
A Fast Heuristic Technique for FPGA Placement

based on Multilevel Clustering

by

Peng Du

A thesis

presented to the University of Guelph

in fulfilment of the

thesis requirement for the degree of

Masters of Science

in

Department of Computing & Information Science

Guelph, Ontario, Canada, 2004

c©Peng Du 2004

I hereby declare that I am the sole author of this thesis.

I authorize the University of Guelph to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize the University of Guelph to reproduce this thesis by photo-

copying or by other means, in total or in part, at the request of other institutions

or individuals for the purpose of scholarly research.

ii

The University of Guelph requires the signatures of all persons using or photo-

copying this thesis. Please sign below, and give address and date.

iii

Abstract

Field-Programmable Gate Arrays (FPGAs) are semiconductor chips that can realize most

digital circuits on site by specifying programmable logic and their interconnections. The

use of FPGAs has grown almost exponentially because they dramatically reduce design

turn-around time and start-up cost for electronic products compared with traditional

Application-Specific Integrated Circuits (ASICs).

A set of Computer-Aided Design (CAD) tools is required to compile hardware de-

scription into bitstream files that are used to configure the target FPGA to implement

the desired circuits. Currently, the compile time, which is dominated by placement and

routing time can easily take hours or even days to complete for large (8-million gate)

FPGAs. With 40-million gate FPGAs on the horizon, these prohibitively long compile

times may nullify the time-to-market advantage of FPGAs.

This thesis presents two novel placement heuristics that significantly reduce the

amount of computation time required to achieve high-quality placements, compared with

VPR [Betz99] [Betz97b], which is considered to be a state-of-the-art FPGA placement

and routing tool. The first algorithm is an enhancement of simulated-annealing and at-

tempts to solve the placement problem top-down by considering all blocks. The second

algorithm is a hierarchical approach, which is based on a two-step procedure that first

proceeds bottom-up and then top-down. The bottom-up technique uses clustering, and

involves grouping of highly connected blocks into clusters and then combines clusters into

larger clusters. The goal of the top-down method is to determine the locations for all

the clusters, and eventually the locations of all blocks within those clusters. The overall

effect is to reduce the number of entities that need to be considered at each level, making

time-consuming methods, e.g. simulated-annealing, feasible for large problems.

iv

Acknowledgements

My sincere thanks go to my advisor, Prof. Dilip Banerji. Without his help,

this work would never have been possible. I have enjoyed a wonderful research

experience under his supervision, who has gone beyond the duties of a supervisor

to act as a mentor as well as a supporter.

I would also like to thank my co-advisor Prof. Shawki M. Areibi for offering a

wealth of support and guidance. I am indebted to him for setting high technical

standards for his students.

I also appreciate the help of my co-advisor Prof. Gary Grewal. His infectious

zeal and unwavering confidence has not only helped me to drive through this re-

search but would also influence my future work.

I am also grateful to Prof. William Gardner for advising and revising this thesis

with great meticulosity.

I have also greatly benefitted from the wisdom of my colleagues: Amit Khosla,

Yu Zeng (Yuki), Hua Liang, W.D.Keerthi Perera, Zhen Yang (Judy), Xiaojun Bao,

Brian Zhou, Guangfa Luo and others. I am particularly obligated to Amit Khosla

and Yu Zeng (Yuki) for advising and revising this work.

I would like to thank my friends Yu Zeng (Yuki), Jun Ren, Xiangtong An, Wei

Zhou, Chang, Wei Zhou, and Dongliang Wang who gave me unconditional support

and played badminton together to keep me physically as well as spiritually fit.

v

To

my parents

whose love and encouragement helped accomplish this

thesis.

This thesis is dedicated to them.

vi

Contents

1 Introduction 1

1.1 Problem Definition and Motivation 5

1.2 Proposed Research Approach and Contributions 6

1.2.1 Contributions . 7

1.3 Thesis Organization . 8

2 Background and Previous Work 10

2.1 FPGA Architectures . 10

2.2 CAD for FPGA Design . 13

2.3 The FPGA Placement Process . 17

2.3.1 FPGA Placement Objectives 17

2.3.2 Half-perimeter Wirelength Model and Bounding Box Cost . 18

2.4 Heuristic Approaches for FPGA Placement 21

2.4.1 Partitioning-based Placement Algorithms 22

2.4.2 Local Search . 23

2.4.3 Simulated-annealing Placement 25

2.4.4 VPR Placement Algorithm 26

2.4.5 Move Evaluation Technique in VPlace 29

vii

2.5 Multilevel Clustering . 30

2.5.1 Hierarchical Algorithm . 31

2.5.2 Reducing Complexity by Multilevel Clustering 32

2.6 Previous Clustering Based Approaches 33

2.6.1 Clustering Quality Measurement 34

2.6.2 Timberwolf95 Hierarchical Approach for Standard Cell Place-

ment . 35

2.6.3 Sankar’s Hierarchical Approach for FPGA Placement 37

2.7 Summary . 40

3 Iterative Improvement Techniques 42

3.1 Introduction . 42

3.2 Iterative Approach . 43

3.3 Simple Local Search algorithms . 47

3.4 Performance of VPlace . 48

3.4.1 Target FPGA Architecture 49

3.4.2 Test Methodology and the Performance of VPlace 51

3.5 Performance and Conclusion of Simple Local Search Methods . . . 54

3.6 Greedy Simulated-Anealing Algorithm 58

3.6.1 Search Greedy Degree . 61

3.6.2 Local Search Window . 62

3.6.3 Algorithm with Fixed Parameters 64

3.6.4 Adaptive Update Schema 66

3.7 Performance and Conclusion of GSA 71

3.7.1 Search Behavior Comparison between VPlace and GSA . . . 71

viii

3.7.2 Effectiveness of Rlimit . 73

3.7.3 Performance of GSA . 73

3.8 Large Fanout Nets Elimination . 79

3.9 Summary . 81

4 Hierarchical Approach 82

4.1 Overview of Hierarchical Approach 83

4.2 Clustering-based FPGA Placement 84

4.2.1 Clustering Method . 84

4.2.2 De-clustering and Legalization 87

4.2.3 Evaluating the Effectiveness of Clustering, De-clustering and

Simple Local Search in the Hierarchical Approach 89

4.3 Improvement Techniques Implemented at Each Hierarchical Level . 93

4.3.1 Top Level Improvement . 93

4.3.2 Medium Level Improvement 95

4.3.3 Bottom Level Improvement 95

4.3.4 Choice of Starting Parameters for Simulated-annealing . . . 96

4.3.5 Hierarchical Approach Behavior 99

4.4 Results . 100

4.4.1 Iterative Improvement Parameter Setting 100

4.4.2 Clustering Parameters . 102

4.4.3 Performance of the New Hierarchical Placemenet Tool . . . 106

4.4.4 Performance Comparison Between the New Hierarchical Place-

ment Tool and GSA Based Placement tool as well as VPlace 113

4.5 Summary . 116

ix

5 Conclusions and Future Directions 118

5.1 Conclusion . 118

5.2 Future Work . 120

A MCNC Benchmarks 122

B FPGA Placement Problem Illustration 124

C Acronym Glossary 126

Bibliography 127

x

List of Tables

3.1 Performance of VPlace with default parameters 53

3.2 Comparison between VPlace (default parameter) and VPlace ex-

haustive version . 54

3.3 Performance of non-deterministic local search 55

3.4 Performance of first improving deterministic local search 56

3.5 Comparison between non-deterministic and first improving deter-

ministic local search . 56

3.6 Comparison between simple non-deterministic local search and VPlace 57

3.7 Performance of GSA with innerNum = 5 (default) 75

3.8 Performance of GSA (default) with 20 runs over each benchmark

circuits . 76

3.9 Performance of GSA with innerNum = 10 76

3.10 Comparison between VPlace and GSA with innerNum = 5 77

3.11 Comparison between VPlace and GSA with innerNum = 10 77

3.12 Performance of GSA with large fanout nets removed 79

3.13 Comparison between two GSA with and without large fanout nets

elimination mechanism. 80

xi

4.1 Random clustering and random de-clustering (L = 2, S = 4) 90

4.2 Optimized clustering and random de-clustering (L = 2, S = 4) . . . 91

4.3 Optimized clustering and optimized de-clustering (L = 2, S = 4) . . 91

4.4 Solution improvement of optimized clustering and optimized de-clustering

(L = 2, S = 4) . 92

4.5 Performance of simple local search in hierarchial approach (L =

2, S = 4) . 93

4.6 Solution improvement of simple local search with optimized cluster-

ing and optimized de-clustering (L = 2, S = 4) 94

4.7 Performance of hierarchical placer 113

4.8 Runtime comparison between the multilevel clustering procedure and

the overall hierarchical placement 114

4.9 Solution improvement of simple local search and hierarchical place-

ment tool (L = 2, S = 4) . 114

4.10 Comparison between GSA placer and hierarchical placer 115

4.11 Comparison between VPlace and hierarchical placer 115

A.1 MCNC Benchmark circuit suite used as test cases 123

xii

List of Figures

1.1 Common VLSI physical implementations 2

2.1 Island style FPGA architecture [Brow92] 13

2.2 Detailed FPGA routing architecture 14

2.3 Typical FPGA CAD flow . 15

2.4 Half-perimeter wirelength model . 20

2.5 Taxonomy of approaches to FPGA placement 21

2.6 Pseudo-code for simulated-annealing [Sech85] [Betz97b] [Betz99] . . 27

2.7 Multilevel clustering . 32

2.8 Nets absorbed or their terminals reduced. In this exmaple, net1

is completely absorbed (eliminated) and the terminals of net2 are

reduced from 3 to 2 in this level of clustering. 35

2.9 Greedy clustering algorithm [Sank99] 39

2.10 Cluster construction example . 40

3.1 Create a random placement solution. 43

3.2 Create a neighbouring solution by swapping two CLBs. 45

3.3 Create a neighbouring solution by swapping two I/O pads. 46

3.4 Pseudo-code for non-deterministic local search 48

xiii

3.5 Pseudo-code for most improving deterministic local search 49

3.6 Pseudo-code for first improving deterministic local search 50

3.7 Basic CLB architecture . 51

3.8 Pseudo-code for Greedy Simulated-annealing (GSA) 60

3.9 Window limiter example. The source block is in the center of a square

limiter. Within the square, any other block could be a candidate to

be picked to perform swap with the source. The size of the window

limiter Rlimit in this example is 2 (two logic block distance). 63

3.10 Search behavior of GSA with a fixed update scheme over a medium

MCNC circuit “tseng” (1047 CLBs). 65

3.11 Search behavior of GSA with a fixed update scheme over a large

MCNC circuit “spla” (3690 CLBs). 65

3.12 Quality-time plot of GSA (10 circuits average) with different α and

β combinations (innerNum = 5). 69

3.13 Quality-time plot of GSA over a medium circuit “alu4” (1522 CLBs)

with different α and β combinations (innerNum = 5). 70

3.14 Quality-time plot of GSA over a large circuit “ex1010” (4598 CLBs)

with different α and β combinations (innerNum = 5). 70

3.15 Search curve comparison between GSA and VPlace over a medium

size MCNC circuit “tseng” (1047 CLBs). 72

3.16 Search curve comparison between GSA and VPlace over a large size

MCNC circuit “clma” (8381 CLBs). 72

3.17 Search behavior of GSA with and without swap restriction over a

medium size MCNC circuit “tseng” (1047 CLBs). 74

xiv

3.18 Search behavior of GSA with and without swap restriction over a

large size MCNC circuit “clma” (8381 CLBs). 74

3.19 Normalized (with respect to the results obtained by VPlace) grouped

benchmark performance comparison among VPlace and two versions

of GSA. 78

4.1 Framework of our hierarchical placement algorithm 83

4.2 Cluster size vs. % of total nets absorbed of Sankar’s [Sank99] clus-

tering method resulting in one level of clustering (data are obtained

averagely over 10 MCNC benchmark circuits). 86

4.3 Blocks in original clusters are optimized to minimize wirelength dur-

ing de-clustering. 88

4.4 Pseudo-code for de-clustering optimization 89

4.5 Pseudo-code for choosing start temperature T0 and initial Rlimit

for simulated-annealing algorithm, which begins with a good initial

placement . 98

4.6 Hierarchical approach behavior over a large MCNC circuit “spla”

(3690 CLBs). 99

4.7 Average normalized bounding box cost (with respect to: Clustering

Level = 1, Cluster Size = 4, innerNum = 5) over 10 MCNC circuits

vs. different GSA innerNum with different clustering depth and

clustering size. 102

xv

4.8 Normalized bounding box cost (with respect to: Clustering Level =

1, Cluster Size = 4, innerNum = 5) over a medium MCNC circuit

“tseng” (1047 CLBs) vs. different GSA innerNum with different

clustering depth and clustering size. 103

4.9 Normalized bounding box cost (with respect to: Clustering Level

= 1, Cluster Size = 4, innerNum = 5) over a large MCNC circuit

“clma” (8383 CLBs) vs. different GSA innerNum with different

clustering depth and clustering size. 103

4.10 Average normalized bounding box cost (with respect to: Clustering

Level = 1, Cluster Size = 4, innerNum = 10) over 10 MCNC circuits

vs. different VPlace innerNum with different clustering depth and

clustering size. 104

4.11 Normalized bounding box cost (with respect to: Clustering Level =

1, Cluster Size = 4, innerNum = 10) over a MCNC medium circuit

“tseng” (1047 CLBs) vs. different VPlace innerNum with different

clustering depth and clustering size. 105

4.12 Normalized bounding box cost (with respect to: Clustering Level =

1, Cluster Size = 4, innerNum = 10) over a large MCNC circuit

“clma” (8383 CLBs) vs. different VPlace innerNum with different

clustering depth and clustering size. 105

4.13 Average “Bounding Box Cost” over 10 MCNC circuits vs. clustering

size with different clustering depth. 107

4.14 Average “CPU time” over 10 MCNC circuits vs. clustering size with

different clustering depth. 108

xvi

4.15 “Bounding Box Cost” over a medium MCNC circuit “tseng” (1047

CLBs) vs. clustering size with different clustering depth. 109

4.16 “Bounding Box Cost” over a medium MCNC circuit “clma” (8383

CLBs) vs. clustering size with different clustering depth. 110

4.17 “CPU time” over a medium MCNC circuit “tseng” (1047 CLBs) vs.

clustering size with different clustering depth. 111

4.18 “CPU time” over a large MCNC circuit “clma” (8383 CLBs) vs.

clustering size with different clustering depth. 112

B.1 Initial (random start) placement configuration of MCNC circuit “e64”

implemeting on a 9x9 FPGA. (courtesy of Jonathan Rose) 125

B.2 Final placement configuration of MCNC circuit “e64” implemeting

on a 9x9 FPGA. (courtesy of Jonathan Rose) 125

xvii

Chapter 1

Introduction

Very Large Scale Integration (VLSI)1 technology has opened the doors to the im-

plementation of extremely complicated digital circuits at a relatively low cost. It

is now possible to manufacture chips with hundreds of millions of transistors, as

exemplified by the most powerful microprocessors.

A VLSI design includes both logic design and physical design of a circuit.

Logic design implements a circuit using gates, flip-flops, and other logic components

while remaining technology independent. On the other hand, physical design which

ultimately implements the logic design is very much technology dependent.

Currently, there are several different technologies that can implement a VLSI

design. Figure 1.1 illustrates the most common commercially available physical

design technologies.

This is the most basic and time-consuming physical design method. All parts of

such a design are carefully tailored by hand and Computer-Aided Design (CAD)

1A glossary of all acronyms used in this thesis is provided in Appendix C.

1

CHAPTER 1. INTRODUCTION 2

VLSI Design

Semi-Custom

CPLD
 FPGA

Full Custom
 Programmable Logic

Device (PLD)

Standard Cell
 MPGA

Figure 1.1: Common VLSI physical implementations

tools to meet specific requirements. Since the design process is completely under

the control of the designers, very compact and efficient chips can be created.

Semi-Custom:

This approach uses a mix of designer-created as well as pre-designed components.

Therefore, it provides an easier way of designing and manufacturing Application-

Specific Integrated Circuits (ASICs). Standard Cell and Mask-Programmed Gate

arrays (MPGAs) are two major technologies included in this category.

In the standard cell technology, a logic design is first mapped to “standard”

cells, which are included in libraries or customer pre-designed. Typically, such a

library includes commonly used functional blocks such as full adders and multi-

plexers. In their layout geometry, these standard cells are restricted to have the

same height, while their width can vary depending on the design. Once the circuit

is mapped, these cells are arranged in horizontal rows within the chip boundary.

Spaces between the rows, called channels, are used to implement the interconnec-

CHAPTER 1. INTRODUCTION 3

tions between the cells. Standard cell methodology is very popular in VLSI design,

since it facilitates the physical design by providing existing well-tuned elements.

MPGA devices consist of an array of uncommitted elements that can be inter-

connected according to a user’s specification. The most popular MPGAs consist of

rows of transistors that can be interconnected to implement a desired circuit. User-

specified connections are available both within the rows (to implement basic logic

gates) and between the rows (to connect the basic gates together). In an MPGA,

all the mask layers are pre-defined by the manufacturer, except those that specify

the final metal layers which are customized to connect the transistors in the array.

MPGAs still have large non-recurring engineering (NRE) cost because of the need

to fabricate the metal mask layers and pack chips in foundries.

Programmable Logic Devices (PLDs):

The previous two approaches require extensive manufacturing efforts, taking a long

time from design to final product. This high overhead results in a high cost for each

unit unless large volumes are produced. In industry, the time-to-market should

be made as short as possible, so it is essential to reduce the development and

production time. Furthermore, the possible financial and technical risks incurred in

the development of a new product could be prohibitively high for small companies.

Programmable Logic Devices (PLDs) have emerged as the ultimate solution, in

which the final logic structures can be directly configured by the end user, without

the use of any integrated circuit fabrication facility. These devices can be mapped

“instantly” by a set of CAD tools, leading to low start-up cost, quick time-to-

market, no NRE cost, and easier modification. In addition, most PLDs can be

re-programmed many times which not only enables a fast recovery from design

CHAPTER 1. INTRODUCTION 4

errors but also makes it easier to add new features to systems that have been

manufactured. However, the benefits provided by PLDs come at a price. They

are slower and require more silicon area than their ASIC counterparts [Brow92].

These disadvantages are mainly due to the fact that the logic in PLDs is configured

and connected via programmable switches, while for other technologies, the logic

is directly configured and connected with metal wires. Regardless, PLDs have

revolutionized the methodology to design and build digital hardware today.

Sophisticated PLDs can be largely divided into two types: Complex Programmable

Logic Devices (CPLDs) and Field-Programmable Gate Arrays (FPGAs). A CPLD

usually is an arrangement of multiple Simple Programmable Logic Devices (SPLDs).

The latter mainly consist of two levels of programmable logic−an AND plane and

an OR plane. FPGAs have a more general structure that allows very high logic ca-

pacity and flexibility. Whereas CPLDs feature logic resources with a wide number

of inputs and outputs (AND and OR planes), FPGAs offer broader logic resources

including a higher ratio of flip-flops to logic resources than do CPLDs (details of

FPGA architectures are presented in Chapter 2).

Since their commercial introduction in the mid-1980’s, FPGAs have gained rapid

acceptance and experienced a phenomenal growth in industry. Improvements in

VLSI processing technology have upgraded FPGAs from “glue” circuits with a

handful of TTL equivalent logic gates to System-On-a-Chip (SOC) with a capacity

of a few million effective gates, which continues to sprout embedded cores, such

as CPUs, memories, and interfaces. With this abundance of logic resources avail-

able, many applications traditionally held by other VLSI technologies have become

feasible for implementation on FPGAs. The current FPGAs allow almost any

application to be instantly realized or reconfigured, such as device controllers, com-

CHAPTER 1. INTRODUCTION 5

munication decoders, filters, processors and so on. Another major use of FPGAs

is prototyping of designs. The low cost of implementation and short time needed

to physically realize a given design provide enormous advantages over traditional

approaches which have to be completed in foundries.

1.1 Problem Definition and Motivation

In addition to logic circuit design, implementation of a design on an FPGA requires

a set of integrated CAD tools. These tools transform or compile a design from its

hardware description or schematic into a bitstream that is downloaded to the target

device in order to configure it. The work in this thesis focuses on handling a part

of this highly complex task of design implemetation.

As noted earlier, one key advantage of FPGAs over full custom and semi-custom

devices is that they provide relatively quick implementation from concept to phys-

ical realization. However, with the recent announcement of some FPGAs that

contain the equivalent of 40-million gates, new challenges emerge. One of the chal-

lenges is the compile time for designs, which is dominated by placement and routing

time. While current CAD algorithms provide high-quality solutions, they require

great amounts of CPU time. In fact, the compile time seems to be growing more

rapidly than the available computation power. For many complex circuits, this

compile time can be in the order of tens of CPU hours.

Such a long turn-around time adversely impacts the use of FPGAs by hardware

designers. This provides a compelling motivation to explore new methods for fast

compilation of designs. As we move to sub-micron designs, circuit delay, as well

as power dissipation are dominated by interconnections between logic elements.

CHAPTER 1. INTRODUCTION 6

This problem is specially severe for FPGAs which use programmable switches and

connections for implementing a netlist. Poor solutions, even derived quickly, are

often not acceptable in industry. There is a great need for CAD tools that execute

in a reasonable amount of CPU time, while still generating high-quality solutions.

In this thesis, we focus on the placement phase of the FPGA-based design process.

We present two adaptive placement algorithms, aiming to obtain the same quality2

as the best placement tool while minimizing the runtime as much as possible.

1.2 Proposed Research Approach and Contribu-

tions

Our research is concerned with finding a fast algorithm for placement that produces

high-quality results. We measure the performance of our algorithm against an

existing package, Versatile Placement and Routing tool for FPGAs (VPR)3 [Betz99]

[Betz97b], which is an open source program. VPR provides high-quality placement

and routing solutions over a large suite of benchmark circuits in a reasonable amount

of CPU time [Mulp01]. We make a fair evaluation of how well our tools perform

with respect to both runtime and placement quality of VPlace, by running both

algorithms on the same computation platform with the same suite of benchmark

circuits and the same FPGA architecture.

VPlace is based on the simulated-annealing algorithm that has found wide usage

both in academia and industry. While obtaining the best placement quality, it

suffers from relatively long runtimes [Mulp01]. This stochastic heuristic can cause

2In this thesis, placement quality is measured in terms of total wirelength.

3The placement part of VPR is referred to as VPlace.

CHAPTER 1. INTRODUCTION 7

the search procedure to spend a disproportionally large amount of time to examine

poor solutions. What is desired is some greedy search heuristic that can reduce

the number of solutions to be evaluated in order to accelerate the convergence of a

search.

Our “flat” placement algorithm takes advantage of some of the best features

from VPlace. In addition, by utilizing a memory structure, which records a short

period of search history, it behaves in a more greedy fashion than the simulated-

annealing algorithm. This new heuristic results in tremendous time saving com-

pared to VPlace, while reaching equal placement quality.

We also investigate a hierarchical approach to placement by utilizing multi-level

clustering and de-clustering. Very little related work has previously been done in

this area of FPGA placement, despite the success of clustering and de-clustering

when applied to standard cell placement, such as in Timberwolf95 [Sun95]. Clus-

tering of nodes (standard cells or logic blocks) into supernodes reduces the number

of entities necessary to be placed, compared to the flat circuit. The reduced search

space makes the use of time-consuming algorithms, such as simulated-annealing,

feasible for large problems. Again, this approach achieves great speedup in CPU

time with a small loss in solution quality.

1.2.1 Contributions

The work done for this thesis makes the following contributions:

1. A novel adaptive greedy iterative heuristic, which uses a short term memory

to speed up the convergence of placement.

2. A hierarchical approach, which makes use of a combination of suitable itera-

CHAPTER 1. INTRODUCTION 8

tive heuristics and clustering scheme to achieve high-quality placement within

a short amount of time. Little work has been done in the domain of FPGA

hierarchical placement, although this approach has been applied heavily to

the circuit partitioning problem and standard cell placement.

3. A novel method to determine the proper start parameters of simulated-annealing

algorithm automatically, when given a good initial placement.

These ideas can also be used in other similar problems, e.g. floor planning,

or even general combinatorial optimization problems. Most importantly, this work

has greatly enhanced an understanding of FPGA placement, especially for large

circuits.

1.3 Thesis Organization

This thesis is organized as follows: Chapter 2 contains an introduction to FPGA

architectures, generic CAD procedure for FPGA-based designs, and definitions of

basic terms. We also discuss some previous work done in FPGA placement, as

well as prior work done in the related area of hierarchical clustering. Chapter

3 describes our proposed placement algorithm, and presents experimental results

that show how our algorithm leads to a significant speedup in CPU time with

no loss in the placement quality, as compared to VPlace. Chapter 4 focuses on

the hierarchical approach where our placement algorithm described in Chapter 3

still plays an important role. With a novel adaptive method to automatically

adjust proper starting parameters, alogrithms employed at each level of hierarchy

can be linked together smoothly, which is crucial for any hierarchical approach.

CHAPTER 1. INTRODUCTION 9

Finally, Chapter 5 highlights some key conclusions and contributions of our work

and proposes possible directions for future research.

Chapter 2

Background and Previous Work

This chapter discusses the FPGA physical design procedure and provides details of

FPGA placement problem, followed by a brief description of some of the relevant

previous work done in the placement domain.

2.1 FPGA Architectures

There is a wide variety of architectures for FPGAs from different vendors including

Xilinx, Altera, Actel, Lucent, QuickLogic and so on. Although the exact structure

of these FPGAs varies from each other, all FPGAs consist of three fundamental

components:

1. Logic blocks that are capable of implementing multiple logic functions.

2. I/O blocks or I/O pads for communication with the outside world.

3. Fixed as well as programmable routing resources used to realize all required

interconnections between the blocks.

10

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 11

What comprises the logic blocks and how the routing resources are organized define

a specific FPGA architecture.

The complexity of logic blocks can be classified into two types: coarse-grained

and fine-grained. A coarse-grained logic block contains substantial logic struc-

tures, often has a clustered architecture including a few look-up tables (LUTs) and

flip-flops or a few Programmable Logic Device (PLD) modules. The more complex

the logic block, the more functions it can implement. The 4-input look-up table

(4-LUT) is most widely employed in these architectures [Brow92]. In fine-grained

architectures, there is a large number of relatively simple logic blocks, which usually

contain only a few basic gates and multiplexers.

In terms of logic block and routing resource layout, FPGAs can be classified

into one of the following four categories [Brow92].

Row-based:

Logic blocks are arranged in rows, and routing resources consist of horizontal

wire segments of various lengths, which are seperated by routing switches.

Also, a few vertical wire segments exist for routing between rows. A counter-

part in ASIC design is the standard cell architecture.

Hierarchical:

Logic blocks and routing resources are deployed in a hierarchical mode or

macrocell mode. A two-dimensional array of programmable logic blocks is

used to implement multilevel logic functions. Both intra-level and inter-level

interconnections are provided.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 12

Sea-of-Gates:

Logic blocks, usually fine-grained, are organized as a symmetrical array. Rout-

ing resources are overlaid on top of the blocks. This structure resembles the

Sea-Of-Gates architecture used in MPGAs.

Island Style:

Many commercially available FPGAs employ this architecture, in which logic

blocks, referred to as Configurable Logic Blocks (CLBs), are arranged as a

symmetrical array. Routing tracks have Manhattan geometry, that is, they

are either horizontal or vertical. The CLBs, typically coarse-grained1, are

separated by programmable routing switches.

Figure 2.1 shows a generic model of the FPGA architecture assumed in this

thesis [Brow92]. This model is very similar to Xilinx2 architectures. The

model is general enough to be suitable for other layout styles, with appropriate

modifications. Many researchers and CAD tools employ this model as their

prototype [Betz99] [Betz97b] [Sank99].

Figure 2.2 shows the details of the routing structure, which consists of three

components: connection box, switch box, and channel segment. A connec-

tion box is used to connect a CLB to the routing channels via programmable

connections. The pins of each CLB pass uninterrupted through the connec-

tion box and have the option of “fusing” to any channel segments. The switch

box is a switch matrix that is used to connect wires in one channel segment to

1The exact internal architecture of CLBs can vary from vendor to vendor. We provide an
example in Section 3.4.1, which is the FPGA architecture used in our experiments.

2Xilinx is the inventor and currently one of the leading vendors of FPGA chips.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 13

L
 L
C
 L
C

C
 C
 C
S
 S

L
 L
C
 L
C

C
 C
 C
S
 S

L
 L
C
 L
C

L = Configurable

Logic Block (CLB)

S = Switch Box

C = Connection Box

Routing Channel

I/O Pad

Figure 2.1: Island style FPGA architecture [Brow92]

those in another. Depending on the topology [Chan96], each wiring segment

on one side of a switch box may be connected to some or all of the wiring

segments on the other three sides. This flexible routing structure enables ev-

ery CLB to have connections with any other CLB or I/O pad, depending on

the number of tracks in the routing channels.

2.2 CAD for FPGA Design

Implementing a design on an FPGA involves a sequence of steps, each assisted by a

CAD tool. A typical design procedure employed by most commercial FPGA tools

is shown in Figure 2.3. A brief description of the steps follows.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 14

CLB

Switch

Box

Connection

Box

CLB

CLB
 CLB

Un-fused

Programmable

connection

Programmable

switch

Channel

Segment

CLB Pin

Fused

Programmable

connection

Figure 2.2: Detailed FPGA routing architecture

Design Entry:

The description of a logic circuit to be implemented can be specified by using

a hardware description language (HDL) such as VHDL or Verilog. Alternative

ways of specifying a circuit are to use a state machine language or a schematic

capture tool.

Synthesis & Optimization:

If the target design is specified in terms of behavioral or logical description

at the design entry level, it is synthesized into a logic level design first. If

entered as a schematic, then the logic design already exists. In either case,

the logic design is passed through an optimizer to remove redundant logic,

while maintaining its functionality.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 15

Design

Entry

Synthesis &

Logic Optimization

Technology

Mapping

Logical Block

Packing
Placement
Routing

Simulation

Create Bit-stream File &

Download to FPGA

Figure 2.3: Typical FPGA CAD flow

Technology Mapping:

Once the design is optimized, a technology-dependent mapping [Cong94] tool

is used to transform the basic logic functions into k-LUT-sized groups, where

k is based on the specific FPGA architecture on which the design is to be

implemented.

Logic Block Packing:

In clustered FPGA architectures, a logic block consists of more than one

Basic Logic Element (BLE) [Betz99] [Betz97b]. A BLE is the most basic

brick of an FPGA, which usually includes a k-LUT and a latch. The major

objectives of the packing process are combining k-LUTs and latches into BLEs

and grouping the BLEs into CLBs. Packing algorithms must take advantage

of the faster internal routing resources by balancing constraints including the

maximum number of inputs and BLEs per CLB, while attempting to minimize

the number of signal connections between CLBs [Betz99] [Betz97b].

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 16

Placement:

When the circuit has been reduced to a list of blocks and a netlist describ-

ing the connectivity between these blocks, a placement tool [Sech85] [Sun95]

[Betz99] [Betz97b] [Sank99] is used to determine the physical location of each

block within the target FPGA.

Routing:

FPGA routing [McMu88] [Brow96] is the process of assigning specific routing

resources to each net to realize the required connections among logic blocks.

Routing a net corresponds to finding a path between the start node (source)

and the end nodes (sink) in a graph. Because a connection represents a

physical path that a signal will occupy, the routing resources assigned to any

net are exclusive. A design is acceptable and workable only if 100 percent

routing can be achieved within the target FPGA.

Simulation:

After routing, the implemented design is simulated to ensure its functionality

and verify the timing constraints. Design errors can be found and corrected

at this stage.

Create Bitstream File & Download to FPGA:

Once all the previous steps are completed successfully, a CAD tool is used to

create bitstream files that are downloaded to the target FPGA to implement

the logic and interconncetion configuration. After this stage, the FPGA is

ready for use.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 17

FPGA placement has been proven to be an NP -hard problem [Gare79]. If

there are N blocks that need to be placed, the number of different possible solution

combinations for the placement problem is N !. It is a crucial phase and one of the

most intricate problems in the design process. The quality of placement has a great

impact on the final performance of the design.

This thesis presents two new methods for placement based on the island style

model. The effectiveness of these methods is demonstrated by applying them to

a set of MCNC [Yang91] benchmark circuits. CPU time and solution quality are

compared to an existing high-quality placement tool, VPlace[Mulp01] [Betz97a],

which is a part of VPR package [Betz99] [Betz97b].

2.3 The FPGA Placement Process

FPGA placement usually begins with a netlist of logic blocks, which includes CLBs

and I/O pads, and their interconnections. The result of placement is the physical

assignment of all blocks and pads on the target FPGA that minimizes one or more

specific objective cost functions.

2.3.1 FPGA Placement Objectives

The most basic objective for FPGA placement is to minimize the routing cost,

which is the total wirelength required to complete the routing. Routing cost is used

because reducing it actually reduces a number of associated design parameters. By

reducing the routing length, the routing resources required by all interconnections

are also reduced. This results in an increase in circuit speed due to the reduction

in connection capacitance and resistance. Power consumption, which is another

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 18

very important parameter to measure the quality of an FPGA implementation, is

reduced too. A placement intending to minimize the routing cost is also referred

to as wirelength-driven placement. There are other objective terms that can be

added to the original cost function to directly optimize the various design goals

[Sait95]. For example, placement can be done to minimize the length of a critical

path to meet timing constraints, referred to as timing-driven placement [Marq00]

[Swar95], or to balance the wire density across the FPGA device, referred to as

routability-driven placement [Part01].

Most commercially available FPGA placement tools are timing-driven, which

has been proven in the work of Marquardt et al. [Marq00] and Swartz et al.

[Swar95]. This approach is more efficient in improving the speed of a FPGA-

based circuit than wirelength-driven placement. In this thesis, however, we use the

wirelength-driven approach as the first step in our FPGA placement research.

We provide two figures in Appendix B, borrowed from VPR package, to have a

visual illustration of the FPGA placement problem.

2.3.2 Half-perimeter Wirelength Model and Bounding Box

Cost

In the placement phase, it is computationally too expensive to determine the exact

configurations of routing resources to realize physical connections for CLBs and

I/O pads. It is actually another NP -hard problem. For this reason, the routing

cost is approximated during placement. The speed and accuracy of estimation

have a significant effect on the performance of a placement tool. There are various

cost approximation techniques available [Sait95], such as Steiner tree, minimum

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 19

spanning tree, and half -perimeter wirelength model.

A Steiner tree [Arei01b] is the shortest route to connect a set of terminals. It

provides the most accurate means for wirelength estimation. In this method, a wire

can branch from any point available along its length to connect to other terminals

in the net. Unfortunately, since the problem of finding the Steiner tree itself has

been proven to be NP -hard, this technique is normally not used due to its heavy

computational requirements.

Unlike the Steiner tree, in a minimum spanning tree, branches are only allowed

at the terminals. For an n-terminal net, the tree can be constructed by determining

the distances between all possible pairs of terminals, and connecting the smallest

(n − 1) edges that do not form a cycle. A minimum spanning tree can be found in

polynomial time by Kruskal’s algorithm [Krus56] or Prim’s algorithm [Prim57].

Half-perimeter Wirelength(HPWL) model is the most widely used method to

estimate the wirelength of a net [Shah91]. The wirelength is approximated by half

the perimeter of the smallest bounding rectangle that encloses all terminals in the

net, as shown in Figure 2.4.

In a Manhattan routing structure, the HPWL of a net approximates the length

of a Steiner tree, which is the lowest bound on the final routing cost on a net.

Given a block b with coordinates (xb, yb), the half-perimeter of net i is calculated

as follows:

HPWLi = (MAXb∈i{xb} − MINb∈i{xb} + 1) + (MAXb∈i{yb} − MINb∈i{yb} + 1)

(2.1)

For a net with two or three terminals, the routing cost obtained by HPWL model

is exactly the same as that obtained by Steiner tree model. When there are more

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 20

Bounding Rectangle

HPWL

Net(i)

8 terminals

Figure 2.4: Half-perimeter wirelength model

than three terminals in a net, a q(i) factor [Chen94] is introduced to compensate for

the fact that the HPWL model underestimates the wirelength necessary to connect

all blocks. The value of q(i) depends on the number of terminals in net i. q(i) is

1 for nets with 3 or fewer terminals, and slowly increases to 2.79 for nets with 50

terminals. For exceptionally heavy fanout nets that have more than 50 terminals,

the value of q(i) linearly increases at the rate of:

q(i) = 2.7933 + 0.02616 ∗ (TerminalNumber − 50) [Betz00] (2.2)

Therefore, the final cost function, called the bounding box cost, takes the following

form:

Costbounding box =
Nnets
∑

i=1

q(i) ∗ HPWLi (2.3)

Consequently, the placement problem pertaining to this thesis is equivalent to the

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 21

Heuristics for FPGA

Placement

Iterative

Improvement

Simulated-annealing

based Methods

Partitioning-

based Placement

Local Search

Figure 2.5: Taxonomy of approaches to FPGA placement

problem of minimizing the bounding box cost.

2.4 Heuristic Approaches for FPGA Placement

FPGA placement is a hard combinatorial optimization problem, and no polynomial-

time algorithm is known that can produce an exact solution to the problem [Shah91].

Except for very small circuits, exact solution methods such as exhaustive enumer-

ation are of little practical use. Approximation methods, also referred to as heuris-

tics, provide sub-optimal solutions but can be executed in a relatively short amount

of runtime. Almost every commercially available FPGA placement tool is of this

type, since design time is of great importance in industry. In recent years, many

heuristic techniques have been developed in an attempt to obtain acceptable solu-

tions in a reasonable amount of runtime. Figure 2.5 shows a taxonomy of the most

common approaches to solve this problem.

Historically, FPGA placement methods have been divided into two classes:

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 22

partitioning-based placement [Klei91] [Ganl95] and iterative improvement [Betz99]

[Betz97b]. In partitioning-based placement, a circuit is recursively bi-sected, mini-

mizing the number of cuts of the nets that connect components between partitions,

while leaving highly-connected blocks in one partition. Eventually, the partition

size reaches a few blocks to obtain improvement by grouping the highly-connected

blocks together.

Iterative improvement methods start with initial (legal) placements and seek

improvements by searching for small perturbations to the placements that result in

better solutions. In the FPGA placement problem, these perturbations are location

swaps (pairwise move) between blocks.

Heuristic methods are discussed in more detail in the following sections. Simulated-

annealing based placement algorithms, which belong to iterative improvement meth-

ods, have achieved as good or higher quality solutions compared to other methods

[Mulp01] [Betz97a]. Consequently in this thesis, we focus on simulated-annealing

based algorithms.

There are some popular approaches used for standard cell placement that have

not been successfully implemented in the FPGA placement yet, such as constructive

methods [Karg86], analytical methods [Alpe97a], tabu search [Song92], and genetic

algorithms [Coho86].

2.4.1 Partitioning-based Placement Algorithms

Partitioning-based placement methods, also referred to as min-cut methods, are

based on graph partitioning algorithms such as Fiduccia-Mattheyses (FM) algo-

rithm [Fidu84], and Kernighan–Lin (KL) algorithm [Kern70]. An FPGA is divided

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 23

into two halves, and a circuit partitioning algorithm is applied to determine which

logic block goes to which half to minimize the number of cuts in the nets that

connect the blocks between partitions, while leaving highly-connected blocks in one

partition. This recursive process is repeated until each partition contains only a few

blocks to group the highly-connected blocks together in order to decrease placement

cost.

A divide-and-conquer strategy is used in these heuristics. By partitioning the

problem into sub-parts, a drastic reduction in search space can be achieved. On

the whole, these algorithms behave in the top-down manner, placing blocks in the

general regions where they should belong to.

Partitioning-based placement algorithms are good from a “global” perspective,

but they do not directly attempt to minimize wirelength. Therefore, the solutions

obtained are sub-optimal in terms of wirelength. However, these kind of algorithms

run very fast. They are normally used in conjunction with other search techniques

for further quality improvement.

2.4.2 Local Search

Local search methods are the most basic iterative heuristics for finding approximate

solutions to large scale combinatorial optimization problems [Aart03]. Starting from

an initial (legal) solution, these heuristics achieve improvements by searching the

solution neighbourhood for a better solution3.

The basic principle underlying a local search algorithm is that it always moves

3A neighbouring solution, in FPGA placement, can be any location swap of two blocks from
the current placement, which is “close” to the original solution. The solution neighbourhood is
the aggregated set of all possible neighbouring solutions.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 24

from the current solution to the next better solution in the neighbourhood in a

greedy manner.

Local search algorithms use two common strategies to move to a better solution:

First improving (non-deterministic):

Accept the first improving solution encountered during random evaluation.

This strategy is also referred to as stochastic and has the advantage of being

fast; the negative side is lack of aggressiveness in finding the best solution in

the neighbourhood.

Most improving (deterministic):

Scan and evaluate the whole candidate neighbourhood set and accept the

best solution. This is the most traditional selection method that guaran-

tees the best possible move in the neighbourhood. However, the exhaustive

comparison process in making a choice can be time-consuming.

Non-deterministic local search methods usually stop after a sufficient number4

of solutions has been evaluated. Whereas, deterministic local search methods ter-

minate when no further improvement can be achieved.

Local search methods can run fast if well implemented. The weakness of these

methods is that they can end up in local minima. When the number of local

minima/maxima is large, the probability that a local minimum/maximum is also

globally minimum/maximum is small. One possible solution to this problem is to

use a multi-start search, which performs a local search many times, starting from

different configurations to explore better solutions. However, this search strategy

4The value of this number could be adaptive or user pre-defined.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 25

still fails in problems which have a large number of local minima/maxima. This

seems to be a generic feature of many of the classical hard combinatorial problems

[Aart03] including the placement problem.

For these reasons, local search is normally not used as the primary solution

method, but is used to assist other solution techiques [Sank99] [Aart03].

2.4.3 Simulated-annealing Placement

Simulated-annealing [Kirk83] is one well-developed and widely used algorithm for

solving combinatorial optimization problems, including those arising in VLSI phys-

ical design [Wong88]. As the name suggests, this algorithm mathematically mimics

the process of carefully cooling molten metal in order to obtain a good crystalline

structure. An ideally annealed crystal should be in the lowest-energy ground state,

which corresponds to the globally optimal configuration in a combinatiorial opti-

mization problem.

As one of the methods belonging to non-deterministic category, simulated-

annealing accepts any randomly encountered solution in the neighbourhood, with

a defined probability. A new neighbouring solution is created incrementally from

the current solution. If the new cost, derived from a specific objective function, is

reduced the new solution is accepted. However, for an inferior cost, the new solution

may still be accepted with a probability of e−∆C/T , where ∆C is the change in cost,

and T is analogous to temperature in the metal crystallization process. Parameter

T is used to control the acceptance probability of cost-increasing “bad” solutions.

The rate of change of T is referred to as annealing schedule which has a great

influence on the quality of the final solution as well as runtime. Initially, T is set

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 26

to a high value such that most inferior solutions can be accepted. As the process

goes on, T is gradually decreased (simulating cooling), reducing the probability of

accepting poor solutions. In the final stages, T is only a small fraction of its original

value and only improving solutions are accepted most of the time. The simulated-

annealing algorithm is characterized by its ability of hill-climbing to escape local

optima in the cost function. These local optima usually cause simple local search

algorithms to terminate.

Theoretical analysis [Mitr86] shows that simulated-annealing converges with

probability 1 to the globally optimal solution, by imposing certain conditions on

the number of iterations evaluated at each T and a certain rule to update the

value of T . In addition, it is much easier to add new optimization objectives or

constraints to a simulated-annealing based placement algorithm compared to most

other algorithms. However, these features provide little information on how to set

the proper parameters in a particular implementation. Furthermore, the runtime to

find the globally optimal solution can become very large. Consequently, most of the

current applications of simulated-annealing employ simple yet effective approaches

to obtain some good sub-optima as the final solutions [Sech85] [Betz99] [Betz97b].

2.4.4 VPR Placement Algorithm

The VPR package [Betz00] [Betz99] [Betz97b] is known for leading to high-quality

[Betz97a] [Mulp01] results for FPGA packing, placement, and routing. A simulated-

annealing based placement tool is built in to VPR, and is called V P lace. Figure

2.6 shows the pseudo-code for VPlace.

VPlace adopts some good features from previous work in [Sech85] [Huan86]

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 27

1. S = InitPlacement();
2. T = InitTemperature();
3. Rlimit = InitRlimit(); /* Rlimit is set to the whole chip initially */
4. while(ExitCriterion() == false) /* outer loop */
5. { while(InnerLoopCriterion() == false) /* inner loop */
6. { Scandidate = GenerateMove(Scurrent, Rlimit);

/* create a candidate solution from the current one by a */
/* random pairwise move within the window Rlimit */

7. ∆C = Cost(Scandidate) - Cost(Scurrent);
/* calculate the changes in cost */

8. r = random(0, 1);
/* create a random float number between (0, 1) */

9. if(r < e−∆C/T)
10. Scurrent = Scandidate; /* accept this candidate */

/* if ∆C ≤ 0, the move is always been accepted. */
/* otherwise, the probability of acceptance is given by */
/* e−∆C/T . Initially, T is very high so almost all */
/* moves are accepted. T is gradually decreased */
/* and eventually makes the acceptance of a “bad” */
/* move very difficult. (finally becomes greedy) */

11. } /* end of inner loop */
12. Update(T); /* Tnew = α ∗ Told */
13. Update(Rlimit);
14. } /* end of outer loop */

/* get final placement solution S */

Figure 2.6: Pseudo-code for simulated-annealing [Sech85] [Betz97b] [Betz99]

[Swar90] [Lam88]. It also includes a new temperature update schedule and a new

exit criterion, as well as a time-saving incremental net bounding box update tech-

nique. The initial solution is created by placing CLBs and I/O pads randomly

into the physical locations within the target FPGA. Some CLBs and I/O pads

may remain unused; these blocks are marked as void blocks. Then the placement

is iteratively improved by random pairwise swapping of locations and evaluating

the “goodness” of each swap using the bounding box cost function introduced in

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 28

Section 2.3.2.

Inherited from the work of Huang et al. [Huan86], the inital temperature T is

set to 20 times the standard deviation in cost after a set of Nblocks pairwise moves

have been attempted, where Nblocks is the total number of CLBs and I/O pads in

the circuit. This temperature T0 is high enough to ensure that almost every early

swap is accepted. The number of new configurations evaluated at each temperature

T is set to:

MovesPerT = innerNum ∗ (Nblocks)
4/3 [Swar90] (2.4)

where the scaling factor innerNum, which by default is 10, allows a trade-off

between CPU time and placement quality.

It is shown in [Swar90] [Lam88] that the most desirable annealing schedule is one

that keeps the acceptance rate of moves near 0.44 for as long as possible. VPlace

accomplishes this by utilizing the value of the acceptance rate α to control a range

limiter Rlimit, which follows the work of Lam et al. [Lam88].

Rnew
limit = Rold

limit ∗ (1 − 0.44 + α) and

Rlimit ∈ [1, maximum FPGA dimension]
(2.5)

Any attempted swap of blocks is allowed only within a square window, where the

length of each side of this window eqauls Rlimit. A small value of Rlimit ensures

that only blocks close together are considered for swap. These “local” swaps tend

to result in an increase of acceptance possibility. Rlimit spans the entire FPGA chip

in the beginning, shrunk gradually as the process continues, finally reducing to “1”

where only “local” refinement is necessary.

A robust FPGA placement tool must be able to handle a wide variety of circuits

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 29

of different sizes. Consequently, as the core of any simulated-annealing based imple-

mentation, the annealing schedule must automatically adapt to different circuits.

The VPlace annealing schedule is based on the following methodology: When the

temperature T is so high that almost every move is accepted, the FPGA config-

urations randomly move from one to another with little benefit obtained in cost.

Conversely, at the end, very few moves are accepted due to the extremely low

temperature T and the fairly high-quality of current placement. Very little im-

provement is obtained at this stage. VPlace works fast by relatively increasing the

amount of time spent on exploring the solution space in the medium stage, which

is more productive; it bypasses the “futile” periods when little benefit in solution

quality is expected.

The exact update schedule of T in VPlace is as follows:

Tnew =















































0.5 ∗ Told, acceptance rate > 0.96

0.9 ∗ Told, 0.8 < acceptance rate ≤ 0.96

0.95 ∗ Told, 0.15 < acceptance rate ≤ 0.8

0.8 ∗ Told, acceptance rate ≤ 0.15

(2.6)

Finally, the placement tool terminates when the temperature T falls below a certain

fraction of the average cost per net. This makes acceptance of any cost increasing

move almost impossible.

Tend = 0.005 ∗
bounding box cost

total number of nets
(2.7)

Currently, amongst the academic tools, VPlace holds the record of obtaining the

best placement quality within a reasonable amount of CPU time.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 30

2.4.5 Move Evaluation Technique in VPlace

Evaluating pairwise moves is a time-consuming task. In most iterative FPGA place-

ment heuristics, the vast majority of CPU time during the optimization is spent

on calculating the effects caused by such perturbations [Betz99]. It is, therefore,

crucial that this computation should be made as fast as possible.

The cost function used in this thesis is the most commonly used wirelength-

driven bounding box cost described in Section 2.3.2. Consider the computation of

∆C caused by a location swap between two blocks. The only terms in Equation

2.3 that change are those corresponding to the nets attached to the two swapped

blocks. The bounding boxes of all the nets attached to these two blocks must be

recomputed to determine ∆C. The most straightforward method is to relocate all

the terminals for each net exhaustively, which is a O(k) operation for a k-terminal

net.

In VPlace, a new technique called “incremental bounding box evaluation” is

introduced as an alternative to this brute-force computation. For each net, a data

structure contains not only the coordinates of the four sides of the corresponding

bounding box but also contains the number of terminals in the net that lie on each

side. This extra information is used to determine the new bounding box of the net

after a swap by only looking at the moved terminals, rather than all k terminals.

Reported in their work [Betz99], this update technique, on average, yields a five

fold speedup compared to VPlace without the incremental bounding box evaluation,

over ten large MCNC benchmark circuits.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 31

2.5 Multilevel Clustering

In the past few years, the size of FPGA-based circuits has been increasing at a

phenomenal rate. Even the outdated benchmarks available to the academic world

are large in the combinatorial sense. The long runtime of traditional placement

tools is definitely nullifying the time advantage of FPGA based products.

Generally, three strategies are employed to deal with this more intricate prob-

lem. The most obvious method is tweaking some parameters to acquire faster

placement tools at the cost of obtaining low-quality solutions. For example, by re-

ducing the number of moves per temperature (innerNum) in VPlace, we can have

a speedup by trading quality for CPU time [Betz99] [Betz97b]. Designing more

efficient heuristics or accelerating the convergence of existing FPGA placement al-

gorithms could be another approach (to be discussed in Chapter 3). The third

approach is to reduce the complexity of large circuits by clustering them into less

complicated and easily solvable forms, which helps to decrease the time required to

obtain good solutions for the overall problem.

2.5.1 Hierarchical Algorithm

The hierarchical approach is a two step procedure: first proceeding bottom-up then

top-down. The bottom-up technique is clustering which involves grouping highly-

connected blocks into clusters. Then a top-down method is applied to largely

determine the locations for all the clusters. The simplified problem makes the im-

plementation of a time-consuming top-down method, like the simulated-annealing

algorithm, more feasible. A de-clustering process proceeds to restore the original

FPGA layout according to the previous placement result of clusters. In this process,

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 32

the flattened blocks should be placed as close to their center-of -gravity as possible.

Finally, a localized improvement heuristic is executed to perform trimming work

by moving blocks in small regions to achieve the final solution.

2.5.2 Reducing Complexity by Multilevel Clustering

Hagen et al. [Hage92] suggested that the advantage offered by clustering permits

the placement algorithms operating on a reduced problem to focus on the most

difficult and time-consuming portions. During clustering, FPGA modules (CLBs)

are packed into clusters and the original netlist is transformed to a corresponding

condensed netlist, which renders the placement problem to be “smoothed” by re-

ducing the number of local minima. Both circuit partitioning [Shin93] [Kary97] and

placement [Arei01a] [Sun95] [Mall89] [Thom01] have reported a decrease in com-

putation time by an order of magnitude compared to operating on a flat netlist,

through effective clustering techniques.

Early methods of clustering were applied to a single level. As the circuit sizes

have grown larger, recent research [Alpe97b] [Arei01a] [Kary97] [Sank99] [Thom01]

has shown that adding extra levels of clustering, referred to as multilevel clustering,

shown in Figure 2.7, is more manipulable and produces superior results. With mul-

tilevel clustering, compaction of the original netlist can proceed more gradually and

produce more gentle clusters at each level. In the coarse (high) level, a top-down

method places blocks in the general regions that they should belong to. As the

refinement moves from coarse to fine (low) level, the small sized clusters and more

detailed steps enable a localized heuristic to find a good final solution [Alpe97b].

Furthermore, all blocks contained in a cluster are assumed to lie at the same loca-

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 33

clustering

clustering
 de-clustering

de-clustering

clusters formed

from blocks in

previous level

Level n

Level 1

Level 0

(flat)

Figure 2.7: Multilevel clustering

tion and, consequently, only one coordinate is attached to this “parent” cluster. All

“child” blocks would have their own coordinates when the cluster is de-clustered.

Most of these coordinates, however, are close to but not exactly the same as the

coordinates of their “parent”. For large clusters in a single-level clustering method,

the difference between the positions of clustered blocks and the corresponding po-

sitions of the same blocks in the flat level can be substantial. Significant future

refinement is thus necessary. In a multilevel approach, smaller blocks usually result

in much smaller difference, which assists superior quality solutions to be achieved

in shorter amount of time [Thom01].

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 34

2.6 Previous Clustering Based Approaches

The clustering approach was first applied to the linear placement problem in 1972

by Schuler et al. [Schu72]. Since then, it has found its own position in the problems

of circuit partitioning [Shin93] [Kary97] and VLSI standard cell placement [Sun95]

[Mall89] [Arei01a] [Thom01]. Only recently, it has been applied to the FPGA place-

ment problem in a limited way[Sank99]. In the rest of this section, we present a

general clustering quality measurement and a brief review of two successful clus-

tering methods that have been applied to the placement problem.

2.6.1 Clustering Quality Measurement

Presently, there is no commonly accepted metric to directly measure the quality

of clusters obtained by a clustering method. The only agreed-upon measure of

clustering quality is the amount of the final improvement obtained with a specific

method, which is obviously not an ideal solution. This is because the final placement

is affected by many variables, including the size of the circuit being placed, the

placement heuristic used, and CPU time consumed.

For circuit clustering, we say that a net is absorbed by a cluster if all blocks at-

tached to that net are contained within that single cluster. In [Sun95] and [Sank99],

the percentage of nets that would be completely absorbed by a clustering method

resulting from a single level of clustering, is ranked as a crucial measurement for

the performance of a clustering method. This approach, shown in Figure 2.8, not

only decreases the number of entities that need to be improved, but also tends to

increase the “internal” connectivity in each cluster, while reducing the number of

external interconnections. However, these nets still connect the same modules, so

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 35

C

B
A

D

net 1

net 2
 C

B
A

D
net 2

net 1

C

B
A

D

net 2

before clustering
 clustering

 after clustering

cluster

Figure 2.8: Nets absorbed or their terminals reduced. In this exmaple, net1 is
completely absorbed (eliminated) and the terminals of net2 are reduced from 3 to
2 in this level of clustering.

a later de-clustering procedure is required to restore the concised network to the

original form in the lower levels.

Runtime is also used as a measure to evaluate a clustering method. Only a very

small portion of runtime should be consumed in the clustering stage compared to

the overall placement phase.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 36

2.6.2 Timberwolf95 Hierarchical Approach for Standard Cell

Placement

Timberwolf95 [Sun95] is regarded as one of the state-of-the-art placement tools

for standard cells. It produces very high-quality results in a fraction of CPU time

compared to the corresponding flat version of Timberwolf [Sech85]. A one-level clus-

tering method is used prior to its two-level simulated-annealing placement. Clusters

are constructed based on a cost function, which is designed for nets with low fanout

to be absorbed into a single cluster. These small nets are easier to fit in a single

cluster than nets with larger fanout. First, each net i is assigned a weight wi, which

is inversely proportional to its fanout as follows:

wi =
1

|Fi| − 1
(2.8)

where Fi is the number of terminals for net i. A tree model for multi-terminal nets

is used, which assumes that an n-terminal net has n − 1 edges. If a net spans m

clusters, then there are m−1 inter-cluster edges existing and if there are j terminals

of that net contained in one cluster, then that cluster has j − 1 edges. Let Bk be

the set of all terminals contained within cluster k. The bucket weight Wk of cluster

k is then defined as the sum of all the edge weights in that cluster as follows.

Wk =
∑

〈∀i|(Fi∩Bk)6=φ〉

(Fi ∩ Bk − 1) ∗ wi (2.9)

The first component of the term in the summation represents the number of edges

of net i that are contained within cluster k. If the entire net was absorbed by

cluster k, the total edge weight contributing to this bucket weight always equals to

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 37

1. Let N be the desired number of clusters to be constructed at a specific level.

The aggregated bucket weight C would be:

C =
N

∑

k=1

Wk (2.10)

which is the objective cost function to be maximized for the clustering algorithm.

Although specified for standard-cell architecture, this clustering method can

be adapted FPGA placement with little modification. In theory, every evaluation

of this clustering cost function can be completed in linear time. However, the

use of a simulated-annealing algorithm [Lam88] to optimize the cost function in

their implementation is decidedly slow. On the whole, the Timberwolf95 clustering

method produces very good results, but it is fairly time-consuming.

2.6.3 Sankar’s Hierarchical Approach for FPGA Placement

In [Sank99], an ultra fast hierarchical FPGA placement tool is introduced. A

greedy multilevel clustering method, which emphasizes even further the absorbtion

of small nets, is performed first. Then, a non-deterministic simple local search

algorithm is employed to achieve improvements in the clustered levels. Finally, a low

temperature VPlace simulated-annealing based placement is performed to obtain

the final solution. The main goal of [Sank99] is to provide an FPGA placement

prediction tool that would produce a placement solution ultra fast, with tolerable

loss of placement quality5, to forecast if a circuit can fit in a target FPGA chip.

The clustering algorithm begins by randomly choosing a logic block as the seed,

5According to [Sank99], on average, their ultra-fast tool suffered a 22% loss in placement
quality, compared to VPlace over twenty MCNC benchmark circuits.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 38

and assigning it to the first available slot in a cluster. Each unclustered block

that has connections with the cluster is assigned a weight that rates how high the

probability is that it belongs to this cluster. Let J represent the set of nets shared

between the candidate block b and the cluster c being constructed. Pj denotes the

set of terminals in net j ∈ J , and Abc denotes the set of nets that would be absorbed

if block b were assigned to cluster c. The weight, wb, for each candidate block b is

specified as follows:

wb = (
∑

j∈J

1

|Pj| − 1
) + |Abc| (2.11)

The first component of the term is the number of connections between the can-

didate block b and cluster c, with each connection weighted by the fanout of the

net in which it lies. It is the same as in the method of Timberwolf95. The second

component is the number of nets that would be completely absorbed if this can-

didate is merged into the cluster c. This gives an extra bonus to blocks with low

fanout nets and in the nets that are about to be absorbed when building clusters.

The candidate block with the highest score is assigned to the next available slot in

cluster c and this selection is repeated until cluster c is full. Next, a new cluster is

created by randomly picking another yet unclustered block as the seed. This recur-

sive process is repeated until all blocks are in clusters. Furthermore, the creation

of higher level of clusters in a multilevel hierarchical heuristic can proceed in the

same manner. The corresponding pseudo-code is shown in Figure 2.9.

Figure 2.10 illustrates the clustering algorithm through an example. Each clus-

ter can hold up to four blocks (clustering size is 4) and three slots have already

been filled in the cluster currently being constructed. In order to fill the remaining

slot, all “unfixed” blocks that share direct connections with the cluster are exam-

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 39

INPUT:
Init flat netlist;
Number of clustering levels;
Size of each cluster;

1. while(allLevelClustered == false)
2. { while(allBlocksAtThisLevelIncludedIn == false)
3. { initOneNewClusterStructureAsCurrentCluster();
4. randomlyPickOneBlockIntoCurrentCluster();

/* this seed block must not be included in */
/* any other clusters at this level of clustering */

5. while(thisClusterIsFull == false)
6. { calculateBucketWeightForAllCandidateBlocks();

/* all candidate blocks must not be included in */
/* any other clusters at this level of clustering */

7. greedilyPickTheBestBlockIntoCurrentCluster();
8. } /* end of one cluster creation */
9. } /* end of one clustering level creation */
10. } /* end of all clustering level creation */

/* get final clustered netlists at all levels */

Figure 2.9: Greedy clustering algorithm [Sank99]

ined. Block x is not considered as a candidate since it has already been “fixed” in

a completed cluster, even though it has a direct connection with the target cluster.

Block d is not considered either, since it actually does not directly connect to the

cluster under construction. The ranking, from high to low, for the available candi-

date blocks, based on Equation 2.11, is b = 3, a = 2.33, and c = 1.33. Thus, block

b would be labeled as “fixed” and will be assigned to the empty slot to finish the

construction. If none of the remaining unclustered blocks shares any connection

with the cluster under construction (possibly because most blocks are already fixed

in clusters), then a candidate block is selected randomly from “unfixed” blocks to

fill the free slot in that cluster.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 40

cluster under

construction

b
a

c

fixed
 block

x
complete

constructed cluster

d
fixed
 block

unfixed
 block

(not a candidate)

candidate

unfixed
 block

available

free slot

Figure 2.10: Cluster construction example

Unlike the simulated-annealing method used in Timberwolf95, Sankar’s method

is a greedy constructive method. Only the current best candidate is accepted, which

enables the clustering procedure to be completed very quickly.

2.7 Summary

In this chapter, we have presented an overview of FPGA physical design automation

in general and FPGA placement in particular. Placement is a complex problem

that not only affects the routability of a design but also assists an FPGA-based

circuit to meet timing constraints. We also discussed different layout topologies

existing in commercially available FPGAs. Each of these layout styles imposes

design and optimization constraints, which affect the implementation of a circuit.

CHAPTER 2. BACKGROUND AND PREVIOUS WORK 41

The topology used in this thesis is an island style model, which is a generalization

of Xilinx products and one that is widely used for such research. We then reviewed

some of the previous work in FPGA placement, including simulated-annealing and

partitioning-based methods. VPlace, which is a simulated-annealing based tool,

was discussed in some detail. The performance of our placement algorithm will

be compared with that of VPlace in the next two chapters. Finally, we reviewed

some prior work in hierarchical approach that uses clustering to simplify the circuit

partitioning and placement problems.

In the following two chapters, two new approaches to deal with FPGA placement

are presented. In the next chapter, a “greedy” search heuristic is presented and

analyzed. In Chapter 4, one of the existing clustering methods is embedded into our

placement tool. This enables us to take a hierarchical approach for placement where

our placement algorithm, described in Chapter 3, is used along with clustering and

de-clustering, to obtain high-quality solutions.

Chapter 3

Iterative Improvement Techniques

3.1 Introduction

In this chapter, in order to demonstrate the requirement of advanced iterative

methods, some basic iterative FPGA placement methods are implemented, i.e., lo-

cal search techniques. Next, a novel adaptive FPGA placement algorithm, called

GSA, is proposed. The algorithm is based on an enhancement to the simulated-

annealing algorithm employed in the state-of-the-art placement tool VPlace, which

is embedded in the VPR package [Betz00] [Betz99] [Betz97b]. GSA utilizes a suit-

able memory structure to “remember” part of the short term search history, which

helps to guide the search into more promising neighbouring search space.

The final placement quality as well as runtime obtained by local search tech-

niques and GSA are compared with those generated by VPlace to determine the

performance of each algorithm. On average, GSA placement tool (with default

parameters), achieves a 69% reduction in CPU time (3.2x faster) compared with

VPlace over ten MCNC benchmark circuits, while obtaining almost the same final

42

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 43

2

(1,3)

CLB array

0

(1,2)

4

(1,1)

5

(2,3)

7

(2,2)

3

(2,1)

6

(3,3)

v0

(3,2)

1

(3,1)

7

(1,4)

3

(2,4)

v0

(3,4)

9

(1,0)

5

(2,0)

6

(3,0)

4

(4,3)

v1

(4,2)

0

(4,1)

2

(0,3)

8

(0,2)

1

(0,1)

0
 1
 2
 3
 4
 5
 6
 7

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 I/O Pad array

Randomly assign CLB and I/O blocks to

available vacancies in the target FPGA.

Void Blocks

I/O Pad

CLB

All blocks in CLB and I/O Pad arrays are

obtained from
 Logical Block Packing
 procedure.

FPGA Coordinate System

CLB array
0

(1,2)

1

(3,1)

2

(1,3)

3

(2,1)

4

(1,1)

5

(2,3)

6

(3,3)

7

(2,2)

0

(4,1)

1

(0,1)

2

(0,3)

3

(2,4)

4

(4,3)

5

(2,0)

6

(3,0)

7

(1,4)

8

(0,2)

9

(1,0)
 I/O Pad array

(x, y) coordinate

V0

(3,2)

V0

(3,4)

V1

(4,2)

Representation of CLBs and I/O

Pads after the random placement.

Figure 3.1: Create a random placement solution.

placement quality.

3.2 Iterative Approach

Iterative placement methods start with an initial feasible solution (placement),

shown in Figure 3.1. The original blocks in the CLB and I/O pad arrays are ob-

tained from the result of Logical Block Packing, which is the previous procedure in

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 44

FPGA physical design. Next, these blocks are (randomly) assigned to the avail-

able vacancies in the target FPGA chip to generate an initial placement solution.

Because of the pre-fabricated architecture of an FPGA, some unused CLBs or I/O

pads may exist, which are marked as void blocks1. In addition, each block (includ-

ing void block) is given a coordinate based on the FPGA coordinate system.

A large number of neighbouring solutions will be made and evaluated in an

iterative heuristic to gradually obtain improvements. In FPGA placement, there

are two ways to create a neighbouring solution: to swap between two CLBs shown

in Figure 3.2 or to swap between two I/O pads shown in Figure 3.3. If the

attempted swap is accepted, the locations of two blocks are switched, otherwise,

this attempted swap will be discarded and the current layout of placement remains

unchanged.

In our implementation, the choice of which neighbouring solution generation

method (swap CLBs or swap I/O pads) is used is randomly determined. Further-

more, the overall percentage is made corresponding to the ratio of the number of

I/O pads to the number of CLBs [Betz00]2. For example, if there are 8 CLBs and

2 I/O pads existing in an FPGA, and the proposed number of iterations n = 1000,

then there will have 800 swaps of CLBs and 200 swaps of I/O pads in any random

sequence.

Generally, an improving neighbouring solution (a solution reduces the placement

cost) is always accepted in an iterative heuristic. While for non-improving solutions

(solutions that do not reduce placement cost), the acceptance strategy varies for

1These void blocks still can swap with other blocks.

2Usually, the number of I/O pads is only a very small fraction of the number of CLBs, especially
for large benchmarks. For example, their ratio in circuit “clma”, the largest benchmark in our
test suite, is 144 : 8383.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 45

CLB4 and CLB5 are

(randomly) selected to

perform an attempted

swap.

FPGA layout after

accepting the swap

between CLB4 and

CLB5.

Accept this

swap?

Yes

No

Discard this

attempted swap.

2

(1,3)

0

(1,2)

4

(1,1)

5

(2,3)

7

(2,2)

3

(2,1)

6

(3,3)

v0

(3,2)

1

(3,1)

7

(1,4)

3

(2,4)

v0

(3,4)

9

(1,0)

5

(2,0)

6

(3,0)

4

(4,3)

v1

(4,2)

0

(4,1)

2

(0,3)

8

(0,2)

1

(0,1)

2

(1,3)

0

(1,2)

5

(1,1)

4

(2,3)

7

(2,2)

3

(2,1)

6

(3,3)

v0

(3,2)

1

(3,1)

7

(1,4)

3

(2,4)

v0

(3,4)

9

(1,0)

5

(2,0)

6

(3,0)

4

(4,3)

v1

(4,2)

0

(4,1)

2

(0,3)

8

(0,2)

1

(0,1)

Figure 3.2: Create a neighbouring solution by swapping two CLBs.

different algorithms. In simple local search techniques, a non-improving solution is

simply discarded. However, the acceptance of such a non-improving solution in the

simulated-annealing is determined by a controlled possibility (annealing schedule).

Initially, the probability of accepting a deteriorating move is set to a high value so

that most evaluations can be accepted. This probability is gradually decreased as

the placement is refined so that eventually the chance of accepting a move that

makes the placement worse is very low. This randomness could be beneficial, since

it allows a good heuristic to unrestrictedly direct the search to find a high-quality

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 46

Pad0 and Pad5 are

(randomly) selected to

perform an attempted

swap.

FPGA layout after

accepting the swap

between Pad0 and

Pad5.

Accept this

swap?

Yes

No

Discard this

attempted swap.

2

(1,3)

0

(1,2)

4

(1,1)

5

(2,3)

7

(2,2)

3

(2,1)

6

(3,3)

v0

(3,2)

1

(3,1)

7

(1,4)

3

(2,4)

v0

(3,4)

9

(1,0)

5

(2,0)

6

(3,0)

4

(4,3)

v1

(4,2)

0

(4,1)

2

(0,3)

8

(0,2)

1

(0,1)

2

(1,3)

0

(1,2)

4

(1,1)

5

(2,3)

7

(2,2)

3

(2,1)

6

(3,3)

v0

(3,2)

1

(3,1)

7

(1,4)

3

(2,4)

v0

(3,4)

9

(1,0)

0

(2,0)

6

(3,0)

4

(4,3)

v1

(4,2)

5

(4,1)

2

(0,3)

8

(0,2)

1

(0,1)

Figure 3.3: Create a neighbouring solution by swapping two I/O pads.

local minimum. On the other hand, excessive randomness may cause the search

procedure to spend a disproportionally large amount of time in examining poor

solutions or revisiting solutions seen before. What we propose is a type of greedy

heuristic that accelerates the convergence of a search. This is our major objective

in this chapter.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 47

3.3 Simple Local Search algorithms

The performance of simple local search algorithms, which are the most basic it-

erative methods in dealing with combinatiorial optimization problems, is always

worthwhile to explore.

The basic principle underlying a local search algorithm is that it always moves

from the current solution to the next better solution in the neighbourhood in a

greedy manner. As mentioned in Section 2.4.2, local search algorithms use two

common strategies to move to a better solution, stochastic and deterministic. Lo-

cal search methods with the first strategy are referred to as non-deterministic or

stochastic local search, which accept the first improving solution encountered during

random evaluation. These kind of search methods typically stop after a sufficient

number of solutions have been evaluated. In our implementation, the number of

solutions to be evaluated, Niteration, is determined the same as VPlace, which is as

follows:

Niteration = 10 ∗ (Nblocks)
1.33 [Swar90] (3.1)

Where Nblocks is the total number of CLBs and I/O pads. Local search methods

with the second strategy are referred to as “most improving deterministic local

search”, which exhaustively enumerate and evaluate the whole neighbourhood set

systematically, and accept the best solution. However, the associated computation

cost with these methods is prohibitively large for an NP -hard problem where the

neighbourhood set is large, such as FPGA placement for large circuits. Let Nblock

be the number of blocks that need to be placed. The number of possible solu-

tions in such a neighbourhood set is (Nblock ∗ (Nblock − 1)/2), which grows in the

order of O(N 2
block). An alternative way to implement most improving deterministic

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 48

local search method, which is referred to as “first improving deterministic local

search”, is exhaustively enumerating and evaluating the whole neighbourhood set

systematically, but accepts any improving solutions encounted during the evalua-

tion. Deterministic local search methods terminate when no further improvement

can be obtained.

The pseudo-codes for the three implementations are shown in Figures 3.4 to 3.6.

Note, the choice of which neighbouring solution generation method (swap CLBs or

swap I/O pads) is used in the deterministic method is pre-determined and evaluated

systematically.

1. S = InitPlacement();
2. while(ExitCriterion() == false) /* start of loop */
3. { Scandidate = GenerateMove(Scurrent);

/* create a candidate solution from the */
/* current one by a random pairwise move */

4. ∆C = Cost(Scandidate) - Cost(Scurrent);
/* calculate the change in cost */

5. if(∆C < 0) /* greedily accept only improving swaps */
6. Scurrent = Scandidate; /* accept this candidate */
7. } /* end of loop */

/* get final placement solution S */

Figure 3.4: Pseudo-code for non-deterministic local search

3.4 Performance of VPlace

The effectiveness of our placement algorithms is measured against an existing high-

quality placement tool, VPlace, which has to be evaluated firstly. We make a

fair evaluation of how well our tools perform with respect to both runtime and

placement quality compared to VPlace, by running all algorithms on the same

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 49

1. S = InitPlacement();
2. while(ExitCriterion() == false) /* start of loop */
3. { Sbest = ExhaustivelyGenerateMove(Scurrent);

/* find the best solution by exhaustively evaluating */
/* every possible solution in the whole neighbourhood */

4. Scurrent = Sbest;
/* accept the best neighbouring solution */

5. } /* end of loop */
/* get final placement solution S */

Figure 3.5: Pseudo-code for most improving deterministic local search

computation platform with the same suite of benchmark circuits and the same

FPGA architecture.

3.4.1 Target FPGA Architecture

In our approach, an island style FPGA model described in Section 2.1, with each

configurable logic block (CLB) containing a single 4-input lookup table (4-LUT)

and a single D flip-flop is used. The I/O pad pitch-to-logic block ratio3 [Betz00],

which is the number of pads available at each marginal block location, is set to 2.

Each CLB has 6 pins: 4 inputs, 1 output, and 1 clock (global) as shown in Figure

3.7.

The exact orientation of each pin on the edge of a CLB is not considered in

placement. Furthermore, we assume the FPGA has dedicated resources for routing

the clock, reset and other global nets.

3A visual pitch-to-logic block ratio example is provided in Appendix B.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 50

/* assuming there are n CLBs (from 1 to n) and */
/* m I/O pads (from 1 to m) need to be placed */

1. S = InitPlacement();
2. flag; /* flag is the exit criterion */
3. do /* outer loop */
4. { flag = true; /* initial flag */

/* start one round systematical CLB evaluation */
5. for(i = 1; i ≤ n - 1; i++)
6. { for(j = i + 1; j ≤ n; j++)
7. { Scandidate = Swap(CLBi, CLBj);

/* find a candidate solution from current one */
/* by a determined swap between CLBi and CLBj */

8. ∆C = Cost(Scandidate) - Cost(Scurrent);
9. if(∆ C < 0) /* only accept improving swaps */
10. { Scurrent = Scandidate; /* accept this candidate */
11. flag = false; /* update flag */
12. }
13. }
14. } /* end one round of CLB evaluation */

/* start one round systematical I/O pad evaluation */
15. for(i = 1; i ≤ m - 1; i++)
16. { for(j = i + 1; j ≤ m; j++)
17. { Scandidate = Swap(Padi, Padj);

/* find a candidate solution from current one */
/* by a determined swap between Padi and Padj */

18. ∆C = Cost(Scandidate) - Cost(Scurrent);
19. if(∆ C < 0) /* only accept improving swaps */
20. { Scurrent = Scandidate; /* accept this candidate */
21. flag = false; /* update flag */
22. }
23. }
24. } /* end one round of I/O pad evaluation */
25. } /* end outer loop */
26. until(flag == true);

/* if there is no update of Scurrent (flag == true), */
/* the algorithm terminate and export final placement */

Figure 3.6: Pseudo-code for first improving deterministic local search

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 51

clk pin

4-LUT

D

FF

output

pin

input

pins

Configurable Logic

Block

Figure 3.7: Basic CLB architecture

3.4.2 Test Methodology and the Performance of VPlace

We demonstrate the efficacy of our tools by performing head-to-head comparison

with VPlace [Betz99]. The comparison is done by running all placement tools

over the same suite of circuits on the same computation platform. Ten MCNC

benchmark circuits ranging from a few hundred CLBs to nearly ten thousand CLBs

are used as test suite (a detailed description of these benchmarks is presented in

Appendix A). The benchmarks are organized into three groups: small, medium and

large, separated by horizontal lines. GSA is implemented in C ++ using the GNU

g++ compiler, while VPlace is implemented in C using the GNU gcc compiler. All

experiments were conducted on the a Sun Sparc 10 dual alpha CPU workstation

with Solaris UNIX 8.0 operating system.

For a stochastic heuristic, results obtained with different initial placements are

not guaranteed to reach the same local minimum every time. Consequently, our

results are obtained by running both placement tools a few times (randomly) to

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 52

produces a more meaningful comparison.

VPlace is run with the options “-place algorithm bounding box” and “-nodisp”.

The first option defines the bounding box cost as the placement objective function.

The original placement cost function in VPlace is “linear congestion”, which is a

variation of bounding box cost and used where the capacity of routing channels is

irregular. For instance, some FPGA architectures have wider channels in the center

regions. However, in this thesis, we assume that the capacity of routing resources is

distributed evenly within the whole FPGA, so the “linear congestion” cost function

is changed4 to pure bounding box cost function. The second option turns off the

synchronized visual display in VPlace during placement, while GSA does not have

any such real-time graphic output.

Table 3.1 provides the detailed results produced by VPlace. These are going

to be used as the yardstick throughout the thesis. The table includes columns of

arithmetic average of placement cost5 and CPU time6. The values of the best and

worst placement and STDEVs obtained through 5 runs are recorded as well.

The measure of quality for an approximation heuristic, like simulated-annealing,

is the distance of the solution from the globally optimal solution. However, an

optimal solution is usually unachieveable for NP -hard problems, like placement.

But, by allowing VPlace to run for a longer period of time, it is possible to obtain an

optimal or near-optimal solution. Increasing the runtime of VPlace is accomplished

by increasing the innerNum in VPlace from 10 (default) to 100 to perform an

extensive search for better results.

4This change is made in the original C code of VPlace.

5Placement cost is measured in terms of bounding box cost.

6CPU time is measured in seconds.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 53

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 2858 2882 2840 16 13 13 13 0
tseng 9394 9439 9365 30 71 73 69 2
ex5p 16227 16329 16131 85 70 71 69 1
alu4 19161 19233 19066 72 104 107 102 2
seq 24736 24758 24700 26 142 144 137 3

M.avg 17380 17440 17316 53 97 99 94 2
frisc 52156 52936 51554 559 392 402 383 7
spla 61046 61529 60523 408 414 420 404 6

ex1010 65493 65679 65360 119 554 567 543 9
s38584.1 64925 65478 64378 431 905 923 887 14

clma 140391 141876 139288 1167 1332 1349 1297 21
L.avg 76802 77500 76221 537 720 732 703 11

Avg 45639 46014 45321 291 400 407 390 6

Table 3.1: Performance of VPlace with default parameters

In this more exhaustive mode of VPlace, the overall runtime is roughly ten

times longer than running it with default parameter settings. The averaged results,

based on five runs, together with the comparison with VPlace default mode are

shown in Table 3.2 The values in column “Impro. %” are obtained as follows:

(V alue(V P lace) − V alue(exhaustive V P lace))/V alue(V P lace) ∗ 100. Symbol “+” in the

column denotes improvement obtained by exhaustive VPlace compared with default

VPlace 7.

Table 3.2 indicates that there is little benefit gained (1.6%) in terms of solution

quality. These results do suggest that the bounding box costs obtained by default

VPlace, shown in Table 3.1, are very good, and are difficult to improve upon.

7Throughout this thesis, when we say that the result of method one is com-
pared with method two, the comparison is always determined as: (V alue(method two) −
V alue(method one))/V alue(method two)∗100. Symbol “+” denotes that method one performs better
result, while symbol “-” denotes the reverse.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 54

Circuit Default Exhaustive Impro.
name avg. cost avg.cost %

e64 2858 2844 +0.49
tseng 9394 9119 +2.93
ex5p 16227 16064 +1.01
alu4 19161 18961 +1.05
seq 24736 24568 +0.68

M.avg 17380 17178 +1.16
frisc 52156 51216 +1.80
spla 61046 59108 +3.18

ex1010 65493 64751 +1.13
s38584.1 64925 64130 +1.22

clma 140391 138336 +1.46
L.avg 76802 75508 +1.69

Avg 45638 44910 +1.60

Table 3.2: Comparison between VPlace (default parameter) and VPlace exhaustive
version

3.5 Performance and Conclusion of Simple Local

Search Methods

The weakness of the simple local search methods is that they easily end up in local

minima. When the number of local minima is large, the probability that a local

minimum is also globally minimum is small. Our solution to this problem is to use

a multi-start search strategy, which performs a local search 20 times starting with

different initial placement over the test benchmark suite to explore better solutions.

As we mentioned in Section 3.3, for the most improving deterministic local

search methods, the whole neighbourhood has to be evaluated exhaustively to de-

cide the next step. However, the size of a neighbourhood grows exponentially and

results in extra heavy computations. For example, it takes more than one day to

complete the placement for the largest ciruit in our test benchmark suite. Con-

sequently, the first improving deterministic local search algorithm is investigated

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 55

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 4119 4247 4006 64 0.06 0.07 0.06 0
tseng 16799 17062 16478 168 0.33 0.34 0.32 0
ex5p 22179 22555 21670 203 0.34 0.35 0.33 0
alu4 29168 29757 28797 297 0.47 0.47 0.46 0
seq 39897 40380 39080 330 0.63 0.64 0.62 0

M.avg 27011 27439 26506 250 0.44 0.45 0.43 0
frisc 104306 105356 102676 768 1.72 1.81 1.67 0.02
spla 113239 115075 111485 1012 1.82 1.89 1.74 0.04

ex1010 146714 151926 138229 3131 2.45 2.55 2.38 0.08
s38584.1 210848 216215 205301 2470 4.10 4.37 3.97 0.09

clma 336998 341984 332142 2917 6.94 7.10 6.82 0.12
L.avg 182421 186111 177967 2060 3.40 3.55 3.31 0.07

Avg 102427 104456 99986 1136 1.88 1.96 1.84 0.04

Table 3.3: Performance of non-deterministic local search

instead.

Tables 3.3 and 3.4 show the the performance of non-deterministic and first

improving local search methods, respectively. In addition, Table 3.5 illustrates the

performance comparison between these two methods.

Tables 3.3 to 3.5 indicate that the placement quality obtained by the non-

deterministic local search, on average, is only 21% worse than those obtained by

the first improving deterministic method, while the runtime of the former heuristic

is significantly reduced compared with the latter (more than 99% faster). While not

guaranteed to return a local minimum solution, non-deterministic local search algo-

rithms are more effective than exhaustive methods, like deterministic local search.

They are not restricted by the need to cover the entire search space systematically,

which actually is not necessary and time-consuming when little improvement can be

obtained further (as the solution is already very close to a local minimum). Table

3.6 shows the performance comparison between non-deterministic and VPlace. Al-

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 56

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 3706 3852 3536 82 0.60 0.74 0.44 0
tseng 13632 14058 13179 219 13 18 10 1.8
ex5p 19630 20091 19179 272 15 19 12 2.0
alu4 25341 26211 24761 347 26 32 20 3.4
seq 34572 35214 33797 360 38 46 30 4.2

M.avg 23294 23894 22729 300 23 29 18 2.8
frisc 86550 88164 84126 1048 215 299 166 33.4
spla 95562 99358 92926 1447 221 272 191 25.6

ex1010 105705 113546 101054 3072 537 742 373 75.0
s38584.1 156552 160803 151292 2346 945 1288 847 106.1

clma 267510 277685 257242 5284 1899 2814 1558 262.1
L.avg 142376 147911 137328 2639 763 1083 627 100.5

Avg 80876 83898 78109 1448 391 553 321 51.4

Table 3.4: Performance of first improving deterministic local search

Circuit Ave.cost Max.cost Min.cost Ave.CPU t Max CPU t Min CPU t
name impro.% impro.% impro.% impro.% impro.% impro.%

e64 -11 -10 -13 +90 +90 +86
tseng -23 -21 -25 +97 +98 +97
ex5p -13 -12 -13 +98 +98 +97
alu4 -15 -13 -16 +98 +98 +98
seq -15 -15 -16 +98 +99 +98

M.avg -17 -15 -17 +98 +98 +97
frisc -20 -20 -22 +99 +99 +99
spla -18 -16 -20 +99 +99 +99

ex1010 -39 -34 -37 +99 +99 +99
s38584.1 -34 -34 -36 +99 +99 +99

clma -25 -23 -29 +99 +99 +99
L.avg -28 -25 -29 +99 +99 +99

Avg -21 -20 -23 +99 +99 +99

Table 3.5: Comparison between non-deterministic and first improving deterministic
local search

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 57

Circuit Ave.cost Max.cost Min.cost Ave.CPU t Max CPU t Min CPU t
name impro.% impro.% impro.% impro.% impro.% impro.%

e64 -44 -47 -41 +99 +99 +99
tseng -79 -81 -75 +99 +99 +99
ex5p -36 -38 -34 +99 +99 +99
alu4 -52 -55 -51 +99 +99 +99
seq -61 -63 -58 +99 +99 +99

M.avg -57 -59 -55 +99 +99 +99
frisc -100 -99 -99 +99 +99 +99
spla -85 -87 -84 +99 +99 +99

ex1010 -124 -131 -111 +99 +99 +99
s38584.1 -225 -230 -218 +99 +99 +99

clma -140 -141 -139 +99 +99 +99
L.avg -134 -137 -130 +99 +99 +99

Avg -95 -97 -91 +99 +99 +99

Table 3.6: Comparison between simple non-deterministic local search and VPlace

though non-deterministic simple local search can be completed very quickly, the

quality of placement obtained on average is 95% worse than that obtained by

VPlace, which is definitely untolerable for the FPGA placement problem. Fur-

thermore, a general conclusion can be made according to this evidence that the

more complex (large) a circuit is, the less effectively the local search performs. For

medium size circuits, on average, the “distance” between the two algorithms is 57%,

while for large size circuits, it increases to 134%.

We also conclude that simple local search algorithms cannot be used as pri-

mary methods for FPGA placement as they easily get trapped into local minima.

However, this heuristic can be finished in a very small amount of CPU time, which

enables it to be embedded into other techniques as a complementary method.

In the following sections, we discuss the methodology and performance of an-

other iterative improvement method, GSA, which is characterized by the ability to

escape local optima, while still convergs quickly.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 58

3.6 Greedy Simulated-Anealing Algorithm

As one of the best iterative methods, simulated-annealing is regarded both in in-

dustry and academia as the dominant method for performing FPGA placement.

However, while earning the reputation for achieving the best placement quality,

simulated-annealing suffers from the problem of slow convergence. Consequently,

it requires more CPU time compared with other popular methods [Mulp01].

Our inspiration mainly comes from the VPlace simulated-annealing algorithm

(described in Section 2.4.3). Additionally, a memory structure, which records a

short term of search history, is employed to help our new placement tool converg

more quickly than VPlace. Typically, all improving attempts would be accepted

in an iterative algorithm. Simulated-annealing accepts a non-improving move de-

pending on a controlled possibility. In our approach, a non-improving move would

be recorded as search history rather than be accepted or rejected instantly. When

the history, which is made of consecutive non-improving moves, reaches the max-

imum length, the least non-improving one among all evaluated moves recorded in

the history is mandatorily accepted. Furthermore, once an acceptance (including

improving moves) is made, the history is erased.

This is the “first improving or least non-improving among Dgreedy neighbouring

moves” strategy, where the parameter Dgreedy is an integer. The value of Dgreedy

(maximum length of history) is adaptively changed and is usually much less than

the total number of solutions included in the neighbourhood, to prevent exhaustive

scanning. The detailed methodology of our algorithm is described as follows:

Start from an initial placement, as in any other iterative approach, two logic

blocks are selected randomly to create a new solution in the neighbourhood of the

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 59

current solution. If the swap results in a decrease in cost, the move is always

accepted and the locations of these two blocks are switched, which is exactly the

same tactic as in the simulated-annealing algorithm. However, if the move results

in an increase in cost, the two blocks together with the change of cost are recorded

in a suitable structure, if the structure is empty. If the structure is not empty,

then the change in cost of this move is compared with corresponding value already

recorded in the structure. Only the better or less deteriorating move is preserved in

the structure. A large number of such moves are made and evaluated to gradually

obtain improvements. The number of continuous non-improving moves is counted

until the number reaches the value specified by the parameter Dgreedy. Then the

move recorded in the structure is mandatorily accepted even though it makes the

placement worse. Additionally, the contents of the memory is erased once any

acceptance (including the acceptance of improving moves) is made.

Dgreedy, used to select the best move from Dgreedy non-improving evaluations, is

a key parameter in controlling the aggressiveness of the placement tool. Initially,

Dgreedy is very small so non-improving moves are easily to be accepted; however,

Dgreedy is gradually increased as the placement is refined so that eventually the

probability of accepting a move that makes the placement worse is very low. It is

due to the algorithm’s annealing-like search strategy and the inherent greedy char-

acteristic that we name our algorithm the Greedy Simulated-Annealing (GSA).

The ability to accept non-improving moves allows GSA to escape local minima in

the cost function, while still converging quickly. It is more greedy than the conven-

tional simulated-annealing algorithm, which results in a much faster convergence

in placement. The pseudo-code for GSA algorithm is shown in Figure 3.8.

The update of Dgreedy, the exit criterion to terminate the search, the number

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 60

1. S = InitPlacement();
2. Dgreedy = InitDgreedy();
3. Rlimit = InitRlimit(); /* Rlimit is set to the whole chip initially */
4. Sbest = S; /* Sbest is used to record the overall best solutions so far*/
5. BestInOneDgreedyRound = NULL;

/* BestInOneDgreedyRound keeps a record of a “bad” move. */
/* However, it is the best so far in one Dgreedy evaluation round */

6. IterationOneDgreedyRound = 0;
/* it counts the number of iterations in one evaluation round */

7. while(ExitCriterion() == false) /* outer loop */
8. { while(InnerLoopCriterion() == false) /* inner loop */
9. { Scandidate = GenerateMove(Scurrent, Rlimit);

/* create one candidate solution from current one by */
/* a random pairwise move within the limiter Rlimit */

10. IterationOneDgreedyRound++;
11. ∆C = Cost(Scandidate) - Cost(Scurrent);

/* calculate the change in cost */
12. if(∆C < 0) /* if this move is beneficial */
13. { Scurrent = Scandidate; /* accept this candidate */
14. IterationOneDgreedyRound = 0;
15. BestInOneDgreedyRound = NULL;
16. } else if(∆C < ∆C(BestInOneDgreedyRound))

/* it is better than the best we obtain in this round */
17. BestInOneDgreedyRound = Scandidate;

/* record this Scandidate to BestInOneDgreedyRound */
18. if(IterationOneDgreedyRound == Dgreedy)

/* this IterationOneDgreedyRound has reached its end */
19. { Scurrent = S(BestInOneDgreedyRound);

/* mandatory accept the Scandidate recorded in the */
/* BestInOneDgreedyRound, which is the best one in */
/* this Dgreedy round even if it increases the cost */

20. IterationOneDgreedyRound = 0;
21. BestInOneDgreedyRound = NULL;
22. } /* end of one round of Dgreedy evaluation */
23. } /* end of inner loop */
24. if(Scurrent ≥ Sbest) /* adaptive update mechanism */
25. { Update(Dgreedy); /* Dgreedy new = α ∗ Dgreedy old */
26. Update(Rlimit); /* Rlimit new = β ∗ Rlimit old */
27. } else
28. Sbest = Scurrent; /* update Sbest */
29. } /* end of outer loop */

/* get final placement solution S */

Figure 3.8: Pseudo-code for Greedy Simulated-annealing (GSA)

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 61

of moves attempted at each Dgreedy (inner loop line 8-23 in the pseudo-code) and

a method to restrict the generation of potential moves (to be discussed in Section

3.6.2) are defined by an update schema.

Many effective optimization algorithms, as well as our GSA, make use of com-

binations of exploration and exploitation search strategies to find the “global” op-

timum. Exploration investigates new areas in the search space, and exploitation

takes advantage of the knowledge found previously to achieve better solutions. A

pure random search is good at exploration, but performs no exploitation. On the

other hand, an absolute hill-climbing method is good at exploitation, but does lit-

tle exploration. A good balance of these two strategies is crucial to obtain good

results in a reasonable amount of CPU time. In our approach, it is determined by

an update schema, which we discuss next.

3.6.1 Search Greedy Degree

Our update schema incorporates some of the best features from other works, includ-

ing Swartz et al. [Swar90] and Betz et al. [Betz99] [Betz97b]. In VPlace simulated-

annealing, the number of solutions evaluated at each temperature is referred to as

MovesPerT , which is based on Equation 2.4. Let Nblocks be the total number of

CLBs and I/O pads in the circuit. Just as the parameter MovesPerT , the number

of pairwise moves attempted at each value of Dgreedy (MovesPerDgreedy)in GSA is

set to:

MovesPerDgreedy = innerNum ∗ (Nblocks)
1.33 (3.2)

where the parameter innerNum can be overridden on the command line to allow

different trade-offs between CPU time and placement quality. Reducing the value of

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 62

MovesPerDgreedy has the effect of reducing the runtime at the expense of quality.

In contrast, increasing MovesPerDgreedy has the effect of consuming more CPU

time to obtain more high-quality quality solutions. Furthermore, GSA utilizes the

same move evaluation technique as in VPlace, which is “incremental bounding box

evaluation” method (presented in Section 2.4.5).

3.6.2 Local Search Window

Limiting the scope of moves (swaps) within the region of the original block positions

has been shown to give superior results compared to unrestricted moves when a

globally good placement is already achieved [Lam88]. This follows from the fact

that when a placement is globally good, most blocks are within the locality of where

they should be. By implementing a swap distance limiter between the source and

destination blocks, the final locations of blocks can be found faster and the speed

of convergence to a corresponding local minimum is increased. On the other hand,

if the placement begins from a globally poor configuration, such as an absolutely

random start, the use of the limiter would deteriorate the final solution quality,

since a large number of blocks are far away from their ideal positions. In this case,

the limiter only prevents those blocks from reaching their good locations.

An example of implementation of this move restriction is shown in Figure 3.9.

A source block is selected randomly at first, then a square window, centered by

the source block, is laid on the FPGA block matrix. Then a candidate block other

than the original one within the window is randomly picked to perform a location

exchange with the source block. The size of the square window depends on the

value of the parameter Rlimit, which indicates the maximum distance between the

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 63

C

C
C

C
C

C
C

C

C

C
C

S
C

C
C

C

C
C
C
C

C

C

C

C

C
Square Window

Limiter (R
limit
= 2)

S = Source

Block

C = Candidate

Block

Figure 3.9: Window limiter example. The source block is in the center of a square
limiter. Within the square, any other block could be a candidate to be picked to
perform swap with the source. The size of the window limiter Rlimit in this example
is 2 (two logic block distance).

source block and the possible location of the target block.

In Timberwolf95 [Sun95], a fixed size window limiter (the value of Rlimit is

pre-defined) is used for all temperatures during the annealing process, which sim-

plifies the determination of a suitable annealing schedule. However, VPlace [Betz99]

[Betz97b] shows that altering the window size adaptively over the improvement pro-

cedure can increase the acceptance rate of attempted moves (described in Section

2.4.4) , resulting in finding high quality solutions in less CPU time.

In VPlace, at the beginning, the value of Rlimit equals the whole span of the

FPGA. This freedom is necessary for the placement tool to outline a good global

placement. As the search progresses, the placement configuration gradually im-

proves and the window limiter Rlimit is also shrunk accordingly (in conjunction

with temperature T), these reducing the scope of possible pairwise moves. Over-

all, it allows the whole placement procedure to progress from placing blocks in the

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 64

general area where they should be to tuning blocks in smaller and smaller regions.

In Section 3.7.2, we are going to show the effectiveness of implementing a range

limiter to speed up the search convergence by comparing GSAs with and without

this mechanism.

3.6.3 Algorithm with Fixed Parameters

“Fixed” update schemas usually work well within the narrow application range for

which they are developed. However, they are not generalized enough to adapt to

different problems [Huan86]. Nevertheless, they have the advantages of being easier

to implement than adaptive schemas. We begin our approach by implementing a

fixed parameter update schema. Figure 3.108 shows the behavior of GSA over a

medium size circuit with a well-tuned fixed empirical update schema specific for

this circuit. Figure 3.11 illustrates the behavior of GSA over a large size circuit

with the same update schema. Notice that in Figure 3.10, the curve is fairly smooth

whereas Figure 3.11 contains a number of “steps”. These steps reveal that excessive

evaluations are made, while obtaining little improvement. This is a result of the

fact that parameters found to be acceptable for the medium size circuit are not

suitable for the other circuit. Although only one example is used here, the results

are typical of those obtained with other problems. Clearly, what is required is

an adaptive update mechanism that would automatically change the values of the

parameters based on the behavior of the search process.

8y-axis denotes the bounding box cost; x-axis denotes the number of attempted iterations,
which is proportional to CPU time.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 65

0
 1x10
 6
 2x10
 6
 3x10
 6
 4x10
 6
 5x10
 6
 6x10
 6
 7x10
 6
 8x10
 6

0.0

5.0x10
 3

1.0x10
 4

1.5x10
 4

2.0x10
 4

2.5x10
 4

3.0x10
 4

3.5x10
 4

4.0x10
 4

4.5x10
 4

B
ou

nd
in

g
B

ox
 C

os
t

Attempted Iterations

Figure 3.10: Search behavior of GSA with a fixed update scheme over a medium
MCNC circuit “tseng” (1047 CLBs).

0.0
 5.0x10
 6
 1.0x10
 7
 1.5x10
 7
 2.0x10
 7
 2.5x10
 7
 3.0x10
 7
 3.5x10
 7
 4.0x10
 7

0.0

3.0x10
 4

6.0x10
 4

9.0x10
 4

1.2x10
 5

1.5x10
 5

1.8x10
 5

"step" structures

B
ou

nd
in

g
B

ox
 C

os
t

Attempted Iterations

Figure 3.11: Search behavior of GSA with a fixed update scheme over a large
MCNC circuit “spla” (3690 CLBs).

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 66

3.6.4 Adaptive Update Schema

Any FPGA placement algorithm must perform well over a wide range of circuits.

As seen in the previous section, such consistency in performance is not possible with

a fixed update schema. It is thus imperative to explore adaptive update strategies.

An adaptive annealing schedule in VPlace was described in Section 2.4.4, which

determines the update of Rlimit and temperature T by utilizing the statistics of rate

of accepted moves. In our implementation, a parameter Sbest, which stores the best

solution obtained so far during the search procedure, is introduced for the same

purpose. The value of Sbest is set to the initial placement cost at the beginning.

Then, a new placement cost Scurrent is obtained after each MovesPerDgreedy number

of attempted moves that have been evaluated (inner loop lines 8-23 in pseudo-code).

The difference in cost, ∆S = Scurrent−Sbest is calculated. If ∆S is negative, it shows

a new lower energy state placement has been found, indicates that the current values

of Dgreedy and Rlimit are still fruitful. Therefore, no changes are made to the values

of Dgreedy and Rlimit; these values are used to proceed with another round of search.

Only the parameter Sbest is updated in this case. Conversely, a zero or positive

value of ∆S indicates that the current parameters are no longer yielding improving

solutions and need to be updated.

In VPlace simulated-annealing, the acceptance rate of attempted moves, which

is mostly determined by how the search progresses, serves as a guide to designate

the right time to update parameters. In a similar manner, the time for GSA

to “squeeze” (when little or no further improvement can be achieved, which is

indicated by ∆S ≥ 0) one set of parameters dependent on the progress of the

search as well. Depending on the value of ∆S, GSA can be made to adaptively

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 67

adjust parameters according to each circuit.

Similar to the relationship between temperature T and Rlimit in VPlace (pre-

sented in Section 2.4.4), Dgreedy and Rlimit in GSA are two interactive parameters

used to control the balance between exploration and exploitation during a search.

Initially, Dgreedy, which determines the aggressiveness of the search procedure, is

set to 2 to ensure that the maximum (reasonable) number of attempted evaluations

are accepted. At the same time, Rlimit, which limits the movement of blocks within

specific regions, is set to the whole span of the chip to allow maximum exploration

to be performed. Whenever an update of Dgreedy and Rlimit is necessary (∆S ≥ 0),

a new value of Dgreedy is computed as Dgreedy new = [α∗Dgreedy old], where the value

of α depends on:

α =































1.5, if Dgreedy ≤ 10

1.3, else if Rlimit = 1

1.05, otherwise.

(3.3)

At the same time, the value of the limiter Rlimit is revised as follows: Rlimit new =

[β ∗ Rlimit old] and limited to the range (1 ≤ Rlimit ≤ maximum FPGA span).

If the value of Rlimit becomes less than 1, it is set to 1, otherwise, the value of β is

determined as follows:

β =















1, if Dgreedy ≤ 10

0.9, otherwise.
(3.4)

This strategy causes Rlimit to be the size of the entire chip for the first part of the

search, shrink gradually during the middle stages of the search, finally settling at

“1” (logic block distance) during the latter part of the search.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 68

When Dgreedy is very small (≤ 10), non-improving moves are easily accepted. In

this phase, the algorithm mainly explores the solution space, hoping a good global

solution can be obtained. At the same time, Rlimit is maximized to enable free block

movements. During this exploration stage, have excessive numbers of swaps do not

result in obtaining significant improvements. Conversely, at the end of placement

stage, very few attempted moves can be accepted. This is because the value of

Dgreedy is very large (the process is very greedy, mostly only improving moves are

allowed to be accepted) and the current placement is of fairly high quality. This is

a pure exploitation stage and can be identified when Rlimit equals “1” in the GSA.

With this in mind, we create an update schedule to relatively increase the amount

of CPU time (small α) spent in the more “productive” medium stage of the search,

which represents a combination of exploration and exploitation.

The performance of GSA with different combinations of α and β is shown in

Figure 3.12. In addition, Figures 3.13 and 3.14 illustrate the performance of GSA

over a medium and a large sized circuit with the same combinations of α and β.

The exact values of α and β listed here were found through experiments. Even

though the values of α and β suggested by Figures 3.12 to 3.14 lead to best trade-

offs between CPU time and placement quality, GSA is not overly sensitive to slight

variations of them. As long as α and β have the right form based on our motivation,

it performs reasonably well.

We terminate the placement process adaptively by making use of Sbest. When

the value of Rlimit equals 1, the placement tool terminates if Sbest cannot be updated

in 5 consecutive MovesPerDgreedy evaluation rounds. In this pure exploitation

stage, little improvement can be achieved, and it is unlikely any further benefi-

tial can be obtained after so many evaluations. Again, the performance for the

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 69

250
 300
 350
 400
 450
 500
 550
 600
 650

45000

46000

47000

48000

49000

50000

51000

Good Region

α
 = (1.5; 1.3; 1.05),
 β
 = 0.95

α
 = (1.5; 1.3; 1.05),
 β
 = 0.9

α
 = (1.5; 1.3; 1.05),
 β
 = 0.85

α
 = (1.5; 1.3; 1.05),
 β
 = 0.8

α
 = (1.25; 1.15; 1.025),
 β
 = 0.95

α
 = (1.25; 1.15; 1.025),
 β
 = 0.9

α
 = (1.25; 1.15; 1.025),
 β
 = 0.85

α
 = (1.25; 1.15; 1.025),
 β
 = 0.8

α
 = (1.75; 1.45; 1.075),
 β
 = 0.95

α
 = (1.75; 1.45; 1.075),
 β
 = 0.9

α
 = (1.75; 1.45; 1.075),
 β
 = 0.85

α
 = (1.75; 1.45; 1.075),
 β
 = 0.8

B
ou

nd
in

g
B

ox
 C

os
t

CPU Time

Figure 3.12: Quality-time plot of GSA (10 circuits average) with different α and β
combinations (innerNum = 5).

placement tool is not too sensitive to the value of this termination number. Any

value between 3 and 10 is reasonable, a larger value receiving slightly higher quality

results at the expense of slightly increased CPU time.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 70

20
 24
 28
 32
 36
 40
 44
 48

19400

19600

19800

20000

20200

Good Region

B
ou

nd
in

g
B

ox
 C

os
t

CPU Time

α
 = (1.5; 1.3; 1.05),
 β
 = 0.95

α
 = (1.5; 1.3; 1.05),
 β
 = 0.9

α
 = (1.5; 1.3; 1.05),
 β
 = 0.85

α
 = (1.5; 1.3; 1.05),
 β
 = 0.8

α
 = (1.25; 1.15; 1.025),
 β
 = 0.95

α
 = (1.25; 1.15; 1.025),
 β
 = 0.9

α
 = (1.25; 1.15; 1.025),
 β
 = 0.85

α
 = (1.25; 1.15; 1.025),
 β
 = 0.8

α
 = (1.75; 1.45; 1.075),
 β
 = 0.95

α
 = (1.75; 1.45; 1.075),
 β
 = 0.9

α
 = (1.75; 1.45; 1.075),
 β
 = 0.85

α
 = (1.75; 1.45; 1.075),
 β
 = 0.8

Figure 3.13: Quality-time plot of GSA over a medium circuit “alu4” (1522 CLBs)
with different α and β combinations (innerNum = 5).

160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260
 270

65500

66000

66500

67000

67500

68000

Good Region

B
ou

nd
in

g
B

ox
 C

os
t

CPU Time

α
 = (1.5; 1.3; 1.05),
 β
 = 0.95

α
 = (1.5; 1.3; 1.05),
 β
 = 0.9

α
 = (1.5; 1.3; 1.05),
 β
 = 0.85

α
 = (1.5; 1.3; 1.05),
 β
 = 0.8

α
 = (1.25; 1.15; 1.025),
 β
 = 0.95

α
 = (1.25; 1.15; 1.025),
 β
 = 0.9

α
 = (1.25; 1.15; 1.025),
 β
 = 0.85

α
 = (1.25; 1.15; 1.025),
 β
 = 0.8

α
 = (1.75; 1.45; 1.075),
 β
 = 0.95

α
 = (1.75; 1.45; 1.075),
 β
 = 0.9

α
 = (1.75; 1.45; 1.075),
 β
 = 0.85

α
 = (1.75; 1.45; 1.075),
 β
 = 0.8

Figure 3.14: Quality-time plot of GSA over a large circuit “ex1010” (4598 CLBs)
with different α and β combinations (innerNum = 5).

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 71

3.7 Performance and Conclusion of GSA

3.7.1 Search Behavior Comparison between VPlace and GSA

First, we consider the search behaviors of VPlace and GSA. For the purpose of

comparison, we plot the search curves (placement quality vs. number of attempted

evaluations) of VPlace and GSA for a medium size circuit in Figure 3.15 and a

large circuit in Figure 3.16. Due to lack of runtime information output in VPlace,

the number of attempted evaluations is employed instead 9.

Evaluating possible solutions consumes most of the computation time [Betz99]

in both heuristics. Since both algorithms make use of the same “incremental net

bounding box cost evaluation” technique (presented in Section 2.4.5), the evaluation

time for each placement tool, on average, is the same. We have changed the default

innerNum of VPlace and GSA to enable both tools to terminate after almost the

same number of attempted moves have been made. Hence, Figures 3.15 and 3.16

illustrate the general behavior of both algorithm.

Both Figures 3.15 and 3.16 shows better performance for both medium and

large size circuits. The search curves of GSA converge much faster than those

for VPlace, while the quality of final placement is very close to that obtained by

VPlace. Quick convergence in the beginning and relatively long “flat” area at the

end of the search period for GSA allow us to have a much faster placement tool at

the cost of slightly increasing in placement cost. Although the figures are for two

specific problem instances, they are typical of the behavior of both algorithms.

9All behavior illustrations of methods used in this thesis are plotted as placement quality vs.
number of attempted evaluations.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 72

0.0
 3.0x10
 6
 6.0x10
 6
 9.0x10
 6
 1.2x10
 7
 1.5x10
 7

0.0

6.0x10
 3

1.2x10
 4

1.8x10
 4

2.4x10
 4

3.0x10
 4

3.6x10
 4

4.2x10
 4

B
ou

nd
in

g
B

ox
 C

os
t

Attempted Iterations

 VPlace

 GSA

Figure 3.15: Search curve comparison between GSA and VPlace over a medium
size MCNC circuit “tseng” (1047 CLBs).

0.0
 5.0x10
 7
 1.0x10
 8
 1.5x10
 8
 2.0x10
 8
 2.5x10
 8

0

1x10
 5

2x10
 5

3x10
 5

4x10
 5

5x10
 5

6x10
 5

7x10
 5

8x10
 5

B
ou

nd
in

g
B

ox
 C

os
t

Attempted Iterations

 VPlace

 GSA

Figure 3.16: Search curve comparison between GSA and VPlace over a large size
MCNC circuit “clma” (8381 CLBs).

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 73

3.7.2 Effectiveness of Rlimit

As mentioned in Section 3.6.2, adaptively limiting the maximum distance (Rlimit)

between two swapping blocks can accelerate the convergence of search. For com-

parison with standard GSA, we implemented another version of GSA that does not

have a window limiter. In the latter version, Rlimit always equals the span of entire

FPGA. Figures 3.17 and 3.18 show the search curves for the two versions of GSA,

for two different sized circuits. The figures clearly illustrate the effectiveness of the

move restriction mechanism in speeding up convergence in the medium and final

stages.

3.7.3 Performance of GSA

Similar to VPlace simulated-annealing, the innerNum (number of moves per Dgreedy)

of GSA can be overridden through the command line, allowing user-controlled trade-

offs between placement quality and CPU time. Our suggested innerNum for GSA

is 5; for comparison we increase it to 10 (exhaustive version) to obtain better place-

ment quality with longer runtime. Tables 3.7 and 3.9 list the results obtained

by GSA with innerNum set to “5” and “10”, respectively. Tables 3.10 and 3.11

provide a comparison with those obtained by VPlace (described in Section 3.4.2).

These tables show that GSA with innerNum = 5 and GSA with innerNum = 10

produced almost the same placement quality over the test suite, while the former

is significantly faster.

In addition, Table 3.8 provides results obtained through 20 default GSA runs

(more general). The results show little difference with those obtained through

“5” runs. Figure 3.19 illustrates the normalized average placement cost and CPU

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 74

0.0
 5.0x10
 6
 1.0x10
 7
 1.5x10
 7
 2.0x10
 7
 2.5x10
 7

0

1x10
 4

2x10
 4

3x10
 4

4x10
 4

B
ou

nd
in

g
B

ox
 C

os
t

Attempted Iterations

 without window limiter

 with window limiter

Figure 3.17: Search behavior of GSA with and without swap restriction over a
medium size MCNC circuit “tseng” (1047 CLBs).

0.0
 5.0x10
 7
 1.0x10
 8
 1.5x10
 8
 2.0x10
 8
 2.5x10
 8

0

1x10
 5

2x10
 5

3x10
 5

4x10
 5

5x10
 5

6x10
 5

7x10
 5

8x10
 5

B
ou

nd
in

g
B

ox
 C

os
t

Attempted Iterations

 with window limiter

 without window limiter

Figure 3.18: Search behavior of GSA with and without swap restriction over a large
size MCNC circuit “clma” (8381 CLBs).

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 75

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 2872 2880 2864 6 3 3 3 0
tseng 9444 9594 9263 125 19 20 19 1
ex5p 16280 16412 16213 76 18 19 17 1
alu4 19434 19637 19222 166 30 31 30 1
seq 24866 24961 24749 85 39 42 37 2

M.avg 17506 17651 17362 113 27 28 26 1
frisc 52368 52698 52100 256 125 135 116 7
spla 60722 61615 59638 787 135 141 130 4

ex1010 65898 66171 65634 245 197 214 188 10
s38584.1 65674 65910 65395 242 325 333 314 8

clma 140878 141933 140026 939 574 602 527 38
L.avg 77108 77665 76559 493 271 285 255 13

Avg 45844 46181 45510 292 146 154 138 7

Table 3.7: Performance of GSA with innerNum = 5 (default)

runtime statistics for the results obtained by GSA default, GSA exhaustive, and

VPlace default based on grouped benchmark circuits.

The various tables and figures show GSA produces almost the same quality

placement as VPlace in a significantly shorter amount of time. When innerNum

is set to 5, which is the default value in our implementation, on average the GSA

achieves 69% reduction in CPU time (3.2x faster) compared with VPlace at the cost

of only a slight (0.5%) decrease in the final placement quality. When innerNum is

increased to 10 to trade CPU time for better quality, GSA obtains a slight gain of

0.4% in placement quality with 41% reduction (1.7x faster) in CPU time, compared

to VPlace. Furthermore, the performance of GSA is consistent for both medium

and large circuits, which is neccesary for a robust adaptive heuristic [Betz99].

Both VPlace and GSA can generate placement output files that can be fed

to VPR’s routing tool to perform subsequent FPGA Routing. According to the

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 76

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 2870 2903 2859 9 3 3 3 0
tseng 9479 9685 9287 96 20 22 19 1
ex5p 16304 16541 16187 83 18 19 17 1
alu4 19435 19621 19215 116 30 33 29 2
seq 24871 25241 24763 104 40 43 36 3

M.avg 17522 17772 17363 100 27 29 25 2
frisc 52347 53452 51694 352 125 138 115 7
spla 60642 62115 59617 755 138 151 130 7

ex1010 65946 67321 65441 380 196 216 189 10
s38584.1 65787 66506 64792 523 329 338 315 22

clma 140872 142433 139847 807 579 594 539 27
L.avg 77119 78365 76365 563 273 287 257 15

Avg 45855 46582 45441 322 148 154 139 8

Table 3.8: Performance of GSA (default) with 20 runs over each benchmark circuits

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 2861 2877 2851 10 5 5 5 0
tseng 9297 9367 9232 49 38 39 37 0
ex5p 16193 16226 16144 31 34 38 30 3
alu4 19257 19376 19169 78 60 61 59 1
seq 24745 24776 24707 29 76 81 73 4

M.avg 17373 17437 17313 47 52 55 50 2
frisc 51684 52197 51277 409 245 268 227 15
spla 60082 61096 59373 704 258 266 245 8

ex1010 65377 65742 65141 237 374 398 360 17
s38584.1 64870 65747 64323 642 585 616 553 28

clma 139709 140663 139232 643 1026 1075 986 38
L.avg 76344 77089 75869 527 498 525 474 21

Avg 45408 45807 45145 283 270 285 257 11

Table 3.9: Performance of GSA with innerNum = 10

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 77

Circuit Ave.cost Max.cost Min.cost Ave.CPU t Max CPU t Min CPU t
name impro.% impro.% impro.% impro.% impro.% impro.%

e64 -0.49 +0.07 -0.85 +76.92 +76.92 +76.92
tseng -0.53 -1.64 +1.09 +73.09 +72.60 +72.46
ex5p -0.33 -0.51 -0.51 +74.21 +73.24 +75.36
alu4 -1.42 -2.10 -0.82 +71.21 +71.03 +70.59
seq -0.52 -0.82 -0.20 +72.50 +70.83 +72.99

M.avg -0.70 -1.27 -0.11 +72.75 +71.93 +72.85
frisc -0.41 +0.45 -1.06 +68.14 +66.42 +69.71
spla +0.53 -0.14 +1.46 +67.42 +66.43 +67.82

ex1010 -0.62 -0.75 -0.42 +64.43 +62.26 +65.38
s38584.1 -1.15 -0.66 -1.58 +64.09 +63.92 +64.60

clma -0.53 -0.04 -0.53 +56.92 +55.37 +59.37
L.avg -0.40 -0.23 -0.43 +64.20 +62.88 +65.38

Avg -0.53 -0.61 -0.34 +69.28 +67.90 +69.52

Table 3.10: Comparison between VPlace and GSA with innerNum = 5

Circuit Ave.cost Max.cost Min.cost Ave.CPU t Max CPU t Min CPU t
name impro.% impro.% impro.% impro.% impro.% impro.%

e64 -0.10 +0.17 -0.39 +61.54 +61.54 +64.85
tseng +1.03 +0.76 +1.42 +46.18 +46.58 +46.38
ex5p +0.21 +0.63 -0.08 +51.29 +46.48 +56.52
alu4 -0.50 -0.76 -0.54 +42.42 +42.99 +42.16
seq -0.03 -0.07 -0.03 +46.40 +43.75 +46.72

M.avg +0.18 +0.14 +0.19 +46.57 +44.95 +47.94
frisc +0.90 +1.40 +0.54 +37.56 +33.32 +40.73
spla +1.58 +0.70 +1.90 +37.74 +36.67 +39.36

ex1010 +0.18 -0.10 +0.34 +32.47 +29.81 +33.70
s38584.1 +0.09 -0.41 +0.09 +35.36 +33.26 +37.66

clma +0.49 +0.85 +0.04 +23.00 +20.31 +23.98
L.avg +0.65 +0.49 +0.58 +33.23 +30.68 +35.08

Avg +0.38 +0.32 +0.33 +41.40 +39.47 +43.20

Table 3.11: Comparison between VPlace and GSA with innerNum = 10

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 78

M.avg
 L.avg
 All avg

0.0

0.990

0.995

1.000

1.005

1.010

N
or

m
al

iz
ed

 a
vg

. C
os

t

Benchmark groups

 VPlace

 GSA innerNum = 5

 GSA innerNum = 10

M.avg
 L.avg
 All avg

0.0

0.2

0.4

0.6

0.8

1.0

 N
or

m
al

iz
ed

 a
vg

. C
PU

 r
un

tim
e

Figure 3.19: Normalized (with respect to the results obtained by VPlace) grouped
benchmark performance comparison among VPlace and two versions of GSA.

output of VPR’s routing tool, the routing quality10 is not sensitive to the difference

in placement quality of less than 1%. Consequently, 5 is chosen as the default

innerNum in GSA, this represents a good compromise between the placement

quality and CPU time.

10The quality of FPGA routing in VPR is measured in terms of minimum number of tracks
required to route the circuit on the target FPGA chip.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 79

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 2881 2896 2873 10 3 3 3 0
tseng 9476 9551 9372 69 19 20 18 1
ex5p 16317 16384 16246 55 18 19 17 1
alu4 19520 19659 19313 165 30 31 30 1
seq 25165 25607 24938 256 39 41 37 2

M.avg 17620 17800 17467 136 27 28 26 1
frisc 52572 53199 52139 461 124 133 115 4
spla 60810 61520 60423 428 134 139 128 6

ex1010 65831 66708 65378 522 196 211 187 9
s38584.1 65669 66007 65377 275 315 327 302 12

clma 142191 144464 140247 1302 549 587 520 29
L.avg 77415 78380 76713 598 264 279 250 12

Avg 46043 46600 45631 354 143 151 136 6

Table 3.12: Performance of GSA with large fanout nets removed

3.8 Large Fanout Nets Elimination

A possible enhancement that can speed up the placement is to ignore nets with large

fanout [Sank99]. This is useful because a high-fanout net will likely cover much of

the FPGA and so it is harder to reduce its wirelength. By ignoring nets above a

certain fanout threshold, called maxfanout, the placement problem is simplified.

However, if this threshold is set too low, there may lack sufficient information to

create a good placement. In our implementation, the value of maxfanout is set to

one tenth of the total number of CLBs and I/O pads in the circuit.

Initially, all nets with fanout greater than maxfanout are removed from the

netlist. Next, GSA (default) was run on the simplified netlist. When GSA place-

ment terminated, the ignored nets are reinstated. Table 3.12 shows the performance

of GSA with large fanout nets removed. The placement cost as well as CPU time

is compared to that obtained when the original circuit was placed (with no nets

ignored). Table 3.13 shows the comparison results.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 80

Circuit Ave.cost Max.cost Min.cost Ave.CPU t Max CPU t Min CPU t
name impro.% impro.% impro.% impro.% impro.% impro.%

e64 -0.31 -0.56 -0.31 0 0 0
tseng -0.34 +0.45 -1.18 0 0 +5.26
ex5p -0.23 +0.17 -0.20 0 0 0
alu4 -0.44 -0.11 -0.47 0 0 0
seq -1.20 -2.59 -0.76 0 +2.38 0

M.avg -0.55 -0.52 -0.65 0 +0.60 +1.32
frisc -0.39 -0.95 -0.07 +0.80 +1.48 +0.86
spla -0.14 +0.15 -1.32 +0.74 +1.42 +1.54

ex1010 +0.10 -0.81 +0.39 +0.51 +1.40 +0.53
s38584.1 +0.01 -0.15 +0.03 +3.08 +1.80 +3.82

clma -0.93 -1.78 -0.16 +4.36 +2.49 +1.33
L.avg -0.27 -0.71 -0.23 +1.90 +1.72 +1.62

Avg -0.39 -0.62 -0.41 +0.95 +1.10 +1.33

Table 3.13: Comparison between two GSA with and without large fanout nets
elimination mechanism.

From Table 3.13, we can conclude that very little (less than 1%) CPU time

is saved, while the quality of placement cost, on average, deteriorates by 0.4%.

When compared with the conclusion of Section 3.7.3, where we doubled the runtime

to obtain 1% gain of placement quality, the loss of cost (0.4%) in this method

is expensive (as CPU time reduction is very small). In addition, the placement

quality will be further deteriorated if we reduce the fanout threshold maxfanout

(as more nets are removed during a placement, which prevents a good solution to

be obtained). On the other hand, it seems that very little reduction of runtime can

be achieved, if maxfanout is increased to trade CPU time for quality. Therefore,

the large fanout nets elimination method is not implemented in our high-quality

oriented placement tools.

CHAPTER 3. ITERATIVE IMPROVEMENT TECHNIQUES 81

3.9 Summary

In this chapter, simple local search methods are implemented and evaluated. Then

a new algorithm named GSA for FPGA placement is described. The algorithm

is capable of overcoming the problem of slow convergence in simulated-annealing.

This novel heuristic incorporates some of the best features from existing methods.

It operates in a greedy manner to accelerate the entire search procedure. A detailed

methodology and the associated adaptive update schema, as well as the empirical

parameters have been provided. Some placement-related issues are evaluated such

as strategically changing the window limiter, which proves to be very effective

speeding up the convergence. It is shown that compared to VPlace, our heuristic

yields very promising final quality while drastically reduceing the CPU time.

In the next chapter, we investigate another method for tackling this complicated

problem in FPGA physical design. A multi-level circuit clustering method is utilized

to reduce the complexity of the placement task at each level. Various algorithms are

employed to achieve improvement at each clustering level, while our GSA heuristic

still plays an important role in the overall placement process.

Chapter 4

Hierarchical Approach

In this chapter, a hierarchical FPGA placement algorithm is implemented and

evaluated. The detailed implementation strategy and methodology of the approach

are described, including the intergration of techniques and parameter tuneup which

lead to the best solution quality and CPU time trade-off.

The GSA based placement tool, which displayed robustness and speed in con-

vergence, plays an important role in the hierarchical approach. Furthermore, a

novel adaptive method for the determination of proper initial parameters for the

simulated-annealing algorithm is provided to assist a smooth transition between

the different algorithms at different hierarchical levels. Finally, the performance of

the hierarchical placement tool is compared to both the “flat” GSA placement tool,

as well as the existing known high-quality FPGA placement tool VPlace [Betz99]

[Betz97b].

82

CHAPTER 4. HIERARCHICAL APPROACH 83

4.1 Overview of Hierarchical Approach

FPGA hierarchical placement, roughly, is a two step procedure: first proceeding

bottom-up clustering, then top-down improvement.

Multi-level clustering

(# of clustering levels = L)

Top level improvement

(L = L - 1)

Medium level improvement

(L = L - 1)

Flat level improvement

Circuit

De-clustering

L = 0 ?

Final placement

Yes

No

Figure 4.1: Framework of our hierarchical placement algorithm

Figure 4.1 illustrates the framework of our algorithm. The first stage is a multi-

level bottom-up clustering of the logic blocks, which groups highly connected blocks

into clusters; these clusters can be grouped again to create a second level of clus-

tering, and so on. Once all the required clustering is done, placement will be per-

formed at each level of the hierarchy to obtain further improvement. The placement

CHAPTER 4. HIERARCHICAL APPROACH 84

heuristics for all the clustered levels (levels other than the bottom level) behave in

a top-down manner by placing blocks in the general regions where they belong.

As the most simplified clustering level, improvement of the top level is of great

importance and is listed separately in Figure 4.1. The de-clustering or flattening

process, which decomposes clusters into logic blocks or clusters of lower levels, will

be followed when the top-down optimization at each level is completed. Finally, a

localized heuristic, which only moves blocks in small regions, will be performed at

the bottom (flat) clustering level to achieve a high quality final solution.

As we have described in Chapter 2, multi-level clustering has been used as

an effective way to speed up the procedure of circuit placement and partitioning

problems. Furthermore, as some FPGAs that have 40-million effective gates on the

horizon, a hierarchical approach is probably the ultimate method that can greatly

reduce placement time without compromising the quality of solution. These served

as the major motivation for us to explore the performance of this approach.

4.2 Clustering-based FPGA Placement

4.2.1 Clustering Method

Clustering serves as the first processing stage in a hierarchical approach, which

groups blocks together to reduce the complexity of the placement problem. A

good clustering method should identify batches of blocks that will eventually end

up together in the final placement stage. This can be difficult because clustering

decisions are made prior to the start of the placement without a global view of the

circuit structure. Therefore, a top-down global circuit partitioning methodology

CHAPTER 4. HIERARCHICAL APPROACH 85

has usually been preferred to a bottom-up clustering methodology. But the sizes

of today’s circuits are so large, for which the associated heavy computation makes

any top-down partitioning scheme infeasible. Therefore, only an effective bottom-

up clustering approach is the choice for a hierarchical approach [Sun95].

However, for clustering to be used as a practical bottom-up approach, there are

two important concerns.

1. The computation time used to generate clusters: It is recommended

that the clustering time be negligible in comparison to the time required to

place the circuits.

2. The quality of clusters (presented in Section 2.6.1): It is measured

in terms of the percentage of nets that would be completely absorbed by a

clustering method resulting in a single level of clustering.

The main goal of [Sank99] is to provide an FPGA placement prediction tool that

would give a solution ultra fast with affordable loss of the final placement quality.

The major objective of our work in this thesis is to obtain high-quality placement

within short amount of CPU time. Sankar’s clustering method (described in Section

2.6.3) is quite attractive, which produces high quality clusters very quickly. Unlike

the time-consuming simulated-annealing based optimization used in Timberwolf95,

it is a greedy constructive method, which enables the clustering procedure to com-

plete quickly with reasonable loss of clustering quality. Consequently, this part of

our hierarchical approach is based on the method in [Sank99].

Figure 4.2 illustrates how clustering size influences the net absorption rate re-

sulting from a single level of clustering. Note that I/O pads are not included in

clusters so that any nets share connections with pads will not be absorbed. Fine

CHAPTER 4. HIERARCHICAL APPROACH 86

0
 5
 10
 15
 20
 25
 30
 35

0

5

10

15

20

25

30

35

40

45

50

%
 o

f
to

ta
l n

et
s

ab
so

rb
ed

Cluster size (number of blocks per cluster)

Figure 4.2: Cluster size vs. % of total nets absorbed of Sankar’s [Sank99] clustering
method resulting in one level of clustering (data are obtained averagely over 10
MCNC benchmark circuits).

grained clusters (between 2 and 16 logic blocks per cluster) are mainly used in this

thesis. Even for these relative small size clusters, a significant proportion of flat

nets are collapsed (13% to 47%). The runtime of this clustering method has to be

compared with the whole placement procedure, which will be determined in later

sections.

CHAPTER 4. HIERARCHICAL APPROACH 87

4.2.2 De-clustering and Legalization

De-clustering or flattening is a procedure used to restore those “collapsed” blocks

in the higher hierarchical level as well as their interconnections.

Some deterioration of the solution is expected. It is partly because those nets

that were “localized” (absorbed) to each cluster must be added back to a flattened

circuit, which would increase the total wirelength. Another factor that contributes

to the increase of wirelength is the approximation of cluster location. In our imple-

mentation, the coordinate of one of the blocks in each cluster is employed as the

coordinate of the cluster, which is an estimate for the true localities in the eventual

placement for other blocks in this cluster. When the clusters are broken down, this

location difference is exposed, and the overall solution gets worse as well. This ap-

proximation error increases as the clustering size increases, for which the difference

between the “real” block positions and the coordinate of the clusters are greater.

Consequently, fine grained clusters are preferred in our work to obtain high quality

placement.

Except for a few clusters, most clusters are created with an identical number

of blocks. The de-clustering procedure does not change the original layout of the

target FPGA chip. For those marginal irregular clusters, an additional legaliza-

tion procedure, which automatically adjusts their locations to fit the chip, will be

followed after de-clustering.

Some previous methods, like [Sun95], flatten a clustered circuit simply by plac-

ing the blocks randomly within the physical confinements of the clusters in the

previous level. Recent research in [Sank99] and [Thom01] has shown that per-

forming this flattening procedure by a constructive or greedy optimization method

CHAPTER 4. HIERARCHICAL APPROACH 88

b
a

blocks in

original cluster

a
b

optimized

blocks

Figure 4.3: Blocks in original clusters are optimized to minimize wirelength during
de-clustering.

would produce superior results. The benefit of this optimization is illustrated in

Figure 4.3. Block a has more connections from the right side or its “center-of-

gravity” is at that side. It is natural for block a to be placed at the right slot of the

original cluster to reduce the wirelength. However, the “center-of-gravity” of each

block depends on the locations of blocks in other clusters. Therefore, it only can

be determined when the top-down optimization at this level is completed (when all

locations of clusters have been determined).

In our implementation, a clustered circuit is initially flattened by placing the

blocks randomly within the physical confinements of the clusters that host them

in the previous level. Next, a simple optimization process is performed within the

confinement of each cluster, such that the blocks which belong to the same cluster

are allowed to be swapped. A simple deterministic local search heuristic, shown in

Figure 4.4, is introduced to complete this part of de-clustering in our hierarchical

approach. Generally, deterministic local search algorithms are not appropriate for

CHAPTER 4. HIERARCHICAL APPROACH 89

/* assuming there are N clusters (from 1 to N) need to be optimized */
1. S = InitPlacement();
2. for(i = 1; i ≤ N; i++)

/* blocks from m to n are included in clusteri */
/* clusteri 3 (blockm ˜ blockn) */

3. { for(j = m; j ≤ n - 1; j++)
4. { for(k = m + 1; k ≤ n; k++)
5. { Scandidate = Swap(blockj, blockk);

/* find a candidate solution from current one */
/* by a determined swap between blockj and blockk */

6. ∆C = Cost(Scandidate) - Cost(Scurrent);
7. if(∆ C < 0) /* only accept improving swaps */
8. Scurrent = Scandidate; /* accept this candidate */
9. }
10. } /* end of optimization for one cluster */
11. } /* end of de-clustering optimization at this level */

/* output optimized placement */

Figure 4.4: Pseudo-code for de-clustering optimization

problems that have a large number of neighbouring solutions, since the exhaustive

evaluation would consume too much CPU time. However, as mentioned before, we

are more interested in fine grained clusters, for which the number of neighbouring

solutions is small. Thus this heuristic can be finished in short amount of time.

4.2.3 Evaluating the Effectiveness of Clustering, De-clustering

and Simple Local Search in the Hierarchical Approach

The effectiveness of clustering and de-clustering optimization, as well as simple

local search in the hierarchical approach is evaluated. The evaluation is based on

the following : clustering level L = 2 and clustering size (blocks per cluster) at each

level S = 4.

CHAPTER 4. HIERARCHICAL APPROACH 90

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 7452 7984 7273 318 0 0 0 0
tseng 41285 44789 39271 573 0.02 0.02 0.02 0
ex5p 42301 45376 40589 623 0.02 0.02 0.02 0
alu4 61504 63891 60812 967 0.08 0.08 0.08 0
seq 79903 81045 78734 1463 0.03 0.03 0.03 0

M.avg 56248 58775 54852 906 0.04 0.04 0.04 0
frisc 229152 236421 225510 2355 0.19 0.20 0.19 0
spla 236251 243011 233721 1987 0.11 0.11 0.11 0

ex1010 332664 337701 329438 3101 0.21 0.23 0.20 0
s38584.1 559870 564933 552789 4754 0.38 0.40 0.37 0

clma 796591 807265 792277 10647 0.52 0.58 0.49 0
L.avg 430906 437866 426747 4569 0.28 0.30 0.27 0

Avg 238697 243242 236041 2679 0.16 0.17 0.15 0

Table 4.1: Random clustering and random de-clustering (L = 2, S = 4)

Results in Table 4.1 are obtained from randomly assigning blocks to cluster at

each level to create the hierarchy. Following clustering a random de-clustering phase

is performed, which places the blocks randomly within the physical confinements

of the clusters. Table 4.2 shows the performance of optimized clustering only.

Results are obtained by performing optimized clustering at each level followed by

random de-clustering. Table 4.3 shows the performance of optimized clustering and

optimized de-clustering at each hierarchical level. Table 4.4 shows the improvement

of solution quality of optimized clustering itself, and optimized clustering and de-

clustering in our hierarchical approach.

These results illustrate that the optimized clustering itself and optimized clus-

tering with optimized de-clustering procedure improve the original random start

placement, on average by 29% and 33% respectively. Furthermore, both the clus-

tering and de-clustering process can be completed very quickly.

Table 4.5 shows the performance of simple non-deterministic local search (pre-

CHAPTER 4. HIERARCHICAL APPROACH 91

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 6271 6441 6130 239 0.01 0.01 0.01 0
tseng 25431 26011 24891 326 0.09 0.09 0.08 0
ex5p 32653 34218 32186 479 0.09 0.09 0.09 0
alu4 42550 43072 41857 630 0.22 0.23 0.22 0
seq 59268 60027 58792 592 0.13 0.13 0.13 0

M.avg 39976 40832 39432 507 0.13 0.14 0.13 0
frisc 152999 154872 152185 1559 0.58 0.61 0.56 0.01
spla 169741 171133 168534 884 0.35 0.36 0.34 0

ex1010 250873 253964 249836 2174 0.67 0.74 0.63 0.02
s38584.1 335429 338347 333928 2392 3.40 3.71 3.20 0.11

clma 548932 551023 541938 9573 2.79 2.91 2.64 0.07
L.avg 291595 293868 289284 3316 1.56 1.67 1.47 0.04

Avg 162415 163911 161028 1885 0.83 0.89 0.79 0.02

Table 4.2: Optimized clustering and random de-clustering (L = 2, S = 4)

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 5743 5932 5649 199 0.01 0.01 0.01 0.01
tseng 23378 23745 22849 312 0.09 0.09 0.08 0
ex5p 29856 30202 29710 328 0.10 0.10 0.09 0
alu4 39624 40246 39037 532 0.23 0.23 0.23 0
seq 55571 56028 55019 491 0.14 0.14 0.14 0

M.avg 37107 37530 36679 416 0.14 0.14 0.14 0
frisc 144279 145101 143729 1039 0.61 0.64 0.56 0.01
spla 159422 161138 158587 782 0.39 0.41 0.36 0

ex1010 240335 242021 238937 1077 0.72 0.74 0.68 0
s38584.1 320052 322398 318834 1590 3.46 3.73 3.38 0.09

clma 528772 532182 525182 4171 2.87 2.95 2.74 0.05
L.avg 278572 280568 277054 1732 1.61 1.69 1.54 0.04

Avg 154703 155889 153763 1052 0.86 0.90 0.83 0.02

Table 4.3: Optimized clustering and optimized de-clustering (L = 2, S = 4)

CHAPTER 4. HIERARCHICAL APPROACH 92

Random clustering & Optimized clustering & Optimized clustering &
Circuit random de-clustering random de-clustering optimized de-clustering
name Ave. Ave. Ave. Ave. Cost Ave. Ave. Cost

cost CPU t. cost CPU t. impro.% cost CPU t. impro. %

e64 7452 0 6271 0.01 15.85 5743 0.01 22.93
tseng 41285 0.02 25431 0.08 38.40 23378 0.09 43.37
ex5p 42301 0.02 32653 0.09 22.81 29856 0.09 29.42
alu4 61504 0.08 42550 0.22 30.82 39624 0.23 35.57
seq 79903 0.03 59268 0.13 25.83 55571 0.14 30.45

M.avg 56248 0.04 39975 0.14 29.46 37107 0.14 34.71
frisc 229152 0.19 152999 0.58 33.23 144279 0.61 37.04
spla 236251 0.11 169741 0.35 28.15 159422 0.39 32.52

ex1010 332664 0.21 250872 0.67 24.59 240335 0.72 27.75
s38584.1 559870 0.38 335429 3.40 40.09 320052 3.46 42.83

clma 796591 0.52 548932 2.79 31.09 528772 2.87 33.62
L.avg 430905 0.28 291594 1.56 31.43 278572 1.61 34.75

Avg 238697 0.15 162414 0.83 29.08 154703 0.86 33.55

Table 4.4: Solution improvement of optimized clustering and optimized de-
clustering (L = 2, S = 4)

sented in Section 3.3). The local search technique is performed at each hierarchical

level together with full-fledged optimized clustering and de-clustering. Table 4.6

shows the improvement in placement cost by performing optimized clustering, opti-

mized de-clustering, and simple local search at each hierarchical level. The overall

improvement of these three optimization methods, with respect to no optimization

being made, is on average 61%.

CHAPTER 4. HIERARCHICAL APPROACH 93

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 3816 3968 3673 118 0.23 0.23 0.22 0
tseng 13938 14277 13650 272 0.73 0.75 0.72 0
ex5p 20713 20992 20374 222 0.71 0.71 0.70 0
alu4 26134 26837 25595 483 0.93 0.95 0.93 0.01
seq 36418 37054 35889 474 1.21 1.21 1.20 0

M.avg 24301 24790 23877 363 0.90 0.91 0.89 0
frisc 88342 90513 85540 1865 3.33 3.36 3.30 0.02
spla 96534 97886 95457 984 3.34 3.42 3.23 0.07

ex1010 99941 103128 97717 2001 4.59 4.74 4.22 0.21
s38584.1 142213 145573 138637 2657 10.19 10.48 9.28 0.51

clma 262927 277606 252673 9637 14.15 14.97 13.62 0.88
L.avg 137991 142941 134005 3429 7.12 7.39 6.73 0.34

Avg 79098 81783 76921 1871 3.94 4.08 3.74 0.17

Table 4.5: Performance of simple local search in hierarchial approach (L = 2, S = 4)

4.3 Improvement Techniques Implemented at Each

Hierarchical Level

4.3.1 Top Level Improvement

A large portion of iterative improvement should be done at the highest level of the

hierarchy, taking advantage of the reduced solution space facilitated by clustering.

Ideally, a clustering method will convert the original circuit into a similar but much

smaller structure, with many entities combined into one large cluster. Blocks in

a cluster (as they are decomposed during the de-clustering procedure), should be

close to where they would be in a high-quality flat placement.

Nevertheless, the exact final location of each block is unknown at the clustering

period, where an estimated value based on the connectivity is used instead. The

potential of the improvement is over shadowed by this rough calculation. Addition-

ally, the succeeding de-clustering procedure would partly “destroy” (described in

CHAPTER 4. HIERARCHICAL APPROACH 94

Random clustering & Non-deterministic
Circuit random de-clustering simple local search
name Ave. Ave. Ave. Ave. Cost

cost CPU t. cost CPU t. impro.%

e64 7452 0 3816 0.23 48.79
tseng 41285 0.02 13938 0.73 66.24
ex5p 42301 0.02 20713 0.71 51.03
alu4 61504 0.08 26134 0.93 57.51
seq 79903 0.03 36418 1.21 54.42

M.avg 56248 0.04 24301 0.90 57.30
frisc 229152 0.19 88342 3.33 61.45
spla 236251 0.11 96534 3.34 59.14

ex1010 332664 0.21 99941 4.59 69.96
s38584.1 559870 0.38 142213 10.19 74.60

clma 796591 0.52 262927 14.15 66.99
L.avg 430905 0.28 137991 7.12 66.43

Avg 238697 0.15 79098 3.94 61.01

Table 4.6: Solution improvement of simple local search with optimized clustering
and optimized de-clustering (L = 2, S = 4)

Section 4.2.2) the solutions obtained from higher levels as well. An excellent solu-

tion in the high level is not guaranteed to be translated into a matching excellent

solution in the flat level, even with well-optimized clustering and de-clustering.

The circuit at the top level of clustering is considered to be the least complex

representation of the original circuit, and therefore a good heuristic technique such

as GSA should be able to place clusters efficiently in a short period of time. Similar

to a global placement tool in standard cell placement, the GSA placement tool be-

haves in a top-down manner on the top level, roughly determining the best position

of each block. Medium and bottom level improvements would follow to find exactly

where each block should be for the final high-quality placement.

CHAPTER 4. HIERARCHICAL APPROACH 95

4.3.2 Medium Level Improvement

When the total number of hierarchical levels is more than two, extra improvement

should be performed at the intermedium levels. With proper top level placement,

blocks should have been assigned their proper locations. However, the placement

entities are still clusters in these medium levels, even though they are smaller

than the clusters in the top level. The major objective in the medium level is

to gradually improve the solution quality. A simple yet effective stochastic method,

non-deterministic local search algorithm, is used here to complete this task. The

pseudo-code as well as the detailed implementation and evaluation of this local

search algorithm are provided in Section 3.3 and Section 3.5, respectively.

4.3.3 Bottom Level Improvement

Fine tuned search should be performed at the flat level of the hierarchy, since it is

an accurate representation of the actual circuit (all absorbed nets are released and

all locations of each block are accurate). Utilizing appropriate heuristic techniques

at the top and medium levels, blocks in this level should be placed close to their

final location; a localized placement tool is therefore preferred. Simple local search

algorithms, as has been discussed earlier converge quickly. However, they can easily

get trapped in local optimal, which can be too far from the optimal solution.

A low temperature VPlace simulated-annealing algorithm is therefore utilized

on the flattened circuit to optimize the final local ordering of the logic blocks. With

the help of the parameter Rlimit, which shrinks when temperature T becomes low,

VPlace behaves in a bottom-up manner by placing blocks in smaller and smaller

regions. Furthermore, this dynamic well-tuned heuristic guarantees to find a high-

CHAPTER 4. HIERARCHICAL APPROACH 96

quality solution for the whole hierarchical approach.

4.3.4 Choice of Starting Parameters for Simulated-annealing

One crucial feature of any dynamic adaptive annealing schedule for a variety of

circuits is the choice of starting parameters for a given good configuration. In

our hierarchical approach, this good configuration is the placement result from

the improvement in the higher levels. Parameter tuning, in VPlace simulated-

annealing, involves the start temperature T0 and the initial size of window limiter

Rlimit, which are crucial in controlling the behavior of a placement tool (described

in section 2.4.4). If T0 is set too high or Rlimit is set too large, subsequent annealing

will destroy the existing good placement structure, which makes any previous work

toward placing the circuit useless. Conversely, if T0 is set too low or Rlimit is set too

small, the annealer is unlikely to improve upon the existing placement significantly,

as it will be unable to escape local minima.

In [Rose90], a concept, which is proposed to compute a good starting tempera-

ture T0 for simulated-annealing placements, is introduced. The idea evolves around

an initial temperature where the placement is in a state of “equilibrium”. In this

state, there is no expected net change in the cost function after a large number of

moves, which implies that the expected change in placement cost is zero.

Unfortunately, the parameter Rlimit is not considered in their work1, which is so

important and should not be neglected. We propose a new method to calculate this

equilibrium state. It resembles the annealing schedule of VPlace with the exception

of having less number of moves attempted at each temperature. The pseudo-code

1The work of [Sank99], which utilize the method of [Rose90], did not consider Rlimit either.

CHAPTER 4. HIERARCHICAL APPROACH 97

for this method is shown in Figure 4.5.

Starting from an initial good placement, this method performs N evaluations at

each temperature, none of which are actually permitted to change the placement.

The criteria of accepting a move is based on the following: r < e−∆C/t where r is

a random number between 0 and 1. If a move is “accepted”, the change in cost

associated with this move is recorded and accumulated in the parameter Vaccumulate.

Accepting a bad move increases the value of Vaccumulate, while an improvement move,

which is always “accepted”, would reduce it. At the end of each N evaluations

(inner loop in Figure 4.5), the value of Vaccumulate is assessed.

When temperature t is high enough, bad moves are accepted with high prob-

ability leading to a high value of Vaccumulate. Temperature t and window limiter

rlimit are updated with the same method as VPlace simulated-annealing algorithm

(described in section 2.4.4) to ensure the best combination. As the value of t de-

creases, the heuristic becomes more and more greedy; favoring moves that would

decrease the objective function. Once negative overall changes in placement cost

Vaccumulated is reached, the present temperature t and rlimit, which would render the

current placement in a state of equilibrium, are set to be the suitable value of initial

T0 and Rlimit, respectively, for the following actual annealing.

It is important to ensure that enough number of moves per temperature are

made to obtain an accurate probability distribution. In our implementation, the

value of N is set equal to the value of Nblock, which is the total number of logic

blocks plus the number of I/O pads in a circuit.

CHAPTER 4. HIERARCHICAL APPROACH 98

1. Sinit = InitPlacement();
/* here the initPlacement Sinit is a result generated by */
/* other algorithms and is better than just random start */

2. t = InitTemperature();
3. rlimit = Initrlimit(); /* rlimit is set to whole chip initially */
4. Vaccumulate = 0; /* Vaccumulate is the exit criterion */
5. Pparameter(t, rlimit);

/* Pparameter is a structure to store temperature t and rlimit */
6. while(ExitCriterion() == false) /* outer loop */
7. { while(InnerLoopCriterion() == false) /* inner loop */
8. { Scandidate = GenerateMove(Sinit, rlimit);

/* create one candidate solution from current one by */
/* a random pairwise moves within a window rlimit */

9. ∆C = Cost(Scandidate) - Cost(Sinit);
/* calculate the change in cost */

10. r = random(0, 1);
/* create a random float number between (0, 1) */

11. if(r < e−∆C/t)
12. Vaccumulate = Vaccumulate + ∆ C;

/* add accepted candidate ∆C incrementally to Vaccumulate */
13. } /* end of inner loop */
14. if(Vaccumulate ≤ 0)
15. { exit(); /* end of program */

/* export t and rlimit that stored in Pparameter to the following */
/* simulated annealing placer as the start T0 and Rlimit */

16. }
17. else
18. { Update(Pparameter(t, rlimit));

/* record current t and rlimit in Pparameter */
19. Update(t);
20. Update(rlimit);

/* the update of t and rlimit are the same as VPlace */
21. Vaccumulate = 0; /* start a new round of evaluation */
22. }
23. } /* end of outer loop */

Figure 4.5: Pseudo-code for choosing start temperature T0 and initial Rlimit for
simulated-annealing algorithm, which begins with a good initial placement

CHAPTER 4. HIERARCHICAL APPROACH 99

0.0
 2.0x10
 6
 4.0x10
 6
 6.0x10
 6
 8.0x10
 6
 1.0x10
 7
 1.2x10
 7
 1.4x10
 7

4.0x10
 4

6.0x10
 4

8.0x10
 4

1.0x10
 5

1.2x10
 5

1.4x10
 5

1.6x10
 5

1.8x10
 5

level 0 (flat) placement(SA)

level 1 (top) placement(GSA)

de-clustering

B
ou

nd
in

g
B

ox
 C

os
t

Attempted Iterations

Figure 4.6: Hierarchical approach behavior over a large MCNC circuit “spla” (3690
CLBs).

4.3.5 Hierarchical Approach Behavior

Figure 4.6 illustrates the overall behavior of a two-level hierarchical placement tool

over a large MCNC circuit. This example begins from a random placement where

all blocks have already been collapsed into each cluster. The top level placement is

completed by the GSA placement tool, which quickly discovers a good local opti-

mum at this level, such that the total bounding box cost is almost halved. However,

this bounding box cost is an approximation of the flat counterpart and they are

CHAPTER 4. HIERARCHICAL APPROACH 100

“equalized” by the following de-clustering procedure. As expected, the bounding

box cost is increased (explained in Section 4.2.2), even with a local optimizer to

place the flattened blocks close to their “center-of-gravity” to minimize the jump in

cost. The VPlace simulated-annealing algorithm is employed at the flat level with

proper initial parameters to ensure a “smooth” transfer between different heuristics.

4.4 Results

In this section, experiments used to identify the proper set of parameters for our

placement tool are described first. There are two type of parameters: those that

control the cluster formation such as clustering depth (total clustering level) and

clustering size (blocks per cluster) and those that control the iterative improvement

technique such as innerNum in GSA and VPlace. Our goal is to determine these

parameters that lead to the best quality and CPU time trade-off.

Next, the performance of our hierarchical placement tool will be compared with

the GSA placement tool (provided in Chapter 3) and VPlace [Betz99] [Betz97b]

based on the same MCNC benchmarks.

The details of the actual FPGA architecture and MCNC benchmarks as well as

the configuration of our common workstation are given in Section 3.4. Furthermore,

all of our results are obtained through 5 runs with different initial placements and

random seeds which are more reliable than those based on a single run.

4.4.1 Iterative Improvement Parameter Setting

One of the parameters of the top-level improvement technique (GSA) that needs

to be tuned is innerNum. With the collapse of blocks and the reduction of their

CHAPTER 4. HIERARCHICAL APPROACH 101

interconnections, the number of local minima are reduced [Ghen02]. The placement

at this level is built on an approximation and would be partly “destroyed” by the

following de-clustering. Consequently, a smaller value of innerNum is needed at

the top-level compared with a default GSA placement tool.

Several experiments were conducted where the GSA improver was performed

at the top-level and then de-clustered to the flat level without any other further

improvement. Figure 4.7 plots the average normalized bounding box cost versus dif-

ferent innerNum with different clustering depth and clustering size, across our test

benchmark suite. In addition, Figure 4.8 and Figure 4.9 show similar performance

of GSA with the same settings for a medium/large MCNC circuit respectively.

It is obvious from Figures 4.7-4.9 that 1 is the right value for parameter innerNum

at the top-level GSA placement tool, which results in a slight loss of placement qual-

ity (less than 3%) than the default GSA (innerNum = 5), while offering better

speedup.

A simple local search, which exactly follows the implementation of the non-

deterministic local search in Section 3.3, will be performed in the medium levels.

The parameter innerNum (which is the number of iterations performed per

temperature T) in the simulated-annealing placement at the bottom level requires

further tuning. GSA with the parameters that deduced from previous experiments,

is employed at the top-level. Next, a simple non-deterministic local search place-

ment tool will be followed if necessary (Clustering Level > 1). Finally, VPlace

with properly determined inital parameters will complete the overall placement.

Figure 4.10 plots the average final normalized bounding box cost versus differ-

ent innerNum with different clustering depth and clustering size, across the test

benchmark suite. In addition, Figure 4.11 and Figure 4.12 show similar perfor-

CHAPTER 4. HIERARCHICAL APPROACH 102

0
 1
 2
 3
 4
 5

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

 B
ou

nd
in

g
B

ox
 C

os
t

InnerNum (GSA)

 Clustering Depth = 1, Cluster Size = 4

 Clustering Depth = 1, Cluster Size = 16

 Clustering Depth = 2, Cluster Size = 2

 Clustering Depth = 2, Cluster Size = 4

 Clustering Depth = 3, Cluster Size = 2

 Clustering Depth = 3, Cluster Size = 3

Figure 4.7: Average normalized bounding box cost (with respect to: Clustering
Level = 1, Cluster Size = 4, innerNum = 5) over 10 MCNC circuits vs. different
GSA innerNum with different clustering depth and clustering size.

mance of VPlace with the same settings over a medium and a large MCNC circuit

respectively.

Observing the curves in Figure (4.10-4.12), 5 is chosen for the value of innerNum

in VPlace which would produce very slight worse final cost (less than 1%), while

speeding the bottom-level improvement up to two times [Betz99].

4.4.2 Clustering Parameters

Having determined the right placement tool with proper parameters in each level,

the next step that needs to be explored is the clustering property, including clus-

CHAPTER 4. HIERARCHICAL APPROACH 103

0
 1
 2
 3
 4
 5

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

 B
ou

nd
in

g
B

ox
 C

os
t

InnerNum (GSA)

 Clustering Depth = 1, Cluster Size = 4

 Clustering Depth = 1, Cluster Size = 16

 Clustering Depth = 2, Cluster Size = 2

 Clustering Depth = 2, Cluster Size = 4

 Clustering Depth = 3, Cluster Size = 2

 Clustering Depth = 3, Cluster Size = 3

Figure 4.8: Normalized bounding box cost (with respect to: Clustering Level =
1, Cluster Size = 4, innerNum = 5) over a medium MCNC circuit “tseng” (1047
CLBs) vs. different GSA innerNum with different clustering depth and clustering
size.

0
 1
 2
 3
 4
 5

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

 B
ou

nd
in

g
B

ox
 C

os
t

InnerNum (GSA)

 Clustering Depth = 1, Cluster Size = 4

 Clustering Depth = 1, Cluster Size = 16

 Clustering Depth = 2, Cluster Size = 2

 Clustering Depth = 2, Cluster Size = 4

 Clustering Depth = 3, Cluster Size = 2

 Clustering Depth = 3, Cluster Size = 3

Figure 4.9: Normalized bounding box cost (with respect to: Clustering Level = 1,
Cluster Size = 4, innerNum = 5) over a large MCNC circuit “clma” (8383 CLBs)
vs. different GSA innerNum with different clustering depth and clustering size.

CHAPTER 4. HIERARCHICAL APPROACH 104

0
 2
 4
 6
 8
 10

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

 B
ou

nd
in

g
B

ox
 C

os
t

InnerNum (VPlace simulated-annealing)

 Clustering Depth = 1, Cluster Size = 4

 Clustering Depth = 1, Cluster Size = 16

 Clustering Depth = 2, Cluster Size = 2

 Clustering Depth = 2, Cluster Size = 4

 Clustering Depth = 3, Cluster Size = 2

 Clustering Depth = 3, Cluster Size = 3

Figure 4.10: Average normalized bounding box cost (with respect to: Clustering
Level = 1, Cluster Size = 4, innerNum = 10) over 10 MCNC circuits vs. different
VPlace innerNum with different clustering depth and clustering size.

tering size or blocks per cluster (S) and clustering depth(L). We performed exper-

iments for L = 1, 2, 3 and 4 levels2 of clustering with different clustering size S.

Cluster size S denotes how many blocks per cluster, where these blocks could be

CLBs for L = 1 or smaller clusters in higher levels when L > 1. Additionally, once

S is set to n, then n would be the clustering size for every clustering level. The

higher a cluster is, the more CLBs it can hold. For example, a cluster at the second

level with the clustering formation, S = 4, can host 4 smaller clusters at the first

level and these smaller clusters each can host 4 CLBs at the flat level.

2L = 0 denotes the flat level.

CHAPTER 4. HIERARCHICAL APPROACH 105

0
 2
 4
 6
 8
 10

0.75

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

 B
ou

nd
in

g
B

ox
 C

os
t

InnerNum (VPlace simulated-annealing)

 Clustering Depth = 1, Cluster Size = 4

 Clustering Depth = 1, Cluster Size = 16

 Clustering Depth = 2, Cluster Size = 2

 Clustering Depth = 2, Cluster Size = 4

 Clustering Depth = 3, Cluster Size = 2

 Clustering Depth = 3, Cluster Size = 3

Figure 4.11: Normalized bounding box cost (with respect to: Clustering Level
= 1, Cluster Size = 4, innerNum = 10) over a MCNC medium circuit “tseng”
(1047 CLBs) vs. different VPlace innerNum with different clustering depth and
clustering size.

0
 2
 4
 6
 8
 10

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

N
or

m
al

iz
ed

 B
ou

nd
in

g
B

ox
 C

os
t

InnerNum (VPlace simulated-annealing)

 Clustering Depth = 1, Cluster Size = 4

 Clustering Depth = 1, Cluster Size = 16

 Clustering Depth = 2, Cluster Size = 2

 Clustering Depth = 2, Cluster Size = 4

 Clustering Depth = 3, Cluster Size = 2

 Clustering Depth = 3, Cluster Size = 3

Figure 4.12: Normalized bounding box cost (with respect to: Clustering Level = 1,
Cluster Size = 4, innerNum = 10) over a large MCNC circuit “clma” (8383 CLBs)
vs. different VPlace innerNum with different clustering depth and clustering size.

CHAPTER 4. HIERARCHICAL APPROACH 106

The curves of the average final placement cost as well as average CPU time

over ten MCNC benchmark circuits versus clustering size and clustering depth are

shown in Figure 4.13 and Figure 4.14 respectively.

We can conclude from Figure 4.13 that two schedules (L = 2 with S = 4)

and(L = 3 with S = 2) produce the best final quality. However, Figure 4.14 shows

that the first schedule consumes less CPU time than the latter. Consequently, it is

the best selection for our hierarchical approach. Nevertheless, the performance of

the placement tool is not extremely sensitive to this specific schedule. As long as

we keep the clustering depth L to 2 and S between 2 and 7, the placement quality

and CPU time curve appear quite even. Figure 4.13 also shows that the average

placement cost deteriorates when top clusters hold 64 CLBs or more.

Furthermore, Figure 4.15 and Figure 4.17 show the performance of the hierar-

chical placement tool over a medium MCNC circuit with different clustering depth

and clustering size. Figure 4.16 and Figure 4.18 show similar results over a large

MCNC circuit.

4.4.3 Performance of the New Hierarchical Placemenet Tool

Table 4.7 provides the results, including placement quality and CPU time, obtained

by our new hierarchical placement tool with the following schedule: clustering level

L = 2 and clustering size at each level S = 4, with GSA innerNum = 1 in the

top level, VPlace innerNum = 5 in the bottom level, and non-deterministic local

search in the medium level.

Table 4.8 shows a comparison between the runtime of the clustering procedure

and the overall optimization procedure (i.e. clustering, de-clustering, top-down im-

CHAPTER 4. HIERARCHICAL APPROACH 107

10
 20
 30
 40
 50
 60
 70

46400

46800

47200

47600

48000

48400

clustering depth L = 3

clustering depth L = 4

clustering depth L = 2
clustering depth L = 1

A
vg

. B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

2
 4
 6
 8

46400

46800

47200

47600

48000

48400

A
vg

. B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

1
 2
 3
 4
 5

46400

46800

47200

47600

48000

48400

A
vg

. B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

1
 2
 3
 4

46400

46800

47200

47600

48000

48400

A
vg

. B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

Figure 4.13: Average “Bounding Box Cost” over 10 MCNC circuits vs. clustering
size with different clustering depth.

CHAPTER 4. HIERARCHICAL APPROACH 108

10
 20
 30
 40
 50
 60
 70

82

84

86

88

90

92

94

96

clustering depth L = 2

clustering depth L = 3

clustering depth L = 4

A
ve

. C
PU

 ti
m

e

Blocks per Cluster

clustering depth L = 1

2
 4
 6
 8

82

84

86

88

90

92

94

96

A
ve

. C
PU

 ti
m

e

Blocks per Cluster

1
 2
 3
 4
 5

82

84

86

88

90

92

94

96

A
ve

. C
PU

 ti
m

e

Blocks per Cluster

1
 2
 3
 4

82

84

86

88

90

92

94

96

A
ve

. C
PU

 ti
m

e

Blocks per Cluster

Figure 4.14: Average “CPU time” over 10 MCNC circuits vs. clustering size with
different clustering depth.

CHAPTER 4. HIERARCHICAL APPROACH 109

0
 10
 20
 30
 40
 50
 60
 70

9500

9550

9600

9650

9700

9750

9800

9850

9900

B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

clustering depth L = 1

2
 4
 6
 8

9500

9550

9600

9650

9700

9750

9800

9850

9900

B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

clustering depth L = 2

1
 2
 3
 4
 5

9500

9550

9600

9650

9700

9750

9800

9850

9900

B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

clustering depth L = 3

1
 2
 3
 4

9500

9550

9600

9650

9700

9750

9800

9850

9900

B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

clustering depth L = 4

Figure 4.15: “Bounding Box Cost” over a medium MCNC circuit “tseng” (1047
CLBs) vs. clustering size with different clustering depth.

CHAPTER 4. HIERARCHICAL APPROACH 110

0
 10
 20
 30
 40
 50
 60
 70

140000

141000

142000

143000

144000

145000

146000

147000

148000

B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

clustering depth L = 1

2
 4
 6
 8

140000

141000

142000

143000

144000

145000

146000

147000

148000

B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

clustering depth L = 2

1
 2
 3
 4
 5

140000

141000

142000

143000

144000

145000

146000

147000

148000

B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

clustering depth L = 3

1
 2
 3
 4

140000

141000

142000

143000

144000

145000

146000

147000

148000

B
ou

nd
in

g
B

ox
 C

os
t

Blocks per Cluster

clustering depth L = 4

Figure 4.16: “Bounding Box Cost” over a medium MCNC circuit “clma” (8383
CLBs) vs. clustering size with different clustering depth.

CHAPTER 4. HIERARCHICAL APPROACH 111

0
 10
 20
 30
 40
 50
 60
 70

11

12

13

14

15

16

17

C
PU

 ti
m

e

Blocks per Cluster

clustering depth L = 1

2
 4
 6
 8

11

12

13

14

15

16

17

C
PU

 ti
m

e

Blocks per Cluster

clustering depth L = 2

1
 2
 3
 4
 5

11

12

13

14

15

16

17

C
PU

 ti
m

e

Blocks per Cluster

clustering depth L = 3

1
 2
 3
 4

12

13

14

15

16

17

C
PU

 ti
m

e

Blocks per Cluster

clustering depth L = 4

Figure 4.17: “CPU time” over a medium MCNC circuit “tseng” (1047 CLBs) vs.
clustering size with different clustering depth.

CHAPTER 4. HIERARCHICAL APPROACH 112

0
 10
 20
 30
 40
 50
 60
 70

260

280

300

320

340

360

C
PU

 ti
m

e

Blocks per Cluster

clustering depth L = 1

2
 4
 6
 8

260

280

300

320

340

360

C
PU

 ti
m

e

Blocks per Cluster

clustering depth L = 2

1
 2
 3
 4
 5

260

280

300

320

340

360

C
PU

 ti
m

e

Blocks per Cluster

clustering depth L = 3

1
 2
 3
 4

260

280

300

320

340

360

C
PU

 ti
m

e

Blocks per Cluster

clustering depth L = 4

Figure 4.18: “CPU time” over a large MCNC circuit “clma” (8383 CLBs) vs.
clustering size with different clustering depth.

CHAPTER 4. HIERARCHICAL APPROACH 113

Circuit Ave. Max Min Cost Ave. Max Min CPU t.
name cost cost cost STDEV CPU t. CPU t. CPU t. STDEV

e64 2877 2897 2860 6 3 3 3 0
tseng 9662 9737 9555 77 13 14 13 1
ex5p 16444 16532 16365 74 13 14 12 1
alu4 19590 19754 19374 151 18 21 16 2
seq 25008 25426 24803 210 27 28 24 1

M.avg 17676 17862 17524 128 18 19 16 1
frisc 53763 54969 52190 1156 74 77 68 4
spla 62005 63852 59617 1736 92 102 81 8

ex1010 66471 67545 66020 620 138 152 123 12
s38584.1 68199 69430 66843 1218 187 194 172 11

clma 140680 142612 139339 1436 326 353 291 33
L.avg 78224 79682 76802 1233 163 176 147 14

Avg 46470 47275 45697 668 89 96 80 7

Table 4.7: Performance of hierarchical placer

provement at each level). The table clearly indicates that the clustering procedure,

on average, consumes less than 1% of the overall CPU time.

In addition, Table 4.9 shows the improvement of simple local search and hierar-

chical placement tool with respect to a random placement. On average, hierarchical

placement tool improved the quality of the original random placement by 73%.

4.4.4 Performance Comparison Between the New Hierar-

chical Placement Tool and GSA Based Placement tool

as well as VPlace

Table 4.10 and 4.11 compare the performance 3 of our hierarchical placement tool

with that of GSA (default) based placement tool and VPlace respectively.

From Tables 4.10 and 4.11, we can conclude that our hierarchical placement

3Comparison results are obtained according to equation: (V alue(GSA or V Place) −
V alue(hierarchical))/V alue(GSA or V Place) ∗ 100%.

CHAPTER 4. HIERARCHICAL APPROACH 114

Circuit Clustering Overall CPU t
name avg.CPU t avg.CPU t %

e64 0.01 3 0.36
tseng 0.08 13 0.64
ex5p 0.09 13 0.70
alu4 0.22 18 1.18
seq 0.13 27 0.52

M.avg 0.13 18 0.74
frisc 0.58 74 0.76
spla 0.35 92 0.39

ex1010 0.67 138 0.49
s38584.1 3.40 187 1.76

clma 2.79 326 0.84
L.avg 1.52 163 0.93

Avg 0.81 89 0.91

Table 4.8: Runtime comparison between the multilevel clustering procedure and
the overall hierarchical placement

Random clustering & Non-deterministic Hierarchical
Circuit random de-clustering simple local search placement tool
name Ave. Ave. Ave. Ave. Cost Ave. Ave. Cost

cost CPU t. cost CPU t. impro.% cost CPU t. impro. %

e64 7452 0 3816 0.23 48.79 2877 3 61.39
tseng 41285 0.02 13938 0.73 66.24 9662 13 76.60
ex5p 42301 0.02 20713 0.71 51.03 16444 13 61.13
alu4 61504 0.08 26134 0.93 57.51 19590 18 68.15
seq 79903 0.03 36418 1.21 54.42 25008 27 68.70

M.avg 56248 0.04 24301 0.90 57.30 17676 18 68.64
frisc 229152 0.19 88342 3.33 61.45 53763 74 76.54
spla 236251 0.11 96534 3.34 59.14 62005 92 73.75

ex1010 332664 0.21 99941 4.59 69.96 66471 138 80.02
s38584.1 559870 0.38 142213 10.19 74.60 68199 187 87.82

clma 796591 0.52 262927 14.15 66.99 140680 326 82.34
L.avg 430905 0.28 137991 7.12 66.43 78224 163 80.09

Avg 238697 0.15 79098 3.94 61.01 46470 89 73.64

Table 4.9: Solution improvement of simple local search and hierarchical placement
tool (L = 2, S = 4)

CHAPTER 4. HIERARCHICAL APPROACH 115

Circuit Ave.cost Max.cost Min.cost Ave.CPU t Max CPU t Min CPU t
name impro.% impro.% impro.% impro.% impro.% impro.%

e64 -0.17 -0.59 +0.14 0 0 0
tseng -2.31 -1.49 -3.15 +30.53 +28.50 +32.63
ex5p -1.01 -0.73 -0.94 +28.89 +27.37 +30.01
alu4 -0.80 -0.60 -0.79 +39.33 +32.90 +46.33
seq -0.57 -1.86 -0.22 +30.77 +33.81 +34.32

M.avg -1.17 -1.16 -1.27 +32.38 +30.65 +35.82
frisc -2.66 -4.31 -0.17 +40.80 +42.96 +41.38
spla -2.11 -3.64 +0.04 +31.85 +27.66 +37.69

ex1010 -0.87 -2.08 -0.59 +30.10 +28.97 +34.57
s38584.1 -3.84 -5.34 -2.21 +42.46 +41.47 +45.22

clma +0.14 -0.48 +0.49 +43.21 +41.36 +44.78
L.avg -1.87 -3.17 -0.49 +37.68 +36.54 +40.73

Avg -1.42 -2.11 -0.74 +30.59 +30.19 +36.03

Table 4.10: Comparison between GSA placer and hierarchical placer

Circuit Ave.cost Max.cost Min.cost Ave.CPU t Max CPU t Min CPU t
name impro.% impro.% impro.% impro.% impro.% impro.%

e64 -0.66 -0.52 -0.70 +78.46 +76.15 +80.00
tseng -2.85 -3.16 -2.03 +81.30 +80.41 +81.45
ex5p -1.34 -1.24 -1.45 +81.66 +80.56 +82.75
alu4 -2.24 -2.71 -1.62 +82.53 +80.59 +84.22
seq -1.10 -2.70 -0.42 +80.96 +80.69 +82.29

M.avg -1.88 -2.45 -1.38 +81.61 +80.56 +82.67
frisc -3.08 -3.84 -1.23 +81.14 +80.85 +82.25
spla -1.57 -3.78 +1.50 +77.80 +75.71 +79.95

ex1010 -1.49 -2.84 -1.01 +75.14 +73.19 +77.35
s38584.1 -5.04 -6.04 -3.84 +79.34 +78.98 +64.60

clma -0.21 -0.52 -0.04 +75.53 +73.86 +77.56
L.avg -2.28 -3.40 -0.92 +77.79 +76.51 +79.54

Avg -1.96 -2.73 -1.08 +79.36 +78.09 +80.84

Table 4.11: Comparison between VPlace and hierarchical placer

CHAPTER 4. HIERARCHICAL APPROACH 116

tool, on average, achieves 30% reduction in CPU time (1.4x faster) compared to

GSA (default) placement tool at the cost of a slight (less than 1.5%) increase of

the final placement cost. When compared with VPlace, on average, it achieves 79%

reduction in CPU time (4.8x faster) at the cost of a slight (less than 2%) increase

of the final placement cost.

Compared with the most recent FPGA chips that include over 10 million effec-

tive gates, our test circuits are quite small, even through they are the largest and

the most frequently cited benchmarks in the literature. For these undersized cir-

cuits, flat iterative algorithms, like GSA and VPlace simulated-annealing, perform

well within reasonable amount of CPU time. Furthermore, based on the experi-

ments conducted in Section 3.4.2, the solutions obtained by VPlace are close to

optimal. This prevents our hierarchical placement tool producing striking results,

similar to Timberwolf95, which yields total wirelength reductions of up to 9% while

consuming up to 7.5 times less CPU time in comparison to its flat counterpart.

4.5 Summary

In this chapter, a simple yet effective clustering method similar to the approach

used in [Sank99] was utilized and embedded into our implementation. The overall

approach strategy and their key tunable parameters of both the clustering formation

(clustering depth, clustering size) and placement algorithm (innerNum) used at

each level were presented. A novel method, which automatically calculates the start

parameters (start temperature T0, initial Rlimit) for VPlace simulated-annealing

algorithm in the bottom level, is provided. The search for the set of parameters

that provide the best quality and CPU time trade-off for our hierarchical placement

CHAPTER 4. HIERARCHICAL APPROACH 117

tool was described as well. In addition, some hierarchical placement related issues

are evaluated such as the performance of a clustering, de-clustering and simple local

search.

Placement results obtained by VPlace (described in section 3.4.2) and GSA (de-

scribed in section 3.7.3) were used as the metric of comparison for our placement

tool for both quality and runtime. The comparison results show that the new hier-

archical placement tool yields promising final quality, while consuming, on average,

1.4x less time measured with GSA placement tool and 4.7x less CPU time measured

with VPlace.

Chapter 5

Conclusions and Future Directions

5.1 Conclusion

In this thesis, two new approaches, which deal with the FPGA placement problem,

have been presented and investigated. A novel greedy iterative heuristic and a new

hierarchical heuristic were shown to provide excellent results. Both methods greatly

reduce the execution time of FPGA placement, while achieving the same quality of

placement, when compared to the placement quality record holder, VPlace.

In the first part of the thesis, we restricted our focus to an enhancement of

simulated-annealing algorithm (GSA), which attempts to solve the problem in

a top-down manner by considering all (flat) blocks simultaneously. By utilizing

part of the short term search history, GSA appears more greedy than simulated-

annealing used in VPlace, thus it effectively accelerates the convergence of a search.

On average, GSA with default parameter is 3.2x faster compared with VPlace at

the cost of only slightly (0.5%) deterioration of the final placement quality over ten

MCNC benchmark circuits. When we increase the runtime for GSA to obtain a

118

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 119

better solution, solution quality improves slightly (0.4%) with 1.7x speedup com-

pared with VPlace over the same suite of benchmarks. Furthermore, adaptively

altering the maximum distance between two swapping blocks has shown speeding

up the convergence of our heuristic significantly.

The size of FPGA designs is increasing at a substantial rate, and new effective

methods are needed. One approach, such as GSA, is utilized to speed up the conver-

gence of traditional time-consuming heuristics, e.g. simulated-annealing. Another

approach is to reduce the complexity of the problem itself, by restructuring the

original placement into a simplified form through multi-level clustering.

In our hierarchical approach, a simple yet effective clustering method in [Sank99],

which generates high-quality clusters in negiligible (less than 1%) CPU time com-

pared with the overall placement, is selected to complete the multi-level clustering.

The objective of this approach is to reduce the number of entities that need to be

considered and the number of interconnections between them, at each level of the

hierarchy. The smaller problem, consequently, reduces the degrees of freedom for

block moves, making advanced time-consuming methods feasible for today’s largest

FPGAs.

There are two type of schemes necessary to be investigated in the hierarchical

approach: those that control the clusters such as clustering depth and clustering

size and those that determine which available improvement method should be im-

plemented at each specific level. We explored various combinations of these two

schemes to find the best quality and time trade-off envelope. Results obtained

show that our hierarchical placement tool yields, on average, less than 2% worse

final placement quality and is 4.7x faster than VPlace over our test benchmark cir-

cuit suite. In addition, a novel adaptive technique, which automatically determines

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 120

the suitable initial parameters of VPlace simulated-annealing, is provided to effect

a smooth transition between different algorithms at different hierarchical levels.

5.2 Future Work

Our work has provided some research in the domain of FPGA fast placement.

However, there are many areas within this topic necessary to be explored more

thoroughly.

1. It would be interesting and beneficial to evaluate the performance of Genetic

Algorithm (GA) for FPGA placement, especially in the hierarchical approach.

GA has been proven to be effective in solving many search and optimization

problems including numerical function optimization, machine learning, combi-

natorial optimization tasks and so on. Iterative heuristics, like the simulated-

annealing algorithm, only look at one candidate solutions at one time, so they

do not build up an overall picture of the search space. In contrast, GA ex-

plores a problem in a parallel manner with a large set of population. In many

generations, it would give an exhaustive view of the whole search space.

2. Another interesting field worth investigation to speed up FPGA placement is

the parallel approach. Taking advantage of multi-processor computers, a few

small jobs that are divided from a large task can be executed at the same

time.

3. A constructive technique similar to GRASP or based on analytical mathemat-

ical technique can be used to create good initial starting point for the local

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 121

search at the highest level of the hierarchy, thus speeding the convergence of

the algorithm.

Appendix A

MCNC Benchmarks

Table A.1 shows the MCNC [Yang91] benchmark test suite used to measure the

performance of the heuristics in this thesis. This test suite consists of ten circuits

ranging from a few hundred CLBs to nearly ten thousand CLBs which are listed in

three groups according to the size. The small circuit is “e64”, the medium circuits

are “tseng”, “ex5p”, “alu4” and “seq”, and the large circuits are “frisc”, “spla”,

“ex1010”, “s38584.1” and “clma”.

The circuits included in the large and medium groups are all from the largest 20

MCNC logic benchmark circuits indicated in the work of Betz et al. [Betz97a]. They

are the largest benchmark circuits we can obtain from the literature, even though

they are a little bit dated from today’s deep-submicron view. These circuits are

the primary focus of this thesis and have been widely used in many FPGA physical

design publications [Mulp01] [Betz97a] [Betz99] [Betz97b] [Sank99] [Part01]. While

the small circuit used here is for completeness, it is not as valuable as the others

for drawing conclusions.

122

APPENDIX A. MCNC BENCHMARKS 123

Circuit FPGA Number of Number of Number of Average Maximum
name matrix CLBs I/O Pads Nets Fanout Fanout

e64 17x17 274 130 290 3.94 22
tseng 33x33 1047 174 1099 4.28 389
ex5p 33x33 1064 71 1072 4.73 324
alu4 40x40 1522 22 1536 4.52 250
seq 42x42 1750 76 1791 4.46 234
frisc 60x60 3556 136 3576 4.48 774
spla 61x61 3690 62 3706 4.73 215

ex1010 68x68 4598 20 4608 4.49 303
s38584.1 81x81 6447 342 6485 4.18 2742

clma 92x92 8383 144 8445 4.61 1170

Table A.1: MCNC Benchmark circuit suite used as test cases

Appendix B

FPGA Placement Problem

Illustration

Figure B.1 and Figure B.2 are output of VPR package [Betz00] which can give us

a vivid demonstration of the FPGA placement problem. The benchmark circuit

“e64” and target FPGA architecture (9x9 matrix) are all the same in these two

figures, while the physical location of CLBs and I/O pads are changed. Figure

B.1 shows the initial configuration whose bounding box cost equals to 3262.69

and figure B.2 shows the final configuration after simulated-annealing improvement

which has a much reduced bounding box cost 1905.76. The total wirelength is also

reduced that can be easily discovered from the reduction of the density of wire

tracks. Furthermore, the I/O pad pitch-to-logic block ratio, which is how many

pads available at each marginal block location, is set to 4.

124

APPENDIX B. FPGA PLACEMENT PROBLEM ILLUSTRATION 125

Initial Placement. Cost: 3262.69 BB Cost: 3262.69 TD Cost 0 Delay Cost: 0 	 d_max 0 Channel Factor: 100

i_2_

i_1_
i_3_

i_9_

i_4_ i_6_

i_0_
i_8_

i_5_

i_7_

[97]

[87]

[90] [91]

[96]

[72]

Figure B.1: Initial (random start) placement configuration of MCNC circuit “e64”
implemeting on a 9x9 FPGA. (courtesy of Jonathan Rose)

Placement. Cost: 1905.76 bb_cost: 1905.76 td_cost: 0 Channel Factor: 100 d_max: 0
i_6_

i_4_ i_9_

i_1_

i_0_
i_3_
i_7_
i_8_

i_2_

i_5_

[96]

[87]

[72]

[90]

[97]

[91]

Figure B.2: Final placement configuration of MCNC circuit “e64” implemeting on
a 9x9 FPGA. (courtesy of Jonathan Rose)

Appendix C

Acronym Glossary

ASIC: Application-Specific Integrated Circuit.

CAD: Computer-Aided Desigh.

CLB: Configurable Logic Block.

CPLD: Complex PLD.

FPD: Field-Programmable Device.

FPGA: Field-Programmable Gate Array.

GSA: Greedy Simulated-Annealing algorithm.

HDL: Hardware Description Language.

MCNC: Microelectronics Corporation of North Carolina.

MPGA: Mask-Programmable Gate Array.

NRE: non-recurring engineering

PLD: Programmable Logic Device.

SPLD: Simple PLD.

VLSI: Very Large Scale Integration.

VPR: Versatile Placement and Routing tool for FPGAs.

126

Bibliography

[Aart03] E. Aarts and J. K. Lenstra, “Local Search in Combinatorial Optimiza-
tion,” Princeton Universtiy Press, 2003.

[Alpe97a] C. J. Alpert, T. Chan, D. Huang, I. Markov, and K. Yan, “Quadratic
Placement Revisited,” ACM/IEEE Design Automation Conference, pp.
752–757, 1997.

[Alpe97b] C. J. Alpert, J. H. Huang, and A. B. Kahng, “Multilevel Circuit Parti-
tioning,” Proc. ACM/IEEE Design Automation coference, pp. 530–533,
1997.

[Arei01a] S. Areibi, M. Thompson, and A. Vannelli, “A Clustering Utility
Based Approach for ASIC Design,” 14th Annual IEEE International
ASIC/SOC Conference, Washington, DC, pp. 12–15, September 2001.

[Arei01b] S. Areibi, M. Xie, and A. Vannelli, “An Efficient Rectilinear Steiner
Tree Algorithm for VLSI Global Routing,” Canadian Conference on
Electrical and Computer Engineering, May 2001.

[Betz00] V. Betz and J. Rose, “VPR and T-VPack: Versatile Packing, Place-
ment and Routing for FPGAs Package ver 4.30,” Available from
http://www.eecg.toronto.edu/˜vaughn/vpr/vpr.html, 2000.

[Betz97a] V. Betz and J. Rose, “The FPGA Place-
and-Routing Challenge,” Available from
http://www.eecg.toronto.edu/˜vaughn/challenge/challenge.html,
1997.

[Betz97b] V. Betz and J. Rose, “VPR: A New Packing, Placement and Rout-
ing Tool for FPGA Research,” Proc. Intel. Workshop on Field Pro-
grammable Logic and Applications, pp. 213–222, 1997.

[Betz99] V. Betz, J. Rose, and A. Marquardt, “Architecture and CAD for Deep-
Submicron FPGAs,” Kluwer Academic Publishers, 1999.

[Brow92] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, “Field-
Programmable Gate Arrays,” Kluwer Academic Publishers, 1992.

127

BIBLIOGRAPHY 128

[Brow96] S. Brown, M. Khellah, and G. Lemieux, “Segmented Routing for Speed-
Performance and Routability in Field-Programmable Gate Arrays,”
Journal of VLSI Design, vol. 4, No. 4, pp. 275–291, 1996.

[Chan96] Y. W. Chang, D. Wong, and C. Wong, “Universal Switch modules for
FPGA design,” ACM transactions on Design Automation of Electronic
Systems, vol. 1, pp. 80–101, January 1996.

[Chen94] C. Cheng, “A accurate and Efficient Placement Routability Modeling,”
ICCAD, pp. 690–695, 1994.

[Coho86] J. P. Cohoon and W. D. Paris, “Genetic Placement,” Proc. IEEE Intl.
Conference on Computer-Aided Design, pp. 422–425, 1986.

[Cong94] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Based FPGA Designs,”
IEEE transactions on Computer-Aided Design, pp. 1–13, January 1994.

[Fidu84] C. M. Fiduccia and R. M. Mattheyses, “A Linear Time Heuristic for Im-
proving Network Partitions,” Design Automation Conference, pp. 175–
181, 1984.

[Ganl95] J. L. Ganley, “Geometric Interconnection and Placement Algorithms,”
Ph.D Thesis, University of Virginia, School of Engineering and Applied
Science, 1995.

[Gare79] M. R. Garey and D. S. Johnson, “Computers and Intractability: A
Guide to the Theory of NP-Completeness,” San Francisco, CA: Free-
man, 1979.

[Ghen02] H. Ghenniwa and S. Areibi, “Agent-Orientation for Evolutionary Com-
putation,” Proc. of the Genetic and Evolutionary Computation Confer-
ence, pp. 57–65, July 2002.

[Hage92] L. Hagen and A. B. Kahng, “A New Approach to Effective Circuit Clus-
tering,” IEEE International Conference on CAD, pp. 422–427, 1992.

[Huan86] M. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, “An Efficient
General Cooling Schedule for Simulated annealing,” ICCAD, pp. 381–
384, 1986.

[Karg86] P. G. Karger and B. T. Preas, “Automatic Placement: A Review of
Current Techniques,” IEEE Proc. of The 23rd DAC, Las Vegas, Nevada,
pp. 622–629, 1986.

[Kary97] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hy-
pergraph Partition: Applications in VLSI Domain,” Proc. ACM/IEEE
Design Automation coference, pp. 526–529, 1997.

[Kern70] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Parti-
tioning Graphs,” The Bell System Technical Journal, pp. 49(2):291–307,
1970.

BIBLIOGRAPHY 129

[Kirk83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Sim-
ulated Annealing,” Science, vol. 220, pp. 671–680, 1983.

[Klei91] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GOR-
DIAN: VLSI Placement by Quadratic Programming and Slicing Opti-
mization,” IEEE transactions on Computer-Aided Design, vol. 10, No.
3, pp. 356–365, March 1991.

[Krus56] J.B. Kruskal, “On the shortest spanning tree of a graph and the traveling
salesman problem,” Proc. of The American Mathematical society 7, pp.
48–50, 1956.

[Lam88] J. Lam, J. Delosme, and C. Sechen, “Performance of a New Annealing
Schedule,” Proc. 25th DAC coference, pp. 306–311, 1988.

[Mall89] S. Mallela and L. K. Grover, “Clustering based Simulated Annealing for
Standard Cell Placement,” Proc. Design Automation Conference, pp.
312–317, 1989.

[Marq00] A. Marquardt, V. Betz, and J. Rose, “Timing-Driven Placement for FP-
GAs,” FPGA 2000, ACM Symposium on FPGAs, pp. 203–213, February
2000.

[McMu88] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation Based Per-
formance Driven Router for FPGAs,” Proc. of the International Sym-
posium on FPGAs, pp. 111–117, February 1988.

[Mitr86] D. Mitra, R. Romeo, and A. Sangiovanni-Vincentelli, “Convergence and
Finite-Time Behavior of Simulated Annealing,” Advances in Applied
Probability, vol. 18, No. 3, pp. 747–771, 1986.

[Mulp01] C. Mulpuri and S. Hauck, “Runtime and Quality Tradeoffs in
FPGA Placement and Routing,” ACM/SIGDA Symposium on Field-
Programmable Gate Arrays, pp. 29–36, 2001.

[Part01] G. Parthasarathy, M. Marek-Sadowska, A. Mukherjee, and A. Singh,
“Interconnect Complexity-aware FPGA Placement Using Rent’s Rule,”
Proc. of System Level Interconnect Prediction, March 2001.

[Prim57] R. Prim, “Shortest connection networks and some generalizations,” Bell
System Technical Journal, pp. 36:1389–1401, 1957.

[Rose90] J. Rose, W. Klebsch, and J. Wolf, “Temperature Measurement and Equi-
librium Dynamics of Simulated Annealing Placements,” IEEE transac-
tions on Computer-Aided Design, vol. 9, No. 3, pp. 253–259, March
1990.

[Sait95] S. M. Sait and H. Youssef, “VLSI Physical Design Automation,” IEEE
Press, New Jersey, 1995.

[Sank99] Y. Sankar and J. Rose, “Trading Quality for Compile Time: Ultra-Fast
Placement for FPGAs,” Proc. of The 7th ACM/SIGDA Intl. Symposium
on FPGAs, pp. 157–166, 1999.

BIBLIOGRAPHY 130

[Schu72] D. M. Schuler and E. Ulrich, “Clustering and Linear Placement,” Proc.
Design Automation Workshop, pp. 50–56, 1972.

[Sech85] C. Sechen and A. Sangiovanni-Vincentelli, “The TimberWolf Placement
and Routing Package,” IEEE Journal of Solid-State Circuits, vol. 20,
No. 2, pp. 510–522, April 1985.

[Shah91] K. Shahookar and P. Mazumder, “VLSI Cell Placement Techniques,”
ACM Computing Surveys, vol. 23, No. 2, pp. 143–220, June 1991.

[Shin93] H. Shin and C. Kim, “A Simple Yet Effective Technique for Partition-
ing,” IEEE transactions on VLSI Systems, vol. 1, No. 3, pp. 380–386,
September 1993.

[Song92] L. Y. Song and A. Vannelli, “A VLSI Placement Method Using Tabu
Search,” Microelectronics Journal, vol. 11, No. 7, pp. 167–172, July
1992.

[Sun95] W. Sun and C. Sechen, “Efficient and Effective Placement for Very
Large circuits,” IEEE transactions on Computer-Aided Design Automa-
tion Conference, vol. 14, No. 3, pp. 349–359, March 1995.

[Swar90] W. Swartz and C. Sechen, “New Algorithms for the Placement and
Routing of Macro Cells,” ICCAD, pp. 336–339, 1990.

[Swar95] W. Swartz and C. Sechen, “Timing-Driven Placement for Large Stan-
dard Cell Circuits,” DAC, pp. 211–215, February 1995.

[Thom01] M. Thompson, “A Clustering Utility-Based Approach for ASIC Design,”
Master Thesis, Dept. of Electrical Engineering, University of Waterloo,
Waterloo, Ontario, Canada, 2001.

[Wong88] D. F. Wong, H. W. Leong, and C. L. Liu, “Simulated Annealing for
VLSI Design,” Kluwer Academic Publishers, 1988.

[Yang91] S. Yang, “Logic Synthesis and Optimization Benchmarks,” Tech. Report,
Microelectronics Center of North Carolina, 1991.

