers of the neural network are based on

the broadcasting principle in which neuron from previous layer send its activation

values on a common data bus to all neurons in next layer. This approach of time-

multiplex bus is similar to the one used by [Eldr94][Beuc98]. The data format

CHAPTER 3. LITERATURE REVIEW 48

chosen for the network is 8 bits for Input signals and synaptic weights as [Osso96]

found it sufficient for simple benchmarks used. [Osso96] used the nonlinear sigmoid

function implemented on look-up tables.

[Sima93] has modified the back propagation algorithm to work without any mul-

tiplication and to tolerate computations with a reasonable low resolution. Authors

pointed out the need of fast multipliers requiring large hardware being a bottleneck

in a design. Many researchers tried to reduce the size of a circuit by limiting the

resolution of computation. [Whit92] tried to train networks where the weights are

limited to powers of two. In this way all multiplication can be reduced to mere shift

operations. However restricting the weight values severely impact the performance

of a network and it is tricky to make the learning procedure converge [Sima93].

Authors felt the absence of general theory at that time on the requirements for

enough resolution and presumed that it depends on size and architecture of a net-

work. In this paper they present an algorithm that instead of reducing width of

weights, reduces the resolution of states (signals), gradients and learning rates. The

activation function for the network is simplified to a saturated power of two func-

tion. This function gives performance comparable to the sigmoid or the saturated

ramp function. Also the gradients are discretized to be power of two values. This

simplification of values to power of two functions eliminates the need for multipli-

ers as it can be carried through mere shift operations. [Sima93] ran an experiment

with large network consisting of 60,000 training patterns for handwritten character

recognition, a classification problem. The results obtained are very similar to an

algorithm with full precision gradients and sigmoid values. However, authors did

not implement this algorithm on any hardware platform but suggested that such

CHAPTER 3. LITERATURE REVIEW 49

algorithm is well suited for integrating large network on a single chip. They also

pointed out that such network also achieves high speed up since shifting operation

is faster than multiplication.

An on-line arithmetic based reprogrammable hardware implementation of error-

backpropagation algorithm is a novel approach developed by [Gira96]. The arith-

metic representation is handled within a serial arithmetic and allows very fast

operations. [Erce77] first developed the on-line method of computation through

redundant number representation. Authors used Xilinx series XC4025 with 32MB

RAM capacity to implement the algorithm. They chose 16 binary bits to present

the weights and state(signal) values. In case of weights, 8 bits are used for both

integer and fraction part while the activation values is presented with whole 16 bits

for fraction (−1 ≤ tanh ≤ 1). No information is provided in this paper on nature

of the application used by the authors. [Skrb99] also developed an on-line arith-

metic based reconfigurable neuroprocessor. However in this short paper no details

are given on the architecture or the implementation/results of the algorithm on

FPGA. Since multiplication and addition are the two most frequent arithmetic op-

erations in a neural network application, the amount of resource and time to execute

it becomes an important factor for choosing a mode of arithmetic computation. A

neural network contains numerous connections performing arithmetic operations,

thus requiring a substantial amount of wires. As parallel arithmetic requires large

buses, it is not well suited for such implementation from the resource point of view.

Bit-Serial arithmetic seem to be an effective solution in this scenario. The on-line

arithmetic is a bit-serial operation with transmission starting from the most signifi-

cant digits first (MSDF). Conventional bit-serial algorithms employ transmission in

CHAPTER 3. LITERATURE REVIEW 50

(a + b) + (c * d)

a + b

c * d

(a + b) + (c * d)

Conventional Bit−Serial

Time

On line Bit−Serial

c * d

a + b

Figure 3.2: Computing (a + b) + (c * d)

least significant digits first (LSDF), a natural “paper-pencil” approach to perform

computation. [Skrb99] pointed out that since on-line arithmetic allows overlapping

of computation because of MSDF transmission, it can lead to a lower processing

time. This is depicted in Figure 3.2.

[Skrb99] developed an implementation of neural network on hardware based on

shift-add neural arithmetics. The shift-add arithmetics provides a complete set of

complex functions like multiplication, square, square root etc. linearly approxi-

mated to reach sufficient simplicity. This can be achieved through only adders and

barrel shifters. The details of neural arithmetic based on this approach is explained

later in subsection. The implementation of perceptrons was verified on a card called

ECX card. The card contains two Xilinx FPGAs of the XC3000 family. The first

FPGA (X1) acts as a neural processing element and the second FPGA (X2) acts

as a controller. The processing element accepts the weights and inputs in their

logarithm form. Since multiplication can be performed as an inverse of sum of

CHAPTER 3. LITERATURE REVIEW 51

logarithms of operands, values in logarithmic forms are passed through LOGADD

(Addition) and then EXP (inverse log) blocks. The weight memory is fast static

RAM of 32K x 32 bits and the input/output memory is a fast static RAM of 8K x 16

words. No time multiplexing required to transfer data from RAMs to FPGA (X1)

as both input/output and weight memory use separate data bus. The controller

(X2) chip addresses weight and input/output memories and ensures data transfers.

[Skrb99] also carried out an on-chip implementation on 0.7µm standard cell tech-

nology by the CADENCE design system. The ECX card FPGA platform can also

implement Radial Basis Function (RBF) neural network and was validated using

pattern recognition application such as parity problem, digit recognition, inside-

outside test and sonar recognition.

[Ferr94][Mart94] developed a custom platform, called Adaptive Connectionist

Model Emulator (ACME) which consists of 14 Xilinx XC4010 FPGAs. The ACME

platform was successfully validated for XOR problem using 3 input, 3 hidden and 1

output nodes. The ACME platform uses 8 bit fixed-point to converge XOR problem

using back-propagation learning, due to the availability of limited FPGA resources

at the time of development.

3.4 Sigmoid Function implementation

Several approaches exist to implement the sigmoid function in hardware [Murt92].

Taylor Series expansion : This is done by approximating the sigmoid function

using a Taylor series up to four or five terms. [Murt92] show following Taylor

series formula for the sigmoid function which could be approximated in the

CHAPTER 3. LITERATURE REVIEW 52

range of -1 to 1.

y =
1

2
+

3

4
x− 1

4
x3 (3.1)

Look-Up Table (LUT) : This is a simpler approach in which values of the sig-

moid function are stored in Off-chip or On-chip RAM or BlockRam on FPGA.

Appropriate values are read back from the stored values by placing proper ad-

dress, which can be generated with a simple circuit consisting of comparators

and shifters. The benefit of this approach is the minimum logic cost while

the drawback is the large silicon area required to map LUT on memory.

Co-ordinate rotation digital computer (CORDIC) The CORDIC scheme is

an iterative method based on bit-level shift and add arithmetic operations.

This approach also requires large silicon area[Murt92][Depr84].

PieceWise Linear(PWL) approximation : This is done by approximating the

sigmoid function using a piecewise linear break up of the output. This ap-

proach has been proven to provide a good choice on the trade-off between the

hardware requirements and the function precision [Zhan96]. PWL approx-

imation can further be divided into linear and higher order approximation.

[Alip91][Myer89] were the early presenters of the scheme for realizing the

sigmoid function through PWL approximation. [Alip91] did lot of ground

breaking work on simplifying the sigmoid function in order to obtain a realis-

tic design capable of being implemented in VLSI technology. Since then, few

function approximations have been presented largely based on the work done

by [Alip91].

CHAPTER 3. LITERATURE REVIEW 53

[Alip91] described PWL approximation of the sigmoid function by selecting

an integer set of breakpoints for ’x’ values and correspondingly setting ’y’

values as power of two numbers. Hence considering a single approximating

segment for each integer interval, the function can be linearized and described

as following:

For Positive Axis,

y = 1 +
1

2|(x)| (
x̂

4
− 1

2
) (3.2)

where,

x̂ : Decimal part of x with its own sign

|(x)| : Integer part of x

With the same notation as above, for negative axis,

y = (
1

2|(x)| (
x̂

4
+

1

2
) (3.3)

Above simplified version can be easily implemented on hardware with a shift

register and a counter to control it. This eliminates the need for a dedicated

multiplier in the circuit. [Alip91] derived the above formula based on a lin-

ear break up of a sigmoid curve into 15 segments in the range of -8 to 8.

The approximation proposed by [Myer89] is a modified curve based on the

principles of A-law for Pulse Code Modulation (PCM) systems. The mod-

ified curve consisting of 7 segments was used to approximate the function.

[Alip91][Myer89] also presented the formula for the calculation of derivation

of the sigmoid function based on the linear segmentation of the derivation

CHAPTER 3. LITERATURE REVIEW 54

curve.

Figure 3.3: Initial minimum structure of Sigmoid for PWL through CRI

[Bast04] proposed a Centered Linear Approximation (CRI) scheme to the

efficient generation of an optimized approximation to the sigmoid function

and its derivative. CRI is a recursive computational scheme for the generation

of PWL functions. Authors claim that the PWL approximation based on the

CRI scheme can be applied to any non-linear function. However not much

detail was given in this paper about the CRI algorithm and how functions can

be smoothed to fit through PWL approximation. Figure 3.3 shows the initial

minimum structure when CRI is applied to the approximation of the sigmoid

function. This essentially a 3 segment approximation, where two segments

represent the saturation at high and low input values. Whereas intermediate

CHAPTER 3. LITERATURE REVIEW 55

segment is a tangent to the reference sigmoid function at x = 0. The equation

for this simplified approximation can be described as below:

y1(x) = 0

y2(x) = 1
2
(1 + x

2
)

y3(x) = 1

(3.4)

However it can be seen from the above equation and Figure 3.3 that 3 segment

linearization is a very rough approximate of the function since error seems to

increase for values close to the end of the curve before saturation. [Bast04] has

noted that quantity of the segments can be increased and can be calculated

for each interpolation level as follows:

Numberofsegments = 2q+1 + 1

The number of segments can be increased by adding pair of tangent on both

side of y axis at some value of |x|. So the number of segments increases to 5,

9, 17 and 33 for q = 1, 2, 3 and 4 respectively.

The approach presented by [Samm91] advocated the use of fast multiplier and

adder circuit for the approximation of the sigmoid function through lineariza-

tion. The Sigmoid curve is broken into four segments, positive saturated,

positive unsaturated, negative unsaturated and negative saturated. The non-

linear part between the saturation limits is approximated using a least-squares

CHAPTER 3. LITERATURE REVIEW 56

polynomial of degree two.

Y = 1 if x ≥ highlimit

Y = 1− gain(highlimit− x)2 if x ≥ 0 ∼ x < highlimit

Y = 0 + gain(highlimit + x)2 if x < 0 ∼ x ≥ lowlimit

Y = 0 if x < lowlimit

(3.5)

where the lowlimit and the highlimit values can be obtained from the satura-

tion limits of the sigmoid curve and

gain =
1

2(highlimit)2

The scheme presented by [Samm91] is essentially a second-order approxima-

tion of the sigmoid function. [Zhan96] also proposed such scheme which im-

proves the approximation of the function over its linear first order counterpart.

In particular it reduces the average and maximum error of the approximation

and requires only one multiplication. In this scheme the sigmoid function

inputs are divided into segments and a second order approximation is applied

for the computation of each segment [Samm91]. For a segment [α, β], if the

input ı is in the interval ı ∈ [α, β] and the approximated output is H(u), in

general a second order approximation is given by

H(u) = A + C ∗ (ı + B)2 where |C| = 2−n (3.6)

Since C is a power of two, the multiplication with C can be computed with

CHAPTER 3. LITERATURE REVIEW 57

shifting operation. An algorithm in detail is presented by [Samm91] in this

paper to evaluate the values of A, B and C. Authors derived the formula for

the approximation of the function divided into two segments of (-4,0) and

(0,4) and computed as follows:

H(u) =

2−1 × (1− |2−2 × ı|)2 −4 < ı < 0

1− 2−1 × (1− |2−2 × ı|)2 0 ≤ ı < 4
(3.7)

The scheme above can be used with sign-magnitude and 2’s complement nota-

tion as well which are two commonly used fixed point number presentations.

The fixed point number used in this scheme employs 4 bits for integer with 1

sign bit and 10 bits for the fraction. The average error produced by approx-

imating the function with this method is in the order of 10−3, reduced from

the average of 10−2 for the first order PWL approximation.

[Beiu94] pointed out in their paper that even if approximation techniques for

the simplification of the sigmoid function exist, the involved computation is

still complex. Authors introduced a special kind of function, A Particular

Sigmoid Function. [Beiu94] showed in this paper that a particular sigmoid

function is equivalent with the classical sigmoid function if the gain is changed

by a constant. Such function is described as follows:

f ∗(n) =
1

1 + 2−n

The difference between the above equation and the classical sigmoid function

is the constant scaling factor K, given by, e−z = 2
−z
ln 2 While implementing the

CHAPTER 3. LITERATURE REVIEW 58

function, the integer is scaled by this constant factor and then added to the

value obtained from the above formula for the particular sigmoid function.

[34] carried out the experiments for the inputs limited to the [-8,8] interval

with 4 bit integer and 8 bit fraction representation. The computed error, the

difference between the continuous and quantized function, is in [-0.16, 0.16]

interval. The high error, in order of 10−1 compare to some of the other approx-

imation described above, is attributed to the low precision used in addition to

the effect of the approximation. Authors also proposed simplified versions of

functions such as the hyperbolic tangent and the fast sigmoid. [Beiu94] also

derived an algorithm for the derivative of the sigmoid function and extended

to evaluate the formulas for other activation functions mentioned above.

From the above discussion on the approximation of the sigmoid function, we can

summarize the classical solutions either investigated or implemented by researchers

as follows:

• Look-Up table in RAM or ROM

• PieceWise Linear Approximation

• Sum of Steps evaluation (High order approximation) or Taylor Series expan-

sion

• Other dedicated approximation such as CORDIC

The following sub-section gives an overview of various kind of arithmetic schemes

used by researchers to realize the neural network algorithm on FPGAs.

CHAPTER 3. LITERATURE REVIEW 59

3.5 Neural Arithmetics/Data representation

The goal of this section is to classify the neural arithmetics employed on FPGAs

and examine the effect of it on the resources in terms of FPGA area. Since the

execution of back-propagation algorithm requires extensive arithmetic operations,

the choice for the selection of arithmetic scheme and number presentation plays

a major role while targeting hardware. The performance of ANN on hardware is

highly dependant on range and precision of numbers used to represent the signals.

These signals include initial parameters like input, output, weight data and inter-

mediate values like activation at each neuron, derivative of activation and error

values. The purpose of developing an arithmetic scheme for hardware implemen-

tation is to present signals with sufficient range and precision which would make

network convergent while keeping the area-cost within available FPGA resources.

Various kinds of data presentation and arithmetic schemes used in architectures

mentioned in earlier section are described as follow:

Pulse Stream Arithmetic: Pulse Frequency Modulation (PFM) is a coding

scheme where circuit values are represented by the frequency of narrow constant-

width pulses[Lysa94]. Signals encoded in this manner can be multiplied and

summed at each node using simple logic gates. This technique is known as

pulse-stream arithmetic and maps well onto fine-grained FPGAs. Figure 3.4

shows the fractional value of 7/16 presented in pulse stream.

[Lysa94] established an architecture of pulse stream neuron based on above

arithmetic principle. Input (Activation value) to each neuron is a constant

stream of narrow pulses while synaptic weights are constructed as gating func-

CHAPTER 3. LITERATURE REVIEW 60

Window Size = 16 Pulses

Pulse Stream Value = 7/16

Figure 3.4: Example of a Pulse Frequency Modulated signal

tion by selectively ORing a series of chopping clocks [Murr89]. The chopping

clocks are synchronous, non-overlapping binary clock with duty cycle of 1/2,

1/4 and so on. [Lysa94] used a 4 bit chopping clock generator which can be

used to construct weights in the range of 0 to 15/16. Multiplication of the

input pulse-stream by the weight values can be achieved simply ANDing the

input and gating function.

Floating Point: This representation of numbers is very common for ANN imple-

mentation on general purpose computer. The floating point representation

for hardware implementation of ANN provides high range and precision at

the expense of valuable circuit area on FPGA. Hence in the past, most of

the researchers avoided using an arithmetic based on floating point presen-

tation due to unavailability of high capacity FPGAs. [Sima93] used floating

point representation for several values in implementing Back-Propagation al-

gorithm. Authors used 1 bit mantissa and 4 bit exponent for learning rate,

CHAPTER 3. LITERATURE REVIEW 61

1 bit mantissa and 3 bit exponent for state (activation) values and 1 bit

mantissa and 5 bit for gradient values. Though this network was validated

on software platform first, authors claim with several hypothesis that it can

easily be implemented on a chip.

[Clou96] built a Virtual Image Processor (VIP) which uses 5 Altera EPF81500

FPGAs with 1.5MB static RAM to validate neural network algorithms, image-

processing and pattern recognition applications. In this paper authors showed

to use only state signals (activation) as floating point number with 1 bit man-

tissa and 2 bit exponent. [Sahi00] checked the feasibility of floating-point

arithmetic in reconfigurable systems. They pointed out in this paper that

recent advances in FPGA technology offer the user more hardware resources

on a single device and thus the greater potential to develop complex reconfig-

urable computing systems. [Sahi00] built three floating point modules: vector

addition, subtraction and multiplication, modeled using VHDL and mapped

to a Xilinx XC4044XL FPGA device. These modules are found to have speed

up of 5 over the software model running on Pentium II 300MHz computer.

However these modules are not mapped for any specific ANN application,

image-processing or multimedia applications.

Fixed Point: The fixed point number representation is by far the most popular

choice for implementing ANN algorithms on hardware. Fixed point arith-

metic has traditionally been more area effective than floating point. Since

many image processing and ANN applications are found to be working satis-

factory with low range and precision and floating point representation costing

CHAPTER 3. LITERATURE REVIEW 62

high silicon area, the researchers widely used fixed point arithmetic for such

applications. It is an ideal trade-off between area and range-precision require-

ment for FPGA based ANN architectures.

In Fixed-Point arithmetic, there are various possibilities with which basic

computation for the BP algorithm such as multiplication, addition and deriva-

tion of activation function can be calculated. Following are some of the arith-

metic techniques used by researchers for realizing Fixed-point hardware.

Bit-Serial Arithmetic This kind of technic calculates one bit at a time,

whereas parallel arithmetic calculates all bits simultaneously. The bit-

serial arithmetic consumes only small chip area but is very slow. This

method has been seen in many ANN implementation on FPGA. The

classic RRANN [Eldr94] and RENCO[Beuc98] architectures, well known

implementations of ANN on FPGAs, used bit-serial data representation.

This approach also helps fit more processing elements in small FPGA

resources. Also the communication lines for arithmetic operation re-

quire only one bit wide, and bit serial adders require only one Xilinx

Combinational Logic Block [Eldr94].

Shift operation/No multiplication This technique requires the presenta-

tion of numbers in ”power of two” format. Hence multiplication is

implemented with shifting operation. It was first introduced by [Sima93].

The drawback of such method is to find adequate numbers such that the

output error is minimized. [Molz00] also used this approach to present

input and activation function output in 4-bit fixed point format.

CHAPTER 3. LITERATURE REVIEW 63

On-Line Arithmetic This method uses a redundant number presentation

which allows very fast arithmetic operations. This representation is han-

dled within a serial arithmetic. Therefore it exhibits all the benefits

typical to bit-serial arithmetic mentioned above with faster speed. It

computes an arithmetic operation in MSDF mode, transmitting Most

Significant Digit First, unlike the conventional serial arithmetic which

transmits data with Least Significant Digit First , an LSDF approach.

[Gira96] explained in detail algorithms for addition, multiplication and

tanh function using MSDF transmission (On-Line arithmetic) with re-

dundant number presentation. The redundant number presentation ex-

presses number in radix-2 format. Such a format defined as borrow-save

contains digit set -1, 0, 1. In borrow-save presentation each digit ai of a

number a is represented by two bits, a+
i and a−i , such that ai = a+

i −a−i .

For instance, digit 1 is presented by (1,0) while digit 0 has two possible

representations namely (0,0) and (1,1).

Linearly approximated Functions [Skrb99] proposed so-called shift-add

neural arithmetics which provides a complete set of linearly approx-

imated functions suitable for the implementation of MLP on FPGA.

Fundamental stones of the approach are 2x, log2 x. These functions are

based on the shift operation in combination with the linear approxima-

tion. The linearly approximated 2x and log2 x can be defined as:

2x = 2int(x) × (1 + frac(x))

CHAPTER 3. LITERATURE REVIEW 64

log2 x = int(log2 x) +
1

2int(log2 x)
− 1

[Skrb99] has shown that all other complex functions like multiplication,

tanh, square and square root can be implemented using above simpli-

fied function and require only adders and barrel shifters on hardware.

However such linearly approximated functions induce error to the result.

The maximum error of all significant functions is found to be less than

6.5% in analysis tabulated by [Skrb99] in the paper.

3.6 Performance and Issues

The purpose of this section is to look into how the performance of various implemen-

tations has been evaluated by researchers the issues pertaining to it are addressed.

This will provide a cursory idea when it is required to evaluate the performance

of our architectures realized on FPGA. In this section we will focus on the perfor-

mance of architectures implemented on one or more FPGAs for the BP algorithm

only.

It should be noted here, on having done careful investigation, that there is not

found any specific baseline or performance unit researchers relied on to evaluate

their designs. Some used Weight Updates per Second(WUPS) [Eldr94] or Con-

nections Update per Second (CUPS) while others used the frequency/speed with

which design can compute as their unit of performance. Whereas some researchers

were merely exploring the feasibility of FPGA implementation of the BP algorithm

without going into much detail about the performance [Beuc98]. CUPS or WUPS

CHAPTER 3. LITERATURE REVIEW 65

can be defined as follows:

CUPS = Nw ? ClockRate/Cycles per Iteration (3.8)

where, Nw: Total Synaptic Weights in Network

[Eldr94] performed the experiment, running at 14MHz, with number of FPGAs

ranging from one to as high as 23 and showed in a graph that with multiple FPGAs,

the performance can reach up to 2× 105 WUPS. However [Eldr94] also noted that

the reconfiguration of each stage on FPGA uses extra time that could otherwise

be spent in executing the algorithm. The results obtained by [Gira96] from on-line

arithmetic based implementation on several XC4025 FPGAs, running at 33MHz,

estimated the performance to 5.2 × 106 WUPS. [Lysa94] implemented the BP al-

gorithm on single ATMEL 6005 FPGA with complete reconfiguration for binary

XOR function problem. Considering the reconfiguration overhead, the three-layer

ANN produced results for the XOR problem at mere 24KHz that corresponds to

network performance of 0.77 × 106CUPS. Authors noted that reported network is

considerably slower than ”static” FPGA based ANNs such as GANGLION, which

is reported to operate at 4.48× 109CUPS. However this impressive performance is

achieved at considerable expense, using an array of more than 30 Xilinx FPGAs.

[Ferr94][Mart94] developed the ACME board consisting of 14 Xilinx FPGA and

validated the XOR problem on this platform. For this problem, the card running

at 10MHZ performed at 1.64× 106CUPS.

[Molz00] highlighted the results obtained in their experiments as their contri-

bution in defining the number of bits required to code the synaptic weights, using

CHAPTER 3. LITERATURE REVIEW 66

Signal-to-Noise ratio analysis. The implementation of hand-written character recog-

nition problem by [Clou96] on Virtual Image Processor (VIP) board consisting of

2 x 2 matrix of Altera FPGAs performed 16 times faster than the software imple-

mentation on SPARC-10 workstation. Also the convolution process, performed on

a binary image, was implemented on the same board and found to be more than

24 times faster than 90MHz Pentium general purpose processor. However [Osso96]

concluded from their experiments involving four Xilinx 4013 and 4005H that Xilinx

FPGA can be used for a fast prototype, but don’t offer speed up that justifies a

specialized hardware solution compared to a software solution.

It should also be noted here that quite a few implementations analyzed here,

irrespective of the algorithm implemented, used multiple FPGAs to accommodate

more processing elements and at the same time to distribute the computation task

to ease burden on a single FPGA unit.

Tables 3.2 and 3.3 summarize the various BP algorithm implementations ana-

lyzed in this section with respect to the size of network, number of FPGAs used,

the performance and the type of neural arithmetic considered.

3.7 Summary

In this chapter a detail survey of various implementation of ANNs on neural hard-

ware was conducted. The neural hardware can loosely be classified into Neuro-

computers built from neuro-chips, accelerator boards and reconfigurable hardware

such as FPGAs. Our main focus in this chapter was to analyze various schemes

for realizing ANN algorithm, specifically the BP algorithm, on FPGAs. The de-

CHAPTER 3. LITERATURE REVIEW 67

Architecture Application Topology Arithmetics Number
Author and Year Presentation

RRANN(Eldredge, Not Not Bit-Serial Fixed-Point
Hutchings)1994 mentioned mentioned Arithmetics (5-16)bit

RENCO(Beuchat, Hand-Written Not Bit-Serial Fixed-Point
Sanchez)1998 character Recog. mentioned Arithmetic (16bit)
LIRMM(molz, Image 2-3-1 Add-Shift Fixed-Point

Engel et al)2000 Processing Arithmetic (3-9 bits)
(Girau, Tisse- Not Not On-Line Redundant number

rand)1996 mentioned mentioned Arithmetics (Radix-2,16 bits)
ACME(Ferrucci, XOR 3-3-1 Bit-Serial Fixed-Point

Martin)1994 Function Arithmetic (8-bit)
(Ossoinig, Reisinger, Not Not Parallel Integer data

et al)1996 mentioned mentioned Add-Mult. (8-bit)
(Lysaght, Stockwood, XOR 3-3-1 Pulse-Stream Input (16 bit)

Law et al)1994 Function Arithmetics Weights(4 bit)
ECX(Skerbek XOR and 60-140-10 Add-Shift Fixed-Point

1999 Sonar (Maximum) Arithmetics (8-16 bit)

Table 3.2: Summary of various BP algorithm implementation on FPGA

tail review of such schemes provides a guideline for developing architectures for

our research and help identify challenges already faced by researchers in this area.

Some of the crucial features associated with ANNs include the choice of arithmetic

scheme, the type of implementation of activation function, the number representa-

tion schemes and performance.

Some of the short comings of the approaches reviewed in the literature are

mainly technology related. The FPGAs used in the approaches are few thousand

gates in size. This restricted the size of the network that were implemented. CAD

tools were not advanced enough to synthesize large designs in a reasonable amount

of time. Some of the implementations were merely to verify the feasibility of realiz-

CHAPTER 3. LITERATURE REVIEW 68

Architecture No. of FPGAs Type of System Clock Performance
Author and Year FPGA MHz WUPS/Speed

RRANN(Eldredge, Multi-FPGA Xilinx 10-14 12× 106

Hutchings)1994 Max. 60 XC3090 Maximum
RENCO(Beuchat, Multi-FPGA Flex 25 Not

Sanchez)1998 Max. 4 10K130 mentioned (16bit)
LIRMM(molz, Multi-FPGA Xilinx 20 Not

Engel et al)2000 2 Max. XC4013E mentioned
(Girau, Tisse- Multi-FPGA Xilinx 33 5.2× 106

rand)1996 XC4025
ACME(Ferrucci, Multi-FPGA Xilinx 10 1.64× 106

Martin)1994 14 Max. XC4010
(Ossoinig, Reisinger, Multi-FPGA Xilinx Not Inferior

et al)1996 4 Max. XC4013 mentioned to S/W
(Lysaght, Stockwood, Single-FPGA ATMEL 20 0.77× 106

Law et al)1994 AT6005
ECX(Skerbek Multi-FPGA Xilinx Not 3.5× 106

1999 2 Max. XC4010 mentioned

Table 3.3: Summary of various BP algorithm implementation on FPGA Cont’d

ing ANNs on FPGA by introducing variation in some of the aspects/parameters of

an architecture such as number codification scheme, arithmetic computation and

number of FPGAs from earlier implementations. It can also be noted from the

performance data available that in most cases researchers considered the unit of

performance as WUPS or CUPS. Not much stress has been given on com-

paring the hardware implementation with its software counterpart. In

fact, all ASIC implementations fairly ignored any requirement of comparing the

performance with a software implementation.

These short-comings have led to the development of ANN architectures for FP-

GAs utilizing the advancement in CAD technology. The work carried out in this

CHAPTER 3. LITERATURE REVIEW 69

research will also attempt at addressing the performance issues for various aspects

such as speed and chip-area. The research work will focus on developing clear

methodology for developing an ANN architecture rather than just investigating the

feasibility.

Chapter 4

Experimental Setup

This chapter describes the basic setup and specifications regarding various exper-

iments carried out in our research. Section 4.1 describes various system specifi-

cations for hardware and software implementations of the Back-Propagation (BP)

algorithm. It also describes the development path of the hardware architectures.

Several data sets were chosen to validate the developed architectures. Section 4.2

introduces the benchmarks used in our experiments. Section 4.3 will focus on var-

ious performance criteria and how the final result, average error, is computed.

4.1 System Specifications

As a result of the analysis carried out in Chapter 3, specifications for the ANN

architectures can be defined as following:

1. Learning algorithm: A large field of applications and regular structure

70

CHAPTER 4. EXPERIMENTAL SETUP 71

makes the Back-Propagation algorithm a popular choice.

2. Arithmetic Format: 16 bit Fixed number arithmetic format will be used. It

provides a reasonable trade-off between area and range-precision requirement.

3. Activation Function: Non-linearity will be imparted by using the sigmoid

function. Various possibilities of efficient implementation will be investigated

while developing an architecture.

4. Performance: Performance will be observed on Weight Update Per Seconds

(WUPS) or Connections Update Per Second (CUPS) unit. An alternative

approach will tend to compare the hardware architectures with its counterpart

a software implementation.

The BP algorithm is first implemented on a software platform and then archi-

tectures are developed for the implementation on an FPGA. Three benchmarks are

used to validate the software and hardware designs in the form of XOR logic gate

problem, Iris flower data-set and the Cancer data set.

4.1.1 Software Specifications

The following is the software platform used to carry out the experiments.

• The Software implementation is based on:

– Programming Language: C++

– Hardware: Dual Processor Pentium III 800MHz

– OS: Windows XP/2000

CHAPTER 4. EXPERIMENTAL SETUP 72

– Compiler: Visual C++ 6.0

The software version incorporates training and testing phase of the BP algorithm.

Some of the striking features where software version differs from the hardware

architectures are:

• Use of 32 bit floating point number for weights, inputs, error, error-gradient

and all intermediate calculations

• Exact calculation of Sigmoid function due to the availability of pow() in C++

• Use of rand() function to select the random patterns for the representation

• Use of floating point multipliers, adders and subtractors

The pseudo-code in Figure 4.1 illustrates the software implementation of the algo-

rithm.

The Pattern mode of learning is carried out in training phase of the algorithm.

The stopping criteria used in the software version is based on number of epochs or

error.

4.1.2 Hardware Specifications

The following is the hardware platform used to carry out the experiments.

• The Hardware implementation is based on:

– Reconfigurable Platform: Virtex2000e/Virtex1000 FPGA chip on RC1000

Reconfigurable board

CHAPTER 4. EXPERIMENTAL SETUP 73

Start Timer;
Read Topology file;
Read Input and Output data;
Generate random Weights;
for(j=0; j < Max Epochs; j++)
{

for(k=0; k < Train Patt; k++);
{

Perform Forward computation;
calculate Inst. Sum. Squared Error
and store in an array;
Perform Backward computation;
Perform Weight Update;

}
Check for the Desired Minimum Error;

}
Stop Timer, Calculate total time;
Perform Testing; //Forward Pass

Figure 4.1: Pseudo code for Back-Propagation in Software

CHAPTER 4. EXPERIMENTAL SETUP 74

– Hardware Description Language: Handel-C DK2 compiler

– Synthesis tool: Xilinx ISE 6.2

Basics of the RC1000 Reconfigurable board

This section will touch upon basic specifications of RC1000 [Supp01] board since

the implementations were carried out on two RC1000 reconfigurable computing

platforms supplied by Celoxica Inc. Further details of the RC1000 board is given

in Appendix B.

An RC1000 board contains a Virtex1000 FPGA chip with 1 million gates, while

the second board contains Virtex2000E FPGA chip with 2 million gates. The main

feature of each board is a single FPGA and four Off-Chip asynchronous SRAMs,

each of which is an 2M x 8 in size. The basic difference between a Virtex and Vir-

texE based FPGA chip is the size of incorporated BlockRam memory. The number

of BlockRam memory modules in Virtex1000 and Virtex2000E chips are 32 and

160 respectively, each of which is fully synchronous dual-ported 4096 bit RAM.

The structure of a BlockRam module in both chips remain the same as illustrated

by Figure 4.2 with table showing depth and width aspect ratio.

From Figure 4.2 it can be seen that each BlockRam can be configured to operate

as a 256 x 16 size of memory, which is required to accommodate the width of fixed

point number representation in our designs. Hence the total size of the BlockRAMs

in Virtex1000 and Virtex2000E will be set to 8k x 16 and 40k x 16 respectively.

As mentioned earlier, the RC1000 board contains four memory banks and has

four 32-bit memory ports one for each memory bank. Each bank has separate

CHAPTER 4. EXPERIMENTAL SETUP 75

ADDRA[# : 0]

DIA[# : 0]

ADDRB[# : 0]

DIB[# : 0]

DOA[# : 0]

DOB[# : 0]

1

2

4

8

16

11 : 0

10 : 0

9 : 0

8 : 0

7 : 0

0

1 : 0

3 : 0

7 : 0

15 : 0

Depth

4096

256

2048

1024

512

Data BusADDR BusWidth

Figure 4.2: Dual-Port BlockSelectRAM in Virtex and VirtexE FPGAs

data, address and control signals. Therefore the FPGA on the board can access all

four banks simultaneously and independently . Data from each bank can be

accessed as 8 bit or 32 bit. Details of the interaction between the FPGA and host

are explained in Appendix C.

4.1.3 Development Path

The following are the six different architectures developed and tested in the research:

• Two Serial Designs: SIPEX and SIPOB1

• Three Partially Parallel Designs: PARIO, PAROO and PARIO

• A Fully Parallel Design: FPAR

The approach behind the development of the above mentioned architectures is

shown in Figure 4.3

1Acronyms are described in details in Appendix A

CHAPTER 4. EXPERIMENTAL SETUP 76

Speed−Area

Performance

OK

Speed−Area

Performance

OK

Identify

Challenges/Bottlenecks

Identify

Challenges/Bottlenecks

YESNO

NO YES

Sequential Designs

Investigate

Performance of

Designs

Investigate

Partially Parallel

Investigate

Parallel Designs

Performance of

Performance of

Figure 4.3: The path for the development of the architectures

CHAPTER 4. EXPERIMENTAL SETUP 77

As shown in Figure 4.3, during the course of research, first several serial architec-

tures are developed and tested on the RC1000 FPGA board. This experimentation

helped identify several issues related to Handel-C and the RC1000 board. The

performance is measured in execution speed of the algorithm on the FPGA and

chip-area consumed by the architectures. In second phase of the research, partially

parallel architectures are developed and tested on the RC1000 board. The pur-

pose of the development of such architectures is to establish a trade-off between

speed and chip-area. Finally, a fully parallel architecture is developed to maximize

the performance by exploiting the inherent parallelism of ANNs and validated for

several benchmarks.

4.2 Benchmarks

Several benchmarks are used to validate the architectures developed for the hard-

ware implementations. In this section we will describe the characteristics of the

benchmarks that are used to evaluate performance of the developed architectures.

ANNs are widely used to solve the problems in the field of image processing, pattern

recognition and data mining. The nature of input and output to achieve desired

task through ANNs varies for different applications. This in turn also categorizes

the functionality of an each application that can be solved by ANNs. With re-

spect to functionality, benchmarks for ANNs can be categorized for association,

classification and function approximation problems [Poor02] as shown in Table 4.1.

Since the Back-propagation algorithm for ANN is suited for pattern classification

problem, focus is given to such benchmarks. There are several sources available on

CHAPTER 4. EXPERIMENTAL SETUP 78

Input Output Task Evaluation Criteria
discrete discrete association storage efficiency

continuous discrete classification error probability
continuous continuous function approximation distance measure

Table 4.1: ANN application fields

the internet that provides benchmarks for ANNs. Since the application field of

ANN is vast, it is observed that the benchmarks used by various researchers to

implement ANNs on hardware vary significantly. Table 4.2 shows the benchmarks

used for experiments described in this thesis.

Problem Title Type Network Structure Error Goal Applicability
XOR Pattern 3-3-1 0.0022 “Toy”

Recognition Problem
Iris Pattern 5-3-3 0.03 “Toy”

Recognition Problem
Cancer Pattern 10-11-2 0.016 “Real World”

Recognition Problem

Table 4.2: Benchmarks

4.2.1 XOR Data Set

The Exclusive OR benchmark is a common example of classification of input pat-

terns that are not linearly separable. For patterns to be classified as linearly sepa-

rable, they must be sufficiently apart from each other to ensure the decision surface

consists of a single straight line in two-dimensional plane. This concept is illustrated

in Figure 4.4. The Table 4.3 shows the truth table of the logical XOR function.

In the case of XOR we need to consider four corners of the unit square that

CHAPTER 4. EXPERIMENTAL SETUP 79

(b)
(a)

Figure 4.4: A pair of (a) linearly and (b) non-linearly separable patterns

X Y Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 4.3: XOR function

correspond to the input patterns. Figure 4.5 shows the locations of the symbolic

outputs of XOR function corresponding to four input patterns in X-Y plane.

(0,0)

(1,1)

(0,1)

(1,0)
X

Y

Class B Class A

Class A Class B

Figure 4.5: Non-linearity of XOR function

CHAPTER 4. EXPERIMENTAL SETUP 80

Polar opposite input pairs (0,0) and (1,1) require the same output in class A

and also input patterns, lying in opposite corners, (0,1) and (1,0) require the same

output in class B. It is obvious that there is no way to draw a single straight line to

classify patterns in two classes so that the circles are on one side and the triangles

are on the opposite side. Hence Multi-layer perceptrons are applied to solve the

XOR function. The network used for this problem is 3-3-1 (including bias) with

sigmoid function in each layer.

4.2.2 Iris Data Set

Sepal Length

Sepal Width

Petal Length

Petal Width

Setosa

Versicolor

Virginica

+1 +1

Figure 4.6: ANN for Iris Data Set

The Iris flower data set is a popular multivariate data that was introduced by

[Fish36] as an example for discriminant analysis. Figure 4.6 shows a multilayer

perceptrons network for the benchmark. The data reports on four characteristics

of the three species of the Iris Flower, sepal length, sepal width, petal length, and

petal width in centimeters. The data set shows each characteristic (attribute) scaled

CHAPTER 4. EXPERIMENTAL SETUP 81

up ten times to represent all values in integers. The three species of the flower are

setosa, versicolor and virginica. Figure 4.6 shows the multilayer perceptrons with

5-3-3 structure for Iris data set. The data set contains 150 instances for each of

the four characteristics. The goal of using an ANN algorithm for this data set is to

classify the Iris flower in one of the three species mentioned above. The network

used for this problem is 5-3-3 (including bias input) with sigmoid function in each

layer. The attributes are normalized to represent continuous values between 0 and

1 for network inputs as following:

N −Nmin

Nmax −Nmin

(4.1)

where, N : Attribute value

Nmin : Minimum value of each attribute

Nmax : Maximum value of each attribute.

4.2.3 Cancer Data Set

The cancer data set problem is a realistic pattern recognition problem. The objec-

tive of the network is to classify tumor as either benign or malignant based on cell

descriptions gathered by microscopic examination. Input attributes include clump

thickness, uniformity of cell size and cell shape, the amount of marginal adhesion,

and the frequency of bare nuclei. In this data set, each of these attributes is nor-

malized by authors to represent continuous values in numbers between 1 to 10. The

data set was originally generated at University of Wisconsin by Dr.Wolberg. The

Cancer data sets are obtained from UCI learning repository databases [Blak98].

CHAPTER 4. EXPERIMENTAL SETUP 82

Group 1 of the data set contains 367 instances out of which first 300 instances are

used for the validation. The network used for this problem is a 10-11-2 network

(including bias input) with sigmoid function in each layer.

4.3 Evaluation Parameters

All the architectures described in this thesis are designed to execute the training

phase of the BP algorithm only. Hence our goal is to achieve convergence of the

algorithm at the end of the training. We will discuss various performance criteria

considered in comparing the outcome of software and hardware implementations.

We will also focus on various criteria used to stop the training of the network and

how error is computed in determining the convergence.

4.3.1 Comparison Criteria

Hardware and software implementations of the BP algorithm are compared based

on several criteria.

Speed: This performance criteria measures the time hardware and software imple-

mentations take to execute the BP algorithm. For hardware implementations,

total time taken by the algorithm is the time lapsed between the start and

end of the timer set by the C++ program running on the host as shown in

flowchart in Appendix C.

Weight Updates Per Second: This performance criteria measures an architec-

ture’s ability to compute weights per second for hardware implementations.

CHAPTER 4. EXPERIMENTAL SETUP 83

Gate Count: Measurement of the equivalent gate counts on an FPGA evaluates

the performance of the hardware implementation based on the area require-

ment.

4.3.2 The Error and the stopping criteria

The parameter of our interest or goal in achieving the convergence of the network is

Average Sum Squared Error (ASE) per epoch. To calculate this, an Instantaneous

Sum Squared Error (ISE) is obtained for every pattern in an epoch and averaged for

number of patterns in the epoch. The ISE is obtained by calculating sum-squared

error at neuron outputs for each iteration and thus can be written as,

ISE =
∑

j∈C

e2
j(n)

where, set C includes all the neurons in the output layer of a network and,

ej is the error at node j of the output layer.

The ASE is obtained by summing and averaging ISE over N patterns and thus

can be written as,

ASE =
1

N
×

N∑

n=1

ISE

where, N is the number of patterns in an epoch.

For a given training set, ASE represents the cost function as the measure of learning

performance. Hence the goal of the learning process is to minimize the cost function.

In the current implementations, ASE is not calculated by the FPGA but instead

ISE is computed for every pattern during the learning phase and stored in the

CHAPTER 4. EXPERIMENTAL SETUP 84

external RAM. At the end of the execution the host fetches all the results of ISE

from the external RAM and calculates ASE. The reason behind such division of

computation is twofold:

• ASE involves the addition of ISEs for whole epoch which in most cases will

overflow for the “range” specified in the Fixed-Point representation. For ex-

ample, in case of the Iris data set, the early stage of the training was found

to generate ASE around 0.32 which would result from the addition of ISEs to

32 and then averaging it over 100 patterns. Since the largest positive integer

our fixed-point number representation can accommodate is 15 so the result

will overflow in this case.

• ASE also requires the division operation which is normally prohibitive to

realize on hardware.

The drawback of such an approach is that it requires large memory for storing ISEs.

Fortunately, each memory bank of the four available external asynchronous RAM

banks is sufficiently large and therefore memory bank 3 is dedicated for storing

ISEs.

Another point that requires an attention in the execution of the BP algorithm

is the stopping criteria used to mark the convergence and stop execution. The

hardware architectures presented in this thesis use number of epochs as their stop-

ping criteria. ASE is not computed on the FPGA and therefore it is not possible

to know if the desired goal has been achieved during the learning. Therefore, the

algorithm is executed for specific number of epochs, the value of which is required

to be set at the compile time of the code. The required number of epochs are

CHAPTER 4. EXPERIMENTAL SETUP 85

determined from the software runs of the algorithm for different topologies of each

benchmark. Hence the comparison of all our experimental results in this thesis is

based on achieving desired ASE with a priori knowledge of required epochs from

the software implementation.

4.3.3 Performance measurement

In this section we will describe how the performance, the time to execute the

algorithm, is measured in software and hardware versions. The time is calculated

in milliseconds and it includes following operations for each of the versions.

Software Version:

• Read topology and initial parameters (Input, Output and Weights): It in-

volves memory access (read/write file operation).

• Start the execution of the algorithm and accumulate ISEs for each pattern in

an epoch. calculate ASE and store it in an array (No file operation).

• Complete the execution of the algorithm after several number of epochs.

• Timer stops. Calculate the total time taken for the execution.

• Store ASE in the memory (file operation) to check the convergence.

Hardware Version:

• Host program sends a start signal to FPGA and timer starts

• The FPGA fetches initial parameters and topology from Off-Chip RAMs of

the RC1000 board and transfer it to BlockRAMs

CHAPTER 4. EXPERIMENTAL SETUP 86

• Start the execution of the algorithm and store ISE for each pattern in Off-chip

RAM.

• Complete the execution of the algorithm after several number of epochs

• FPGA sends an end signal to the host program and timer stops. Calculate

the total time taken for the execution.

• The host program fetches ISEs from Off-chip RAMs and calculates ASE for

each epoch to check the convergence.

The software and hardware version differ in the storage of ISEs. The hardware

versions require access to off-chip memory on the RC1000 board to store the ISEs

due the reasons mentioned in section 4.3.2. Whereas, the software version doesn’t

store ISE instead it accumulates for each pattern. Hence it can be summarized

that,

Total time taken by the Hardware Versions = Time taken by FPGA to exe-

cute the algorithm + Off-chip RAM access time (Transfer of Initial parameters and

Topology to BlockRAMs) + Off-Chip RAM access time (Storage of ISEs for each

pattern)

Total time taken by the Software Version = Time taken by CPU to execute the

algorithm + Hard-Drive access time (Transfer of Initial parameters and Topology)

CHAPTER 4. EXPERIMENTAL SETUP 87

4.4 Summary

In this chapter system specifications related to hardware and software implemen-

tations were described briefly. The basic design of the RC1000 platform was also

described. Three benchmarks XOR data set, Iris data set and Cancer data set were

introduced to validate the architectures developed in this research work. A brief

introduction on various performance measurement units was given.

Chapter 5

Serial Architectures

This chapter describes serial architectures/designs developed for implementing the

Back-Propagation (BP) algorithm for Artificial Neural Network(ANNs) on an FPGA.

A detailed description of each architecture and results obtained is presented in the

following sections. Section 5.1 describes the Fixed-point arithmetic scheme used

throughout the research work. In order to randomize the pattern presentation to

the network, some form of random numbers are required. Section 5.2 sheds some

light on pseudo-random number generation based on Linear Feedback Registers.

Section 5.3 explains the serial architectures in detail and finally 5.4 discusses the

outcome of the implementation.

5.1 Fixed-point Number Representation

Fixed-point arithmetic is generally used when hardware cost, speed, or complexity is

important [Nich03]. Finite-precision quantization issues usually arise in fixed-point

88

CHAPTER 5. SERIAL ARCHITECTURES 89

systems. As described in Chapter 3 various researchers have used different formats

in fixed-point number representation. A hardware designer has to deal with an issue

associated with establishing a trade-off between hardware resources consumed by

the datapath and the convergence time required to achieve performance. The choice

of range-precision of a chosen fixed-point number directly affects the ability of a

network in determining a compromise between chip-area and performance. However

the trade-off between performance and hardware resources is application specific.

[Holt91] studied this issue and showed that 16-bit fixed-point number provided

the most optimal area vs. convergence rate trade-off for generic back-propagation

algorithm, whose application is not known a priori. Hence the choice for the number

of bits in our research is set to 16 bit-fixed point number representation.

Software runs of the BP algorithm were performed specifically to observe the

“range” of the weight and all other intermediate signal values during the course of

convergence. From these runs, a 5-bit length of integer part (including Sign bit) and

11-bit length of fraction part in a fixed-point number is found to be satisfactory.

Such 16-bit fixed-point format of 1 sign bit, 4 integer bits and 11 fraction bits was

adopted as illustrated by Figure 5.1.

4
X X

3
X

2
X

1
X

0 −1
X X

−2
X

−3
X

−4
X

−5 −6
X X

−7
X

−8
X

−9 −10
X X

−11

Sign Integer Fraction

Figure 5.1: 16 bit Fixed-Point Number

The most significant bit X4 represents the sign bit while X3−X0 and X−1−X−11

represent the integer and fraction bits respectively. This number representation will

be denoted as 1:4:11 in the rest of the thesis.

CHAPTER 5. SERIAL ARCHITECTURES 90

The logic to compute the integer equivalent of binary can be extended to com-

puting a fixed-point number. The fixed-point number can therefore be computed

as following:

(−1)X4× (X32
3 +X22

2 ++X02
0)+(X−12

−1 +X−22
−2 ++X−112

−11) (5.1)

Two of the most commonly used Fixed-point number notations are sign-magnitude

and two’s complement. The sign-magnitude notation is used throughout our re-

search. There are few reasons behind the choice of the sign-magnitude notation.

The arithmetic operations in sign-magnitude notation can be performed with 15-

bit unsigned fixed-point numbers as opposed to 16-bit signed fixed-point num-

bers in two’s complement notation. This might prove beneficial in terms of chip-

area. A sign bit is treated separately in the sign-magnitude notation. Debugging

is also easier in case of the sign-magnitude notation. In addition the fixed-point

library for Handel-C had a serious glitch for signed arithmetic operations in early

versions of DK compiler.

The 16-bit fixed-point Arithmetic format adopted here has the following char-

acteristics:

• It produces a representation error of 2−11 which is in the order of 10−4. The

representation error is also called the resolution of the fixed-point number.

Every increment/decrement in a fraction bit will increase/decrease the num-

ber by approximately 0.0005.

• It can produce a range of integer values from -15 to 15. The maximum value

can be represented by the number system is 24 − 2−11 ≈ 15.9995.

CHAPTER 5. SERIAL ARCHITECTURES 91

• Examples of two numbers, a negative and a non-negative number, in sign-

magnitude number system can be given as,

−11.6 ≈ 11011.10011001100 ≈ −11.5996

7.9 ≈ 00111.11100110011 ≈ 7.8999

The following section describes a random number generator popularly known

as Linear Feedback Shift Register (LFSR). LFSR based design is widely used for

generating pseudo random numbers. In our research we have used LFSR based

design for randomized presentation of training patterns to the network.

5.2 Linear Feedback Shift Register(LFSR)

LFSR is a sequential shift register with combinational feedback logic around it that

causes pseudo-random cycle through a sequence of values. LFSR is simple to realize

on hardware and also consumes less resources. Typical applications include: Coun-

ters, Built-in Self Test (BIST), pseudo-random number generation, data encryption

and decryption. Although LFSR tend to follow a uniform pattern in the generation

of random numbers, the randomness provided in the presentation of patterns is

found to be sufficient in our experiments.

An LFSR when clocked advances the signal through the register (flip-flop) from

one bit to the next most significant bit. Some of the outputs of registers are

combined in XOR configuration to form a feedback mechanism. This mechanism

feeds back the outputs formed by the combination of one or more XOR into the

CHAPTER 5. SERIAL ARCHITECTURES 92

input of one of the flip-flop. The selections points where outputs are selected for

XORing are also termed as “taps”. The choice of taps determines how many values

there are in a given sequence before the sequence is repeated. Certain tap settings

yield maximal length sequence of (2n − 1). Figure 5.2 shows 3-bit LFSR with taps

at register bits (1,2).

Figure 5.2: 3-bit LFSR

Table 5.1 illustrates the sequence of the pseudo-random values generated by the

above 3-bit LFSR.

Clock Pulse Random Sequence(FF1, FF2, FF3) Comments
0 0, 1, 1 (3) Seed Value
1 0, 0, 1 (1)
2 1, 0, 0 (4)
3 0, 1, 0 (2)
4 1, 0, 1 (5)
5 1, 1, 0 (6)
6 1, 1, 1 (7)
7 0, 1, 1 (3) Starts to repeat

Table 5.1: Pseudo-Random sequence of 3-bit LFSR

CHAPTER 5. SERIAL ARCHITECTURES 93

From Table 5.1 it can be seen that the sequence is repeated after going through

7 (2n − 1) different values. A sequence produced by ‘n’ length LFSR which has

2n − 1 different values is called a PN-Sequence (Pseudo-Noise sequence). For

any given width LFSR there are many tap combinations that give maximal length

sequences. Fortunately, these tap combinations for LFSRs ranging from 2 to 32 bits

are easily found in various related literature. For example 7 and 8 bit LFSR, which

will mainly be of our interest because of the number of the training patterns in

the benchmarks, has taps at (0,6) and (1,2,3,7) respectively that yield the maximal

length of sequence.

Another point that designers have to consider while designing LFSR is that all

zeros in a sequence is not possible unless the seed value is chosen to be all zeros.

However this is a prohibited state since the LFSR will continue to shift all zeros

indefinitely using XOR operations. Therefore a designer has to make sure or provide

a seed number which is not zero at power-up of the circuit.

Two ways of generating a random sequence through LFSR are tested in our

experiments while implementing the BP algorithm on FPGA. These are:

• Generate a sequence for an epoch before its presentation or in other words

before the start of the algorithm computation for an epoch

• Generate a random number for next pattern in parallel to the computation of

the algorithm for previous pattern, ideally eliminating a need of any extra

clock cycles for the random number generation

In our serial implementations, we have used the first approach because of its simplic-

ity. Whereas all partially parallel and a fully parallel architectures use the second

CHAPTER 5. SERIAL ARCHITECTURES 94

approach to generate random numbers.

5.3 Serial Implementations

This section describes two serial implementations of the BP algorithm carried out

on the RC1000 board consisting of Virtex1000/Virtex2000e FPGA chip.

The goal of designing an initial architecture that executes the algorithm in a

serial fashion was to lay the foundation for developing a parallel architecture. Some

of the challenges faced in designing the serial architectures will attempt to serve as

a guideline for enhancing the final parallel designs. Prior to the description of the

architecture aspects pertaining to the sigmoid function will be explored.

An ANN model of Multi-layer Perceptrons (MLP) employing the back propa-

gation algorithm requires the use of a non-linear activation function at the output

of each neuron. For experiments carried out for the research in this thesis, we will

consider the Sigmoid Function as the activation function in the implementation of

MLP model. The Sigmoid function is given by,

f(x) =
1

1 + e−x
(5.2)

where, −∞ < x < ∞

Efficient implementation of the sigmoid function on an FPGA is one of many

difficult challenges faced by designers. This is because of the requirement of division

operation and the calculation of exponent part in equation 5.2. Hence in most cases

CHAPTER 5. SERIAL ARCHITECTURES 95

computationally simplified alternatives of sigmoid function are used.

One approach attempts to store pre-calculated output of the sigmoid function in

LTs. In this approach, the output of the sigmoid function is precalculated for each

possible value of input, which includes every increment of precision starting from

the lowest number and ending with the highest number possible in a given number

representation. The computed output values are then stored in LTs - mostly on/off-

chip RAM or BlockSelectRAM of FPGAs. Although arithmetic operations in our

implementation were based on 16 bit fixed-point numbers, the length of the LT for

the sigmoid function can be curtailed to 8k. In this case 3 bits were omitted off the

input to the sigmoid by considering only 13 bits without significant loss of range

or precision as shown in Figure 5.3

1 4 8

1 3 9

Sign Integer Fraction

Sign Integer Fraction

Figure 5.3: Reduced Fixed point number to Sigmoid input

As shown in Figure 5.3 one way to curtail the number is by omitting three bits

in the fractional part to make it a 1-4-8 structure. Another way to decrease the

CHAPTER 5. SERIAL ARCHITECTURES 96

size of the number is to omit two bit in fraction and one bit in integer resulting

in a 1-3-9 structure. An omission of a bit in integer and thus reducing it to 3 bits

will not affect the range as it can be seen from the Figure 2.5 that the function

saturates to 1 or 0 as input approaches |7|, a limit well within the range for 3 bits.

The benefit of the second way over the first approach is the higher precision.

The two serial implementations differ in nature by means of storing initial pa-

rameters and LTs. The difference are:

• Serial Implementation with Paramertes/LT in EXternalRAM (SIPEX)

• Serial Implementation with Paramertes/LT in On-chipRAM and BlockRAM

(SIPOB)

Various types of possible memory creation on Virtex series FPGA chips are de-

scribed in Appendix D. Some of the common features of both architectures:

• 16 bit Fixed-point number representation in the form of 1:4:11 (Sign:Integer:Fraction).

Fixed-point library supplied with Handel-C compiler is used to encode the

representation.

• Random number generation by employing LFSR

• Sigmoid function realization based on Look-Up Table technique

• Pattern Mode of learning

Figure 5.4 illustrates the method of computation common in both architectures.

The dark arrow in Figure 5.4 represents the direction of the computation and

shows that synapses are being computed one at a time (serial). The approach used

CHAPTER 5. SERIAL ARCHITECTURES 97

FF

I3

I2

I1

Hidden LayerInput Layer

H1

Hidden Layer Output Layer

δ1

δ2

δ3

BP

2

3

n

1 1

2

3

n

Figure 5.4: Computation of the BP algorithm in Serial Fashion

to encode the algorithm in programming language is to divide it in the following

three time-exclusive stages. Each of the stages consist of several modules. Both

SIPEX and SIPOB architectures have the following similar modules:

• Feed-Forward Stage

– Multiply-Accumulate module facilitates computation for one layer

– Error Calculation module

– Sigmoid function module: address generation and data retrieval from

LTs

• Back-Propagation Stage

– Module for Output gradient calculation

– Module for Hidden Layer gradient calculation

– Module for calculating Derivative of sigmoid

CHAPTER 5. SERIAL ARCHITECTURES 98

• Weight Update Stage

– Module for weight-update

These designs have a single arithmetic module consisting of a multiplier, adder and

subtractor. This enables the designs to compute one synapse (multiplication) in

one clock cycle. The serial designs proposed are not purely sequential in nature like

GPP. For example, the multiplication process can be pipelined with the accumula-

tion process. The start of the accumulation process is delayed by the time required

to execute one multiplication-process. In other words, if one process is executing a

multiplication on neuron n+1, another process executes an accumulation at neuron

n in parallel. For the feed-forward stage, the combined multiplication-accumulation

process can be further pipelined with a sigmoid function calculation process. If we

denote || for a pipeline implementation, a rough depiction of computation at a sin-

gle neuron in a layer in the feed-forward stage can be given by:

((Multiplication || Addition) || Sigmoid Calculation)

Similarly, for the Back-Propagation and weight-update stages, we can write:

((Multiplication || Addition) || Derivative of Sigmoid)

((Multiplication || Calculation of 4W and Updated weights)

An Algorithmic State Machine (ASM) for the feed-forward stage in SIPEX and

SIPOB architectures is illustrated in Figure 5.5.

CHAPTER 5. SERIAL ARCHITECTURES 99

Set i = 0

Is

i >= 0 &&

i < Tot_N_P

Is

i >= 1 &&

i < Tot_N_P+1

Call Sigmoid
Function LT

Is

j >= 0 &&

j < Tot_N_N

Is

j >= 1 &&

j < Tot_N_N+1

Is

j >= 2 &&

j < Tot_N_N+2
Increment j

Fetch Input &
Weight

Multiply Input &
Weight

Increment i

Reset Accumulation Array

DelayDelay

Delay Delay Delay

Set j = 0

Is

j < Tot_N_N + 2

Is

i <= Tot_N_P

Array
Add to Accumulation

Total Neurons in Previous Layer: Tot_N_P

YES YES

NO NO

YES YES YES

NO NO NO

YES

NO

YES NO

Pipelined Stages

Pipelined Stages

Total Neurons in Following Layer: Tot_N_N

Multiplication Array: Holds Multiplied Values (Weight/Input Product)

Exit

Figure 5.5: ASM for the Feed-Forward stage in SIPEX and SIPOB

CHAPTER 5. SERIAL ARCHITECTURES 100

5.3.1 SIPEX

This architecture is a result of an early stage of experimentation and aimed at

understanding and evaluating some fundamental aspects of ANN implementation

on the hardware platform available for this research.

In this architecture Lookup Table (LT) for the sigmoid function is stored in

Off-Chip SRAMs. The module responsible for calculating sigmoid function will

generate address to access Off-Chip SRAMs. For Virtex and VirtexE FPGA on

RC1000 board, external clock, which is faster than the internal clock, is divided by

four to time the Off-Chip SRAMs during read and write operations. The LT was

implemented on Memory Bank 3 for 8k input values of the sigmoid function. The

advantage of such an implementation is that the area utilized is minimal. However

the drawback is that such implementation is inherently serial and not suitable for

parallel scaling [Savi04]. Since each memory bank can be accessed once in a clock

cycle, at the most four sigmoid functions can be calculated simultaneously if the

same LT is copied to the available memory banks. Another drawback of realizing

LT on Off-chip RAM is the need for the division of fast external clock. This scales

down the frequency to 1
4

of the external clock for the complete design.

The main feature of this architecture are:

• It stores initial parameters such as input, output and weight values and

Look-Up table(LT) for Sigmoid function in Off-Chip asynchronous SRAMs

on RC1000 board.

• As mentioned in Chapter 4 the RC1000 board consists of 4 memory banks,

each of the size 2M x 8. The initial parameters are stored in memory bank 0

CHAPTER 5. SERIAL ARCHITECTURES 101

and LT for the sigmoid function is stored in memory bank 3. Memory bank 1

is reserved for storing the instantaneous sum squared error for each pattern.

These values on completion of execution of the algorithm will be transferred

to host to calculate Average Sum squared Error.

• Each memory bank can be accessed once in a clock cycle. Hence this is a

serial transmission of data from/to bank to/from FPGA chip. However, all

four banks can be accessed simultaneously.

• Maximum number of neurons that can be accommodated in each layer are

set at 32. However this is not the maximum limit set by the FPGA chip on

the board and can be further increased.

5.3.2 SIPOB

This architecture was developed following SIPEX to explore the possibilities of

enhancing the network performance by using BlockRam to store LTs for the sigmoid

function and On-chip RAMs to store initial parameters.

BlockRAMs are chosen to store LTs of the sigmoid function to circumvent some

of the problems associated with the use of Off-Chip SRAMs as described in Section

5.3.1.

Figure 5.6 shows a block diagram of LT implementation of the sigmoid function

in BlockRAMs. It uses the method of reducing the width of a sigmoid input/neuron

output as described in Section 5.3. A comparator checks the sign and compares the

input value to a maximum limit of 7.9980. On crossing the limit on either side of

zero will generate saturated output of ’0’ or ‘1’. All other input values within the

CHAPTER 5. SERIAL ARCHITECTURES 102

Comparator

Max. Limit 8

SignNeuronOut

DeMUX

MUX

Saturated Output (1 or 0) Lookup Table Output

BlockRam(8k x 16 / 40k x 16)

Address Bus
Bits Reduction

to Generate

Address

Sigmoid Value

Region Select

Selection

Figure 5.6: Look-Up table for Sigmoid function implemented in BlockRam

CHAPTER 5. SERIAL ARCHITECTURES 103

limit go to Address generator to generate an address for the BlockRAMs.

The problem arises in case of Virtex1000 FPGA chip which contains only 8k x

16 size BlockRAM, resulting in a complete usage for LTs and leaving no memory

for the initial parameters. Here all BlockRam modules (32 in case of Virtex1000)

are combined to form a single unit of memory for the LTs. It is found that such

an approach, which is the only possible way of forming a large unit of memory,

levied high logical cost and routing resources. This is because the extra chip-area

is consumed by multiplexing units which are needed to cover address and data bus

of each BlockRAM module in the unit. Consequently, it affects the speed with

which design can execute the algorithm. It is observed through separate practice

example that if BlockRam modules are used individually (256 x 16 bits) for read and

write operations, it can attain maximum frequency possible, 100Mhz in Virtex1000

chip. Every addition of a BlockRAM module to form bigger unit of memory and

accommodate more data further decreases the frequency with which read/write

operations can be performed. This approach is also not suitable for parallel scaling

since generating multiple copies of LT will not be area efficient.

The main features of this architectures can be summarized:

• It stores initial parameters in On-chip RAMs and LT for sigmoid function in

BlockRAMs. This would eliminate the need of accessing the external asyn-

chronous RAMs.

• Maximum number of neurons that can be accommodated in each layer are set

at 12. The maximum number of patterns in a data set allowed is 255. These

limits are imposed by the size of the FPGA chip.

CHAPTER 5. SERIAL ARCHITECTURES 104

5.4 Results and Analysis

In this section we will present the results obtained by the successful implementation

of the serial architectures for several benchmarks. A detailed analysis of the results

will be presented.

Tables 5.2, 5.3 and 5.4 show the time taken by SIPOB architecture to execute

the BP algorithm for different benchmarks.

SIPOB Software
LR Epochs Implementation

Time(mS) Time(mS)
0.25 7000 440 240
0.5 3300 220 125
0.75 2200 140 78
Frequency(MHz) 25

Table 5.2: XOR data set experiments for 0.0022 ASE

SIPEX SIPOB Software
LR Epochs Implementation

Time(mS) Time(mS) Time(mS)
0.1 242 1000 500 250
0.15 160 675 340 170
0.2 123 531 270 140
0.25 101 438 210 100
0.3 83 375 180 90
Frequency(MHz) 25 25

Table 5.3: IRIS data set experiments for 0.03 ASE

• It should be noted here that the software version of the algorithm are run

for the same number of epochs as the hardware versions to compare timings.

CHAPTER 5. SERIAL ARCHITECTURES 105

SIPEX SIPOB Software
LR Epochs Implementation

Time(mS) Time(mS) Time(mS)
0.3 221 6910 3000 1100
0.4 166 5000 2300 780
0.5 135 4125 1900 630
Frequency(MHz) 25 25

Table 5.4: Cancer data set experiments for 0.016 ASE

However the software versions are found to take 5% to 10% less epochs to

reach the desired goal (ASE). Hence the network for the software version will

be slightly over-trained.

• One of the difficult challenges faced while implementing the SIPEX on RC1000

board is that the Handel-C requires an internal clock of 1
4

of the external

frequency to time the Off-Chip RAMs. The problem with Handel-C is that

it scales down the frequency of the whole design by 4. The RC1000 board

allows maximum 100MHz external frequency to clock the FPGA chip. Hence

the maximum internal frequency with which design can run will be 25MHz.

This frequency corresponds to the delay of 1
25×106 = 40 ns on hardware. Any

delay in the routing + logic more than 40ns will cause the frequency to go

down further. This bottleneck was encountered while implementing SIPEX,

the first serial architecture, on the FPGA chip. This has led to exploring the

possibility of realizing the designs in two clock domains in which the access to

the Off-chip RAM is isolated from the main computation and runs at lower

frequency.

• As illustrated from Tables 5.2, 5.3 and 5.4 the SIPOB architectures is inferior

CHAPTER 5. SERIAL ARCHITECTURES 106

to the software version running on General Purpose Processor. SIPOB, the

serial hardware architecture, running at 25MHz is slower than the software

version running on dual processor PIII 850MHz. Also the high consumption

of area/routing resources for the SIPOB implementation does not allow for

higher clock frequency.

Table 5.5 shows the Weight Updates Per Second(WUPS) achieved by SIPOB.

Weight Update/Second(WUPS)in million
Benchmarks SIPEX SIPOB

XOR - 0.6
Iris 0.45 0.9

Cancer 0.8 1.8

Table 5.5: Weight Updates per Second

It can be observed from Table 5.5 that for SIPEX and SIPOB architectures,

WUPS increases with an increase in the size of the network. This behavior can

be attributed to the fact that the serial designs are not completely sequential in

nature like the general purpose processor. Although the computation nature of

SIPOB dictates it to one synapses at a time, some of the operations associated

with it can be pipelined. Figure 5.7 shows such pipeline for a neuron in FF stage

and calculates the number of clock cycles for a layer in XOR and Iris.

As per the Figure 5.7, XOR takes 4.66 cycles/weight in FF while Iris takes 4

cycles/weight. Such calculation can be derived for rest of the stages too and will

be found to result in less number of clock cycles per weight as the network grows.

Hence the larger the network the better the WUPS for the same architecture.

Table 5.6 shows the are requirement in terms of the equivalent gate counts on

CHAPTER 5. SERIAL ARCHITECTURES 107

2 2 2 2

3 3 3 3 3

3 3 3 3 3

I2 I3 I4 I5I1

2

2 2

3 3 3

3 3 3

I2 I3I1

2

I1

I2

I3

I5

I4

I3

I2

I1

Clock Cycles = 20

Clock Cycles/Weight = 20/5 = 4

Clock Cycles = 14

Clock Cycles/Weight = 14/3 = 4.66

Iris

XOR

Accumulate &
Store

(3 CS)

Multiply &

Store
(3 CS)

Fetch

Inputs/Wts

(2 CS)

Stage1

Stage2

Stage3

Figure 5.7: Comparison of Clock Cycles per weight in SIPOB

Viretex2000e FPGA.

Gate Count(in million)
Benchmarks SIPEX SIPOB

XOR 0.2 1.4
Iris 0.2 1.4

Cancer 0.2 1.4

Table 5.6: Gate Counts for Benchmarks

• SIPOB generates the hardware for 12-12-12 size network. Hence the gate

count remains same for all benchmarks at 1.4 million.

• Although the execution is serial in nature, SIPOB requires high numbers of

logic gates. The reason behind the intensive utilization of the hardware is

CHAPTER 5. SERIAL ARCHITECTURES 108

the creation of large On-Chip RAMs for storing initial parameters specifically

Input and Output. Since the maximum allowable number of nodes in a layer

and total patterns in SIPOB are 12 and 255 respectively, it requires two

On-chip RAMs, each of size 255 × 12 ≈ 3k(16bits), for storing Input and

Output patterns. Such realization of the On-chip RAMs imposes high area

requirement and thus restricts the size of the network that can be fit on the

chip. The details of the area requirement imposed by the creation of various

memories through Handel-C on Virtex chip is explained in Appendix D.

• Another reason for the high number of gate counts in SIPOB is the utilization

of BlockRAMs for storing LTs of Sigmoid function. The size of the LT is

8k × 16bits and that will require 32 BlockRAMs to be merged to act as a

single memory module. Since the BlockRAMs are distributed on the FPGA

chip, such merging not only demands high routing resources but requires

the area for the logic needed to multiplex address and data bus from all 32

BlockRAMs.

• In contrast to SIPOB, SIPEX, the first serial approach, requires around 0.2

million gates because it does not use on-chip RAMs and BlockRAMs.

SIPEX architecture is the outcome of an early stage of the experimentation and

not all the features of handel-C are exploited to optimize it for speed. For example,

’while’ loop can be used instead of ’for’ loop, output gradient can be calculated

while the output error is being calculated and shifters can be used for power of

two operations instead of multipliers. However SIPEX does help identify some

bottlenecks and build a foundation for the development of SIPOB and the parallel

CHAPTER 5. SERIAL ARCHITECTURES 109

architectures.

5.5 Summary

In this chapter two serial architectures SIPEX and SIPOB were proposed to imple-

ment the BP algorithm on the RC1000 board. These architectures differ in nature

by means of storing LTs for the sigmoid function and initial parameters. However

from SIPOB architecture it was found that LT approach falls short from the aim

of having a good performance in a small area on the final chip (resource) [Beiu94].

The implementation of SIPEX architecture helped identify issues related with the

access of Off-Chip RAMs and required division of the external clock. Hence the

subsequent development of designs will be attempted at executing algorithm in two

clock domains. The encoding of serial designs was a preliminary attempt at under-

standing the Hardware Descriptive Language Handel-C. It has helped understand

the intricacy of the language and that knowledge can be further utilized in the

development of parallel designs. Overall, the implementation of serial architectures

provided the foundation for understanding the concepts of an ANN realization on

an FPGA.

Chapter 6

Parallel Architectures

This chapter describes parallel architectures/designs developed for implementing

the Back-Propagation (BP) algorithm for Artificial Neural Network(ANNs) on an

FPGA. A detail description of each architecture and results obtained is presented

in the following sections. Section 6.1 will describe the categorization of parallel

architectures and introduces the concept of Branch-In and Branch-Out mode of

multiply-accumulate. Section 6.2 will shed some light on piece wise linear approx-

imation of sigmoid function. Section 6.4 proposes three partially parallel architec-

tures and analyzes the outcome of the implementation on Virtex 2000E FPGA.

Section 6.5 proposes a fully parallel architecture and analyzes the results of the

implementation.

110

CHAPTER 6. PARALLEL ARCHITECTURES 111

6.1 Categorization of Parallel Architectures

In ANNs parallelism can be achieved either at the node or layer level. Parallelism

at the layer level indicates that the computation of all synapses values in a layer

is performed in parallel. Such an approach requires an architecture with complete

computing elements (multipliers) for all synapses in that layer. This configuration

ensures the highest degree of parallelism and termed as a fully-connected parallel

architecture. It leads to a very high level of network performance because it re-

quires the same number of multipliers to be employed in a layer as the number of

synapses(links). This is illustrated in the Figure 6.1 by giving an example of a net-

work for XOR data-set (Only input and hidden layers of the network are shown).

I1

I2

Bias

Input Layer Hidden Layer

No. of Multipliers required: 6

Figure 6.1: Link/Layer level parallelism

CHAPTER 6. PARALLEL ARCHITECTURES 112

Parallelism at the node level means the computation of all synapses connected

to a single node in a layer is performed in parallel. The node level parallelism

can be achieved with a partially parallel architecture. This architectures compute

synapses only branching in or out of a node at a time in parallel as illustrated in

Figure 6.2 (Only input and hidden layers of the network are shown). In such designs

computation is carried out with reference to nodes in previous/following layer. The

notations “previous layer” and “following layer” refer to the position of a layer with

respect to the other layer in the direction of computation as illustrated in 6.2. If

the reference for calculation is based on the previous layer then the synapses in

consideration are the ones that are branching-out of each neuron, one neuron at

a time, from that layer. Hence the required number of multipliers in this case are

set to the number of synapses leaving a neuron of the previous layer. The operation

for such type of signal propagation is referred to as “Branch-Out”.

If the reference for calculation is with respect to the following layer then the

synapses in consideration are the ones that are branching-in at each neuron.

Hence the required number of multipliers in this case are the equivalent to the

number of synapses approaching a neuron of the next layer. The operation of

such type of signal propagation is referred to as “Branch-In”. It is evident that

partially parallel designs require less resources than its fully parallel counterparts.

The Branch-In and Branch-Out method of computation form the very basis of

partially-parallel designs for back-propagation algorithm. Since all three stages of

the algorithm, Feed-Forward, Back-Propagation and Weight-Update, require basic

Multiplication-Addition operations, any of the two methods (or a combination)

can be utilized to perform computation for a particular stage. Figures 6.3 and

CHAPTER 6. PARALLEL ARCHITECTURES 113

I1

I2

Bias

Input Layer Hidden Layer

Direction of Computation

1

1

2

2

3

3

No. of Multipliers required: 2

Branch−Out Multiplication

(Previous Layer) (Following Layer)

I1

I2

Bias

Input Layer Hidden Layer

(Previous Layer)

Direction of Computation

1

1

1

2

2

2

No. of Multipliers required: 3

Branch−In Multiplication

(Following Layer)

Figure 6.2: Branch-In and Branch-Out Multiplication

6.4 illustrate the concepts of multiplication-addition in Branch-In and Branch-Out

modes of computations for Feed-Forward stage respectively.

A mathematical description for the Branch-Out multiply-accumulate as shown in

Figure 6.4 can be given as:

Wi = Weight Vector for neuron Ii in input layer

Mi 1 = I1 ×W1

Mi 2 = I2 ×W2

Accumulation at Hidden node Hi = ΣMi j,

where j = 1 to No. of hidden nodes

From the Figures 6.3 and 6.4 it can be observed that the addition of multiplied

CHAPTER 6. PARALLEL ARCHITECTURES 114

M
i

I
i

W
i= x

H
i M

i
Accumulation at = Σ

W
i = Weight Vector for neuron H

i

W
i

W
1

W
2

Multiplication Array

FF

I

I

I

1

2

3

H
1

M

M

M1

2

3

Branch−In Multiply−Accumulate

Input Layer Hidden Layer

Weight Vector

Figure 6.3: Branch-In Multiplication

values at each hidden neuron (or node at following layer) requires different approach

for Branch-In and Branch-Out modes. In Branch-In mode, for a node in a following

layer the required multiplied values are available in a multiplication array after

one instance of parallel multiplication. Whereas in case of Branch-Out, only one

multiplied value is available for each node in a following layer after one instance

of parallel multiplication. Hence each neuron in next layer can be assigned with an

adder in case of Branch-Out. An adder at each neuron will accumulate values after

each instance of parallel multiplication and provide the partial sum as illustrated

in Figure 6.4. In this way final sum at each neuron would become available once all

synaptic weights in the following layer is computed. This simplified and efficient way

of addition in the case of Branch-Out can be termed to assigning one “Multiplier-

CHAPTER 6. PARALLEL ARCHITECTURES 115

i

W1

W

2
W

+

Multiplication Array

I1

H

H

H

1

2

3

M

M M

M

MM1_1

2_1

3_1

1_2

2_2

3_2

FF

BranchOut Multiply−Accumulate

Weight Vector

Input Layer Hidden Layer

Figure 6.4: Branch-Out Multiplication

Adder unit per Neuron”.

An addition in case of Branch-In can be performed in several ways depending

on the number of adders provided. Since all required multiplied values become

available for a node at every instance of parallel multiplication, there exists a ques-

tion how efficiently addition can be computed with optimal number of adders. By

providing a single adder, serial addition will perform computation in ‘n’ iteration,

where ’n’ being the number of synapses leaving from previous layer (Size of Mul-

tiplication Array). In most cases, this may not be efficient as the size of network

grows larger with increasing number of neurons in each layer and thus requiring

more iteration to complete addition in serial fashion. Designing a multi-input adder

CHAPTER 6. PARALLEL ARCHITECTURES 116

which assembles the same number of adders as the number of neurons less one in

the next layer would provide the fastest, at least in terms of clock cycles, computa-

tion. However the feasibility of such an adder depends on the structure of custom

arithmetic module or pre-built arithmetic library of the hardware programming lan-

guage in use. Figure 6.5 shows such an adder module comprising of (n-1) adders,

which computes all additions sequentially in one large clock cycle. The drawback of

+

+

+

+ Sum

I1
I2

I3

I4

In

Multi−Input Addition in one Clock Cycle

Figure 6.5: Multi-Input Adder module

multi-input adder module is it consumes a large clock width to compute additions.

It might prove efficient for less number of additions in case of a small network.

Since the maximum frequency with which a design can run on hardware is defined

by the largest delay in a synchronous operation, the feasibility of accommodation

of the multi-input adder remains to be determined from place and route data of

synthesis tool.

CHAPTER 6. PARALLEL ARCHITECTURES 117

Another way of performing an addition in case of Branch-In is shown in Figure

6.6. It starts with providing (n/2) adders in the first stage of computation and then

continues computing at each successive stage with adders equal in number to half

of the previous stage until final sum is reached.

Stage 2

+ + + +

+++

+ +

+ Final Sum

n/2 AddersStage 1

Figure 6.6: Branch-In Addition

The required number of stages = S, where n ≤ 2S

This approach requires several stages depending on the length of a multiplication

array to complete the accumulation. Since all additions in a stage in this approach

are performed in parallel, maximum logic delay in a circuit will be equivalent to

one addition operation per stage. The maximum logic delay will be higher in case

CHAPTER 6. PARALLEL ARCHITECTURES 118

of a multi-input adder because of sequential computation of additions in a single

stage. This results in a circuit requiring a larger clock cycle which in turn reduces

the frequency of the design. Hence in all our parallel architectures, Branch-In

addition as shown in the figure 6.6 will be used. Prior to the detail description of

these architectures, the design aspects pertaining to the sigmoid function will be

explored.

6.2 Sigmoid Function Implementation

In Chapter 5 the LT approach for the sigmoid function implementation was found

to require either a large chip-area or access to Off-Chip RAMs, both of which have

certain drawbacks.

An alternative approach to implementing the sigmoid function in digital VLSI

technology is Piece-Wise Linear Approximation (PWL) which was described in

detail in Chapter 3. The implementation of the sigmoid function was based on

Piece-wise linear approximation for all parallel designs proposed in the thesis. The

reasons behind this incorporation of PWL approach is the short-comings of LT

approach observed through practical outcome of serial implementations and the

benefits of efficient PWL approximation depicted in theoretical study of the liter-

ature review.

As described in Chapter 3, PWL approximations can be roughly divided into

linear and higher order (mostly second-order) approximation. Though second-order

approximations tend to produce better approximated results than linear schemes,

we have focused on the first-order linear approximation because of its simplicity and

CHAPTER 6. PARALLEL ARCHITECTURES 119

comparatively cost-effective requirement of the resources. Such first-order PWL

approximation is well described by [Bast04][Savi04]. As described in Chapter 4,

our Fixed-point number representation is of the form 1-4-11 which essentially can

accommodate positive and negative integer values in the range of 0 to 15. Looking

at Figure 6.7 of the sigmoid function, the function for the positive and negative

spectrum tend to saturate at 1 and 0 respectively for input values higher than |8|.
This region of the graph can fairly be included by two segments, each on the positive

and negative axis extending beyond the saturation limit. The central region can

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.7: Sigmoid Function

be approximated as the linear region which is also the tangent to the function in

x = 0. This region has a slope of 1/4 and input values are symmetric to y = 0.5.

The slope is “power of two” nature hence calculation of output in this region

will essentially be a shift operation followed by an addition of constant (0.5 in this

case). The region close to the saturation on both side of the axis can be linearized

with a slope of 1/64. This linear region starts from the saturation limit |8| and

CHAPTER 6. PARALLEL ARCHITECTURES 120

intersects the central linear region at x = |1.6|. Again, as mentioned earlier, the

calculation in this region can also be carried out with shifters and adders due to

the slope which is in “power of two” arithmetics. This region can be conceived

as two linear segments on both sides of the x axis.

From the preceding discussion we can construct a 3-piece linear approximation

of the sigmoid function as depicted in Figure 6.8 along with an error plot showing

the difference in approximation and the actual value.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1
3−Piece linear solution

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5

1
Sigmoid function

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.02

0.04

0.06

0.08
Mean error

Figure 6.8: Approximated Sigmoid Function

The approximation shown in the Figure 6.8 can be described by the following

equations by,

CHAPTER 6. PARALLEL ARCHITECTURES 121

f(x) =

1− 1
8
× (1− x

8
) 1.6 ≤ x < 8

1
8
× (1 + x

8
) −1.6 ≥ x > −8

1
2
× (1 + x

2
) −1.6 < x < 1.6

(6.1)

Linear regions approximated in equation 6.1 can be generated in hardware as shown

in Figure 6.9.

÷64

÷64

+1/8

+7/8

÷4 +1/2

÷4

÷64

DeMUX

|x|

=1

=0

Output

Comparator

Region Select
Input

Shift Right >> 2

Shift Right >> 6

Figure 6.9: A Sigmoid Function module

A Comparator compares the input with breakpoints of linear regions defined in

equation 6.1 and selects the appropriate region for an input. If the input values is

above |8|, then it will saturate the output at 0 or 1. For other linear regions only

shifters are required to divide the input by 64 or 4 and then appropriate constants

are added to find the output. It can be seen from the Figure 6.8 that the maximum

CHAPTER 6. PARALLEL ARCHITECTURES 122

error is 7% and found at the intersection of the linear regions. Also the area below

the error curve is higher in the region where sigmoid function approaches the limits.

The reason behind this behavior is we have not taken tangent at any point of the

curve in this region (|1.6|, |8|) unlike the one taken in the central region at x = 0.

[Bast04] recommended choosing a line which is also a tangent of the curve at some

point in approximating a region with linear segments. However it will require more

number of segments (probably two more) in our case to reach the limits -8 and 8.

The benefit of PWL approximated sigmoid function unit is that it involves

basic shift and add operations which doesn’t require significant chip-area. Hence

it is practical to assign such unit to each processing node of a layer in a network.

This will allow parallel computation of sigmoid functions for all nodes in that layer.

The back-propagation stage of the BP algorithm requires the derivative of the

sigmoid function. Various researchers have derived the formulas based on PWL

approximation for the derivative [Alip91][Myer89][Bast04][Beiu94]. It should be

noted here that though the PWL approximated function described in preceding

discussion is differentiable, we have used the derivative of the actual function,

f(x)×(1−f(x)). The main reason behind this is that by approximating the sigmoid

function we are inducing a small error in the computation and it will deviate more

if we used the approximated derivative function. Also the (1 − f(x)) part of the

actual derivative is nothing but a two’s complement of the function and hence can

be easily constructed on hardware. The requirement of multipliers in computation

of f(x)×(1−f(x)) can be fulfilled by using the multipliers provided for the synaptic

weight-input multiplications. However this will come at an extra price on routing,

since using the same module consisting several multipliers, at different parts of the

CHAPTER 6. PARALLEL ARCHITECTURES 123

chip will require more routing resources.

Table 6.1 represents the area/speed performance of various sigmoid function

implementations considered so far.

Sigmoid Equivalent 4-Input LUTs Slice Clock Cycles
Implementations Gate Counts on FPGA on FPGA per fetch

LT on
Off-Chip RAMs 1800 118 87 2.5

LT on
BlockRAMs 500K 149 134 2.5

Linear
Approximation 2200 196 144 3.0

Table 6.1: Various Sigmoid Function Implementations

LT implementation of the sigmoid function on Off-chip RAMs requires less chip-

area because of simplicity of the design. LT implementation of the sigmoid function

on BlockRAMS requires large area. In this approach 32 BlockRAM modules are

combined to form a single memory of 8k in size. An access to such a memory module

requires a significant logic on the FPGA. PWL approximated sigmoid function

requires higher clock cycles/generation than the other two approaches. However

comparable low chip-area requirement of the PWL approach allows the generation

of multiple sigmoid function in a circuit.

6.3 Structure of Data Storage in BlockRAMs

In Section 6.1 we highlighted the need for storing the initial parameters are stored

in BlockRAMs. Hence before describing each of the architecture, we will describe

memory map and show how the parameters are stored in several BlockRAMs. This

CHAPTER 6. PARALLEL ARCHITECTURES 124

aid the reader in understanding how the parameters and intermediate values are

fetched and stored in parallel during processing. The purpose of storing the initial

parameters such as input, output and weight vectors in BlockRAMs is to facilitate

the parallel access of the information to various modules of the architectures. Each

BlockRAM is set to a 256 x 16 bits as already shown in the Figure 4.2. Since each

BlockRAM can be accessed once in a clock cycle, it is essential that the storage

of each initial parameter be distributed among few BlockRAMs. For example, to

store 200 (patterns) x 4 (vector size), 4 BlockRAMs are used. The first element of

each BlockRAM stores a value from first input pattern vector, the second stores

a value from the second input pattern vector and so forth. The same concept has

been applied to store weights as shown in Figure 6.10.

W{12}

W{22}

W{32}

Layer 1

Layer 2

Weights

Neuron 1

Neuron 2

Neuron 3

B1

W{11}

W{21}

W{31}

W{13}

W{23}

W{33}

B3B2

BlockRAMs (Each of Size 256 x 16)

Figure 6.10: Weight Storage in BlockRAMs

It is clear from Figure 6.10 that all the weights associated with a particular

neuron can be accessed in parallel.

CHAPTER 6. PARALLEL ARCHITECTURES 125

6.4 Partially Parallel Implementations

As noted in chapter 3, achieving a high speed requires the exploitation of inher-

ent parallelism in an ANN. As such we attempted at developing partially parallel

architectures for the following reasons:

1. To achieve better performance over serial implementations

2. To evaluate different designs for its ability to accommodate different topolo-

gies of networks on Virtex2000e FPGA chip.

The chip-area (resources) and performance (speed of convergence) are vital two

parameters that need to be checked for all architectures while training the networks.

6.4.1 Categorization of Partially Parallel Architectures

Some of the common features of the three architectures, though described earlier,

worth mentioning here for completeness are:

• Using 16 bit Fixed-point number representation in the form of 1:4:11 (Sign:Integer:Fraction).

• Developing random number generators based on LFSR

• Realizing sigmoid function through PWL approximation by employing 3-

piecewise linear function

• Storing initial parameters stored in BlockRAMs

• Pattern Mode of learning

CHAPTER 6. PARALLEL ARCHITECTURES 126

Since Branch-In and Branch-Out methods can be applied to any of the three

stages of the algorithm to accomplish the multiply-accumulate operation, there are

various possibilities by which a partially parallel architecture can be built. These

possibilities explore the various options of assigning the methods to three stages.

For example, one such architecture can have a Branch-In mode of operation for the

Feed-forward stage and a Branch-out for the back-propagation stage or vice versa.

The weight-update stage always uses the same method of multiply-accumulate of

the feed-forward stage. Hence one of the differences between these architectures

is how the multiply-accumulate methods are assigned to the feed-forward and the

back-propagation stage.

Yet another difference in the architectures is the number of sigmoid function

units employed for each layer. In Branch-In mode of operation the final sum of

weight/input product at each neuron becomes available in sequentially. Hence when

Branch-In mode is applied, a single sigmoid function unit per layer is sufficient as

the unit can be pipelined to be used by other neurons. Whereas in Branch-Out

mode of operations the final sum of weight/input product at all neurons becomes

available instantly after several stages of partial sums. Hence when Branch-Out

mode of operation is applied, it is practical to employ the same number of sigmoid

function unit as the number of nodes in a layer to achieve parallel computation.

Based on the preceding discussion, the different partially parallel architectures

can be described as follows:

• PARallel architecture with (Branch)Out and (Branch)In operation in Feed-

Forward and Back-Propagation stages respectively is called PAROI and has

the following features:

CHAPTER 6. PARALLEL ARCHITECTURES 127

– Branch-Out mode in Feed-Forward stage

– Multiple Sigmoid Function units

– Branch-In mode in Back-Propagation stage

– For 5-3-3 topology of ANN for Iris data-set:

∗ Multipliers: 3 (Maximum of Hidden and Output vectors)

∗ Branch-Out Adders: 3 (Maximum of Hidden and Output vectors)

∗ Branch-In Adders: 3 (Two stages of addition with adders in each

stage are 2 → 1)

∗ 3-piecewise linear sigmoid Units: 3 (Maximum of Hidden and Out-

put vectors)

Figure 6.11 shows the method of multiply-accumulate for the PAROI architecture.

• PARallel architecture with (Branch)Out and (Branch)Out operation in Feed-

Forward and Back-Propagation stages respectively is called PAROO and has

the following specifications:

– Branch-Out mode in Feed-Forward stage

– Multiple Sigmoid Function units

– Branch-Out mode in Back-Propagation stage

– For 5-3-3 topology of ANN for Iris data-set:

∗ Multipliers: 3 (Maximum of Hidden and Output vectors)

∗ Branch-Out Adders: 3

CHAPTER 6. PARALLEL ARCHITECTURES 128

δ1

δ2

δ3

BranchIn Multiply−AccumulateBranch−Out Multiply−Accumulate

(2 Clock Cycles) (Clock cycles dependant on no. of dark lines)

FF BP

Figure 6.11: PAROI

∗ 3-piecewise linear sigmoid Units: 3 (Maximum of Hidden and Out-

put vectors)

Figure 6.12 shows the method of multiply-accumulate for the PAROO architec-

ture.

• PARallel architecture with (Branch)In and (Branch)Out operation in Feed-

Forward and Back-Propagation stages respectively is called PARIO and has

the following specifications:

– Branch-In mode in Feed-Forward stage

– Single Sigmoid Function unit

– Branch-Out mode in Back-Propagation stage

CHAPTER 6. PARALLEL ARCHITECTURES 129

Branch−Out Multiply−Accumulate

(2 Clock Cycles)

Branch−Out Multiply−Accumulate

(2 Clock Cycles)

I1 δ1

FF BP

Figure 6.12: PAROO

– For 5-3-3 topology of ANN for Iris data-set:

∗ Multipliers: 5 (Maximum of Input and Hidden vectors)

∗ Branch-In Adders: 6 (Three stages of addition with adders in each

stage are 3 → 2 → 1)

∗ Branch-Out Adders: 5 (Maximum of Input, Hidden and Output

vectors)

The required number of arithmetic units for 5-3-3 topology of ANN for Iris data

set are summarized in Table 6.2.

Figure 6.13 shows the method of multiply-accumulate for the PARIO architec-

ture.

Branch-In method performs additions in several stages and in most cases number

of clock cycles required are higher than Branch-Out method of addition which

CHAPTER 6. PARALLEL ARCHITECTURES 130

Arithmetic PAROI PAROO PARIO
Units

Multipliers 3 3 5
Branch-In 3 - 6
Adders

Branch-Out 3 3 5
Adders
Sigmoid 3 3 1

Generators

Table 6.2: Arithmetic Units for 5-3-3 topology of Iris Data-Set

Branch−Out Multiply−Accumulate

(2 Clock Cycles)

δ1

I1

Ι2

Ι3

Branch−In Multiply−Accumulate

(Clock Cycles dependant on no. of dark lines)

FF BP

Figure 6.13: PARIO

takes only 2 clock cycles. Hence no partially parallel architecture with Branch-In

addition in both Feed-Forward and Back-Propagation stages was built (could have

been termed as PARII).

CHAPTER 6. PARALLEL ARCHITECTURES 131

6.4.2 Structure of Partially Parallel Architectures

The basic structure of the three ANN architectures consist of the following modules:

1. Main Processor Module: controls the execution of the three stages of the

algorithm. The module also communicates with the host to start and end the

execution of the algorithm on the FPGA.

2. Neuron Accumulation Module: performs multiply-accumulate computation

for a layer in Feed-Forward stage.

3. Sigmoid Generation Module: performs computation of the Sigmoid function

approximated by 3-piecewise linear segments. This module computes a single

or multiple sigmoid functions depending on the choice of the architectures.

4. Error and Output Gradient Module: computes the output error in Feed-

Forward stage and the gradient value for the output layer in Back-Propagation

stage. This module also computes Instantaneous Sum-squared Error (ISE)

and stores in either BlockRAMs or Off-chip RAMs.

5. Hidden Layer Gradient Module: performs computation of the gradient value

for the hidden layer in Back-Propagation stage.

6. Weight Update Module: performs computation of the weights for a layer in

Weight-Update stage.

7. Initialization Module: transfers initial parameters and the topology from Off-

Chip RAMs to BlockRAMs. It also initializes several intermediate parameters

of the algorithm that is required to be stored during the execution.

CHAPTER 6. PARALLEL ARCHITECTURES 132

8. Random Generation Module: generates random numbers based on Linear

Feedback Shift Register(LFSR). This module generates a random number in

advance for next presentation in parallel to the execution of previous presen-

tation.

The basic structure of all three architectures remain very similar and can be

illustrated in Figure 6.14.

The functionality of a partially parallel architecture shown in Figure 6.14 can

be described as following:

(a) The Processing starts by reading the control register(ReadControl) and re-

questing access to external RAM (RequestMemoryBank) from the host. The

host accordingly downloads .bit files to the FPGA. It also downloads the

initial parameters and the ANN topology to the Off-chip RAM Banks.

(b) The main Processor module issues the Start Initial signal to The Initializa-

tion module to enable transfer of initial parameters and ANN topology from

Off-chip RAM banks to BlockRAMs. The Initialization module also initial-

izes intermediate parameters such as error-gradient, neuron output etc. On

completion, the Initialization module issues End Initial signal to the Main

Processor module.

(c) The Main Processor module reads the topology from BlockRAM and set data

registers such as LayerCount, NoEpochs, NumNeuron (No. of neurons in each

layer) etc.

(d) The Main Processor module then issues a StartRan signal to Random Gen-

CHAPTER 6. PARALLEL ARCHITECTURES 133

LayerCount

DecLayerCount

NoEpochs

TotalLay

NumNeuron

TestPatt

TrainPatt

TotalPatt
LearnRate

Seed

Data Registers

Initialization

Module

Random

Generation

Module

Neuron
Accumulation

Module

Sigmoid

Generation

Module

Error &

Output Gradient

Module

Hidden Gradient

Calculation

Module

Weight Update

Module

Host

BlockRAMs

DataPath

Control Signals

Multiplication

Module

Addition

Module

Main Processor

Module

S
ta

rt
E

rr
o
r

S
ta

rt
H

id
G

ra
d

G
et

H
id

d
en

S
ta

rt
H

id
G

ra
d

W
ri

te
S

ta
tu

s

R
ea

d
C

o
n
tr

o
l

R
eq

u
es

tM
em

o
ry

B
an

k

R
el

ea
se

M
em

o
ry

B
an

k

Off−Chip RAM Banks

Start_Initial

End_Initial

StartRan

OkRan

Figure 6.14: The basic structure of a partially parallel architecture

CHAPTER 6. PARALLEL ARCHITECTURES 134

eration module to supply the first random number. The Random Generation

module sends the random number on the GetRan channel and issues OkRan

to mark the completion of transfer.

(e) A random seed value is supplied to the Random module for the generation of

the numbers for the first epoch. For every successive epoch, the seed value is

incremented by one.

(f) The Main Processor starts the execution of the algorithm by fetching an input

pattern based on the random number generated in previous iteration. The

Random Generation module is called to function in parallel to all three stages

and generate a number for the next iteration.

(g) The Main Processor module calls Neuron Accumulation Module which per-

forms multiply-accumulate operation (Branch-In or Branch-Out) for a single

layer. Next, the Processor calls the sigmoid generation module which com-

putes PWL approximated sigmoid function. This module also computes the

derivative of the sigmoid function. In parallel, it also issues the GetHidden

signal to fetch patterns for the next layer.

(h) The Error module computes error at each node in the output layer. For dis-

crete values of desired output (1 or 0), the error at each node will be

either 2’s complement or the negative of the actual output value.

The module also computes error-gradient for the output layer. Then it issues

StartHidGrad signal to Hidden Gradient module to start the computation

of error-gradient in the hidden layer, in parallel to the computation of In-

CHAPTER 6. PARALLEL ARCHITECTURES 135

stantaneous Sum-squared Error(ISE). Error module stores the ISE in

BlockRAM in case of Double-Domain design or in Off-chip RAM Bank3 in

case of Single-Domain design. The concepts of single and double-domain

designs are described in Appendix F.

(i) The Hidden Gradient module computes the error-gradient for the hidden

layer. It fetches the derivative of neuron output already computed in sigmoid

generation module from BlockRAMs.

(j) The Weight Update module computes the weight update for each layer. It is-

sues GetHidden signal to fetch patterns for the following layer while updating

the weights for previous layer in parallel.

(k) The Main Processor issues OkRan signal to the Random Generation module

to mark the completion of the algorithm.

(l) The execution for each pattern is carried out in similar fashion described above

until the epoch count equals the NoEpochs variable set by the topology.

(m) The Main Processor module generates control signals to send the ISE value to

the Initialization module to store it back to external RAM in case of Double

domain design.

(n) All of the modules described in preceding discussion use two arithmetic mod-

ules employing Fixed-Point multiplication and Branch-In and Branch-Out

Addition as needed.

CHAPTER 6. PARALLEL ARCHITECTURES 136

(o) The Main Processor module completes the execution by sending WriteStatus

and ReleaseMemoryBank signals to the host.

(p) Once the Off-chip RAM banks are released by the main processor, the host

acquires access to RAM and reads ISE back to the host memory.

6.4.3 PAROI

The Algorithmic State Machines (ASMs) of the PAROI architecture are represented

by Figure 6.15 (Neuron-Accumulation module), Figure 6.16 (Hidden Layer Gradient

module) and Figure 6.17 (Weight Update module).

6.4.4 PAROO

The ASMs for the Hidden layer gradient module of the PAROO and PARIO ar-

chitectures is presented in Figure 6.18. The ASM shows the Branch-Out type

sum-accumulate for the Back-Propagation stage. The Neuron accumulation and

Weight update modules remain similar to PAROI as shown in Figures 6.15 and

6.17 respectively.

The implementation of the PAROO architecture encounters a typical prob-

lem related with parallel access of weights in both the Feed-Forward and Back-

Propagation stages. This architecture employs Branch-Out mode of multiply-

accumulate operation in both FF and BP stages of the algorithm. The weight

storage for FF and BP stage for a layer is shown in Figure 6.19. It should be

noted here that the storage for the Feed-Forward and Back-Propagation stages

yields different matrices for a same set of weights. Actually, both matrices are

CHAPTER 6. PARALLEL ARCHITECTURES 137

Reset Accumulation Array

Reset Control Signals
Done, Done1, Done2
Neuron_Count = 0;

Increment Neuron_Count

Is

Neuron_Count >= 0

&& !Done

Is

Neuron_Count >= 1

&& !Done1

Is

Neuron_Count >= 2

&& !Done2

DelayDelayDelay

Generate

Control Signals

Done, Done1, Done2

Fetch an Input &

Connecting Weights

Perform

Multiplication

Perform

Branch−Out Addition

Is

GetNeuron + 2

Neuron_Count <=

YES YES YES

YES

NO NO NO

Total Neurons in Previous Layer: GetNeuron

NO
Exit

Pipelined Stages

Parallel Execution

Accumulation Array: Holds multiplied values (Weight/Input Product)

Figure 6.15: ASM for Neuron Accumulation module in PAROI and PAROO

CHAPTER 6. PARALLEL ARCHITECTURES 138

Increment Neuron_Count

Is

Neuron_Count >= 0

&& !Done

Is

Neuron_Count >= 1

&& !Done1

Is

Neuron_Count >= 2

&& !Done2

DelayDelay

Generate

Control Signals

Done, Done1, Done2

Fetch Error Values &

Connecting Weights

Perform Multiplication

Perform

Branch−In Addition

Multiply Addition with

Derivative

Store Gradient Values

Is

GetNeuron + 2

Neuron_Count <=

DelayYES YES YES

NO NO NO

Reset Control Signals

Done, Done1, Done2

Neuron_Count = 0;

Total Neurons in Following Layer: GetNeuron

YES

Parallel Execution

Pipelined Stages

NO
Exit

Figure 6.16: ASM for Hidden layer Gradient module in PAROI

CHAPTER 6. PARALLEL ARCHITECTURES 139

Increment Neuron_Count

Is

Neuron_Count >= 0

&& !Done

Is

Neuron_Count >= 1

&& !Done1

Is

Neuron_Count >= 2

&& !Done2

DelayDelay

Generate

Control Signals

Done, Done1, Done2

Is

GetNeuron + 2

Neuron_Count <=

DelayYES YES YES

NO NO NO

Reset Control Signals

Done, Done1, Done2

Neuron_Count = 0;

YES

Total Neurons in Previous Layer: GetNeuron

Fetch Error Values &

an Input Value

Perform Multiplication

Fetch Weights

Multiply Weights with

partial multiplication

Perform Branch−Out

addition

Store

update weights

NO
Exit

Pipelined Stages

Parallel Execution

Figure 6.17: ASM for Weight update module in PAROI and PAROO

CHAPTER 6. PARALLEL ARCHITECTURES 140

Increment Neuron_Count

Is

Neuron_Count >= 0

&& !Done

Is

Neuron_Count >= 1

&& !Done1

Is

Neuron_Count >= 2

&& !Done2

DelayDelay

Generate

Control Signals

Done, Done1, Done2

Delay

Is

GetNeuron + 2

Neuron_Count <=

YES YES YES

NO NO NO

Fetch an Error Value &

Fetch derivatives

connecting weights
Perform Perform Branch−Out

Addition

Store in Accumulation Array

Multiply Accumulation &

derivatives

Store Gradient values

YES NO

Done, Done1, Done2
Reset Control Signals
Reset Accumulation Array

Neuron_Count = 0;

multiplication between

the error and weights

Total Neurons in Previous Layer: GetNeuron

Accumulation Array: Holds multiplied values (Weight/Input Product)

Pipelined Stages

Parallel Execution

Figure 6.18: ASM for Hidden layer Gradient module in PAROO and PARIO

CHAPTER 6. PARALLEL ARCHITECTURES 141

W{12}

W{22}

W{32}

Layer 1

Layer 2

Weights

Weights

Layer 1

Layer 2

Neuron 1

Neuron 2

Neuron 3

Neuron 1

Neuron 2

Neuron 3

W{11}

W{22}W{12}

W{21}

W{13} W{23}

B1

B1

B2

W{11}

W{21}

W{31}

W{13}

W{23}

W{33}

W{31}

W{32}

W{33}

B3B2

B3

Branch−Out Weight Storage for FF

Branch−Out Weight Storage for BP

Figure 6.19: The need for the duplication of weights

complement of each other. A careful investigation will reveal that the weights

in consideration in a layer for parallel access are different when the same type of

multiply-accumulate mode is used in both the Feed-Forward and Back-Propagation

stages. Hence to facilitate parallel access of weights in both stages, we need to pro-

vide two sets of BlockRAMs for storing one set of weights. However the problem

with such duplication of weights is that it will require weights to be stored after

every weight-update in both set of BlockRAMs. This may consume extra clock

cycles in execution of the algorithm. However, the requirement for the duplication

of weights can be limited to weights connected to the output layer only, since the

CHAPTER 6. PARALLEL ARCHITECTURES 142

BP stage doesn’t need hidden layer synapses at any point in its calculation of error

values. This inherent behavior of the BP stage can be exploited to save the clock

cycles from being consumed for the duplication of weights. Hence in the PAROO

architecture the Weight-Update stage initiates updating weights from the output

layer and then moves on to the hidden layer unlike the conventional Weight Update

stage which computes in forward direction starting from the hidden layer. Once

the weights in the output layers are updated, they can be duplicated to second set

of BlockRAMs in parallel to the WU stage which moves on to update the weights

in the hidden layer. This will ensure very little consumption of extra clock cycles

provided the WU stage for the hidden layer is long enough.

6.4.5 PARIO

Figures 6.20 and 6.21 are the ASMs for neuron accumulation and weight update

modules of the PARIO architecture. The ASMs show the Branch-In type sum-

accumulate for both modules. The hidden layer gradient module remains similar

to the PAROO as shown in Figure 6.18.

6.4.6 Results and Analysis

In this section we will tabulate the results obtained by the successful implementa-

tion of the partially parallel architectures for several benchmarks. We will also give

detail analysis of the processing. Tables 6.3, 6.4 and 6.5 show the time taken by

the partially parallel architectures to execute the BP algorithm.

• All the partially parallel designs running between 19 to 25MHz execute the

CHAPTER 6. PARALLEL ARCHITECTURES 143

Increment Neuron_Count

Is

Neuron_Count >= 0

&& !Done

Is

Neuron_Count >= 1

&& !Done1

Is

Neuron_Count >= 2

&& !Done2

DelayDelayDelay

Generate

Control Signals

Done, Done1, Done2

Perform

Is

GetNeuron + 2

Neuron_Count <=

YES YES YES

YES

NO NO NO

Fetch Input values &

connecting weights

Perform multiplication
Branch−In Addition

Call

Sigmoid Function

module

Reset Accumulation Array
Reset Control Signals

Done, Done1, Done2
Neuron_Count = 0;

Pipelined Stages

Parallel Execution

Exit

Total Neurons in Following Layer: GetNeuron

Accumulation Array: Holds Multiplied Values (Weight/Input Product)

Figure 6.20: ASM for Neuron Accumulation module in PARIO

CHAPTER 6. PARALLEL ARCHITECTURES 144

Neuron_Count = 0;
Done, Done1, Done2

Reset Control Signals

Reset Accumulation Array

Store Partial multiplication in TempMult Array

Multiply Input with Learning Rate

Increment Neuron_Count

Is

Neuron_Count >= 0

&& !Done

Is

Neuron_Count >= 1

&& !Done1

Is

Neuron_Count >= 2

&& !Done2

DelayDelay

Generate

Control Signals

Done, Done1, Done2

Is

GetNeuron + 2

Neuron_Count <=

Delay

Total Neurons in Following Layer: GetNeuron

YES YES YES

NO NO NO

YES

Values

Fetch Gradient
Multiply the gradient

values with TempMult

Fetch weight values

(=∆W)
weights and (=∆W)

Perform Branch−In

Addition between

Accumulation Array: Holds Multiplied Values (Weight/Input Product)

Parallel Execution

Pipelined Stages

NO
Exit

Figure 6.21: ASM for Weight Update module in PARIO

CHAPTER 6. PARALLEL ARCHITECTURES 145

Partially Parallel Software
Designs Implementation

LR Epochs Time(mS) Time(mS)
PAROI PAROO PARIO

0.25 7000 125 110 110 240
0.5 3300 60 50 62 125
0.75 2200 32 32 50 78
Frequency(MHz) 25 25 25

Table 6.3: XOR data set experiments for 0.0022 Average Sum squared Error

Partially Parallel Software
Designs Implementation

LR Epochs Time(mS) Time(mS)
PAROI PAROO PARIO

0.1 242 141 110 160 250
0.15 160 90 80 110 170
0.2 123 65 60 80 140
0.25 101 60 50 60 100
0.3 83 47 32 50 90
Frequency(MHz) 22.5 25 19

Table 6.4: IRIS data set experiments for 0.03 Average Sum squared Error

Partially Parallel Software
Designs Implementation

LR Epochs Time(mS) Time(mS)
PAROI PAROO PARIO

0.3 221 600 440 530 1100
0.4 166 440 330 400 780
0.5 135 360 270 330 630
Frequency(MHz) 19 20 18

Table 6.5: Cancer data set experiments for 0.016 Average Sum squared Error

CHAPTER 6. PARALLEL ARCHITECTURES 146

algorithm on average 2.25 faster than the software version for all three bench-

marks.

• PAROO produces the best result among all the partially parallel designs.

This can be explained by the fact that PAROO doesn’t use any Branch-In

addition in any of the stages. Branch-In addition requires more clock cycles

than Branch-Out addition. However a significant difference is not found in

the results of the three partially parallel designs.

• The 3-piece linear approximation of the sigmoid function seems to have fairly

worked for all the parallel designs. As mentioned in Section 6.2, such approx-

imation introduces a 7% error in calculation of the sigmoid function. This

error becomes significant in case of a smaller benchmark like XOR where it

takes more iterations to converge than the LT approach. This is illustrated

by Table 6.6.

LT Approach Linear Approach
LR SIPOB All Parallel designs

Epochs Epochs
0.25 4600 7000
0.5 2100 3300
0.75 1400 2200

Table 6.6: Convergence Vs. Sigmoid function realization: XOR data set

Table 6.7 shows the Weight Updates per Second(WUPS) achieved by the par-

tially parallel architectures.

Table 6.8 shows the area requirement in terms of the equivalent gate counts on

the Virtex xcv2000e FPGA for the partially parallel architectures.

CHAPTER 6. PARALLEL ARCHITECTURES 147

Weight Update/Second(WUPS)in million
Benchmarks Partially Parallel

Designs
PAROI PAROO PARIO

XOR 2.2 2.4 2.4
Iris 3.4 4.1 3

Cancer 9.1 12.2 10.1

Table 6.7: Weight Update per Second

Gate Count(in million)
Benchmarks Partially Parallel

Designs
PAROI PAROO PARIO

XOR 0.3 0.35 0.35
Iris 0.5 0.5 0.55

Cancer 1.2 1.3 1.3

Table 6.8: Gate Counts for Benchmarks

• The partially parallel design PAROO is able to achieve WUPS as high as 12.2

million for the cancer data set. This is higher than any of the architectures

onto FPGA for the BP algorithm discussed in the literature review. PAROO

also shows the best results among the partially parallel designs.

• WUPS and gate count in all three partially parallel designs are very similar.

Hence we conclude that different combination of Branch-In and Branch-Out

type of operations to the stages of the BP algorithm doesn’t yield significant

difference in the WUPS and gate count.

• As the size of the network increases, the area requirement on the FPGA chip

also increases. However, due to increase in the circuit size, routing delays

CHAPTER 6. PARALLEL ARCHITECTURES 148

between them increases. Higher routing delays in a circuit cause increase in

total delay which in turn limits the clock frequency with which the circuit

can run. Placement And Route (PAR) of synthesis tool generates a timing

analysis report indicating routing and logic delays. It was found for architec-

tures which consumes high chip-area, that the percentage routing delay was

quite higher than the logic delay. Hence relatively complex parallel designs

run at lower frequency for Cancer data set.

• All partially parallel designs incorporated the facility of executing the al-

gorithm in either single clock or two clock domain environment. The pur-

pose of such incorporation was to check if the computation of the algorithm

can be performed at a frequency higher than 25MHz on isolating Off-Chip

SRAMs. Unfortunately, none of the architectures showed any improvement

in frequency over their single-clock domain counterparts except SIPOB which

showed some improvement. The obvious reason would be the longest path

delay in the design exceeding 40ns and thus overriding the scaling-down ef-

fect of the Off-chip RAMs. All the results tabulated above are carried out in

single-clock domain.

6.5 Fully Parallel Architecture

This section will explain the architecture of a fully parallel design. The section

starts with describing the basics of such an architecture. Next, the main features

of the developed design will be mentioned. Finally, various modules of the fully

parallel architecture will also be described.

CHAPTER 6. PARALLEL ARCHITECTURES 149

6.5.1 Motivation

A natural extension in the research after having developed partially parallel ar-

chitectures is to build a fully parallel architecture. A fully parallel architecture

employs a layer level parallelism. Such parallelism is achieved by the computation

of all synapses in a layer in parallel. As mentioned earlier, this is accomplished

by employing a number of multipliers equivalent to the total number of synapses

in a layer. Such computation yields high level of performance and can be further

augmented by assigning as many arithmetic and functional units as possible to the

network. These units include Branch-In/Branch-Out adders and sigmoid function

generators. However the high performance of a fully parallel architecture comes at

a cost of high consumption of chip-area. Hence such an implementation was highly

discouraged in the early stage when FPGA chip consisted of few thousand gates.

Since the research conducted for this thesis has the facility of having an FPGA

chip of more than a million gates, we have designed a fully parallel architecture to

explore the possibility of enhancing the performance. However the maximum size

of an ANN that can be fitted on the available hardware remains as a challenge for

such designs. Hence the purpose of developing a fully parallel architecture is to

investigate the possibility of successfully establishing a trade-off between chip-area

and the performance for different size ANNs.

Figure 6.22 illustrates a fully parallel ANN where dark lines indicates parallel mul-

tiplication of all synapses with inputs in a layer.

Each node is designed with a separate Branch-In Adder module. This in place

facilitates parallel computation of addition for all nodes in a layer. Such provi-

CHAPTER 6. PARALLEL ARCHITECTURES 150

+

+

ψ(•)

ψ(•)

δ1

δ2

δ3

I1

Ι2

Ι3

Branch−In Adders

FF BP

3−piece Linear Sigmoid

Figure 6.22: A Fully Parallel ANN

sion of Branch-In adder modules is necessary since all nodes in a layer will have

corresponding multiplication values available simultaneously. Each node is also as-

signed a 3-piecewise linear sigmoid function to facilitate parallel computation of the

function.

6.5.2 System Specification

The following are some of the features of the Fully PARallel architecture (FPAR).

• 16 bit Fixed-point number representation in the form of 1:4:11 (Sign:Integer:Fraction).

• Random number generation by employing LFSR

• Initial parameters stored in BlockRAMs

• “Pattern Mode” learning

CHAPTER 6. PARALLEL ARCHITECTURES 151

• Number of multipliers are equal to the number of synapses of a layer maxi-

mum among the two layers. This will help reuse the same multipliers while

computing a layer with less number of synapses.

• A separate Branch-In module for each node to perform addition. The number

of required Branch-In modules is set to the maximum of the hidden/output

layer neurons. This will help reuse the Branch-In adder modules while com-

puting a layer with less number of neurons.

• Multiple 3-piecewise linear sigmoid functions.

6.5.3 FPAR modules

The basic structure of FPAR is illustrated by Figure 6.23. The functionality of

various modules of the FPAR is explained in the following sections.

Initialization module

Figure 6.24 shows the Initialization module which is responsible for fetching initial

parameters from Off-chip RAMs and storing it into BlockRAMs. The module is

initiated by receiving Start Initial signal from the main processor. The module

also reads the topology file from the Off-chip RAMS and stores it to BlockRAMs.

Since all synapses are computed in parallel in FPAR, all weight values of a layer are

required to be accessed in parallel for efficient computation. Hence, every weight

value of a layer is stored in a different BlockRAM as opposed to partially parallel

architecture where only weight values connected to a single neuron are stored in

CHAPTER 6. PARALLEL ARCHITECTURES 152

LayerCount

DecLayerCount

NoEpochs
TotalLay

NumNeuron
TestPatt

TrainPatt
TotalPatt
LearnRate

Seed

Data Registers

Initialization

Module

Random

Generation
Module

Neuron
Accumulation

Module

Error &

Output Gradient

Module

Weight Update

Module

Host

DataPath

Control Signals

Sigmoid

Generation

Module

Hidden Gradient

Calculation

Module

Multiplication

Module

BlockRAMs

Main Processor

S
ta

rt
E

rr
o

r

S
ta

rt
H

id
G

ra
d

G
et

H
id

d
en

S
ta

rt
H

id
G

ra
d

W
ri

te
S

ta
tu

s

R
ea

d
C

o
n

tr
o

l

R
eq

u
es

tM
em

o
ry

B
an

k

R
el

ea
se

M
em

o
ry

B
an

k

Off−Chip RAM Banks

Start_Initial

End_Initial

StartRan

OkRan

Module

Parent Branch−In

Adder Module

Parent Branch−In

Adder Module

5−Stage

Multiple Adders

Module

Neuron Accumulation Module

Sigmoid Generation Module

Error/Output Gradient Module

Hidden Gradient Module

Weight Update Module

Figure 6.23: The basic structure of a fully parallel architecture

CHAPTER 6. PARALLEL ARCHITECTURES 153

Initialization Module

Off−Chip RAM Banks

BlockRAMs

S
ta

rt
_

In
it

ia
l

E
n

d
_

In
it

ia
l

E
rr

o
r

Main Processor

Module

Error

Initial Parameters

& Topology

Initial Parameters & Topology

Figure 6.24: Initialization Module

different BlockRAMs. In Double clock domain designs, error value is stored to

Off-chip RAMs via Initialization module.

Neuron Accumulation Module

MaxMult

StageIn

StageHid

Multiplication Module

Branch−In Adders(Input) Module

Branch−In Adders(Hidden layer) Module

From Main Processor

Global

Signals

F
la

g

L
ay

er
C

o
u

n
t

Neuron Accumulation

Module

Figure 6.25: Neuron Accumulation Module

Figure 6.25 shows the Neuron Accumulation module which performs the multiply-

CHAPTER 6. PARALLEL ARCHITECTURES 154

accumulate operation for each layer. It fetches weight values for all synapses and

input values of the layer and performs multiplication in parallel and stores in a

multiplication array. It passes product values to the Branch-In adder modules to

perform accumulation. StageIn and StageHid signals will provide the values for

number of stages required for Branch-In addition in Input and hidden layers re-

spectively. The Flag signal, depending on the layer, decides which Branch-In adder

modules to be activated.

Sigmoid Function Module

MaxMult

From Main Processor

Global

Signals

L
ay

er
C

ou
nt

Module

Linear Sigmoid Function

N
eu

ro
nN

o

MaxHidOut

D
iv

Se
vE

ig
ht

C
lo

se
O

ne

D
iv

E
ig

ht

D
iv

T
w

o

Se
tZ

er
o

Multiplication Module

A
ct

O
ut

D
er

iv
at

iv
e

BlockRAMs

Global Constants

Figure 6.26: Linear Sigmoid Function Module

Figure 6.26 shows the linear sigmoid function module which computes the sig-

moid functions for all nodes in a layer in parallel. The number of linear sigmoid

function modules required is equal to the maximum of the hidden/output layer neu-

CHAPTER 6. PARALLEL ARCHITECTURES 155

rons. The module is supplied with several constant values to determine the break-

points of the linear regions. This module implements equation 6.1, described earlier

for the sigmoid function. The module also computes the derivative, f(x)(1−f(x)),

of the sigmoid function. The module stores the sigmoid function values and deriv-

ative into ActOut and Derivative BlockRAMs. It also sets the GetHidden signal

which allows the fetching of input values for the computation of the following layer.

Error and Output Gradient Module

MaxMultGlobal

Signals

Module
MaxHidOut

Multiplication Module

D
er

iv
at

iv
e

BlockRAMs

Pa
tte

rn
N

o

St
ar

tE
rr

or

St
ar

tH
id

G
ra

d

G
et

N
eu

ro
nN

o

From Main Processor
A

ct
O

ut
O

ut
pu

t

G
ra

di
en

t

Error & Output Gradient

Se
tZ

er
o

Se
tI

nt
O

ne

Global Constants

Figure 6.27: Error and Output Gradient Module

Figure 6.27 shows the error and output gradient module which computes error at

each node in output layer. For discrete values of desired output (1 or 0), the error

at each node will be either 2’s complement or the negative of the actual output

value. The module also computes error-gradient for the output layer. It issues

CHAPTER 6. PARALLEL ARCHITECTURES 156

StartHidGrad signal to the Hidden layer gradient module to start the computation

of error-gradient, in parallel to the computation of Instantaneous Sum squared

Error(ISE). It then stores the Error in BlockRAM in case of Double-Domain design

or in external RAM in case of Single-Domain design.

Hidden Layer Gradient Module

MaxMultGlobal

Signals

Module
MaxHidOut

D
er

iv
at

iv
e

BlockRAMsFrom Main Processor

Hidden Layer Gradient
Multiplication Module

Branch−In Adder Module

W
ei

g
h

ts

G
ra

d
ie

n
t

L
ay

er
C

o
u

n
t

G
et

H
id

d
en

S
ta

rt
W

tU
p

d
at

e

Figure 6.28: Hidden Layer Gradient Module

Figure 6.28 shows the Hidden layer gradient module which is responsible for

computing error-gradient values in the hidden layer. The module computes all

synapses in the output layer in parallel and issues a StartWtUpdate signal to the

Weight Update module. The Back-Propagation and Weight-Update stages are not

completely isolated in this architecture. The multiplication module becomes avail-

able once it has computed the synapses for hidden layer gradient module. The

multiplication module can be used to compute 4W in weight update module.

Hence, following two computations can be performed in parallel without any clash

of data or arithmetic units which helps save some clock cycles.

Hidden Layer Gradient Module: Branch-In addition and calculation of error-gradient

CHAPTER 6. PARALLEL ARCHITECTURES 157

of the hidden layer.

Weight Update Module Multiplication of error-gradient of the output layer, learning

rate and the hidden layer output to generate 4W .

Weight Update Module

MaxMultGlobal

Signals

Module
MaxHidOut

BlockRAMsFrom Main Processor

L
ay

er
C

ou
nt

St
ar

tW
tU

pd
at

e

Weight Update Multiplication Module

G
ra

di
en

t

In
pu

ts

W
ei

gh
ts

Figure 6.29: Weight Update Module

Figure 6.29 shows the Hidden layer gradient module which starts updating

weights from the output layer and then moves to the hidden layer unlike the con-

ventional forward movement from the hidden layer. The module starts updating

weights in the output layer when it receives StartWtUpdate signal from the Hidden

layer gradient module indicating that the multiplication module is available.

Multiplication and Addition Module

Figure 6.30 shows the multiplication and Branch-In Addition module which is re-

sponsible for computing all the parallel multiplication. It is supplied with two input

arrays In1 and In2 and an Index to set the number of multipliers to be used.

CHAPTER 6. PARALLEL ARCHITECTURES 158

Parent Branch−In

Adder Module

(Input Layer)

Parent Branch−In Parent Branch−In

Adder Module Adder Module
(Hidden Layer) (Output Layer)

M
u
lt

A
cc

S
ig

n
M

u
lt

S
ta

g
e

F
la

g

M
u

lt
A

cc

M
u

lt
A

cc

S
ig

n
M

u
lt

S
ig

n
M

u
lt

S
ta

g
e

S
ta

g
e

F
la

g

F
la

g

In
1

In
2

In
d

ex

M
u

lt

5−Stage

Mutiple Adders

Module

Multipliaction

Module

From Feed−Forward Stage From Back−Propagation Stage

Figure 6.30: Multiplication and Branch-In Adder Module

Branch-In addition is performed by calling several modules. First the parent

Branch-In module receives an array (MultAcc) of all multiplied values in a layer

along with its sign (SignMult) and number of required stages (Stage). The parent

module separates the values from MultAcc into a small array consisting of mul-

tiplied values for each node. These small arrays are passed to 5-stage multiple

adders module. The 5-stage adders module can perform addition of maximum 32

multiplied values(stages: 16 → 8 → 4 → 2 → 1). Since every node is assigned

with a 5-stage adder module, every stage of addition is performed simultaneously

in all nodes. For example, if the input layer has 7 nodes and the hidden layer has

3 nodes, the design will require three 5-stage adder modules to accumulate seven

multiplied values. Since seven values can be added in three stages (7: 4 → 2 → 1),

a 5-stage adder module will behave as a 3-stage adder module.

CHAPTER 6. PARALLEL ARCHITECTURES 159

6.5.4 Results and Analysis

Tables 6.9, 6.10 and 6.11 show the time taken by different architectures and the

software version of the design to execute the BP algorithm for the three benchmarks.

Serial Partially Parallel Fully Software
Design Designs Parallel Implementation

Design
LR Epochs Time(mS) Time(mS) Time(mS) Time(mS)

SIPOB PAROI PAROO PARIO FPAR
0.25 7000 440 125 110 110 100 240
0.5 3300 220 60 50 62 62 125
0.75 2200 140 32 32 50 40 78
Frequency(MHz) 25 25 25 25 25

Table 6.9: XOR data set experiments for 0.0022 ASE

Serial Partially Parallel Fully Software
Design Designs Parallel Implementation

Design
LR Epochs Time(mS) Time(mS) Time(mS) Time(mS)

SIPOB PAROI PAROO PARIO FPAR
0.1 242 500 141 110 160 50 250
0.15 160 340 90 80 110 40 170
0.2 123 270 65 60 80 30 140
0.25 101 210 60 50 60 25 100
0.3 83 180 47 32 50 16 90
Frequency(MHz) 25 22.5 25 19 25

Table 6.10: IRIS data set experiments for 0.03 ASE

• FPAR design running at 25Mhz for the Iris benchmark executes the algorithm

on average 4.5 times faster than the software version running on PIII dual

processor 800MhZ PC.

CHAPTER 6. PARALLEL ARCHITECTURES 160

Serial Partially Parallel Fully Software
Design Designs Parallel Implementation

Design
LR Epochs Time(mS) Time(mS) Time(mS) Time(mS)

SIPOB PAROI PAROO PARIO FPAR
0.3 221 3000 600 440 530 n/a 1100
0.4 166 2300 440 330 400 n/a 780
0.5 135 1900 360 270 330 n/a 630
Frequency(MHz) 25 19 20 18 n/a

Table 6.11: Cancer data set experiments for 0.016 ASE

• FPAR takes approximately 60 clock cycles for the presentation of each pattern

irrespective of the size of the network. Hence the implementation of a larger

network will achieve more speed-up than smaller networks. This is the reason

behind similar performance of FPAR to partially parallel design for the XOR

benchmark.

• The Cancer benchmark is too large for FPAR to realize on a single Vir-

tex xcv2000e chip. However, if the cancer data set were implemented on a

hypothetical system consisting of more than one Virtex xcv2000e chip and as-

suming FPAR will run at 25MHz, the time it will take to execute 221 epochs

at a learning rate of 0.3 can be given by:

Cycles per iteration×No. of Patterns in an epoch×No. of epochs

Frequency

=
60× 200× 221

25× 106
≈ 110ms

which is 10 times faster than the software version.

CHAPTER 6. PARALLEL ARCHITECTURES 161

Table 6.12 shows the Weight Updates per Second (WUPS) achieved by the

hardware designs.

• For partially parallel and fully parallel designs WUPS increases with an in-

crease in the size of the network. This is due to the fact that the parallel

architectures perform more multiplications in a same size clock cycle for

the bigger benchmark than the smaller one.

• The FPAR validation based on the Iris data set also attains an improvement

in the WUPS over the partially parallel designs. FPAR takes 60 clock cycles

for the presentation of each pattern irrespective of the size of the network.

Hence the larger the network the better the performance achieved by FPAR.

• It should be noted here that the most of the architectures on FPGA for the BP

algorithm visited in the literature review contain multi-FPGA hardware. This

facilitates the implementation of the desired size network and hence achieves

high WUPS. The same will hold true if the cancer data set were implemented

on a hypothetical system consisting of more than one Virtex xcv2000e chip.

Assuming FPAR will run at 25MHz, the WUPS for the cancer data set can

be achieved as high as 51 million as shown below:

WUPS = Nw?ClockRate/Cycles per Iteration = 122?25×106/60 ≈ 51 MWUPS

where, Nw is the number of weights in the network

Table 6.13 shows the area requirement in terms of the equivalent gate counts

on the Virtex xcv2000e FPGA.

CHAPTER 6. PARALLEL ARCHITECTURES 162

Weight Update/Second(WUPS)in million
Benchmarks Serial Partially Parallel Fully Parallel

Design Designs Design
SIPOB PAROI PAROO PARIO FPAR

XOR 0.6 2.2 2.4 2.4 2.0
Iris 0.9 3.4 4.1 3 8.4

Cancer 1.8 9.1 12.2 10.1 n/a

Table 6.12: Weight Update per Second

Gate Count(in million)
Benchmarks Serial Partially Parallel Fully Parallel

Designs Designs Design
SIPEX SIPOB PAROI PAROO PARIO FPAR

XOR 0.2 1.4 0.3 0.35 0.35 0.45
Iris 0.2 1.4 0.5 0.5 0.55 0.65

Cancer 0.2 1.4 1.2 1.3 1.3 n/a

Table 6.13: Gate Counts for Benchmarks

It should be noted here that the area requirement for FPAR is not significantly

higher than the partially parallel designs. This is because FPAR doesn’t need sig-

nificant extra hardware for small benchmarks like XOR and Iris. However this will

not hold true for the Cancer data set. This is due to the fact that the FPAR archi-

tecture for the Cancer data set (10-11-2) requires 121 multipliers and 10 Branch-In

adder modules as opposed to 10 multipliers and a single Branch-In adder module

required for the partially parallel designs.

Figures 6.31, 6.32 and 6.33 show the convergence graph of XOR, Iris and

Cancer data sets for various learning rates. It should be noted here that in these

figures not all data points are plotted for the purpose of clarity.

CHAPTER 6. PARALLEL ARCHITECTURES 163

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
.1

2

 0
.1

4

 0
.1

6

 0
.1

8

 0
.2

 0
 4

01
 8

01
 1

20
1

 1
60

1
 2

00
1

 2
40

1
 2

80
1

 3
20

1
 3

60
1

 4
00

1
 4

40
1

 4
80

1
 5

20
1

 5
60

1
 6

00
1

 6
40

1
 6

80
1

 7
20

1

Avg. Sum Squared Error

E
po

ch

L
R

=
0.

25
L

R
=

0.
5

L
R

=
0.

75

F
ig

u
re

6.
31

:
C

on
ve

rg
en

ce
G

ra
p
h

fo
r

th
e

X
O

R
b
en

ch
m

ar
k

fo
r

va
ri

ou
s

L
ea

rn
in

g
R

at
es

CHAPTER 6. PARALLEL ARCHITECTURES 164

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
.2

5

 0
.3

 0
.3

5

 1
 1

1
 2

1
 3

1
 4

1
 5

1
 6

1
 7

1
 8

1
 9

1
 1

01
 1

11
 1

21
 1

31
 1

41
 1

51
 1

61
 1

71
 1

81
 1

91
 2

01
 2

11
 2

21
 2

31
 2

41

Avg. Sum Squared Error

E
po

ch

L
R

=
0.

3
L

R
=

0.
25

L
R

=
0.

2
L

R
=

0.
15

L
R

=
0.

1

F
ig

u
re

6.
32

:
C

on
ve

rg
en

ce
G

ra
p
h

fo
r

th
e

Ir
is

b
en

ch
m

ar
k

fo
r

va
ri

ou
s

L
ea

rn
in

g
R

at
es

CHAPTER 6. PARALLEL ARCHITECTURES 165

 0

 0
.0

1

 0
.0

2

 0
.0

3

 0
.0

4

 0
.0

5

 0
.0

6

 0
.0

7

 0
.0

8

 0
.0

9

 0
.1

 0
.1

1

 0
.1

2

 0
.1

3

 0
.1

4

 0
.1

5

 0
.1

6

 1
 1

1
 2

1
 3

1
 4

1
 5

1
 6

1
 7

1
 8

1
 9

1
 1

01
 1

11
 1

21
 1

31
 1

41
 1

51
 1

61
 1

71
 1

81
 1

91
 2

01
 2

11
 2

21

Avg. Sum Squared Error

E
po

ch

L
R

=
0.

5
L

R
=

0.
4

L
R

=
0.

3

F
ig

u
re

6.
33

:
C

on
ve

rg
en

ce
G

ra
p
h

fo
r

th
e

C
an

ce
r

b
en

ch
m

ar
k

fo
r

va
ri

ou
s

L
ea

rn
in

g
R

at
es

CHAPTER 6. PARALLEL ARCHITECTURES 166

6.6 Summary

This chapter introduced the concepts of Branch-In and Branch-Out mode for an

essential multiply-accumulate operation for the Back-Propagation algorithm. The

details of implementing a 3-piece linearly approximated sigmoid function was also

presented. Several architectures that enhance the functionality of the serial designs

were presented including:

• PAROI, PAROO and PARIO: Partially parallel approach, differ in the as-

signment of Branch-In and Branch-Out mode operations to the stages of the

BP algorithm

• FPAR: A fully parallel efficient design

Partially parallel architecture were designed to explore the trade-off between

performance and area requirement. A 3-piecewise linear sigmoid function was in-

troduced and validated the architectures for various benchmarks. Finally, a fully

parallel architecture was developed which consisted of high number of arithmetic

units to exploit the complete parallelism of a network.

Results obtained for the various architectures were tabulated and analyzed. The

analysis was carried out based on performance in terms of gate count, speed and

WUPS. The main highlights of the results are:

• FPAR’s speed enhancement of 450% over the software version for the Iris

data set.

• Partially parallel designs speed enhancement of 225% over the software version

for all data sets.

CHAPTER 6. PARALLEL ARCHITECTURES 167

• WUPS as high as 12.2×106 achieved and can be further augmented to 40×106

for FPAR design on multi-FPGA system.

Chapter 7

Conclusions and Future Work

Artificial Neural Networks (ANN) have a broad field of applications. The Back-

Propagation (BP) algorithm has been popular among researchers working in the

field of Artificial Intelligence as a learning algorithm. ANNs are derived from a

biological structure of human brain which is a massive parallel network of neu-

rons. Traditionally ANNs were implemented on General Purpose Processor (GPP)

and ASICs. However these computing platforms suffer from the constant need of

establishing a trade-off between performance and flexibility.

This thesis proposed several ANN architectures for the implementation of the

BP algorithm on Virtex2000e FPGA. During the course of research initially two

serial architectures were developed. The purpose of building serial architectures was

to identify the bottlenecks and build the foundation for the development of parallel

architectures. Next, three partially parallel architectures were developed. The

purpose of these architectures was to explore the speed-up while accommodating

various size networks. Some of the challenges faced in partially parallel architectures

168

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 169

served as guidelines for developing a fully parallel architecture.

The multiply-accumulate is the basic arithmetic operation required in the ex-

ecution of the BP algorithm. The concepts of Branch-In and Branch-Out mode

of multiply-accumulate were introduced in detail. These two modes form the very

basis of the parallel design development. The following architectures were proposed:

• SIPEX and SIPOB: Serial approach, differs in the storage of initial parameters

and Lookup Table (LT) for the sigmoid function

• PAROI, PAROO and PARIO: Partially parallel approach, differ in the as-

signment of Branch-In and Branch-Out mode operations to the stages of the

BP algorithm

• FPAR: A fully parallel design

Random number generation through LFSR and 3-piece linearly approximated

sigmoid function were described in detail.

Three benchmarks XOR, Iris and Cancer, relatively small, medium and large

respectively, are chosen to validate the architectures. The main contribution of this

thesis is the development of the partially parallel and fully parallel designs which

are shown to perform 2.25 and 4.5 times faster than the software version. The

partially parallel designs attempt at establishing a trade-off between chip-area and

the performance while still achieving WUPS as high as 12 × 106, higher than any

of the architectures reviewed in the literature.

Yet another contribution worth mentioning here is the successful implementa-

tion of the Cancer benchmark which is a “real world” problem for all the architec-

tures except FPAR. The validation of Cancer benchmark for FPAR architecture

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 170

requires high number of arithmetic modules which will result in high chip-area con-

sumption. It was shown through calculation for a hypothetical multi-FPGA system

that the FPAR can achieve WUPS up to 51×106 and 10 times speed enhancement

over the software version for the Cancer data set. Another contribution is the suc-

cessful implementation of the XOR and the Iris benchmarks for FPAR architecture

with a significantly low hardware requirement of 0.4 and 0.6 million gates on the

Virtex xcv2000e FPGA chip respectively.

Throughout the research work, Handel-C was used as the hardware description

language. General C like structure of Handel-C makes the development easier for

a novice hardware engineer. Handel-C allows fast simulation of large designs as

opposed to VHDL simulator Modelsim. The development time is considerably less

than VHDL. However it was found that debugging in Handel-C was not easy for

ANN architectures. We have used fixed-point arithmetic number representation.

The problem with Handel-C compiler is that it can not display fixed point num-

ber in output text file instead it displays equivalent decimal values for integer and

fractional part. Since the BP algorithm involves tedious arithmetic operations,

debugging of various parameters in fixed-point numbers becomes complex. An-

other problem was associated with RC1000 reconfigurable board which requires the

scaling down the frequency of the design to 1
4

of the external frequency in case of

Off-chip memory access.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 171

7.1 Future Work

The run-time reconfiguration characteristic of an FPGA can also be utilized to

implement large ANNs. The BP algorithm is well suited for such reconfiguration as

it can be easily divided into three time-exclusive stages. However the time required

to reconfigure the various stages on an FPGA can be a bottleneck in such designs.

Also, whether an FPGA based system can have the reconfiguration ability varies

among the vendors of such hardware.

Architectures described in this thesis execute three stages of the BP algorithm

in a sequence. Although full parallelism has been applied at a layer level, significant

speed improvement over the software version was not possible. Investigation can be

carried out to pipeline three stages: Feed-Forward, Back-Propagation and Weight

Update.

The possibility of combining the initial parameters and topology with .bit file

and directly downloading it to the BlockRAMs of an FPGA should be investigated.

Xilinx synthesis tool provides such utility for specific hardware platform. This will

eliminate the requirement of accessing Off-chip RAM which can result in a faster

execution of the algorithm.

Architectures based on the current work can be developed in other Hardware

Descriptive Language such as VHDL and performance in terms of the area require-

ment and the speed can be compared.

Future work based on the FPAR architecture can be carried out to implement

the cancer data set on a dedicated multi-FPGA hardware. Multi-FPGA systems are

found to be very common in the literature review for executing the BP algorithm.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 172

Multi-FPGA hardware not only accommodates large networks but also achieves

high speed enhancement and WUPS.

Instead of using the ready-made fixed-point library supplied by the Handel-C

DK compiler, a separate fixed-point library can be developed and the area-speed

criteria can be investigated. for the fixed-point arithmetic operations.

Appendix A

Glossary

ANN : Artificial Neural Network

BP : Back-Propagation

FPGA : Field Programmable Gate Array

GPP : General Purpose Processor

ASIC : Application Specific Integrated Circuits

CTR : Compile Time Reconfiguration

RTF : Run Time Reconfiguration

WUPS : Weight Update Per Seconds

CUPS : Connections Update Per Seconds

MLP : Multi-Layer Perceptrons

LR : Learning Rate

LFSR : Linear Feedback Shift Register

VHDL : Very High Speed Integrated Circuit Hardware Description Language

LUT : Lookup Tables (On an FPGA chip)

173

APPENDIX A. GLOSSARY 174

VLSI : Very Large Scale Integration

LT : Lookup Table (Generalized)

PWL : Piece-Wise Linear

SIPEX : Serial Implementation with Parameters/LT in EXternalRAM

SIPOB : Serial Implementation with Parameters/LT in On-chipRAM and BlockRAM

PAROI : PARallel architecture with (Branch)Out and (Branch)In

PARIO : PARallel architecture with (Branch)In and (Branch)Out

PAROO : PARallel architecture with (Branch)Out and (Branch)Out

FPAR : Fully PARallel

ISE : Instantaneous Sum-squared Error

ASE : Average Sum-squared Error

ASM : Algorithmic State Machine

Appendix B

RC1000 Board

The RC1000 board [Supp01] is a reconfigurable platform consisting of one large

Xilinx FPGA with four banks of memory for data operations. The RC1000 is a

PCI bus plug-In card for PICS. It also has two PC sites for I/O with the outside

world. Figure B.1 shows the block diagram of the board.

B.1 FPGA

The RC1000 has a single site for a Xilinx FPGA in a BG560 package. The allow-

able FPGAs are 4085XL, 40150XV, Virtex V1000 and Virtex 2000E. Two RC1000

boards are available for this research, one containing Virtex V1000 and the other

containing Virtex 2000E FPGA chip. Virtex1000 and Virtex2000e chip contain 1

million and 2 million gates respectively. Virtex1000 contains 32 BlockRAM mod-

ules, each of which can be configured to operate as 256 x 16 memory block. Whereas,

175

APPENDIX B. RC1000 BOARD 176

Figure B.1: The block diagram of RC1000 board

Virtex2000e contains 160 BlockRAM modules of the same structure.

The RC1000 FPGA can be programmed from the host PC over the PCI bus or

Xilinx XChecker download cable, or on-board serial ROM. The internal state of the

FPGA can be readback for debugging purposes either using the XChecker cable or

over the PCI bus to the host.

APPENDIX B. RC1000 BOARD 177

B.2 Memory

A standard complement of four Asynchronous memory bank of 2Mbytes x 8 each is

provided. All four memory banks are accessible by both the FPGA and any other

device on the PCI bus.

B.3 Clocks

The FPGA has two of its pins connected to clocks. One pin is connected to either

a programmable clock or an external clock, selected by a jumper. The other pin

is connected to either a programmable clock or the PCI9080 local bus clock, also

selectable by a jumper. The latter programmable clock can be a single step clock

driven by the host. Table B.2 shows the jumper connection for setting the clock

source to the designs on FPGA.

JP2 pins connected Clock Source
1-2 External clock on J10

2-3(default) Programmable MCLK

Table B.1: Jumper 2 settings for Clock

JP3 pins connected Clock Source
1-2(default) Programmable VCLK

2-3 PCI 9080 LCLK

Table B.2: Jumper 3 settings for Clock

The programmable clocks are programmed by the host PC, and have a fre-

quency range of 400KHz to 100MHz.

APPENDIX B. RC1000 BOARD 178

B.4 Data Transfers

There are 3 methods of transferring data or communicating between the FPGA

and any PCI device, via the PLX PCI9080 controller chip.

• Bulk data transfers between the FPGA and PCI bus are performed via the

memory banks. Synchronization between the FPGA and the other device is

done using one of the other communication methods. Only PCI devices have

access to PLX registers, the FPGA does not. Hence only PCI devices can set

up and initiate DMA transfers. This mode of transfer is used in transferring

initial parameters and LUT in the architectures to Off-chip RAMs.

• There are two unidirectional 8-bit ports, called control and status, for direct

communications between the FPGA and PCI bus. Semaphores indicate when

data has been written or read. These ports are used in our designs to issue a

start signal from the host to the FPGA in the beginning and end signal from

the FPGA to the host in the end.

• The PLX user I/O pins USER1 and USER0 are both connected to the FPGA

to provide for single-bit communications.

B.5 Memory Banks on RC1000 Board

There are four 32-bit memory banks external to the FPGA. Each bank is 2Mbytes

of asynchronous SRAM made up from four 512k x 8 memory chips. Each memory

bank has separate address, data and control signals. Hence the FPGA can access

all four banks simultaneously and independently.

APPENDIX B. RC1000 BOARD 179

All four banks also appear in the PCI address space, so they can be accessed

by both the host and other PCI devices via the PCI9080 PCI bridge chip. The

host support software allows the mapping of the memory into the virtual address

space of a host application. Only one bank can be accessed at a time by the host

or another PCI device.

The arbitration between the FPGA and PCI9080 is controlled by on-board logic

as described in the next section.

B.5.1 Arbitration

Each bank of SRAM on the RC1000 can be accessed by the host via the PLX

PCI9080 or by the FPGA. The interface to each SRAM bank from both FPGA

and PCI9080 is controlled using four switches as shown in the Figure B.2 The

switches work as four independent multiplexors, one per bank, to allow each bank

to be accessed by one of the FPGA and the PCI9080 at a time, but never both.

This arrangement minimizes the risk of damage caused by contention that can occur

due to poor design on FPGA. The switches add 1ns of delay to address, data and

control paths. The arbitration logic is implemented in a COLD that connects to

the PCI9080 local bus and the FPGA.

B.5.2 Memory Access

Handel-C provides support for interfacing Off-Chip using the ram or rom keywords.

The usual technique for specifying timing in synchronous and asynchronous RAM

is to have a fast external clock which is divided down to provide the Handel-C clock

APPENDIX B. RC1000 BOARD 180

Figure B.2: Architecture of SRAM banks

APPENDIX B. RC1000 BOARD 181

and used directly to provide the pulses to the RAM.

The fast external clock uses the Handel-C westart and welength specifications

to position the write strobe. This method of timing ASRAMs depends on having

an external clock faster than the internal Handel-C clock. In this case the external

clock is divided by specifying westart and welength parameters:

set Clock = external divide ”pin number” 4

ram unsigned 6 x[10] with {westart = 2, welength = 1 }

The above example starts the pulse 2 whole external clock cycles into the Handel-

Figure B.3: Timing Diagram

C clock cycle and gives it a duration of 1 external clock cycle. Since the external

clock is divided by a factor of 4, this is equivalent to a strobe that starts half way

through the internal clock cycle and has a duration of one quarter of the internal

clock cycle.

This timing allows half a clock cycle for the RAM setup time on the address

and data lines and one quarter of a clock cycle for the RAM hold times.

Appendix C

Host Communication

Figure C.1 shows the very basic communication between the FPGA and memory

banks to the host. The host is a PC running C++ program through which com-

FPGAHost

Off−Chip RAM

Banks

.bit file

Initial Parameters & LUT

Inst.Sum Squared Error(ISE)

WriteControl ReadControl

ReadStatus WriteStatus

Figure C.1: Communication between the host and the RC1000 board

munication is established to the FPGA and the Off-chip RAM banks. The host

support library is provided with the RC1000 board which contains several functions

needed to achieve the communication. The host essentially performs the sequence

of operations as shown in Figure C.2:

182

APPENDIX C. HOST COMMUNICATION 183

Initialize RC1000 board

PP1000OpenCard()

Set Clock Frequency

PP1000SetClockRate()

Transfer Initial

Parameters/Topology

Host Memory

to Off−Chip RAMs

Load .bit File

On FPGA

PP1000ConfigureCard()

Issue start signal

to FPGA

PP1000WriteControl()

FPGA executes

the Algorithm

Store Error in

Off−Chip RAM

FPGA issues

end signal

PP1000WriteStatus()

End Timer

Host reads

Error from Off−Chip

RAMs

Close RC1000 Card

PP1000CloseCard()

Request Access to

Off−Chip RAMs

PP1000RequestMemoryBank()

Start Timer

FPGA

Host

Figure C.2: Communication between Host and FPGA

Appendix D

Memory Creation on the Virtex

FPGA chip and EDIF

There are various ways that handel-C allows to create a memory in Virtex and

VirtexE series FPGAs. The type of the memory can be:

• Distributed RAM or On-Chip RAM, which is implemented by look-up tables

in the logic blocks of FPGA

• BlockRAM, Fixed sized synchronous memory available on Virtex FPGAs

• Registers, which is implemented in flip-flops in FPGA

Xilinx Virtex and VirtexE FPGAs are made up of Configurable logic blocks

(CLBs). Each CLB consists of 2 slice in these FPGAs and each slice contains two

LUTs. Each LUT can be configured as a 16 by 1 bit synchronous RAM, which

is called distributed RAM or On-chip RAM. The two LUTs within a slice can be

combined to form a 16 by 2 bit or 32 by 1 bit synchronous RAM. Deeper and

184

APPENDIX D. MEMORY CREATION ON THE VIRTEX FPGA CHIP AND
EDIF 185

wider on-chip RAM can be created by consuming more LUTs of FPGA. However

it introduces a significant delay because of the multiplexors and routing required

between CLBs. This is an important issue a designer has to bear in mind while

allocating available memory resources, on or off chip, to initial and intermediate

parameters. It is observed during the experimentation that creating longer on-chip

RAM not only consumes considerably large chip area but takes longer in routing

the design. The maximum number of neurons a layer can accommodate in SIPOB

architecture is set at 12. When experiments carried out with maximum 15 neurons

in a layer it was found that placement and route tool (PAR) exhausted all the

routing resources. This is due to the fact that length of On-Chip RAMs for storing

Input and Output are directly proportional to the maximum neurons in a layer.

On-chip RAM can be accessed only once in a clock cycle.

Registers are created on FPGA by flip-flops. They are normally used to define

variables in handel-C program. Registers can be combined to form an ”array” of

memories. Various values within an array can be accessed simultaneously in one

clock cycle. However this comes at a high logic cost if a variable is used to index

the array. This is because the compiler will generate multiplexor to switch between

the registers to index the array.

BlockRam memory blocks are organized in columns. All Virtex devices contain

two such columns, one along each vertical edge and extend full height of the chip.

Whereas VirtexE devices contains few vertical BlockRam columns spread through-

out the chip and separated by vertical CLB columns. Each BlockRam column in

VirtexE devices also extend to the full height of the chip. A BlockRam also includes

dedicated routing to provide an efficient interface with both CLBs and other Block-

APPENDIX D. MEMORY CREATION ON THE VIRTEX FPGA CHIP AND
EDIF 186

RAMs. Figure D.1 and Figure D.2 show the position of BlockRAMs on VirtexE

and Virtex FPGAs.

D.1 EDIF

The (EDIF) is a format used to exchange design data between different CAD sys-

tems, and between CAD systems and Printed Circuit fabrication and assembly. The

‘Electronic’ refers to the type of data, i.e. design data for electronic systems and

not the mechanism of interchange. An EDIF file is machine readable and may be

interchanged electronically. Such CAD systems are often referred to as Electronic

CAD (ECAD) systems or Electronic Design Automation (EDA) Systems.

The EDIF format is designed to be written and read by computer programs

that are constituent parts of EDA systems or tools, or by software that is part of

front end manufacturing systems (CAM stations). By their very nature, the EDIF

standards are behind the scenes for most EDA users.

APPENDIX D. MEMORY CREATION ON THE VIRTEX FPGA CHIP AND
EDIF 187

Figure D.1: BlockRAMs on VirtexE FPGA

APPENDIX D. MEMORY CREATION ON THE VIRTEX FPGA CHIP AND
EDIF 188

Figure D.2: BlockRAMs on Virtex FPGA

Appendix E

An Overview of the Simulation

and Synthesis Process

In order to encode and then implement the design on an FPGA, it is important to

understand the simulation and synthesis flow of the Handel-C language. There are

two design flows in Handel-C: building for simulation and building for hardware.

Figures E.2 and E.1 show the simulation flow and the synthesis flow for designs

generated in DK compiler.

E.1 An overview of Simulation Process

For simulation of a design written in Handel-C, first all source files are compiled and

linked to generate .dll files. Handel-C provides the facility of integrating C/C++

source files into a project along with Handel-C files. In such project DK compiler

invokes C/C++ compiler in background to compile and then links with Handel-C

189

APPENDIX E. AN OVERVIEW OF THE SIMULATION AND SYNTHESIS
PROCESS 190

VHDL/Verilog

Source Files

Netlist

File

Netlist

File

Compile Handel−C

to target Netlist

Use Synthesis

tools to

Place and Route

and VHDL/Verilog

Compiled Handel−C

Synthesize

Generate .bit file

to

Program FPGA

EDIF

VHDL/Verilog

Handel−C

Source Files

VHDL

Verilog

Figure E.1: Hardware Target Design Flow

files. Integration of C/C++ files allows certain functions to be computed in it to

debug intermediate results. It can also be used to set up testbench files. However it

should be noted that C/C++ files can be integrated only for the purpose of simula-

tion and can not be used while synthesizing the project. In simulation outcome of

the design is usually directed to the text files to compare with the expected output.

Any discrepancies can be debugged and the necessary modification can be made in

APPENDIX E. AN OVERVIEW OF THE SIMULATION AND SYNTHESIS
PROCESS 191

Handel−C

Source Files

C/C++

Source Files

DK Compiler

invokes C/C++

Compiler

Compile/Link

for Debug

Backend Compile

and link

Simulation .dll

Use Simulator

to Evaluate

and Debug

VHDL/Verilog

Source Files

DK Compiler

invokes VHDL/Verilog

Simulator

Modify/Debug

program

Figure E.2: Simulation Design Flow

source files. The Debugger also provides the facility of viewing various variables,

setting breakpoints and sequencing through every clock cycle.

APPENDIX E. AN OVERVIEW OF THE SIMULATION AND SYNTHESIS
PROCESS 192

E.2 An overview of Synthesis Process

Synthesis process involves compiling and linking source files and generating a netlist.

The netlist is in EDIF (Electronic Design Interchange Format) which creates the

output file of .edf extension. In the following section a brief introduction of EDIF

is given. Before generating netlist a necessary hardware interface is assigned to

simulation files and all simulator input and output files are removed alongside

C/C++ files. The hardware interface includes defining the clock pin and speed,

the external RAM specifications and BlockRAMs. This can be accomplished in two

ways as following:

• Using ready-made macros in Handel-C support software library supplied with

DK compiler

• Defining manually in the code and assigning the pin numbers of the FPGA

of the RC1000 board.

The generated netlist, .edf output file, is required to pass through mapping and

placement and route(PAR) of a synthesis tool. The synthesis tool used in our

experiment is Xilinx ISE 6.2 which finally generates a .bit file ready for programming

FPGA chip. Simulation allows the integration of VHDL components as shown in

the design flow. Synthesis can generate files in VHDL format also instead of EDIF as

shown in the design flows. However, it should be noted here that in our experiments

no VHDL/Verilog is used.

Appendix F

Clock Domains

A hardware architecture mapped on FPGA usually runs at one clock frequency.

Handel-C allows designs to be associated with either a single clock domain or mul-

tiple clock domains. A Multiple (usually two) clock domain design contains two

code segments running at different clock frequencies. The need of having two clock

domains in a design arises when a section of code is slower than the other section

of code because of certain hardware restrictions. For example, a code segment ac-

cessing a RAM with high response time can be slower than another code segment

processing that data. In such a case Handel-C allows to isolate these two code

segments and assign each a different clock frequency. This will help run certain

code segments at a higher speed instead of having to reduce the speed of the whole

code because of the slow code segments.

In Handel-C each clock domain is described by a separate main() function, and

each main() function must be in a separate source code file. Communication be-

tween two clock domains in the same project is allowed through the use of channels

193

APPENDIX F. CLOCK DOMAINS 194

and dual port BlockRAMs. Channels are used to ensure that data are transmitted

and received accurately. Dual port BlockRAMs are used to transfer any data since

sharing of variables, signals, interfaces and functions are not allowed between two

clock domains. In Dual port BlockRAM, one port is used by one clock domain to

write and the other port is used by the other clock domain to read data.

F.1 Two clock Domains in the implementations

We encoded all the hardware architectures, except SIPEX, in Handel-C to run

either in single or double clock-domain. Figure F.1 shows the concepts behind the

dual-clock domain designs.

An architecture based on single clock domain starts the execution of the BP al-

gorithm by fetching initial parameters from Off-Chip RAMs and stores it to Block-

RAMs. Next, it executes the algorithm on the FPGA and stores the resultant error

back to the Off-Chip RAM which is read back by the host.

An architecture based on double clock domains isolate the communication with

the Off-chip RAMs from the actual execution of the algorithm on the FPGA. The

architecture starts the execution of the algorithm by fetching initial parameters and

LT for the sigmoid function, if required, and writes it to BlockRAMs through one

port in the first clock domain. In the second clock domain the architecture reads

the data from BlockRAMs through the second port and executes the algorithm

on the FPGA. The resultant Instantaneous sum squared error for every pattern is

transferred back to the first clock domain via a BlockRAM and stored in Off-chip

RAMs. Dual-port BlockRAMs serve as a channel between two clock-domains and

APPENDIX F. CLOCK DOMAINS 195

Store Data

In BlockRAMS

through Port1

Fetch Initial

Parameters/Topology

From Off−Chip RAMs

Fetch Data

From BlockRAMs

through Port2

Execute the

Algorithm on FPGA

Generate Instantaneous

Sum−Squared Error

For each Pattern

Store the Error

In BlockRAMs

through Port2

Read the Error

through Port1

Store the Error

In Off−Chip RAMs

Dual Port BlockRAMs

Clock−Domain 1

Clock−Domain 2

Figure F.1: Multiple Clock Domain Design

APPENDIX F. CLOCK DOMAINS 196

data can be transferred from one clock domain to the other clock-domain. The

error is read back by the host. The following block diagram illustrates two clock

domain designs with dual port BlockRAMs.

Bibliography

[Alip91] C. Alippi and G. Storti-Gajani, “Simple Approximation of sigmoidal
functions: Realistic designs of digital neural networks capable of learn-
ing,” In IEEE International Symposium on Circuits and Systems, pp.
1505–1508, Singapore, 1991.

[Bast04] K. Basterretxea and J. Tarela, “Approximation of sigmoid function and
the derivative for hardware implementation of artificial neurons,” In IEE
proceedings on Circuits, devices and Systems, athens, February 2004.

[Beiu94] V. Beiu, J. Peperstraete, and J. Vandewalle, “Close approximation of
sigmoid functions by sum of steps for VLSI implementation of Neural
networks,” The Scientific Annals, section: Informatics, vol. 40, No. 1, ,
1994.

[Beuc98] J. Beuchat, J. Haenni, and E.Sanchez, “Hardware Reconfigurable Neural
Networks,” In Parallel and Distributed Processing, IPPS/SPDP, pp. 91–
98, Springer-Verlag, 1998.

[Blak98] C. Blake and C. Merz, “UCI Repository of machine learning databases,”
University of California, Irvine, Dept. of Information and Computer Sci-
ences, 1998.

[Bond00] K. Bondalapati and V. Prasanna, “Reconfigurable Computing: Archi-
tectures, Models and Algorithms,” Technical Report, Department of
Electrical Engineering, University of Southern California, Los Angeles,
CA, USA, 2000.

[Bond01] K. Bondalpati, Modelling and mapping for dynamically reconfigurable
hybrid architecture PhD thesis, Computer Engineering Department, Uni-
versity of South California, August 2001.

[Broo88] D. Broomhead and D. Lowe, “Multivariable functional interpolation and
adaptive networks,” Complex Systems, vol. 2, pp. 321–355, 1988.

[Celo03] Celoxica, “Handel-C Language Reference Manual for DK 2.0,” 2003.

197

BIBLIOGRAPHY 198

[Chan04] K. Chang and J. Liu, “Landslides Features Interpreted by Neural Net-
work Method Using a High-Resolution Satellite Image,” In Geo-Imagery
bridging continents, XXth ISPRS Congress, Commission 7, pp. 574–579,
Istanbul, Turky, 2004.

[Clou96] J. Cloutier, S. Pigeon, and F. Boyer, “VIP:An FPGA-based Processor for
image processing and neural networks,” In 5th international conference
on Microelectronics for neural networks and fuzzy systems, pp. 330–336,
Switzerland, 1996.

[Comp00] K. Compton and S. Hauck, “An Introduction to Reconfigurable Com-
puting,” Technical Report, Northwestern University, Dept. of ECE,
Evanston, IL USA, Department of Electrical and Computer Engineering
Northwestern University, Evanston, IL USA, 2000.

[DAbr98] D.Abramson, K.Smith, P.Logothetis, and D. Duke, “FPGA based imple-
mentation of a Hopfield neural network for solving constraint satisfaction
problem,” In Proceedings of 24th euromicro workshop on computational
intelligence, pp. 688–693, Sweden, August 1998.

[Deho00] A. Dehon, “The Density Advantage of Configurable Computing,” IEEE
Computer, vol. 33, No. 5, pp. 41–49, April 2000.

[Deho96] A. Dehon, “Reconfigurable architectures for general purpose comput-
ing,” A.I technical report No. 1586, Massachusetts Institutes of Tech-
nology, October 1996.

[Depr84] E. Deprettere, P. Dewilde, and P. Udo, “Pipelined CORDIC architec-
tures for fast VLSI filtering and array processing,” In International
Conference on Accoustics, Speech and Signal processing, pp. 41.A.6.1–
41.A.6.4, 1984.

[Eldr94] J. G. Eldredge and B. L. Hutchings, “RRANN: A Hardware Implementa-
tion of the Backpropagation Algorithm Using Reconfigurable FPGAs,”
In IEEE World Conference on Computational Intelligence, Orlando, FL,
1994.

[Erce77] M. Ercegovac and K. Trivedi, “Online algorithms for division and mul-
tiplication,” IEEE transactions on Computers, vol. C-26, No. 7, pp.
681–687, 1977.

[Ferr94] A. Ferrucci, ACME: A Field-programmable Gate Array Implementation
of a Self-adaptive and Scalable Connectionist Network Master’s thesis,
University of California, Santa Cruz, 1994.

[Figu98] M. Figueiredo and C. Gloster, “Implementation of a probabilistic neural
network for multispetral image classification on an FPGA based custom
computing machine,” In 5th Brazilian Symposium on Neural Networks,
Brazil, December 1998.

BIBLIOGRAPHY 199

[Fish36] R. Fisher, “The use of multiple measurements in taxonomic problems,”
Annual Eugenics, vol. VII, No. II, pp. 179–188, 1936.

[Gira96] B. Girau and A. Tisserand, “OnLine Arithmetic-Based Reprogrammable
Hardware Implementation of Multilayer Perceptron Back-Propagation,”
In Proceedings of the Fifth International Conference on Microelectronics
for Neural Networks and Fuzzy Systems, pp. 168–175, IEEE Computer
Society Press, 1996.

[Hayk99] S. Haykin, Neural Networks : A comprehensive foundation, Prentice-
Hall, Englewood cliffs, New Jersey, 1999.

[Heem95] J. Heemskerk, Overview of Neural Hardware. In: Neurocomputers for
Brain-Style Processing. Design, Implementation and Application PhD
thesis, Unit of Experimental and Theoretical Psychology Leiden Uni-
versity, The Netherlands, 1995.

[Hert91] J. Hertz, A. Krogh, and R. Palmer, Introduction to the theory of neural
computation, Perseus Books Group, 1991.

[hinT] http://www.warthman.com/projects-intel-ni1000 TS.htm, .

[Holt91] J. Holt and T. Baker, “Backpropagation simulations using limited pre-
cision calculations,” In In International joint conference on Neural Net-
works, pp. 121–126, Seattle, WA, July 1991.

[http] http://hypertextbook.com/facts/2002/AniciaNdabahaliye2.shtml, .

[Hutc95] B. Hutchings and M. Writhlin, “Implementation approaches for recon-
figurable logic applications,” In 5th international workshop on FPGA,
Oxford, England, August 1995.

[Li04] X. Li and S. Areibi, “A Hardware/Software Co-design Approach for Face
Recognition,” In 16th International Conference on Microelectronics, pp.
67–70, Tunis, Tunisia, December 2004.

[Lysa94] P. Lysaght, J. Stockwood, J. Law, and D. Girma, “Artificial Neural
Network Implementation on a Fine-Grained FPGA,” In R. Harten-
stein and M. Z. Servit, editors, Field-Programmable Logic: Architec-
tures, Synthesis and Applications. 4th International Workshop on Field-
Programmable Logic and Applications, pp. 421–431, Springer-Verlag,
Prague, Czech Republic, 1994.

[Mart02] P. Martin, “A Pipelined Hardware Implementation of Genetic Program-
ming Using FPGAs and Handel-C,” In EuroGP ’02: Proceedings of the
5th European Conference on Genetic Programming, pp. 1–12, Springer-
Verlag, London, UK, 2002.

[Mart94] M. Martin, A reconfigurable hardware accelerator for back-propagation
connectionist classifiers Master’s thesis, University of California, Santa
Cruz, 1994.

BIBLIOGRAPHY 200

[Molz00] R. Molz, P.Engel, F. Moraes, L. Torres, and M. Robert, “Codesign of
fully parallel neural network for a classification problem,” In 5th world
multi-conference on systematics, cybernatics and informatics, Orlando,
Florida, 2000.

[Murr89] A. Murray, “Pulse Arithmetic In VLSI Neural Networks,” IEEE Micro
Magazine, vol. 9, No. 6, pp. 64–74, December 1989.

[Murt92] P. Murtagh and A. Tsoi, Implementation issues of sigmoid function and
its derivative for VLSI neural networks, Volume 139, 3, May 1992.

[Myer89] D. Myers and R. Hutchison, “Efficient implementation of piecewise linear
activation function for digital VLSI neural networks,” Electronic Letters,
vol. 25, pp. 1662–1663, 1989.

[Nich03] K. Nichols, A Reconfigurable Computing architectures for Implementing
Artifical Neural Networks on FPGA Master’s thesis, School of Engineer-
ing, University of Guelph, December 2003.

[Osso96] H. Ossoinig, E. Reisinger, C. Steger, and R. Weiss, “Design and FPGA
implmentation of a neural network,” In Proc. 7th Int. Conf. on Signal
Processing Applications and Technology, pp. 939–943, Orlando, Florida,
1996.

[Poor02] M. Poormann, U. Witkowski, H. Kalte, and U. Ruckert, “Implementa-
tion of ANN on a reconfigurable hardware accelerator,” In Euromicro
workshop on parallel, distributed and network based processing, pp. 243–
250, Spain, January 2002.

[PU96] A. Prez-Uribe and E. Sanchez, “FPGA Implementation of an Adaptable-
Size Neural Network,” In VI international conference on ANN ICANN’
96, pp. 383–388, Bochum, Germany, July 1996.

[Rume86] D. Rumelhart, J. McClelland, and PDP Research Group, Parallel Dis-
trubuted Processing: Explorations in the Microstructure of Cognition,
Volume 1: Foundations, MIT Press, Cambridge, Massachusetts, 1986.

[Sahi00] I. Sahin, C. Gloster, and C. Doss, “Feasibility of floating point arith-
metic in reconfigurable computing systems,” In MAPLD International
Conference, DC, USA, 2000.

[Samm91] K. Sammut and S. Jones, “Implementing non-linear activation functions
in neural network emulators,” Electronic Letters, vol. 27, No. 12, , June
1991.

[Savi04] A. Savich, “Technical Report: Sigmoid Function Linearization,” Tech-
nical Report, University of Guelph, Guelph, Canada, 2004.

[Scho98] T. Schonauer, A. Jahnke, U. Roth, and H. Klar, “Digital Neurohard-
ware: Principles and Perspectives,” In Proceedings of Neuronale Netze
in der Anwendung NN’98, pp. 101–106, Magdeburg, Germany, 1998.

BIBLIOGRAPHY 201

[SCoe04] S.Coe, A Memetic Algorithm Implementation on an FPGA for VLSI
Circuit Partitioning Master’s thesis, School of Engineering, University
of Guelph, August 2004.

[Sima93] P. Simard and H. Graf, “Backpropagation without Multiplication,” In
Advances in Neural Information Processing Systems, pp. 232–239, Den-
ver, USA, 1993.

[Skrb99] M. Skrbek, “Fast Neural Network Implementation,” Neural Network
World, Elsevier, vol. 9, No. 5, pp. 375–391, 1999.

[Supp01] Celoxica Customer Support, “RC1000 Hardware Reference Manual,”
2001.

[VP05] S. Areibi V. Pandya and M. Moussa, “A Handel-C Implementation of
the Back Propagation Algorithm on Field Programmable Gate Arrays,”
In International Conference on Reconfigurable Computing and FPGAs,
ReConFig’05, pp. —, IEEE, Puebla, Mexico, Sep 2005.

[Whit92] B. White and M. Elmasry, “A digital Neocognition neural network model
for VLSI,” IEEE transactions on Neural Networks, pp. 73–85, 1992.

[Xili93] Xilinx, “Xilinx: The Programmable Gate Array Data Book,” 1993.

[Zhan96] M. Zhang, S. Vassilliadis, and J. Fris, “Sigmoid generators for neural
computing using piece-wise approximation,” IEEE transactions on Com-
puters, vol. 45 No. 9, , September 1996.

