

A HARDWARE/SOFTWARE CO-DESIGN APPROACH FOR

FACE RECOGNITION BY ARTIFICIAL NEURAL NETWORKS

A Thesis

Presented to

The Faculty of Graduate Studies

of

The University of Guelph

by

XIAOGUANG LI

In partial fulfilment of requirements

for the degree of

Masters of Science

August, 2004

c©Xiaoguang Li, 2004

2

ABSTRACT

A HARDWARE/SOFTWARE CO-DESIGN APPROACH FOR

FACE RECOGNITION BY ARTIFICIAL NEURAL NETWORKS

Xiaoguang Li

University of Guelph, 2004

Advisor:

Dr. Shawki M. Areibi

Artificial Neural Networks (ANNs), and the multi-layer perceptrons trained using an

error backpropagation algorithm (MLP-BP) in particular, have proven to be an effective

method today in many applications. However, this technique has suffered from slow

training and lack of clear methodology to determine the network topology before train-

ing starts. The speedup to this algorithm is desired so that reasonable experimentation

with various network topologies and on-line working are possible. Although Field Pro-

grammable Gate Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs)

can achieve speedup over a general processor, the flexibility is a tradeoff with speed. To

balance them, an embedded computing system consisting both a processor with dedicated

hardware on an FPGA chip is proposed. Results obtained show that this system achieves

1.69 speedup (Amdahl’s Law) over the system which consists of only a processor on an

FPGA chip. At the same time, the flexibility is preserved to some extent.

1

Acknowledgements

I would like to take this opportunity to express my sincere appreciation and thanks

to my adviser, Dr. Shawki M. Areibi for his great help and guidance, and also

the inspiration he provided me at difficult times. Without his support, criticism,

and invaluable help, this work would never have been possible. I would also like

to thank Dr. Medhat Moussa for his great guidance in investigating the effect of

different arithmetic formats in implementing Artificial Neural Networks on FPGAs.

This work provided a very good beginning to my research.

Special thanks to Dr. Bob Dony for his invaluable inspiration in the area of

Digital Signal Processing and great encouragement in the accomplishment of this

thesis.

Great thanks to my wife Xiaoyan Xu and my parents for their encouragement

and support at those difficult times.

i

To

my family

whose love and encouragement helped accomplish this

thesis.

ii

Contents

1 Introduction 1

1.1 Motivation and Objectives . 2

1.1.1 Motivation . 2

1.1.2 Objectives . 3

1.2 Overview of the research work . 4

1.3 Contributions . 6

1.4 Thesis outline . 6

2 Background 8

2.1 Artificial Neural Networks . 8

2.1.1 From Human Neurons to Artificial Neurons 9

2.1.2 The Backpropagation Algorithm 13

2.2 Field Programmable Gate Arrays (FPGAs) 25

2.2.1 Architecture of FPGAs . 26

2.2.2 Compile-time versus Run-time reconfigurations 31

2.3 Hardware/Software Co-design . 33

2.3.1 Early Stages . 34

iii

2.3.2 Current Stage . 36

2.3.3 Challenges in Co-design . 37

2.4 Face Recognition Methodologies . 38

2.4.1 Statistical Methods . 38

2.4.2 Artificial Neural Network based Approach 40

2.5 Summary . 41

3 Literature Review 42

3.1 FPGA-based Artificial Neural Networks 43

3.1.1 FPGA Data Representation 47

3.1.2 FPGA Transfer Function Implementation 48

3.2 ASIC-based Backpropagation Algorithm 50

3.3 Summary . 53

4 MLP-BP Implementations: Arithmetic Formats 54

4.1 Introduction . 54

4.2 Background . 55

4.2.1 Floating-point and Fixed-point Format 55

4.2.2 Analysis of Precision and Range 57

4.3 Ideal Data Format for MLP-BP Networks 59

4.4 RC Implementation of Floating-point and Fixed-point Adder and

Multiplier . 61

4.4.1 Implementation of Floating-point Adder 61

4.4.2 Implementation of Floating-point Multiplier 63

4.4.3 Implementation of a Fixed-point Adder: 66

iv

4.4.4 Implementation of a Fixed-point Multiplier: 70

4.5 Results and Discussion . 73

4.5.1 Effect of target device . 75

4.5.2 Tested formats and implementation details 78

4.5.3 Comparison of Various Formats: Area Requirements 80

4.6 A Pure Hardware XOR ANN . 86

4.7 Summary . 88

5 A Hardware/Software Co-design Approach 90

5.1 Target application description . 91

5.1.1 Working Strategy . 91

5.1.2 Face Images . 92

5.1.3 Input Encoding . 93

5.1.4 Output Encoding . 95

5.1.5 Network Graph Structure 96

5.2 A Pure Software Implementation 96

5.2.1 Initialization of the opb timer 97

5.2.2 Randomization . 99

5.2.3 The forward() function . 99

5.2.4 The backward() function . 101

5.2.5 The update() function . 104

5.2.6 ANN Parameters . 104

5.2.7 System Architecture . 104

5.2.8 Results . 107

v

5.3 Hardware Update Module (HUM) 109

5.3.1 System Architecture . 109

5.3.2 System Functionality . 114

5.3.3 Results . 124

5.3.4 Amdahl’s law [Henn95] . 126

5.4 Summary . 128

6 Conclusion 129

6.1 Future Work . 130

A Glossary 132

B Embedded Development Kit 134

C Xilinx MicroBlaze Soft Processor Core [Micr] 140

D Rapid prototyping board 143

E Computing Platforms 146

F MicroBlaze IP-Cores 149

F.1 MicroBlaze . 149

F.2 Xilinx MicroBlaze bus interfaces . 150

F.3 OPB Block RAM[httpi] . 152

F.4 OPB Block RAM Controller . 153

F.5 OPB JTAG UART[httpi] . 153

F.6 OPB UART Lite[httpi] . 154

vi

F.7 OPB Timer/Counter[httpi] . 155

F.8 OPB GPIO[httpi] . 157

Bibliography 158

vii

List of Tables

4.1 An Example of Fixed-point Addition 70

4.2 An example of Unsigned Serial Multiplication 73

4.3 Logic Resources of Spartan-IIE and Virtex-II FPGAs 75

4.4 Fixed-point Configurations . 79

4.5 Floating-point Configurations . 79

4.6 Result from Fixed-point Operators 81

4.7 Results from Pavle’s Floating-point Operators 81

4.8 Results from Pavle’s Floating-point Operators 84

4.9 The Results of XOR ANN . 88

5.1 Chosen Parameters of ANN . 105

5.2 FPGA Usage . 108

5.3 The Profiling Result for Prof. Tom’s Code 108

5.4 The Profiling result C Code Running on MicroBlaze 108

5.5 The FPGA Usage on HUM . 126

5.6 Profiling on Co-implement System 127

viii

List of Figures

1.1 Research Path . 5

2.1 A Biological Neuron . 9

2.2 An Artificial Neuron Model . 10

2.3 A Processing Element within a Neuron 11

2.4 The Multi-layer Perceptron Structure ANN 12

2.5 The Logistic Sigmoid Function Plot 20

2.6 The Hyperbolic Tangent Sigmoid Plot 21

2.7 Virtex-II Architecture Overview . 27

2.8 Virtex-II CLB Element . 28

2.9 A Corase Description of A Slice . 29

2.10 A Detailed Description of A Slice 30

2.11 An Illustration of Compile-Time and Run-Time Reconfiguration . . 32

2.12 The Different Basic Models of Reconfigurable Computing: Single

Context, Multi-Context and Partially Reconfigurable. 33

2.13 Target Architecture for Hardware/Software Partitioning 35

3.1 An Approximation of Sigmoid Function by Lookup Table Method . 50

ix

3.2 ASIC-Based Neural Network Categories 51

4.1 IEEE Standard 754-1985 Format 56

4.2 Format of a Fixed-point Number 57

4.3 Config#1: 4-bit Floating-point vs. Fixed-point 58

4.4 Normalized Numbers (β = 2,p = 3,emin = −1,emax = 2) 58

4.5 4-bit Fixed-point Representation (fractional part:2 bits) 58

4.6 Config#2: 4-bit Floating-point vs. Fixed-point 59

4.7 4-bit Fixed-point Representation (fractional part:3 bits) 59

4.8 Pipelined Floating-point Adder . 64

4.9 A Pipelined Floating-point Multiplier 67

4.10 The Top View of Fixed-point Adder 68

4.11 A Ripple Carry Adder Inside the Top View of Fixed-point Adder . 68

4.12 A Carry Lookahead Adder Inside the Top View of Fixed-point Adder 69

4.13 Implementation of a Pipelined Fixed-point Multiplier 71

4.14 Unsigned Serial Multiplier . 72

4.15 Unsigned Parallel Multiplier . 74

4.16 Spartan-IIE vs. Virtex-II Implementation of the Floating-point Adder 76

4.17 Spartan-IIE vs. Virtex-II Implementation of the Floating-point Mul-

tiplier . 77

4.18 Fixed-point Multipliers with Different Lengths 80

4.19 Fixed-point vs Floating-point Adder Configurations 82

4.20 Fixed-point vs Floating-point Multipliers Configurations 82

4.21 Fixed-point vs Floating-point Formats for a Single PE (Spartan-IIE) 83

x

4.22 Fixed-point vs Floating-point Formats for a Single PE (Virtex-II) . 84

4.23 The MLP-BP Network for XOR problem 86

4.24 The Top View of the XOR ANN Implementation 87

4.25 The Architecture inside of the Feedforward Module 87

5.1 Supervised Training Diagram . 92

5.2 Testing Process Diagram . 92

5.3 An Example of Face Images . 93

5.4 Mapping an Image to ANN . 95

5.5 Pseudo Code of Backpropagation Algorithm for Face Recognition . 98

5.6 Pseudo Code for Starting opb timer 98

5.7 Pseudo Code for Stopping opb timer 99

5.8 Pseudo Code for Random Parameters Process 100

5.9 Pseudo Code for forward() Function 102

5.10 Pseudo Code for backward() Function 103

5.11 Pseudo Code for Software update() Function 105

5.12 MicroBlaze System for Face Recognition 106

5.13 System Architecture . 110

5.14 The Block Diagram of HUM . 111

5.15 FSL Interface . 112

5.16 Connecting HUM via FSL Interface onto MicroBlaze 113

5.17 Pseudo Code for Hardware update() Function 116

5.18 Illustration of Fetching Data from FSL0 to HUM 117

5.19 The State Transition Diagram . 119

xi

5.20 Waveform to Illustrate how FSM Works 120

5.21 Block Diagram of Update Unit . 120

5.22 Rounding and Normalizing . 122

5.23 IEEE Single Precision Adder . 123

5.24 IEEE Single Precision Multiplier Using Pavle’s Library 125

B.1 Embedded Software Tool Architecture 135

B.2 Hardware Platform Creation . 137

B.3 Verification Platform Creation . 137

B.4 Software Platform . 138

B.5 Software Application Creation and Verification 139

C.1 MicroBlaze RISC 32-Bit Soft Processor System Interconnect Diagram142

D.1 Xilinx Multimedia Development Board 144

E.1 Comparison Between Different Platform in Terms of Performance

and Flexibility . 148

F.1 MicroBlaze Core Block Diagram . 150

F.2 MicroBlaze Bus Configurations . 151

F.3 Timer/Counter Organization . 156

xii

Chapter 1

Introduction

An Artificial Neural Network (ANN) is an information-processing paradigm that

is inspired by the biological nervous system, i.e. the human brain. The key ele-

ment of this paradigm is the novel structure of the information processing system.

It is composed of a large number of highly interconnected parallel processing ele-

ments (neurons) working together to solve specific problems. ANNs, like people,

learn by example. An ANN is configured for a specific application, such as pattern

recognition [Song97] or data classification, through a learning process. Learning in

biological systems involves adjustments to the synaptic connections that exist be-

tween the neurons. The most common architecture in ANNs consists of multi-layer

perceptrons trained using an error backpropagation algorithm (MLP-BP) [Rume86].

One of the main problems in training such a network is the lack of a clear method-

ology to determine the network topologies before training starts. Experimenting

with various topologies is difficult due to the long time required for each training

session, especially with large networks. The network topology is an important fac-

1

CHAPTER 1. INTRODUCTION 2

tor in the network’s ability to generalize after the training is completed. A larger

than needed network may over-fit the training data and results in poor general-

ization on the testing data, while a smaller than needed network may not have

the computational capacity to approximate the target function. Furthermore, in

applications where on-line training is required, the training time is often a critical

parameter. For these reasons, it is desirable to speed up the latter. This allows for

reasonable experimentation with various network topologies and the ability to use

them in on-line applications.

1.1 Motivation and Objectives

ANNs have broad applicability to real world problems. In fact, they have al-

ready been successfully applied in many industries. Since neural networks are

best at identifying patterns or trends in data, they are well suited for prediction

or forecasting needs, including sales forecasting, industrial process control, cus-

tomer research, data validation, risk management, target marketing, etc. To be

more specific, ANNs are used in the following specific paradigms: texture analysis

[CBus93]; three-dimensional object recognition [Rosa94]; hand-written word recog-

nition [Blum98, BV98]; loan underwriting [EC88]; medical diagnoses [DGB88]; and

face recognition [Toh02, Lin97, Lawr97].

1.1.1 Motivation

Face recognition is employed in large-scale citizen identification applications, surveil-

lance applications, law enforcement applications such as booking stations, and

CHAPTER 1. INTRODUCTION 3

kiosks. ANNs have proven to be an effective way to solve the face recognition

problem, but because of the long time training process, this approach is not suit-

able for real-time applications which are desirable in most face recognition applica-

tions. In order to accelerate the training process, hardware like ASICs or FPGAs

is used. On the other hand, we still need the flexibility to some extent. Using

a Hardware/Software Co-design methodology to design a system containing both

dedicated hardware and software (i.e. a processor) is preferred. Today, the capac-

ity of FPGAs has reached the point where both software and dedicated hardware

can be implemented simultaneously. This is an excellent platform for implementing

ANNs. In this way, the most time-consuming part of the MLP-BP algorithm could

be implemented by programmable logic of a FPGA to achieve acceleration, while

the rest could be implemented by software (i.e., a processor implemented inside the

same FPGA) to preserve the flexibility.

1.1.2 Objectives

The objective of this thesis is to investigate flexibility vs. performance tradeoff

in implementing MLP-BP onto a Reconfigurable Computing (RC) platform (i.e.

FPGA) for solving the face recognition problem. To reach the overall goal, the

objectives were identified as follows:

• To evaluate floating-point vs. fixed-point operations from RC point of view.

Identifying the type of operations used is very crucial in RC implementation

of ANNs.

• To evaluate a pure MicroBlaze [Micr] processor system on a Virtex-II FPGA

CHAPTER 1. INTRODUCTION 4

developing board with the functionality of solving face recognition problem

by an ANSI C program on a MicroBlaze processor for the backpropagation

algorithm.

• To evaluate an Embedded computing system on the same Virtex-II FPGA

developing board with the functionality of solving face recognition problem

by ANSI C program on MicroBlaze for part of the backpropagation algorithm

and dedicated hardware for the rest of the backpropagation algorithm.

1.2 Overview of the research work

The overall research path presented in this thesis is illustrated in Figure 1.1.

To solve the face recognition problem by an ANN, first a software implementa-

tion was evaluated on a PC workstation. From this evaluation, several drawbacks

were identified including the long processing time required in the training phase,

etc. In order to overcome these problems, the FPGA design style was chosen as a

means to achieve speedup. Prior to this, a basic investigation of different arithmetic

formats for implementing ANNs on FPGAs was conducted. Some interesting re-

sults were identified in that floating-point operators were feasible for implementing

ANNs. Two implementations that tradeoff flexibility and performance were de-

signed. The first implementation used a soft processor core implemented onto the

FPGA to achieve the functionality of a MLP-BP ANN in solving the face recognition

problem. In the second implementation, a hardware/software approach utilizing a

soft core and dedicated hardware modules was used. In this implementation, the

dedicated hardware is designed to execute of the most time-consuming part of the

CHAPTER 1. INTRODUCTION 5

INVESTIGATION
(different arithmetic formats for
implementing ANNs on FPGAs)

IMPLEMENTATION #1
(pure processor on FPGA)

COMPARISON

To solve face recognition
 problem by ANN

Targeting FPGA

Results

IMPLEMENTATION#2
(processor with dedicated
 hardware on FPGA)

(software implementation on PC workstation)
EVALUATION

Figure 1.1: Research Path

CHAPTER 1. INTRODUCTION 6

MLP-BP and the processor is used for the rest of the MLP-BP. The comparison

drawn on these two implementations shows that the second implementation has a

better performance in terms of speed meanwhile the flexibility is preserved to a

certain degree.

1.3 Contributions

The main contributions can be summarized as follows:

• Investigating different arithmetic architectures and formats for implementing

ANNs on FPGAs.

• Construction of two embedded computing systems for implementing ANNs

in solving the face recognition problem.

• Publication of the above mentioned results in the Canadian Journal of Elec-

trical and Computer Engineering (CJECE) [XL].

Research performed in this thesis should allow other researchers interested

in accelerating learning by ANN to effectively map it onto any RC platform

(i.e., FPGAs).

1.4 Thesis outline

Chapter 2 introduces the necessary background used in this thesis including ANNs,

FPGAs, Hardware/Software Co-design, and the face recognition problem. Chap-

ter 3 provides an overview of previous efforts at implementing ANNs on FPGAs

CHAPTER 1. INTRODUCTION 7

and ASICs. Chapter 4 presents a study on the effect of different arithmetic formats

for implementing ANNs on FPGAs. Chapter 5 presents the proposed approach

to implementing an MLP-BP ANN for solving the face recognition problem. The

thesis concludes in Chapter 6 with possible directions for future work.

Chapter 2

Background

In this Chapter, all necessary background related to Artificial Neural Networks

(ANNs), Field Programmable Gate Arrays (FPGAs), and Hardware/Software Co-

design will be introduced.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are intelligent information processing systems

that are inspired by the biological nervous systems (i.e., the human brain). In

human brains, a typical neuron shown in Figure 2.1 collects signals from other

cells through a host of fine structures called dendrites. The neuron sends out

spikes of electrical activities through long, thin structures known as axons, which

split into thousands of branches. At the end of each branch, a structure called a

synapse converts the activity from the axon into electrical effects that inhibit or

excite activity in the connected neurons. When a neuron receives excitatory input

8

CHAPTER 2. BACKGROUND 9

that is sufficiently large compared with its inhibitory input, it sends a spike of

electrical activity down its axon. Learning occurs by changing the effectiveness of

the synapses so that the influence of one neuron on another changes.

Dendrite

Synapse

Axon

Nucleus

Cell body

Figure 2.1: A Biological Neuron

2.1.1 From Human Neurons to Artificial Neurons

Inspired by a biological neuron, an artificial neuron is constructed as shown in

Figure 2.2. All information collected by dendrites is accumulated and then followed

by a threshold function, and finally sent through the axon.

ANNs are typically composed of interconnected units which serve as the artificial

neuron shown in Figure 2.2. The function of the synapse is modeled by a modifiable

weight, which is associated with each connection. Each unit converts the pattern of

CHAPTER 2. BACKGROUND 10

Dendrites

Summation Thresholds

Cell body

Axon

Figure 2.2: An Artificial Neuron Model

incoming activities that it receives into a single outgoing activity that it broadcasts

to other units. It performs this conversion in two stages shown in Figure 2.3:

• It multiplies each incoming activity by the weight on the connection and sums

all these weighted inputs to get a quantity called the total input.

• A unit uses an input-output transfer function that transforms the total input

into the outgoing activity.

The behaviour of an ANN depends on both the weights and the input-output

function (transfer function) that is specified for the units. Typically, a sigmoid

function is used, in which the output varies continuously but not linearly as the

input changes.

CHAPTER 2. BACKGROUND 11

W1j

W2j

WNj
W AjM j

Incoming Neural Activations (A)
Multiplied by Individual Multiplied by Individual

jk

Output Neural Activations (A)

A =f[]
i=1

N

W

W

A

A

A

1

2

N

j1

j2

A

A

j

jW A +ij i jj

Connection Weights (W)ij

i j

Connection Weights (W)

Figure 2.3: A Processing Element within a Neuron

Sigmoid hidden and output units usually use a ”threshold” term (θj) of Figure

2.3 in computing the net input to the unit.

Consider a multi-layer perceptron with any of the usual sigmoid activation func-

tions. Chosen any hidden unit or output unit, if there are N inputs to that unit,

which define an N-dimensional space, the given unit draws a hyperplane through

that space, producing an “on” output on one side and an “off” output on the other.

The weights determine where this hyperplane lies in the input space. Without

a threshold term, this separating hyperplane is constrained to pass through the

origin of the space defined by the inputs. For some problems that’s OK, but in

many problems the hyperplane would be much more useful somewhere else. If you

have many units in a layer, they share the same input space and without threshold

they would all be constrained to pass through the origin.

CHAPTER 2. BACKGROUND 12

To construct a neural network that performs a specific task, we have to deter-

mine the connectivity among neurons and identify the appropriate weights of the

connections. The connection determines the influence of a neuron over another,

whereas the weights specify the strength of the influence.

The most common type of ANN is a multi-layer perceptron structure shown in

Figure 2.4. The network consists of one input layer, several hidden layers and an

output layer.

Layer 0 Layer [M−1] Layer MLayer 1

Neuron 1

Neuron2

Input Layer Hidden Layers Output Layer

Neuron [N−1]

Neuron N

Figure 2.4: The Multi-layer Perceptron Structure ANN

• The activity of the units in the input layer represents the raw information

which is fed into the network.

• If the unit is in the hidden layer right after the input layer, the activity of

each hidden unit is determined by the activities of the input units and the

weights on the connections between the input layer and the current hidden

layer. If the unit is in other hidden layers, the activity of each hidden unit is

CHAPTER 2. BACKGROUND 13

determined by the activities of the previous hidden layer and the weights on

the connections between the previous hidden and the current hidden units.

• The behaviour of the output units depends on the activity of the previous

hidden units and weights between the previous hidden and output units.

This network may be trained to perform a particular task by the following

procedure:

• presenting the network with training examples, which consist of a pattern of

activities for the input units together with the desired pattern of the activities

for the output units.

• determining how closely the actual output of the network matches the desired

output.

• changing the weight of each connection so that the network produces a better

approximation of the desired output.

To train an ANN to perform some tasks, we must adjust the weights of each

unit in such a way that the error between the desired output and the actual

output is reduced. Among the learning algorithms, backpropagation algorithm

is the most widely used training method which is introduced next.

2.1.2 The Backpropagation Algorithm

1. Encoding: Figure 2.4 shows a multi-layer perceptron ANN architecture.

Each circle of the network is a neuron node or a processing element (PE).

CHAPTER 2. BACKGROUND 14

The input stimulus comes to the input nodes of ANN (left side of Figure 2.4)

and emerges at the output nodes (right side of Figure 2.4). The input to

output mapping is performed by minimizing a cost function. The weight con-

nections and threshold adjustments are made according to the error between

the computed and desired output PE values. Usually, the squared error is

used, which is the squared difference between the computed and desired out-

put values for each output PE across all patterns in the training set. Other

cost functions which can be employed are the entropic cost function, the linear

error, and the Minkowski-r backpropagation (the rth power of the absolute

value of the error).

The weight adjustment procedure is derived by computing the change in the

cost function with respect to the change in each weight and threshold. This

derivation is extended to find the equation for adapting the connections be-

tween the input and the hidden layers.

In order to explain backpropagation algorithm [Hayk99] in detail, some no-

tations should be introduced. Using a three-layer perceptron ANN as an

example:

Notation

• The indices i, h and o refer to different neurons in the network. Neuron

i lies in the input layer, neuron h lies in the hidden layer, and neuron o

lies in the output layer.

• ai refers to the value of ith input node.

• bh refers to the value of hth hidden node.

CHAPTER 2. BACKGROUND 15

• co refers to the value of oth output node, and ck
o refers to the desired

value of oth output node.

• do refers to error at the output of neuron o, and eh refers to the error at

the output of neuron h.

• θh and θo refer to the value of threshold of neuron h and o.

• E refers to the instantaneous sum of error squares.

• vih denotes the synaptic weight connecting input layer (i) to hidden layer

(h). 4vih is the correction applied to this weight.

• who denotes the synaptic weight connecting hidden layer (h) to output

layer (o). 4who is the correction applied to this weight.

• The activation function describing the input-output functional relation-

ship of the nonlinearity is denoted by f(·).

• α is the learning rate. This parameter is used to control the speed of

adjustment to neuron parameters (i.e. neuron weights or thresholds).

2. The BP Training Algorithm:

(a) Error: The activation value of a hidden unit is given by

bh = f(
∑

i

vihai + θh) (2.1)

where bh is the activation value of a hidden layer unit. The activation

value for an output unit is

CHAPTER 2. BACKGROUND 16

co = f(
∑

h

whobh + θo) = f(
∑

h

whof(
∑

i

vihai + θh) + θo) (2.2)

where co is the activation value of an output layer unit. The error or

discrepancy between the calculated and desired value of an output layer

unit can be calculated as following:

E =
1

2

∑

o

[ck
o − co]

2 =
1

2

∑

o

[ck
o − f(

∑

h

whof(
∑

i

vihai + θh) + θo)]
2 (2.3)

This is a continuous, differentiable function and, therefore, we can per-

form a gradient descent.

(b) From Hidden Layer to Output Layer: First, let us look at the

weight changes on the connections from the hidden layer to the output

layer over p input-output training pairs.

4who = −η
δE

δwho

(2.4)

= η
p

∑

[ck
o − co]f

′(
∑

h

whobh + θo)bh (2.5)

= η
p

∑

dobh (2.6)

4θo = −η
δE

δθo

(2.7)

CHAPTER 2. BACKGROUND 17

= η
p

∑

[ck
o − co]f

′(
∑

h

whobh) (2.8)

= η
p

∑

do (2.9)

where

do = f ′(
∑

h

whobh + θo)[c
k
o − co] (2.10)

In summary, the weight change can be written as

4who = αdobh (2.11)

4θo = αdo (2.12)

If the threshold function is the sigmoid f(x) = 1
1+e−x then the derivative

of this function can be expressed in terms of itself as do = co(1−co)(c
k
o −

co), and so the change in connection weight can be expressed as

4who = α[co(1 − co)(c
k
o − co)]bh (2.13)

(c) From Input Layer to Hidden Layer: Weight changes on the con-

nections from the input layer to the hidden layer are calculated by dif-

ferentiating E with respect to vih, using the chain rule:

CHAPTER 2. BACKGROUND 18

4vih = −η
δE

δvih

= −η
p

∑ δE

δbh

δbh

δvih

(2.14)

= η
p

∑

[ck
o − co]f

′(
∑

h

whobh + θo)whof
′(

∑

i

vihai + θh)ai(2.15)

= η
p

∑

dowhof
′(

∑

i

vihai + θh)ai (2.16)

= η
p

∑

ehai (2.17)

and

4θh = −η
δE

δθh

= −η
p

∑ δE

δbh

δbh

δθh

(2.18)

= η
p

∑

[ck
o − co]f

′(
∑

h

whobh + θo)whof
′(

∑

i

vihai + θh)(2.19)

= η
p

∑

dowhof
′(

∑

i

vihai + θh) (2.20)

= η
p

∑

eh (2.21)

where

eh = f ′(
∑

i

vihai + θh)
∑

h

whodo (2.22)

Thus, the weight change is 4vih = βaieh and 4θh = βeh once again by

using the Logistic threshold function:

CHAPTER 2. BACKGROUND 19

eh = bh(1 − bh)
∑

h

whodo (2.23)

and

4vih = βai[bh(1 − bh)
∑

h

whoco(1 − co)(c
k
o − co)] (2.24)

(d) In General...

The general form of a weight change is

4wpq = η
∑

patterns

dOUTPUT × VINPUT (2.25)

where dOUTPUT depends on the layer and

• the last layer uses Equation 2.10, and

• the other layers use Equation 2.22.

and VINPUT represents the appropriate input-end activation.

(e) The Threshold Function

Now let us examine the threshold function in detail. The general form

of the Logistic function is the following equation:

fβ(x) =
1

1 + e−2βx
(2.26)

where β is a steepness parameter (often 1
2

or 1). The derivative of this

function is

CHAPTER 2. BACKGROUND 20

f ′

β = 2βf(1 − f) (2.27)

Now if the steepness parameter is 1
2

then f ′(x) = f(1− f) = cj(1− cj).

The plot of a Logistic function is plotted in Figure 2.5 .

−10 −8 −6 −4 −2 0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Logistic sigmoid function

0.5

Figure 2.5: The Logistic Sigmoid Function Plot

The general form of the Hyperbolic Tangent function is

fβ(x) = tanhβx (2.28)

=
(1 − e−βx)

(1 + e−βx)
(2.29)

CHAPTER 2. BACKGROUND 21

The derivative of this function is

f ′

β(x) = β(1 − f 2) (2.30)

If β = 1 then f ′(x) = (1 − c2
j) and it is plotted in Figure 2.6.

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Hyperbolic tangent sigmoid function

Figure 2.6: The Hyperbolic Tangent Sigmoid Plot

As you can see in Figure 2.5 and Figure 2.6, Hyperbolic Tangent func-

tion and Logistic function are all sigmoid curves, but the output ranges

offered are different. The Hyperbolic Tangent function offers a larger

output (-1,1) range than the Logistic function (0,1). In practice, for bi-

nary (0/1) targets, the Logistic function is a good choice [Jord95], for

continuous-valued targets with a bounded range, the Logistic and Hy-

perbolic Tangent functions can be used, provided you either scale the

CHAPTER 2. BACKGROUND 22

outputs to the range of the targets or scale the targets to the range

of the output activation function (“scaling” means multiplying by and

adding appropriate constants).

3. Vanilla Version Backpropagation Among the different versions of back-

propagation algorithm, the vanilla version backpropagation is popular and

easy to implement. Due to these advantages, it is chosen as the one imple-

mented in this thesis. It minimizes the squared error cost function and

uses three-layer elementary backpropagation topology. It is known as the

generalized delta rule.

(a) The Encoding Algorithm

i. Assign random values in the range [+1,-1] to all input to hidden

connections, vih, all hidden to output connections, who, to each hid-

den processing element (PE) threshold, θh, and to each output PE

threshold, θo.

ii. For each pattern pair (Ak, Ck), do the following:

• Process Ak’s values to calculate the new hidden layer PE acti-

vations using:

bh = f(
n

∑

i=1

aivih + θh) (2.31)

where f(·) is the Logistic sigmoid threshold function

f(x) = (1 + e−x)−1 (2.32)

CHAPTER 2. BACKGROUND 23

• Filter the hidden layer activation to the output layer using

co = f(
n

∑

h=1

bhwho + θo) (2.33)

• Compute the error between computed and desired output PE

value using

do = co(1 − co)(c
k
o − co) (2.34)

• Calculate the error of each hidden PE relative to each do with

eh = bh(1 − bh)
q

∑

o=1

whodo (2.35)

• Adjust the hidden to output connections by

4who = αbhdo (2.36)

where δwho is the amount of change made to the connection from

the hth hidden layer PE to the oth output layer PE and α is a

positive constant controlling the learning rate.

• Adjust the output layer threshold by

4θo = αdo (2.37)

• Adjust the input to hidden connections by

CHAPTER 2. BACKGROUND 24

4vih = αaieh (2.38)

where α is a positive constant controlling the learning rate.

• Adjust the hidden layer thresholds by

4θh = αeh (2.39)

• Repeat step 2 until do are all either zero or sufficiently low.

iii. The Recall Mechanism The recall mechanism consists of two

feed-forward operations:

A. create the hidden layer PE values

bh = f(
n

∑

i=1

aivih + θh) (2.40)

B. after all hidden layer PE activations have been calculated they

are used to create new output layer PE values

co = f(
n

∑

h=1

bhwho + θo) (2.41)

iv. Convergence backpropagation is not guaranteed to find the global

error minimum during training, only the local error minimum. But

empirical evidence has shown that this is not much of a problem

for most practical applications of the algorithm. Simple gradient

descent is very slow because we have information only about one

point and no clear picture of how the cost surface may curve. The

CHAPTER 2. BACKGROUND 25

use of small steps takes forever, but big steps may cause divergent

oscillations across ”ravines” in the cost surface.

The successful employment of the multi-layer perceptron using back-

propagation learning entails a consideration of many factors:

• the number of hidden layer PEs,

• the size of the learning rate parameters, and

• the amount of data necessary to create the proper mapping.

A three-layer ANN using backpropagation can approximate a wide

range of functions to any desired degree of accuracy. If a mapping

exists, then it can usually find it.

2.2 Field Programmable Gate Arrays (FPGAs)

FPGAs are chips which are programmed by the customer to perform the desired

functionality. The chip may be programmed once (Anti-fuse technology), several

times (Flash technology), or dynamically (SRAM technology).

• Anti-fuse FPGAs: devices are configured by burning a set of fuses. Once

the chip is configured, it cannot be altered.

• Flash FPGAs: devices may be re-programmed several thousand times and

are non-volatile, i.e., keep their configuration after power-off.

• SRAM FPGAs: currently this kind of FPGA is the dominating technol-

ogy, and they can be re-programmed without limit. In order to load the

CHAPTER 2. BACKGROUND 26

configuration into FPGA after power-on, additional circuitry is required. Re-

configuration is very fast, and some devices even allow partial re-configuration

during operation.

2.2.1 Architecture of FPGAs

Several families of FPGAs are available from different semiconductor companies.

These device families differ slightly in their architecture and feature set. How-

ever most of them follow a common approach: A regular, flexible, programmable

architecture of Configurable Logic Blocks (CLBs) surrounded by a perimeter of

programmable Input/Output Blocks (IOBs). These functional elements are inter-

connected by a powerful hierarchy of versatile routing channels.

The architecture implemented by Xilinx Virtex-II FPGAs is shown in Fig-

ure 2.7, since this FPGA is used in this thesis. In this block diagram, four major

elements are organized in a regular array:

• CLBs provide the functional elements for the combinatorial and synchronous

logic, including basic storage elements. BUFTs (3-state buffers) associated

with each CLB element drive dedicated segmentable horizontal routing re-

sources.

• Block SelectRAM provides large 18 Kbit storage elements of dual-port

RAM.

• Multiplier blocks are 18-bit × 18-bit dedicated multipliers.

• Digital Clock Manager (DCM) provides a self-calibrating, fully digital

CHAPTER 2. BACKGROUND 27

solution for clock distribution delay compensation, clock multiplication and

division, and coarse- and fine-grained clock phase shifting.

Configurable Logic

Programmable I/Os

Global Clock Mux

DCMDCM IOB

CLB Block Select RAM Multiplier

Figure 2.7: Virtex-II Architecture Overview

As can be seen in Figure 2.7, the CLBs form the central logic structure with

easy access to all support and routing structures. The IOBs are located around all

the logic and memory elements for easy and quick routing of signals on and off the

chip.

Values stored in static memory cells control all the configurable logic elements

and interconnect resources. These values are loaded into the memory cells on

power-up, and can be reloaded if necessary to change the function of the device.

The CLBs of the Virtex-II FPGA are organized in an array and are used to

build combinatorial and synchronous logic designs. Each CLB element is tied to a

CHAPTER 2. BACKGROUND 28

switch matrix to access the general routing matrix, as shown in Figure 2.8 where

four slices are included. Each slice contains two 4-input function generators, carry

logic, arithmetic logic gates, wide function multiplexors, and two storage elements.

A single slice is shown in Figure 2.9 where each 4-input function generator is pro-

grammable as a 4-input LUT, 16 bits of distributed SelectRAM memory, or a 16-bit

variable-tap shift register element. The output from the function generator in each

slice drives both the slice output and the D input of the storage element. Figure

2.10 shows the detailed structure of a single slice.

Figure 2.8: Virtex-II CLB Element

CHAPTER 2. BACKGROUND 29

Figure 2.9: A Corase Description of A Slice

CHAPTER 2. BACKGROUND 30

Figure 2.10: A Detailed Description of A Slice

CHAPTER 2. BACKGROUND 31

2.2.2 Compile-time versus Run-time reconfigurations

FPGAs as a kind of re-programmable device have a wide use in RC area in which

some general-purpose hardware agent is configured to carry out a specific task, but

can be reconfigured on demand to carry out other specific tasks.

From a time domain point of view, there are two kinds of reconfigurations

of FPGAs: Compile-Time Reconfiguration (CTR) and Run-Time Reconfiguration

(RTR) both illustrated in Figure 2.11. As can be seen, the configuration of the

re-programmable device will not change after it is running in CTR, whereas differ-

ent configurations are mapped in and out on the re-programmable device after it

starts. If the task to be solved can be mapped simultaneously, CTR offers better

performance in terms of speed over RTR, because only one configuration time is

considered. However, when the task to be loaded onto FPGAs is too complex to

be loaded simultaneously, RTR is an alternative to swap different configurations in

and out of the FPGAs as they are needed during the execution.

A few different configuration memory styles can be used with reconfigurable

systems, as shown in Figure 2.12. A single context device is a chip in which the

complete configuration has to be set by serial programming bits. Currently most

of the commercial FPGAs are of this variety. To implement RTR on this kind of

device, the configurations must be grouped into full contexts, and the complete

contexts are swapped in and out of the device as required.

A multi-context device has multiple layers of programming bits, so that each

layer can be active at a different moment. A fast-context switch is the main ad-

vantage of a multi-context FPGA over a single-context FPGA. The multi-context

CHAPTER 2. BACKGROUND 32

�����������
�����������
�����������

�����������
�����������
�����������

Compile−time
Reconfiguration

Moment 1 Moment nMoment 2

Moment n
Moment 2Moment 1

Run−time
Reconfiguration

Figure 2.11: An Illustration of Compile-Time and Run-Time Reconfiguration

design allows one context to be configuring while another is in execution.

Some devices can be selectively programmed without a complete reconfiguration

and are called partially reconfigurable. This kind of device is also suitable for RTR

because it allows configurations which occupy only a part of the total area to

be configured onto the FPGA without removing all of the configurations already

present. In this way, the configuration time is less than a full-chip reconfiguration

due to the reduction of data traffic.

Although RTR can offer more room for complex tasks, several issues are still un-

der improvement. The first big issue is the compilation issue that is not encountered

by CTR. Compilers must have the ability to consider the run-time reconfigurabil-

ity when generating the different circuit configurations, not only to be aware of

the increase in time-multiplexed capability, but also to schedule reconfigurations

CHAPTER 2. BACKGROUND 33

���������
���������
���������
���������

���������
���������
���������

���������
���������
���������

Placement&
Routing

Placement&
Routing

Placement&
Routing

���������
���������
���������
���������

Incoming configuration

����������������
	�	�	�	�	�	
	�	�	�	�	�	

�
�
�
�
�

�
�
�
�
�

���������
���������
���������
���������

�
�
�
�

�
�
�
�

�
�
�
�

���������
���������
���������

Placement&
Routing

Placement&
Routing

Placement&
Routing

�������
�������
�������
�������

���������
���������
���������
���������

��������������
���������
���������
���������
���������

(before configuration) (after configuration)

Single Context

(before configuration) (after configuration)

Incoming configuration Partially Reconfigurable

(before configuration) (after configuration)

Incoming configuration

Multi−Context

Figure 2.12: The Different Basic Models of Reconfigurable Computing: Single Con-
text, Multi-Context and Partially Reconfigurable.

so as to minimize the configuration time overhead. The second issue is how to

minimize the configuration time. Compression techniques are introduced to de-

crease the amount of configuration data that must be transferred to the FPGA;

optimization techniques can be used to prevent unnecessary reconfiguration events

from happening (i.e. a cache for reconfigurable hardware might help to provide a

faster reconfiguration).

2.3 Hardware/Software Co-design

The term Hardware/Software Co-design appeared in the early 1990s. Although

microprocessors had been used for over a decade at that point, microprocessor-

based systems were almost board-level systems. There were designers whose work

CHAPTER 2. BACKGROUND 34

was to integrate microprocessors with standard hardware components on a board.

Assembly language was widely used in this kind of system. These designers were

separate from IC designers, whose work was to design Integrated Circuits (ICs) on

chips.

However, people clearly realized that the microprocessor-based system design

would also become important to IC designers. Moore’s law 1 indicates people

that IC chips would eventually be large enough to comprise both CPU and other

dedicated hardware subsystems.

Hardware/Software Co-design emerged as a kind of technology to assist re-

searchers and designers in handling/managing embedded system design. Hard-

ware/Software Co-design can predict through analysis methods if a system meets

its performance, power, and size; and synthesis methods which can be used to

rapidly evaluate many potential designs.

2.3.1 Early Stages

The SOS system [SPra92] designed by Prakash and Parker was one of the earliest

Co-design efforts. The system could not only synthesize an arbitrary multiprocessor

topology, but also schedule and allocate processes onto the multiprocessor. The

mixed integer-linear program model which was used to solve synthesis problem was

slow and could not deal with large problems.

1The observation made in 1965 by Gordon Moore, co-founder of Intel, that the number of
transistors per square inch on integrated circuits had doubled every year since the integrated
circuit was invented. Moore predicted that this trend would continue for the foreseeable future.
In subsequent years, the pace slowed down a bit, but data density has doubled approximately
every 18 months, and this is the current definition of Moore’s Law, which Moore himself has
blessed.

CHAPTER 2. BACKGROUND 35

The SOS system mainly dealt with multiprocessors, whereas one year later the

partitioning of hardware/software surfaced as an important first step in creating

models and algorithms for systems containing both CPU and dedicated hardware.

The Vulcan system from Stanford [RKGu93] and the Cosyma system from the

Technical University of Braunschweig [RErn93] were based on this kind of system.

Hardware/Software partitioning maps a design onto the architecture, as shown

in Figure 2.13, where a CPU and one or more application-specific ICs are integrated

in a system.

Figure 2.13: Target Architecture for Hardware/Software Partitioning

In early designs, the ASIC and CPU were generally assumed to be located on

separate chips, whereas today they can be embedded into only one chip. In this

kind of architecture, the computationally intensive tasks should be moved to ASIC

and the rest of the work should be moved to the processor.

Both Vulcan and Cosyma captured specification of system functionality and

constraints by a C-like program. The strategy of hardware/software partitioning

CHAPTER 2. BACKGROUND 36

was determined by the analysis of the performance and cost of various implemen-

tations. Vulcan started with all functionality in hardware and moved operations

to CPU to minimize cost. Cosyma, on the other hand, put all functionality on the

CPU and moved operations to ASIC to meet a certain performance.

The performance analysis on hardware, software and the whole system was

very important in both Vulcan and Cosyma system. The goal of hardware design

was to determine the maximum clock frequency. The goal of software performance

analysis was to solve the problem similar to a well-known hardware problem: worst-

case execution time. The analysis on the whole system was to determine a solution

which meets the cost and performance requirements.

Both Cosyma and Vulcan used single-threaded computational models, where

CPU sat idle while the ASIC was performing its work.

2.3.2 Current Stage

Hardware/Software Co-design quickly took off after several problems were tackled.

Co-simulation is a big component of a Co-design methodology in which mixed ab-

straction levels are simulated to validate the design. At this time, the performance

was traded off for accuracy in simulating various implementations.

Becker, Singh and Tell [DBec92] proposed a Co-simulator that linked a hardware

simulator to executions of application software in 1992. Another work on simulation

was introduced in the Ptolemy environment [ea94].

The worst-case execution time problem for software attracted more attention.

Li, Malik and Wolfe [YT95] developed an implicit path-analysis algorithm which

proved to be efficient.

CHAPTER 2. BACKGROUND 37

The means to evaluate the system performance is yet another important issue

in Co-design. Rate-monotonic scheduling [CLLi73] received attention as a method

for analyzing the performance of a set of processes on a single CPU. Yen and

Wolf [TY98] proposed a multiprocessor performance algorithm that analyzed the

performance of a set of processes on a network of processors.

Hardware cost estimation, methods for targeting more general architectures,

the low power issue, and system implementation issues such as interface generation

also attracted a lot of attention in the Co-design area.

Today some FPGAs from several manufacturers contain not only programmable

logic but also CPUs as well. The problem with this type of architecture is the

communication between CPU and ASIC. Delays such as physical communication

delay, synchronization delay, etc. can nullify any performance achieved by ASIC.

The kind of language that should be used to describe the whole system is another

issue. C programming language is good for describing algorithms, but not good

for specifying concurrent systems. Hardware Description Languages (HDLs) like

VHDL and Verilog are geared more toward hardware.

2.3.3 Challenges in Co-design

Although some of the problems in Hardware/Software Co-design have already been

solved, several long-standing problems still remain. What computational models

should be used to describe hardware and software systems? How can system-level

performance be analyzed precisely? What kind of memory should be used? Are

there any other better architectures? How can system-level power be managed

effectively? All these issues need to be tackled by researchers in the near future.

CHAPTER 2. BACKGROUND 38

2.4 Face Recognition Methodologies

The research interest in face recognition grew tremendously during the 1990’s. One

of the main reasons for this growth is studies on neural network classifiers. Gen-

erally, two major approaches can be used to solve the face recognition problem:

geometrical local feature-based methods, and holistic template matching-based sys-

tems. In the first approach, local features (such as eye, nose, mouth, hair, etc.) are

extracted and then standard statistical pattern recognition techniques or neural net-

work approaches are employed for matching faces. One of well-known geometrical-

local feature-based methods is the Elastic Bunch Graph Matching (EBGM[Wisk99])

technique. Apart from EBGM, the whole face region is processed using the Holistic

approach. In this method, the features are extracted from the whole face region.

One of the methods for extracting features in a holistic system is to apply sta-

tistical methods like Principal Component Analysis (PCA). In addition to these

two approaches, ANN method can also be used on the whole face image to achieve

identification. The well-known algorithm in ANN is backpropagation algorithm, in

which the gradient descent method is used to adapt neuron parameters to recog-

nize each pattern fed into the network. The recognition methods are reviewed as

statistical and neural network-based approaches respectively.

2.4.1 Statistical Methods

Basically, statistical methods include two kinds of approaches. The first approach

is a template matching-based system. In this system, the training and testing face

images are matched by measuring the correlation between them. Another approach

CHAPTER 2. BACKGROUND 39

is a projection-based method like Principal Component Analysis (PCA) and Linear

Discriminant Analysis (LDA), etc. The second approach attempts to overcome the

drawback of the first approach where the classification work takes place on the

whole image which has extremely high dimensionality.

• Template Matching: Brunelli and Poggio [Brun93] compared a geometric

feature-based technique with a template matching-based system. The sim-

plest template matching compares the image (2-D intensity values) with a

single template using a distance metric.

Although matching raw images to achieve recognition works under limited

circumstances, the largest drawback is obvious where the result is very sen-

sitive to face orientation, size, variable lighting conditions and noise. The

reason behind this phenomenon is that extremely high dimensionality is used

in recognition. In order to reduce the dimensionality, some methods for fea-

ture extraction such as projection-based system are required.

• Face Detection and Recognition by PCA

The Eigenface Method of Turk and Pentland [Turk91] is one of the most fa-

mous in literature, and is based on the Karhunen-Loeve expansion. In their

method, face images are treated as 2-D data, and the classification of face im-

ages is achieved by projecting them on to the eigenface space which contains

eigenvectors obtained by the variance of the face images. The method was

applied to a database of 2500 face images of 16 subjects, digitized at all com-

binations of 3 head orientations, 3 head sizes and 3 lighting conditions. The

experiment results show that the system is robust to illumination changes,

CHAPTER 2. BACKGROUND 40

but degrades quickly when the scale changes.

• Face Recognition by LDA

Etemad and Chellappa [Etem97] proposed a method using Linear/Fisher Dis-

criminant Analysis (LDA) for the face recognition process. The LDA of faces

provides a small set of features that carries the most relevant information

for classification purposes. The features are obtained through eigenvector

analysis of scatter matrices with the objective of maximizing between-class

variations and minimizing within-class variations. The result is an efficient

projection-based feature-extraction and classification scheme. For a medium-

sized database of human faces, excellent classification accuracy is achieved

with the use of very-low-dimensional feature vectors.

2.4.2 Artificial Neural Network based Approach

Neural Network approaches can be used in face recognition in both a geometrical

local-feature based manner and a holistic manner.

2.4.2.1 Geometrical-local feature-based ANN

Temdee et al. [PT99] proposed a frontal view face recognition method by using

fractal codes which are determined by a fractal encoding method from the edge

pattern of the face region (covering eyebrows, eyes and nose). The obtained fractal

codes are fed as inputs to a backpropagation Neural Network for identifying an

individual. The ORL face database is chosen to test their system. A correct

recognition rate of 85% was reported.

CHAPTER 2. BACKGROUND 41

2.4.2.2 Holistic-based ANN

Applying the backpropagation algorithm on the intensity values of the face im-

age can also achieve high rate recognition [Mitc97]. The detailed explanation of

this method was presented in Section 2.1. Since it was proven to be an effective

method for solving facial recognition problem, determining how to implement the

backpropataion algorithm in both a flexible and fast way is an interesting task. In

this thesis, two embedded computing implementations are proposed. Results ob-

tained show that a system containing both dedicated hardware and a soft processor

achieves both flexibility and performance.

2.5 Summary

In this Chapter, the face recognition problem is introduced as the test application

of MLP-BP ANNs; FPGA is the RC platform and Hardware/Software Co-design

is the approach used to design systems containing both dedicated hardware and a

processor. In the next Chapter, a literature survey on implementing ANNs onto

FPGAs and ASICs is presented.

Chapter 3

Literature Review

A detailed comparison of existing computing platforms which can be used to im-

plement Artificial Neural Networks (ANNs) is provided in Appendix E. General

computers are flexible platforms widely used to implement algorithms. However,

ANNs are inherently distributed processing elements connected together which can-

not be efficiently implemented by a traditional sequential computer architecture.

Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Ar-

rays (FPGAs) are two platforms which are widely used when acceleration of ANNs

is desired. A system containing both hardware and software (i.e., processor) is

rarely used in implementing ANNs. In this Chapter, past efforts on implementing

ANNs onto FPGAs and ASICs will be reviewed.

42

CHAPTER 3. LITERATURE REVIEW 43

3.1 FPGA-based Artificial Neural Networks

FPGA-based reconfigurable computing architectures are well suited to implement

ANNs due to their concurrency and rapid reconfigurable nature. With this nature,

the weights and topologies of ANN can be easily configured onto FPGAs. Past

efforts made at implementing ANNs onto FPGAs will be reviewed. This is fol-

lowed by the analysis of signal representation and transfer function used in each

implementation.

RRANN [Eldr94] is a run-time reconfiguration implementation of backpropaga-

tion algorithm using Xilinx XC3090 FPGAs. In this implementation, the backprop-

agation algorithm is divided into three sequentially executed stages: feed-forward,

back-propagation and update. There is only one stage used at any given time,

which makes more hardware resources available for each stage. The RRANN archi-

tecture was proven to be capable of converging on a training set and also learning

important generalities about that training set. Results show 92% of approximations

were within two quantization errors (1/16) of the actual value tested by realistic

inputs. With random inputs, 88% of approximations were within two quantization

errors. The target application of RRANN is to learn how to approximate centroids

of fuzzy sets. The RRANN was a successful run-time reconfigurable ANN archi-

tecture capable of implementing non-trivial neural network algorithms by adding

small amounts of hardware. Moreover, more neurons can be easily added by simply

connecting another FPGA to the bus, making RRANN very scalable. In addition,

the size of the network is not limited by the total number of neurons in the network

but by the number of neurons in the largest layer. The improvement that might be

CHAPTER 3. LITERATURE REVIEW 44

made to RRANN to increase the resolution of some key data types so that it could

converge for more applications.

Hikawa [Hika99] created another on-chip learning 1 Multilayer Neural Network

(MNN). Instead of run-time configuration, this implementation uses compile-time

configuration where all stages are implemented at the same time. A tri-state acti-

vation function yields an algorithm that replaces multiplication by a simple com-

bination of AND and SHIFT operations. Similarly, the derivative of the activation

function required for backpropagation is replaced by a tri-state function. Although

the modifications or the simplifications to the activation function make MNN suit-

able for hardware implementation to 2D classifying problems, it cannot guarantee

that other applications could be solved by MNN.

Beuchat et al. [JB98] created an FPGA platform - REconfigurable Network

COmputer, called RENCO. Four Altera FLEX 10k130 FPGAs work around a stan-

dard commercial general-purpose processor (Motorola MC68en360) as a coprocessor

in this system, and the target application was hand-written character recognition.

Due to the existence of processor and reconfigurable hardware at the same time,

RENCO can be used to implement backpropagation using Hardware/Software Co-

design. However, the author did not mention how to partition the backpropagation

algorithm.

Ferrucci and Martin [Ferr94, Mart94] developed a platform called Adaptive Con-

nectionist Model Emulator (ACME) which contains multiple Xilinx XC4010 FP-

GAs. ACME was successfully used to learn the 2-input XOR problem [Ferr94] by

1On-chip learning occurs when the learning algorithm is implemented in hardware. Offline

learning occurs when learning (i.e., modification of neural weights and thresholds) has already
been done before the hardware system is implemented.

CHAPTER 3. LITERATURE REVIEW 45

implementing a 3-input, 3-hidden, and 1-output network. However the learning ca-

pability of the system architecture is only verified by high-level software simulation.

Another platform created by Skrbek [Skrb99] is referred to as ECX system. ECX

could implement perceptron and Radial Basis Function (RBF) neural networks, and

several applications such as parity problem, digit recognition, inside-outside test,

and sonar signal recognition are tested on this system. Since the linear approxima-

tion is used for functions such as 2x, logx
2 , sigmoid-like, and gauss-like functions,

the precise results cannot be produced which might have a negative influence on

the use of this system.

The above systems are efforts at implementing backpropagation algorithm on

a multi-layer perceptron structure neural network. In addition to MLP-BP type,

other types of ANN also exist.

Flexible Adaptable-Size Topology (FAST) was built by – Perez-Uribe [PU99b]

in which three different kinds of un-supervised neural networks – adaptive reso-

nance theory (ART), adaptive heuristic critic (AHC), and Dyna – SARSA were

implemented. In the first implementation of FAST, an ART-based neural network

is implemented to solve a color image segmentation problem. A 294×353 with 61-

color pixel image of Van Gogh’s Sunflowers painting is successfully segmented by

four FAST neurons into four color classifications. The AHC-based neural network

is implemented in the second implementation of FAST, called FAST-AHC. The in-

verted pendulum problem [PU99a] is the target problem to be solved by this system.

Results obtained show that FAST-AHC couldn’t generalize as well as the backprop-

agation algorithm, but it learns fast and more efficiently. The final implementation

of FAST uses a Dyna-SARSA neural network [PU99a]. The target application of

CHAPTER 3. LITERATURE REVIEW 46

this system is to control a stand-alone mobile robot for obstacle avoidance.

Although FAST was the first FPGA implementation of un-supervised learning

ANN, the main limitation was its application on toy problems.

De Garis et al. [HdG97, dG02] built a system, called CAM-Brain Machine

(CBM), in which an evolutionary neural network was implemented based on evolu-

tionary techniques. 2 In this system, a genetic algorithm (GA) was used to evolve

a cellular automata (CA) neural network. First, the genetic algorithm’s phenotype

chromosome (the configuration data of each cellular automata) was initialized to

dictate how the network grows. This was followed by letting the topology of a

neural network module ’grow’.

CBM is the world’s largest3 evolving neural network to date, which includes 75

million neurons. It is successful in function approximation/prediction applications,

such as a 3-bit comparator, a timer, and a sinusoidal function. De Garis’s long-term

goal was to create a modular4 neural networks using CBM.

Besides De Garis, other researchers such as Nordstrom [Nord95], Taveniku and

Linde [Tave95] also tried to implement modular neural networks onto a FPGA-

based platform. Nordstrom created a system called REMAP-α, and later REMAP-

β was created by Taveniku and Linde. The difference between these two systems

is the size of FPGA densities used. The REMAP-α uses Xilinx XC3090 FPGAs,

whereas REMAP-β uses Xilinx 4025 FPGAs.

2Please refer on Yao’s [Yao99] work of Evolutionary Neural Network

3This has been confirmed by Guinness Book of World Records

4An in-depth survey of modular neural networks is presented in [Auda99].

CHAPTER 3. LITERATURE REVIEW 47

3.1.1 FPGA Data Representation

The performance of an ANN is highly dependent on the range and precision of

data representation used. In the backpropagation algorithm, the limited range and

precision of a certain data representation will increase the quantization error of

neuron weights and thresholds. Too large a quantization error will prevent the

algorithm from being convergent. The choice of a suitable data representation for

a certain application is a very important decision that has to be made.

Four kinds of data representation are discussed here: Frequency-based method,

bit-stream arithmetic method, fixed-point representation, and floating-point rep-

resentation. A detailed discussion of the fixed-point and floating-point issue is in

Chapter 3.

1. Frequency-based method [SM00]: This is a time-dependent data representa-

tion, because it counts the number of analog spikes in a given time window.

This kind of method is very popular in analog hardware implementation of

ANNs.

2. Bit-stream arithmetic method [Reyn99, Hika03]: This is a method in which

a stream of randomly generated bits is used to represent a real number. The

probability of the number of bits that are ‘1’ is the value of the real num-

ber. The advantage of this method is that the required multiplications can

be reduced to simple logic operations. The disadvantage of the bit-stream

arithmetic method is the lack of precision. In addition, the multiplication

between two bit-streams is correct only if the bit-streams are not correlated.

3. Fixed-point representation [KNic02]: This representation is reported to be

CHAPTER 3. LITERATURE REVIEW 48

the most popular representation in FPGA-based ANN architectures. This

is mainly because it has acceptable range and precision for a large set of

applications, while the FPGA area consumed by this representation is less

than the floating-point representation.

4. Floating-point representation [KNic02]: This representation is very popular

in general purpose computers to represent a real number. Until now, no suc-

cessful floating-point ANN implementation has been reported. The reason

is that although this kind of representation has very little quantization er-

ror, the hardware implementation of most floating-point operations is more

complex than its fixed-point counterpart.

3.1.2 FPGA Transfer Function Implementation

The backpropagation algorithm looks for the minimum of the error function in

weight space using the method of gradient descent. The combination of weights

which minimizes the error function is considered to be a solution to the learning

problem. Since this method requires computation of the gradient of error function at

each iteration step, the continuity and differentiability of the error function must be

guaranteed. That is why a transfer function must be used, and the sigmoid function

is the most popular one. In FPGA implementation, two methods are popular for

implementing sigmoid function. One way is to use Taylor series of sigmoid function

for approximation and the other way is lookup table method.

1. Taylor series method: Galindo et al. [GHML98] proposed an implementation

of the sigmoid activation function 3.1 which yielded an error of 4.48% with

CHAPTER 3. LITERATURE REVIEW 49

respect to the continuous case. In this implementation, positive and negative

numbers are treated separately. Here, INT(n) is the integer part of the number

n and FRAC(n) is the fractional part (n is 2’s complement binary coding).

aold(n) =















1
2
× 1

2INT (n) ×
1

1+FRAC(n)
n <= 0

1 − 1
2
× 1

2INT (n) ×
1

1+FRAC(n)
n > 0

(3.1)

Inspired by Galindo’s implementation, Marco et al. [httpb] proposed a bet-

ter implementation generated by Taylor Series. The resulting function 3.2

gives an error of 0.51% with respect to the continuous model in the sigmoid

function.

anew(m) =































































0.571859 + (0.392773)m + (0.108706)m2+

(0.014222)m3 + (0.000734)m4 −∞ < m <= −1.5

1
2

+ 1
4
m − 1

48
m3 + 1

480
m5 −1.5 < m < 1.5

0.428141 + (0.392773)m− (0.108706)m2+

(0.014222)m3 − (0.000734)m4 1.5 <= m < ∞

(3.2)

2. Lookup table method: The lookup table method is fairly easy, in which uni-

form samples are taken from the center of a sigmoid function and are stored

in a table for lookup. The region outside the center of the sigmoid function

is still approximated in a piece-wise linear fashion.

Gilberto et al. [Cont02] implemented an activation function using a lookup

table (in the form of an ROM) that approximates the sigmoid function:

CHAPTER 3. LITERATURE REVIEW 50

f(a) =
10

1 + e
−a

8

(3.3)

The sigmoid function has been approximated by taking only 16 sample values

equidistant from each other. Figure 3.1 shows how this approximation is

performed.

Figure 3.1: An Approximation of Sigmoid Function by Lookup Table Method

3.2 ASIC-based Backpropagation Algorithm

There is a rich history of attempts in implementing ANNs by ASIC (Applica-

tion Specific Integrated Circuits). The Neurochips are built from dedicated neural

ASICs. These neurochips can be digital, analog or hybrid (Figure 3.2).

CHAPTER 3. LITERATURE REVIEW 51

Neurocomputers

Analog Digital

Hybrid

Figure 3.2: ASIC-Based Neural Network Categories

• Digital Neurochips: Digital Neural ASICs are very powerful and mature neu-

rochips. Digital techniques offer high computational precision, and high relia-

bility. The disadvantage is the relatively large circuit size compared to analog

implementations.

Two well-known digital Neurochips are CNAPS [McCa91] and SYNAPSE-1

[RU93]. These Neurochips were designed for a wide range of neural network

algorithms. In addition to these, NESPINN (Neurocomputer for Spiking Neu-

ral Networks), designed at the Institute of Microelectronics of the Technical

University of Berlin, was optimized more strictly to a certain class of neural

networks: spiking neural networks. Since biological neurons use short and

sudden increases in voltage to send information known as action potentials,

spikes or pulses, spiking neural networks using pulse coding model neurons

on a level relating more closely to biology. One NESPINN-Board is designed

to compute about 105 programmable neurons in real-time [JA96].

CHAPTER 3. LITERATURE REVIEW 52

• Analog Neurochips: Analog electronics have some interesting characteristics

that can be used directly for neural network implementation. For example,

operational amplifiers (OpAmps), are easily built from single transistors and

automatically perform neuron-like functions, such as integration and sigmoid

transfer. The advantage of analog neurochips is their high speed. The dis-

advantages are the susceptibility to noise and process-parameter variations

that limit computational precision. Another problem is the representation of

adaptable weights which limit the applicability of analog circuits. Weights

can be represented by resistors, but these are not adaptable after the produc-

tion of the chips. Capacitors, floating gate transistors, charge couple devices

(CCDs), etc. allow for adaptable weights. However, the problems with these

techniques arise from process-parameter variations across the chip, limited

storage times, and lack of compatibility with standard VLSI processing tech-

nology. Although analog chips will never reach the flexibility attainable with

digital chips, their speed makes them very attractive. Some successful analog

chips are Intel ETANN [H90] and [MY93] [H94].

• Hybrid Neurochips: Hybrid Neurochips tend to combine both digital and

analog technique in implementing ANN systems. The Epsilon [CS92] chip

is a hybrid neurochip that uses pulse coding techniques. The Epsilon chip

consists of 30 nodes and 3600 synaptic weights. With this chip, it is possible

to implement robust and reliable networks using the pulse stream technique.

CHAPTER 3. LITERATURE REVIEW 53

3.3 Summary

This Chapter reviewed previous efforts in implementing ANNs onto FPGAs and

ASICs. These two kinds of platforms are suitable for implementing ANNs due to

the parallelism achieved which is a good match for the inherent distributed structure

of ANNs. The next Chapter focuses on the data representation used to implement

ANNs on FPGAs. Two arithmetic formats are compared in terms of precision range

and FPGA area for implementing ANNs on FPGAs.

Chapter 4

MLP-BP Implementations:

Arithmetic Formats

4.1 Introduction

An important consideration for implementing an ANN on FPGAs is the arithmetic

representation format. The problem is to achieve a balance between the need for

numeric precision, which is important for network accuracy and speed of conver-

gence, and the cost of logic areas (i.e. FPGA resources) associated with increased

precision. While standard floating-point representations (i.e 32 and 64 IEEE float-

ing point formats) offer adequate precision, they require more FPGA resources than

other area-efficient arithmetic representations, such as less precise floating and fixed

point formats.

This Chapter explores the area vs. precision design trade-off by examining the

implementation of basic components of an artificial neural network using various

54

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 55

fixed point and floating point formats. We discuss the required resources for each

implementation and the impact on implementing ANN on FPGAs. This Chapter

is organized as follows. Section 4.2 covers background materials regarding floating-

point and fixed-point arithmetic format and multi-layer perceptron artificial neural

networks. Section 4.3 presents previous work in approaching the precision vs. area

trade-off. The implementation of different floating-point and fixed-point adders

and multipliers is discussed in Section 4.4. This is followed by Section 4.5 which

compares area consumption of floating-point and fixed-point adders and multipliers

in an FPGA.

4.2 Background

4.2.1 Floating-point and Fixed-point Format

• Floating-point format: In general, a floating-point number is represented

as ±d.dd...d× βe. More precisely ±d0.d1d2...dp−1 × βe represents the number

±(d0 + d1β
−1 + ... + dp−1β

−(p−1))βe, (0 ≤ di < β) (4.1)

Where β is called the base (which is always assumed to be even) and e is called

the exponent and p is the precision. For example, if β = 10 and p = 3 then

the number 0.1 is represented as 1.00× 10(−1). If β = 2 and p = 24, then the

decimal number 0.1 cannot be represented exactly but can be approximately

represented by 1.10011001100110011001101× 2(−4). The exponent is said to

have a biased representation when the value of the exponent is

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 56

e = k − (βm−1 − 1) (4.2)

Where k is the value of the exponent bits interpreted as an unsigned integer

and m is the number of bits in the exponent. The floating-point number is

said to be a normalized number when d0 is ‘1’ in equation 4.1.

One of the most common floating point formats is the IEEE 754-1985 format[ANSI85].

In this format, for single precision numbers, β = 2, p = 24, m = 8, and

e = k − 127. The value of the floating point number can then be obtained

from equation 4.1 as

v = −1s(1.f)2e (4.3)

Where f is called the significant (a.k.a. mantissa) and equal to p − 1 = 23.

The bit representation of this format is illustrated in Figure 4.1. The first

bit is a sign bit where (−1)sdetermines whether it is a positive number or a

negative number.

e(biased 127)S f

Most Significant bit Least Significant bit

1 8 23

Figure 4.1: IEEE Standard 754-1985 Format

• Fixed-point Format:

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 57

The representation of fixed-point is illustrated in Figure 4.2. There are two

parts in a fixed-point number. One is the integer part which is bws−1 to b4

and the other is the fractional part which is b3 to b0 as illustrated in Figure

4.2. If the base of this fixed-point number is β and it is a positive number,

the decimal equivalent value can be calculated by:

bws−1β
ws−5 + ... + b4 + b3β

−1 + b2β
−2 + b3β

−3 + b4β
−4 (4.4)

If the base of fixed-point number is 2, the value is determined by the type of

representation used (generally 2’s complement is used).

bws−1 bws−2 b5 b4 b
3

b2 b1 b0

Most Significant Bit Radix Point Least Significant Bit

Figure 4.2: Format of a Fixed-point Number

4.2.2 Analysis of Precision and Range

To understand the difference between floating-point and fixed-point representa-

tions, we will examine an example using a 4-bit format. In order to simplify the

comparison, negative numbers are avoided therefore the sign bit is not included.

Figure 4.3 shows a 4-bit floating-point and 4-bit fixed-point number.

• Floating-point: The smallest number in this representation is decimal 0.5

((1.00)2 × 2−1) and the largest number is decimal 7 ((1.11)2 × 22). Precision

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 58

exponent mantissa

Floating−Point Fixed−Point

fractional partinteger part

Figure 4.3: Config#1: 4-bit Floating-point vs. Fixed-point

for numbers < 1 is 0.125 while precision for numbers > 4 is 1. There are 16

normalized numbers in this representation as shown in Figure 4.4

0 1 2 3 4 5 6 7

Figure 4.4: Normalized Numbers (β = 2,p = 3,emin = −1,emax = 2)

• Fixed-point: The smallest number is (0.00)2 which is decimal 0 and the

largest number is (11.11)2 which is decimal 3.75. Precision is constant at

0.25. There are 16 numbers in this representation as shown in Figure 4.5.

0 1 2 3 3.75

Figure 4.5: 4-bit Fixed-point Representation (fractional part:2 bits)

From the above discussion, it can be seen that the floating-point format has a

large dynamic range with varied precision while the fixed-point format is limited

in range but its precision is independent of the number represented. It should be

noted that the range/precision is also dependent on the position of the radix point

in the format. For example Figure 4.6 shows a different fixed point format using

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 59

the same 4-bit representation. The numbers represented are shown in Figure 4.7

where the range is 0 - 1.875 and the precision is 0.125. As such, for a constant

number of bits, increasing the range will lead to a decrease in precision and vice

versa. This conclusion is valid for both floating and fixed format.

exponent mantissa

Floating−Point Fixed−Point

integer part fractional part

Figure 4.6: Config#2: 4-bit Floating-point vs. Fixed-point

0 0.5 1 1.5 1.875

Figure 4.7: 4-bit Fixed-point Representation (fractional part:3 bits)

4.3 Ideal Data Format for MLP-BP Networks

A careful analysis of the MLP-BP network operation as summarized in Section

2.1.2 of Chapter 2 shows the following:

• The basic arithmetic operations in the forward and backward passes consist

of a multiplication and a summation.

• Weights start around zero and increase or decrease as learning progresses.

However, large weights lead to a network ’saturation’ where only a small

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 60

subset of the network’s weights are changed as illustrated by equation 2.10

and 2.22. Large weights also lead to poor generalization after training.

• Transfer functions (squashing functions) must be bounded. For example the

logistic sigmoid function shown in subsection 2.1.2 maps any number > 8 to

a number 1 and maps any number < -8 to zero.

• As learning progresses, the error between the target and output values be-

comes smaller (equation 2.10 and 2.22). If the error becomes zero, all learning

stops. Thus it is critical that the arithmetic format precision allows for very

small error numbers to be represented.

From the above discussion, one can conclude that the ideal format for MLP-BP

networks will have a high precision. Range can be limited as long as inputs and

outputs are normalized since weights should be limited for learning progress. But

since the size of an FPGA-based MLP-BP is proportional to a multiplier used 1, we

are interested in finding the minimum allowable precision and minimum allowable

range which minimize hardware area usage while not affecting ANN convergence

or performance.

For MLP using the BP algorithm, Holt and Baker [Holt91] showed using sim-

ulations and theoretical analysis that 16-bit fixed-point (1 bit sign, 3 bit left and

12 bit right of the radix point) was the minimum allowable range-precision as-

suming that both input and output were normalized between [0,1] and a sigmoid

transfer function was used. Ligon III et al. [Ligo98] have also shown the density

1An MLP-BP is constructed by connecting processing elements to perform a certain function.
Each processing element includes at least one adder and one multiplier, so the FPGA area of an
MLP-BP is mainly proportional to a multiplier.

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 61

advantage of fixed-point over floating-point for older generation Xilinx 4020E FP-

GAs, by showing that the space/time requirements for 32-bit fixed-point adders

and multipliers were less than those of their 32-bit floating-point countparts. This

chapter’s goal is to provide a comprehensive study of the impact of various floating-

point and fixed-point formats on hardware resources taking into consideration the

performance requirements discussed above and current FPGAs architectures (e.g.

Xilinx Virtex-II with embedded multipliers).

4.4 RC Implementation of Floating-point and Fixed-

point Adder and Multiplier

The implementations of a floating-point adder and multiplier are introduced in

Pavle [Bela02]. A library of fully parameterized hardware modules for floating-

point format control, arithmetic operators and conversion to/from any fixed-point

format are also presented in [Bela02]. The implementation of the fixed-point adder

are based on a Ripple Carry and Carry Look Ahead adder architecture. The fixed-

point multiplier is implemented in two forms: parallel and serial.

4.4.1 Implementation of Floating-point Adder

Addition is one of the most complex operations in floating-point arithmetic. The

algorithm for addition includes four steps:

• Re-arrangement of input operands (larger operand is directed to input 1

(swap)),

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 62

• Pre-shift for mantissa alignment (shift adjust),

• Mantissa addition/subtraction (add sub), and

• Post-shift of mantissa and increment of exponent for result correction (correction).

Each step of the algorithm is implemented by a dedicated module. The four

sub-modules are assembled into the overall fp add module as shown in Figure 4.8.

The swap submodule compares the exponent and mantissa fields of the input

variables. Based on these two comparisons, the two floating-point inputs are ap-

propriately directed to the output. If the exponent field of input “A” is larger, or

the exponent field are equal and the mantissa of input “A” is larger, then input

“A” is multiplexed to output large and input “B” to output small. Otherwise,

the reverse mapping of inputs to outputs occurs. Submodule shift adjust is re-

sponsible for aligning the mantissas of the larger and smaller operands. This is

achieved by shifting the small mantissa to the right as many bits as the difference

between the exponents. This module is also responsible for introducing the guard

bit into the smaller operand’s mantissa. Guard bits are introduced in the addition

algorithm to provide rounding of the result. Hence, the mantissa of the sum is

one bit wider than the mantissa of the inputs. Expansion of the mantissa fields

occurs during alignment of the mantissa. This allows the extra information (the

guard bit carries) to be saved when the smaller operand’s mantissa is shifted right

but as a result some least significant bits may be lost. The guard bit is introduced

into the larger operand’s mantissa to the right of the least significant bit and al-

ways has value ‘0’. Once the mantissas are aligned, it is necessary to either add

or subtract them, depending on the signs of the two operands. If the signs are

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 63

the same, the addition operation is constructive and the mantissas are added. If

the signs are opposite, the addition operation is destructive and the mantissas are

subtracted. Sub-module add sub will perform this variable operation under the

control of the op input, which is fed with the XOR of the input sign bits. Outputs

of the overall addition algorithm are controlled by the correction module. If an

exception is indicated on the input, the exception is propagated to the output and

the result output is set to all zeros. Otherwise, if the input values are detected to

be of the same magnitude, but opposite sign. The result output is blanked out to

indicate zero value, as A + (−A) = 0. Otherwise, if an overflow in the addition

of the mantissas is detected, the result mantissa is shifted to the right by one bit,

truncating the least significant bit, and the most significant bit is filled with ‘1’.

Also, the exponent field is incremented by 1, to reflect the shift in the mantissa.

Finally, the floating-point value assembled from the sign, exponent and mantissa

fields is presented on the output. Module fp add is parameterized by the width

of the exponent and mantissa fields of the floating-point format it operates on. In

order to have the same criterion, the output result is truncated to have the same

precision and dynamic range with the input operands.

4.4.2 Implementation of Floating-point Multiplier

In floating-point arithmetic, multiplication is a relatively straight-forward opera-

tion compared to addition. This is again due to the sign-magnitude nature of the

floating-point format as illustrated in the following example:

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 64

OP2OP1 READY EXCEPTION_IN

PARAMETERIZED
_COMPARATOR

SWAP
Register

eq
Register

SHIFT_ADJUST

large small

e1 e2 f2

Register Register Register Register Register

s1 s2

s1 f1

Register Register Register Register

EXCEPTION
_OUT

RESULT DONE

CORRECTION

ADD_SUB

s e f

enable

exception

clear

Figure 4.8: Pipelined Floating-point Adder

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 65

((−1)s1 × m1 × 2e1) × ((−1)s2 × m2 × 2e2)

= (−1)s1⊕s2 × (m1 × m2) × 2(e1+e2) (4.5)

It is clear from the above that the three fields of the floating-point format do

not interact with each other during multiplication and thus can be processed in

parallel. The sign of the product is given as the exclusive OR (XOR) of the input

value mantissas, while the exponents of the input values are added to give the

exponent of the product.

The only further complication of the floating-point multiplication algorithm is

the fact that the exponent field is biased. When two biased exponent fields are

added, the result contains the bias twice, one of which must be subtracted. If,

using IEEE standard 754 notation, E is an unbiased exponent and e is a biased

exponent, it stands that:

e1 + e2 =

(E1 + BIAS) + (E2 + BIAS) =

(E1 + E2) + 2 × BIAS

Ep + 2 × BIAS

ep + BIAS

(4.6)

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 66

The structure of the floating-point multiplier is presented in Figure 4.9. The

fp mul module is parameterized by the bit-widths of the exponent and mantissa

fields of the floating-point format it processes. The bit-width of the product is

1+exp bits + (2× man bits), where the mantissa field has twice the bit-width of

the input mantissas. In order to have the same criterion, the result is truncated to

have the same precision and dynamic range with the input operands.

4.4.3 Implementation of a Fixed-point Adder:

fixed-point adders can be implemented either as a Ripple Carry Adder or a Carry

Lookahead Adder. According to the representation introduced earlier, a fixed-point

number contains three parts: integer part, fractional part and a radix point. Since

the radix is mainly used to indicate the position of both the integer and fractional

part, an adder of total length of both integer and fractional part can be used to

add two fixed-point numbers. The top view of a parameterized fixed-point adder

is shown in Figure 4.10. Detailed implementation of the fixed-point adder based

on a Ripple Carry Adder and a Carry Lookahead architecture are shown in Figure

4.11 and Figure 4.12 respectively. Table 4.1 gives an example of this parameterized

adder. The term “parameterized” indicates that the length of the integer/fractional

parts can be set through two generic variables: int lens and frac lens respectively.

In this example, int lens is set to 3 and the value of frac lens is set to 2. The two

input numbers are “10111” and “11001” (which represent decimal -2.25 and -1.75).

The sum (taking Carry into account) is 110000 (which represents decimal -4) and

the radix is in between the third zero and second zero from the right.

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 67

EXCEPTION
 _IN

Register

RegisterRegister Register

OP1 OP2

e1 e2 f1 f2
e1,f1

e2,f2

READY

Register

Register Register

Register

Register RegisterRegister Register

Register

BIAS−1

MSB
(exp_bits+1)
(exp_bits)

cout

(exp_bits+1)

0

EXCEPTION
 _OUT

RESULTDONE

s1 s2

Figure 4.9: A Pipelined Floating-point Multiplier

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 68

Fixed−Point Adder

SUM

OP1 OP2

(inte_lens+frac_lens) (inte_lens+frac_lens)

(inte_lens+frac_lens+1)

Figure 4.10: The Top View of Fixed-point Adder

PFA PFA

����
������

��

�� 	
 ��
PFA

�

s(inte_lens+frac_lens−1) P(inte_lens+frac_lens−1)
G(inte_lens+frac_lens−1)

SUM(inte_lens+frac_lens−1)SUM(inte_lens+frac_lens)

OP2(inte_lens+frac_lens−1) OP1(inte_lens+frac_lens−1)

Carry in from
previous PFA

��

S G P C

B A

P(1)G(1)S(1)

SUM(1) SUM(0)

’0’

OP2(0) OP1(0)OP1(1)OP2(1)

Carry out to
next PFA

Figure 4.11: A Ripple Carry Adder Inside the Top View of Fixed-point Adder

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 69

PFA PFA

������������

�� 	
 ��

�
�
���
�
��

�����
����

�
����

PFA

�

!"

S G P C

B A

P(0)G(0)P(1)G(1) S(0)S(1)

SUM(1) SUM(0)

’0’

OP2(0) OP1(0)OP1(1)OP2(1)

s(inte_lens+frac_lens−1)

P(inte_lens+frac_lens−1)

SUM(inte_lens+frac_lens) SUM(inte_lens+frac_lens−1)

OP2(inte_lens+frac_lens−1) OP1(inte_lens+frac_lens−1)

G(inte_lens+frac_lens−1)

From CLA logic

Figure 4.12: A Carry Lookahead Adder Inside the Top View of Fixed-point Adder

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 70

Generic int lens=3,frac lens=2
Operation Addition
Input data OP1=10111,OP2=11001
Carry in ‘0’
Result 10000

Carry out ‘1’

Table 4.1: An Example of Fixed-point Addition

4.4.4 Implementation of a Fixed-point Multiplier:

As indicated earlier, pipelined fixed-point multipliers (see Figure 4.13) are more

complicated than fixed-point adders. Inputs to the multiplier are signed numbers

in 2’s complement representation. A requirement for fixed-point multiplication is

to multiply the magnitudes of the two numbers first and then force the result to

2’s complement module if the sign of two input fixed-point numbers are different.

For unsigned multiplications, several algorithms can be used. Two straight-

forward types of unsigned multipliers are considered here. The first is a Serial

multiplier shown in Figure 4.14 that executes in ‘n’ clock cycles (where n is the

length of A and B). An example of unsigned serial fixed-point multiplication is

illustrated in Table 4.2. In this example, “A” is “01111” and “B” is “00101”. The

multiplier is also parameterized where int lens is set to 3 and frac lens is set to 2.

The processing of these two fixed-point numbers can be achieved in 5 clock cycles.

In the first cycle, “A” is extended to 10 bits. In the following cycles, the previous

partial result is shifted left by one bit per cycle. After 5 cycles, partial results or

zeros are added depending on whether the corresponding bit value in “B” is ‘1’ or

‘0’. The main advantage of Serial multipliers is the reduction in area but at the

expense of lower speed.

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 71

EXCEPTION
 _IN

2’s complement

mux mux

2’s complement

Register

Register

Register

Register

EXCEPTION
 _OUT

unsigned multiplier

Register

2’s complement

mux

Register

Register

Register Register Register Register Register

���� ������

READY OP1 OP2

(inte_lens+frac_lens) (inte_lens+frac_lens)

MSBMSB

DONE

2*(inte_lens+frac_lens)

A B
PRODUCT

RESULT

Figure 4.13: Implementation of a Pipelined Fixed-point Multiplier

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 72

Counter

Oscillator

Accumulator

Output result from
 Accumulator
when ’start/stop’
 input is ’0’

� ��

� ��

� �� �

� ��

�
�
�

	
	
	

Extend to double
length of input

Shift one bit to the left

’start/stop’ input is ’1’

start/stop

"0"

mux

 each cycle when

(inte_lens+frac_lens) (inte_lens+frac_lens)

2*(inte_lens+frac_lens)

2*(inte_lens+frac_lens)

PRODUCT

’start/stop’ input is ’1

BA

Shift LSB out in

 in each cycle when

Figure 4.14: Unsigned Serial Multiplier

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 73

Cycle No. Partial result
1 0000001111
2 0000011110
3 0000111100
4 0001111000
5 0011110000

Table 4.2: An example of Unsigned Serial Multiplication

Figure 4.15 shows the structure of an unsigned parallel multiplier. In this case,

all partial results (output of multiplexers) are added at the same time. The main

advantage of the parallel multiplier is speed but it requires more area than the

Serial counterpart.

4.5 Results and Discussion

Different floating and fixed point formats can have different range and precision

even if their total number of bits are the same. Therefore we tested 25 different

formats that fall within the acceptable range and precision required for MLP-BP

implementation as discussed before. For each format, a multiplier and an adder were

implemented. The equivalent gate count was obtained using Xilinx ISE 6.1 (SP3)

CAD tool assuming the target device is either Xilinx Spartan2E xc2s200e pq208 or

Virtex-II XC2V500 FPGA. The speed grade is -6 and design flow is XST VHDL.

Spartan2E contains 2,352 slices and 4,704 4-LUTs while the Virtex-II XC2V500

contains 3,072 slices and 6,114 4-LUTs.

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 74

mux

mux

mux

"0"
"0" 2*(inte_lens+frac_lens)

2*(inte_lens+frac_lens)

(inte_lens+frac_lens)

Extend to double
length of input

2*(inte_lens+frac_lens)

shift one bit to the left

PRODUCT

"0"

shift one bit to the left

2*(inte_lens+frac_lens)

LSB

MSB

BA

(inte_lens+frac_lens)

Figure 4.15: Unsigned Parallel Multiplier

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 75

4.5.1 Effect of target device

Different target devices can have significant effect on the equivalent gates results.

Attribute Spartan-IIE Virtex-II
Slices 2 per CLB 4 per CLB
LUTs 4 per CLB 8 per CLB

Flip-Flops 4 D-FF 8 D-FF
MULT ANDs 4 8
Carry-Chains 2 2
SOP Chains none 2
SelectRAM 64 bits 128 bits
Shift-Reg none 128 bits
TBUF 2 2

Dedicated 18×18 none 4-168
Multipliers

Table 4.3: Logic Resources of Spartan-IIE and Virtex-II FPGAs

Table 4.3 shows the main attributes available within a Spartan-IIE and Virtex-

II FPGA. It is clear from the Table that the main difference between the two FPGA

devices is in the dedicated multipliers and Sum of Products (SOP) Chains that are

used to implement large AND gates or other combinational logic functions. The

effect of these differences within our format ranges is illustrated in Figure 4.16 and

4.17 where a comparison in terms of Gate Count between Spartan2E xc2s200e and

Virtex-II XC2V500 FPGAs is shown. In Figure 4.16, a floating point adder for dif-

ferent formats ranging from 8-64 bits targeting both devices was implemented. The

same was done in Figure 4.17 where a floating point multiplier was implemented.

In both cases, the exponent part and mantissa part occupy half of the total length.

As seen from these Figures, there is little difference between the two devices for

implementing adders while there is a clear difference in favor of the Spartan chip

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 76

0 10 20 30 40 50 60 70
1000

2000

3000

4000

5000

6000

7000

8000

The total length (bits) of Floating−Point numbers used in a Floating−Point Adder

A
re

a
(T

ot
al

 e
qu

iv
al

en
t g

at
es

)

Target: Spartan 2E
Target: Vertex 2

1159

1575

2018

2458

2874

3314

3823

7367

1284

1700

2143

2589

2999

3430

3927

7504

Figure 4.16: Spartan-IIE vs. Virtex-II Implementation of the Floating-point Adder

when it comes to implementing multipliers. A possible explanation behind this is

due to the fact that the Virtex-II chip has 18 bits*18 bits dedicated multipliers.

Each multiplier is synthesized as 4,000 gates even when both of the inputs to this

multiplier are less than 18 bits (even if the inputs are just 2 bits, it is still synthesized

as 4,000 gates). For Spartan-2E FPGA, the multiplication is realized by LUTs. As

such in Figure 4.17 Virtex-II FPGA implementation starts from a high gate count

whereas Spartan-2E FPGA starts from a much lower gate count. The gate count

for the Virtex-II increases gradually since the exponent portion requires more gates

for adders. The impact of these observations will be clear in subsequent sections.

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 77

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5
x 10

4

The total length (bits) of Floating−Point numbers used in a Floating−Point Multiplier

A
re

a
(T

ot
al

 e
qu

iv
al

en
t g

at
es

)

Target: Spartan 2E
Target: Vertex 2

724
1179

1756
2431

3210
4099

5110

16858

4543
4747

4951
5167

5371

5575
5791

20407

Figure 4.17: Spartan-IIE vs. Virtex-II Implementation of the Floating-point Mul-
tiplier

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 78

4.5.2 Tested formats and implementation details

The formats chosen for comparison are illustrated in Table 4.4 and Table 4.5 for

fixed and floating point formats respectively. They have integer ranges [-32, +32].

These ranges are quite suitable to represent the MLP-BP weights assuming that

inputs and outputs are normalized between [-1,1]. For precision, precision values

between [2−16, 2−12] were tested. Precision for fixed-point representation is constant

while precision for floating point formats varies as discussed in section 4.2.2 and

illustrated in Table 4.4 and Table 4.5 respectively. Note that fixed format fix1 -

fix5 have comparable range/precision to floating-point formats float1 - float5. The

same is true for fixed format fix11 - fix15 and float6 - float10. Fixed formats fix6

- fix10 have no comparable floating point format with similar range and precision

but are added here to show the flexibility of the fixed-point formats.

We had two choices in implementing fixed-point multiplier: pipelined parallel

and pipelined serial. Figure 4.18 shows that for different bit lengths these two

implementations trade places as to which is the most efficient way to implement a

fixed-point multiplier taking only space in consideration. Below 24 bit length, “par-

allel fixed-point multiplier” is more efficient, while above the 24-bit mark, “serial

fixed-point multipliers” are more efficient. Since we are only concerned with < 20

bit length, our fixed-point multiplier will be implemented using pipelined parallel

implementation.

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 79

Format Length Integer Fraction Range Precision
(bits) (bits) (bits)

fix1 16 4 12 [−8, 8 − 2−12] 2−12

fix2 17 4 13 [−8, 8 − 2−13] 2−13

fix3 18 4 14 [−8, 8 − 2−14] 2−14

fix4 19 4 15 [−8, 8 − 2−15] 2−15

fix5 20 4 16 [−8, 8 − 2−16] 2−16

fix6 17 5 12 [−16, 16 − 2−12] 2−12

fix7 18 5 13 [−16, 16 − 2−13] 2−13

fix8 19 5 14 [−16, 16 − 2−14] 2−14

fix9 20 5 15 [−16, 16 − 2−15] 2−15

fix10 21 5 16 [−16, 16 − 2−16] 2−16

fix11 18 6 12 [−32, 32 − 2−12] 2−12

fix12 19 6 13 [−32, 32 − 2−13] 2−13

fix13 20 6 14 [−32, 32 − 2−14] 2−14

fix14 21 6 15 [−32, 32 − 2−15] 2−15

fix15 22 6 16 [−32, 32 − 2−16] 2−16

Table 4.4: Fixed-point Configurations

Format Length Sign Exponent Mantissa Range Highest

(bits) (bit) (bits) (bits) Precision

float1 15 1 2 12 [2−10 − 8, 8− 2−10] 2−13

float2 16 1 2 13 [2−11 − 8, 8− 2−11] 2−14

float3 17 1 2 14 [2−12 − 8, 8− 2−12] 2−15

float4 18 1 2 15 [2−13 − 8, 8− 2−13] 2−16

float5 19 1 2 16 [2−14 − 8, 8− 2−14] 2−17

float6 16 1 3 12 [2−8 − 32, 32− 2−8] 2−15

float7 17 1 3 13 [2−9 − 32, 32− 2−9] 2−16

float8 18 1 3 14 [2−10 − 32, 32− 2−10] 2−17

float9 19 1 3 15 [2−11 − 32, 32− 2−11] 2−18

float10 20 1 3 16 [2−12 − 32, 32− 2−12] 2−19

Table 4.5: Floating-point Configurations

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 80

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6
x 10

4

The total length (bits)

A
re

a
(T

ot
al

 e
qu

iv
al

en
t g

at
es

)

Pipelined Serial Fixed−Point Multiplier
Pipelined Parallel Fixed−Point Multiplier

Figure 4.18: Fixed-point Multipliers with Different Lengths

4.5.3 Comparison of Various Formats: Area Requirements

Table 4.6 and Table 4.8 show the area requirements of all formats implemented as

detailed in Table 4.4 and Table 4.5. The results show that a fixed-point adder is

much more area efficient than floating-point adder regardless of the format used.

This is illustrated in Figure 4.19 which shows the total area occupied by different

adder configurations based on different fixed-point and floating-point formats. On

the other hand, a floating-point multiplier is more area efficient than fixed-point

multiplier regardless of the format used as illustrated in Figure 4.20.

For implementing MLP-BP, each processing element (PE) must implement mul-

tiplication and addition. It is clear that any successful implementation of MLP-BP

on FPGAs must attempt to keep the computational parallelism observed at each

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 81

Format Gate Count
Type of Adder Type of multiplier

Ripple Carry Carry Look Ahead Serial Parallel
fix1 192 192 5,999 5,047
fix2 204 204 6,716 5,550
fix3 216 216 7,129 6,077
fix4 228 228 7,563 6,628
fix5 240 240 8,100 7,355
fix6 204 204 6,716 5,550
fix7 216 216 7,129 6,077
fix8 228 228 7,563 6,628
fix9 240 240 8,100 7,355
fix10 252 252 8,441 8,018
fix11 216 216 7,129 6,077
fix12 228 228 7,563 6,628
fix13 240 240 8,100 7,355
fix14 252 252 8,441 8,018
fix15 264 264 8,959 8,649

Table 4.6: Result from Fixed-point Operators

Format Gate Count
Pavle’s adder Pavle’s multiplier

float1 1,837 2,694
float2 1,957 3,051
float3 2,065 3,469
float4 2,158 3,888
float5 2,257 4,372
float6 2,006 2,742
float7 2,117 3,099
float8 2,228 3,529
float9 2,342 3,936
float10 2,444 4,420

Table 4.7: Results from Pavle’s Floating-point Operators

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 82

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800

The configurations in Table 5 and 6

A
re

a
(T

ot
al

 e
qu

iv
al

en
t g

at
es

)

Fixed−Point Adder(RCA or CLA)
Floating−Point Adder

fix1 fix2 fix3 fix4 fix5 fix11 fix12 fix13 fix14 fix15

float1

float2
float3

float4
float5

float6

float7
float8

float9

float10

Figure 4.19: Fixed-point vs Floating-point Adder Configurations

1 2 3 4 5 6 7 8 9 10
2000

3000

4000

5000

6000

7000

8000

9000

The configurations in Table 5 and 6

A
re

a
(T

ot
al

 e
qu

iv
al

en
t g

at
es

)

Fixed−Point Multiplier(Parallel)
Floating−Point Multiplier

float1

float2

float3

float4

float5

float6

float7
float8

float9

float10

fix1

fix2

fix3

fix4

fix5

fix11

fix12

fix13

fix14

fix15

Figure 4.20: Fixed-point vs Floating-point Multipliers Configurations

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 83

layer by duplicating the necessary modules needed for each PE. As such it is desir-

able to compare various formats for implementing a single PE that combines one

multiplier and one adder. Figure 4.21 and Figure 4.22 show that a PE based on

floating-point formats are in general more area efficient than fixed-point formats.

However, the target device plays an important role. In Figure 4.21 where the tar-

get device is Spartan-2E, the difference increases from 30% more gates for fix1 over

float1 to 50% more gates for fix15 to float10. While in Figure 4.22, the fixed-point

implementation is more efficient than floating-point implementation. These are

quite interesting results and different than what has been reported in the literature

[KNic02].

1 2 3 4 5 6 7 8 9 10
4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

The configurations in Table 5 and 6

A
re

a
(T

ot
al

 e
qu

iv
al

en
t g

at
es

)

Fixed−Point Processing Element
Floating−Point Processing Element

4531

5008

5534

6046

6629

4748

5216

5757

6278

6864

5239

5754

6293

6856

7595

6293

6856

7595

8270

8913

Figure 4.21: Fixed-point vs Floating-point Formats for a Single PE (Spartan-IIE)

The main reason for the difference between results of the Spartan-IIE and

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 84

1 2 3 4 5 6 7 8 9 10
5000

5500

6000

6500

7000

7500

8000

8500

9000

The configurations in Table 5 and 6

A
re

a
(T

ot
al

 e
qu

iv
al

en
t g

at
es

)

Fixed−Point Processing Element
Floating−Point Processing Element

float1

float2
float3

float4

float5 float6
float7

float8
float9

 float10

fix1

fix2

fix3

fix4

fix5

fix11

fix12

fix13

fix14

fix15

Figure 4.22: Fixed-point vs Floating-point Formats for a Single PE (Virtex-II)

Format Gate Count
Pavle’s adder Pavle’s multiplier

float1 1,837 2,694
float2 1,957 3,051
float3 2,065 3,469
float4 2,158 3,888
float5 2,257 4,372
float6 2,006 2,742
float7 2,117 3,099
float8 2,228 3,529
float9 2,342 3,936
float10 2,444 4,420

Table 4.8: Results from Pavle’s Floating-point Operators

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 85

Virtex-II FPAGs can be traced back to Figure 4.17 which shows that Spartan

FPGA has more efficient implementation of floating-point multiplier than Virtex-

II FPGA. Another observation from Figure 4.21 and Figure 4.22 is that there is

almost no drawback of increasing the range between float5 and float10 while this

is not the case for fixed-point formats. On the other hand, precision has a more

direct impact on area usage since it has a strong impact on multiplier area usage.

While these results show that floating-point format offers a more area efficient

implementation than fixed-point counterparts with similar precision and range,

there are still a number of questions that remain to be investigated. As shown

in Section 2.1.2 of Chapter 2, each ANN processing element includes a transfer

function that could take the form of a sigmoid. A study that investigates the

efficient format in implementing a sigmoid or any other transfer function needs

to be carried out. It seems that a complete implementation of a MLP-BP can

conclusively provide an answer as to which format should be used since fixed-point

implementation has a significant advantage when more adders are needed.

Finally, this Chapter only considered the area efficiency vs precision and range

requirements. Note that the comparison might not be 100% accurate due to differ-

ent architecture between fixed-point and floating-point modules proposed. Another

important consideration is speed which must also be investigated since it is quite

reasonable to expect that future FPGAs will be big enough to make area used less

of a factor than it is today.

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 86

4.6 A Pure Hardware XOR ANN

Some preliminary results were presented here for a pure hardware XOR ANN to

evaluate the feasibility of implementing a large ANN onto a single Xilinx FPGA

chip.

The MLP-BP network for the XOR problem has two input nodes, two hidden

nodes, and one output node shown in Figure 4.23. Four different input pairs:

(0,0), (0,1),(1,0), and (1,1) were applied to the network with corresponding target

outputs: 0, 1, 1, and 0.

Input 1

Input 2 Hidden 2

Hidden 1

Output

Figure 4.23: The MLP-BP Network for XOR problem

The hardware implementation shown in Figure 4.24 includes three parallel com-

putation modules: “feedforward calculation”, “backward calculation”, , “updating”

and a controller. Each neuron in the feedforward module shown in Figure 4.25 con-

tains two fixed-point multiplier (parallel unsigned fixed-point multiplier inside) and

one fixed-point adder and a 3-piecewise linear sigmoid function module.

The computational work of equations 2.10, 2.22 are implemented by parallel sub-

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 87

Feedforward
Calculation

Backward
Calculation

Updating

Controller

Figure 4.24: The Top View of the XOR ANN Implementation

+ 3−piece sigmoid
 function

3−piece sigmoid
 function

+

+

+

+ + 3−piece sigmoid
 function

+

+ +
w11

Input 1
v11

v21

v12

w21
Output

Hidden 2

Output 1

Input 2

v22

Hidden1

Feedforward
 Calculation

Figure 4.25: The Architecture inside of the Feedforward Module

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 88

modules inside of the “backward calculation” of Figure 4.24. The computational

work of equations 2.6, 2.9, 2.17 and 2.21 are implemented by parallel sub-modules in

side of the “updating” of Figure 4.24. In other words, the mathematical calculations

of those equations are implemented in parallel at the same time.

Results are shown in Table 4.9 where three different fixed-point formats are

tested. The FPGA area consumed is presented by how the amount of slices used.

Notice, the Xilinx Virtex-II FPGA (used to implement the MLP-BP network for

solving the face recognition in the next Chapter) only contains 10,752 slices. It

is obvious that the pure hardware implementation of a XOR ANN is fairly huge

and infeasible to be implemented onto a Virtex-II XC2V2000 device. In order to

implement a large network, a hardware/software co-design approach is followed in

the next Chapter.

Fixed-point Formats (sign-integer-fraction) FPGA Area (slices)

1-3-16 9,039
1-4-16 9,838
1-5-16 10,525

Table 4.9: The Results of XOR ANN

4.7 Summary

In this Chapter the affect of arithmetic representation formats on implementing

ANN on FPGAs was investigated. The main focus was to examine the trade offs

between precision and range of various formats that can target FPGA resources.

The basic ANN processing elements include multiplication and addition operations.

CHAPTER 4. MLP-BP IMPLEMENTATIONS: ARITHMETIC FORMATS 89

As such, twenty five floating and fixed-point formats were tested where a multiplier

and an adder were implemented on an FPGA and their area requirement were

compared. The results show that for implementing a Multilayer perceptron neural

network, floating-point formats offer more area efficient implementation without

penalty on precision or range. The results also show that the target FPGA device

could have a major impact on the resources required. However, implementing a

large ANN onto a single FPGA is still not feasible. In order to balance performance

and flexibility, a Hardware/Software Co-design approach should be followed. The

next Chapter introduces a flexible methodology that takes advantage of a soft

processor core and dedicated hardware to efficiently implement a MLP-BP ANN

onto a Xilinx Virtex-II FPGA.

Chapter 5

A Hardware/Software Co-design

Approach

To evaluate the feasibility of implementing a large MLP-BP ANN on an FPGA,

the face recognition problem was chosen as a benchmark. The network constructed

for this application contains 400 input nodes, 8 hidden nodes, and 4 output nodes.

Given the information in the previous Chapter, a pure hardware implementation of

such a network is not feasible on a Xilinx Virtex-II FPGA (2 million system gates).

Instead, a hardware/software co-design approach is followed, where the most com-

putationally intensive part (the updating of weights and thresholds) of the MLP-BP

is implemented by hardware circuitry and the rest by software running on a pro-

cessor. Consequently, the flexibility of the processor and the performance of the

hardware could be balanced. Industry’s fastest soft processor IP core, MicroBlaze

(Appendix C), and dedicated hardware modules were implemented by following the

Xilinx embedded system design flow (Appendix B) on a Virtex-II XC2V2000 FPGA

90

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 91

of a Xilinx Multimedia board (Appendix D). Results obtained indicate that perfor-

mance in terms of speed was improved by 1.69 (Amdahl’s law) with the flexibility

preserved to some extent.

5.1 Target application description

5.1.1 Working Strategy

The two phases of this face recognition system are the training phase and the

testing phase. In the training phase, a three-layer perceptron with a backpropagation

algorithm was used as a supervised learning algorithm as shown in Figure 5.1.

Image Sender is used to fetch images from the training image list where images are

used for training ANN (Figure 5.1). The output of Image Sender is then directed

to the following subsystems: Target Generator and Learning System. The Target

Generator encodes a certain image to its corresponding target output that the

Learning System requires. The output-encoding strategy of this system is described

in greater detail later. The Target Generator is similar to a teacher who tells the

Learning System what should be outputted for different face images in the training

image list. This work is done by calculating the difference between the actual

output of the Learning System and target output of the Target Generator. This

difference is then fed back to the Learning System to decrease the error.

Following the training phase, the testing phase is initiated (Figure 5.2). where

the Image Sender sends images to the trained learning system. The output of

the trained Learning System is fed into the Output Interpreter, where the output

of the Learning System is translated into an identification of faces. In this case,

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 92

Target Generator
Image Sender

 (Training images)

Learning System

Target
Output

Actual
Ouput

Error Amount

Figure 5.1: Supervised Training Diagram

the system is used to recognize different persons. In other cases, the system can

recognize different expressions, head directions, e.t.c. Finally the interpreted results

from the Output Interpreter are displayed to the user.

Image Sender
 (testing images)

Learning System

 (trained)
Output Interpreter

Displayer
Who he/she is

test images Actual output

Figure 5.2: Testing Process Diagram

5.1.2 Face Images

The face images were collected from Professor Tom M. Mitchell’s Machine Learning

course website [httpd] of the School of Computer Science, Carnegie Mellon Univer-

sity. This face image database contains images of 20 people, each individual with

32 images varying in expression (happy, sad, angry, neutral), the direction in which

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 93

they are looking (left, right, straight ahead, up), and whether or not their eyes are

open or closed. In total, 624 grayscale images in PGM format [httpc] were col-

lected, each with a resolution of 120*128 pixels, with each image pixel described by

a grayscale intensity value between 0 (black) and 255 (white). Some of the selected

face images are shown in Figure 5.3. The first four images starting at the left-hand

side of the the first row represent persons with different expressions, and the next

4 images in the first row represent persons with different directions. The persons

in the second row show expressions and directions corresponding with those in the

first row, with their eyes closed.

Figure 5.3: An Example of Face Images

5.1.3 Input Encoding

As illustrated in Figure 5.4, the face images are fed into the MLP-BP network.

However, the kind of representation of the face images that should be used raises

an issue. In general, a face image could be preprocessed so that some features are

extracted. Either features (e.g., curves, edges, etc.) or the raw intensity value of

the image could be used as an appropriate representation of the image fed to the

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 94

ANN. The latter was chosen since Professor Tom M. Mitchell highlighted the fol-

lowing: “the difficulty of using features is that it would lead to a variable number of

features per image, whereas the ANN has a fixed number of input units [Mitc97]”.

The intensity values of each pixel of a certain face image is from 0 to 255. The

backpropagation algorithm introduced in Chapter 2 was used on this three-layer

perceptron ANN to identify different persons. In addition to the image represen-

tation problem, another issue identified is the image size to be used. The original

image size is an accurate representation of the face images but can be excessive

and a burden on the processing time. The image size used in this research was

20*20, which is the coarse resolution summary of the original image. As a result,

the number of input nodes and the weights between input layer and hidden layer

of the ANN were reduced drastically. Meanwhile, the sufficient classification per-

formance of the images was preserved. In Prof. Tom. M. Mitchell’s C language

implementation, the image size was reduced to 32*30 which proved to be sufficient.

In this research, due to limitations in the size of the Block RAM, the image size was

reduced to 20*20. In order to verify the validation of this image size, a comparison

was done on 32*30 and 20*20 separately. In each case, the ANN was trained with

320 images of 20 different persons with 4 directions (left, right, straight ahead, up)

and two expressions (happy and sad) with eyes open and closed. When the testing

images were within the training images, the accuracy rate reached 94.8% for both.

Also for the generalization performance (which means the testing images were not

from the training images) both 32*30 and 20*20 image sizes reached around 90%

accuracy rate (32*30 image had 3% better than 20*20 image). From this experi-

mental result, 20*20 image size was considered acceptable for the face recognition

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 95

problem. The work of scaling images from 120*128 to 20*20 was done by Gimp1.3

[httpa] tool under SUSE9.0 linux operating system.

a[h]

b[i](e[i])

c[j](d[j])

h

i

i

v[h][i]

w[i][j]

Face Image

Input Layer Hidden Layer Output Layer

Figure 5.4: Mapping an Image to ANN

5.1.4 Output Encoding

The system constructed has the ability to recognize four different persons at a time.

To achieve this, different output encoding strategies could be used. If one output

is used, then differentiating 4 persons can be achieved by 4 different target values:

0.2, 0.4, 0.6 and 0.8. On the other hand, if 4 output nodes are used, the target

outputs could be in the form of the following vectors: (1, 0, 0, 0), (0, 1, 0, 0), (0,

0, 1, 0) and (0, 0, 0, 1). Other output encoding strategies also exist. In this thesis,

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 96

an encoding strategy with 4 output nodes was used due to the following: Firstly, a

four output encoding strategy gives the ANN more degrees of freedom to perform

the classification than one output encoding strategy. Secondly, as mentioned in

Mitchell’s book – Machine Learning [Mitc97], “the difference between the highest-

valued output and the second-highest can be used as a measure of the confidence in

the network prediction (ambiguous classifications may result in near or exact ties)”.

Furthermore, 0 and 1 in the vector are substituted by 0.1 and 0.9 separately. For

example, (0.9, 0.1, 0.1, 0.1) is used as the target vector for the first person instead

of (1, 0, 0, 0). This modification is because the active function (logistic sigmoid

function) used for the ANN cannot reach an exact value of 0 or 1.

5.1.5 Network Graph Structure

The ANN constructed in this project is a three-layer perceptron network as shown

in Figure 5.4. Two layers of sigmoid units (one hidden layer and one output layer)

are used in this network. One hidden layer is sufficient in most applications, and

more hidden layers are generally not recommended due to the long training time

involved [Mitc97]. There are 400 nodes in the input layer which are waiting to

receive the grayscale intensity values of 20*20 face images. The number of 8 hidden

nodes was chosen based on experimentation.

5.2 A Pure Software Implementation

The pseudo code for the training process and the testing process is shown in Figure

5.5. Firstly, the opb timer is an instance of OPB Timer/Counter [httph], which

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 97

is a module used to calculate the time consumed by the program running on Mi-

croBlaze. Secondly, the neuron parameters (weights and thresholds) are initialized

to some random value. The epoch num is a variable that determines the stopping

criteria. Each image is trained at each iteration. During the training phase, three

functions are executed. The forward() phase is used to calculate the node value in

the hidden layer and the output layer; the backward() phase is used to calculate

the error associated with the nodes in the output layer and the hidden layer, and

the update() phase is used to update the weights and the thresholds. Following

the training process, the time consumed during this process is read from opb timer.

The testing process is then initiated. In this phase, a certain image is selected from

the training image list and fed into the ANN. The value of the output nodes are

finally interpreted to identify the person.

5.2.1 Initialization of the opb timer

The opb timer was set to the “generate-mode” and started from zero. There are

three steps in starting the opb timer : initializing the load register with zero, setting

the mode to generate mode (also loading zero to the counter by TCSR) and starting

the opb timer. To stop the opb timer, the ENT bit of TCSR is disabled. The

process of starting and stopping this timer is shown in Figure 5.6 and Figure 5.7

respectively.

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 98

Start timer();
Randomization();
//Training process
while(i<epoch num)
{

for(j=0;j<number of training images;j++)
{

Initial input nodes to the values of image j;
Set target value for image j;
forward();//implemented by C
backward();//implemented by C
update();//implemented by C

}
}
Stop timer();
//Testing process
Initial input nodes to the value of a certain testing image;
forward();
print and interpret result;

Figure 5.5: Pseudo Code of Backpropagation Algorithm for Face Recognition

void Start timer()
{

//initialize Load Register TLR0 with 0
XIo Out32(XPAR OPB TIMER TLR0,0x00000000);
//load 0 into the counter0 and configure it count up
XIo Out32(XPAR OPB TIMER TCSR0,0x00000020);
//start up the counter0
XIo Out32(XPAR OPB TIMER TCSR0,0x00000080);

}

Figure 5.6: Pseudo Code for Starting opb timer

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 99

void Stop timer()
{

//read out the timer
cycles=XIo In32(XPAR OPB TIMER TCR0);
//stop the timer
XIo Out32(XPAR OPB TIMER TCSR0,0x00000000);

}

Figure 5.7: Pseudo Code for Stopping opb timer

5.2.2 Randomization

Preceding the training process, several parameters have to be randomized. includ-

ing: (i) all the weights between the input layer and the hidden layer; (ii) all the

weights between the hidden layer and the output layer; (iii) all the thresholds asso-

ciated with the hidden nodes, and the thresholds associated with the output nodes.

The pseudo code is shown in Figure 5.8. NODE NUM I represents the number of

input nodes, NODE NUM H the number of hidden nodes, and NODE NUM O the

number of output nodes. The value v[i][h] is the weight between the input node i

and the hidden node h, w[h][o] is the weight between the hidden node h and the

output node o, threh[h] is the threshold value of the hidden node h, and threo[o] is

the threshold value of the output node o.

The function rand() is an ISO C Random Number Function which returns a

value in the range from 0 to 2147483647.

5.2.3 The forward() function

Following the neuron parameters initialization, the feedforward phase proceeds. In

this phase, the value of the hidden and the output node is calculated.

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 100

void Randomization()
{

for(i=0;i<NODE NUM I;i++)
{

for(h=0;h<NODE NUM H;h++)
{

if(rand()%2==1)
v[i][h]=rand() mod 5000/10000.0;

else
v[i][h]=-rand() mod 5000/10000.0;

}
}
for(h=0;h<NODE NUM H;h++)
{

for(o=0;o<NODE NUM O;o++)
{

if(rand()%2==1)
w[h][o]=rand() mod 5000/10000.0;

else
w[h][o]=-rand() mod 5000/10000.0;

}
}
for(h=0;h<NODE NUM H;h++)
{

threh[h]=rand() mod 5000/10000.0;
}
for(o=0;o<NODE NUM O;o++)
{

threo[o]=rand() mod 5000/10000.0;
}

}

Figure 5.8: Pseudo Code for Random Parameters Process

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 101

A sigmoid function was used in order to solve non-linear problems. Two popular

sigmoid functions, Logistic and Hyperbolic tangent, were used and are described in

Section 2.1.2 of Chapter 2. The forward() function is shown in Figure 5.9 based

on the Logistic function. If the Hyperbolic tangent function is used, the line above

each of the commented lines is replaced by a different commented line. In both

cases, a[i] is the value of the input node i, b[h] is the value of the hidden node h,

and c[o] is the value of the output node o.

The equations for the Logistic and Hyperbolic functions are as follows:

f(x) =















1
1+e−x Logistic Function

1−e−x

1+e−x Hyperbolic Tangent Function

5.2.4 The backward() function

As explained earlier in Chapter 2, the error value do is determined by:

do =















β(1 − co)co(c
k
o − co) if Logistic Function is used

β(1 − c2
o)(c

k
o − co)/2 if Hyperbolic Tangent Function is used

The pseudo code for the backward() function is shown in Figure 5.10. The value

d[o] is the error value of the output node i, and e[h] is the error value of the hidden

node h.

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 102

void forward()
{

for(h=0;h<NODE NUM H;h++)
{

temp=0.0;
for(i=0;i<NODE NUM I;i++)
{

temp=temp+a[i]*v[i][h];
}
b[i]=1.0/(1.0+exp(-β*(threh[h]+temp)));
// b[i]=(1.0-exp(-β*(threh[h]+temp)))/(1.0
+exp(-β*(threh[h]+temp)));

}
for(o=0;o<NODE NUM O;o++)
{

temp=0.0;
for(h=0;h<NODE NUM H;h++)
{

temp=temp+b[h]*w[h][o];
}
c[j]=1.0/(1.0+exp(-β*(threo[o]+temp)));
//c[i]=(1.0-exp(-β*(threo[o]+temp)))/(1.0
+exp(-β*(threo[o]+temp)));

}
}

Figure 5.9: Pseudo Code for forward() Function

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 103

void backward()
{

for(o=0;o<NODE NUM O;o++)
{

d[o]=β(1-c[o])c[o](ck[o]-c[o]);
//d[o]=β(1-c[o]*c[o])(ck[o]-c[o])/2.0;

}
for(h=0;h<NODE NUM H;h++)
{

temp=0.0;
for(o=0;o<NODE NUM O;o++)
{
temp=temp+β(1-b[h])b[h]w[h][o]d[o];
//temp=temp+β(1-b[h]*b[h])w[h][o]d[o]/2.0;
}
e[h]=temp;

}
}

Figure 5.10: Pseudo Code for backward() Function

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 104

5.2.5 The update() function

The connection weights between the hidden layer node ‘h’ and the output layer

node ‘o’ are updated based on the calculated value of the hidden node b[h] and

the error value of the output node d[o]. On the other hand, connection weights

between the input layer node ‘i’ and the hidden layer node ‘h’ are updated based

on the calculated value of the input node a[i] and the hidden error value e[h]. In

order to control the updating speed, a learning rate α is introduced. The updating

for the threshold values of the hidden nodes and the output nodes depends on the

error value of the corresponding node.

The pseudo code for software implementation of the update() function is shown

in Figure 5.11.

5.2.6 ANN Parameters

The ANN parameters (Table 5.1) include: (i) the initial range of the weights and

thresholds; (ii) the learning rate value; (iii) the epoch numbers; (iv) the input node

number; (v) the hidden node number and (vi) the output node number. These

parameters were determined from 100 experiments conducted and proved to be

optimal values.

5.2.7 System Architecture

The reconfigurable system constructed is based on a MicroBlaze development sys-

tem shown in Figure C.1. The system mainly include a MicroBlaze soft processor

and miscellaneous processor peripherals. The MicroBlaze soft processor can be

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 105

void update()
{

for(o=0;o<NODE NUM O;o++)
{

for(h=0;h<NODE NUM H;h++)
{

w[h][o]=w[h][o]+αb[h]d[o];
}
threo[o]=threo[o]+αd[o];

}
for(h=0;h<NODE NUM H;h++)
{

for(i=0;i<NODE NUM I;i++)
{

v[i][h]=v[i][h]+αa[i]e[h];
}
threh[h]=threh[h]+αe[h];

}
}

Figure 5.11: Pseudo Code for Software update() Function

Parameters Description

weights randomized between -0.5 and 0.5
thresholds randomized between 0 and 0.5

learning rate 0.01
epoch number 2000
input nodes 400
hidden nodes 8
output nodes 4

Table 5.1: Chosen Parameters of ANN

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 106

realized by 900 logic cells of a Xilinx Virtex, Virtex-E, Virtex-II, Virtex-II Pro,

Spartan-II, or Spartan-IIE devices. The area consumed by processor peripherals

varies by different applications.

The pure MicroBlaze system used to solve the face recognition problem is

shown in Figure 5.12. There are seven IP cores inside this system, namely Mi-

croBlaze core, OPB Block RAM controller, OPB Block RAM, OPB JTAG UART,

OPB Timer/Counter, OPB UART Lite and OPB General Purpose Input/Output

(GPIO). The detail information of each IP core is listed in Appendix F.

Hyperterminal
Switches

OPB Blcok
RAM

OPB Blcok
RAM
Controller

OPB JTAG_UART

Microblaze core

mblaze

(d_lmb) data local memory bus

(i_lmb) instruction local memory bus

lmb_bram_cntlr

myuart mygpio

mytimer

opb_bus

bram

OPB UART Lite

myjtaguart

OPB GPIO

OPB Timer/Counter

Figure 5.12: MicroBlaze System for Face Recognition

The backpropagation algorithm is coded in C programming and stored in Block

RAM to solve the face recognition problem. The face images (currently 4 images are

stored) are stored in Block RAM to avoid a relatively long time to access external

memory. OPB JTAG UART is used to debug the system’s functionality. OPB

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 107

Timer/Counter is used to calculate the time duration consumed by each module.

The OPB UART Lite is used to communicate between the PC and the embedded

system on FPGA. OPB GPIO is used as control inputs from the outside world.

5.2.8 Results

The results include two aspects: FPGA usage and profiling. In FPGA usage, the

FPGA resource consumed by each IP core is presented. In profiling, the time

consumed by each function is presented. There are two profiling results. The first

(Table 5.3) is the profiling of Prof. Tom’s face recognition code [httpe] running

on Intel Pentium4 2.4 GHz and 1 GB RAM PC with Linux redhat9.0 operating

system. The second (Table 5.4) is the profiling of the MicroBlaze system that runs

the same C-code.

• FPGA usage: The FPGA usage of each IP core of Figure 5.12 is shown in

Table 5.2. The result was collected from Xilinx floorplanner tool. “MULTs”

is Xilinx Virtex-II dedicated 18×18-bit multiplier. “Function Generator” is

the 4-input LUT and “FlipFlops” is the storage element. “32-bit Dual RAM”

is the internal register of MicroBlaze and “16-bit Mem.” is the 16-bit register.

• Profiling: The profiling result for Prof. Tom’s C code is presented in Table 5.3

(70 images each with 32*30 resolution trained by 100 epochs). The profiling

result for C code running on MicroBlaze is presented in Table 5.4 (4 images,

each one with 20*20 resolution trained by 1 epoch).

From the results shown in Table 5.3, bpnn adjust weights function could be

a candidate to be implemented onto hardware. However, results in Table 5.4

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 108

Block MULTs 16-bit 32-bit Fun Carry Flip
RAM Mem. Dual RAM Gen. Sym. Flops

System 56 3 101 64 1558 187 1297
myuart 0 0 19 0 76 25 62
mytimer 0 0 0 0 283 0 313
mblaze 0 3 73 64 931 143 829
opb bus 0 0 1 0 167 2 11

lmb bram cntlr 0 0 0 0 5 0 1
myjtaguart 0 0 18 0 86 14 79

bram 56 0 0 0 0 0 0

Table 5.2: FPGA Usage

% Cumulative Self Name
time seconds seconds
71.00 4.04 4.04 bpnn adjust weights (equation 2.6, 2.9, 2.17, 2.21)
26.19 5.53 1.49 bpnn layerforward (equation 2.1, 2.2)
1.76 5.63 0.10 load input with image
0.35 5.65 0.02 squash
0.18 5.66 0.01 bpnn hidden error (equation 2.22)
0.18 5.67 0.01 bpnn save
0.18 5.68 0.01 img getpixel
0.18 5.69 0.01 load target
0.00 5.69 0.00 backprop face

Table 5.3: The Profiling Result for Prof. Tom’s Code

% time Cycles Seconds Name
54.10 2077492 0.0207 forward (equation 2.1, 2.2)
0.81 31283 0.0003 backward (equation 2.10, 2.22)
45.07 1730347 0.0173 update (equation 2.6, 2.9, 2.17, 2.21)

Table 5.4: The Profiling result C Code Running on MicroBlaze

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 109

indicate that the feedforward calculations and updating weights consume a

similar computation time. The final decision was made in which the process of

updating weights and thresholds is implemented onto dedicated hardware and

the remaining functions were realized by MicroBlaze. The following Section

shows the implementation of a system containing a MicroBlaze and dedicated

hardware modules.

5.3 Hardware Update Module (HUM)

The pure soft core implementation of ANN for solving the face recognition prob-

lem was presented in Section 5.2. It is important to understand that the system

functionality can be easily modified by changing the C code running on the soft

core MicroBlaze. However, speed is an important system specification that can be

achieved using dedicated hardware modules. In order to balance speed and flexi-

bility, both hardware and software were implemented to create the face recognition

system. In the current implementation, the update() function was implemented by

pure hardware while the remaining functions were implemented in software. This

decision was made based on the profiling result of Prof. Tom M. Mitchell’s C im-

plementation on a PC station where the “adjusting weights” process consumed the

most computation time as shown in Table 5.3.

5.3.1 System Architecture

This Section introduces an embedded computing system where both a MicroBlaze

processor and a dedicated hardware module named HUM are integrated as shown

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 110

in Figure 5.13. The communication between HUM and MicroBlaze is through two

Fast Simplex Link (FSL) channels. A general description of HUM and a detailed

description of FSL channel will be presented next.

Hyperterminal
Switches

OPB Blcok
RAM

OPB Blcok
RAM
Controller

OPB JTAG_UART

Microblaze core

mblaze

(d_lmb) data local memory bus

(i_lmb) instruction local memory bus

lmb_bram_cntlr

myuart mygpio

mytimer

opb_bus

bram

OPB UART Lite

myjtaguart

OPB GPIO

OPB Timer/Counter
F

S
L

0 F
L

S
1

Dedicated Hardware

Update Module (HUM)

Figure 5.13: System Architecture

5.3.1.1 Hardware Update Module (HUM)

The block diagram of HUM is shown in Figure 5.14. The 4 UPDATE UNITs are

designed to update 4 weights or thresholds simultaneously. The module “counter1”

is used to control the storage process of 16 parameters (for updating 4 weights

or 4 thresholds). Finite State Machine is used to control the UPDATE UNITs

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 111

and counter2. The module “counter2” is used to control the sending process of

four updated weights (thresholds). The left-hand side of the block diagram is

connected with MicroBlaze through an FSL0 channel where MicroBlaze is master

and HUM is slave. The parameters used for updating weights (thresholds) are sent

from MicroBlaze to HUM. The right-hand side of the block diagram is connected

to MicroBlaze through FSL1, where the HUM is a master and the MicroBlaze is

slave. The updated weights (thresholds) are sent back from HUM to MicroBlaze.

Detailed information on FSL channel, FSL0/FSL1 interface of HUM is presented

in the following sub-sections.

Counter2

Storage
Controller

Counter1 Finite State Machine

Result0
Result1
Result2
Result3

Output
Controller

��

��

��

��

�	

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Neuron Paramters

P00
P01
P02
P03
P10
P11
P12
P13
P20
P21
P22
P23
P30
P31
P32
P33

UPDATE UNIT

UPDATE UNIT

UPDATE UNIT

UPDATE UNIT

FSL0_S_Clk

FSL0_S_Data

FSL0_S_Control

FSL0_S_Read

FSL0_Exists

SYS_CLK

FSL1_M_Clk

FSL1_M_Data

FSL1_M_Control

FSL1_M_Write

FSL1_M_Full

ready_cal

start_store
start_cal

done

done

done

done

start_out

done_out

Figure 5.14: The Block Diagram of HUM

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 112

5.3.1.2 Fast Simplex Link (FSL) channel

The MicroBlaze software contains eight input and output FSL interfaces which are

dedicated unidirectional point-to-point data streaming interfaces. The FSL inter-

faces on MicroBlaze are 32-bit wide. Further, the same FSL channels can be used

to transmit or receive either control or data words. A separate bit indicates whether

the transmitted (received) word is control or data information. The performance

of the FSL interface can reach up to 300MB/sec. The FSL bus is driven by one

Master and drives one Slave. Figure 5.15 shows the mechanisms of the FSL bus

system and the available signals.

��������������

FIFO

FSL_M_Clk

FSL_M_Data

FSL_M_Control

FSL_M_Write

FSL_M_Full

FSL_S_Clk

FSL_S_Data

FSL_S_Control

FSL_S_Read

FSL_S_Exists

Figure 5.15: FSL Interface

FSL peripherals may be created as a Master or a Slave to the FSL bus. A

master peripheral connected to the left-hand side of Figure 5.15 transmits data and

control signals onto the FSL. All slave peripherals connected to the right-hand side

of Figure 5.15 receive the data sent from the master peripheral. In this architecture,

the HUM was connected with the MicroBlaze processor through two FSL channels:

FSL0 and FSL1, shown in Figure 5.16.

The two FSL predefined C-functions below are used to transfer information be-

tween FSL master and FSL slave, where val is a 32-bit binary number, and id identi-

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 113

R0
R1
R2

R31

MicroBlaze

FSL
 −

 interface

FSL1

FSL0

Hardware Update

 Module

Figure 5.16: Connecting HUM via FSL Interface onto MicroBlaze

fies the channel. For example, MicroBlaze uses microblaze nbwrite datafsl(0x00000000, 0)

to send decimal 0 to HUM through FSL0 and microblaze nbwrite datafsl(reg, 1)

to read the value from HUM and store it to a register “reg”.

//Non-blocking Data Read and Write to Local Link no. id

microblaze nbread datafsl(val, id);

microblaze nbwrite datafsl(val, id);

5.3.1.3 FSL0/FSL1 interface to HUM

The left-hand side of Figure 5.14 is the interface to FSL0 and the right-hand side

is the interface to FSL1. There are several input/output ports included in the

interfaces of both FSL0 and FSL1 on the HUM module. The point-to-point protocol

of FSL0 and FSL1 is presented in detail as follows:

1. FSL0 interface on HUM: The parameters sent from the MicroBlaze pro-

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 114

cessor are stored in the FIFO buffer of FSL0. Whenever data is available in

the FIFO buffer, FSL0 S Exists signal changes from ‘0’ to ‘1’. FSL0 S Read

is an output signal from HUM to FSL0 where ‘1’ means HUM has read the

first data in the FIFO buffer. This signal is used by FSL0 to discard the most

first data in FIFO. If FSL0 S Read is ‘0’, the data is stored in FSL0 FIFO

buffer.

2. FSL1 interface on HUM: As mentioned earlier, the HUM module has the

ability to update 4 weights (thresholds) simultaneously. When 4 updated

weights (thresholds) are ready to be sent back to the MicroBlaze processor,

FSL1 M Write becomes ‘1’ for four clock cycles, and each one of the four

updated weights (thresholds) is sent out on FSL1 M Data port, one per cycle.

If FSL1 FIFO buffer is full, FSL1 M Full changes from ‘0’ to ‘1’.

5.3.2 System Functionality

In this section, the working mechanism of the embedded computing system is de-

scribed by three stages. In the first stage, parameters are sent from the MicroBlaze

processor to FSL0 channel, and then HUM stores the parameters to its local reg-

isters. In the second stage, parameters received from MicroBlaze are sent to four

UPDATE UNITs where new weights (thresholds) are calculated. This is done by

one floating-point adder and two multipliers inside UPDATE UNIT. The updated

results are stored in another four local registers. In the third stage, updated results

are sent from HUM to FSL1 and consequently the MicroBlaze stores the results.

This process continues until all weights and thresholds are updated.

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 115

5.3.2.1 Stage #1

There are two sub-stages that need to be explained. Firstly, the MicroBlaze pro-

cessor sends parameters to FSL0 channel. Secondly, HUM loads the parameters

and stores them in the local registers.

1. From MicroBlaze to FSL0: As mentioned earlier, the MicroBlaze uses

two functions to write data to and read data from the FSL channel. When

updating starts, the MicroBlaze processor needs to send parameters to HUM

for weight and threshold updating. Four parameters are needed to update a

certain weight. For example, to update w[i][j], four parameters (w[i][j], b[i],

d[j], af) are needed. The parameter w[i][j] is the old value of weight between

hidden node i and output node j; b[i] is the activation value of hidden node

i; d[j] is the error value of output node j; and af is the learning rate α. For

threshold updating, three parameters are needed, but in order to use the same

hardware structure for both weights and thresholds updating, a redundant

value ‘1’ is sent so that four parameters are needed in updating both weights

and thresholds. The pseudo code for weight updating from MicroBlaze is

shown in Figure 5.17.

As seen in Figure 5.17, 16 parameters are sent out to FSL0 so that four weights

(thresholds) can be updated. For example, updating weights between the

hidden layer and output layer, the inner loop is from 0 to NODE NUM O.

NODE NUM O denotes the number of nodes in the output layer which is

four. This means parameters for updating four weights are sent out during

each iteration of the outer loop. This is followed by the function of receiving

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 116

void update()
{

//update all weights between input and hidden layer
for(i=0;i<NODE NUM I;i++)
{

for(h=0;h<4;h++)
{

microblaze nbwrite datafsl(v[i][h],0);
microblaze nbwrite datafsl(af,0);
microblaze nbwrite datafsl(a[i],0);
microblaze nbwrite datafsl(e[h],0);

}
for(h=0;h<4;h++)
{

microblaze nbread datafsl(v[i][h],1);
}
for(h=4;h<NODE NUM H;h++)
{

microblaze nbwrite datafsl(v[i][h],0);
microblaze nbwrite datafsl(af,0);
microblaze nbwrite datafsl(a[i],0);
microblaze nbwrite datafsl(e[h],0);

}
for(h=4;h<NODE NUM H;h++)
{

microblaze nbread datafsl(v[i][h],1);
}

}
//update all weights between hidden and output layer
for(h=0;h<NODE NUM H;h++)
{

for(o=0;o<NODE NUM O;o++)
{

microblaze nbwrite datafsl(w[h][o],0);
microblaze nbwrite datafsl(af,0);
microblaze nbwrite datafsl(b[h],0);
microblaze nbwrite datafsl(d[o],0);

}
for(o=0;o<NODE NUM O;o++)
{

microblaze nbread datafsl(w[h][o],1);
}

}
}

Figure 5.17: Pseudo Code for Hardware update() Function

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 117

data from the HUM. The parameters from the MicroBlaze processor are stored

in the FSL0 buffer waiting to be fetched by HUM. After the first parameter is

stored in the FSL0 buffer, FSL0 S Exists switches from ‘0’ to ‘1’ to indicate

that data is available in FSL0.

2. From FSL0 to HUM: The fetching of parameters from the FSL0 buffer

starts when ‘1’ is detected on port FSL0 S Read at the rising clock edge. The

parameters in FSL0 FIFO buffer are then moved to FSL0 S Data port at a

rate of one per cycle. The data is stored in the HUM module local registers.

The timing of fetching data from the FSL0 channel to local registers is shown

in Figure 5.18.

�� �� ��

������

	�	
	�	

�

�

������

� �� ��

�� �� ��

�� �� ��FSL0_S_Data

FSL0_S_Exists

CLK

D0 D1 D13 D14 D15

FSL0_S_Read

D0Lcoal Register 0

Local Register1

Local Register15 D15

D1

Figure 5.18: Illustration of Fetching Data from FSL0 to HUM

As seen in Figure 5.14 FSL0 S Read is connected with FSL0 S Exists to allow

data to be transfered from the buffer to the FSL S Data port. At each rising

clock edge, FSL0 S Exists is also monitored by counter1. If it is ‘1’, counter1

starts to count and triggers the storage controller to put serial data from

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 118

FSL0 S Data to 16 local registers. Another signal is sent from counter1 to

the Finite State Machine to indicate that 16 parameters have been stored

locally. This signal becomes ‘1’ when counter1 reaches the count of “17”.

5.3.2.2 Stage #2

In this processing stage, the UPDATE UNITs attempt to compute the updated

weights (thresholds) based on the local parameters. The triggering the UPDATE

UNITs is controlled by a Finite State Machine.

1. Finite State Machine: There are three input signals and two output signals

in the state diagram shown in Figure 5.19.

The input signals are Ready cal, Ready out and Done out. Ready cal is from

counter1. Ready out is based on “AND” logic of four “done” signals from

UPDATE UNITs which indicate that the latter have completed their task

and the updated results are ready to be sent out. The Done out signal is an

output signal from counter2 module to indicate that the results have already

been sent out.

An output signal from the Finite State Machine is sent to the UPDATE

UNITs for starting/stopping the latter. If Ready cal is ‘1’ in “waiting” state,

Start cal will be ‘1’ which informs the UPDATE UNITs to start or continue

processing. If Ready out is ‘1’ in “calculating” state, this output is ‘1’ which

tells counter2 to send a signal to Output controller so that the updated results

are sent to FSL1 M Data one by one from local registers. If Done out is ‘0’

in “sending” state, it will return to “waiting” state. The waveform for this

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 119

process is shown in Figure 5.20.

waiting

calculating

0XX

1XX

X0X

X1X

XX0

XX1

00

10
sending

01

Figure 5.19: The State Transition Diagram

2. UPDATE UNIT: The task of HUM is achieved by four UPDATE UNITs

as shown in Figure 5.21. There are two IEEE single precision multipliers and

one IEEE single precision adder within the UPDATE UNIT module. For

weight updating w[h][o] = w[h][o] +αb[h]d[o], op1 could be w[h][o]; op2 could

be α; op3 could be b[h]; and op4 could be d[o].

The parameterized floating-point adder fp add and multiplier fp mul were

introduced in Chapter 4. In order to construct an IEEE single precision

adder and multiplier, two other modules were constructed (DENORM and

RND NORM). These two modules are also from Pavle’s floating-point li-

brary. A detailed functional explanation of DENORM and RND NORM are

presented first and then the construction of IEEE single precision adder and

multiplier are presented.

• DENORM

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 120

�� �� ��

ready_cal

CLK

ready_out

done_out

start_cal

start_out

Figure 5.20: Waveform to Illustrate how FSM Works

IEEE single precision
 Multiplier

IEEE single precision
 Multiplier

IEEE single precision
 Adder

P1P0 ReadyP3P2

UPDATE UNIT

op2

op1 op2 Ready

Done

Result

Result

Result

op1 Ready

Done

Readyop2op1

Result

Figure 5.21: Block Diagram of Update Unit

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 121

Normalization of floating-point numbers tend to make the integer part of

mantissa non-zero. For example, when dealing with the binary number

system, the only non-zero value is ‘1’. For a normalized floating-point

number, the ‘1’ in the integer part of the mantissa is redundant and only

the fractional part of the mantissa is stored. However, IEEE standard

754 has the following rules: when the floating-point number is not zero, it

is stored as a normalized format, and, when the floating-point number is

zero, the integer part of the mantissa is zero. Therefore, the DENORM

module is introduced to add the implied ‘1’ or ‘0’ to the mantissa to

form a de-normalized floating-point number based on the rules of IEEE

standard 754.

• RND NORM

Following any floating-point operation, results need to be converted

to their normalized format. This is achieved by RND NORM module

shown in Figure 5.22. There are two sub-modules: NORMALIZER and

ROUND ADD included in RND NORM. The function of NORMAL-

IZER is to convert a floating-point number into a normalized form. This

is accomplished by shifting the mantissa to the left until the MSB is ‘1’

while decreasing the exponent for every bit by which the mantissa is

shifted. The function of ROUND ADD is to reduce the mantissa bit-

width to its original size. For example, floating-point addition introduces

a guard digit which make the mantissa bit-width increase by 1 bit. The

result must be rounded to the same length as the original mantissa. Two

rounding modes can be chosen in ROUND ADD which are round to zero

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 122

(truncating) and round to nearest (which is used in the developed HUM

module).

ROUND_ADD

NORMALIZER

RegisterRegister

RegisterRegister

f

s
e f

es

OUT1 EXCEPTION_OUTDONE

READYIN1

EXCEPTION_IN

ROUND

Figure 5.22: Rounding and Normalizing

• IEEE single precision adder

The IEEE single precision adder is constructed from three modules:

fp add, denorm and rnd norm. fp add was introduced in Chapter 4 and

the remaining two modules were introduced in the previous sub-section.

From Figure 5.23 it is clear that denorm is used twice to add the implied

integer bit into both input operands. fp add executes floating-point ad-

dition on these two prepared operands. Due to the guard bit introduced

in addition and denorm, the mantissa is 25 bits wide. rnd norm is finally

used to convert the result back to the IEEE single precision format.

• IEEE single precision multiplier

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 123

Normalized IEEE single
 precision values

Normalized IEEE single

 precision product

DENORM

exp_bits=8
man_bits=23

DENORM

exp_bits=8
man_bits=23

IEEE single precision
 adder

exp_bits=8

FP_ADD

RND_NORM

man_bits_out=23

exp_bits=8

man_bits=24

man_bits_in=25

Figure 5.23: IEEE Single Precision Adder

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 124

The IEEE single precision multiplier is constructed from three modules:

fp mul, denorm and rnd norm. fp mul was also introduced in Chap-

ter 4. From Figure 5.24 it can be seen that denorm is used twice to

add the implied integer bit into both input operands. fp mul executes

floating-point multiplication on these two prepared operands. After mul-

tiplication, the length of the mantissa is twice that of the input operands

which is 48 bits. rnd norm is finally used to convert the result back to

IEEE single precision format.

5.3.2.3 Stage #3

In this stage, four updated weights (thresholds) are directed to the FSL1 M Data

port from local registers at one per cycle mode. The FSL1 M Write signal is set to

‘1’ during the sending state. When the MicroBlaze module detects the high signal

at the rising edge of the clock, the data on FSL1 M Data port are withdrawn.

5.3.3 Results

There are two parts to the result. Firstly the FPGA usage of HUM function,

and FSL channel is presented. Secondly, the time consumed by HUM is presented.

Compared with the pure MicroBlaze solution introduced earlier, the speedup to the

update function has an overall gain in performance calculated by Amdahl’s Law.

5.3.3.1 FPGA usage

As indicated in Figure 5.13, the system includes both a MicroBlaze with peripherals

and HUM with FSL channel. The FPGA usage of a MicroBlaze with peripherals

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 125

Normalized IEEE single
 precision values

Normalized IEEE single

 precision product

DENORM

exp_bits=8
man_bits=23

DENORM

exp_bits=8
man_bits=23

IEEE single precision
 multiplier

FP_MUL

exp_bits=8
man_bits=24

RND_NORM

man_bits_out=23

exp_bits=8

man_bits_in=48

Figure 5.24: IEEE Single Precision Multiplier Using Pavle’s Library

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 126

is shown in Table 5.2 and the FPGA usage of HUM with FSL is shown in Table

5.5. If the number of slices is used to count the FPGA area occupied, the whole

system consumes 49% of the total area of a Virtex-II XC2V2000 device.

MULTs 16-bit Fun. Carry Flip
mem. Gen. Sym. Flops

h update 32 8 5795 1489 3868
fsl 0 34 10 5 6

Table 5.5: The FPGA Usage on HUM

5.3.4 Amdahl’s law [Henn95]

Amdahl’s Law measures the performance gain by using some of the faster compo-

nents of a computer as follows:

1. The fraction of the computation time in the original machine that can be

converted to take advantage of the enhancement - For example, if 20 sec-

onds of the execution time of a program that takes 60 seconds in total can

use an enhancement, the fraction is 20/60. This value, which we will call

Fractionenhanced, is always less than or equal to 1.

2. The improvement gained by the enhanced execution mode; that is, how much

faster the task would run if the enhanced mode were used for the entire pro-

gram. This value is the time of the original mode over the time of the enhanced

mode: If the enhanced mode takes 2 seconds for some portion of the program

that can completely use the mode, while the original mode took 5 seconds for

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 127

the same portion, the improvement is 5/2. We will call this value, which is

always greater than 1, Speedupenhanced.

The execution time using the original machine with the enhanced mode will be

the time spent using the nonenhanced portion of the machine plus the time spent

using the enhancement:

Execution timenew = Execution timeold×((1−Fractionenhanced)+
Fracenhanced

Speedupenhanced

)

(5.1)

The overall speedup is the ratio of the execution times:

Speedupoverall =
Execution timeold

Execution timenew

=
1

(1 − Fractionenhanced) + Fractionenhanced

Speedupenhanced

(5.2)

5.3.4.1 The Time consumed by HUM

The time consumed by the dedicated hardware update module is shown in Table

5.6.

% time Cycles Seconds Name
92.2 2077492 0.0207 forward
1.4 31283 0.0003 backward
6.4 145196 0.0014 hardware update

Table 5.6: Profiling on Co-implement System

As can be seen in Table 5.6, update() function implemented by hardware only

CHAPTER 5. A HARDWARE/SOFTWARE CO-DESIGN APPROACH 128

requires 145196 cycles whereas MicroBlaze requires 1730347 cycles. In equation

5.2, Speedupenhanced = 1730347
145196

= 11.91 and Fractionenhanced is determined by Table

5.4 where Fractionenhanced is 45.07% (45.07% is the fraction of function update to

be enhanced). The overall speedup achieved over a pure software implementation

is is around 1.69 (Amdahl’s Law) on average.

5.4 Summary

In this Chapter, two systems were proposed for solving the face recognition problem.

The first contains a MicroBlaze soft processor core implemented onto an FPGA.

The second system contains both a MicroBlaze and a dedicated hardware mod-

ule. The results show that the update() function implemented by hardware is over

10 times faster than the software implementation. However, the overall speedup

achieved is approximately 1.69 over a pure software implementation.

Chapter 6

Conclusion

Artificial Neural Networks have been proven to be of broad applicability to real

world problems such as pattern recognition. However, the inherent parallel dis-

tributed character of ANN cannot be implemented efficiently by a general processor.

Many efforts have been made in the past to implement ANNs onto hardware such

as ASICs and FPGAs to achieve speedup [Eldr94, Hika99, JB98, Ferr94, Mart94].

This dissertation attempts to find the means of balancing flexibility and perfor-

mance to solve the problem of mapping a large ANN architecture onto a single

FPGA chip. For these cases, a Hardware/Software Co-design technique is used to

design a system containing both processor(s) and dedicated hardware.

The effect of arithmetic representation formats on implementing ANN on FP-

GAs was investigated. The main focus was to examine the tradeoffs between pre-

cision and range of various formats that can target FPGA resources. The basic

ANN processing elements include multiplication and addition operations. As such,

twenty-five Floating and Fixed formats were tested where a multiplier and an adder

129

CHAPTER 6. CONCLUSION 130

were implemented on an FPGA and their area requirements compared. Results

obtained already indicate that floating-point formats offer more area-efficient im-

plementation without penalty on precision or range. The results also show that the

target FPGA device could have a major impact on the resources required. However,

implementing a large ANN onto only one FPGA is still not feasible today. In order

to balance performance and flexibility, a Hardware/Software Co-design approach

should be followed.

In the second part of the thesis, two systems were proposed to solve the face

recognition problem by an MLP-BP ANN. The first system consisted of a Mi-

croBlaze soft processor core while the second system included both a MicroBlaze

processor and a dedicated hardware module. The results show that the subfunction

implemented by hardware is over 10 times faster than running on the MicroBlaze.

However, the overall speedup achieved is approximately 41% over a pure software

implementation. The system containing both hardware and software has a good

balance between flexibility and performance.

6.1 Future Work

Here are several avenues for future research. If performance is the main concern,

an ANN can be implemented onto FPGAs by only programmable logic. The work

in this case could focus on two issues: run-time reconfiguration so that a large

ANN can be mapped on only one FPGA chip; the design of more efficient adder,

multiplier, and sigmoid functions which are basic arithmetic operators of ANNs is of

importance. If performance and flexibility are going to be better balanced, a system

CHAPTER 6. CONCLUSION 131

containing more MicroBlazes and more dedicated hardware modules could be a

better solution. Also, if only arithmetic operators are implemented onto hardware

and the scheduling task is implemented by a MicroBlaze, a better performance

can be achieved without losing any flexibility. The limitation of this work is that

no real-life benchmarks were tested on the proposed systems and therefore, more

real-life benchmarks should be tested.

Appendix A

Glossary

ANN : Artificial Neural Network

EDK : Embedded Development Kit

BP : BackPropagation

MLP-BP : Multi-Layer Perceptron-BackPropagation

FPGA : Field Programmable Gate Array

FSL : Fast Simplex Link

BRAM : Block RAM

IP : Intellectual Property

OPB : On-Chip Peripheral Bus

LMB : Local Memory Bus

RC : Reconfigurable Computing

RTL : Register Transfer Logic

PCA : Principal Component Analysis

LDA : Linear Discriminant Analysis

132

APPENDIX A. GLOSSARY 133

DCM : Digital Clock Manager

VHDL : Very High Speed Integrated Circuit Hardware Description Language

LUT : Lookup Table

ZBT : Zero Bus Turnaround

JTAG : Joint Test Action Group

UART : Universal Asynchronous Receiver/Transmitter

VLSI : Very Large Scale Integration

HUM : Hardware Update Module

Appendix B

Embedded Development Kit

All experiments in this thesis were carried out using Xilinx EDK6.1. This kit con-

tains a rich set of design tools and wide selection of standard peripherals required to

build embedded processor systems using MicroBlaze, the industry’s fastest soft pro-

cessor solution. Embedded System Tools (EST) is included in the EDK which con-

sists processor platform tailoring utilities, software application development tool,

a full featured debugging tool chain, device drivers and libraries. In order to help

reader have a top view on how to design an Embedded System by EST, the archi-

tecture of EST is introduced here. The detail information on each tool inside of

EST can be found in Xilinx Embedded System Tools Guide [httpk]

• Embedded Software Tool Architecture[httpk] Figure B.1 depicts the

EST architecture (XPS is Xilinx Platform Stdio). Multiple tools based on

a common framework allow users to design a complete embedded system.

System design consists of the creation of the hardware and software com-

ponents of the embedded processor system, and optionally, a verification or

134

APPENDIX B. EMBEDDED DEVELOPMENT KIT 135

simulation component as well. The hardware component consists of an au-

tomatically generated hardware platform that can be optionally extended to

include other hardware functionality specified by the user.

The software component of the design consists of the software platform gen-

erated by the tools, along with the user designed application software. The

verification component consists of automatically generated simulation models

targeted to a specific simulator, based on the hardware and software compo-

nents.

HW Spec Ed.

XPS

Sim Spec Ed.

Sim Plat. Gen

Simulators

ISE−HW Impl

SW Spec Ed.

SW Compilers

SW Debugger

HW Plat. Gen

iMACT

SW Plat. Gen

SW Source Ed.

XMD

Data2BMEM

Figure B.1: Embedded Software Tool Architecture

• Tool Flows

A typical embedded system design project involves the following phases:

– hardware platform creation,

– hardware platform verification (simulation),

– software platform creation,

APPENDIX B. EMBEDDED DEVELOPMENT KIT 136

– software application creation, and

– software verification (debugging).

Hardware Platform Creation The hardware platform creation is depicted

in Figure B.2. The hardware platform consists of one or more processors

and peripherals connected to the processor buses. User can define their

own peripherals or invoke from libraries provided by Xilinx. The system

architecture, peripherals and embedded processors are defined by MHS

(Microprocessor Hardware Specification) file. The MHS file also defines

the connectivity of the system, the address map of each peripheral in

the system and configurable options for each peripheral.

The Platform Generator tool (platgen) creates the hardware platform

using the MHS file as input. Platgen creates netlist files in various

formats (NGC, EDIF), as well as support files for downstream tools,

and top level HDL wrappers to allow users to add other components to

the automatically generated hardware platform.

Verification Platform Creation The verification platform is based on the

hardware platform. The verification specification allows the user to spec-

ify a simulation model for each processor, peripheral or other module in

the hardware platform. The MHS file is processed by the Simgen tool to

create simulation files (VHDL, Verilog or various compiled models) along

with some command files for specific simulators supported by the tool.

The entire process of generating the verification platform is depicted in

Figure B.3.

APPENDIX B. EMBEDDED DEVELOPMENT KIT 137

HW Spec Ed.

HW Plat. Gen

XPS, WIZARDS

Platgen

MHS File

EDIF, NGC,
VHDL,V,BMM

MHS File

XPS

Figure B.2: Hardware Platform Creation

XPS

Sim Spec Ed.

Sim Plat. Gen

Simgen

XPS GUI

MHS File

.vhd, .v for sim

MHS, .elf

Figure B.3: Verification Platform Creation

APPENDIX B. EMBEDDED DEVELOPMENT KIT 138

Software Platform Creation The software platform is defined by the MSS

(Microprocessor Software Specification) file. The MSS file defines driver

and library customization parameters for peripherals, processor cus-

tomization parameters, standard input/output devices, interrupt han-

dler routines, and other related software features. The MSS file is an in-

put to the Library Generator tool (LibGen) for customization of drivers,

libraries and interrupt handlers. The entire process of creating the soft-

ware platform is shown in Figure B.4.

XPS

SW Spec Ed.

SW Plat. Gen

libc.a, libXil.a

lib/*.c, lib/*.h
MSS, MHS

libgen

Emacs, XPS MSS Editor

MSS File

Figure B.4: Software Platform

Software Application Creation and Verification The software applica-

tion is the code that runs on the hardware and software platforms. The

source code for the application is written in a high level language such as

C or C++, or in assembly language. Once the source files are created,

they are compiled and linked to generate executable files in the ELF

(Executable and Link Format) format. XMD and the GNU debugger

APPENDIX B. EMBEDDED DEVELOPMENT KIT 139

(GDB) are used together to debug the software application. XMD pro-

vide an instruction set simulator, and optionally connects to a working

hardware platform to allow GDB to run the user application. The entire

process is depicted in Figure B.5.

XPS

SW Source Ed.

SW Debuggers

Emacs, XPS Source Editor

.c and .h files

libc.a, libXil.a
.c and .h files

SW Compilers

Mb−gcc, ppc−gcc

Mb−gdb, pcc−gdb

.elf file

.c and .h files
.elf file

XMD

Figure B.5: Software Application Creation and Verification

Appendix C

Xilinx MicroBlaze Soft Processor

Core [Micr]

MicroBlaze is a full Harvard, RISC pipelined architecture with 32-bit data and

32-bit instruction words. It supports a subset of IBM’s COREConnect On-chip

Peripheral Bus (OPB) architecture [httpf]. It also contains a Local Memory Bus

(LMB) for fast access to local BRAM for both Instruction and Data. The MicroB-

laze pipeline is a parallel pipeline, divided into three stages: Fetch, Decode and

Execute. All instructions take one clock cycle except for the following:

• Load/Store: 2 clock cycles+I/O latency

• Multiply: 3 clock cycles

• Branches: 3 clock cycles

The features of this soft processor core are the following:

• Supports Virtex, Virtex-E, Virtex-II Pro, Spartan-II, and Spartan-IIE devices

140

APPENDIX C. XILINX MICROBLAZE SOFT PROCESSOR CORE [Micr] 141

• Performance: 102 Dhrystone MIPS (D-MIPS) on Virtex-II Pro device at 150

MHz

• Minimum logic requirements: 900 logic cells

• 32-bit pipelined RISC architecture

• 32×32-bit general purpose registers

• Implementation in Virtex-II and later device support hardware multiply

• Supports Local Memory Bus (LMB) for fast access of on-chip BRAMs

• Supports IBM CoreConnect On-chip Peripheral Bus (OPB) for accessing pe-

ripherals

• Processor peripherals compatible with PowerPC on Virtex-II Pro

• Complete hardware and software development tool and debug solution

An embedded system built around MicroBlaze is comprised of the following:

• MicroBlaze Soft Processor Core

• On-chip Local Memory

• Standard Bus Interconnects

• On-chip Peripheral Bus (OPB) Peripherals

APPENDIX C. XILINX MICROBLAZE SOFT PROCESSOR CORE [Micr] 142

Figure C.1: MicroBlaze RISC 32-Bit Soft Processor System Interconnect Diagram

Appendix D

Rapid prototyping board

The final design is implemented on Xilinx Virtex-II Multimedia board shown in Fig-

ure D.1. As can be seen, in the center of the board is a Xilinx Virtex-II XC2V2000

FPGA chip. The five chips around it are 512 × 36bit 130MHz ZBT (Zero Bus

Turnaround) RAM [httpg]. The left side of the board contains a 16M Flash mem-

ory and a serial port. The up and right side of the board are some audio and

video I/O ports. The botton of the board are several push buttons. This board is

designed as a compact platform for developing multimedia applications. The Mul-

timedia board uses a Virtex-II XC2V2000-FF896 as the user application FPGA.

Xilinx MicroBlaze 32-bit soft processor can also be used on the Multimedia board

as a processing engine. The board supports five independent banks of 512K x

36bit 130MHz ZBT RAM with byte write capability. This memory may be used as

microprocessor code/data store, or as video frame buffers.

Real time video is supported with a PAL - NTSC video decoder, encoder pair.

The video may originate in either S-video or composite video format and is con-

143

APPENDIX D. RAPID PROTOTYPING BOARD 144

verted into CCIR 601/CCIR656 8-bit or 10-bit extended format for processing by

the FPGA. The Virtex-II FPGA also generates the digital video stream for the

video encoder. Video output is provided in S-video, composite video as well as

RGB formats. A triple 8 bit DAC is also included to support SVGA output up to

1024 x 768 resolution with 85Hz refresh.

Audio processing is also supported with stereo line level inputs and outputs, a

headphone jack and microphone input.

Figure D.1: Xilinx Multimedia Development Board

Multimedia Board Features:

• Virtex-II XCV2000-FF896

• Audio CODEC compliant with AC97 and stereo amplifier with 18-bit sigma-

delta A/Ds and D/As

• Supports a single channel of real time PAL or NTSC video input from in

either composite or S-video (Y/C) format Supports a single channel of real

APPENDIX D. RAPID PROTOTYPING BOARD 145

time PAL or NTSC video output composite S-Video (Y/C) format and RGB

simultaneously

• SVGA output

• Supports five independent banks of 512K x 36bit 130MHz ZBT RAM with

byte write capability

• Onboard network connection ,10/100 Ethernet, with a unique MAC address

assigned to each board

• RS232 port

• Button cell battery to support FPGA configuration data encryption.

• Embedded SystemACE controller for high-speed FPGA configuration.

– The user application FPGA has access to the SystemACE microproces-

sor port to allow the Compact Flash to be used as a file storage media.

• Keyboard and mouse

• Integrated power supplies

• Speaker output with adjustable volume

• Headphone and microphone

• 10 pushbuttons as user inputs to the board

• Two DIP switches with two LEDs for visual feedback.

Appendix E

Computing Platforms

The existing computing platforms include processors (general processors and Digital

Signal Processing (DSP) processors), Reconfigurable Computing (RC) platform,

Application Specific Integrated Circuits (ASIC) and hybrid systems where both

hardware and software (embedded processor) are implemented together.

Processors are extensively used in scientific computations. The processors

have fixed components such as ALU (Arithmetic Logic Unit) and Control Logic.

Applications are executed by decoding a stream of instructions and operating on

data stored in the memory. Different applications can be realized by easily coding

different instruction stream and running it on processors (software solution). How-

ever, instruction fetching, decoding, executing and memory accessing are sequential

procedures. The sequential nature of processors could be a bottle-neck in real-time

applications.

ASICs are widely used in real-time applications. It is designed on integrated

circuit (hardware solution) for a specific application and hence, each ASIC has fixed

146

APPENDIX E. COMPUTING PLATFORMS 147

functionality but high performance by extensively using parallelism and pipelining

for a specific application. The disadvantage of ASICs is the restriction of function

modification to the algorithms implemented on them after fabrication.

RC gives you a solution in compromise between flexibility (processor) and per-

formance (ASIC). FPGA is usually a kind of reconfigurable medium which can

be configured at compile-time or run-time to facilitate greater flexibility without

compromising performance. The performance is also achieved by parallelism and

pipelining implementation of the algorithms. Compared to conventional processors,

RC solution has significant performance advantages. Complex algorithms can be

mapped onto FPGAs to achieve higher computation density than processors, be-

cause the logic for instruction fetching, decoding, executing is not necessary and

parallelism and pipelining techniques can be used. Compared to ASIC, RC solution

has more flexibility due to the reconfigurable ability. However, the performance can

only be close to ASICs in terms of speed.

In addition to RC medium, DSP is another platform that can balance flexibility

and performance. In this kind of platform, some functions realized by ALU in a

general processor are moved to dedicated hardware like multipliers, accumulators,

etc. which are frequently used in DSP applications. In other words, DSP processors

are special processors dedicated for DSP applications.

Today, the capacity of FPGAs has reached a point that both processors and

dedicated hardware can be implemented at the same time on a single FPGA chip.

For example, MicroBlaze soft processor IP core requires approximately 900 LUTs

for Virtex-II FPGAs and Virtex-II xc2v2000 FPGA (The one used in this thesis)

has 21,504 LUTs. A system on a FPGA including both processor like MicroBlaze

APPENDIX E. COMPUTING PLATFORMS 148

and other hardware modules can be also used to balance flexibility and performance.

This hybrid system is considered as a embedded computing system.

Figure E.1 better represents the relation between these platforms discussed

above.

ASIC

(0,0)
Performance

Flexibility

Processors and DSPs

RC

Embedded Computing

Figure E.1: Comparison Between Different Platform in Terms of Performance and
Flexibility

Appendix F

MicroBlaze IP-Cores

F.1 MicroBlaze

Xilinx MicroBlaze soft processor IP core can be used in designing an Embedded

System in Xilinx FPGAs, which may include one or more MicroBlazes with several

peripherals where are connected through OPB [httpi] bus.

The MicroBlaze is the industry’s fastest soft processing solution [httpl]. It’s a

32-bit RISC consisting a three stage pipeline with dedicated instructions and data

paths (Harvard style) shown in Figure F.1.

The MicroBlaze embedded soft core includes the following features:

1. Thirty-two 32-bit instruction word with three operands and two addressing

modes

2. Separate 32-bit instruction and data buses that conform to IBM’s OPB (On-

chip Peripheral Bus) specification

149

APPENDIX F. MICROBLAZE IP-CORES 150

BUS
 IF

Program
Counter

Instruction
 Buffer

Instruction
 Decoder

Register File
 32*32b

BUS
 IF

Instruction−side
 bus interface

Data_side
bus interface

ILMB

IOPB

Add/Sub

Shift/Logical

Multiply

DLMB

DOPB

Figure F.1: MicroBlaze Core Block Diagram

3. Separate 32-bit instruction and data buses with direct connection to on-chip

block RAM through a LMB (Local Memory Bus)

4. 32-bit address bus

5. Single issue pipeline

6. Hardware multiplier (in Virtex-II and subsequent devices)

F.2 Xilinx MicroBlaze bus interfaces

The interfaces used in Figure F.1 are: OPB[httpi] which stands for On-chip Periph-

eral Buses and LMB [httpi] which stands for Local Memory Buses. In Figure F.1,

IOPB and ILMB are instruction path whereas DOPB and DLMB are data path.

• Local Memory Bus (LMB) The LMB is a highly efficient bus for Xilinx

Block RAM accessing. LMB provides guaranteed performance of 125 MHz

APPENDIX F. MICROBLAZE IP-CORES 151

for local memory subsystem.

• On-chip Peripheral Bus (OPB) The OPB can be used to connect to large

external memory either instruction or data memory. In addition, peripherals

which are compatible with MicroBlaze can also be connected to MicroBlaze

through this bus.

• MicroBlaze Bus Configurations There are six configurations you can use

depending on code size and data spaces and whether you require fast access

to internal Block RAM. The six different configurations are shown in Figure

F.2.

1 2 3

4 5 6

IOPB DOPB

ILMB DLMB

IOPB DOPB

DLMB ILMB

DOPB

DLMB

IOPB

ILMB

DOPB IOPB DOPB

ILMB

DOPB

Figure F.2: MicroBlaze Bus Configurations

The system shown in Figure 5.12 is in configuration No. 3. This configuration

allows the CPU core to operate at the maximum clock rate due to the simpler

APPENDIX F. MICROBLAZE IP-CORES 152

instruction-side bus structure. The instruction-side LMB provides two-cycle

pipelined read-access from the Block RAM for an effective access rate of

one instruction per clock. Since the objective of this thesis is to compare

the software implementation with hybrid implementation of backpropagation

algorithm on FPGA in terms of speed and flexibility, 4 images is used in the

training process for simplicity. This will allow less memory usage where only

Block RAM inside FPGA is enough. All the instruction code and image data

are stored in Block RAM of XC2V2000 FPGA on Xilinx Multimedia board

where 1008K bit Block RAM is available.

F.3 OPB Block RAM[httpi]

The OPB Block RAM is a module that is going to be attached to the OPB. The

features of OPB Block RAM are following:

Features

• OPB V2.0 bus interface with byte-enable support

• Number of Block RAMs is configurable

• Handles byte, half-word and word transfers

• Other port of the BRAM is available for customer designs

• Handles Virtex, Virtex-E, Spartan-II and Virtex-II PRO type of Block RAM

To allow you to obtain an OPB Block RAM that is uniquely tailored for your

system, certain features can be parameterized in the OPB BRAM design. This

APPENDIX F. MICROBLAZE IP-CORES 153

allows you to configure a design that only utilizes the resource required by your

system, and operates with the best possible performance.

F.4 OPB Block RAM Controller

The Block RAM is connected to MicroBlaze processor through OPB Block RAM

Controller. Two parameters can be set to determine how much Block RAM can be

addressed. For example, if the Base Address is 0x00000000 and the High Address

is 0x0000ffff, 32 blocks (2K Bytes each) of Block RAM can be addressed.

F.5 OPB JTAG UART[httpi]

In the 1980s, the Joint Test Action Group (JTAG) developed a specification for

boundary-scan testing that was standardized in 1990 as the IEEE Std. 1149.1-1990.

In 1993 a new revision to the IEEE Std. 1149.1 standard was introduced (titled

1149.1a) and it contained many clarifications, corrections, and enhancements. In

1994, a supplement that contains a description of the boundary-scan Description

Language (BSDL) was added to the standard. Since that time, this standard has

been adopted by major electronics companies all over the world. Applications are

found in high volume, high-end consumer products, telecommunication products,

defense systems, computers, peripherals, and avionics. Now, due to its economic

advantages, smaller companies that cannot afford expensive in-circuit testers are

using boundary-scan.

While it is obvious that boundary-scan based testing can be used in the pro-

APPENDIX F. MICROBLAZE IP-CORES 154

duction phase of a product, new developments and applications of the IEEE-1149.1

standard have enabled the use of boundary-scan in many other product life cycle

phases. Specifically, boundary-scan technology is now applied to product design,

prototype debugging and field service. OPB JTAG UART is used here for debug-

ging the system by Xilinx Microprocessor Debugger (XMD) [httpj]. When you

activate XMD tool and type “mbconnect stub”, XMD will automatically detect the

JTAG cable, chain and FPGA device containing the MicroBlaze system, and con-

nect to the JTAG core of the system. This JTAG core can be used later on for

debugging the software running on MicroBlaze.

F.6 OPB UART Lite[httpi]

A UART (universal asynchronous receiver / transmitter) is responsible for perform-

ing the main task in serial communications with computers. The device changes

incoming parallel information to serial data which can be sent on a communication

line. A second UART can be used to receive the information.

OPB UART Lite is used for printing some results to the hyper-terminal serial

communication tool on PC side which is connected to the MicroBlaze core system

through serial port and also the testing image data could be transmitted from PC

to MicroBlaze core system through OPB UART Lite. It has the following features:

Feature

• OPB V2.0 bus interface with byte-enable support

• Supports 8-bit bus interface

APPENDIX F. MICROBLAZE IP-CORES 155

• One transmit and one receive channel (full duplex)

• 16-character transmit FIFO and 16-character receive FIFO

• Number of data bits in a character is configurable (5-8)

• Parity; can be configured for odd or even

• Configurable baud rate

F.7 OPB Timer/Counter[httpi]

The TC (Timer/Counter) is a 32-bit timer module that attaches to the OPB (On-

Chip Peripheral Bus).The TC is organized as two identical timer modules. Each

timer module has an associated register (the Load Register) that is used to hold

either the initial value for the counter for event generation or a capture value,

depending on the mode of the timer. The TC block diagram is shown in the

Figure F.3.

Timer Modes

There are three modes can be used in TC. They are Generate Mode, Cap-

ture Mode or Pulse Width Modulation (PWM) Mode with the two timer/counter

modules.

• Generate Mode

In Generate Mode, the value in the Load Register is loaded into the counter

and the counter begins to count (upward or downward by the UDT bit in

TCSR) when it is enabled. On transition of the carry out of the counter,

APPENDIX F. MICROBLAZE IP-CORES 156

Control/
 Status

Control/
 Status

Load
Register

Load
Register

32b Counter 32b Counter

PWM0
Interrupt Logic

GenerateOut0

TC_Interrupt

GenerateOut1

Capture Trig0 CaptureTrig1

TLR1

TCR1

TLR0

TCR0

OPB Bus

OPB Bus

TCSR0

TCSR1

Figure F.3: Timer/Counter Organization

the counter stops or automatically reloads the generate value from the Load

Register and continues counting (selectable by the ARHT bit in TCSR). The

TINT bit is set in TCSR and, if enabled, the external GenerateOut signal is

driven to 1 for one clock cycle. If enabled, the interrupt signal for the timer

is driven to 1 for one clock cycle.

• Capture Mode

In Capture Mode, the value of the counter is stored in the Load Register

when the external capture signal is asserted. The TINT bit is also set in

TCSR on detection of the capture event. The counter can be configured as

an up or down counter for this mode (selectable by the UDT bit in TCSR).

The ARHT bit controls whether the capture value is overwritten with a new

capture value before the previous TINT flag is cleared. This mode is useful for

timer tagging external events while simultaneously generating an interrupt.

APPENDIX F. MICROBLAZE IP-CORES 157

• Pulse Width Modulation (PWN) Mode

In PWN mode, two timer/counters are used as a pair to produce an output

signal (PWN0) with a specified frequency and duty factor. Timer0 sets the

period and Timer1 sets the high time for the PWN0 output.

F.8 OPB GPIO[httpi]

GPIO stands for General Purpose Input and Output. OPB GPIO is the core which

can be used to connect the input/output components like LEDs and switches on

the development board. The features are following:

• OPB V2.0 bus interface with byte-enable support

• Support 32-bit, 16-bit and 8-bit bus interface

• Each GPIO bit dynamically programmable as input or output

• Number of GPIO bits configurable up to size of data bus interface

• Can be configured as inputs-only to reduce resource utilization

Bibliography

[ANSI85] New York ANSI/IEEE, “Ieee standard ofr binary floating point arith-
metic, std 754-1985 edition,” 1985.

[Auda99] G. Auda and M. Kamel, “Modular neural networks,” International
Journal of Neural Networks, vol. 9, pp. 129–151, April 1999.

[Bela02] Pavle Belanovic, “Library of Parameterized Hardware Modules for
Floating-Point Arithmetic with An Example Application,” M.A.Sc
Thesis, ECE Department, 2002.

[Blum98] M. Blumenstein and B. Verma, “A Neural Based Segmentation and
Recognition Technique for Handwritten Words,” World Congress on
Computational Intelligence (WCCI ’98), 1998.

[Brun93] R. Brunelli and T. Poggio, “Face Recognition: Features versus Tem-
plates,” pp. 1042–1052, 1993.

[BV98] M. Blumenstein B. Verma and S. Kukarni, “Recent Achievements in
Off-line Handwriting Recognition Systems,” International Conference
on Computational Intelligence and Multimedia Applications (ICCIMA
’98), 1998.

[CBus93] C.Busch and M.H.Gross, “Interactive Neural Network Texture Analy-
sis and Visualization for Surface Reconstruction in Medical Imaging,”
EUROGRAPHICS ’93, Computer Graphics Forum, 1993.

[CLLi73] C.L.Liu and J.W.Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment,” J.ACM, pp. 46–61, 1973.

[Cont02] Gilberto Contreras and Patricia Nava, “Deisgn, implementation and
testing of an fpga-based neuro-coprocessor,” In Posters on the Hill,
Washingtom, D.C., 2002.

[CS92] Hamilton A. et al. Churcher S., Baxter D.J., “Generic analog neural
computation-the epsilon chip,” In Proceedings of the 1992 Conference of
Advances in Neural Information Processing Systems, Denver, Colorado,
1992.

158

BIBLIOGRAPHY 159

[DBec92] R.K.Singh D.Becker and S.G.Tell, “An engineering environment for
hardware/software cosimulation,” IEEE CS Press, pp. 129–134, 1992.

[dG02] Hugo de Garis and Michael Korkin, “The cam-brain machine (cbm)
an fpga based hardware tool which evolves a 1000 neuron net circuit
module in seconds and updates a 75 million neuron artificial brain for
real time robot control,” Neurocomputing journal, vol. 42, , 2002.

[DGB88] P. J. Lloyd D. G. Bounds and G. Waddell, “A Multilayer Perceptron
Neural Network for the Diagnosis of Low Back Pain,” IEEE Interna-
tional Conference on Neural Networks, vol. 2, pp. 481–490, 1988.

[ea94] J.Buck et al., “A Framework for Simulating and Prototyping Heteroge-
neous Systems,” Int’l J. Computer Simulation, pp. 155–182, 1994.

[EC88] S. Ghosh E. Collins and C. Scofield, “An Application of a Multiple Neu-
ral Network Learning System to Emulation of Mortgage Underwriting
Judgements,” IEEE International Conference on Neural Networks, vol.
2, pp. 459–466, 1988.

[Eldr94] J. G. Eldredge, Fpga density enhancement of a neural network through
run-time reconfiguration Master’s thesis, Brigham Young University,
1994.

[Etem97] K. Etemad and R. Chellappa, “Discriminant analysis for recognition of
human face images,” pp. 1724–1733, 1997.

[Ferr94] Aaron Ferrucci, Acme: A field-programmable gate array implementation
of a self-adapting and scalable connectionist network Master’s thesis,
University of California, 1994.

[GHML98] Leal Ascencio R.R. Galindo Hernandex Miriam L. and Aguilera Galicia
Cuauhtemoc, “An artificial neural network on a complex programmable
logic devices as a virtual sensor,” Technical Report, Mexico, 1998.

[H90] Tam S. Gupta B. Castro H and Holler M., “Learning on an analog
vlsi neural network chip,” In Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, 1990.

[H94] Withagen H., In Proceedings of the IEEE ICNN-94-Orlando Florida,
pp. 2015–2017, 1994.

[Hayk99] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-
Hall, Englewood Cliffs, New Jersey, 1999.

[HdG97] Felix Gers Hugo de Garis and Michael Korkin, “Codi-1bit: A simplified
cellular automata based neuron model,” Arificial Evolution COnference
(AE97), 1997.

BIBLIOGRAPHY 160

[Henn95] John L Hennessy and David A Patterson, Computer Architecture a
Quantitative Approach, Morgan Kaufmann Publishers, INC, San Fran-
cisco, California, 1995.

[Hika03] H. Hikawa, “A new digital pulse-mode neuron with adjustable activa-
tion function,” IEEE Transactions on Neural Networks, vol. 14, pp.
236–242, 2003.

[Hika99] H. Hikawa, “Implementation of simplified multilayer neural network
with on-chip learning,” In Proc. of the IEEE International Conference
on Neural Networks, pp. 1633–1637, 1999.

[Holt91] J.L Holt and T.E Baker, “Backpropagation simulations using limited
precision calculations,” International Joint Conference on Neural Net-
works (IJCNN-91), vol. 2, pp. 121–126, July 1991.

[httpa] “http://docs.gimp.org/en/index.html,” .

[httpb] “http://iteso.mx/ rleal/archivos/anninfgpa.pdf,” .

[httpc] “http://netpbm.sourceforge.net/doc/pgm.html,” .

[httpd] “http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/avrim/
www/ml94/ face homework.html,” .

[httpe] “http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html,”
.

[httpf] “http://www-3.ibm.com/chips/techlib/techlib.nsf/techdocs/
9a7afa74dad200d087256ab30005f0c8/$file/opbbus.pdf,” .

[httpg] “http://www.xilinx.com/bvdocs/appnotes/xapp136.pdf,” .

[httph] “http://www.xilinx.com/ipcenter/catalog/logicore/docs/opb timer.pdf,”
.

[httpi] “http://www.xilinx.com/ipcenter/processor central/microblaze/
doc/hwref.pdf,” .

[httpj] “http://www.xilinx.com/ipcenter/processor central/microblaze/
doc/swref.pdf,” .

[httpk] “http://www.xilinx.com/ise/embedded/est guide.pdf,” .

[httpl] “http://www.xilinx.com/xlnx/xil prodcat product.jsp?title=microblaze,”
.

[JA96] Roth U. Jahnke A. and Klar H., “A simd/dataflow architecture for
a neurocomputer for spike-processing neural networks,” pp. 232–237,
1996.

BIBLIOGRAPHY 161

[JB98] J.O. Haenni J.L. Beuchat and E. Sanchez, “Hardware reconfig-
urable neural networks,” 5th Reconfigurable Architectures Workshop
(RAW’98), March 30 1998.

[Jord95] M.I. Jordan, “Why the logistic function? A tutorial discussion on prob-
abilities and neural networks,” MIT Computational Cognitive Science
Report 9503, vol. , pp. , 1995.

[KNic02] Medhat A. Moussa K.Nichols and S.Areibi, “Feasibility of floating-point
arithmetic in fpga based artificial neural networks,” CAINE, 2002.

[Lawr97] A.D. Lawrence, S.; C.L.; Ah Chung Tsoi; Back, “Face recognition: a
convolutional neural-network approach,” IEEE Transactions on Neural
Networks, pp. 98–113, Jan 1997.

[Ligo98] W.B. Ligon III, S. McMillan, G. Monn, K. Schoonover, F. Stivers, and
K.D. Underwood, “A re-evaluation of the practicality of floating point
operations on FPGAs,” In Kenneth L. Pocek and Jeffrey Arnold, ed-
itors, IEEE Symposium on FPGAs for Custom Computing Machines,
pp. 206–215, IEEE Computer Society Press, Los Alamitos, CA, 1998.

[Lin97] Shang-Hung Lin; Sun-Yuan Kung; Long-Ji Lin, “Face recogni-
tion/detection by probabilistic decision-based neural network,” IEEE
Transactions on Neural Networks, pp. 114–132, Jan 1997.

[Mart94] Marcelo H. Martin, A reconfigurable hardware accelerator for back-
propagation connectionist classifiers Master’s thesis, University of Cal-
ifornia, 1994.

[McCa91] H. McCartor, “A highly parallel digital architecture for neural net-
work emulation,” VLSI for Artificial Intelligence and Neural Networks,
Plenum Press, pp. 357–366, 1991.

[Micr] “MicroblazeTM risc 32-bit soft processor
xilinx inc., 2002.
http://www.xilinx.com/ipcenter/catalog/logicore/docs/
microblaze risc 32bit proc final.pdf,” .

[Mitc97] Tom Mitchell, Machine Learning, McGraw Hill, 1997.

[MY93] Hirano H. Maeda Y. and Kanata Y., “An analog neural network circuit
with a learning rule via simutaneous perturbation,” In Proceedings of
the IJCNN-93-Nagoya, pp. 853–856, 1993.

[Nord95] Tomas Nordstrom, Highly Parallel Computers for Artificial Neural Net-
works PhD thesis, Division of Computer Science and Engineering, Lulea
University of Technology, Sweden, March 1995.

[PT99] D. Khawparisuth P. Temdee and K. Chamnomgthai, “Face recognition
by using fractal encoding and backpropagation neural network,” pp.
159–161, 1999.

BIBLIOGRAPHY 162

[PU99a] A. Perez-Uribe, Structure-Adaptable Digital Neural Networks PhD the-
sis, Logic Systems Laboratory, Computer Science Department, Swiss
Federal Institute of Technology-Lausanne, October 1999.

[PU99b] Andres Perez-Uribe, Structure-Adaptable Digital Neural Networks PhD
thesis, Logic Systems Laboratory, Computer Science Department, Swiss
Federal Institute of Technology-Lausanne, 1999.

[RErn93] J.Henkel R.Ernst and T.Benner, “Hardware/Software Cosynthesis for
Microcontrollers,” IEEE Design & Test of Computers, pp. 64–75, 1993.

[Reyn99] L. M. Reyneri, “Theoretical and implementation aspects of pulse
streams: an overview,” Proceedings of the Seventh International Con-
ference on Microelectronics for Neurla, Fuzzy and Bio-Inspired Systems,
pp. 78–89, 1999.

[RKGu93] R.K.Gupta and G.De Micheli, “Hardware/Software Cosynthesis for
Digital Systems,” IEEE Design & Test of Computers, pp. 29–41, 1993.

[Rosa94] Ryan Rosandich, Artificial Vision: Three-Dimensional Object Recog-
nition Using Neural Networks PhD thesis, Engineering Management
Department, University of Missouri-Rolla, 1994.

[RU93] Anlauf J. et al. Ramacher U., Raab W., “Multiprocessor and memory
architecture of the neurocomputers synapse-1.,” In Proceedings of the
3rd International Conference on Microelectronics for Neural Networks,
pp. 227–231, 1993.

[Rume86] D.E Rumelhart, J.L McClelland, and PDP Research Group, Parallel
Distrubuted Processing: Explorations in the Microstructure of Cogni-
tion, Volume 1: Foundations, MIT Press, Cambridge, Massachusetts,
1986.

[Skrb99] M. Skrbek, “Fast neural network implementation,” Neural Network
World, Elsevier, vol. Vol. 9, No. No. 5, pp. 375–391, 1999.

[SM00] Rocio Reynoso Selene Maya and Cesar Torres, “Compact spiking neural
network implementation in fpga,” In Field Programmable Logic Confer-
ence (FPL’2000), Villach, Austria, 2000.

[Song97] Seong-Whan Lee; Hee-Heon Song, “A new recurrent neural-network
architecuture for visual pattern recognition,” IEEE Transactions on
Neural Networks, vol. 8, pp. 331–340, March 1997.

[SPra92] S.Prakash and A.C.Parker, “SOS:Synthesis of Application-Specific Het-
erogeneous Multiprocessor Systems,” Journal of Parallel and Dis-
tributed Computing, vol. 16, pp. 338–351, 1992.

[Tave95] Mikael Taveniku and Arne Linde, A reconfigurable simd computer for
artificial neural networks PhD thesis, Department of Computer Engi-
neering, Chalmers University of Technology, Goteborg, Sweden, 1995.

BIBLIOGRAPHY 163

[Toh02] Meng Joo Er; Shiqian Wu; Juwei Lu; Hock Lye Toh, “Face recognition
with radial basis function (RBF) neural networks,” IEEE Transactions
on Neural Networks, pp. 697–710, May 2002.

[Turk91] M. Turk and A.P. Pentland, “Face recognition using eigenfaces,” vol.
3, No. 1, pp. 71–86, 1991.

[TY98] T-Y.Yen and W.Wolf, “Performance Estimation for Real-Time Dis-
tributed Embedded Systems,” IEEE Trans. Parallel and Distributed
Systems, pp. 1125–1136, 1998.

[Wisk99] Laurenz Wiskott, Jean-Marc Fellous, Norbert Krüger, and Christoph
von der Malsburg, “Face recognition by elastic bunch graph matching,”
In L. C. Jain, U. Halici, I. Hayashi, and S. B. Lee, editors, Intelligent
Biometric Techniques in Fingerprint and Face Recognition, chapter 11,
pp. 355–396, CRC Press, 1999.

[XL] Medhat Moussa Xiaoguang LI and Shawki Areibi, “Arithmetic formats
for implementing mlp-bp on fpgas,” vol. , No. , pp. .

[Yao99] Xin Yao and Tetsuya Higuchi, “Promises and challenges of evolvable
hardware,” IEEE Transactions on Systems, Man, and Cybernetics -
Part C: Applications and Reviews, vol. 29, pp. 87–97, 1999.

[YT95] S.Malik Y-T.Li and A.Wolfe, “Performance Estimation of Embed-
ded Software with Instruction Cache Modeling,” Proc. Int’l Conf.
Computer-Aided Design, IEEE CS Press, pp. 380–387, 1995.

