

A MEMETIC ALGORITHM IMPLEMENTATION ON A FPGA

FOR VLSI CIRCUIT PARTITIONING

A Thesis

Presented to

The Faculty of Graduate Studies

of

The University of Guelph

by

STEPHEN COE

In partial fulfilment of requirements

for the degree of

Masters of Science

August, 2004

c©Stephen Coe, 2004

2

ABSTRACT

A MEMETIC ALGORITHM IMPLEMENTATION ON A FPGA

FOR VLSI CIRCUIT PARTITIONING

Stephen Coe

University of Guelph, 2004

Advisor:

Dr Shawki Areibi

Dr Medhat Moussa

During the last decade, the complexity and size of circuits have been rapidly

increasing, placing a stressing demand on industry for faster and more efficient

CAD tools for VLSI design. One major problem is the computational requirements

for optimizing the place and route operations of a VLSI Circuit. Thus, this thesis

investigates the feasibility of using Reconfigurable Computing platforms to improve

the performance of CAD optimization algorithms for the VLSI circuit partition

problem. The proposed Reconfigurable Computing Genetic Algorithm architecture

achieved a 5x speedup over conventional software implementation while maintaining

85% solution quality. Furthermore, a Reconfigurable computing based Memetic

Algorithm improved upon this solution while using a fraction of the execution time

required by the conventional software based approaches.

This thesis also investigates the tradeoff of developing Reconfigurable computing

solutions using a high-level language (Handel-C) vs a low-level language (VHDL).

Implementing a Local Search algorithm in VHDL produced speedups of nearly twice

that of the Handel-C implementation while requiring five times more development

time. This speedup is a result of optimizing the VHDL architecture to target the

specific FPGA hardware.

Acknowledgements

My sincere thanks go to Dr Shawki Areibi and Dr Medhat Moussa for their support

and advice throughout this research. Without their help, this work would never

have been possible.

i

To

my family and friends

whose love and encouragement helped accomplish this

thesis.

ii

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Approach . 4

1.3 Contributions . 4

1.4 Thesis Outline . 6

2 Background/Literature Review 7

2.1 Field Programmable Gate Array (FPGA) 8

2.1.1 FPGA Internal Design . 9

2.2 Hardware Development Languages 11

2.2.1 Random Number Generators (RNG) 14

2.3 Reconfigurable Computing . 16

2.3.1 Hardware/Software Co-design 16

2.3.2 Reconfigurable Algorithms 18

2.4 VLSI CAD Tools . 19

2.4.1 Circuit Partitioning . 21

2.4.2 Benchmarks . 24

iii

2.4.3 Genetic Algorithms . 24

2.4.4 Local Search . 31

2.5 Hardware Accelerators for CAD . 34

2.6 Hardware Based Genetic Algorithms 36

2.6.1 Hardware/Software Co-Design Approaches 36

2.6.2 Pure Hardware Genetic Algorithm Implementations 37

2.6.3 Synthesized Hardware Genetic Algorithms 40

2.6.4 High-Level Hardware Implementation 41

2.7 Summary . 44

3 A Genetic Algorithm Processer 45

3.1 Hardware Design . 45

3.1.1 Architecture Specifications and Constraints 47

3.1.2 Genetic Algorithm Architecture Overview 47

3.2 Create-Population-Module (CP-M) 55

3.2.1 Init-Population-Submodule (IP-SM) 56

3.2.2 Repair-Chromosome-Submodule (RC-SM) 59

3.2.3 Fitness-Calculation-Submodule (FC-SM) 64

3.3 Population-Reproduction-Module (PR-M) 68

3.3.1 Select-Parent-Submodule (SP-SM) 68

3.3.2 Cross-Parent-Submodule (CP-SM) 73

3.3.3 Mutate-Chromosome-Submodule (MC-SM) 77

3.3.4 Replace-Population-Submodule (RP-SM) 81

3.3.5 Copy-Parents-Submodule (CoP-SM) 84

iv

3.4 Simulation and Verification . 86

3.4.1 Performance Analysis and Tuning 89

3.4.2 Design Enhancement . 91

3.5 Computational Results . 94

3.5.1 Effect of Generation Size on Solution Quality 98

3.5.2 Effect of Crossover Rate on Solution Quality 100

3.5.3 Effect of Mutation Rate on Solution Quality 102

3.5.4 Effect of Population Size on Solution Quality 103

3.5.5 Effect of Balancing criteria on Solution Quality 105

3.6 Summary . 105

4 Local Search and Memetic Architecture 107

4.1 Basic Local Search Procedure . 108

4.2 Hardware Design . 114

4.2.1 Local Search Memory Management 115

4.3 Local Search Design and Architecture 117

4.3.1 Partition-Update-Module (PU-M) 118

4.3.2 Select-Next-Neighbourhood-Move-Module(SNNM-M) 121

4.3.3 Data-Replicator-Module (DR-M) 125

4.3.4 Search-Loop-Module (SL-M) 129

4.3.5 Data-Update-Module (DU-M) 133

4.3.6 Apply-Best-Move-Module (ABM-M) 136

4.4 VHDL vs Handel-C implementation of Local Search Architecture . 139

4.4.1 Memory Management . 139

v

4.4.2 Resources . 142

4.4.3 Delay Calculations of Local Search Architecture 142

4.4.4 Timing Results of Local Search Architecture 145

4.4.5 VHDL vs Handel-C: A comparison 145

4.5 Simulation/Verification of Local Search Architecture 146

4.5.1 Performance Analysis & Tuning 147

4.5.2 Design Modifications of Local Search Architecture 150

4.6 Computational Results of the Local Search Architecture 152

4.7 A Memetic Algorithm Hardware Accelerator 154

4.7.1 Memetic Algorithm Registers 156

4.7.2 Computational Results . 162

4.8 Limitation of Hardware Implementation 163

4.9 Summary . 166

5 Conclusions and Future Directions 168

5.1 Hardware CAD algorithms . 169

5.2 Hardware Development Languages 170

5.3 Future Work . 170

A Genetic Algorithm Module Pin Descriptions 174

B Local Search Module Pin Descriptions 185

C Genetic Algorithm Experimental Results 193

D Local Search and Memetic Algorithm Experimental Results 200

vi

Bibliography 206

vii

List of Tables

2.1 Parallel Commands for Handel-C 12

2.2 Handel-C vs VHDL Resources . 14

2.3 Benchmark Statistics . 25

2.4 Statistical Connectivity of Benchmarks 25

2.5 Results of running the regression Problem[Mart01] 42

2.6 Results of running the XOR Problem[Mart01] 43

3.1 Handel-C constant definitions . 51

3.2 Register Description . 53

3.3 Memory Usage . 56

3.4 Software/Hardware timing . 88

3.5 Genetic Algorithm Software Profile 89

3.6 Genetic Algorithm Design Comparison 95

3.7 Base Case parameters for Handel-C Genetic Algorithm 96

3.8 Hardware improvement over Software 98

4.1 Local Search Software Profile . 115

4.2 Priority State Machine Truth Table 141

viii

4.3 VHDL vs Handel-C Local Search Resources 142

4.4 VHDL Memory Read Timing . 144

4.5 VHDL Memory Write Timing . 144

4.6 Execution Time of Development Languages 145

4.7 Local Search Software vs Hardware 147

4.8 Local Search Technique Comparison 152

4.9 New Local Search Software Profile 153

4.10 Memetic Algorithm Registers . 157

4.11 Base Case parameters for Handel-C Memetic Algorithm 157

A.1 Signal Description of IPS . 175

A.2 Signal Description of RCS . 176

A.3 Signal Description of FCS . 177

A.4 Signal Description of FCS (Con’t) 178

A.5 Signal Description of SPS . 179

A.6 Signal Description of CPS . 180

A.7 Signal Description of CPS (con’t) 181

A.8 Signal Description of MCS . 182

A.9 Signal Description of RPS . 183

A.10 Signal Description of CoPS . 184

B.1 Signal Description of PUM . 186

B.2 Signal Description of SNNMM . 187

B.3 Signal Description of DRM . 188

B.4 Signal Description of DRM (Con’t) 189

ix

B.5 Signal Description of SLM . 190

B.6 Signal Description of DUM . 191

B.7 Signal Description of ABMM . 192

C.1 Hardware vs Software Comparison 194

C.2 Affect of Generation Size . 195

C.3 Affect of Crossover Rate . 196

C.4 Affect of Mutation Rate . 197

C.5 Affect of Population Size . 198

C.6 Affect of Balancing Difference . 199

D.1 Affect of Difference Size on Local Search Algorithm 201

D.2 Exhausted Memetic Algorithm: Effect of Number of Random Indi-

viduals . 202

D.3 Intermediate Memetic Algorithm: Effect of Number of Random In-

dividuals . 203

D.4 Intermediate Memetic Algorithm: Effect of Generation Size between

Local Search . 204

D.5 Exhausted Memetic Algorithm: Effect of Number of Iterations of

Local Search . 205

x

List of Figures

1.1 Overall Design Approach . 5

2.1 IC Technology . 8

2.2 FPGA Structure . 9

2.3 Simple CLB . 10

2.4 FPGA Internals . 11

2.5 Handel-C Read Memory Access Signals [Celo03a] 13

2.6 Performance vs Flexibility of today’s hardware 17

2.7 Interconnect delay vs Gate delay [Kang03] 20

2.8 Example of Circuit Partitioning . 22

2.9 Genetic Algorithm mating process 26

2.10 One-Point Crossover . 28

2.11 Uniform Crossover . 29

2.12 An architecture for local search proposed by Abramson et.al. [Abra97] 32

2.13 Search neighbors by flipping all nets one by one 33

2.14 Protein folding problem: performance scaling as a function of FPGA

size [Shac01] . 40

xi

3.1 Parallel Flow Genetic Algorithm . 46

3.2 Genetic Algorithm Block Diagram 48

3.3 Netlist representation of a single net 49

3.4 Example of Chromosome Data . 49

3.5 Example of Netlist Data . 50

3.6 Handel-C constant definitions . 52

3.7 Genetic Algorithm Memory Map 54

3.8 Create-Population-Module (CP-M) 57

3.9 Init-Population-Submodule Signal Diagram 58

3.10 Init-Population-Submodule Block Diagram 59

3.11 Internal design to Init-Population-Submodule 60

3.12 Stored chromosome data . 60

3.13 Repair-Chromosome-Submodule Signal Diagram 61

3.14 Repair-Chromosome-Submodule Block Diagram 62

3.15 RC-SM Internal Repair Logic . 64

3.16 Fitness-Calculation-Submodule Signal Diagram 65

3.17 Fitness Calculation Submodule Block Diagram 67

3.18 Fitness Compare Logic [Sitk95] . 68

3.19 Internal Fitness Layout . 69

3.20 Population Reproduction Module (PR-M) 70

3.21 Select-Parent-Submodule Signal Diagram 71

3.22 Select Parents Submodule Block Diagram 72

3.23 Masking Random Number . 73

3.24 Selection of Unique Individuals . 74

xii

3.25 Crossover-Process-Submodule Signal Diagram 75

3.26 Cross-Parent-Submodule Signal Diagram 76

3.27 Crossover Combinational Logic . 77

3.28 Mutation-Chromosome-Submodule Signal Diagram 78

3.29 Mutate-Chromosome-Submodule Block Diagram 79

3.30 Bit Mutation . 80

3.31 Replace-Population-Submodule Signal Diagram 82

3.32 Replace Population Submodule Block Diagram 83

3.33 Copy-Parents-Submodule Signal Diagram 85

3.34 CoP-SM Block Diagram . 86

3.35 Software vs Hardware comparison graph 87

3.36 New Netlist Storage using Integer Values 92

3.37 Bit Lookup using Integer Values . 92

3.38 Population Reproduction with Block Rams 93

3.39 Parallel Pipeline Architecture . 94

3.40 Hardware vs Software Results . 97

3.41 Effect of Number of Generations on Mean Objective Value 99

3.42 Effect of Number of Generations on Standard Deviation 99

3.43 Effect of Number of Generations on Execution time 100

3.44 Effect of Crossover Rate on Mean Objective Value 101

3.45 Effect of Crossover Rate on Execution time 101

3.46 Effect of Mutation Rate on Mean Objective Value 102

3.47 Effect of Mutation Rate on Execution Time 103

3.48 Effect of Population Size on Mean Objective Value 103

xiii

3.49 Effect of Population Size on Standard Deviation 104

3.50 Effect of Population Size on Execution Time 104

3.51 Parallel Pipeline Architecture . 105

3.52 Parallel Pipeline Architecture . 106

4.1 Local vs Optimum Solution . 108

4.2 Local Search Block Diagram . 109

4.3 Local Search Data . 111

4.4 Determining Feasible Move as only cut nets 112

4.5 Update Partition Data process . 113

4.6 Local Search implemented in Hardware 116

4.7 Local Search Memory Map . 117

4.8 Local Search Pipeline . 118

4.9 Partition-Update-Module Signal Diagram 120

4.10 Partition-Update-Module (PU-M) Block Diagram 121

4.11 Update Logic for Partition Data . 122

4.12 Determining Feasible Move . 122

4.13 Select-Next-Neighbourhood-Move-Module Signal Diagram 123

4.14 Select-Next-Neighbourhood-Move-Module (SNNM-M) Process Flow 124

4.15 Select neighbourhood move . 125

4.16 Data-Replicator-Module Signal Diagram 127

4.17 Data-Replicator-Module Block Diagram and flow 128

4.18 Applying Neighbourhood move to Solution Copy 129

4.19 Search-Loop-Module Signal Diagram 131

xiv

4.20 Search-Loop-Module (SL-M) Block Diagram and flow 132

4.21 Data-Update-Module Signal Diagram 134

4.22 Data-Update-Module Block Diagram 135

4.23 Apply-Best-Move-Module Signal Diagram 137

4.24 Apply-Best-Move-Module (ABM-M) Block Diagram 138

4.25 Priority State Machine . 140

4.26 Memory Communication . 141

4.27 Handel-C Parameter Passing . 143

4.28 Handel-C vs VHDL Timing . 146

4.29 Local Search Update Timing . 149

4.30 Bit Net Representation . 149

4.31 Parallel Partition-Data-Update . 151

4.32 Timing Comparison of Local Search Modifications 153

4.33 Effect of Balancing Size on Local Search design 154

4.34 Memetic Algorithm Architecture Block Diagram 155

4.35 Exhaustive Memetic Algorithm Block Diagram 156

4.36 Memetic Algorithm Solution Landscape 157

4.37 Intermediate Memetic Algorithm (IMA) 158

4.38 Effect of Number of Random Individuals on Time (EMA) 159

4.39 Effect of Number of Random Individuals on Best Objective Value

(EMA) . 159

4.40 Effect of Number of Random Individuals on Time (IMA) 160

4.41 Effect of Number of Random Individuals on Best Objective Value

(IMA) . 161

xv

4.42 Effect of Number of Local Search Iterations on Time (IMA) 161

4.43 Effect of Number of Local Search Iterations on Best Objective Value

(IMA) . 162

4.44 Effect of Number of GA Generations on Time (IMA) 162

4.45 Effect of Number of GA Generations on Best Objective Value (IMA) 163

4.46 Final Performance results of Algorithms 164

5.1 One Point Crossover Bit-mask . 171

5.2 Parallel Fitness Calculation . 172

5.3 Pipelined Fitness Calculation . 172

xvi

Chapter 1

Introduction

During the last decade, the complexity and size of circuits have been rapidly increas-

ing, placing a stressing demand on industry for faster and more efficient techniques

for VLSI physical design automation. As the number of transistors increases in to-

day’s circuits beyond 100 million, hardware designers are becoming more and more

dependent on computer aided design (CAD) tools to assist them in their designs.

To aid in the placement and routing problem, heuristic algorithms are used in an

attempt to find good solution in reasonable time. Even with the use of heuristic

techniques and the speed of today’s conventional computers, the ability to calculate

an acceptable placement and routing solution is extremely time consuming. Using

Moore’s Law [Moor65], it is estimated that in 2008 the density of a chip will reach 3

billion transistors [Kang03]. With circuits of this size it will be relatively impossible

for even the fastest and most efficient tools to solve effectively these circuit layout

problems within an acceptable time frame. Therefore, it is necessary to develop

faster strategies to aid hardware designers in this layout process.

1

CHAPTER 1. INTRODUCTION 2

One possible technique for achieving the necessary speed for these CAD tools

is by creating the algorithms in Application Specific Integrated Circuits (ASIC).

These circuits are optimized for a specific function with no unwanted overhead.

ASIC’s involve traditional logic gates and are manufactured at high costs with

little flexibility [Comp99]. This high cost is due to the testing and development

phases of the circuit. In addition, once the device is fabricated, any modifications

to the circuit involves repeating the complete design process.

In the mid 1980’s, a new technology emerged which has made it easier to develop

application specific digital circuits. Reconfigurable computing (FPGAs) platforms

combine the advantages of both traditional hardware and software design tech-

niques. FPGAs have the ability to deliver the necessary speed and parallelism of

hardware while maintaining the reconfigurability and flexibility of software. This

allows for a single platform to be used for developing a wide variety of different

hardware applications. The platform also allows for a fast and inexpensive method

of designing and testing hardware. Traditionally, FPGA’s have been constrained by

their size and speed, restricting their use and application. As technology improved,

FPGA devices have become larger and faster, thus allowing for the implementation

of more complex designs.

Since FPGAs have been introduced, a new methodology of producing high per-

formance digital circuits has arisen. A single hardware designer can create, test and

implement a single algorithm in a fraction of the time and resources needed by tradi-

tional approaches while often achieving the necessary speedups. In using hardware

parallelism and pipelining, FPGAs can achieve speedups of 10 to 100 times that of

software implementations; however, they are still considerably slower than tradi-

CHAPTER 1. INTRODUCTION 3

tional ASIC designs [Chan97, DeHo99, Grah96]. It should be noted that although

Reconfigurable Computing is much more flexible than traditional ASIC designs, it

has nowhere near the flexibility of software implementations, and will never replace

either traditional ASIC or software implementations. It can be thought of as a

compromise, “filling the gap between [performance of] hardware and [the flexibility

of] software”[Comp00a].

This thesis attempts to investigate the feasibility of using FPGA devices to im-

prove performance of CAD algorithms by implementing a Memetic based algorithm

for the VLSI circuit partition problem.

1.1 Motivation

As technology continues to increase in size and complexity, there is a need for

faster search algorithms. With the introduction of FPGA’s, there is a new opportu-

nity to speed up these techniques by converting software algorithms into hardware

implementations. In implementing a heuristic algorithm into hardware, through

parallelism and pipelining, time consuming and repetitive loops can be efficiently

implemented, decreasing the amount of time needed. In addition, once a successful

implementation has been made for the VLSI circuit partitioning, these algorithms

can be modified to other combinatorial optimization problems.

The motivation behind this research is to improve performance of a Genetic

Algorithm for VLSI Circuit Partitioning by introducing a hardware design that

exploits the inherent parallelism of the algorithm. The final goal is to develop a

hardware implementation of a Memetic algorithm by incorporating a Local Search

CHAPTER 1. INTRODUCTION 4

into the design to produce better results than a stand alone Genetic Algorithm.

Finally, the tradeoffs of designing an algorithm using a high-level language, Celoxica

Handel-C, vs a low-level language, Very High Speed Integrated Circuit Hardware

Description Language (VHDL) will be investigated.

1.2 Approach

The proposed design is first programmed in ISO-C and is then converted to Handel-

C. The final hardware design is implemented on the RC1000 development platform.

The design process used can be seen in Figure 1.1.

1.3 Contributions

The main contributions of this research are as follows:

• Design and development of a Celoxica Handel-C implementation of a Memetic

Algorithm that incorporates a novel local search methodology for circuit par-

titioning.

• Development of a VHDL and Handel-C implementation of a Local Search al-

gorithm for circuit partitioning and highlighting the advantages/disadvantages

of both approaches.

• Investigate the performance of Celoxica Handel-C architectures over tradi-

tional software implementations.

CHAPTER 1. INTRODUCTION 5

Test and Profile
Software

Develop Software
Implementation

Determine Design
Requirements

Implement Final
Design on RC1000

Improvements
Required

Place/Route
Synthesize and

Test Final Design

Bottlenecks
Determine

Simulate Handel−C

Develop Handel−C

Design

Design

No

Yes

Figure 1.1: Overall Design Approach

CHAPTER 1. INTRODUCTION 6

1.4 Thesis Outline

This thesis is organized as following:

Chapter 2 - Background/Literature Review : This chapter will introduce the

reader to the necessary background information for the thesis. It will also

review past literature on hardware implemented CAD tools and previous

hardware Genetic Algorithms designs.

Chapter 3 - Genetic Algorithm Architecture : This chapter describes the Genetic

Algorithm architecture and experimental results from the hardware imple-

mentation.

Chapter 4 - Local Search and Memetic Architecture : This chapter describes

the Local Search architecture and experimental results from the hardware

implementation. It discusses the drawbacks of using a High-Level Language

(handel-C) vs a low-level language (VHDL) in developing the Local Search

design. Finally, the chapter describes the solution improvements of using the

Memetic algorithm over the stand-alone Genetic Algorithm.

Chapter 5 - Conclusion and Future Directions : This chapter presents the conclu-

sions generated from the research and possible future work.

Chapter 2

Background/Literature Review

As the complexity of Very Large-Scale Integration (VLSI) Computer Aided Design

(CAD) algorithms increases, there is an increasing desire for better performance.

One solution is to use Hardware Accelerators [Plat98] to increase the algorithm’s

performance. Hardware accelerators have become increasingly more popular over

the past few years. These advances can be attributed to the increase in technol-

ogy with respect to the size and speed of circuitry. In order to understand the

capabilities of Hardware accelerators for CAD there is a need to review some key

areas necessary for implementing such a design. This chapter discusses the follow-

ing topics in detail: reconfigurable computing, VLSI CAD tools and past hardware

implementations of Genetic Algorithms.

7

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 8

2.1 Field Programmable Gate Array (FPGA)

FPGAs [Comp00b] are devices which allow their logical blocks to be reconfigured in

order to perform different tasks. These devices have created new avenues for semi-

custom design, illustrated in Figure 2.1, allowing hardware engineers to implement

their designs without undergoing the expensive Application Specific Integrated Cir-

cuits (ASIC) fabrication process.

pLDASIC

CpLD

VLSI

Full
Custom
Design

Semi
Custom
Design

FPGA

Figure 2.1: IC Technology

Although FPGAs have been around since 1985 [Xili03], their popularity has

grown greatly within the last few years due to the rapid increase in speed and

gate counts. The latter allows designers to implement larger complex designs onto

single devices. With the ability to exploit pipelining and parallelization that have

made traditional hardware so appealing, designers can now use FPGAS for rapid

prototypes of their hardware designs. FPGAs also appeal to industry, allowing for

fast development turnaround while saving expensive design and testing costs.

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 9

2.1.1 FPGA Internal Design

The internals of FPGAs consist of 3 elements as seen in Figure 2.2:

1. Configurable Logic Blocks (CLBs)

2. Input Output Blocks (IOBS)

3. Programmable Interconnects (Switching matrix)

LOGIC
CONFIGURABLE

BLOCK

INPUT/OUTPUT
BLOCK

INTERCONNECTS

IOB’s

IOB’s

IO
B

’s
IO

B
’s

MATRIX
SWITCHING

Figure 2.2: FPGA Structure

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 10

Configurable Logic Blocks (CLB)

Numerous CLBs are often grouped together to form a slice, which perform the

logical function of a FPGA. Depending on the manufacturer and the generation,

the structure of a CLB may vary. These CLBs are often comprised of Control,

Multiplexors, Lookup tables and flip-flops which are used to generate the expected

logics as shown in Figure 2.3.

Table
Look−up

Table
Look−up

Flip−Flop

Flip−Flop

2−to−1
MUX

2−to−1
MUX

A

B

C

D

E

Enable
Clock

Clock

X

Y

2 Output
Signals

5 Input Signals

Figure 2.3: Simple CLB

Input Output Blocks

IOBs are the interface between the interior logical design and the outside world

(I/O pins). The IOBs are often programmable so that each pin can handle either

input or output signals. Figure 2.4(a) shows the structure of an IOB.

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 11

PINS
I/O

BUFFER

OUTPUT

INPUT

TRISTATE
BUFFER

TRISTATE
SIGNAL

TRANSITORS

(a) (b)

Figure 2.4: FPGA Internals

Programmable Interconnects

Programmable interconnects handle the data transfer between slices. These inter-

connects consist of a matrix of transistors which determines the path between the

source of data and the final destination. Figure 2.4(b) is a simplified example of a

switching matrix.

2.2 Hardware Development Languages

In programming hardware, there are a couple of techniques that can be used. The

more common techniques are Verilog HDL and VHDL (Very high speed integrated

circuit Hardware Description Language) [Comp99]. These languages use the idea

of behavioral synthesis which describes how the algorithm functions in terms of

inputs and outputs. Although these languages aid in the hardware design process,

they require extensive time for designing and testing of the algorithms.

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 12

In the past few years, a new high level language has surfaced called Handel-

C [Celo03b], which is based on the conventional ISO-C language format and is

developed to assist software engineers in designing hardware. Handel-C allows

designers to focus on the algorithm that is being implemented as opposed to the

circuit that is being built.

Hardware Description Languages and Handel-C can be viewed in relationship to

conventional software programming languages. VHDL and Verilog HDL are viewed

as low level programming languages, similar to assembly language programming,

whereas Handel-C is viewed as a high level language, like ISO-C. On compiling

Handel-C code, the output code can be either VHDL to be ported to other VHDL

code or a Electronic Design Interchange Format (EDIF) [Celo03a] file to be im-

plemented directly into hardware. Handel-C follows a sequential programming

structure, unlike most hardware description languages which are parallel by default

[Loo02]. Although it maintains many of the functional properties of conventional

C, there are extra features which enable the exploitation of parallelism. Some

commands are shown in Table 2.1.

Function call Functionality

Par... Parallel Execution
Seq... Sequential Exectuion

Par(Init; Test; Iter) Parallel replication
Sew(Init; Test; Iter) Sequential replication

chanin Input Parallel communication
chanout Output Parallel Communication

Table 2.1: Parallel Commands for Handel-C

There are many restrictions imposed on the Handel-C language over conventional-

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 13

C programming language. There is no available stack, making recursive functions

difficult to implement. In addition, there is a limited amount of internal memory

(arrays, variables, etc) which leads to a limiting factor on the size of the design.

External memory can be used as a replacement for internal memory but often leads

to slow executing clock frequency. Handel-C is developed so that each memory

access, internal or external, occurs during one clock cycle. When utilizing external

memory, Handel-C operates at a fraction of the operating frequency, allowing for

the accessing signals to occur during a single clock cycle as shown in Figure 2.5.

As in most high level languages, it is expected that in implementing designs in

External Clk

Handel−C Clk

Address

Data

CS

WE

OE

Figure 2.5: Handel-C Read Memory Access Signals [Celo03a]

Handel-C there would be a loss in the efficiency of the design, with a slight increase

in both resources and delay times. Loo et al. [Loo02] found that in implementing

a Data Encryption Standard (DES) and a Discrete Cosine Transform (DCT) the

speeds of both Handel-C and VHDL were relatively comparable. The DES imple-

mentation executed 1.3 times faster under the Handel-C implementation compared

to that based on VHDL. The DCT Handel-C implementation, however, executed

at 0.75 that of the VHDL implementation. In comparing the size of the two im-

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 14

plementations, the Handel-C design was 2-5 times larger. This large difference in

area was assumed to be caused by the implementation of extra library functions

not used in the algorithm. In looking at information from the Celoxica Website,

the following comparison between VHDL and Handel-C implementation of a IPv6

header compression function on a Virtex 2000E-8 was found [Celo03b]:

Handel-C/DK1 Verilog/Leonardo
Design Time 4 Man-months 12-16 Man-months
Program Size 40 pages 200 pages
Compile Time 3 minutes 1.5 hours

Size 17% Logic, 15% Memory* All Logic, All Memory **
Speed 44 MHz 49 MHz

∗ Distributed memory. No block memory used

∗∗ A conscious choice. Used all logic to increase speed. All block memory used.

Table 2.2: Handel-C vs VHDL Resources

It should be noted that the development time needed for the Handel-C implemen-

tation is 1/3 to 1/4 that of the Verilog implementation.

2.2.1 Random Number Generators (RNG)

In many computationally intensive algorithms there is a need for good uniform

random number generators. Such algorithms include back-propagation Neural

Networks [Hayk99], which generate random initial weights, Genetic Algorithm

[Mich94], which generate initial population and random crossover points, and Sim-

ulated Annealing [Kirk83], which generate initial starting solutions and random

neighbourhood moves. These generators play a huge role in the success of these

algorithm. In ISO-C programs, the random numbers that are generated are based

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 15

on the following equation

Ij+1 = ((aIj + c) mod m) [Pres92]

This equation involves implementing multiplication, addition and modulus into

hardware, which involves several resources as well as long delay times. A modifica-

tion to this equation was proposed in [Pres92]. In this version of the RNG, called

“an Even Quicker Generator” (EQG), if random numbers with m = 232 are needed

and the size of the register holding the value is 32 bits wide, there is no need for

the mod m.

A more common Random Number Generator implemented in hardware is the

Linear Feedback Shift Register (LFSR) [Grah96, Gurw03, Mart01]. The advantage

of this type of implementation is based on the relatively small amount of resources

needed to realize this algorithm with negligible delays. Although this algorithm

can produce uniform numbers, the algorithm introduces several problems. One

of the main drawbacks is that there is a 50% probability of predicting the next

random number [Mart02b]. The next value can be predicted to be either v/2 or

v/2+2n−1. One possible approach to solve the problem of predictability of the LFSR

is to implement multiple LFSR with different initial seeds and taking one bit from

each result to form the random number [Mart02b]. Martin’s results showed that

in implementing this method the system produced better results. Although this

method may produce better random numbers, it is extremely difficult to prove the

uniformity of the numbers and, therefore, it is not a good RNG for GA use. Another

possible RNG is a Cellular Automata (CA) RNG [Mart02b]. This RNG consists

of a circular array usually 32 bits wide. The next random number is generated

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 16

with the following formula. For every bit ct at time t, ct+1 = ((westt + ct)⊕ eastt).

Similar to the LFSR, there is a distinct pattern of numbers but is less predictable.

2.3 Reconfigurable Computing

Reconfigurable computing is a relatively new area of computing and is considered by

many to be the future of conventional computing. This is attributed to its ability to

deliver the flexibility of software while keeping the advantages of hardware. These

systems can be considered as being a combination of both software and hardware.

Their aim is to fill the gap between hardware and software [Comp00c, Comp00a]

computing paradigms.

Reconfigurable devices allow designers to perform any logical hardware designs

while allowing the hardware to be continuously modified and are, therefore, not

restricted to a single implementation. These qualities contribute to the success of

this relatively new technology, which survives on the belief that specific hardware

designed algorithms should outperform general-purpose computers [Bish98].

There are several reasons for this assumption:

• General-purpose computers will always involve unwanted overhead which

cause the use of unneeded clock cycles

• Hardware implementation can exploit parallelism and pipelining.

• Hardware implementations are designed specifically to accomplish one task,

and are, therefore, optimized for such a task.

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 17

2.3.1 Hardware/Software Co-design

There are different ways of designing algorithms in hardware. One method is to

implement a portion of the algorithms into hardware and the rest in software. The

aim is to implement sections of code that involve large computation time into hard-

ware to increase the execution performance. Although the hardware delivers better

performance, it often results in less flexibility of the algorithm. By implement-

ing algorithms in hardware, the designs are tailored to accomplish specific tasks.

This limits the ability of the design to be modified for other tasks. There is a

trade off between flexibility and performance as shown in Figure 2.6 and therefore

both general-purpose processors and reconfigurable devices are used simultaneously.

General-purpose processors are used to implement portions of code that require high

flexibility, while reconfigurable devices aim to increase the execution of bottlenecks

within the system. In this approach it is important to identify the main bottlenecks

of the system and if it would be beneficial to implement these sections of code into

hardware. The bottlenecks can be determined through profiling a software imple-

mentation of the algorithm, which identifies the portions of code that demand the

majority of processing time.

The use of Amdahl’s law, equation 2.1, aids in determining whether the over-

all algorithm will achieve beneficial performance improvement by implementing

the bottleneck in hardware. This equation determines the effect on the overall

system by optimizing a small section of code and can be used to justify the hard-

ware/software co-design approach. Although many portions of code can be opti-

mized for better performance, if this performance gained has little significant affect

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 18

P
er

fo
rm

an
ce

Flexibility

Designs
ASIC

Devices
Reconfigurable

DSP
Devices

General
Purpose

Processors

Figure 2.6: Performance vs Flexibility of today’s hardware

on the overall algorithm, then implementing that portion of the design in hardware

cannot be justified.

Speedupoverall =
Told

TNew

=
1

(1 − q) + q

p

(2.1)

In calculating the algorithms speedup, “q” can be considered as the fraction of

the algorithm that is implemented in hardware and “p” as the increase in perfor-

mance of the hardware over the software. This equation assumes a linear speedup,

meaning that with n processers it would take 1
n

the amount of time needed by a

single processor [Nich03].

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 19

2.3.2 Reconfigurable Algorithms

An alternative approach is based on implementing the entire algorithm into hard-

ware. This method involves a complex circuit design of the algorithm which will

often eliminate the flexibility of the algorithm. Although this method will most

often generate a better performance system, in some cases it is not possible for

the design to be implemented entirely in hardware. This could be a result of lack

of space on hardware or memory management issues such as linked lists. Another

issue that could arise is interconnect delay times. Often in implementing large al-

gorithms into hardware the length of the interconnects are increased which places

a limitation on the maximum frequency.

Determining the best design methodology requires understanding the require-

ments of the design. Usually a better performance will be achieved by implementing

a complete algorithm onto one reconfigurable device. This is a result of the lack of

overhead, having the hardware optimized for a specific task, and hardware’s ability

to exploit parallelism and pipelining. However, if there is a need for flexibility or

it is not possible to implement the whole algorithm due to its complexity, then

designing a Hardware/Software co-design system will result in minor performance

increase.

2.4 VLSI CAD Tools

As technology advances, enabling the integration of billions of transistors onto a

single die, the process of designing these circuits becomes much more complex. This

complexity cannot be handled easily and therefore it is relatively impossible for

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 20

hardware designers to design large circuits without the aid of advanced computer

algorithms. One of the most important factors in VLSI design is to limit the

delay within a circuit, allowing for higher clock frequencies. As shown in Figure

2.7, as transistors shrink in size (< 1µm) the interconnect delay (the connection

between transistors) becomes a dominate factor over the gate delay. As the number

of transistors increase, efforts to minimize the amount of interconnect become an

impossible challenge for designers without the aid of Computer Aided Design (CAD)

tools. There are numerous CAD tools developed to aid designers in implementing

many of the complex tasks of the circuit layout process. These include:

1. Circuit Partitioning

2. Circuit Placement

3. Floor-planning and Macro-cell placement

4. Circuit Routing

5. Array-Based Layouts

6. FPGA Routing

Even with the aid of high performance computers, it is almost impossible to

solve these tasks due to their high complexity. Accordingly, heuristic techniques

are used in an attempt to generate good solutions in reasonable time. In the past,

several heuristics were used to solve CAD problems, including Genetic Algorithms

[Coho03], Simulated Annealing [Mall88, Baza99], Tabu Search [Arei93, Arei94] and

Local Search [Fidu88, Kern70]. Each technique has a different flavor and charac-

teristics. In order to improve upon solution quality, meta-heuristic techniques are

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 21

1.0 0.8 0.5 0.351.5 µ µ µ µ µ

1.0

0.1

10

D
el

ay
 (

ns
)

Minimum Feature Size

µ2.0

Interconnect
Delay

Gate Delay
Typical

Figure 2.7: Interconnect delay vs Gate delay [Kang03]

often developed to benefit from the qualities of multiple search techniques. One of

these meta-heuristics is Memetic Algorithms that are based on a combination of

Genetic Algorithm and Local Search techniques. The Genetic Algorithm plays the

role of effectively exploring the solution space while the Local Search algorithm is

used to fine-tune the solution to its optimum/sub-optimum solution.

The aim of this research is to investigate the performance advantages of imple-

menting a Memetic algorithm onto an FPGA platform aimed at solving the Circuit

Partitioning problem.

2.4.1 Circuit Partitioning

Circuit partitioning (CP) is an important task in VLSI design, ensuring that there is

minimum amount of interaction between partitions (blocks) of a circuit. In today’s

technology, the size of interconnect delay is associated with the length and number

of interconnection wires. Minimizing the inter-partition communication will reduce

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 22

the number of wires between partitions and, in effect, reduce delay times.

The main objective of circuit partitioning is to divide a circuit into two or more

partitions while attempting to minimize the number of cut nets and still maintain

a balance in the number of modules in each partition. Figure 2.8 illustrates how

swapping of modules between the partitions can decrease the number of cut nets.

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������

���������
���������
���������
���������

��

��

���

���

1 2 405 3

NET 1

NET 2
NET 3

NET 5
NET 4

NET 1

NET 5
NET 4

NET 3 NET 2

1 3 0 2 4 5

Figure 2.8: Example of Circuit Partitioning

Mathematical Formulation

The following is the standard mathematical formulation for a two block circuit

partitioning problem [Arei00]:

We define:

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 23

xik =

1 if module i is placed in block k

0 otherwise

yjk =

1 if net j is placed in block k

0 otherwise

m = number of modules

n = number of nets

q = 1
2

of allowable difference in modules

The circuit partitioning problem can, therefore, be formulated as following:

Max
n

∑

j=1

2
∑

k=1

yjk (2.2)

(Maximize uncut nets)

Subject to

(i) Module placement constraints (A module belongs to a single block):

2
∑

k=1

xik = 1 ∀i = 1, 2, . . . , m

(ii) Block size constraints (Difference between each block less than q):

m − q

2
≤

m
∑

i=1

xik ≤
m + q

2
, ∀k ∈ {1, 2}

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 24

(iii) Netlist constraints:

yjk ≤ xik, where

1 ≤ j ≤ n

k ∈ {1, 2}

i ∈ Net j

(iv) 0-1 constraints:

xik ∈ {0, 1}, 1 ≤ i ≤ m

yjk ∈ {0, 1}, 1 ≤ j ≤ n

for k ∈ {1, 2}

These constraints are placed on the optimization algorithms to ensure feasible

solutions.

2.4.2 Benchmarks

For this work, eight benchmarks of variable sizes were chosen and used to validate

the architectures proposed in chapter 3 and 4. The benchmarks range in size

from 24 to 3014 cells and 32 to 3029 nets. Statistics of these benchmarks are

presented in Table 2.3. The Cell Degree indicates the number of nets that are

connected to a single cell. The Net Size is the number of cells connected to a single

net. The Chip1 and Chip4 benchmarks are from work presented in [Fidu82]. The

remaining benchmarks can be found in the “1990 MCNC LAYOUT BENCHMARK

SET”[MCNC90]. The connectivity of the cells and nets in each benchmarks are

presented in Table 2.4.

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 25

Benchmark Cells Nets Cell Degree Net Size
MAX µ σ MAX µ σ

pcb1.dat 24 32 7 3.50 1.35 8 2.63 1.19
frac.dat 149 147 7 3.10 1.65 17 3.14 2.26

chip4.dat 224 221 5 2.34 1.13 6 2.58 0.99
chip1.dat 300 294 6 2.82 1.15 14 2.87 1.39
prim1.dat 833 902 9 3.49 1.29 18 3.22 2.58
struct.dat 1952 1920 4 2.8 0.67 17 2.85 1.90
ind1.dat 2271 2192 10 3.41 1.14 318 3.53 9.00
prim2.dat 3014 3029 9 3.72 1.55 37 3.70 3.82

Table 2.3: Benchmark Statistics

Benchmark Nets connected to a Cell (%) Cells connected to a Net (%)
1 2 3 4 5 >5 2 3 4 5 >5

pcb1.dat 0.00 29.17 25.00 25.00 12.50 8.34 62.50 28.12 3.12 3.12 3.12
frac.dat 16.11 27.52 24.16 8.05 16.11 8.05 47.62 29.93 9.52 8.84 4.08

chip4.dat 22.95 46.72 6.97 20.08 3.28 0.00 64.25 23.98 4.52 3.62 3.62
chip1.dat 11.33 36.67 16.67 30.00 5.00 0.33 55.10 24.15 8.50 8.84 3.40
prim1.dat 5.76 17.41 24.61 32.77 16.09 3.36 54.77 26.16 6.87 2.88 9.32
struct.dat 3.28 24.59 24.59 11.42 0.00 0.00 38.39 59.95 0 0 1.67
ind1.dat 1.45 21.27 35.31 20.48 20.96 0.52 65.01 15.78 5.47 2.97 10.77

prim2.dat 1.43 15.03 42.00 17.22 13.34 10.98 60.58 12.05 6.70 6.34 14.33

Table 2.4: Statistical Connectivity of Benchmarks

2.4.3 Genetic Algorithms

A Genetic Algorithm (GA) is a population based heuristic technique that mim-

ics the biological reproductive system and used to solve search and optimization

problems [Glov95, Beas93b, Whit94]. The goal of a Genetic Algorithm is to max-

imize/minimize a specific objective function, also known as fitness. As in human

evolution, the population of the Genetic Algorithm evolves over numerous genera-

tions. It operates on the theory of survival of the fittest where the fittest survive

and the weakest die off [Beas93b].

In mimicking the reproductive system, GA makes a new generation by selecting

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 26

two mating parents from the population to generate offspring. These parents often

compete based on their performance with other parents for the chance to reproduce.

In traditional Genetic Algorithms, the number of chromosomes in the population

remains static. This often means that in the reproductive process, parents with

low fitness (low performance) will produce very few or no children, whereas parents

with high fitness will produce several offspring. Eventually, over a number of gen-

erations, the parents with low performing genes sequences will die off, leaving only

the stronger parents and their children to survive.

In trying to mimic the reproductive system, GA follows the steps shown in

Figure 2.9 [Mitc96, Mich94].

Randomly
Create
Initial

Population

Selection
Module:

Crossover
Operator:

Mutation
Operator: Fitness

CalculationMating
Select 2 Create

Offspring from
Parents

Evolve
Offspring

Parents

Population
Update:
Replace

Offspring into
New Population

Figure 2.9: Genetic Algorithm mating process

Selection Module

The selection process attempts to select two different parents with high fitness

to mate. The purpose of the selection process is to obtain fit individuals from

the population, in hope that the offspring produced will have better fitness values

than their parents. The more popular selection techniques are Roulette Wheel and

Tournament Selection.

In Roulette Wheel selection strategy, each individual in the population is as-

signed a slice of the wheel that is proportional to the individuals fitness, pi =

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 27

fitnessi
∑

j
Fitnessj

[Glov95]. Individuals with higher fitness get a larger slice of the wheel

whereas individuals with lower fitness get a smaller share. In spinning the wheel,

probability states that the wheel should land more frequently on good fitness in-

dividuals than individuals with less fitness. This implies that, over time, less fit

individuals should die off leading to a highly fit population.

Tournament Selection performs a competition among individuals to become

mating partners. Two individuals are randomly selected from the population and

allowed to compete. The individual with the higher fitness value of the two com-

petitors wins the right to mate with another individual from the population. This

selection strategy allows for diversity by enabling individuals with low fitness values

to enter into the competition.

Crossover Operator

Crossover is a natural process where two parents create offspring by combining some

genes from each parent. As in human evolution, the crossover technique attempts

to combine good gene sequences from each parent in hope that the resulting chro-

mosome will have a higher fitness than its parents. This process of gene exchanging

is essential and characterizes Genetic Algorithms [Glov95]. The crossover process

often occurs with a high probability [Mazu99].

There are numerous crossover techniques for binary encoding. The three most

common techniques are one-point crossover, two-point crossover and uniform crossover.

• One-point crossover is the traditional method for performing the crossover op-

eration [Beas93b]. This technique involves randomly selecting a point within

the chromosome to generate a “Head” and a “Tail” of the chromosome. The

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 28

children are created by combining the “Head” from the one parent and the

“Tail” from the other. Figure 2.10 demonstrates a one-point crossover oper-

ator.

Random
Selected

Cut
Point

1 1 10 0 0

1 01 0 01

1 10 0 0 0

1 01 1 0 1

Parent 2

Parent 1

Offspring 1

Offspring 2

Head
Tail

Figure 2.10: One-Point Crossover

• Two-point crossover is similar to the one-point crossover operator. Two points

in the chromosome are selected. In this process, the data exchanged is the

gene sequence between the two selected points.

• Uniform Crossover follows a different philosophy for generating children. In

this process, each gene in the chromosome is randomly selected from one of

two parents to form children. Figure 2.11 demonstrates a uniform crossover

technique which uses a random mask to select genes from each parent. A ‘1’

value in the mask will cause that gene to be selected from parent1 and a ‘0’

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 29

Offspring
1

Offspring
2

1 01 01

11 1

Parent 1 1

01 0

100010

0 0 0110Parent 0

1 0 1 00 1Mask
Uniform

(Random)

Figure 2.11: Uniform Crossover

value will cause the gene to be selected from parent0. The second child can

be created by selecting the alternate genes from the first child.

Mutation operator

Mutation is the process of introducing a random element that creates new individu-

als by a small change in gene sequence. It allows for diversity between the different

individuals within the population and allows for the exploring of the solution space

in attempt to avoid stagnation. In Mutation, each gene in the chromosome is tested

with a low probability to see if that gene should be altered. Having a high Mutation

rate may result in a “Random Search”, where the offspring have little relationship

with the parents since a good portion of the genes have been altered [Beas93b].

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 30

Fitness Calculation

This process is problem dependent and is the only process that needs to be modi-

fied in order to handle different optimization problems. Fitness Calculation is the

process of evaluating individuals based on their objective function value. Each indi-

vidual in the population is given a numerical measure of merit which demonstrates

its superiority to other individuals. This fitness value can be considered the same

as strength or intelligence in humans beings.

For the circuit partitioning problem, if the circuit is represented by 300 nets, of

which 100 nets are cut for a given chromosome, the fitness can be calculated as:

Total nets − Cut nets = 200

Replacement Strategy

This is the process of replacing the old population with the newly generated popu-

lation in an attempt to move the higher fitness individuals into the new population

while also maintaining diversity.

There are several techniques proposed by Smith et al. [Smit98] for popula-

tion update. Many of these replacement techniques are computationally intensive,

searching the fitness values to replace low fitness individuals. From these tech-

niques, there are four simple and efficient population update methods.

1. Generational GA - all the parents are replaced by the children, and it is

the responsibility of the crossover and mutation to preserve good solutions

[Smit98].

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 31

2. Tournament replacement- this technique is applied on the parents and off-

spring, selecting two individuals to join the new population.

3. Best Child and Parent - the best parent and the best offspring are placed in

the population.

4. Best Survive - the two best individuals from the parents and/or the offsprings

are replaced into the population.

Parameter Tuning

In Genetic Algorithms, several parameters need to be tuned to obtain good solutions

[Sitk95]. These parameters are crossover rate, mutation rate and population size.

Each parameter affects the GA differently. The population size determines the size

of the search space. If the population size is limited in size this in turn limits

the exploration capability. A large crossover rate increases the creation of new

offsprings, as well as causing disruption of strings. Mutation rate assists in escaping

local minimums but can be considered as a random walk if the value is too large. A

successful GA results often comes from finding a good balance of these parameters.

2.4.4 Local Search

Local search methods are iterative algorithms that seek to enhance the solution

by stepwise improvements. These heuristic techniques, although attempting to

improve solution quality, often result in suboptimal solutions by getting trapped

in local minima. The simplest form of local search attempts to swap elements in

combinatorial optimization problems.

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 32

In Figure 2.12, Abramson et.al. proposed a generic template for local search

[Abra97]. The following units are defined in the structure:

• a unit for storing the current solution

• a unit for storing the new solution

• an update unit

• a change-in-cost generator

• a neighborhood generator

• a unit for applying a move

The goal of this template is to define a generic structure that can be applied to

different problems.

Neighbourhood move for VLSI Circuit Partitioning

Local Search is a simple technique that follows a basic search template presented

in Figure 2.12. Since Local Search attempts to make gradual improvements to the

objective function, for VLSI Circuit partitioning the aim is maximize the number

of uncut nets. For this reason, a net representation is developed to move entire nets

in each block. To search all neighbors of a solution, an attempt to move each net

completely within a block is performed. The move with the highest object value is,

therefore, chosen as a candiadate.

Within this local search algorithm, the most crucial and complex issue is the

determination of other nets affected by a certain neighbourhood move. Once a net

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 33

Move
Apply

Neighbourhood
Generator

Cost Generator
Change In

Update
Unit

New Solution
List

X(t+1)
X(t)

Solution List

Figure 2.12: An architecture for local search proposed by Abramson et.al. [Abra97]

0 1 2 3 4

0 1 2 3 4

0

0 0 0

Block 0:

Block 1:

0 0 0 0

1 1

flip

flip

Figure 2.13: Search neighbors by flipping all nets one by one

has been moved exclusively into a block, the resulting solution might be infeasible

due to balance constraints. Therefore, it is necessary to re-check all nets that are

connected to any modules which have been moved. This process consists of 3 nested

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 34

loops. The first is used to determine the modules affected by moving the original

net. The second loop determines the nets affected by moving a certain module.

The third loop is performed to determine if a net has moved entirely in/out of a

block.

If we wish to move net xi into a specific block, the following process can be used

to verify the feasibility of the data:

Check x for 1 to m modules

if ’1’ exists

Check i for 1 to n nets

if one exists

Check j for 1 to m modules

Since there are three layers of loops for every net being modified, the complexity

of the feasibility check is O(m2n), where m is total number of modules, and n is

the total number of nets. The total complexity of the process of determining the

best neighbor is O(m2n2).

2.5 Hardware Accelerators for CAD

Hardware accelerators have come a long way over the past few decades. In the

1980’s, the majority of hardware accelerators were developed for fixed CAD algo-

rithms often dealing with Logic simulation of circuits consisting of less than 100,000

gates [CD88, Ambl89]. As circuits increased in complexity there was a greater need

for high performance CAD tools. In the past, hardware accelerators were devel-

oped as ASIC devices with little flexibility. With the introduction of reconfigurable

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 35

computing, a new option has arisen for hardware accelerators. These new devices

allow designers to use parallelism and pipelining as well as logical operations to en-

hance the performance of the algorithms, while still maintaining flexibility in their

designs. Since the mid 90’s, there have been a few hardware implementations of

CAD tools on reconfigurable platforms.

One of the main hardware implementation of CAD tools is the Boolean Sat-

isfiability problem (SAT). The SAT Problem is an NP-complete problem [De J89,

Plat98], and is computationally intensive for general purpose processors due to its

huge search area and need to perform extensive logic operations. The aim of the

SAT problem is to find a boolean solution that satisfies a given logical expression

in Product of Sum format.

(C1 ∨ C2 ∨ C3) ∧ (......) ∧ (Cn−2 ∨ Cn−1 ∨ Cn)

The Boolean Satisfiability Problem is used in a couple of different areas for

CAD tools, such as Test Generation, Logical Verification and Timing Analysis

[Zhon98a]. Similar to other NP-complete problems, heuristic techniques must be

used to generate acceptable solutions in reasonable time. Although heuristics can

generate fast solutions, these solutions may fail to prove satisfiability [Plat98].

With the ability to generate logical functions and exploit parallelism, reconfig-

urable computing has the ability to dramatically increase the performance of the

SAT problem over software implementations. This is due to easy implementation

of the logical function, often resulting in one clock cycle per calculation. Most

hardware accelerators for the SAT problem in the past [Plat98, Zhon98a, Zhon98b,

Hama97] achieved extensive speedups over software implementations.

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 36

Other hardware implementation of CAD tools include:

• Chan et al. proposed hardware assisted designs that use fine-grained paral-

lelism to aid in increasing the performance of a PathFinder router algorithm

[Chan97]

• Wrighton et al. proposed a hardware assisted systolic approach to Simulated

Annealing for FPGA placements [Wrig03]

• Luo et al. implemented a scanline algorithm for Design Rule Checking (DRC)

[Luo99]

2.6 Hardware Based Genetic Algorithms

A hardware based GA is an appealing option to solve many optimization problems

due to its speed and efficiency. With the introduction of FPGAs, GA algorithms

can be easily modified to handle many different problems. In the past decade, there

has been significant activity in the development of Genetic Algorithms by hardware

implementations which has contributed to the advance in FPGA technology.

2.6.1 Hardware/Software Co-Design Approaches

One of the earliest hardware Genetic Algorithm implementations was by Stikoff

et al. in 1995 [Sitk95]. A Hardware/Software co-design system was introduced

for minimizing communication between numerous FPGA chips. The aim was to

develop a system that would overcome the bottlenecks of the algorithm by imple-

menting several functionalities into hardware. Once the software implementation of

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 37

the algorithm was developed, it was determined through profiling that 84% of the

execution time was spent calculating the internal-net fitness values which caused

them to implement this portion of code into hardware. In comparing the software

and co-design approaches, Sitkoff found that by implementing the fitness calcula-

tion into hardware, there was an improvement in processing time of a factor of

three over the software design executing on a SUN SPARCstation 20 running at 60

MHz.

Koza et al. [Koza97] also found that the burden placed on the algorithm was

implemented in the fitness calculation function. The system consisted of a co-design

approach which incorporated the fitness calculation in a Xinlix XV6216 FPGA. The

idea of the design is to use a host computer to do all evolutionary computations

and send the population to the FPGA for evaluation. There was no performance

analysis for this design.

2.6.2 Pure Hardware Genetic Algorithm Implementations

In 1995, Scott et al. [Scot95] developed a complete Genetic algorithm in hardware

for simple linear equations using VHDL. The proposed architecture was spanned

across multiple FPGAs operating at a maximum clock frequency of 8MHz. Scott

et al. average speedup for the linear equations was 17 times that of the software

implementation running on a Silicon Graphics 4D/440 with four MIPS R3000 CPUs

each running at 33MHz. The bottleneck of the system was found to occur in the

population sequencer/Selection module and the fitness module. In implementing

two Selection routines in parallel, the algorithm had a slight increase in speed, but

was still limited by the fitness function. A few improvements were suggested to the

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 38

algorithm:

1. Increase parallelization of the selection modules

2. Use memory configurations which support read and write in one clock cycle

3. Merge the population sequencer with the memory interface module

4. Parallelize and pipeline the selection-crossover-fitness modules

A modified Genetic Algorithm was also introduced by Aporntewan et al. [Apor01].

This algorithm is a compact version of a Genetic Algorithm and does not follow

the normal convention of a traditional Genetic Algorithm [Beas93a]. [Apor01] claim

that in using this method, they can achieve 1000x speedups over software versions,

implemented on an Ultra Sparc 2 operating at 200 MHz. These speedups are

achieved through the simplicity of this design: using only adders, subtractor and

comparators. Although the Compact GA is efficient, it only simulates the tour-

nament selection and uniform crossover and therefore cannot replace Simple GA’s

[Apor01].

In 1995, an architecture implementing a Genetic Algorithm was introduced for

the Travelling Salesman Problem (TSP) using reconfigurable hardware [Grah95].

Graham et al. developed their architecture on a two-board Splash 2 system, con-

sisting of 34 Xilinx 4010s FPGAs and having a maximum clock frequency of 11

MHz. The algorithm was pipelined between 4 FPGA modules to achieve its perfor-

mance of 7-10 times that of the software implementation running on a HP PA-RISC

workstation running at 125 MHz [Grah96]. In their analysis of the system, they

highlight the following factors that contributed to the success of the design:

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 39

1. Fine-Grain Parallelism:

High parallelism within the selection routine is estimated to generate a speedup

of 38 times that of the selection routine in software.

2. Address, Branch, and Function Call Overhead:

In analyzing the assembly code generated from the software implementation,

it was found that two-thirds of the instructions were overhead (branching,

address lookups, etc.).

3. Coarse-Grain Parallelism:

The parallel execution of four FPGAs attributed to a factor of 1.5 to 2 times

the systems speedup.

4. Random Number Generator (RNG):

In analyzing the crossover and mutation routines, generating random numbers

attributed to 80% of the instructions. Since only a small portion of the time is

spent in the selection routine, implementing a more efficient RNG in hardware

can aid in only about 10% increase in performance.

In 2001, Shacklefor et al. [Shac01] introduced a steady state genetic algorithm

for implementation on a FPGA for the set covering problem and protein folding

problem. The proposed architecture involved a 6 stage pipeline with slight modifi-

cations to the standard GA process. The hardware implementation outperformed

a C program running on a 366 MHz pentium CPU by 320 times. It was determined

that the limiting factor of the performance of the algorithm is the throughput of

the cost modules. Increasing the number of cost modules running in parallel would

dramatically increase the processing performance, as seen in Figure 2.14.

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 40

Figure 2.14: Protein folding problem: performance scaling as a function of FPGA
size [Shac01]

In 2003, yet another complete VHDL implementation of a Genetic algorithm

was developed [Gurw03]. The design identified the same findings of Stikoff et al.,

described in section 2.6.1, where the majority of the execution time was found in

calculating the fitness function. The design was implemented on a Rapid Proto-

typing Platform containing a Virtex-E XCV2000e FPGA device with a maximum

clock frequency of 40 MHz which led to over 40 times speedup than the software

algorithm running on a SUN ULTRA10 at 440 MHz. This speed-up was attributed

to pipelining and parallelization. The main limitation in this design was the size

of the available memory. The proposed design used dual-input/output block rams,

limiting the architecture to benchmarks of size 32 nets.

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 41

2.6.3 Synthesized Hardware Genetic Algorithms

Megson et al. [Megs98] proposed implementing Genetic Algorithms using Systolic

Arrays. All the proposed ideas were developed in C and were not tested or simulated

for performance. [Megs98] claim that in using the systolic approach the design

would be easily implemented, would be modular, and easily expandable to any

problem size and allows for massively parallel architecture.

Perkins et al. [Perk00] successfully designed and synthesized a Genetic Al-

gorithm for non-trivial 1-D signal reconstruction. Although the design was not

implemented on hardware but through simulation and synthesis the hardware de-

sign achieved 1000 times speedup over a C implementation for a small problem1.

The increase in performance was contributed to the following reasons:

1. Efficient hardware pipelined fitness evaluation

2. Evaluation of an entire population of individuals in parallel

3. Elimination of slow off-chip communication (off chip memory).

Ramamurthy et al. [Rama] described a framework for a VLSI architecture that

incorporates a microprocessor to perform the fitness calculations. The framework

defines the basic functionalities of a Genetic Algorithm but is restricted to a pop-

ulation size of 16 two byte members and solving single variables equations.

1Authors fail to mention the processor speed of the computer used

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 42

2.6.4 High-Level Hardware Implementation

Martin introduced a Genetic Programming architecture design based on Handel-

C [Mart01]. In the design, two simple problems were used: a regression problem

(x = a + 2b) and the 2-bit XOR boolean logic problem. The design was broken

down into three levels of parallelization to gain performance:

• Intrinsic Parallelism - Which exploits the parallelism of simple statements

throughout the entire algorithm.

• Geometric Parallelism - Involves partitioning a task into smaller units to be

copied many times to increase performance. In this design a master and

numerous slaves operated in parallel. For this algorithm, the master stored

the population and the slaves evaluated the fitness values of individuals.

• Asynchronous Parallelism - Involves two or more processes that operate in-

dependent of each other with little communication. The parallelism occurred

with the random number generator, which continuously generated random

numbers used as needed.

Tables 2.5 and 2.6 show the results of implementing two algorithms on an RC1000

development board consisting of a Xilinx Virtex-E XVB2000e-6 in comparison to

a Power-PC running at 200 MHz, with a population size of 8.

Martin [Mart02a] further improved the proposed design to handle larger problem

sets (Artificial Ant Problem) and incorporated a pipelined architecture. Unlike the

previous architecture, this design utilized off-chip memory to store the population

and fitness values. In comparing the results of the XOR problem, the pipelined

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 43

Measurements Power-PC simulation Handel-C Handel-C
Single Fitness 4 Parallel Fitness

Cycles 16,612,624 351,178 188,857
Clock Frequency 200 MHz 25 MHz 19 MHz
Speedup (Cycles) 1 47 88
Speedup (Time) 1 6 8

Table 2.5: Results of running the regression Problem[Mart01]

Measurements Power-PC simulation Handel-C Handel-C
Single Fitness 4 Parallel Fitness

Cycles 27,785,750 715,506 384,862
Clock Frequency 200 MHz 22 MHz 18 MHz
Speedup (Cycles) 1 38 72
Speedup (Time) 1 4 6

Table 2.6: Results of running the XOR Problem[Mart01]

architecture produced 8 times faster results than the original design while operating

at twice the frequency. For the Artificial Ant problem using 32 parallel fitness

evaluations and operating at 37 MHz, the new architecture achieved speedups of

nearly 100 times that of software running on a PowerPC at 200MHz. Due to the

number of parallel Fitness evaluations, the design required nearly 80% of the FPGA

resources and 4 hours to compile the design using a 1.4 GHz Athlon computer.

From this improved design [Mart02a] concluded that:

• The parallel fitness evaluations were only effective when the problems were

large enough that the fitness became the bottleneck.

• For a fixed problem required to be executed many times, a hardware archi-

tecture with parallel fitness evaluations can reduce time by two orders of

CHAPTER 2. BACKGROUND/LITERATURE REVIEW 44

magnitude. For problems that are not fixed, a large investment in time is

required to modify and compile the design.

• Although Handel-C is beneficial to software engineers with limited hardware

experience; knowledge of how hardware works is still required to achieve ac-

ceptable speedup from the design.

2.7 Summary

This chapter presented an overview of reconfigurable computing, VLSI CAD tools

and hardware implementations of Genetic Algorithms. Literature review indicates

that the use of reconfigurable computing technology for hardware accelerators has

increased software algorithms performance by orders of magnitude and is desirable

for many applications. It is shown that there has been extensive work on hardware

Genetic Algorithm accelerators with few applied to VLSI CAD tools. Although Ge-

netic Algorithms are known as effective methods for exploring the solution space,

they are inefficient at fine tuning the search without the aid of local search algo-

rithms. The ability of Memetic algorithms to effectively explore and exploit the

solution space qualify them as good candidates to solve NP-complete problems.

Therefore, this thesis will attempt to implement a Memetic algorithm in hardware

for solving the circuit partitioning problem.

Chapter 3

A Genetic Algorithm Processer

Genetic Algorithms are search techniques based on the biological reproductive pro-

cess, following the theory of natural selection[Reev02]. The aim is that through

reproduction and mutation, good gene sequences will evolve and become stronger

while weak genes will die off and get eliminated from the population. They are

considered robust algorithms with the ability to solve many complex NP-Hard

problems. They tend to explore the solution space through the use of a population

of various unique solutions, while placing little emphasis on fine tuning its results.

3.1 Hardware Design

In designing a Genetic Algorithm processor for the VLSI Circuit Partitioning the

aim is to exploit the natural parallelism that is inherent within Genetic Algorithms.

A parallel flow of reproduction process is shown in Figure 3.1 which demonstrates

how the mutation, repair and fitness operations can be performed on each offspring

45

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 46

(generated by the crossover) in parallel. This flow also allows Genetic Algorithms

to be implemented as pipelined architectures, allowing each component to operate

independently and in parallel. The following section gives a general overview of the

architecture design and specifications.

Chromosomes
Mutate Children

Repair Invalid
Chromosomes

Calculate Children’s
Fitness Values

Repair Invalid
Chromosomes

Calculate Children’s
Fitness Values

Chromosomes
Mutate Children

Select Parent
Chromosomes

Perform Crossover

Replace Children
into New Population

Generate Initial
Feasible Population

Figure 3.1: Parallel Flow Genetic Algorithm

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 47

3.1.1 Architecture Specifications and Constraints

The Genetic Algorithm Architecture should meet the following specifications and

constraints:

• The architecture must be small enough to fit in common FPGA devices such

as the RC1000 [Supp01] development platform.

• The architecture must be designed to allow enough flexibility to solve combi-

natorial optimization problems in general and not just circuit partitioning.

• The architecture should be able to handle all sizes of circuits and should be

easily modified at compile time, allowing for different configurations.

• The architecture is not constrained by using internal Ram but can use external

memory as well.

• The architecture must have user programable parameters (ie. Population

Size, Crossover Rate, etc).

3.1.2 Genetic Algorithm Architecture Overview

The architecture is broken down into two independent parts, as shown in Figure 3.2.

The first part is designed to initialize the Genetic Algorithm by developing a random

initial population while the second part of the design performs reproduction. Both

components are pipelined to decrease the execution time. A detailed description of

execution and interface is presented in sections 3.2 and 3.3 respectively.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 48

Module
Reproduction
Population

(PR−M)

Create Population
Module
(CP−M)

Memory
External

BusSize

BusSize

Se
le

ct
or

Figure 3.2: Genetic Algorithm Block Diagram

Data Representation

For this work, the data representation follows the same used by [Gurw03]. This

representation uses binary values to show the connectivity of a net. A ‘1’ indicates

that a net is connected to the corresponding cell while a ‘0’ indicates that the net

is disconnected. An example of this Netlist representation is shown in Figure 3.3.

A circuit Netlist is a collection of data that is used to show the connectivity

of all nets within the benchmark. In the Genetic Algorithm implementation, the

Netlist representation is used to calculate the fitness value of each chromosome by

determining the number of nets that are uncut (all cells attached to the nets lie

within one partition). From Figure 3.3, it is clear that Net #1 is connected to

Cell1, Cell2 and Cell4.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 49

012345

000 111

Cell 4 Cell 3 Cell 2 Cell 1 Cell 0Cell 5

Netlist Entry

Net #1

Figure 3.3: Netlist representation of a single net

Memory Organization

In storing the population and Netlist data into memory, a fixed number of data

words is reserved to represent each chromosome or net. The fixed memory size

must be a power of two (2x) to allow for easy indexing of the memory. This

constraint eliminates the need for multiplication offsets which significantly decreases

the amount of resources needed. Figure 3.4 explains how a single memory entry

consisting of 75-bits is stored within eight half-words of data. From the figure,

1 111111 000000000

1 1 1 1 1 110 0 0 0 0 0 0 0 0

11111111 00000000

1 1 1 1 1 1 10 0 0 0 0 0 0 0 0

111 111 0 0 0 0 0

Unused Data

$0048

$0049

$004A

$004B

$004C

$004D

$004E

$004F

Figure 3.4: Example of Chromosome Data

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 50

it is evident that although eight half-words of information are used to store each

chromosome, a little over half the allotted space is required and by using this storage

format the remaining memory is wasted. The wasted space is necessary to achieve

higher speeds from the system.

In indexing the Netlist or population memory the address value is divided into

two parts, as illustrated in Figure 3.5. The upper address lines are used to index

the starting position of the desired entry and the lower address lines indexing the

desired information. The figure uses four bytes to represent each entry in the Netlist

Address
Byte LocationNet

$0004

$0008

$000C

$0010

$0014

$0000

5

4

3

2

1

0

78152331 24 16 0

1 1

1 11

1 1

1 11

11

1 1

Modules

N
O

T
 U

SE
D

N
et

lis
t

1110 0

Figure 3.5: Example of Netlist Data

meaning that the lower two address lines are used to access individual bytes of data

for the given net and the remaining address lines are used to index the location of

the net in memory.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 51

Constants

In order to meet the architecture specification of flexibility, system constants are

used to adapt the algorithm to different FPGA configurations. These constant

values are found in a header file of the code and can be changed preceding synthesis.

The constants and their definitions are shown in Table 3.1 and are illustrated in

Figure 3.6.

Constant Name Description

AddrWidth This constant holds the maximum number of address lines
that can be used to retrieve data from memory

TotalAddress This constant holds the size of memory modules. It is
equivalent to 2AddrWidth

NetWidth This constant holds the number of address memory bytes
needed to represent a chromosome

NetSize This constant holds the number of bytes reserved to store
each chromosome. It is equivalent to 2NetWidth

DataWidth This constant holds the data bus width as a power of 2

DataSize This constant holds the size of the data bus. It is
equivalent to 2DataWidth

Table 3.1: Handel-C constant definitions

Registers

To allow for user programmable parameters, registers have been introduced into

the architecture to control the algorithm flexibility. These parameters are stored

internally and are programmed through the memory. The definition of registers

can be found in Table 3.2.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 52

2
NetSize = 4 = 2

Chromosome Byte 3 Byte 2 Byte 1 Byte 0

NetWidth

524286

524287

0

1

External Memory

TotalAddress = 524,288 = 2
19

AddrWidth

1 0 1 0 1 0 1 0

7 0

DataSize = 8 = 2
3

DataWidth

Figure 3.6: Handel-C constant definitions

RC1000 Limitations

The processor will be implemented on an Celoxica RC1000 development board

[Supp01]. Even though the architecture constraints are met, the RC1000 board

adds additional constraints summarized as follows:

1. Population Size : The population is limited to values of the power of 2 (22,

23, . . . , etc) and also limited by the size of memory available to hold the

population.

Allocated Memory ≥ NetSize × Population Size

2. Netlist Memory : The limitation on the Netlist size stored in memory is:

Available Netlist Memory ≥ NetWidth × NetNum

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 53

Memory Register Register Description
Location Name Size

0x00 Net 16 bits The number of nets within the Netlist
Number data file. The maximum number of nets

is 216 − 1 = 65535

0x01 Cell 16 bits The number of cells inside each
Number chromosome. The maximum number of cells

is 216 − 1 = 65535

0x02 Allowable 16 bits The allowable difference between the
Block number of cells in block 1 and the
Difference number of cells in block 0

0x03 Crossover 16 bits The probability of the two selected
Rate individuals mating and generating

offspring

0x04 Mutation 16 bits The rate at which the offspring will be
Rate mutated

0x05 Population 16 bits The size of the population (must be
Size power of 2)

0x06 RNG DataWidth The seed value that is used to
Seed initialize the Random Number Generator

0x07 Generation 16 bits Number of generations that the GA will
Size undergo

Table 3.2: Register Description

3. Population Memory : The limitation on the population memory size is:

Available Population Memory ≥ NetWidth × PopSize

4. Memory Data Bus : In order to correctly synthesize the design, the external

memory data bus must be of 16-bits or greater. This is due to loading the

16-data into the registers.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 54

RC1000 Memory Usage

In satisfying these constraints for the RC1000 board a minimum of three memory

banks are needed to hold the required information. One bank is dedicated to hold

the Netlist information. The other two banks are separated into new and old storage

data, used to hold different working data for the system, as shown in Figure 3.7.

These memory banks are divided up to hold the following information:

Netlist
Data

$00000

Old Fitness Data

Internal Data Use

Population
Data

Internal Data Use

Register Data

Population
Data

New

Memory Bank 2 Memory Bank 1 Memory Bank 0$00000

New Fitness Data

$7FFFF

$7FC00

$7F400

$7FFFF

Current

Figure 3.7: Genetic Algorithm Memory Map

1. Population Data : The population data holds the chromosome data of each

individual in the population. This information is stored at the beginning of

the memory block. Section 3.1.2 describes how the individual population is

stored in memory. In implementing the design onto the RC1000 board, the

population was limited to a size of 1024. This gives the maximum allowable

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 55

size of the population data to be 522,232 words (16,711,424 bits) allowing for

larger benchmarks.

2. Fitness Data : The fitness data consist of 1024 words and are located at

memory location 521,216 on both the new and old memory blocks. This holds

the corresponding fitness values of each individual within the population.

3. Internal Data Use : Since the mating process is pipelined, there is a section

of memory that is used solely for internal purposes. These data are stored

immediately following the fitness data and have a maximum size of 1024

words.

4. Register Data : In order to transfer the register information to the GA algo-

rithm, the register values are passed in through the memory. This information

is located at the end of the memory bank 0, at memory location 523264.

A summary memory usage and starting locations can be found in Table 3.3

3.2 Create-Population-Module (CP-M)

The “Create-Population-Module” is developed to generate the initial random popu-

lation for the Genetic Algorithm. To accomplish this task efficiently, the procedure

is broken down into three pipelined components, as shown in Figure 3.8. The first

submodule (Init Population Submodule) is responsible for the random generation

of the initial population within the Genetic Algorithm process. The second com-

ponent is used to repair individuals within the population that are infeasible as

explained in section 2.4.1. This module randomly selects points in the chromosome

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 56

Memory Addressable Memory Description
Size

Netlist 2NetWidth × NetNum The Netlist memory stores the binary
Memory chromosome information about each net
New 2NetWidth × PopSize This section of memory stores the binary
Population information about the newly generated
Memory population
New PopSize × 2 This memory holds the new fitness values
Fitness of each individual in the new Population
Memory Memory
Internal PopSize This data is used internally to determine
Data who the children’s parents are from the
Storage previous population
Old 2NetWidth × PopSize This section of memory stores the binary
Population information about the current population
Memory
Old PopSize This memory holds the fitness values
Fitness of each individual in the Old Population
Memory Memory
General 8 This memory holds the values that are
Purpose to be loaded in the registers upon
Memory starting the program

Table 3.3: Memory Usage

and moves the cells from one partition to the other. The third module calculates

the fitness values for the newly generated population. This process loops through

each net in the Netlist to determine the number of nets that are uncut.

3.2.1 Init-Population-Submodule (IP-SM)

The “Init-Population-Submodule” is one of the main components of population

initialization process. In this submodule, feasible/infeasible chromosomes are gen-

erated using the Random Number Generator (RNG)[Pres92] which generates a

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 57

Population
Submodule

Repair
Chromosome

Submodule

Fitness
Calculation
Submodule

(IP−SM)

Init

(RC−SM) (FC−SM)

Figure 3.8: Create-Population-Module (CP-M)

sequence of random bits or genes. This process is repeated until each chromosome

in the population can represent a point in the solution space.

Signal Organization

Figure 3.9 describes the signal interface between the IP-SM with other submodules

within the system. A description of the signals can be found in Appendix A.1.

Once a chromosome is generated and stored into memory, the Repair Channel

Information is used to send the location in memory of the current chromosome to

the repair function for checking its feasibility. A high on the RepairStop informs

the Repair Chromosome Submodule that the entire population has been created

and ends its process.

Functionality of IP-SM

The task of the IP-SM is to generate the initial pattern of a chromosome. The

chromosome is stored in memory consisting of n data blocks of size DataSize, where

n is Cells
DataSize

+1. Once the system initiates the creation of the population, by driving

the PopInitEnb signal high, the process shown in Figure 3.10 is initated.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 58

M
od

ul
es

P
op

Si
ze

Register Data

Init
Population
Submodule

(IP−SM)

P
op

D
A

T
A

P
op

A
D

D
R

P
op

W
E

P
op

E
N

Memory Access
Population

R
ep

ai
r

C
ha

nn
el

In
fo

rm
at

io
n

GlobalRst

Clk

PopInitEnb

InitDone

P
op

G
N

T

RepairNum

RepairGnt

RepairAck

RepairStop

Sy
st

em
 S

ig
na

ls

Figure 3.9: Init-Population-Submodule Signal Diagram

The process begins by generating a bit mask to mask out the upper unwanted

bits on the Most Significant Byte (MSB) of the chromosome. The number of re-

quired bits of the last byte of data are calculated to be the remainder of Cells
DataSize

.

Once the mask is created, the submodule begins creating the population. This is

achieved by generating random bit sequences using a RNG. These sequences rep-

resent the initial makeup of each chromosome within the population. This process

is repeated for each data byte of the chromosome. The MSB of data consists of the

remainder of the chromosome cells. In generating this data, the mask is applied to

this random set of bits to set the upper (DataSize − Remainder) bits to zero.

Figure 3.11 illustrates a simple circuit on how chromosomes are created. Once a

chromosome is completely generated, the required information is passed to the Re-

pair Chromosome Submodule to check feasibility. After the information is passed

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 59

Finish

Generate Random Number
and Store in Memory

Send Memory Location
to Repair Chromosome

Submodule through Channel

Generate Bit Mask
to Mask the RNG

Start

No YesNew
Population

Full

Is

Chromosome
Byte of

Data

Is
Last

No Yes

Store in Memory
Apply Bit Mask and

Generate Random Number,

Figure 3.10: Init-Population-Submodule Block Diagram

on the channels, another chromosome is created. Upon completion of all chromo-

somes in the population, the system informs the Repair Chromosome Submodule

that it has completed its task and places a high value on the InitDone. An example

of the stored chromosome of size Cells = 28 is shown in Figure 3.12

3.2.2 Repair-Chromosome-Submodule (RC-SM)

The “Repair-Chromosome-Submodule” is used to modify infeasible chromosome

generated by the IP-SM or Cross-Parent-Submodule (CP-SM). The objective is to

create feasible solutions that meet the circuit partitioning balancing criteria. In

fixing the chromosomes, random cells are selected within the chromosome and are

moved from the partition with more number of cells to the partition with the fewer

number of cells. This is repeated until the difference between the number of cells

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 60

Generator
Random Number

Mask

Control
0 1Mux

Tristate
Control

Databus

Figure 3.11: Internal design to Init-Population-Submodule

0000000000000000000000000 1 1 1 11 11

n n−1 n−2 n−3

DataSize − Remainder

Figure 3.12: Stored chromosome data

within the partitions meets the balancing criteria.

Signal Organization

Figure 3.13 describes the signal interface between the RC-SM with other submod-

ules within the system. A description of the signals can be found in Appendix

A.2. The Repair Channel receives information from the IP-SM on the designated

chromosome to be repaired. Once repaired, the same information is passed to the

“Fitness-Calculation-Submodule” (FC-SM) through the Fitness Channel. If the

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 61

P
op

D
A

T
A

P
op

A
D

D
R

P
op

W
E

P
op

E
N

Memory Access
Population

P
op

G
N

T

Chromosome
Submodule

Repair

(RC−SM)

M
od

ul
es

Register Data

D
IF

F
E

R
E

N
C

E

F
it

ne
ss

 C
ha

nn
el

In
fo

rm
at

io
n

GlobalRst

Clk

RepairDone

PopInitEnb

In
fo

rm
at

io
n

R
ep

ai
r

C
ha

nn
el

RepairNum

RepairGnt

RepairAck

FitnessNum

FitnessGnt

FitnessAckRepairStop

FitnessStop

Sy
st

em
 S

ig
na

ls

Figure 3.13: Repair-Chromosome-Submodule Signal Diagram

system receives a high signal on the RepairStop then all chromosomes within the

population have been created and repaired. A high signal is then placed on the

FitnessStop and the repair process halts.

Functionality of RC-SM

The task of the RCS is to determine the feasibility of a chromosome and repair-

ing it. Once the system initiates the RC-SM, by driving the PopInitEnb signal

high, the system enters an idle state until information is passed from the IP-SM.

Once information regarding a chromosome is received the process in Figure 3.14 is

initiated.

The initial task of the submodule is to determine the feasibility of a chromosome.

This task is done by reading each byte of the chromosome and counting the number

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 62

Generate Bit Mask
to Mask the RNG

Start

Information from
Channel

Retreive Chromosome

Generate Random Number
and Apply Bit Mask

Cell

Number
Is

A Valid

Block
to Smaller

Cell Belong
Does

update Number of 1’s Counted
Invert Selected Bit and

Send Chromosome Location
to Fitness Calculation

Submodule through Channel

No Yes

Has
a Stop

Signal been
Sent

Is
Balancing
Condition

Met

Count number of 1 bits
Read Byte of data and

Counted

Chromosome

Is all
No Yes

Yes

Yes

Yes

No

No

No

Finish

Figure 3.14: Repair-Chromosome-Submodule Block Diagram

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 63

of 1’s that appear. In determining if the balancing criteria is met, both of the

following equations must be satisfied.

BALANCE ≥ Cells − 2 × (Number of 1′s)

and

BALANCE ≥ 2 × (Number of 1′s) − Cells

If both equations are satisfied, the chromosome is considered feasible and the Repair

process is complete; otherwise the chromosome is infeasible and must be repaired.

In repairing infeasible solutions, a masked random number is used to select ran-

dom cells to move from one partition to the other. The masked random number

generator generates numbers between 0 to 2b × DataSize, where 2b is the mini-

mum number of bytes required to represent a chromosome. Although it is possible

to generate invalid numbers (numbers larger than the number of cells within a

chromosomes) the probability of selecting a feasible cell is 0.5 + 1
2b

×DataSize
. If the

number generated is outside the boundaries of the chromosome data, then a new

number is repeatedly generated until a valid number is selected. This repair process

is illustrated in Figure 3.15

Once a viable cell is selected, it is moved from its current partition to the

partition with the lower number of cells by inverting its value in the chromosome

data. The register containing the number of ones is updated and the feasibility of

the new solution is determined. This process is repeated until a feasible chromosome

is generated that meets balancing criteria.

Once the chromosome is repaired, the system informs the FC-SM that the chro-

mosome is feasible and waits for another chromosome to repair. If a stop signal

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 64

Data Register

Mask
Generator &

Random Number

Bit Comparator

Databus
Signal

Comparison

Location
Converter

Number−to−Bit

DataSize

DataSize

DataSize

DataSize

Figure 3.15: RC-SM Internal Repair Logic

occurs on the Repair Channel then a stop signal is sent to the Fitness Calculation

Submodule and a high value is placed on the RepairDone.

3.2.3 Fitness-Calculation-Submodule (FC-SM)

The “Fitness-Calculation-Submodule” is used by both the Create-Population-Module

(CP-M) and the Population-Reproduction-Module (PR-M) to calculate the fitness

value of a given chromosome. In this process, each net within the Netlist is com-

pared to the chromosome to determine the number of nets that are completely

contained within a partition (uncut). This value is assigned to the chromosome to

represent its fitness in comparison to other chromosomes.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 65

Signal Organization

Figure 3.16 describes the interface between the FC-SM and other submodules

within the system. A detailed description of the signals can be found in Appendix

A.3. Although similar in functionality, there is one slight difference between the

M
od

ul
es

N
et

s

Register Data

ReplaceAck

ReplaceGnt

ReplaceStop

ReplaceNum

N
et

D
A

T
A

N
et

A
D

D
R

N
et

W
E

N
et

E
N

N
et

G
N

T

Netlist
Memory Access

Calculation
Submodule
(FC−SM)

Fitness

R
ep

la
ce

 C
ha

nn
el

In
fo

rm
at

io
n

F
it

D
A

T
A

F
it

A
D

D
R

F
it

W
E

F
it

E
N

F
it

G
N

T

Memory Access
Fitness

P
op

D
A

T
A

P
op

A
D

D
R

P
op

W
E

P
op

E
N

P
op

G
N

T

Memory Access
Population

GlobalRst

Clk

FitnessDone

PopInitEnb

F
it

ne
ss

 C
ha

nn
el

In
fo

rm
at

io
n

FitnessNum

FitnessGnt

FitnessAck

FitnessStop

Only used for

Procedure
Population Update

Sy
st

em
 S

ig
na

ls

Figure 3.16: Fitness-Calculation-Submodule Signal Diagram

FC-SM used in the Initial-Population-Module and that used in the Population-

Reproduction-Module (PR-M). When the submodule is used in the PR-M there is

a channel communication with the Replace-Population-Submodule (RP-SM), de-

scribed later on in this chapter. Once the fitness value has been calculated, the FC-

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 66

SM passes this chromosome to the Replace-Parent-Submodule (RP-SM) informing

it of the newly created children. The Fitness Channel has the same functionality

for both modules, receiving new members to be processed

Functionality of FC-SM

After the system initiates the fitness calculation process, by driving the PopInitEnb

signal high, it remains in an idle state waiting for information to be passed through

the fitness channel (ie. identify a member for fitness calculation). The process in

Figure 3.17 is activated by receiving information of the designated individual.

The process begins by retrieving a byte of data from both the chromosome

and the current net being tested. These two pieces of data are then compared to

determine if the net is cut, cells connected to the net lie in both partitions, or

otherwise uncut. This is accomplished using the circuitry presented in Figure 3.18,

where each byte of the chromosome is compared with the corresponding byte of the

net being tested. When the complete chromosome is compared and a high exists on

the output of the Fitness Compare Logic, this indicates that the net is uncut. An

incrementing counter is used to accumulate the number of uncut nets that exist.

This process is repeated until all nets within the Netlist have been compared to the

current chromosome and the number of uncut nets has been determined. Figure

3.19 gives an overview of the fitness calculation process.

Following the fitness calculation, the system returns to an idle state waiting for

the next chromosome to process. If a high signal is passed on the FitnessStop then

the submodule ends its processing and places a high signal on the FitnessDone to

inform the system that it has completed its task.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 67

Finish

Information from
Channel

Retreive Chromosome

Start

Has
a Stop

Signal been
Sent

Has

Checked

all Nets
been

Retreive data on Current
Net and Chromosome

Is

Net Cut?

Is all

Chromosome

Checked
Population Reproduction

Only Present in

Module

No Yes

Check Cut Status of Net

Memory
Store Fitness Value to

Send Chromosome Location

Submodule through Channel
to Replace Chromosome

Increment Fitness Counter
Increment Net Counter

No

No

No

Yes

Yes

Yes

Figure 3.17: Fitness Calculation Submodule Block Diagram

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 68

Clock

Output

n bits

n bits

n bitsn bits

n bits

n bits

n bits
Chromosome Entry
Netlist Entry

Partition 0 Comparator

Partition 1 Comparator

QD

QD

Figure 3.18: Fitness Compare Logic [Sitk95]

3.3 Population-Reproduction-Module (PR-M)

Once the initial population is created, the evolutionary mating process begins.

Population mating is the procedure of creating new offspring chromosomes through

a random combination of the parents’ genes and mutation. The aim is to create a

new and better fit population than the previous population. In the current design,

this process is broken down into seven pipelined components, as shown in Figure

3.20. A detailed explanation of each component’s tasks was introduced in section

2.4.3. To create a completely new population, the pipeline process must be executed

Population Size

2
times, since each set of parents selected creates two offspring in the

new population.

3.3.1 Select-Parent-Submodule (SP-SM)

The “Select-Parent-Submodule” performs the initial task of the PR-M. This sub-

module is used to select two fit individuals from the current population (ie. par-

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 69

Register

Fitness
Count

Fitness
Databus

Block 0Block 1
Comparator Comparator

Netlist Chromosome
Register Register

Fit
Read

(ASM)

Tristate
Signal

Figure 3.19: Internal Fitness Layout

ents)to create new offspring. The task is performed by tournament selection, de-

scribed in section 2.4.3. After selecting the two parents from the current population,

the selection routine determines, with a given probability, if these two individuals

should mate to produce offspring or survive unaltered into the new population.

The probability of successful mating of the two individuals is Crossover Rate
65535

, where

Crossover Rate is a user defined variable. Following the selection of parents, the

addresses of the two individuals are sent to the Cross-Parents-Submodule (CP-

SM) to create offsprings. Otherwise, the addresses of the individuals are sent to

the Copy-Parents-Submodule (CP-SM) where they are copied directly to the new

population.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 70

Routine
Selection

Submodule Submodule

Submodule

Copy
Parents

Parents
Cross

Chromosome
Repair Fitness

Calculation
Replace

Submodule Submodule Submodule

Mutate
Chromosome

Submodule
Population

Figure 3.20: Population Reproduction Module (PR-M)

Signal Organization

Figure 3.21 describes the signal interface between the SP-SM with other submodules

within the system. A detailed description of the signals can be found in Appendix

A.5. The submodule has communication channels with CP-SM and the Copy-

Parents-Submodule (CoP-SM). Both channels are used to send selected parents by

the process as well as the location in the new population they should be stored.

The CopyStop and CrossStop signals are used to inform the submodules that the

new population is complete.

Functionality of SP-SM

The task of SP-SM is to select two mating parents from the current population.

Once the system initiates the selection procedure, by driving the PopRepoEnb signal

high, the process shown in Figure 3.22 is initiated. The process begins by initially

selecting one individual from the population as a potential parent in the mating

process. This is accomplished using the RNG and the mask modules. Since the

population must be of a size equal to a power of 2 (2x), the mask is simply calculated

as Mask = PopSize − 1. Figure 3.23 demonstrates an example of how individuals

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 71

Select
Parents

Submodule
(SP−SM) In

fo
rm

at
io

n

F
it

D
A

T
A

F
it

A
D

D
R

F
it

W
E

F
it

E
N

C
V

R
R

at
e

P
op

Si
ze

Register Data

C
ro

ss
ov

er
 C

ha
nn

el

Information

CrossChild0

CrossChild1

CrossNum

CrossStop

CrossGnt

CrossAck

C
op

yA
ck

C
op

yG
nt

C
op

yS
to

p

C
op

yC
hi

ld
0

C
op

yC
hi

ld
1

F
it

G
N

T

Fitness
Memory Access

Copy Parent Channel

C
op

yN
um

Sy
st

em
 S

ig
na

ls

SelectionDone

PopRepEnb

GlobalRst

Clk

Figure 3.21: Select-Parent-Submodule Signal Diagram

are selected when the PopSize is 32 (26).

A second unique individual is selected from the population1. Figure 3.24 demon-

strates the process of selecting unique individuals from the population. A compe-

tition takes place between the two individuals to determine which one is better fit

to reproduce. The chromosome with the highest fitness value becomes the mating

parent.

1Unfortunately these two selection processes must occur in a sequential manner to maintain
the RNG Seed

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 72

Finish

Generate Bit Mask
to Mask the RNG

Send Parents to Cross
Parents Submodule
through channels

Send Parents to Copy
Parents Submodule
through channels

YesNo

Is
Second

Individual
the Same

Selected

Have
2 Parents

Been

Generate New Random

Number Less
Random

Is

Crossover
Rate

No YesNew
Population

Full

Is

Start

and Apply Bit Mask to
Select First Individual

Yes

and Apply Bit Mask to
Select Second Individual

Generate Random Number

Generate Random Number

Send Best 2 Individuals
to Copy Parent Submodule

No

No

Yes

Individual with highest
Fitness value becomes

 a Parent

Figure 3.22: Select Parents Submodule Block Diagram

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 73

Random
Number

Mask 11111

1 1Solution

1 1 1 1 1 1 1 1 1

Figure 3.23: Masking Random Number

This process is again performed to select the second parent. The two parents

selected will eventually generate new offspring if a random number generated is less

than the crossover rate determined by the user. Otherwise an unmodified copy of

the parents is passed to the next generation.

This process is repeated until enough offspring have been generated to fill the

new population, PopSize

2
times. Following the generation of the new population, stop

signals are sent on the two communication channels. A high signal is placed on the

SelectionDone to inform the system that the Select Parent Submodule completed

its task.

3.3.2 Cross-Parent-Submodule (CP-SM)

The “Cross-Parent-Submodule” performs the mating task of the two parents to

create the initial gene sequence for the offsprings. This is done by selecting random

genes from each parent to form a new gene sequence for each offspring. In determin-

ing which genes are selected the submodule uses the Uniform Crossover technique,

described in section 2.4.3. Once the gene sequences for new offspring have been

generated they are passed to the Mutate-Chromosome-Submodule (MC-SM) for

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 74

Ind1
Read

Random Number
Generator &

Mask

Register Register
Individual 1 Individual 2

0 1
Mux

Control

Read
Ind2

Equal
Comparator

DataSize DataSize

DataSize

1−Bit
Comparison

Signal

Figure 3.24: Selection of Unique Individuals

mutation.

Signal Organization

Figure 3.25 describes the signal interface between the CP-SM with other submod-

ules within the system. A description of the signals can be found in Appendix A.6.

The Crossover Channel receives information from the Select Parent Submodule as

to who the parents are and where in the new population memory the offspring are

to be stored. When the crossover process is complete the memory locations of the

offspring are individually sent to the MC-SM for mutation. If the system receives a

high from the CrossStop then all chromosomes for the given generation have been

created. A high is then placed on the MutationStop and the crossover process halts.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 75

MutationAck

MutationGnt

MutationStop

MutationNum

In
fo

rm
at

io
n

M
ut

at
io

n
C

ha
nn

el

CrossNum

CrossChild0

CrossChild1

CrossStop

CrossGnt

CrossAck

C
ro

ss
ov

er
 C

ha
nn

el
In

fo
rm

at
io

n

Submodule
Parent
Cross

(CP−SM)

P
op

Si
ze

M
od

ul
es

Register Data

N
ew

F
it

D
A

T
A

N
ew

F
it

A
D

D
R

N
ew

F
it

W
E

N
ew

F
it

E
N

N
ew

F
it

G
N

T

NewFitness
Memory Access

P
op

D
A

T
A

P
op

A
D

D
R

N
ew

P
op

D
A

T
A

N
ew

P
op

A
D

D
R

N
ew

P
op

W
E

N
ew

P
op

E
N

P
op

G
N

T

P
op

E
N

P
op

W
E

N
ew

P
op

G
N

T

Population
Memory Access

NewPopulation
Memory Access

GlobalRst

Clk

CrossDone

PopRepoEnb

Sy
st

em
 S

ig
na

ls

Figure 3.25: Crossover-Process-Submodule Signal Diagram

Functionality of CP-SM

The task of the CP-SM is to mate the two parents to generate two new offspring.

Once the system initiates the crossover procedure, by driving the PopRepoEnb high,

the process shown in Figure 3.26 is initiated.

The process begins by remaining in an idle state until information is received

from the Select-Parent-Submodule. After it is determined which parents are to

mate, a random combination of gene sequences from each of the parents is stored

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 76

Finish

Start

Has
a Stop

Signal been
Sent

Chromosome data from
Retreive a byte of

each Parent

No Yes

No

Yes

Is

Crossover

Complete?

Generate Random Number
as Crossover Mask

Apply Crossover and save
Offspring data to memory

Information from
Channel

Retreive Parent

Store Parent information

the Mutate Chromosome
Submodule through Channel

the Mutate Chromosome
Submodule through Channel

Send First Offspring Location

Send Second Offspring Location

into Internal Data Use Memory

Figure 3.26: Cross-Parent-Submodule Signal Diagram

in the offspring memory location, following the uniform crossover technique. This

process is done by obtaining a random number to mask which genes come from

each of the parents. Figure 3.27 shows the logical design of the Uniform crossover

function. This process is repeated until new offspring have been created and stored

in the new population. The location of the offspring in the new population memory

is passed to the MC-SM one at a time and the location of the parents in the current

population is then stored in Internal Data Use memory. This is so that it is possible

to determine who the offspring’s parents are at a later date.

Once the information has been passed on the channels, the system returns to an

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 77

Parent 1
Data

Parent 2
Data

Random Number
Generator

Data
Child 1

Data
Child 2

DataWidth DataWidth

DataWidth DataWidth

Figure 3.27: Crossover Combinational Logic

idle state waiting for the next parents to process. If a high signal is passed on the

CrossStop then the submodule ends its processing and places a high signal on the

MutationStop to inform the MC-SM that the new population has been created. A

high is then placed on the CrossDone to inform the system that it has completed

its task.

3.3.3 Mutate-Chromosome-Submodule (MC-SM)

The “Mutate-Chromosome-Submodule” performs an evolutionary mutation on the

offspring and causes slight changes to the genes within the chromosomes. In the mu-

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 78

tation process, each gene of the chromosome has a given probability, Mutation Rate
65535

,

of mutating. If a cell within the chromosome is to be mutated its value is inverted

causing the given cell to be moved into the opposite partition. Upon completing

the mutation process, the location of the current chromosome in memory is passed

to the RC-SM.

Signal Organization

Figure 3.28 describes the signal interface between the MC-SM with other submod-

ules within the system. A description of the signals can be found in Appendix

A.8.

MutationAck

MutationGnt

MutationStop

MutationNum

M
ut

at
io

n
C

ha
nn

el
In

fo
rm

at
io

n

Chromosome
Submodule
(MC−SM)

Mutate

Register Data

M
od

ul
es

M
U

T
E

R
at

e
RepairNum

RepairStop

RepairGnt

RepairAck

R
ep

ai
r

C
ha

nn
el

In
fo

rm
at

io
n

N
ew

P
op

D
A

T
A

N
ew

P
op

A
D

D
R

N
ew

P
op

W
E

N
ew

P
op

E
N

N
ew

P
op

G
N

T

NewPopulation
Memory Access

GlobalRst

Clk

PopRepEnb

MutationDone

Sy
st

em
 S

ig
na

ls

Figure 3.28: Mutation-Chromosome-Submodule Signal Diagram

The submodule has one incoming and one outgoing channel communication.

The Mutation Channel is used to receive information about which of the chromo-

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 79

somes within the new population needs to be mutated. This channel will also inform

the system as to when the new population is finished by sending a high signal on

the MutationStop. The Repair Channel is used to send the same information to the

RCS once the mutation process is finished.

Functionality of MC-SM

The task of the MC-SM is to perform a mutation on newly generated offsprings.

Once the system initiates the mutation procedure, by driving the PopRepoEnb

signal high, the process shown in Figure 3.29 is initiated.

Finish

Start

Has
a Stop

Signal been
Sent

Generate Random Number

each Cell
Has

been Tested

Is
Number

Mutation
Rate

less than

Apply XOR Mask to Cell

Submodule through Channel

Send Chromosome Location
to Fitness Calculation

No Yes

No

Yes

Information from
Channel

Retreive Parent

Figure 3.29: Mutate-Chromosome-Submodule Block Diagram

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 80

The process begins by remaining in an idle state until information is received on

which chromosome in the new population is to be mutated. Once this information

is received, the mutation process can begin. The mutation process generates a

random number for each cell in the chromosome. If the number is smaller than the

value in the MUTERate register, defined by the user, then mutation of this cell will

occur.

The gene or cell is mutated by inverting the current value of the bit and storing

it back into memory. The mutation is accomplished by applying a XOR with a

mask, as shown in Figure 3.30.

1 1 1 1 1 1 1 1 10 0 0 0 0 0 0

Mask 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

Solution 1 1 1 1 1 1 1 1 10 0 0 0 0 01

Word
Chromosome

Figure 3.30: Bit Mutation

When the mutation process is complete and each cell has been checked, the

number of the chromosome in the new population is passed to the repair function

through the Repair Channel.

Once the information has been passed on the channels, the system returns to an

idle state waiting for the next chromosome to process. If a high signal is passed on

the MutationStop then the submodule ends its processing and places a high signal

on the RepairStop to inform the RCS that the new population has been created. A

high is then placed on the MutationDone to inform the system that the submodule

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 81

has completed its task.

3.3.4 Replace-Population-Submodule (RP-SM)

The “Replace-Population-Submodule” performs the task of selecting which of the

parents and children should be placed into the new population. There are many

different techniques used to generate a new population, as described in section 2.4.3.

In selecting a replacement technique the limitations placed on the system must be

considered. In generating the new population, the old population cannot be mod-

ified until the entire new population is generated, so that the original information

is not modified while the pipeline is in use. Due to this limitation, the replacement

routine selected is the ‘Best Child and Parent’ technique, replacing the memory of

the least fit child chromosome with the chromosome data of the best fit parent.

Signal Organization

Figure 3.31 describes the signal interface between the RP-SM with other submod-

ules within the system. A description of the signals can be found in appendix A.9.

The submodule has one incoming channel communication, Replace Channel, to re-

ceive information about which of the chromosomes within the new population have

just been generated. This channel will also inform the system as to when the new

population is finished by sending a high signal on the ReplaceStop.

Functionality of RP-SM

The task of the RP-SM is to select which of the parents and children should be

placed into the new population. Once the system initiates the replacement proce-

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 82

P
op

Si
ze

M
od

ul
es

Register Data

ReplaceAck

ReplaceGnt

ReplaceStop

ReplaceNum

In
fo

rm
at

io
n

R
ep

la
ce

 C
ha

nn
el

P
op

D
A

T
A

P
op

A
D

D
R

P
op

W
E

P
op

E
N

P
op

G
N

T

Population
Memory Access

F
it

W
E

F
it

E
N

F
it

A
D

D
R

F
it

D
A

T
A

F
it

G
N

T

Fitness
Memory Access

N
ew

P
op

D
A

T
A

N
ew

P
op

A
D

D
R

N
ew

P
op

W
E

N
ew

P
op

E
N

N
ew

P
op

G
N

T

NewPopulation
Memory Access

Replace

Submodule
Population

(RP−SM)

N
ew

F
it

D
A

T
A

N
ew

F
it

A
D

D
R

N
ew

F
it

W
E

N
ew

F
it

E
N

N
ew

F
it

G
N

T

Memory Access
NewFitness

ReplaceDone

GlobalRst

Clk

PopRepoEnb

Sy
st

em
 S

ig
na

ls

Figure 3.31: Replace-Population-Submodule Signal Diagram

dure, by driving the PopRepoEnb signal high, the process shown in Figure 3.32 is

initiated.

The process begins by remaining in an idle state until information is received

on the location of the new chromosome by the RP-SM. When this information is

received, the system retrieves the identity of the parents of the children. This is so

that the parents can compete with the children to determine who should survive in

the new population. This is done by comparing the fitness values of the parents and

the offspring to determine which is the fittest parent and which is the weakest child.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 83

Finish

Start

Has
a Stop

Signal been
Sent

Retreive Parent information
from Internal Data Use

Memory

Fitness Values
Retreive OffsprintRetreive Parent

Fitness Values

Replace Least fit Offspring
Chromosome Data with

Most Fit Parent

No Yes

Retreive Information
on Both Offspring from

Channel

Determine Most
Fit Parent

Determine Least
Fit Offspring

Replace Least fit Offspring
Fitness Value with Most
Fit Parent Fitness Value

Figure 3.32: Replace Population Submodule Block Diagram

The weakest offspring chromosome is replaced with strongest parent’s information,

leaving the strongest of the parent and of the offspring to survive as part of the

new population.

Once the parent has been stored into memory, the system returns to an idle

state waiting for the next chromosome data to be passed through the channels. If a

high signal is passed on the ReplaceStop then the submodule ends its processing and

places a high signal on the ReplaceDone to inform the system that it has completed

its task.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 84

3.3.5 Copy-Parents-Submodule (CoP-SM)

The “Copy-Parents-Submodule” allows selected individuals from the old population

to survive into the new population. This procedure is called by the Select Parent

Submodule for two instances:

1. To copy the two fittest chromosome from the original population into the new

population. This follows the concept of élitism which ensures the survival of

the best chromosome into the new population[Reev02].

2. If no mating process is to take place. This occurs when the Select Parents

Submodule determines, with a given probability, that the two selected parents

should survive unchanged into the new population.

In these two cases, the CoP-SM will copy the chromosome and fitness data of

the selected individuals from the current population into the new population.

Signal Organization

Figure 3.33 describes the signal interface between the CoP-SM with other submod-

ules within the system. A description of the signals can be found in Appendix A.10.

The submodule has one incoming channel communication, Copy Parent Channel,

to receive information about which of the chromosomes within the old population

are to be moved into the new population. This channel will also inform the system

to when the new population is finished by sending a high signal on the CopyStop.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 85

Memory Access
Fitness

Memory Access
Population

Memory Access
NewPopulation

Memory Access
NewFitness

N
ew

F
it

A
D

D
R

N
ew

F
it

D
A

T
A

N
ew

F
it

W
E

N
ew

F
it

E
N

N
ew

F
it

E
N

M
od

ul
es

Register Data

Copy
Parent

Submodule
(CoP−SM)

CopyChild1

CopyChild0

CopyGnt

CopyAck

P
op

D
A

T
A

P
op

A
D

D
R

P
op

W
E

P
op

E
N

P
op

G
N

T

F
it

W
E

F
it

E
N

F
it

A
D

D
R

F
it

D
A

T
A

F
it

G
N

T

N
ew

P
op

D
A

T
A

N
ew

P
op

A
D

D
R

N
ew

P
op

W
E

N
ew

P
op

E
N

N
ew

P
op

G
N

T

GlobalRst

Clk

CopyDone

PopRepoEnb

In
fo

rm
at

io
n

C
op

y
P

ar
en

t
C

ha
nn

el

CopyNum

Sy
st

em
 S

ig
na

ls

CopyStop

Figure 3.33: Copy-Parents-Submodule Signal Diagram

Functionality of CoP-SM

The task of the CoP-SM is to generate a copy of the chromosome and fitness data

from the parents and store them into the new population. Once the system initiates

the copying procedure, by driving the PopRepoEnb signal high, the process shown

in Figure 3.34 is initiated.

The process begins by remaining in an idle state until information on the lo-

cation of the two chromosomes is received. As information arrives, the process

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 86

Finish

Start

Has
a Stop

Signal been
Sent

new Population Memory
Chromosome data into

Copy First Parents

Value to New Population’s
Fitness Value

Copy First Parents Fitness

No Yes

Information from
Channel

Retreive Parent

new Population Memory
Chromosome data into

Copy Second Parents

Value to New Population’s
Fitness Value

Copy Second Parents Fitness

Figure 3.34: CoP-SM Block Diagram

retrieves the chromosome data and fitness values from the current population and

stores them in the new population. When the data is copied the system returns

to an idle state waiting for the next channel information to be passed. If a high

signal is placed on the CopyStop then the submodule ends its processing and places

a high signal on CopyDone to inform the system that it has completed task.

3.4 Simulation and Verification

The initial goal of the Genetic Algorithm design was to implement a complex

pipelined architecture into a FPGA to achieve better performance than software

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 87

implementations. Simulation and verification of functionality was achieved through

the internal Handel-C simulator. In order to compare the solution and performance

of the design, two different software implementations were used. The first imple-

mentation was designed to use the same methodology as the Handel-C design, with

each bit within the unsigned integer representing a cell attached to a net. The

second implementation was developed by [Arei01]. This algorithm is used for com-

paring solution qualities and performance issues of the design. In examining the

execution time of the hardware implementation vs the software implementations,

it was found that both software algorithms produced much faster results than the

hardware design, as shown in Table 3.4 and Figure 3.35 respectively. The following

BitWise (Sun)

BitWise (HP) Handel−C

Areibi (Sun)

struct prim1 prim2 ind1 pcb1 chip1 chip2 frac

Benchmark

T
im

e
(S

ec
)

0.01

0.1

1

10

100

1000

10000

Figure 3.35: Software vs Hardware comparison graph

sections will discuss some of the potential problems found with the initial architec-

ture resulting in lack of performance and modifications attempted to rectify these

issues.

C
H

A
P

T
E

R
3.

A
G

E
N

E
T

IC
A

L
G

O
R

IT
H

M
P

R
O

C
E

S
S
E

R
88

Benchmark Bitwise Software Areibi[Arei01] Software Handel-C Hardware
Genetic Algorithm Genetic Algorithm Genetic Algorithm

Sun Workstation HP Workstation Sun Workstation 63 MHz

struct.dat 52.563 s 60.713 s 75.570 s 454.487 s
prim1.dat 12.903 s 10.367 s 31.670 s 94.791 s
prim2.dat 117.287 s 112.880 s 123.043 s 1048.710 s
ind1.dat 60.063 s 72.470 s 94.326 s 591.587 s
pcb1.dat 0.22 s 0.080 s 0.810 s 0.222 s
chip1.dat 2.43 s 1.733 s 9.420 s 12.553 s
chip4.dat 1.773 s 1.223 s 6.573 s 8.206 s
frac.dat 1.017 s 0.587 s 4.270 s 3.322 s

Crossover=99%, Mutation=0.35%, Population Size=128, Generations=200

Sun Blade 2000 : 900 MHz UltraSparc III Cu, 1024 MB Ram, Solaris 9

HP Workstation 2100: Intel P4 2.4 GHz, 1 GB Ram, Redhat Linux 9

Table 3.4: Software/Hardware timing

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 89

3.4.1 Performance Analysis and Tuning

As previously discussed, the main problem with the initial Genetic Algorithm imple-

mentation was a lack of execution speed. In analyzing the architecture, numerous

bottlenecks were identified.

1. In profiling the software algorithm (see Table 3.5) the CalculateFitness func-

tion required the majority of the execution time. Although these results were

based on a software implementation, it is expected that the Fitness Calcula-

tion submodule in hardware will also produce the greatest bottleneck of the

system.

Name Hardware Equivalent in % Execution Time
Handel-C struct prim2 prim1 chip1

CalculateFitness Perform Fitness task 93.29 94.08 86.43 76.85
Random Random Number Generator 3.96 3.73 7.72 14.81
Count Count modules in Blk1 1.55 1.19 3.13 3.70

Mutation Perform Mutation task 0.93 0.78 1.88 3.70
Replacement Perform Replace task 0.06 0.00 0.00 0.00

Repair Perform Repair task 0.03 0.00 0.21 0.93
Crossover Perform Crossover task 0.03 0.00 0.42 0.00
Selection Perform Selection task 0.00 0.00 0.00 0.00

Overhead 0.15 0.22 0.21 0.01

Table 3.5: Genetic Algorithm Software Profile

2. In simulating the system, it was found that memory access also contributed

to the timing problem. One of the main objectives in developing the cur-

rent Genetic Algorithm implementation was not to constrain the system to

internal Block Rams. Consequently, all memory storage was implemented

externally allowing for larger benchmarks to be solved. However, in using

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 90

external memory, only one submodule of the design may access each mem-

ory bank during a clock cycle. This causes the majority of submodules to

become idle, waiting to gain memory access and resulting in less throughput.

One possible solution to this problem is to use dual-port memory allowing

two pieces of memory to be accessed at a single time. The memory accessing

will still cause a bottleneck but will allow the FC-SM to be split into two

pipeline stages causing the processing speed to double. However, the RC1000

development board does not support off-chip dual port Ram.

3. When comparing the timing of simulation and the actual results, we dis-

covered that memory accessed by Handel-C plays a role in the timing of the

design. In order to protect access to external memory, semaphores are used to

protect each memory read and write cycle. Using semaphores has the conse-

quence of increasing memory access time by one extra clock cycle. Therefore,

two clock cycles are required to perform each operation on memory. Since

Genetic Algorithms are extremely memory intensive and all current memory

is stored off-chip, This contributes to further delay in the system.

4. A lack of parallelism is also found in the pipeline stage of the architecture.

Within the Crossover Submodule two offspring are generated while only one

can be passed on through the pipeline. This causes the crossover and replace-

ment to suspend waiting to pass the second offspring through the pipeline.

Consequently the throughput of the pipeline is limited which slows down the

operation of the algorithm.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 91

3.4.2 Design Enhancement

In an attempt to resolve the issues encountered with the original design and further

enhance performance, the following improvements were implemented:

1. The Fitness Calculation submodule (as stated earlier) places the largest bur-

den on the system. In analyzing this submodule, it was found that the ma-

jority of the execution occurred searching empty words of data within the

Netlist. The current method of fitness calculation (developed by Stikoff et

al.[Sitk95]) produces quick results for small benchmarks which have at least

one cell for each word of data but is impractical as benchmarks increase in

size. In Table 2.4 it is found that the majority of the nets are connected

to fewer than 5 cells resulting in many data words of large benchmarks (ie.

prim2) containing no useable data. To resolve this problem, a new method

of storing the Netlist data was implemented. Unlike the previous method

which uses a bit to represent each net, the new method stores the Netlist

as integers representing each cell connected to a given net. An example of a

sample Netlist can be found in Figure 3.36, where elements of data containing

a ‘-1’ value signals the end of the net entry. This form of storage allows the

system to read only useful information about each net and no further time is

spent searching empty data. For small benchmarks the new fitness method

will most likely increase execution speed since more bytes of data are required

to represent a single net. In examining the connectivity of the nets within

the Netlist, see section 2.4.2, the majority of the nets are attached to five

or fewer cells, meaning that as benchmarks become larger this new method

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 92

07 Memory

$0000

$0008

$0010

$0018

$00205

4

3

2

1

0

45

02

−1 3 2

2

4

−1

−1

−1

−1

N
et

s

NET 5
NET 4NET 1

NET 3 NET 2

Cell 4 Cell 3Cell 2Cell 0Cell 5Cell 1

1

5

Figure 3.36: New Netlist Storage using Integer Values

should dramatically increase the execution speed compared to the original

design.

In indexing an element in the solution data, the upper bits of the Netlist entry

represent the byte containing the desired data and the lower bits represent

the index of the bit within that byte. Figure 3.37 illustrates a simple Netlist

entry using 8-bit byte of data. The lower 3 bits of the integer represent the

bit location within the byte and the remaining upper bits determine the byte

containing this cell.

0 0 010 1 10

Byte Location = 2 Bit Location = 6

000000000000000000000000 1 1 1 11 11

31 02324 1516 8 7

0

Module
Number

22 =

Figure 3.37: Bit Lookup using Integer Values

2. To resolve the issue of extensive memory accessing, the use of internal block

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 93

Rams were implemented into the design. These block Rams are used for

internal storage of the offspring, allowing each submodule to have dedicated

access. The block Rams are loaded with the initial offspring values created

by the Crossover Parent submodule. This memory is then passed through

the pipeline allowing each submodule to perform operations on the offspring.

The offspring chromosome is then stored into off-chip memory by the Replace

Routine submodule. The process is illustrated in Figure 3.38. Since the block

Rams are dedicated to each submodule within the pipeline, memory conflicts

are eliminated and the need of semaphores is reduced.

Block Ram Block Ram Block Ram Block Ram

EXTERNAL MEMORY

Block Ram

Crossover Mutation Repair ReplaceFitness

Figure 3.38: Population Reproduction with Block Rams

3. Examining the usage of semaphores within the system resulted in determin-

ing that reading from the Netlist memory is dedicated only to the Fitness

Calculation submodule and does not require memory protection. Eliminating

this semaphore from the algorithm tends to speedup the system, since the

majority of the processing lies within this submodule.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 94

4. In order to increase the throughput of the pipeline a second Mutation Process

Submodule, Repair Chromosome Submodule and Fitness Calculation Sub-

module may be introduced into the system in parallel, as illustrated in Figure

3.39. This allows both offspring of the system to be processed simultaneously

stalling the system.

Replace

Mutation Fitness

Mutation FitnessRepair

Crossover

Repair
Offspring 2

Offsp
ring 1

Figure 3.39: Parallel Pipeline Architecture

3.5 Computational Results

In designing the Genetic Algorithm, the aim was to optimize speed of the algorithm

while producing good solution quality. As discussed in section 3.4.2 numerous de-

signs were implemented to improve the execution speed of the algorithm. All these

proposed designs were created using Celoxica DK Suite 2.0 and compiled using

Xilinx ISE 6.1.03i. They were implemented on the Celoxica RC1000 development

board using a Virtex E FPGA with 2 million gates. Results of these design perfor-

mances can be found in Table 3.6.

In examining the data from different implementations it should be noted that

C
H

A
P

T
E

R
3.

A
G

E
N

E
T

IC
A

L
G

O
R

IT
H

M
P

R
O

C
E

S
S
E

R
95

Benchmark Original New Fitness Block Ram Pipeline (No Parallel
Design Function Memory Semaphores) Pipeline

Maximum Clock 63 MHz 64 MHz 63 MHz 65 MHz 63 MHz
Equivalent 61,731 61,731 363,915 363,725 510,954

Gates (18 BlkRam) (18 BlkRam) (26 BlkRam)

struct.dat 454.487 38.616 24.006 13.156 22.059
prim1.dat 94.791 18.344 11.381 6.231 10.419
prim2.dat 1048.710 60.144 37.478 20.559 34.325
ind1.dat 591.587 42.756 26.731 14.687 24.466
pcb1.dat 0.222 0.631 0.397 0.218 0.359
chip1.dat 12.553 6.197 3.825 2.087 3.488
chip4.dat 8.206 4.384 2.734 1.506 2.519
frac.dat 3.322 3.141 1.938 1.059 1.797

Average time over 5 trials using base case parameters

Table 3.6: Genetic Algorithm Design Comparison

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 96

the single pipeline with no semaphores in the fitness calculation executed in nearly

half the time needed by the parallel pipeline implementation. This is due to the fact

that executing two Fitness Calculation submodules in parallel requires semaphores

to protect the Netlist memory reads. As discussed earlier, semaphores add an

extra clock cycle to the read process resulting in two clock cycles for a single read.

Therefore, the remaining results of the thesis will be generated by a single pipeline

method with no semaphores.

In order to analyze the solution qualities of the design properly it is necessary

to examine the effect of various parameters. In testing these effects a base case of

these parameters was used, shown in Figure 3.7.

Parameter Default Values

Population Size 128
Number of Generations 200

Crossover Rate 99%
Mutation Rate 0.36%

Balancing Difference 2

Table 3.7: Base Case parameters for Handel-C Genetic Algorithm

Results of the hardware and the software using the base case parameters can

be found in Appendix C.1 and illustrated in Figure 3.40. From Figure 3.40(a) it

can be noticed that the hardware architecture produces significant speedups over

the software version developed by [Arei01] while still executing more slowly than

the software which used the same bitwise representation. The lack of performance

can be attributed to the fitness calculation function. The issue with the fitness

function is that it operates in a sequential manner (ie. processing time increased

as benchmark sizes increases). Therefore in order to achieve enough speedup to

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 97

Areibi (Sun) Improved Handel−C Bitwise Software

Benchmark
ind1

T
im

e
(s

ec
)

struct prim1 prim2 pcb1 chip1 chip2 frac
 0

 20

 40

 60

 80

 100

 120

 140

(a) Software vs Hardware Time Com-
parison

Areibi (Sun)

F
it

ne
ss

 V
al

ue
 (

U
nc

ut
 N

et
s)

struct prim1 prim2 pcb1 chip1 chip2 frac

Improved Handel−C

Benchmark
ind1

0

500

1000

1500

2000

2500

3000

(b) Software vs Hardware Fitness Com-
parison

Figure 3.40: Hardware vs Software Results

outperform the bitwise software more pipelining and parallelism within this function

are required.

An improvement comparison of the hardware over Areibi’s software can be found

in Table 3.8. The bitwise software implementation has been excluded from this

comparison since it generates the same fitness results as the hardware. From these

results, it can be seen that the Areibi software produced significantly better fitness

values (on average 13% better) than the hardware solutions. This improvement can

be attributed to three factors:

1. The random number generator[Pres92] may have a different effect on the

hardware architecture than the random number generator used within the

software implementation.

2. The difference in the two algorithms’ crossover technique may play a crucial

role in the results. The software algorithm utilizes a 2-point crossover in-

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 98

Benchmark Hardware performance Hardware solution quality
improvement over improvement over

Software implementation Software implementation

struct.dat 574.4% 76.4%
prim1.dat 508.3% 82.7%
prim2.dat 598.5% 68.7%
ind1.dat 642.2% 73.6%
pcb1.dat 371.6% 106.4%
chip1.dat 451.4% 94.3%
chip4.dat 436.5% 99.6%
frac.dat 403.2% 107.0%
Average 498.3% 88.6%

Table 3.8: Hardware improvement over Software

stead of a uniform crossover implemented in hardware. The 2-point crossover

method would better satisfy the schema theory[Reev02] attempting to main-

tain gene sequences within the chromosome. This may be the reason why the

Standard Deviation is larger for the software implementation, keeping the

population more diverse and better searching the solution space.

3. The software algorithm utilizes a more advanced method for repairing the

chromosomes.

In tuning the design the base case was used while altering only one parameter

to view its effect on the system. Sections 3.5.1 to 3.5.5 discuss the results of the

tuning process. All numerical results can be found in Appendix C.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 99

3.5.1 Effect of Generation Size on Solution Quality

In order to determine the role that the generation size plays on the solution qual-

ity, the base case parameters were used while modifying the generation size. Figure

3.41 shows the mean objective value generated at different generation sizes and

demonstrates that the quality of the solution increases with larger generation size.

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350 400 450 500

M
ea

n
O

bj
ec

tiv
e

V
al

ue

Generation

struct prim1 prim2 ind1

Figure 3.41: Effect of Number of Generations on Mean Objective Value

The greatest change in the solution quality occurs with values below 200. As gen-

erations move above 200, it would be expected that the population is converging

onto a single solution. This is illustrated in Figure 3.42 which shows that 200 gen-

erations is the low point in the standard deviation curve meaning that the majority

of the solutions are converging towards a single fitness value. The improvement in

solution quality and the standard deviation as generations move above 200 are the

result of random walking within the system caused by mutation.

In determining the effect that the generation size has on the execution time, it

was found that increasing the value results in a linear increase in processing time,

as shown in Figure 3.43. This linear increase is a result of the FCS which was

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 100

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350 400 450 500

St
an

da
rd

 D
ev

ia
tio

n

Generation

struct prim1 prim2 ind1

Figure 3.42: Effect of Number of Generations on Standard Deviation

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

T
im

e

Generation

struct prim1 prim2 ind1

Figure 3.43: Effect of Number of Generations on Execution time

previously found to be the bottleneck of the pipeline and determined the execution

time of the pipeline. Since the fitness calculation executes at a near constant rate

for each fitness value produces a linear time increase would be expected.

3.5.2 Effect of Crossover Rate on Solution Quality

In examining the effects of the Crossover Rate on the solution quality, the base case

parameters were used while modifying the crossover rate. Through Figure 3.44, it

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 101

was found that increasing the crossover rate has a small effect on the solution

quality. The cause of this small increase in solution quality is a result of more

600

800

1000

1200

1400

1600

1800

50 55 60 65 70 75 80 85 90 95 100

M
ea

n
O

bj
ec

tiv
e

V
al

ue

Crossover Rate (%)

struct prim1 prim2 ind1

Figure 3.44: Effect of Crossover Rate on Mean Objective Value

newly generated chromosomes in the population which leads to a higher probability

of producing fit individuals. A low crossover rate results in more chromosomes

being copied from the current population into the new population resulting in fewer

offspring generated.

In examining Figure 3.45 it is found that the crossover rate has a linear effect on

the execution time of the system. As the crossover rate decreases, fewer offspring

cause the system to spend less time executing the reproduction pipeline.

3.5.3 Effect of Mutation Rate on Solution Quality

In examining the effects of the mutation rate on the solution quality, the base case

parameters were used while modifying the mutation rate. Through Figure 3.46 it

is found that increasing the mutation rate has a negative effect on the solution

quality. As the mutation rate increases each offspring undergoes more mutation

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 102

2

4

6

8

10

12

14

16

18

20

22

50 55 60 65 70 75 80 85 90 95 100

T
im

e

Crossover Rate (%)

struct prim1 prim2 ind1

Figure 3.45: Effect of Crossover Rate on Execution time

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20

M
ea

n
O

bj
ec

tiv
e

V
al

ue

Mutation Rate (%)

struct prim1 prim2 ind1

Figure 3.46: Effect of Mutation Rate on Mean Objective Value

causing them to become genetically less like the parent. This causes the system to

randomly search the solution space and limits the convergence of the population

resulting in lower fitness values.

From Figure 3.47 it is noticed that there is a slight decrease in execution time

as the mutation rate increases. This is an indirect effect of the mutation rate and is

a result of the decrease in mean fitness value. As the fitness value is decreased the

number of cut nets increases resulting in lower processing time spent in calculating

the fitness value.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 103

6

8

10

12

14

16

18

20

22

0 5 10 15 20

T
im

e

Mutation Rate (%)

struct prim1 prim2 ind1

Figure 3.47: Effect of Mutation Rate on Execution Time

3.5.4 Effect of Population Size on Solution Quality

In examining the effects of the population size on the solution quality, the base case

parameters were used while modifying the size of the population. The results are

illustrated in Figure 3.48. It was found that increasing the population size caused

an increase in mean objective value. The reason for this is that increasing the size of

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250 300 350 400 450 500 550

M
ea

n
O

bj
ec

tiv
e

V
al

ue

Population Size

struct prim1 prim2 ind1

Figure 3.48: Effect of Population Size on Mean Objective Value

the population allows for a larger number of random initial chromosomes resulting

in a higher probability of having good starting positions. A larger population

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 104

size also allows for higher diversity within the population, shown by the standard

deviation curve in Figure 3.49. Having a high diversity within the population allows

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350 400 450 500 550

St
an

da
rd

 D
ev

ia
tio

n

Population Size

struct prim1 prim2 ind1

Figure 3.49: Effect of Population Size on Standard Deviation

the population to search a larger area of the solution space for good solutions.

From Figure 3.50 it can be seen that in increasing the population size results

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300 350 400 450 500 550

T
im

e

Population Size

struct prim1 prim2 ind1

Figure 3.50: Effect of Population Size on Execution Time

in a linear increase in execution time. This can be expected since increasing the

population size causes a increase in the number of offspring generated.

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 105

3.5.5 Effect of Balancing criteria on Solution Quality

In examining the effect of the balancing criteria of the system, the base case param-

eters were used while modifying the size of the balancing criteria. Figures 3.51 and

3.52 show that changing the size of the balancing criteria has little effect on both

the mean objective value and the execution time of the system. The reason for the

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35

M
ea

n
O

bj
ec

tiv
e

V
al

ue

Balancing Restriction

struct prim1 prim2 ind1

Figure 3.51: Parallel Pipeline Architecture

minimal effect is that the balancing criteria is a restriction on the system and not

a tuning parameter. This means the balancing criteria will only cause an effect on

the system if the criteria is broken and is not designed to assist in improving the

solution quality.

3.6 Summary

In this chapter, an initial design of a pipelined Genetic Algorithm system was pre-

sented. This design was analyzed to determine bottlenecks and was then modified to

improve performance. The proposed architectures were compiled and implemented

CHAPTER 3. A GENETIC ALGORITHM PROCESSER 106

6

8

10

12

14

16

18

20

22

0 5 10 15 20 25 30 35

T
im

e

Balancing Restriction

struct prim1 prim2 ind1

Figure 3.52: Parallel Pipeline Architecture

on the Celoxica RC1000 development platform and further analyzed to determine

execution time and final solution quality obtained.

From the experimental data shown in Figure 3.40(a) it was clear that the im-

proved hardware design had a significant performance increase over the software

program developed by [Arei01] but did not perform as well as the software imple-

mentation using the same bit-wise representation. Figure 3.40(b) shows that the

[Arei01] software produced better results than the hardware by roughly 13%. This

difference in solution quality is attributed to the random number generator used

in the hardware implementation, repair algorithm and the difference in crossover

techniques.

In examining the results generated by the hardware implementation, the overall

average mean solutions generated only 73.3% of the nets in the benchmark uncut.

This low quality of solutions is a result of Genetic Algorithm’s failure to exploit the

solution space. In order for the Genetic Algorithm to become an effective search

technique it must improve its capability to fine-tune the search.

Chapter 4

Local Search and Memetic

Architecture

In general, most real world problems are too complex for any single processing

technique to solve in isolation. The modern trend and philosophy for constructing

fast, globally convergent algorithms is to combine a simple globally convergent

algorithm with a fast locally convergent heuristic to form a more suitable and

faster hybrid. Genetic Algorithms are well known for exploring the solution space

effectively but are unable to fine tune the search. In order to improve Genetic

Algorithms’ search capabilities, a Local Search technique is often integrated with

a Genetic Algorithm to form a hybrid called Memetic Algorithms. Accordingly,

the hybrid Memetic Algorithm tends to incorporate the exploration capability of

Genetic Algorithms with the exploitation features of Local Search.

Local Search heuristics are iterative techniques that improve a solution towards

a local minima. This approach often uses neighbourhood search to find a better

107

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 108

solution than the current solution. The main disadvantage of Local Search is that

they get trapped in a local minimum/maximum, as shown in Figure 4.1.

Local
Minimum

Optimum
Solution

Starting
Point

Figure 4.1: Local vs Optimum Solution

4.1 Basic Local Search Procedure

In solving the circuit partitioning problem, the goal of the solver is to maximize the

number of uncut nets, as defined in section 2.4.1. Therefore, the initial design phase

of the Local Search involved developing a technique which forces nets exclusively

into one partition, while preserving the balance criteria. The general template for

this technique is illustrated in Figure 4.2 and can be described as following:

1. Generate Initial Solution - Produce an initial starting point either ran-

domly or through a constructive based technique.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 109

Initial Solution

Start

Generate

Does
Gain
Exist

Finished
All

Moves

Is
Move

Feasible

Update Partition
Data

(3 Loop Process)

Update Partition
Data

(3 Loop Process)

Loop 1

Finished
Loop

Is

Loop 2

Finished
Loop

Is

Loop 3

Data

Create Partition
Representation

Select Next
Negibourhood Move

Solution Data
Update Original

Finish

Yes

No

Yes

No

No

Yes

Make Working
Copies/Check

Feasibility

Yes

No

No

Yes

Update Partition Data

Figure 4.2: Local Search Block Diagram

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 110

2. Create Partition Representation Data - Determine which nets are cur-

rently uncut given an initial solution. This is established by checking all nets

within the Netlist and determining which nets are absorbed within one par-

tition. The resulting information is stored into memory allowing the system

to determine with ease the status of all nets. This process is similar to the

fitness calculation task within the Genetic Algorithm process described in

section 3.2.3, except that the status of each net is stored for future reference

instead of accumulating the number of uncut nets to obtain a fitness value.

To maintain the cut status for each net, two arrays called “Partition Data”

are used for each partition. When the system determines that a net is con-

tained within a partition the corresponding element within the Partition Data

array is set to ‘1’. This informs the system as to which nets are contained

within each partition and allows for easy calculation of the objective value by

summing ‘1’s in both arrays. The representation of the Local Search data is

illustrated in Figure 4.3. The “Solution Data” array as seen in Figure 4.3b

illustrates how the six cells within the Netlist are separated equally into two

partitions. The “Partition Data” (Figure 4.3c) indicates that Net3 is com-

pletely absorbed within Partition0 while Net2 is consumed within Partition1.

3. Select Next Neighbourhood Move - Determines the next possible neigh-

bourhood move for the Local Search procedure. In performing the neighbour-

hood searching process, all nets within “Partition Data” containing a ‘0’ value

are potential neighbourhood moves, even if the net is contained entirely within

the other partition. This can be attributed to the following: moving a net

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 111

Partition
1

0

NET 1 NET 2 NET 3 NET 4 NET 5

00

00

NET 1 NET 2 NET 3 NET 4 NET 5

01 0

1 0

Partition
0

Partition
1

Netlist Diagram(a)

M2 M3 M4 M5

01 100 1

M0 M1
Cells

(b) Solution Data

NET 1

NET 5
NET 4

NET 3 NET 2

M1 M5 M0 M2 M4 M3

Partition
0

Partition Data(c)

Figure 4.3: Local Search Data

that is currently absorbed within a partition may allow for achieving higher

gains if absorbed by a different partition. The drawback of this approach is

that the searching process becomes extremely computationally intensive.

An alternative approach that is less computationally intensive is to select nets

that have a value of ‘0’ in both arrays of the “Partition Data”, as illustrated

in Figure 4.4 and forcing the net to a value ‘1’.

4. Perform Working Copies/Check Feasibility - Generates a working copy

of the current solution and “Partition Data” such that reversing a move can

be easily achieved. Once a copy of the data is generated, the neighbourhood

move is applied to the new copy of the “Solution Data” and the feasibility

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 112

1 0 00 Partition0

1Partition0 00 1

moves
Possible

Partition Data

Partition Data

Figure 4.4: Determining Feasible Move as only cut nets

of the move is determined. In applying the neighbourhood move all modules

of the selected net are transferred to the desired partition. The feasibility of

a move is determined by the balancing criteria. The balancing constraint is

enforced by counting the number of ’1’s that lie within the “Solution Data”

and ensuring that equations 4.1 and 4.2 are satisfied.

BALANCE ≥ Modules − 2 × (Number of 1′s) (4.1)

and

BALANCE ≥ 2 × (Number of 1′s) − Modules (4.2)

5. Update Partition Data (3 Loop Process) - Determines which nets were

affected by the neighbourhood move. Updating the Partition Data informa-

tion is accomplished via a three loop process as shown in Figure 4.5. which

demonstrates the process of updating the Partition Data when the Local

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 113

1 2 3 4 5

0

1

2

3

4

5

Move
Neighbourhood

1

1

1

1

1

1

1

1

1

1

1

Loop 2

Loop 2

Nets

L
oop 3

L
oop 1

L
oop 3

C
el

ls

Figure 4.5: Update Partition Data process

Search forces Net4 (as previously demonstrated in Figure 4.3) into one of the

partitions.

(a) Loop1 : Identify cells connected to a net being moved. As seen in Figure

4.5 if Net4 were to be absorbed within a partition this step would identify

Cell4 and Cell5 as candidates.

(b) Loop2 : Identify all nets that are connected to the cells defined in the

previous step. In Figure 4.5 this process would identify Net2, Net4 as

being attached to Cell4, and Net3, Net4 as being attached to Cell5.

(c) Loop3 : Determine if the cut status of these nets has changed. This is

done by calculating the status of the net after the neighbourhood move

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 114

has been made and comparing it to the information stored in the working

copy of the Partition Data. If the neighbourhood move has caused the

status of this net to change, then the information within the working

copy of the Partition Data is updated to the new status and a relative

gain is calculated.

6. Update Original Cell Data - The move with the highest relative gain is

applied to the original “Solution Data”. The Local Search process terminates

when no positive gain can be achieved. This indicates that the heuristic is

stuck in some local maxima.

4.2 Hardware Design

In designing the Local Search algorithm in hardware, the goal was to implement

highly computationally intensive portions of the software algorithm in parallel to

improve execution time.

Profiling the software algorithm, as shown in Table 4.1, presents three main

routines that require the majority of processing. These routines consist of the

CopyData function, performing the task of “Make Working Copies” of the

Cell and Partition data; the three loop update process; and the Count process

used to determine the feasibility of the solution. In software, the Count function

is the most time consuming requiring around 80% of the overall execution time.

The purpose of this routine is to determine the number of cells of the solution that

exist in Partition1 by comparing each bit within the solution data individually.

Developing this operation in hardware allows for this counting process to occur in

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 115

Name of Software Equivalent Functionality % Execution Time
Function struct prim2 prim1 chip1

Count Count ’1’ for feasibility 81.31 84.79 88.71 70.00
Loop3 Update Partition Data (Loop 3) 8.64 7.13 2.69 20.00

CopyData Make Working Copies 6.03 5.12 5.91 10.00
Loop2 Update Partition Data (Loop 2) 3.15 2.25 1.61 0.00
Loop1 Update Partition Data (Loop 1) 0.54 0.59 1.08 0.00

LocalSearch Select Next Neighbourhood move 0.05 0.03 0.00 0.00
ApplyBestMove Update Original Cell Data 0.00 0.00 0.00 0.00
UpdateBlocks Create Partition Representation 0.00 0.01 0.00 0.00

Overhead 0.28 0.08 0.00 0.00

Table 4.1: Local Search Software Profile

parallel, therefore reducing the execution time.

The next computationally intensive portions of the software algorithm consist

of the “Make Working Copies” and the “Update Partition Data.” In optimizing

these sections of code, the original aim of the system was to implement a pipeline

architecture, similar to the Genetic Algorithm, to increase the system’s through-

put. However, several problems occur with data dependencies: the working copy

of the Partition Data stored in memory cannot be altered until the “Update Parti-

tion Data” process has completed, causing the function to stall. Therefore, a true

pipeline cannot be used. This results in implementing a small pipeline for the three

loop update process. Figure 4.6 is a simple illustration to help describe the layout

of the process. The pipeline design is expected to allow each SearchLoop to perform

its task in parallel with minimal communication hence increasing throughput.

4.2.1 Local Search Memory Management

The memory banks used for the Local Search algorithm are slightly different from

those used by the Genetic Algorithm. While the Local Search is searching for a

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 116

DataReplicator
Module

(Pipeline Execution)

SearchLoop1
Module

SearchLoop2
Module

DataUpdate
Module

Update Partition Data

Figure 4.6: Local Search implemented in Hardware

better solution, it is necessary to keep a copy of the original data in memory in

order for the best move to be applied. To accomplish this task, two memory banks

are split into an original (to hold the best solution found so far) and working copies

(to search for a better solution). The memory can be described as follows:

1. Solution Data : The Solution memory holds the current solution. It fol-

lows the same format as the Genetic Algorithm chromosomes representation,

described in section 3.1.2. This memory is located at the beginning of the

memory block and has an allowable size of 131072× 32-bits.

2. Partition1 Data : This memory holds information on status of nets that are

completely contained within Partition1. A ’1’ indicates that the correspond-

ing net is uncut and lies within Partition1. The memory starts at location

262144 and has an allowable size of 131072 × 32-bits.

3. Partition0 Data : This memory serves the same purpose of that of Partition1

Data for Partition0. A ’1’ indicates that the corresponding net is uncut and

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 117

lies within Partition0. The memory starts at location 262144 and has an

allowable size of 131072 × 32-bits.

4. Register Data : The register data hold the same register information as in

the Genetic Algorithm, section 3.1.2 and is located at location 523,264.

Figure 4.7 illustrates the memory map for the Local Search Algorithm.

Register Data

Solution
Data

Data

Data

$7FFFF

$7FC00

$7FFFF

$00000 Memory Bank 2 Memory Bank 1 Memory Bank 0Memory Bank 3

Data
Netlist

Data

Not Used
Not Used

$00000

$20000

$40000

$60000

Working Data Original Data

Data

Data

Data

WorkingCopy

WorkingCopy

Solution
WorkingCopy

Partition 0

Partition 1Partition 1

Partition 0

Cellist

Figure 4.7: Local Search Memory Map

4.3 Local Search Design and Architecture

In order to implement the given Local Search procedure, the design is broken down

into several components, as shown in Figure 4.8. Although all components are

necessary in operating the local search, the bulk of the processing time occurs in

copying data and modifying/updating the Partition Data once a net is absorbed

within one of the partitions (ie. Partition Information Update). For this reason,

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 118

pipelining and parallelism are used in an attempt to improve execution performance

of these modules.

Is

Gain
Relative

there Positive

Module

Neighbourhood
All

Moves Done

(Pipeline Execution)
Update Partition Data

Parallel Execution

ApplyBestMove
Module

SelectNextMove
Module

DataReplicater

DataUpdate
Module

SearchLoop2
Module

SearchLoop1
Module

BlockUpdate
Module

Yes

Yes No

NoFinish

Start

Figure 4.8: Local Search Pipeline

4.3.1 Partition-Update-Module (PU-M)

The “Partition-Update-Module” initializes the Local Search routine by generating

the Partition Data given that an initial solution is provided. The Partition Data

consists of two parts, Partition0 and Partition1, with each bit within the data

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 119

representing a net of the Netlist. A value ‘1’ value is assigned to a bit location

if the corresponding net is completely contained within the given partition. This

information informs the Local Search algorithm which nets are currently uncut in

order to determine possible neighbourhood moves. This information also allows the

system’s easy calculation of the objective function value.

Pin Description

Figure 4.9 describes the pin interface between the PU-M, memory and other mod-

ules. A more detailed description of the pins can be found in Appendix B.1.

Functionality of PU-M

The task of PU-M is to create the initial values for the Partition Data. Once the

system initiates the module, by driving pin UpdateEnb high, the process shown in

Figure 4.10 starts.

The process begins by reading a byte of data for the first net in the Netlist

and a byte of data from the initial solution, placing them both into registers (see

Figure 4.11). These registers are then compared to see if the net is cut or not. In

determining if the net is cut, at least one module in each partition is connected to

the net.

The process of reading and comparing the data is continued until the entire net

is compared with the initial solution and all cells lie within one partition or until it

is determined that a net is cut (no further processing is required). The technique

used to determine the status of the net is similar to the fitness calculation in the

Genetic Algorithm.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 120

P
ar

t0
D

A
T

A

P
ar

tA
D

D
R

P
ar

t0
W

E

P
ar

t0
E

N

P
ar

t0
G

N
T

Partition 0
Memory Access

M
od

ul
es

Register Data

N
et

s

N
et

D
A

T
A

N
et

A
D

D
R

N
et

W
E

N
et

E
N

N
et

G
N

T

Memory Access
Netlist

GlobalRst

Clk

UpdateDone

UpdateEnb

B
lk

1D
A

T
A

B
lk

1A
D

D
R

B
lk

1E
N

B
lk

1W
E

B
lk

1G
N

T

Partition 1
Memory Access

So
lD

A
T

A

So
lA

D
D

R

So
lW

E

So
lG

N
T

So
lE

N

Memory Access
Solution

Partition Update
Module

Sy
st

em
 S

ig
na

ls

(PU−M)

Figure 4.9: Partition-Update-Module Signal Diagram

If a net lies entirely in one of the two partitions, the corresponding bit in the

Partition Data is updated with a ’1’ value. This process is further illustrated in

Figure 4.11. A bit shifter is used to determine the bit that is set to ’1’ within the

Partition Data. If the net is uncut, this bit is stored in the Partition Register of the

block within which the net lies. When the registers are completely updated their

content is written to memory.

This process is repeated for all nets within the Netlist in order to complete

the Partition Data for the system. Upon completion of processing all nets, the

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 121

Start

Determine if
Net is Cut or Uncut

Store Storage
Registers to Memory

Read databyte
from Netlist

and Initial Solution

Have All
Nets been
Checked

Is
Net Uncut

and More Bytes
to Read

No

Yes Finish

Results to

Last Net
or Storage

Full

Storage Registers

Apply Cut/Uncut

Registers

No Yes

Yes

No

Figure 4.10: Partition-Update-Module (PU-M) Block Diagram

UpdateDone pin is driven high to inform the system that the process is complete.

4.3.2 Select-Next-Neighbourhood-Move-Module(SNNM-M)

The “Select-Next-Neighbourhood-Move-Module” determines the next possible neigh-

bourhood move when searching through the search space. The process loops

through the Partition Data and selects the next possible move as being any net

that is not completely contained within the partition. This is done by selecting all

‘0’ values as possible neighbourhood moves, as illustrated in Figure 4.12

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 122

Bit Shifter

Net
Register

Solution
Register

DataSize

DataSizeDataSize

DataSize
DataSize

Partition 0 Partiton 1
RegisterRegister

NetGNT SolGNT

NetDATA SolDATA

Partition 0
Read

(ASM)

Partition 1
Read

(ASM)

DEMUX

Part0WE Part1WE

Part0DATA Part1DATA

Partition 1 Partition 0
Comparator Comparator

Figure 4.11: Update Logic for Partition Data

1 0 00

0 00 1

moves
Possible

Partiton Data
Partition 0

Partition 1
Partition Data

Figure 4.12: Determining Feasible Move

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 123

Pin Description

Figure 4.13 describes the pin interface between the SNNM-M and memory/other

modules. A description of the pins can be found in Table B.2.

P
ar

t1
D

A
T

A

P
ar

t1
A

D
D

R

P
ar

t1
W

E

P
ar

t1
E

N

P
ar

t1
G

N
T

Memory Access
Partition 1

M
od

ul
es

Register Data

N
et

s

GlobalRst

Clk

NextDone

SearchEnb

Memory Access
Partition 0

P
ar

t0
D

A
T

A

P
ar

t0
A

D
D

R

P
ar

t0
W

E

P
ar

t0
E

N

P
ar

t0
G

N
T

DataRepStop

DataRepNum

DataRepGnt

DataRepAck

Sy
st

em
 S

ig
na

ls

DataRepBlk

D
at

a
R

ep
lic

at
or

 C
ha

nn
el

In
fo

rm
at

io
n

Select Next
Neighbourhood

Module
Move

(SNNM−M)

Figure 4.13: Select-Next-Neighbourhood-Move-Module Signal Diagram

Functionality of SNNM-M

The task of the SNNM-M is to select the next potential neighbourhood move based

on information stored in the Partition Data. Once the system initiates the selecting

procedure, by driving the SearchEnb pin high, the process shown in Figure 4.14 is

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 124

started.

Start

No

Does

Yes

Is
Net

No

Is
Net

No

Send Net to

through channel

Yes

Yes

No

Have All
Nets been
Checked

Yes

Finish

Partition
Data Need to

be Read

Completely in
Partition

0

Completely in
Partition

1

Data Replicater Module

Send Net to

through channel
Data Replicater Module

Read databytes

and Store in Registers
from Partition Data

Send Stop Signal to
Data Replicater Module

Figure 4.14: Select-Next-Neighbourhood-Move-Module (SNNM-M) Process Flow

The process begins by reading the first byte of data from each Partition Data

and storing them into registers. The purpose is to identify nets that are entirely

contained within a partition rendering them invalid neighbourhood moves. A de-

tailed internal logic diagram of the SNNM-M is presented in Figure 4.15. A net is

considered a candidate if it is found to be cut or not contained within the partition.

If this is a potential move the net and partition are passed to the “Data-Replicator-

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 125

0 1

1−bit
Responce Signal

Register Register

Selection
Block Bit Shifter

Partition 0 Partiton 1

DataSizeDataSize

DataSize

DataSizeDataSize

(ASM)

Part0GNT Part1GNT

Part0DATA Part1DATA

Figure 4.15: Select neighbourhood move

Module” (DR-M) through the Copy Data channel and the process repeats with the

next net. The SNNM-M process is repeated until all possible neighbourhood moves

have been determined.

Once all neighbourhood moves have been tested, a high is sent on the NextDone

pin to inform the system that the SNNM-M has terminated. At this time a stop

signal is sent through the outgoing channel to inform the DR-M that all moves have

been made.

4.3.3 Data-Replicator-Module (DR-M)

The “Data-Replicator-Module” accomplishes three tasks. The first is to make work-

ing backup copies of the Solution and Partition Data. This is to ensure that the

original information stored in memory is not altered during the searching process.

The second task is to apply the neighbourhood move, selected by the SNNM-M,

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 126

to the working copy of the Solution Data. The last task is to determine if this

neighbourhood move selected by the SNNM-M is feasible. This is done by counting

the number of ‘1’s that are contained within the working copy of Solution Data

and determining if they meet the balancing criteria. In order for the move to be

considered feasible, equations 4.1 and 4.2 must be satisfied. If the move is infeasi-

ble the module receives a new neighbourhood move from the Copy Data Channel;

otherwise, the Partition Data Update process is executed to determine the relative

gain of the move.

Pin Description

Figure 4.16 describes the pin interface between the DR-M and memory/other mod-

ule. A description of the pins can be found in Appendix B.3.

Functionality of DR-M

The task of the DR-M is to create backups of the current data and check the fea-

sibility of neighbourhood moves. Once the system initiates the copying procedure,

by driving the SearchEnb pin high, the process shown in Figure 4.17 begins.

Upon starting the process, the system remains in an idle state until all necessary

information (i.e which neighbourhood move to make) is received on the Copy Data

channel. This information includes: (i) the target net to be moved, (ii) the target

partition.

Following the retrieval of the net/partition information, the process begins cre-

ating working copies of the original information. While generating the working

copy of the Solution Data, the neighbourhood move is applied and the number of

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 127

So
lC

py
D

A
T

A

So
lC

py
A

D
D

R

So
lC

py
E

N

So
lC

py
W

E

So
lC

py
G

N
T

Memory Access
Solution Copy

M
od

ul
es

Memory Access

P
ar

t0
G

N
T

P
ar

t0
E

N

P
ar

t0
W

E

P
ar

t0
A

D
D

R

P
ar

t0
D

A
T

A

Partition 0

P
ar

t1
C

py
W

E

P
ar

t1
C

py
E

N

P
ar

t1
C

py
G

N
T

P
ar

t1
C

py
A

D
D

R

P
ar

t1
C

py
D

A
T

A

Partition 1 Copy
Memory Access

PartUpdateDoneAck

PartUpdateDoneGnt

C
ha

nn
el

In
fo

rm
at

io
n

P
ar

ti
ti

on
 U

pd
at

e

StopPartUpdate

PartUpdateNum

PartUpdateBlk

PartUpdateGnt

PartUpdateAck P
ar

ti
ti

on
 U

pd
at

e
C

ha
nn

el
 I

nf
or

m
at

io
n

Module
(DR−M)

Data Replicator

DataRepStop

GlobalRst

Clk

DataRepDone

Memory Access
Solution

So
lD

A
T

A

So
lA

D
D

R

So
lW

E

So
lE

N

So
lG

N
T

Memory Access

P
ar

t0
C

py
G

N
T

P
ar

t0
C

py
E

N

P
ar

t0
C

py
W

E

P
ar

t0
C

py
A

D
D

R

P
ar

t0
C

py
D

A
T

A

Partition 0 Copy

Memory Access
Partition 1

P
ar

t1
G

N
T

P
ar

t1
E

N

P
ar

t1
W

E

P
ar

t1
A

D
D

R

P
ar

t1
D

A
T

A

Sy
st

em
 S

ig
na

ls

SearchEnb

N
et

s

Register
 Data

N
et

D
A

T
A

N
et

A
D

D
R

N
et

W
E

N
et

E
N

N
et

G
N

T

Netlist
Memory Access

DataRepNum

DataRepGnt

DataRepAck

DataRepBlk

D
at

a
R

ep
lic

at
or

 C
ha

nn
el

In
fo

rm
at

io
n

Figure 4.16: Data-Replicator-Module Signal Diagram

cells in Partition1 are counted so that feasibility can be determined. The logic for

generating the working copy of Solution Data is illustrated in Figure 4.18.

Once the process has completed generating the working copies of the data, it

must determine the feasibility of the move. If the move is feasible, then the net

location is passed to the “Partition-Data-Update” (PDU) to update the affected

nets in the Partition Data and simultaneously calculate the relative gain. While

the PDU is executing, the DR-M enters an idle state waiting for the update process

to complete. When the PDU process has completed, the relative gain is compared

with the best relative gain found so far. If the newly calculated relative gain

is better than any previous gain, the information on the current neighbourhood

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 128

Start

Wait for Channel info

No

Yes

NoNo

Is this
a Feasible
Solution

No

Yes Yes

through Channels

Finish

to complete
Wait for both processes

Neighbourhood Move
from Select Next

Read databytes

and Store in Registers
from Partition Data

Store Register Information
into working copy of

Partition Data memory
Move and store into working

copy of Solution memory

Apply Neightbourhood

Cells in Partition 1
Count the number of

Update Partition Data

Wait for Complete Signal
from Update Partition Data

Send Net Number to

Read databytes
from Netlist and Solution

Data and Store in Registers

Has a
Stop signal
Recieved

Send Stop Signal to
Update Partition Data

Has
all Data been

Copied

Has
all Data been

Copied

Yes

Figure 4.17: Data-Replicator-Module Block Diagram and flow

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 129

Bit Counter

Register Register
Net Solution

Register
Count

EN
RST

Partition 0 Partition 1

DataSize

DataSizeDataSize

DataSize
16

DataWidth

16

SolCpyDATA

SolCpyWE

MUXDataRepBlk

NetGNT SolGNT

SolDATANetDATA

Count
Reset
(ASM)

Read
Count

(ASM)

Number of
Ones

Figure 4.18: Applying Neighbourhood move to Solution Copy

move is stored as a best potential move. The DR-M repeats its process with new

neighbourhood moves until a stop signal is received on the Copy Data channel and

a high is placed on the DataRepDone pin to inform the system that the DR-M is

finished.

4.3.4 Search-Loop-Module (SL-M)

The “Search-Loop-Module” is used in two instances which have virtually the same

functionality but applied to different data. The goal of the SL-M is to determine

affected nets after attempting to make a neighbourhood move. In finding these

nets, the first SL-M must determine which cells are connected to the net being

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 130

forced into a partition. These cells are found by searching through the Netlist for a

given net to determine which bits contain ‘1’ value. These locations represent the

cells that have the potential of being moved from one partition to the other during

the neighbourhood move process.

The second SL-M then determines other nets connected to these cells. This

follows a similar procedure as the previous instance but is applied to the Cellist (a

duplicate of the Netlist data but referenced by modules) to find nets connected to

these cells.

Pin Description

Figure 4.19 describes the pin interface between the SL-M and memory/other mod-

ules. A description of the pins can be found in Appendix B.5.

Functionality of SL-M

The task of the SL-M is to search for nets/cells affected by the neighbourhood

move. Once the system initiates the searching procedure, by driving the UpdtEnb

pin high, the process shown in Figure 4.20 is started.

Upon starting the process, the system remains in an idle state waiting to receive

the location of the net/cell from the Loop In channel. When the elements of the

Netlist/Cellist have been identified, the searching process can commence. The

searching criteria browses through the net/cell entry and identifies bits that contain

a ‘1’ value.

This searching procedure is accomplished by initially loading bytes of the Netlist

or Cellist data into a register and determining if this register is zero. If a non-zero

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 131

M
od

ul
es

Register Data

N
et

s

Module
Search Loop

(SL−M)
LoopInNum

LoopInStop

LoopInGnt

LoopInAck

Only used

D
at

aL
is

tD
A

T
A

GlobalRst

Clk

LoopDone

UpdtEnb

in SearchLoop 2

D
at

aL
is

tA
D

D
R

D
at

aL
is

tW
E

D
at

aL
is

tE
N

D
at

aL
is

tG
N

T

Memory Access

C
ha

nn
el

 I
nf

or
m

at
io

n
Se

ar
ch

 L
oo

p
In

Sy
st

em
 S

ig
na

ls

LoopOutStop

LoopOutNum

LoopOutGnt

LoopOutAck

Se
ar

ch
 L

oo
p

O
ut

C
ha

nn
el

 I
nf

or
m

at
io

n

NetList/CelList

Figure 4.19: Search-Loop-Module Signal Diagram

value occurs, then there must be at least one bit within the register that contains

a ‘1’ value. To find the location of this bit a logical right shift is applied to the

register until the least significant bit of the register is a ‘1’. This location of the

net/cell is then passed to the next module through the Loop Out channel. This

process is repeated until the locations of all ‘1’ values have be found within the list

entry.

A high is then placed on the LoopDone pin to inform the system that the SL-M

has terminated.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 132

Start

Read databyte of Net/Module
data from Memory and

store in Register

Finish

Send Stop Signal to
on Outgoing Channel

Wait for Channel info

Module

No

Net

Finished

Checking all

Is

Empty

Register

Is

equal to
Bit Zero

One

Next Module
Send Bit location to

Outgoing Channels

to right
Logically shift one bit

Yes

No

Yes

Yes

No

from Data Replicater

Figure 4.20: Search-Loop-Module (SL-M) Block Diagram and flow

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 133

4.3.5 Data-Update-Module (DU-M)

The main task of “Data-Update-Module” is determining both the status of the

nets affected by the neighbourhood move as well as the relative gain of the move.

This is accomplished by looping through the affected nets and the Solution Data

to determine if these nets have been completely absorbed into the partitions. If a

net was cut before the move and is now contained exclusively within a partition,

the relative gain for this neighbourhood move is increased. On the other hand, if

a net was previously uncut and due to the move has become cut, the relative gain

decreases.

Pin Description

Figure 4.21 describes the pin interface between the DU-M and memory/other mod-

ules. A description of the pins can be found in Appendix B (Table B.6).

Functionality of DU-M

The task of the DU-M is to determine the status of effected nets and update the

Partition Data accordingly. Once the system initiates the updating procedure, by

driving the UpdtEnb pin high, the process shown in Figure 4.22 is initiated.

Upon starting the process, the system remains in an idle state waiting for infor-

mation regarding a potentially affected net to be passed into the system through

channel communication. Once such information has been received, the system be-

gins the process of determining the status of this net. This process follows a similar

procedure as that of the PU-M.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 134

P
ar

t1
D

A
T

A

P
ar

t1
A

D
D

R

P
ar

t1
W

E

P
ar

t1
E

N

P
ar

t1
G

N
T

Partition 1
Memory Access Memory Access

Solution
So

lD
A

T
A

So
lA

D
D

R

So
lG

N
T

So
lW

E

So
lE

N

Memory Access
Netlist

N
et

D
A

T
A

N
et

A
D

D
R

N
et

W
E

N
et

E
N

N
et

G
N

T

M
od

ul
es

Register
 Data

N
et

s

Su
m

Module
Data Update

(DU−M)

GlobalRst

Clk

DataUpdtDone

In
fo

rm
at

io
n

UpdtEnb

Memory Access
Partition 0

P
ar

t0
G

N
T

P
ar

t0
E

N

P
ar

t0
W

E

P
ar

t0
A

D
D

R

P
ar

t0
D

A
T

A

DataUpdtStop

DataUpdtNum

DataUpdtGnt

DataUpdtAck

D
at

a
U

pd
at

e
C

ha
nn

el
Sy

st
em

 S
ig

na
ls

Figure 4.21: Data-Update-Module Signal Diagram

The system reads a byte of data from the net entry of the Netlist and a byte

of data from the Solution Data, placing them both into registers. Once the data

is stored into the registers they are compared to see if the net becomes cut. The

process of reading and comparing the data is continued until the status of a net is

determined (i.e cut/uncut).

When the status of a net is determined, it is necessary to determine the previous

status of this net and whether the neighbourhood move has changed this status.

This is accomplished by reading the previous status of the net from the Partition

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 135

Is
Net Uncut

and More Bytes
to Read

Read databyte
from Netlist

and Initial Solution

Determine if
Net is Cut or Uncut

Start

No

YesNo

and Store in Registers

Read corresponding databyte

Status of Net
change

Does

Yes

No

Yes Finish
Has a

Stop signal
Been Sent

Wait for Channel info

Module
from Search Loop

from Partition Data

Update Relative Gain
and modify/store new

Partition Data

Figure 4.22: Data-Update-Module Block Diagram

Data.

Four possible cases can arise which would cause the status of the net to be

affected, resulting in changing the relative gain of the system.

1. A net previously cut is currently completely absorbed by Partition1

2. A net previously absorbed by Partition1 is currently cut

3. A net previously cut is currently completely absorbed by Partition0

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 136

4. A net previously absorbed by Partition0 is currently cut

If any of the four cases above occur, then the system must update the Partition

Data to the effects of the neighbourhood move. The relative gain must also be

modified to account for the increase or decrease in gain for these four situations.

Any net that becomes absorbed into a partition, will increase the relative gain and

any net that becomes cut will decrease the relative gain.

When all affected nets have been tested and the Partition Data has been up-

dated, a high signal is placed on the DataUpdtDone pin to inform the system that

it has completed its process.

4.3.6 Apply-Best-Move-Module (ABM-M)

The final module in the Local Search Architecture is the “Apply-Best-Move-Module”

which applies the best neighbourhood move to the original Solution Data. This is

done by modifying the data so that the best net move becomes uncut and is ab-

sorbed within the determined partition. Once the best move has been applied the

Partition Data for this move must be updated. This is done by executing the PDU

process on the original Partition Data.

Pin Description

Figure 4.23 describes the pin interface between the ABM-M and memory/other

modules. A description of the pins can be found in Appendix B (Table B.7).

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 137

M
od

ul
es

Register
 Data

N
et

s

B
es

tM
ov

eN
um

B
es

tM
ov

eB
lk

GlobalRst

Clk

BestMoveDone

BestMoveEnb

Sy
st

em
 S

ig
na

ls

Module
Apply Best Move

(ABM−M)

N
et

D
A

T
A

Memory Access
Solution

So
lD

A
T

A

So
lA

D
D

R

So
lE

N

So
lW

E

So
lG

N
T

N
et

A
D

D
R

N
et

E
N

N
et

W
E

N
et

G
N

T

Netlist
Memory Access

PartUpdateDoneAck

PartUpdateDoneGnt

PartUpdateAck

PartUpdateGnt

PartUpdateBlk

PartUpdateNum

StopPartUpdate

P
ar

ti
to

n
U

pd
at

e

In
fo

rm
at

io
n

P
ar

ti
ti

on
 U

pd
at

e
ou

t
 o

ut
 C

ha
nn

el
C

ha
nn

el
 I

nf
or

m
at

io
n

Figure 4.23: Apply-Best-Move-Module Signal Diagram

Functionality of ABM-M

The task of the ABM-M is to apply the best net move to the original Solution Data.

Once the system initiates the updating procedure, by driving the BestMoveEnb pin

high, the process shown in Figure 4.24 is initiated.

The system begins by reading a byte of data from the best net information in

the Netlist. This byte is then applied to the original “Solution Data”. The process

is repeated until all bytes of Solution Data have been updated to incorporate the

best move into the given partition.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 138

Copied

Has
all Data been

Read databytes
from Netlist and Solution

Data and Store in Registers

Start

NoYes

Finish

Working Solution memory

Apply Best Neightbourhood
Move and store into

through Channels

Wait for Complete Signal

Send Net Number to
Partition Data Update

from Partition Data Update

Figure 4.24: Apply-Best-Move-Module (ABM-M) Block Diagram

Following the update of Solution Data, the ABM-M executes the “Partition-

Data-Update” process to update the Partition Data and incorporate the new move.

During the update process, the system remains in an idle state waiting for all three

PDU modules to complete their processing task simultaneously. A high signal is

then placed on the BestModeDone pin to inform the system that the process is

completed and that it may begin searching for another neighbourhood move.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 139

4.4 VHDL vs Handel-C implementation of Local

Search Architecture

In developing the above design, two different design languages were used: a high-

level language (Handel-C) and a low-level language (VHDL). The main objective

was to compare the difference in efficiency between the architectures. Prior to de-

velopment little was known of either language; however, familiarity with ISO-C did

exist. The development and debugging stages of the VHDL architecture took nearly

five weeks to complete, creating almost 8,000 lines of code. This was due to the

lack of experience with the language. The goal while designing the architecture was

to achieve proper functionality, with minimal time spent on improving bottlenecks.

The development and testing time of the Handel-C Local Search took roughly one

week, 1
5

of the time of the VHDL architecture, while creating 1,400 lines of code.

4.4.1 Memory Management

As described in section 2.2, in order to communicate with off-chip memory, Handel-

C requires an internal clock of 1
4

the frequency of the external clock. This is to

allow the system to execute the required signaling to communicate with the off-

chip memory. The drawback was that all non-memory commands were executing

at a fraction of their potential frequency. Unlike the Handel-C, VHDL utilizes the

full external clock with the use of multiple clock cycles to execute the required

signal communication with the memory. Consequently all commands are able to

operate at their full external clock potential.

One problem found in creating the architecture was conflicting memory ac-

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 140

cessing. Handel-C handles these conflicts with semaphores which protect critical

sections of the architecture. The drawback of using semaphores is that they require

one extra internal (four external) clock cycle. Due to intensive memory usage the

semaphores tend to slow down the architecture by a factor of two.

The VHDL protects memory conflicts by using a priority state machine. The

state machine grants memory access to different components without requiring

the one clock setup/release needed by semaphores. Priority is given to different

modules based on the status of the state machine to ensure that each component

has equal access to the memory. An example of the priority state machine can be

found in Figure 4.25 and Table 4.2. However, a flaw was identified in the VHDL

State1

State2 State3

[x1x]
[1xx]

[xx1]

[01x]

[x01]
[10x]

[State1 State2 State3]
Request Format

[0x0]
[00x]

[x00]

Figure 4.25: Priority State Machine

based architecture. Initially the VHDL architecture was designed such that each

module might access its own dedicated memory lines. These memory lines were then

combined through the priority state machine at the top level to control the access

of different memory banks. Upon completing the VHDL design and analyzing the

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 141

Current State Request Values Next State
State1 State2 State3

State1 x 1 x State2
x 0 1 State3
x 0 0 State1

State2 x x 1 State3
1 x 0 State1
0 x 0 State2

State3 1 x x State1
0 1 x State2
0 0 x State3

Table 4.2: Priority State Machine Truth Table

delays, it was determined that using tristate busses for memory accessing, as is

used by Handel-C, would more likely improve the net delays. As shown in Figure

4.26(a) the methodology used for implementing the Local Search design in VHDL

requires much more logic and routing resources than the Handel-C methodology,

shown in Figure 4.26(b). It would be expected that this extra logic would have a

negative effect on the clock frequency.

Memory
Priority
State

Machine

MODULE MODULE

MODULEMODULE

(a) VHDL

MODULEMODULE

Memory Bus

MODULE MODULE

Semaphores

(b) Handel-C

Figure 4.26: Memory Communication

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 142

4.4.2 Resources

In compiling both architectures, the Celoxica DK Suite software and the Xilinx ISE

tools were configured to optimize for speed and with the highest effort. Table 4.3

shows the resources used for each architecture.

Logic Utilization Total VHDL LS Handel-C LS
Avaiable Amount % Total Amount % Total

Number of Slice Flip Flops 38,400 989 2 % 1,379 3 %
Number of 4 input LUTs 38,400 3,131 8 % 2,640 6 %
Number of occupied Slices 19,200 1,744 9 % 2,118 11 %

Total equivalent gates 32,515 30,659

Table 4.3: VHDL vs Handel-C Local Search Resources

From this table it can be seen that fewer resources were used by the VHDL

based architecture. These results are expected since VHDL places more emphasis

on designing the hardware to perform a specific task and does not generalize like

Handel-C. Also if the memory management was developed using common bus tech-

nique, as suggested in section 4.4.1, the VHDL design could be further improved

and fewer resources would have been used.

4.4.3 Delay Calculations of Local Search Architecture

In determining the timing for each of the two designs, the Xilinx timing analyzer

was used. Unfortunately, there have been previously documented problems in deter-

mining net delays for Handel-C designs. As specified by Celoxica Support[Supp02],

“results of the Xilinx timing analyzer (is) not always relevant”. This was found

to be true for the Handel-C Local Search architecture, which specified that the

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 143

“Minimum period is 103.618ns”. From experimentation, the maximum successfully

operated frequency was found to be 87MHz (or 11.5ns).

From the support document [Supp02], the problem can be attributed to how

parameters are passed through functions. In Figure 4.27 it can be seen that the

logic for passing parameters consists of a static wire, a multiplexor and a register.

The static wire is utilized for cases where the parameters are used within the first

Logic
Logic

Register

M
ux

Function Parameter Logic

Figure 4.27: Handel-C Parameter Passing

command of the function. This is to bypass the one clock cycle delay of latching

the values into the register. The registers allow access to the parameters at other

clock cycles within the function. Although the static wire is only used within the

first cycle of the function, the “Place And Route” (PAR) tools consider it still a

valid path throughout the entire function. Therefore, the delay for the entire path

is based on: (i) the logic that generates the initial parameters, (ii) the delay of the

static wire and (iii) the delay of any final logic that utilizes this parameter’s value.

This means that the static path is calculated but is most likely never used and is,

therefore, irrelevant to the timing of the design.

Determining the delay time for the VHDL architecture was straight forward.

In compiling the design it was found that the optimum design was generated with

minimum timing constraints. The results of the delay timing are shown in Tables 4.4

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 144

and 4.5. The maximum delay times for the VHDL design occurred as the memory

Delay Time

Maximum Address Line Delay 24.498 ns
Maximum time for Read/Write 10.000 ns

Maximum Return Data Path Delay 42.617 ns
Total Read Delay 77.115 ns (12.9 MHz)

Table 4.4: VHDL Memory Read Timing

Delay Time

Maximum Address/Data Delay 56.960 ns
Maximum time for Read/Write 10.000 ns

Total Write Delay 66.90 ns (14.9 MHz)

Table 4.5: VHDL Memory Write Timing

attempted to read/write to memory. In designing the architecture, communication

with the off-chip memory is executed in three clock cycles to allow for necessary

signal timing. A more accurate frequency calculation based on data from Table

4.4 is then given by: 12.9MHz × 3 = 38.7MHz. Although this is the theoretical

calculated frequency, through experimentation the maximum allowable frequency

(while still obtaining correct solution results) is 44MHz. This difference in frequency

may be a result of the read timing being less than 10ns or that the net delay

calculated by the timing analyzer is based on the worst case scenario for the Virtex-

E FPGA chip causing the actual delay to be less than reported.

In examining the delays of the two architectures, it can be shown that the

delay time for the Handel-C designs is significantly smaller than that of the VHDL

implementation. As discussed in section 4.4.1, this is most likely caused by the

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 145

extra logic used by the address and data lines of the VHDL architecture.

4.4.4 Timing Results of Local Search Architecture

In comparing the final performance of the two architectures, it was found that the

VHDL based implementation significantly out-performs the Handel-C counterpart

while operating at 1
2

the frequency. Timing results can found in Table 4.6 and Figure

4.28. The improvement in execution time is attributed to the lack of semaphores

Benchmark Handel-C VHDL Improvement

pcb1.dat 0.000 s 0.000 s 0%
frac.dat 0.031 s 0.016 s 194%
chip4.dat 0.122 s 0.94 s 130%
chip1.dat 0.247 s 0.140 s 176%
prim1.dat 4.700 s 2.641 s 178%
struct.dat 48.500 s 31.875 s 151%
ind1.dat 64.9 s 41.172 s 158%
prim2.dat 216.4 s 100.906 s 214%
Average 172%

Table 4.6: Execution Time of Development Languages

within the VHDL architecture and that non-memory dependent commands operate

at the external clock frequency.

4.4.5 VHDL vs Handel-C: A comparison

In comparing the VHDL and the Handel-C based architectures we concluded that

the VHDL generated significant improvements in both resources used by the FPGA

and in execution time. In further analyzing the architectures, if modifications were

made to allow for busses to be used for address and data lines, a further decrease

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 146

Handel−C VHDL

ind1 prim2structprim1

T
im

e
(s

)

0

50

100

150

200

250

Benchmark

Figure 4.28: Handel-C vs VHDL Timing

in resources and processing time could be achieved. The VHDL improvement in

execution time is contributed to the lack of use of semaphores and operating at its

full clock potential. The speed of development and simplicity of debugging are the

only advantages found in using the Handel-C language.

4.5 Simulation/Verification of Local Search Ar-

chitecture

The aim of the hardware Local Search implementation is to develop a design that

generates similar results to that obtained by the software implementation while

improving execution time. The following will discuss problems found with the

initial Handel-C architecture and a few modifications made to rectify these issues

to achieve further improvement in performance.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 147

4.5.1 Performance Analysis & Tuning

In designing and testing the Local Search Hardware processor, the main problem

encountered with the original design was lack of execution performance. From

Table 4.7, it is evident that the initial hardware implementation produced slower

execution times than the software using the same bit representation. This may be

a result of the sequential nature of the Local Search (ie. many operations within

the algorithm depend on data generated on previous steps, limiting the algorithm

from any parallelism). Therefore, in designing the original Local Search algorithm,

little pipelining and parallelization could be achieved.

Benchmark Software Original
Handel-C Design

Maximum Clock N\A 87 MHz

Equivalent N\A 48,073
Gates

pcb1.dat 0.0 s 0.0 s
frac.dat 0.020 s 0.031 s
chip4.dat 0.063 s 0.122 s
chip1.dat 0.123 s 0.247 s
prim1.dat 3.2 s 4.7 s
ind1.dat 53.8 s 64.9 s

struct.dat 29.6 s 48.5 s
prim2.dat 126.7 s 216.4 s

Average time over 5 trials
Software run on Linux OS, HP Workstation x2100 P4 2.4 GHz, 1 Gig memory

Table 4.7: Local Search Software vs Hardware

As previously discussed in section 4.2 there were three functions of the software

which produced the majority of the processing time. These functions consisted of

counting the number of cells in Partition1, copying the Partition and Cell Data

to make working copies and performing the Partition Information Update process.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 148

The largest bottleneck of the software is the counting of cells in Partition1. In

the hardware implementation this function required no overhead since all bits are

counted in a single cycle and it is executed in parallel with the copying of Partition

and Cell Data. This leaves only two main contributors to the bottleneck of the

hardware. Using Amdahl’s law, increasing the performance in these two areas will

have the greatest effect on the architectures performance.

In analyzing the hardware modules a few issues were found that could have

affected the performance:

1. The organization of the Netlist plays a role in performance limitation. When

storing the Netlist information into memory, it is common for cells connected

to a single net to appear in series (ie. Cell10, Cell11 and Cell12 connected to

a single net). This causes a problem when trying to utilize parallelism in the

Partition Information Update process. The aim of this process is that the

three loops can operate in parallel, allowing each to process different informa-

tion with the results being passed between the loops. The drawback of using

the current Netlist representation is that modules appearing in series cause

an idle state to occur, waiting for the following loops to complete their tasks

before sending any new information. This interrupts the parallel execution

of the loop processes, and causes the system to operate in a more sequential

manner, as illustrated in Figure 4.29. Figure 4.29(a) shows how the system

idles when modules are located close to each other. Figure 4.29(b) shows the

system when modules are separated from each other: the overall performance

is slightly improved.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 149

Idle
State

Idle

State

10 ns

20 ns

30 ns

40 ns

50 ns

Idle
State

Idle
State

Data

Data Data

Data

0 ns
Loop1

Idle
State

Loop2 Loop3

Idle
State

10 ns

20 ns

30 ns

40 ns

50 ns

Idle

Idle
State

Data

Data Data

Data

0 ns
Loop1

Idle
State

Idle
State

Loop2 Loop3

Idle

State
Idle

Idle
State

(b)(a)

Figure 4.29: Local Search Update Timing

2. Similar to the fitness calculation in the Genetic Algorithm, section 3.4.1, the

method by which Local Search calculates the status of the nets plays a huge

role in determining performance. This method, shown in Figure 4.30[Sitk95,

Gurw03], spends unneeded processing time searching empty bytes of data.

0000000000000000000000000 1 1 1 11 11

Byte 3 Byte 2 Byte 1 Byte 07 077 7 000

Data
Net

1 023456789101112131415161718192021222324252627
Modules

Figure 4.30: Bit Net Representation

3. In executing “Data-Replicator-Module” (CopyData) in software the module

consumes around 6% of the execution time. In the hardware implementation,

the limiting factor of this module is memory access. Since all Partition and

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 150

Solution Data are stored in the same off-chip memory and only one memory

access is allowed at a time, a bottleneck occurs.

4.5.2 Design Modifications of Local Search Architecture

In analyzing the disadvantages mentioned above, numerous modifications were im-

plemented to further enhance system performance:

Improvement #1 - In analyzing the “Partition-Data-Update” the same findings

were found as in the original FC-SM: that is, the architecture is continuously

searching empty bytes of data within the Netlist. To resolve this problem, the

design was adapted to incorporate the Genetic Algorithm Fitness methodol-

ogy presented in section 3.4.2. This method of searching the Netlist resolves

the problem of searching empty bytes of data while making the Local Search

compatible with the Genetic Algorithm. In addition, it resolves the cell order

problem within the Netlist. Searching integer values having sequential cells

(ie. Cell3, Cell4, etc) within the Netlist will not have any more drastic effect

on performance than using any other order of cells.

Improvement #2 - As stated in section 4.5.1, the Local Search algorithm utilizes

data that is dependent on other modules, limiting the ability of parallelization.

In order to increase the level of parallelization within the process, block Rams

have been used to hold the Solution and Partition Data. Block Rams allow

the system to operate in a more pipeline manner allowing for multiple address

and data buses, meaning that modules can operate on numerous block Rams

at the same time. This causes three improvements within the DR-M

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 151

1. It allows all partition and solution data to be copied in parallel, elimi-

nating waiting for the bus access.

2. It allows the creation of backup copies of the original data while the

Partition Data Update process is operating on other block Rams.

3. It allows for multiple instances of the Partition Data Update process

to occur in parallel, as shown in Figure 4.31, in an attempt to further

increase throughput.

SearchLoop1

SearchLoop2

DataUpdate DataUpdate

SearchLoop2

SearchLoop1

DataReplicator

SelectNextMove

Figure 4.31: Parallel Partition-Data-Update

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 152

4.6 Computational Results of the Local Search

Architecture

As discussed in the previous section numerous design errors were corrected and

implemented to improve the execution speed of the algorithm. All these proposed

designs were developed using Celoxica DK Suite 2.0 and compiled using Xilinx ISE

6.1.03i. They were implemented on the Celoxica RC1000 development board using

a Virtex-E FPGA with 2 million gates. Results of these design improvements can

be found in Table 4.8 and Figure 4.32.

Benchmark Software Original Improvement Improvement Improvement
Design #1 #2 (1,2) #2 (3)

Maximum Clk N\A 87 MHz 85 MHz 89 MHz 89 MHz
Equivalent N\A 48,073 49,212 657,726 673,263

Gates (36 BlkRam) (36 BlkRam)

pcb1.dat 0.00 s 0.0 s 0.0 s 0.0 s 0.0 s
frac.dat 0.020 s 0.031 s 0.028 s 0.016 s 0.012 s
chip4.dat 0.063 s 0.122 s 0.081 s 0.034 s 0.031 s
chip1.dat 0.123 s 0.247 s 0.150 s 0.056 s 0.056 s
prim1.dat 3.2 s 4.7 s 3.4 s 1.5 s 1.5 s
struct.dat 29.6 s 48.5 s 27.8 s 12.0 s 12.0 s
ind1.dat 53.8 s 64.9 s 46.2 s 20.7 s 20.9 s

prim2.dat 126.7 s 216.4 s 113.9 s 50.9 s 49.2 s

Average time over 5 trials
Software run on Linux OS, HP Workstation x2100 P4 2.4 GHz, 1 Gig memory

Table 4.8: Local Search Technique Comparison

In examining the data from different implementations it was found that the

Local Search improvement #2 (1,2) with a single “Partition Data Update” process

performed equally to that utilizing two “Partition Data Update” processes. Due to

the fact that a new method for storing the Netlist is utilized in the new architecture,

the bottleneck of the architecture shifted towards the copying of partition and

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 153

Areibi (Sun) Improvement #1 Improvement #2 (3)

Original Design Improvement #2 (1,2)

prim1 struct ind1 prim2
Benchmark

T
im

e
(s

)

0

50

100

150

200

250

Figure 4.32: Timing Comparison of Local Search Modifications

solution data as evident in Table 4.9. Therefore, there is no need to implement

more than one instance of the update Process unless the copying of the data is

improved.

Name of Software Equivalent Functionality % Execution Time
Function struct prim2 prim1 struct

Count Count ’1’ for feasibility 89.81 77.37 89.94 100.00
CopyData Make Working Copies 6.63 21.13 5.03 0.00

Loop3 Update Partition Data (Loop 3) 1.47 1.00 1.12 0.00
Loop2 Update Partition Data (Loop 2) 1.23 0.26 1.12 0.00
Loop1 Update Partition Data (Loop 1) 0.12 0.05 0.00 0.00

Table 4.9: New Local Search Software Profile

It is important to note that the balancing criteria is the only user defined pa-

rameter that can have an effect on solution quality. As stated in section 3.5.5 this

parameter is not a tuning parameter but is a constraint on the system. Figure 4.33

shows the average result of a five trial run of the Local Search for each benchmark

while varying the allowable balancing difference. Numerical data describing the

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 154

(a)

Execution Time vs Balancing Size Comparison

0

5

10

15

20

25

30

35

40

45

50

55

0 5 10 15 20 25 30 35

T
im

e

Balancing Size

struct prim1 prim2 ind1

Solution Quality vs Balancing Size Comparison

(b)

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

0 5 10 15 20 25 30 35

M
ea

n
O

bj
ec

tiv
e

V
al

ue

Balancing Size

struct prim1 prim2 ind1

Figure 4.33: Effect of Balancing Size on Local Search design

mean (µ), the best result, the worst result, and the standard deviation (σ) for each

benchmark can be found in Appendix D.1.

In examining Figure 4.33(a), it is noticed that as the balancing size increased

the effect on the execution time decreased. This finding is linked to the increase in

objective value found in Figure 4.33(b). Increasing the balancing criteria allows for

moves that were infeasible with lower balancing size to become feasible resulting

in a higher objective value. These feasible moves also allow the Local Search to

accept moves with higher gains, forcing the solution to a local maximum with fewer

neighbourhood searches.

4.7 A Memetic Algorithm Hardware Accelerator

By successfully implementing a Genetic Algorithm (described in chapter 3) and

a Local Search Algorithm (described earlier) we can combine both architectures

and develop a Memetic based architecture, illustrated in Figure 4.34. Memetic

Algorithms, containing Genetic Algorithm’s ability to search the solution space

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 155

and Local Search’s ability to fine tune solutions, are able to produce better results

in suitable amounts of time.

External
Memory

Genetic Algorithm
Processor

Local Search
Processor

Memetic Algorithm Archetecture

Figure 4.34: Memetic Algorithm Architecture Block Diagram

In designing the Memetic Algorithm architecture, two different hybrids were

created using the final enhanced Genetic Algorithm and Local Search architectures.

The first, called the Exhaustive Memetic Algorithm (EMA), uses the Local Search

to improve the final solution of the Genetic Algorithm, as illustrated in 4.35. A

few individuals are selected from the population in the final generation and further

improved using the Local Search, as illustrated in Figure 4.36.

The second Memetic Algorithm, called the Intermediate Memetic Algorithm

(IMA), is more complex than EMA. This technique applies a few iterations of the

Local Search algorithm to a small number of random individuals in the population.

This occurs after a predetermined number of generations of the Genetic Algorithm.

The block diagram of IMA is shown in Figure 4.37. The goal of this technique is

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 156

Start

Select Random Individual

Local Search

all Individuals
Been Selected

Has

Finish
Yes

No

Complete

Genetic Algorithm

Figure 4.35: Exhaustive Memetic Algorithm Block Diagram

to steer the population of the Genetic Algorithm toward better solutions without

taking the solutions to local maximums.

4.7.1 Memetic Algorithm Registers

In order to control the execution of the Memetic Algorithm and maintain the al-

gorithm flexibility, three new user parameters are introduced. These parameters

are stored in internal registers and are programmed through the memory. The

definition of these registers can be found in Table 4.10.

To accurately compare the results generated by the two algorithms it is necessary

to determine the effect of each parameter on the solution quality and execution time.

The base case values for the Genetic Algorithm, found in Table 3.7, were used for

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 157

Search
Local

Genetic
Algorithm

Cromosomes

Figure 4.36: Memetic Algorithm Solution Landscape

Register Register Description
Name Size

Generation 16 bits The number of generations of the
Number Genetic Algorithm to execute before

applying the Local Search

Iteration 16 bits The number of Local Search neighbourhood
Number searches to execute

Individual 16 bits The number of random individuals to apply
Number Local Search algorithm to

Table 4.10: Memetic Algorithm Registers

tuning the three new Memetic Algorithms parameters. The base case values for

the new parameters can be found in Table 4.11.

Parameter Default Values

Generations GA per Local Search 10

Random Individuals Selected 8

Iterations of Local Search per 9
Individual

Table 4.11: Base Case parameters for Handel-C Memetic Algorithm

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 158

Genetic Algorithm
Generation of

Has

been Reached
Generation per LS

Select Random Individuals

for Specified Iteration
Apply Local Search

Has

Stopping Criteria

been Met

Create Initial Population

No

Yes

Yes

No

Finish

Start

Figure 4.37: Intermediate Memetic Algorithm (IMA)

Effect of the tuning parameters on Exhaustive Memetic Algorithm

For tuning the Exhaustive Memetic Algorithm there is only one parameter that

changes the resulting output. Numerical data from the tuning process can be found

in Appendix D.2. From Figures 4.38 and it is evident that applying the Local Search

algorithm to an increasing number of random individuals has an effect on both the

solution quality and execution time of the algorithm. The figures demonstrates that

as the number of random selected individuals increases there is a linear increase in

execution time and a slight increase in the solution quality. This means that, for

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 159

0

200

400

600

800

1000

1200

1400

0 5 10 15 20 25 30 35

E
xe

cu
tio

n
T

im
e

Number of Individuals

struct prim1 prim2 ind1

Figure 4.38: Effect of Number of Random Individuals on Time (EMA)

600

800

1000

1200

1400

1600

1800

2000

2200

2400

0 5 10 15 20 25 30 35

O
bj

ec
tiv

e
V

al
ue

Number of Individuals

struct prim1 prim2 ind1

Figure 4.39: Effect of Number of Random Individuals on Best Objective Value
(EMA)

the Exhaustive Memetic Algorithm, it is impractical to select a large number of

individuals to apply to the Local Search. As a result, two random individuals will

be selected for the final comparison.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 160

Effect of the tuning parameters on Intermediate Memetic Algorithm

(IMA)

In tuning the intermediate Memetic Algorithm, one parameter is altered while the

remaining two parameters are set to their base case values. Numerical data for the

IMA tuning process can be found in Appendix D.3, D.4 and D.5.

In examining Figures 4.40 and 4.41 it is clear that increasing the number of

random individuals selected from the Genetic Algorithm population has a large

linear effect on the execution time of the system with little increase in solution

quality.

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35

E
xe

cu
tio

n
T

im
e

struct prim1 prim2 ind1

Number of Random Individuals

Figure 4.40: Effect of Number of Random Individuals on Time (IMA)

Increasing the number of iterations for each Local Search also has a linear in-

creasing effect on the execution time as seen in Figure 4.42. It is also clear from

Figure 4.43 that increasing the number of Local Search iterations has a larger pos-

itive impact on solution quality.

In examining the effect on the number of Genetic Algorithm generations between

each Local Search, it was found that there was a negative, non-linear effect on both

the execution time and the solution quality, as illustrated in Figures 4.44 and 4.45

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 161

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20 25 30 35

O
bj

ec
tiv

e
V

al
ue

struct prim1 prim2 ind1

Number of Random Individuals

Figure 4.41: Effect of Number of Random Individuals on Best Objective Value
(IMA)

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16

E
xe

cu
tio

n
T

im
e

struct prim1 prim2 ind1

Number of LS Iterations

Figure 4.42: Effect of Number of Local Search Iterations on Time (IMA)

respectively. This could be expected since a fewer number of Local Search iterations

will be performed on the population as the number of generations increase.

Tuning the parameters for the Intermediate Memetic Algorithm revealed that

the base parameters generated an acceptable balance of good quality solutions and

execution time.

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 162

600

800

1000

1200

1400

1600

1800

2000

2200

2 4 6 8 10 12 14 16

O
bj

ec
tiv

e
V

al
ue

struct prim1 prim2 ind1

Number of LS Iterations

Figure 4.43: Effect of Number of Local Search Iterations on Best Objective Value
(IMA)

0

50

100

150

200

250

300

350

5 10 15 20 25 30 35 40

E
xe

cu
tio

n
T

im
e

struct prim1 prim2 ind1

Generations Between LS

Figure 4.44: Effect of Number of GA Generations on Time (IMA)

4.7.2 Computational Results

In combining the Genetic Algorithm and the Local Search, the goal was to enhance

solutions produced by the Genetic Algorithm. Figure 4.46 illustrates the final so-

lution and execution speed of software Genetic Algorithm[Arei01] and the four

different hardware designs implemented. From Figure 4.46(b), it can be seen that

the Genetic Algorithm created by [Arei01] produced better results than any of the

hardware implementations. As mentioned in section 3.6, the hypothetical reason

for these findings is the result of using a different RNG and different crossover tech-

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 163

600

800

1000

1200

1400

1600

1800

2000

2200

5 10 15 20 25 30 35 40

O
bj

ec
tiv

e
V

al
ue

struct prim1 prim2 ind1

Generations Between LS

Figure 4.45: Effect of Number of GA Generations on Best Objective Value (IMA)

niques in addition to the repair mechanism. It can also be noticed from the figure

that the Local Search implementation produced nearly the same solution quality as

the Exhaustive Memetic Algorithm and much better results than the Intermediate

Memetic Algorithm. As shown in Figure 4.46(a) the execution time of the Local

Search algorithm is significantly less than that of either Memetic Algorithm.

These performance findings can be accredited to the poor solutions produced

by the hardware Genetic Algorithm. An enhanced repair mechanism within the

Genetic Algorithm is expected to produce better solution quality, comparable to

those obtained by software.

4.8 Limitation of Hardware Implementation

In comparing the results of the hardware designs, it is found that the hardware

implementations executed slower than expected. The final Genetic Algorithm ex-

ecuted at speeds nearly 1
2

that of a software implementation using the same bit

representation. In comparing the software and hardware Local Search implemen-

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 164

Areibi (Sun) Handel−C LS

Handel−C EMAHandel−C GA

Handel−C IMA

Benchmark

T
im

e
(s

)

prim1 struct ind1 prim2
0

20

40

60

80

100

120

140

160

180

Software vs Hardware Time
Comparison

(a)

Areibi (Sun) Handel−C LS

Handel−C EMAHandel−C GA

Handel−C IMA

Benchmark

O
bj

ec
ti

ve
 V

al
ue

prim1 struct ind1 prim2
 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

Software vs Hardware Results
Comparison

(b)

Figure 4.46: Final Performance results of Algorithms

tations, the speedup of hardware over the software is the result of the balancing

function (counting the number of bits within a unsigned number) which contributed

to over 80% of the software execution time. Excluding this function from the soft-

ware implementation would enable it to greatly outperform the hardware based

approach. Reasons for the lack of performance achieved by the hardware based

architectures include the following:

1. In designing the hardware algorithms, one of the constraints placed on the

system was the requirement to handle any size of benchmarks. In order to

comply with this stringent constraint external memory was used to store the

benchmark data. In implementing the design to use off-chip memory, two

factors contributed to speed limitation:

(a) The Handel-C language forces the system to operate at 1
4

the maximum

clock rate. This is to handle the signaling required to communicate with

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 165

the off-chip memory while still executing each command in one clock

cycle. Accordingly, the Local Search algorithm with an external clock of

89 MHz would only operate at 22.25 MHz.

(b) Long routing is required to interface the memory I/O pins to the algo-

rithm. When developing large designs that require extensive memory

accessing, the length of the address and data lines are often extremely

long resulting in large delays in memory communications. This limits

the maximum clock rate of the system and forces the system to operate

at slower speeds.

2. Developing an algorithm in a high-level language (such as Handel-C) is ex-

pected to result in inefficient designs. On the other hand, hardware develop-

ment based on low-level languages (such as VHDL) allow for greater flexibility

in the design and allows the design to be directly targeted to the hardware

leading to a more efficient design.

3. The size of the design implemented places a limitation on the speed of the

system designed. The expectation of many is that, as FPGAs become larger

and faster, larger designs can be implemented more easily within the devices.

As designs become larger, the path between the logic becomes increasingly

longer placing a larger connection delay on these wires and accordingly a

direct effect on the operating clock frequency.

4. The results may also reflect the technology of current computers. Advances in

computer technology may make it more difficult for larger FPGA designs to

outperform software designs. In past literature [Zhon98a, Hauc98, Comp99,

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 166

Wrig03, Gurw03], it has been stated that the FPGAs have created signifi-

cant speedups over software implementations, ranging from 10 to 100 times

faster. This may not be the case with today’s technology, since many of these

implementations were developed when the delay of transistors was the dom-

inant factor on hardware designs. Computers now are created such that the

length of the interconnect is optimized, allowing for frequencies greater than

3 GHz while FPGAs are still operating at frequencies around 100 MHz, ie.

1
30

the speed of current computers. In the Genetic Algorithm, a clock rate

of 65 MHz
4

was obtainable while in development of the the Local Search de-

sign the maximum clock frequency was 89 MHz
4

, 1/100th the speed of current

general purpose computers.

4.9 Summary

In this chapter, an initial design of Local Search algorithm for Circuit Partitioning

was presented. From this design two different architectures were developed, using

Handel-C and VHDL, to compare performance tradeoffs. In comparing the two

development languages it was found that the VHDL implementation outperformed

the Handel-C based approach by a factor of two, while operating at half the fre-

quency. It was also found that in comparing the development time required by

the two architectures, Handel-C required roughly one fifth of the time required by

VHDL.

Upon completing the Handel-C architecture, further examination revealed nu-

merous bottlenecks at which time modifications to the design were made. Once

CHAPTER 4. LOCAL SEARCH AND MEMETIC ARCHITECTURE 167

the design was finalized, it was compiled and implemented on a Celoxica RC1000

development platform for performance testing. In comparing the final Hardware

design with a similar software implementation, the hardware design operating at

89MHz achieved a speedup of nearly 2.5 times that of the software implementation

executing on a Intel P4 2.4 GHz workstation.

Upon completing the Local Search algorithm, two Memetic algorithms were de-

veloped to further improve solution quality. In comparing the results generated by

software and hardware implementations it was found that software produced better

results than any of the four hardware architectures. This is attributed to several

factors such as: (i) the efficient software repair algorithm implementation, (ii) ro-

bust one point crossover operator utilized in software versus the uniform crossover

used in the hardware implementation. It was also found that the Memetic Algo-

rithms required more execution time to generate similar results to those obtained

by the Local Search.

Chapter 5

Conclusions and Future Directions

Computer Aided Design (CAD) tools play an important role in the VLSI physical

design process. With advances in today’s technology, the physical design process is

becoming increasingly complex allowing for more transistors to be integrated onto

a single die. This creates increasing pressure for efficient CAD tools. Although new

techniques are continuously being investigated, the common goal of each algorithm

is to produce better results in less time. Traditionally, these algorithms have been

created in software due to its flexibility and ease of development. One of the

drawbacks of software based programs, however, is that they execute in a sequential

manner resulting in inefficient time usage. This has lead to the investigation of

hardware algorithms to replace traditional software tools.

This thesis investigated the feasibility of designing FPGA-based CAD tools in

attempt to outperform software implementations. These CAD tools included a

Genetic Algorithm, a Local Search and Memetic Algorithms with each focusing on

the VLSI circuit partitioning problem. This thesis also investigated the tradeoffs

168

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 169

of using a high-level hardware development language “Handle-C” over conventional

low-level development languages.

5.1 Hardware CAD algorithms

In developing CAD algorithms for a FPGA-based platform, it was found that nei-

ther the quality of the solutions nor the execution time was comparable to the

software implementations. In analyzing the quality of the solution for the Genetic

Algorithm the software implementation[Arei01] produced on average 13% better

results than the hardware based algorithm while executing nearly 5 times slower.

When comparing a different software algorithm that utilizes the same bit represen-

tation and produces similar results, it was found that the software outperformed

the hardware at nearly twice the speed. For the Local Search implementation it was

found that the hardware implementation produced nearly 2.5 times faster results

than the software implementation using the same bitwise representation. The final

Memetic Algorithm, incorporating the Local Search and the Genetic Algorithm,

executed in a fraction of the time of the software Genetic Algorithm[Arei01] but

failed to produce similar results.

These findings were attributed to the limitations of using off-chip memory and

the Handel-C programming language as mentioned in the thesis.

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 170

5.2 Hardware Development Languages

In comparing the two different development languages, it was found that Celoxica’s

claim of Handel-C allowing software engineers to develop hardware without learning

lower-level languages was valid. It was found that for designers who are inexpe-

rienced with Hardware Descriptive Languages (HDL), Handel-C provides a quick

and simplified method for developing hardware architectures. The disadvantage of

the language is that Handel-C is only beneficial to new developers. In comparing

the two architectures developed, the Handel-C design used more resources on the

FPGA, required more time to execute and was significantly less flexible than the

VHDL implementation. The only benefit of the design was that it required nearly

1
5

of the development time and lines of code required by the VHDL approach.

5.3 Future Work

There are several extensions and improvements that can be expansions from the

current work.

1. Investigate further differences that exist between the [Arei01] software CAD

based approach and the hardware architecture. The crossover technique im-

plemented within the hardware can be easily modified to incorporate a simple

one or two-point crossover. The only modification needed to the architecture

is that instead of randomly generating a uniform bit mask it is possible to

generate a similar mask that would select different portions of the two parent

chromosomes, as shown in Figure 5.1.

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 171

100110

1 1 1 0 0 0

011 0

1 1 0 0

011 1 0 0

0 1

0 1

Offspring 1

Offspring 2

Mask

Parent 2

Parent 1

Figure 5.1: One Point Crossover Bit-mask

2. Investigate the improvement benefits of optimizing the hardware Genetic Al-

gorithm using a low-level language. As shown in Table 4.28, designing the

architecture in VHDL produced significant improvements in execution time

over Handel-C. It is hypothesized that implementing the Genetic Algorithm

using a low-level language would better optimize the architecture resulting in

faster solutions.

3. Improve the Genetic Algorithm to include parallel Fitness Calculation. It

is possible to implement a parallel fitness calculation which utilizes a sin-

gle bus communication. As shown in Figure 5.2 if the fitness functions are

synchronized together then it is possible to read the same Netlist values from

a common bus. This would allow for nearly twice the throughput without the

need for semaphores.

4. Use more off-chip memory dedicated to the Netlist which would allow for more

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 172

Address Register

Fitness Calculation
Submodule 1

Data Bus

Fitness Calculation
Submodule 2

Netlist
Memory

Figure 5.2: Parallel Fitness Calculation

stages of the pipeline to be dedicated to the fitness calculation. As shown in

Figure 5.3 implementing the architecture using three off-chip memory banks

Off−Chip
Memory

Off−Chip
Memory

Off−Chip
Memory

Mutate
Chromosome
Submodule

Replace
Population
Submodule

Calculate
Fitness

Calculate
Fitness

Calculate
Fitness

Submodule 1 Submodule 2 Submodule 3

Figure 5.3: Pipelined Fitness Calculation

dedicated to the Netlist allow 1
3

of the fitness value to be calculated in each

fitness stage of the pipeline, resulting in higher throughput.

5. Improve the Local Search by implementing memory to eliminate repetitive

searching. Using memory to store the improvement values of each neigh-

bourhood move would allow the architecture to determine the best move by

searching through the memory for the highest gain. This method of search-

ing the solution space would significantly increase the algorithm’s speed but

would still require updating the memory values after each Local Search move.

CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 173

6. Extend this work to solve harder problems such as VLSI placement and rout-

ing.

Appendix A

Genetic Algorithm Module Pin

Descriptions

174

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 175

Table A.1: Signal Description of IPS
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
PopInitEnb 1 bit Input Start the Make Population process
InitDone 1 bit Output Notify the system that the population has been

created

Population Memory Access Signals

PopDATA DataWidth In/Out Population memory read/write data bus
PopADDR AddrWidth Output Population memory address bus
PopWE 1 bit Output Population memory write enable
PopEN 1 bit Output Population memory enable
PopGNT 1 bit Input Population memory grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each chromosome
PopSize 16 bits Input Number of chromosomes in the population

Repair Channel Signals
The Repair Channel Signals are used to send information from IPS to the RCS on
the location of the chromosome in the population that is to be repaired

RepairNum 16 bit Output Number of the chromosome to be repaird
RepairStop 1 bit Output signal to tell the RCS that all chromosomes have

been created
RepairGnt 1 bit Output Grant access to the repair function to read

to read channel data
RepairAck 1 bit Input Acknowledgement from the repair function that

it has read the data

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 176

Table A.2: Signal Description of RCS
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
PopInitEnb 1 bit Input Start the Make Population process
RepairDone 1 bit Output Notify the system that all

chromosomes have been repaired

Repair Channel Signals
The Repair Channel Signals are used to send information from IPS/CPS to the RCS on
which chromosomes should be repaired

RepairNum 16 bit Input The location of the chromosome that is to be
repaired

RepairStop 1 bit Input A signal to inform the RCS that new
population has been created

RepairGnt 1 bit Input Gain access to read channel information
RepairAck 1 bit Output Acknowledgment that the Repair Channel has

been read

Population Memory Access Signals

PopDATA DataWidth In/Out Population Memory read/write data bus
PopADDR AddrWidth Output Population memory address bus
PopWE 1 bit Output Population memory write enable
PopEN 1 bit Output Population memory enable
PopGNT 1 bit Input Population memory grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each chromosome
DIFFERENCE 16 bits Input The allowable difference between the number

of cells in each partition

Fitness Channel Signals
The Fitness Channel Signals are used to send information from RCS to the FCS on
the location of the chromosome in the population that needs to be evaluated

FitnessNum 16 bit Output The number of the chromosome
to calculate fitness

FitnessStop 1 bit Output Signal to inform the FCS that all chromosomes
have been calculated

FitnessGnt 1 bit Output Grant access to the FCS to read channel data
FitnessAck 1 bit Input Acknowledgement from the FCS that it has

read the channel data

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 177

Table A.3: Signal Description of FCS
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
PopInitEnb 1 bit Input Start the Make Population process
FitnessDone 1 bit Output Notify the system that the FCS is finished

Fitness Channel Signals
The Fitness Channel Signals are used to send information from RCS to the FCS on
which chromosome in memory to evaluate

FitnessNum 16 bits Input Number of the chromosome in memory to evaluate
StopFitness 1 bit Input Informs the FCS to end its processing
FitnessGnt 1 bit Input Grants access to read channel information
FitnessAck 1 bit Output Acknowledgment that the channel has been read

Population Memory Access Signals

PopDATA DataWidth In/Out Population memory read/write data bus
PopADDR AddrWidth Output Population memory address bus
PopWE 1 bit Output Population memory write enable
PopEN 1 bit Output Population memory enable
PopGNT 1 bit Input Population memory grant

Netlist Memory Access Signals

NetDATA DataWidth In/Out Netlist memory read/write data bus
NetADDR AddrWidth Output Netlist memory address bus
NetWE 1 bit Output Netlist memory write enable
NetEN 1 bit Output Netlist memory enable
NetGNT 1 bit Input Netlist memory grant

Fitness Memory Access Signals

FitDATA DataWidth In/Out Fitness memory read/write data bus
FitADDR AddrWidth Output Fitness memory address bus
FitWE 1 bit Output Fitness memory write enable
FitEN 1 bit Output Fitness memory enable
FitGNT 1 bit Input Fitness memory GNT

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each cromosome
Nets 16 bits Input Number of Nets in the Netlist

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 178

Table A.4: Signal Description of FCS (Con’t)
Pin Name Bus Width Direction Description

Replace Channel Signals (Population Mating only)
The Replace Channel Signals are used to send information from FCS to the RPS on
the location at which the offspring is to be stored into

ReplaceNum 16 bits Output Number of the offspring to be replaced into
the population

ReplaceStop 1 bit Output Signal to inform RPS that all chromosomes have
completed

ReplaceGnt 1 bit Output Grant access to the Replace function to read
channel data

ReplaceAck 1 bit Input Acknowledgement from the Replace function that
it has read the data

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 179

Table A.5: Signal Description of SPS
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
PopRepEnb 1 bit Input Start the Make Population process
SelectionDone 1 bit Output Notify the system that the SPS has completed

Fitness Memory Access Signals

FitDATA DataWidth In/Out Fitness memory read/write data bus
FitADDR AddrWidth Output Fitness memory address bus
FitWE 1 bit Output Fitness memory write enable
FitEN 1 bit Output Fitness memory enable
FitGNT 1 bit Input Fitness memory grant

Register Data
Used to send user defined variables into the submodule

CVRRate 16 bits Input Number to hold the Crossover rate
PopSize 16 bits Input Number of Chromosomes in the population

Crossover Channel Signals
The Crossover Channel Signals are used to send information from SPS to the CPS on
which parents to perform the crossover on

CrossChild1 16 bits Output The index of the first chromosome in the old
population to be mated

CrossChild0 16 bits Output The index of the second chromosome in the old
in the old population to be mated

CrossNum 16 bits Output The index of new chromosome to be created
created

CrossStop 1 bit Output Signal to stop executing the Crossover process
CrossGnt 1 bit Output Grant access to the Mutation Crossover to

read channel information
CrossAck 1 bit Input Acknowledgement from the Crossover function

that it has read the channel data

Copy Parent Channel Signals
The Copy Parent Channel Signals are used to send information from SPS to the CoPS on
which parents to copy directly to the new population

CopyChild1 16 bits Output The index of the first chromosome in the old
population to be copied into New Population

CopyChild0 16 bits Output The index of the second chromosome in the old
population to be copied into new population

CopyNum 16 bits Output Location of new population to store
chromosomes

CopyStop 1 bit Output Inform CoPS to stop execution
CopyGnt 1 bit Output Grant access to read channel information
CopyAck 1 bit Input Acknowledgement that channel has been read

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 180

Table A.6: Signal Description of CPS
Signal Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clk
GlobalRst 1 bit Input Global system reset
PopRepEnb 1 bit Input Start the Repair Chromosome process
CrossDone 1 bit Output Notify the system that the crossover process is

complete

Crossover Channel Signals
The Crossover Channel Signals are used to send information from SPS to the CPS on
who the parents are and where the children are to be stored in memory

CrossChild1 16 bits Input Sends the location of the first parent in the
current population

CrossChild0 16 bits Input Sends the location of the second parent in the
current population

CrossNum 16 bits Input Informs the submodule to which offsprings are
being created (Location in new population)

CrossStop 1 bit Input Signal to inform the CPS that the new
population has been created

CrossGnt 1 bit Input Provides access to the channel information
CrossAck 1 bit Output Acknowledgment that the channel information

has been read

Population Memory Access Signals

PopDATA DataWidth In/Out Population Memory read/write data bus
PopADDR AddrWidth Output Population memory address bus
PopWE 1 bit Output Population memory write enable
PopEN 1 bit Output Population memory enable
PopGNT 1 bit Input Population memory grant

New Population Memory Access Signals

NewPopDATA DataWidth In/Out New Population Memory read/write data bus
NewPopADDR AddrWidth Output New Population memory address bus
NewPopWE 1 bit Output New Population memory write enable
NewPopEN 1 bit Output New Population memory enable
NewPopGNT 1 bit Input New Population memory grant

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 181

Table A.7: Signal Description of CPS (con’t)
Pin Name Bus Width Direction Description

New Fitness Memory Access Signals

NewFitDATA DataWidth In/Out New Fitness Memory read/write data bus
NewFitADDR AddrWidth Output New Fitness memory address bus
NewFitWE 1 bit Output New Fitness memory write enable
NewFitEN 1 bit Output New Fitness memory enable
NewFitGNT 1 bit Input New Fitness memory grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each cromosome
PopSize 16 bits Input Number of chromosomes in the population

population

Mutation Channel Signals
The Mutation Channel Signals are used to send information from CPS to the MCS on
the location of the child chromosome that is to be mutated

MutationNum 16 bits Output The number in the new population of the
child that is to be mutated

MutationStop 1 bit Output signal to tell the MCS that all chromosomes
have been mutated

MutationGnt 1 bit Output Grant access to Mutation Channel
MutationAck 1 bit Input Acknowledgement from the MCS that it

has read the data

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 182

Table A.8: Signal Description of MCS
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

Clk 1 bit Input System clk
GlobalRst 1 bit Input Global system reset
PopRepEnb 1 bit Input Start the Repair Chromosome process
MutationDone 1 bit Output Notify the system that the mutation process

is complete

Mutation Channel Signals
The Mutation Channel Signals are used to send information from CPS to the MCS on
which chromosomes within the new population are to be mutated

MutationNum 1 bit Input Which chromosome in the population to
mutate

MutationStop 16 bit Input Inform the MCS to stop execution
MutationGnt 1 bit Input Gain access to read the channel information
MutationAck 1 bit Output Acknowledgment that channels have been read

New Population Memory Access Signals

NewPopDATA DataWidth In/Out New Population Memory read/write data bus
NewPopADDR AddrWidth Output New Population memory address bus
NewPopWE 1 bit Output New Population memory write enable
NewPopEN 1 bit Output New Population memory enable
NewPopGNT 1 bit Input New Population memory grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each chromosome
MUTERate 16 bits Input Number to hold Mutation Rate (out of 65,535)

Repair Channel Signals
The Repair Channel Signals are used to send information from MCS to the RCS on
which chromosomes within the new population are to be repaired

RepairNum 16 bit Output Sends the location of the chromosome to be
repaired

RepairStop 1 bit Output Signal to stop the RCS
RepairGnt 1 bit Output Grant access to read channel data
RepairAck 1 bit Input Acknowledgement that the channel has been

read

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 183

Table A.9: Signal Description of RPS
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clk
GlobalRst 1 bit Input Global system reset
PopRepEnb 1 bit Input Start the Replace Chromosome process
ReplaceDone 1 bit Output Notify the system that all children have

been replaced into the new population

Replace Channel Signals
The Replace Channel Signals are used to send information from RCS to the RPS on
which offsprings should be stored in the new population

ReplaceNum 16 bit Input Index of the offspring in memory
ReplaceStop 1 bit Input Signal to stop the Replacement process
ReplaceGnt 1 bit Input Grant access to read the channel information
ReplaceAck 1 bit Output Acknowledgement signal that the channel

information has been read

Population Memory Access Signals

PopDATA DataWidth In/Out Population Memory read/write data bus
PopADDR AddrWidth Output Population memory address bus
PopWE 1 bit Output Population memory write enable
PopEN 1 bit Output Population memory enable
PopGNT 1 bit Input Population memory grant

Fitness Memory Access Signals

FitDATA DataWidth In/Out Fitness Memory read/write data bus
FitADDR AddrWidth Output Fitness memory address bus
FitWE 1 bit Output Fitness memory write enable
FitEN 1 bit Output Fitness memory enable
FitGNT 1 bit Input Fitness memory grant

New Population Memory Access Signals

NewPopDATA DataWidth In/Out New Population Memory read/write data bus
NewPopADDR AddrWidth Output New Population memory address bus

NewPopEN 1 bit Output New Population memory enable
NewPopGNT 1 bit Input New Population memory grant

New Fitness Memory Access Signals

NewFitDATA DataWidth In/Out New Fitness Memory read/write data bus
NewFitADDR AddrWidth Output New Fitness memory address bus
NewFitWE 1 bit Output New Fitness memory write enable

NewFitEN 1 bit Output New Fitness memory enable
NewFitGNT 1 bit Input New Fitness memory grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each chromosome
PopSize 16 bits Input Size of the population

APPENDIX A. GENETIC ALGORITHM MODULE PIN DESCRIPTIONS 184

Table A.10: Signal Description of CoPS
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
PopRepoEnb 1 bit Input Start the CoPS process
CopyDone 1 bit Output Notify the system that submodule finished

Copy Parent Channel Signals
The Copy Parent Channel Signals are used to send information from SPS to the CoPS on
which parents to copy directly to the new population

CopyChild1 16 bit Input Index of the first parent in memory
CopyChild0 16 bit Input Index of the second parent in memory
CopyNum 16 bit Input Location in memory to store the parents
CopyStop 1 bit Input Signal to stop the CoPS process
CopyGnt 1 bit Input Gain access to read channel information
CopyAck 1 bit Output Acknowledgment that the channel has been read

Population Memory Access Signals

PopDATA DataWidth In/Out Population Memory read/write data bus
PopADDR AddrWidth Output Population memory address bus
PopWE 1 bit Output Population memory write enable
PopEN 1 bit Output Population memory enable
PopGNT 1 bit Input Population memory grant

Fitness Memory Access Signals

FitDATA DataWidth In/Out Fitness Memory read/write data bus
FitADDR AddrWidth Output Fitness memory address bus
FitWE 1 bit Output Fitness memory write enable
FitEN 1 bit Output Fitness memory enable
FitGNT 1 bit Input Fitness memory grant

New Population Memory Access Signals

NewPopDATA DataWidth In/Out New Population Memory read/write data bus
NewPopADDR AddrWidth Output New Population memory address bus
NewPopWE 1 bit Output New Population memory write enable
NewPopEN 1 bit Output New Population memory enable
NewPopGNT 1 bit Input New Population memory grant

New Fitness Memory Access Signals

NewFitDATA DataWidth In/Out New Fitness Memory read/write data bus
NewFitADDR AddrWidth Output New Fitness memory address bus
NewFitWE 1 bit Output New Fitness memory write enable
NewFitEN 1 bit Output New Fitness memory enable
NewFitGNT 1 bit Input New Fitness memory grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each chromosome

Appendix B

Local Search Module Pin

Descriptions

185

APPENDIX B. LOCAL SEARCH MODULE PIN DESCRIPTIONS 186

Table B.1: Signal Description of PUM
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
UpdateEnb 1 bit Input Start the PUM
UpdateDone 1 bit Output Notify the system that PUM is finished

Solution Memory Access Signals

SolDATA DataWidth In/Out Solution memory read/write data bus
SolADDR AddrWidth Output Solution memory address bus
SolWE 1 bit Output Solution memory write enable
SolEN 1 bit Output Solution memory enable
SolGNT 1 bit Input Solution memory grant

Partition 1 Memory Access Signals

Part1DATA DataWidth In/Out Partition 1 memory read/write data bus
Part1ADDR AddrWidth Output Partition 1 memory address bus
Part1WE 1 bit Output Partition 1 memory write enable
Part1EN 1 bit Output Partition 1 memory enable
Part1GNT 1 bit Input Partition 1 memory grant

Partition 0 Memory Access Signals

Part0DATA DataWidth In/Out Partition 0 memory read/write data bus
Part0ADDR AddrWidth Output Partition 0 memory address bus
Part0WE 1 bit Output Partition 0 memory write enable
Part0EN 1 bit Output Partition 0 memory enable
Part0GNT 1 bit Input Partition 0 memory grant

Netlist Memory Access Signals

NetDATA DataWidth In/Out Netlist memory read/write data bus
NetADDR AddrWidth Output Netlist memory address bus
NetWE 1 bit Output Netlist memory write enable
NetEN 1 bit Output Netlist memory enable
NetGNT 1 bit Input Netlist memory grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each Net
Nets 16 bits Input Number of Nets in the Netlist

APPENDIX B. LOCAL SEARCH MODULE PIN DESCRIPTIONS 187

Table B.2: Signal Description of SNNMM
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
SearchEnb 1 bit Input Start the SNNMM
NextDone 1 bit Output Notify the system that the SNNMM is finished

Partition 1 Memory Access Signals

Part1DATA DataWidth In/Out Partition 1 memory read/write data bus
Part1ADDR AddrWidth Output Partition 1 memory address bus
Part1WE 1 bit Output Partition 1 memory write enable
Part1EN 1 bit Output Partition 1 memory enable
Part1GNT 1 bit Input Partition 1 memory grant

Partition 0 Memory Access Signals

Part0DATA DataWidth In/Out Partition 0 memory read/write data bus
Part0ADDR AddrWidth Output Partition 0 memory address bus
Part0WE 1 bit Output Partition 0 memory write enable
Part0EN 1 bit Output Partition 0 memory enable
Part0GNT 1 bit Input Partition 0 memory grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each Net
Nets 16 bits Input Number of Nets in the Netlist

Data Replicator Channel Signals
The Partition Update Channel Signals are used to send information from SNNMM to the
DRM on which net to move and into which partition to move it

DataRepNum 16 bit Output Number of the net to be moved
DataRepBlk 1 bit Output Which block to move net into
StopDataRep 1 bit Output Signal to stop DRM
DataRepGnt 1 bit Output Grant access to read channel data
DataRepAck 1 bit Input Acknowledgement that channel has been read

APPENDIX B. LOCAL SEARCH MODULE PIN DESCRIPTIONS 188

Table B.3: Signal Description of DRM
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
SearchEnb 1 bit Input Start searching for best move
DataRepDone 1 bit Output Informs when DRM is complete

Data Replicator Channel Signals
The Partition Update Channel Signals are used to send information from SNNMM to the
DRM on which net to move and into which partition to move it

DataRepNum 16 bit Input Number of the net to be moved
DataRepBlk 1 bit Input Which block to move net into
DataRepStop 1 bit Input Signal to stop DRM
DataRepGnt 1 bit Input Grant access to read channel data
DataRepAck 1 bit Output Acknowledgement that channel has been read

Solution Memory Access Signals

SolDATA DataWidth In/Out Solution memory read/write data bus
SolADDR AddrWidth Output Solution memory address bus
SolWE 1 bit Output Solution memory write enable
SolEN 1 bit Output Solution memory enable
SolGNT 1 bit Input Solution memory grant

Partition 1 Memory Access Signals

Part1DATA DataWidth In/Out Partition 1 memory read/write data bus
Part1ADDR AddrWidth Output Partition 1 memory address bus
Part1WE 1 bit Output Partition 1 memory write enable
Part1EN 1 bit Output Partition 1 memory enable
Part1GNT 1 bit Input Partition 1 memory Grant

Partition 0 Memory Access Signals

Part0DATA DataWidth In/Out Partition 0 memory read/write data bus
Part0ADDR AddrWidth Output Partition 0 memory address bus
Part0WE 1 bit Output Partition 0 memory write enable
Part0EN 1 bit Output Partition 0 memory enable
Part0GNT 1 bit Input Partition 0 memory grant

Solution Copy Memory Access Signals

SolCpyDATA DataWidth In/Out Solution Copy memory read/write data bus
SolCpyADDR AddrWidth Output Solution Copy memory address bus
SolCpyWE 1 bit Output Solution Copy memory write enable
SolCpyEN 1 bit Output Solution Copy memory enable
SolCpyGNT 1 bit Input Solution Copy memory grant

APPENDIX B. LOCAL SEARCH MODULE PIN DESCRIPTIONS 189

Table B.4: Signal Description of DRM (Con’t)
Pin Name Bus Width Direction Description

Partition 1 Copy Memory Access Signals

Part1CpyDATA DataWidth In/Out Partition 1 Copy memory read/write
data bus

Part1CpyADDR AddrWidth Output Partition 1 Copy memory address bus
Part1CpyWE 1 bit Output Partition 1 Copy memory write enable
Part1CpyEN 1 bit Output Partition 1 Copy memory enable
Part1CpyGNT 1 bit Input Partition 1 Copy memory grant

Partition 0 Copy Memory Access Signals

Part0CpyDATA DataWidth In/Out Partition 0 Copy memory read/write
data bus

Part0CpyADDR AddrWidth Output Partition 0 Copy memory address bus
Part0CpyWE 1 bit Output Partition 0 Copy memory write enable
Part0CpyEN 1 bit Output Partition 0 Copy memory enable
Part0CpyGNT 1 bit Input Partition 0 Copy memory grant

Netlist Memory Access Signals

NetDATA DataWidth In/Out Netlist memory read/write data bus
NetADDR AddrWidth Output Netlist memory address bus
NetWE 1 bit Output Netlist memory write enable
NetEN 1 bit Output Netlist memory enable
NetGNT 1 bit Input Netlist memory grant

Update Partition Channel Signals out
This channel is used to inform the Update-Partition-Data to which net has been moved

PartUpdateNum 16 bit Output Sends which net to perform the update on
PartUpdateStop 1 bit Output Signal to stop update process
PartUpdateBlk 1 bit Output Inform the Update process which block to

the net into
PartUpdateGnt 1 bit Output Grant access to read channel data
PartUpdateAck 1 bit Input Acknowledgement channel data has been

read

Update Partition Channel Signals in
This channel is used to inform the ABMM when the Partition Update is finished

PartUpdateDoneGnt 1 bit Input Receive access to continue
PartUpdateDoneAck 1 bit Output Acknowledgement of grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each Net
Nets 16 bits Input Number of Nets in the Netlist

APPENDIX B. LOCAL SEARCH MODULE PIN DESCRIPTIONS 190

Table B.5: Signal Description of SLM
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
UpdtEnb 1 bit Input Start the SLM
LoopDone 1 bit Output Notify the system that the SLM is finished

Search Loop in Channel Signals in
The Search Loop Channel Signals are used to send information between the SLMs on
which net/cell perform operations on

LoopInStop 16 bit Input Signal to stop the SLM execution
LoopInNum 1 bit Input Number of net/cell to perform operations on
LoopInGnt 1 bit Input Grant access to read channel data
LoopInAck 1 bit Output Acknowledgement that channel has been read

Netlist/Cellist Memory Access Signals

DataListDATA DataWidth In/Out Net/Module list memory read/write data bus
DataListADDR AddrWidth Output Net/Module list memory address bus
DataListWE 1 bit Output Net/Module list memory write enable
DataListEN 1 bit Output Net/Module list memory enable
DataListGNT 1 bit Input Net/Module list memory grant

Register Data
Used to send user defined variables into the submodule

Modules 16 bits Input Number of Modules in each Net
Nets 16 bits Input Number of Nets in the Netlist

Search Loop out Channel Signals out

LoopOutStop 16 bit Input Signal to stop the following submodules
execution

LoopOutNum 1 bit Input Number of net/cell to perform operations on
LoopOutGnt 1 bit Input Grant access to read channel data
LoopOutAck 1 bit Output Acknowledgement that channel has been read

APPENDIX B. LOCAL SEARCH MODULE PIN DESCRIPTIONS 191

Table B.6: Signal Description of DUM
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

Clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
UpdtEnb 1 bit Input Signal to start the DUM
DataUpdtDone 1 bit Output Notify the system the DUM is done

Data Update Channel Signals
The Data Update Channel Signals are used to send information from SLM to the DUM
on which nets need to be check for current cut status

DataUpdtNum 16 bit Input The index of the net to be checked
DataUpdtStop 1 bit Input Signal to stop DUM
DataUpdtGnt 1 bit Input Grant access to read channel data
DataUpdtAck 1 bit Output Acknowledgement that channel has been read

Solution Copy Memory Access Signals

SolCpyDATA DataWidth In/Out Solution Copy memory read/write data bus
SolCpyADDR AddrWidth Output Solution Copy memory address bus
SolCpyWE 1 bit Output Solution Copy memory write enable
SolCpyEN 1 bit Output Solution Copy memory enable
SolCpyGNT 1 bit Input Solution Copy memory grant

Partition 1 Copy Memory Access Signals

Part1CpyDATA DataWidth In/Out Partition 1 Copy memory read/write data
bus

Part1CpyADDR AddrWidth Output Partition 1 Copy memory address bus
Part1CpyWE 1 bit Output Partition 1 Copy memory write enable
Part1CpyEN 1 bit Output Partition 1 Copy memory enable
Part1CpyGNT 1 bit Input Partition 1 Copy memory grant

Partition 0 Copy Memory Access Signals

Part0CpyDATA DataWidth In/Out Partition 0 Copy memory read/write
bus

Part0CpyADDR AddrWidth Output Partition 0 Copy memory address bus
Part0CpyWE 1 bit Output Partition 0 Copy memory write enable
Part0CpyEN 1 bit Output Partition 0 Copy memory enable
Part0CpyGNT 1 bit Input Partition 0 Copy memory grant

Netlist Memory Access Signals

NetDATA DataWidth In/Out Netlist memory read/write data bus
NetADDR AddrWidth Output Netlist memory address bus
NetWE 1 bit Output Netlist memory write enable
NetEN 1 bit Output Netlist memory enable
NetGNT 1 bit Input Netlist memory grant

Register Data
User defined variables and internal registers values sent into the submodule

Modules 16 bits Input Number of Modules in each Net
Nets 16 bits Input Number of Nets in the Netlist
Sum 16 bits Output Relative sum of uncut/cut nets

APPENDIX B. LOCAL SEARCH MODULE PIN DESCRIPTIONS 192

Table B.7: Signal Description of ABMM
Pin Name Bus Width Direction Description

System Signals
These are signals to control the execution of the submodule

Clk 1 bit Input System clock
GlobalRst 1 bit Input Global system reset
BestMoveEnb 1 bit Input Start the ABMM
BestMoveDone 1 bit Output Notify the system that ABMM has

finished

Solution Memory Access Signals

SolDATA DataWidth In/Out Solution memory read/write data bus
SolADDR AddrWidth Output Solution memory address bus
SolWE 1 bit Output Solution memory write enable
SolEN 1 bit Output Solution memory enable
SolGNT 1 bit Input Solution memory grant

Netlist Memory Access Signals

NetDATA DataWidth In/Out Netlist memory read/write data bus
NetADDR AddrWidth Output Netlist memory address bus
NetWE 1 bit Output Netlist memory write enable
NetEN 1 bit Output Netlist memory enable
NetGNT 1 bit Input Netlist memory grant

Register Data
Used to send user defined variables and the Local Search move

Modules 16 bits Input Number of Modules in each Net
Nets 16 bits Input Number of Nets in the Netlist
BestMoveNum 16 bits Input Which net will give the best gain
BestMoveBlk 1 bits Input Into which block to move net into

Update Partition out Channel Signals
This channel is used to inform the Update-Partition-Data to which net has been moved

PartUpdateNum 16 bit Output Sends which net to perform the update on
PartUpdateStop 1 bit Output Signal to stop update process
PartUpdateBlk 1 bit Output Inform the Update process which block to

the net into
PartUpdateGnt 1 bit Output Grant access to read channel data
PartUpdateAck 1 bit Input Acknowledgement channel data has been

read

Update Partition in Channel Signals
This channel is used to inform the ABMM when the Partition Update is finished

PartUpdateDoneGnt 1 bit Input Receive access to continue
PartUpdateDoneAck 1 bit Output Acknowledgement of grant

Appendix C

Genetic Algorithm Experimental

Results

193

A
P

P
E

N
D

IX
C

.
G

E
N

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
194

Benchmark Number Software Hardware Algorithm
of Nets Algorithm[Arei01]

(Sun Blade)
Time Best Worst Mean σ Time Best Worst Mean σ

Result Result Result Result Result Result

struct.dat 1920 75.570 1716.6 1675.4 1696.559 8.093 13.156 1304.2 1275.4 1296.050 6.409
prim1.dat 902 31.670 794.6 765.0 785.827 5.898 6.231 653.8 638.8 649.628 3.289
prim2.dat 3029 123.043 2574.4 2493.6 2536.681 15.114 20.559 1753.6 1722.6 1742.900 6.927
ind1.dat 2192 94.326 1949.6 1889.0 1922.908 12.516 14.687 1423.4 1395.8 1415.859 6.131
pcb1.dat 32 0.810 25.4 19.4 24.984 1.157 0.218 26.6 25.4 26.587 0.120
chip1.dat 294 9.420 252.6 241.4 250.705 2.463 2.087 237.4 229.8 236.442 1.440
chip4.dat 221 6.573 158.4 174.8 183.286 2.2951 1.506 182.4 177.2 182.102 0.886
frac.dat 147 4.270 110.0 98.8 108.045 2.630 1.059 115.8 110.6 115.597 0.762

Crossover=99%, Mutation=0.36%, Population Size=128, Generations=200, Difference 2
Sun Blade 2000 : 900 MHz UltraSparc III Cu, 1024 MB Ram, Solaris 9

Table C.1: Hardware vs Software Comparison

A
P

P
E

N
D

IX
C

.
G

E
N

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
195

Generation struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Number

20 Time 1.350 0.631 2.122 1.512 0.022 0.206 0.159 0.106
Best 850.6 439.0 1254.6 1014.4 25.8 171.6 148.4 92.8

Worst 802.6 406.6 1201.0 965.0 23.8 149.0 131.6 80.4
Mean 826.753 424.170 1229.627 990.997 25.784 163.488 141.486 88.714
SD 9.206 6.065 8.970 8.744 0.176 4.042 2.933 2.113

50 Time 3.297 1.550 5.160 3.694 0.056 0.519 0.378 0.259
Best 1026.0 540.8 1453.6 1176.2 27.0 213.4 177.6 114.2

Worst 989.8 513.0 1412.8 1136.0 26.0 201.4 168.0 106.0
Mean 1010.088 527.472 1434.198 1158.144 26.992 209.448 174.411 113.013
SD 6.860 4.726 7.686 6.672 0.088 1.876 1.635 1.203

100 Time 6.566 3.097 10.250 7.337 0.112 1.035 0.753 0.531
Best 1187.0 608.8 1615.2 1311.6 25.4 231.4 184.2 117.2

Worst 1157.0 588.4 1578.2 1279.2 22.8 223.0 178.6 111.2
Mean 1176.523 603.372 1598.912 1300.228 25.363 230.319 183.656 116.983
SD 6.644 4.063 7.363 6.188 0.292 1.400 1.015 0.847

200 Time 13.156 6.231 20.559 14.687 0.218 2.087 1.506 1.059
Best 1304.2 653.8 1753.6 1423.4 26.6 237.4 182.4 115.8

Worst 1275.4 638.8 1722.6 1395.8 25.4 229.8 177.2 110.6
Mean 1296.050 649.628 1742.900 1415.859 26.587 236.442 182.102 115.597
SD 6.409 3.289 6.927 6.131 0.120 1.440 0.886 0.762

500 Time 33.003 15.753 51.406 36.844 0.550 5.231 3.803 2.656
Best 1381.8 691.2 1857.2 1507.8 26.0 236.6 191.2 118.0

Worst 1355.6 676.4 1830.6 1482.0 22.8 230.6 185.0 113.2
Mean 1375.500 688.270 1849.320 1500.948 25.959 236.012 190.709 117.798
SD 6.885 3.724 7.455 7.022 0.334 1.254 1.077 0.726

Mutation Rate 0.36%, Crossover Rate 99%, Population Size 128, Difference 2

Average of 5 trials

Table C.2: Affect of Generation Size

A
P

P
E

N
D

IX
C

.
G

E
N

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
196

Crossover struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Rate

50% Time 6.687 3.169 10.459 7.478 0.113 1.053 0.763 0.534
Best 1205.8 613.2 1648.8 1339.4 26.2 226.4 176.8 112.8

Worst 1183.8 599.0 1626.4 1318.4 25.8 220.0 172.4 109.6
Mean 1200.073 610.280 1643.878 1334.298 26.197 225.784 176.645 112.733
SD 4.036 2.521 4.724 3.922 0.035 0.894 0.613 0.403

75% Time 9.978 4.718 15.575 11.128 0.169 1.559 1.144 0.800
Best 1280.0 643.0 1705.0 1387.6 25.4 225.0 185.2 115.4

Worst 1249.4 629.0 1680.0 1363.6 24.8 218.8 179.8 111.0
Mean 1272.081 640.011 1698.309 1380.734 25.395 224.225 184.942 115.2
SD 5.871 3.145 5.491 5.399 0.053 1.072 0.873 0.729

90% Time 11.972 5.672 18.619 13.353 0.203 1.881 1.372 0.959
Best 1296.2 655.2 1731.2 1399.4 25.6 229.6 182.4 114.8

Worst 1272.6 638.6 1707.0 1375.2 24.6 223.0 176.6 110.8
Mean 1289.880 651.253 1722.569 1391.931 25.592 229.084 182.045 114.617
SD 5.913 3.462 6.357 5.833 0.088 1.222 0.966 0.680

99% Time 13.156 6.231 20.559 14.687 0.218 2.087 1.506 1.059
Best 1304.2 653.8 1753.6 1423.4 26.6 237.4 182.4 115.8

Worst 1275.4 638.8 1722.6 1395.8 25.4 229.8 177.2 110.6
Mean 1296.050 649.628 1742.900 1415.859 26.587 236.442 182.102 115.597
SD 6.409 3.289 6.927 6.131 0.120 1.440 0.886 0.762

100% Time 13.275 6.303 20.719 14.816 0.225 2.094 1.522 1.081
Best 1297.4 649.0 1744.2 1390.4 25.8 232.0 188.4 125.0

Worst 1271.8 632.4 1715.2 1418.8 25.6 223.6 181.8 119.4
Mean 1290.162 645.320 1736.270 1409.7 25.798 230.922 188.002 124.691
SD 6.454 3.423 6.847 6.542 0.018 1.510 1.048 0.878

Mutation Rate 0.36%, Population Size 128, Generations 200, Difference 2

Average of 5 trials

Table C.3: Affect of Crossover Rate

A
P

P
E

N
D

IX
C

.
G

E
N

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
197

Mutation struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Rate

0.0% Time 13.168 6.262 20.538 14.728 0.225 2.056 1.500 1.069
Best 1375.0 643.4 1854.4 1510.0 26.0 211.0 178.8 117.4

Worst 1370.0 643.2 1846.8 1504.0 26.0 211.0 172.8 117.4
Mean 1372.709 643.398 1850.914 1507.669 26.000 211.000 172.800 117.400
SD 0.762 0.018 1.187 0.911 0.000 0.000 0.000 0.000

0.36% Time 13.156 6.231 20.559 14.687 0.218 2.087 1.506 1.059
Best 1304.2 653.8 1753.6 1423.4 26.6 237.4 182.4 115.8

Worst 1275.4 638.8 1722.6 1395.8 25.4 229.8 177.2 110.6
Mean 1296.050 649.628 1742.900 1415.859 26.587 236.442 182.102 115.597
SD 6.409 3.289 6.927 6.131 0.120 1.440 0.886 0.762

1% Time 13.085 6.178 20.428 14.606 0.222 2.072 1.510 1.050
Best 1133.6 594.6 1549.0 1260.0 26.0 231.0 185.0 118.8

Worst 1094.2 562.6 1504.6 1218.8 22.0 216.6 174.4 110.0
Mean 1122.298 586.656 1535.802 1248.508 25.919 228.494 183.255 117.714
SD 11.681 7.664 12.410 11.176 0.484 3.442 2.443 1.946

10% Time 12.928 6.060 20.300 14.503 0.219 1.991 1.472 1.022
Best 813.4 422.20 1236.4 982.2 26.2 165.4 140.6 94.4

Worst 709.8 355.8 1113.6 883.4 14.8 119.0 103.8 63.4
Mean 784.20 401.891 1198.752 952.087 24.172 152.081 129.516 85.225
SD 30.604 20.839 35.936 31.384 2.846 13.267 11.491 9.782

20% Time 12.903 6.040 20.281 14.491 0.219 1.78 1.463 1.009
Best 761.0 394.4 1184.8 938.2 26.4 146.4 124.6 80.6

Worst 656.8 317.6 1053.4 822.0 10.4 105.4 85.2 47.0
Mean 728.006 369.211 1143.269 901.277 22.298 132.277 112.109 70.252
SD 33.604 25.989 42.065 37.671 4.560 13.937 12.956 10.442

Crossover Rate 99%, Population Size 128, Generations 200, Difference 2

Average of 5 trials

Table C.4: Affect of Mutation Rate

A
P

P
E

N
D

IX
C

.
G

E
N

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
198

Population struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Size

32 Time 3.172 1.497 4.953 3.553 0.063 0.503 0.360 0.250
Best 1179.4 610.0 1612.2 1310.2 24.4 226.2 179.8 112.8

Worst 1164.2 599.0 1591.4 1291.2 24.2 222.2 176.0 109.0
Mean 1175.588 606.969 1605.731 1305.506 24.225 225.600 179.481 112.606
SD 4.634 2.650 5.984 4.904 0.066 1.029 0.839 0.736

64 Time 6.497 3.072 10.131 7.259 0.109 1.025 0.741 0.528
Best 1234.6 632.6 1688.0 1380.8 24.8 228.6 181.0 120.4

Worst 1214.0 618.4 1664.4 1355.4 24.8 223.6 177.2 115.2
Mean 1228.144 629.022 1679.972 1372.991 24.800 228.081 180.306 120.100
SD 5.239 3.475 6.032 5.934 0.000 1.188 0.788 0.960

128 Time 13.156 6.231 20.559 14.687 0.218 2.087 1.506 1.059
Best 1304.2 653.8 1753.6 1423.4 26.6 237.4 182.4 115.8

Worst 1275.4 638.8 1722.6 1395.8 25.4 229.8 177.2 110.6
Mean 1296.050 649.628 1742.900 1415.859 26.587 236.442 182.102 115.597
SD 6.409 3.289 6.927 6.131 0.120 1.440 0.886 0.762

256 Time 26.440 12.559 41.281 29.531 0.450 4.181 3.025 2.128
Best 1343.0 667.8 1816.2 1470.4 25.8 233.6 188.0 111.8

Worst 1315.4 648.6 1778.0 1439.8 25.2 225.2 181.6 117.2
Mean 1335.968 663.812 1805.094 1460.909 25.795 232.732 187.623 116.986
SD 6.641 3.808 8.134 7.131 0.053 1.371 0.985 0.806

512 Time 53.138 25.319 82.963 59.256 0.897 8.422 6.087 4.294
Best 1408.6 688.0 1866.4 1498.8 26.6 242.2 182.6 120.8

Worst 1372.6 665.6 1825.0 1460.8 24.4 231.2 6.087 112.8
Mean 1397.480 682.934 1854.175 1488.087 26.594 241.396 190.192 120.538
SD 7.710 4.222 8.822 7.700 0.105 1.506 1.102 0.981

Mutation Rate 0.36%, Crossover Rate 99%, Generations 200, Difference 2

Average of 5 trials

Table C.5: Affect of Population Size

A
P

P
E

N
D

IX
C

.
G

E
N

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
199

Generation struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Number

2 Time 13.156 6.231 20.559 14.687 0.218 2.087 1.506 1.059
Best 1304.2 653.8 1753.6 1423.4 26.6 237.4 182.4 115.8

Worst 1275.4 638.8 1722.6 1395.8 25.4 229.8 177.2 110.6
Mean 1296.050 649.628 1742.900 1415.859 26.587 236.442 182.102 115.597
SD 6.409 3.289 6.927 6.131 0.120 1.440 0.886 0.762

4 Time 13.166 6.244 20.516 14.666 0.222 2.062 1.509 1.053
Best 1320.2 660.8 1756.2 1424.8 26.6 235.4 187.6 116.4

Worst 1292.6 646.0 1729.2 1399.4 26.0 229.6 183.2 112.4
Mean 1310.942 657.027 1746.861 1417.600 26.595 234.880 187.311 116.244
SD 5.999 3.127 6.677 5.940 0.053 1.153 0.816 0.619

8 Time 13.165 6.231 20.562 14.700 0.221 2.072 1.528 1.063
Best 1318.2 665.4 1784.8 1441.2 26.8 236.4 192.0 119.2

Worst 1293.8 652.4 1756.2 1419.0 26.8 229.0 187.4 115.2
Mean 1310.247 661.570 1774.266 1434.686 26.800 235.177 191.512 118.886
SD 5.621 2.764 6.598 5.626 0.000 1.300 0.843 0.593

16 Time 13.178 6.247 20.535 14.700 0.231 2.071 1.500 1.062
Best 1347.6 667.0 1791.0 1454.8 28.2 229.6 181.6 118.0

Worst 1323.0 654.2 1764.0 1430.2 27.6 224.6 186.4 114.4
Mean 1341.230 663.933 1783.509 1447.694 28.195 229.036 185.914 117.842
SD 5.631 2.700 6.383 5.402 0.053 0.880 0.820 0.599

32 Time 13.175 6.266 20.553 14.710 0.231 2.069 1.516 1.056
Best 1339.6 678.0 1805.4 1465.6 31.4 237.2 190.4 118.8

Worst 1316.0 664.2 1778.0 1443.4 30.6 230.8 185.6 114.2
Mean 1332.283 674.653 1795.847 1459.513 31.394 236.189 189.878 119.489
SD 5.591 2.865 6.642 5.356 0.070 1.151 0.857 0.639

Mutation Rate 0.36%, Crossover Rate 99%, Generations 200, Population Size 128

Average of 5 trials

Table C.6: Affect of Balancing Difference

Appendix D

Local Search and Memetic

Algorithm Experimental Results

200

A
P

P
E

N
D

IX
D

.
L
O

C
A

L
S
E

A
R

C
H

A
N

D
M

E
M

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
201

Difference struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Size

2 Time 12.406 1.534 50.962 21.372 0.000 0.062 0.038 0.013
Best 1687 698 2447 1684 25 244 195 119

Worst 1646 663 2377 1643 23 231 185 99
Mean 1670.8 677.2 2408.4 1658.8 24 237.6 191.2 107.4
SD 13.673 11.923 29.486 18.236 0.632 5.161 3.709 6.946

4 Time 12.381 1.219 44.188 18.581 0.000 0.081 0.041 0.019
Best 1714.0 758 2514 1927 27 260 199 136

Worst 1698 734 2467 1833 24 235 187 121
Mean 1702.8 749.6 2487 1884.0 25.0 247.0 194.2 126.2
SD 5.776 8.452 18.815 31.509 1.095 8.695 4.261 5.154

8 Time 12.050 1.238 40.175 16.741 0.000 0.106 0.056 0.028
Best 1707 805 2597 1980 26 258 197 136

Worst 1677 746 2516 1915 23 233 190 120
Mean 1693.4 765.4 2549.2 1946.2 25.0 249.6 193.6 127.6
SD 9.912 21.332 27.967 22.516 1.095 8.868 2.653 5.314

16 Time 12.187 1.434 38.672 17.000 0.003 0.122 0.069 0.050
Best 1699 775 2625 2002 29 265 202 136

Worst 1684 744 2541 1945 25 239 196 125
Mean 1693.4 759.0 2580.2 1971 27.8 253.6 198.6 128.8
SD 5.161 12.033 38.672 22.423 1.470 8.709 2.417 3.868

32 Time 12.522 1.641 40.900 18.184 0.003 0.125 0.069 0.056
Best 1703 802 2666 2017 32 265 199 130

Worst 1690 736 2519 1984 32 225 185 110
Mean 1698.0 777.4 2597.8 2004.0 32.0 248.4 192.6 119.6
SD 4.427 22.931 51.658 10.918 0.000 13.017 5.571 6.859

Average of 5 trials

Table D.1: Affect of Difference Size on Local Search Algorithm

A
P

P
E

N
D

IX
D

.
L
O

C
A

L
S
E

A
R

C
H

A
N

D
M

E
M

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
202

Generation struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Number

2 Time 27.906 6.537 97.000 34.819 0.219 2.075 1.488 1.044
Best 1665.0 677.8 2371.0 1683.2 26.6 246.0 185.4 116.2

Worst 1275.4 638.8 1722.6 1395.8 25.4 229.8 177.2 110.6
Mean 1301.763 650.061 1752.622 1420.009 26.587 236.569 182.131 115.600
SD 45.894 4.645 77.525 34.819 0.120 1.872 0.954 0.773

4 Time 43.003 6.912 172.522 55.316 0.219 2.094 1.494 1.044
Best 1668.4 679.0 2368.44 1687.6 26.6 247.4 185.2 115.8

Worst 1275.4 639.6 1723.6 1395.8 25.4 229.8 177.2 110.6
Mean 1307.544 650.472 1762.191 1424.123 26.587 236.700 182.161 115.598
SD 64.335 5.646 107.494 46.651 0.120 2.275 1.017 0.762

8 Time 73.384 7.637 328.153 96.166 0.219 2.125 1.503 1.047
Best 1672.2 677.8 2378.2 1686.8 26.6 248.6 185.8 115.8

Worst 1275.4 638.8 1722.6 1396.6 25.4 229.8 177.2 110.6
Mean 1319.133 651.234 1781.694 1432.405 26.587 236.978 182.250 115.606
SD 89.698 6.968 150.509 64.569 0.120 2.833 1.118 0.593

16 Time 132.878 9.116 631.022 177.456 0.218 2.191 1.525 1.050
Best 1672.8 679.2 2373.6 1687.8 26.6 248.2 187.8 115.8

Worst 1275.4 638.8 1722.6 1397.2 25.6 229.8 177.2 110.6
Mean 1342.042 652.767 1820.250 1448.813 26.589 237.472 182.436 115.627
SD 121.663 9.088 204.927 87.761 0.102 3.434 1.406 0.704

32 Time 253.025 12.244 1244.731 341.675 0.225 2.319 1.566 1.059
Best 1673.8 682.0 2389.2 1691.8 26.6 248.4 187.0 116.2

Worst 1275.4 639.0 1723.2 1395.8 25.4 230.4 177.6 110.8
Mean 1387.969 656.133 1897.809 1482.097 26.587 238.541 182.691 115.641
SD 159.646 11.560 268.221 115.091 0.120 4.199 1.498 0.700

Crossover Rate 99%, Mutation Rate 0.36%, Population Size 128, Generations 200, Difference 2

Average of 5 trials

Table D.2: Exhausted Memetic Algorithm: Effect of Number of Random Individuals

A
P

P
E

N
D

IX
D

.
L
O

C
A

L
S
E

A
R

C
H

A
N

D
M

E
M

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
203

Generation struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Number

2 Time 27.091 8.859 57.650 33.359 0.222 2.272 1.594 1.088
Best 1437.8 693.0 1867.4 1483.8 26.6 254.8 194.6 118.8

Worst 1393.6 675.2 1820.4 1449.0 26.0 247.4 188.4 114.0
Mean 1417.719 688.230 1844.327 1467.673 26.595 253.984 194.248 118.583
SD 7.885 3.697 8.155 6.915 0.053 1.371 0.995 0.798

4 Time 41.134 11.360 94.6782 52.175 0.231 2.419 1.688 1.131
Best 1456.6 689.6 1894.4 1484.8 26.6 246.6 194.6 123.6

Worst 1413.4 673.6 1847.2 1448.2 25.4 240.0 189.2 118.2
Mean 1433.056 685.414 1870.266 1469.692 26.587 245.995 194.280 123.200
SD 7.997 3.482 8.771 6.802 0.120 1.272 0.906 0.844

8 Time 68.869 16.253 168.641 89.875 0.244 2.750 1.869 1.200
Best 1489.0 695.4 1913.2 1487.6 26.6 253.6 195.2 125.0

Worst 1439.4 677.8 1865.6 1450.4 25.4 247.0 189.8 119.6
Mean 1465.739 691.667 1888.138 1472.084 26.587 252.836 194.850 124.822
SD 9.026 3.795 9.768 7.347 0.120 1.297 0.968 0.711

16 Time 124.050 25.481 315.738 164.560 0.269 3.397 2.197 1.335
Best 1501.4 702.4 1939.6 1507.8 27.0 256.0 198.8 123.4

Worst 1456.2 686.2 1889.8 1469.2 26.8 246.2 194.2 118.0
Mean 1479.005 699.167 1915.484 1492.839 26.998 255.039 198.530 123.209
SD 9.535 3.555 10.791 8.012 0.018 3.397 2.197 0.809

32 Time 232.634 44.353 607.694 313.090 0.325 4.644 2.962 1.600
Best 1541.4 706.4 1968.4 1527.8 27.0 254.4 199.8 120.4

Worst 1495.2 685.6 1917.4 1489.0 26.2 248.2 194.2 115.4
Mean 1522.258 701.981 1945.864 1513.689 26.994 253.919 199.477 120.238
SD 10.788 3.796 12.374 8.539 0.070 1.192 0.956 0.698

Crossover Rate 99%, Mutation Rate 0.36%, Population Size 128, Generations 200, Difference 2

Average of 5 trials

Table D.3: Intermediate Memetic Algorithm: Effect of Number of Random Individuals

A
P

P
E

N
D

IX
D

.
L
O

C
A

L
S
E

A
R

C
H

A
N

D
M

E
M

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
204

Generation struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Number

5 Time 121.687 23.119 311.681 163.469 0.253 3.175 2.122 1.312
Best 1621.6 707.8 2088.4 1579.8 26.6 249.2 197.8 117.2

Worst 1573.6 688.8 2028.4 1536.0 26.4 242.0 191.8 112.4
Mean 1600.189 703.455 2062.164 1559.652 26.598 248.594 197.341 117.011
SD 10.746 3.819 12.747 9.549 0.018 1.344 1.020 0.732

10 Time 68.869 16.253 168.641 89.875 0.244 2.753 1.869 1.200
Best 1489.0 695.4 1913.2 1487.6 26.6 253.6 195.2 125.0

Worst 1439.4 677.8 1865.6 1450.4 25.4 247.0 189.8 119.6
Mean 1465.739 691.667 1888.138 1472.084 26.587 252.836 194.850 124.822
SD 9.026 3.795 9.768 7.347 0.120 1.297 0.968 0.711

20 Time 41.147 12.034 94.519 52.131 0.234 2.466 1.703 1.119
Best 1402.0 689.2 1858.4 1462.0 26.6 248.4 196.6 118.8

Worst 1357.0 668.6 1807.6 1423.0 25.4 241.0 190.8 114.6
Mean 1375.853 681.348 1831.906 1441.834 26.587 247.178 196.255 118.628
SD 8.237 3.778 9.577 7.388 0.120 1.373 1.008 0.669

30 Time 29.990 9.947 65.081 37.109 0.225 2.353 1.634 1.084
Best 1365.4 675.8 1805.8 1443.6 26.6 253.6 192.4 112.2

Worst 1339.4 660.0 1774.2 1416.4 25.8 245.2 186.8 107.4
Mean 1358.736 672.753 1797.297 1436.211 26.594 252.805 192.053 112.011
SD 6.363 3.672 7.536 6.265 0.070 1.457 0.960 0.709

40 Time 26.953 9.197 57.313 33.219 0.225 2.269 1.603 1.069
Best 1382.8 682.6 1803.6 1428.6 26.6 244.0 194.0 118.0

Worst 1329.0 656.4 1749.6 1388.2 25.4 234.2 187.8 112.8
Mean 1350.305 670.917 1771.213 1405.692 26.587 240.877 193.052 117.831
SD 9.617 4.358 9.820 7.124 0.120 1.316 1.030 0.727

Crossover Rate 99%, Mutation Rate 0.36%, Population Size 128, Generations 200, Difference 2

Average of 5 trials

Table D.4: Intermediate Memetic Algorithm: Effect of Generation Size between Local Search

A
P

P
E

N
D

IX
D

.
L
O

C
A

L
S
E

A
R

C
H

A
N

D
M

E
M

E
T

IC
A

L
G

O
R

IT
H

M
E

X
P

E
R

IM
E

N
T
A

L
R

E
S
U

L
T

S
205

Generation struct prim1 prim2 ind1 pcb1 chip1 chip4 frac
Number

3 Time 32.275 10.468 70.497 39.969 0.244 2.509 1.750 1.153
Best 1338.4 673.0 1802.2 1436.8 26.6 250.0 194.0 120.0

Worst 1303.6 653.0 1761.0 1407.0 25.4 241.4 189.0 115.8
Mean 1324.120 667.308 1785.816 1424.098 26.587 249.164 193.836 119.834
SD 6.876 3.791 8.018 6.286 0.120 1.496 1.003 0.641

6 Time 50.850 13.803 119.856 64.988 0.244 2.681 1.825 1.194
Best 1413.4 689.8 1847.6 1468.8 26.6 252.6 194.0 126.6

Worst 1370.2 673.2 1804.0 1439.2 25.4 244.4 188.6 121.2
Mean 1394.509 686.078 1828.450 1455.889 26.587 252.600 193.634 126.381
SD 7.909 3.563 8.322 6.525 0.120 1.404 0.986 0.828

9 Time 68.869 16.253 168.641 89.875 0.244 2.753 1.869 1.200
Best 1489.0 695.4 1913.2 1487.6 26.6 253.6 195.2 125.0

Worst 1439.4 677.8 1865.6 1450.4 25.4 247.0 189.8 119.6
Mean 1465.739 691.667 1888.138 1472.084 26.587 252.836 194.850 124.822
SD 9.026 3.795 9.768 7.347 0.120 1.297 0.968 0.711

12 Time 86.007 17.588 215.597 114.031 0.244 2.788 1.897 1.203
Best 1559.2 696.8 2008.4 1534.6 25.4 246.0 198.2 117.2

Worst 1512.8 680.4 1949.4 1495.6 26.6 239.0 191.0 112.8
Mean 1538.889 694.175 1979.005 1515.731 26.587 245.436 197.639 116.813
SD 9.237 3.492 11.019 7.703 0.120 1.257 1.071 0.718

15 Time 102.553 18.228 262.197 138.044 0.244 2.841 1.910 1.197
Best 1616.2 689.8 2070.8 1568.4 26.6 255.2 194.2 116.8

Worst 1568.2 674.6 2009.4 1523.8 25.4 247.6 189.0 111.6
Mean 1593.486 686.570 2044.948 1547.180 26.587 254.545 193.850 116.600
SD 9.904 3.590 11.936 8.783 0.120 1.498 0.960 0.737

Crossover Rate 99%, Mutation Rate 0.36%, Population Size 128, Generations 200, Difference 2

Average of 5 trials

Table D.5: Exhausted Memetic Algorithm: Effect of Number of Iterations of Local Search

Bibliography

[Abra97] David Abramson, Paul Logothetis, Adam Postula, and Marcus Ran-
dall, “Application specific computers for combinatorial optimisation,”
In Australasian Computer Architecture Conference, Sydney, Australia,
pp. 29–44, Springer-Verlag, Singapore, 1997.

[Ambl89] A.P. Ambler, “Hardware accelerators for cad,” In Computer-Aided En-
gineering Journal, 1989.

[Apor01] Chatchawit Aporntewan and Prabhas Chongstitvatana, “A hardware
implementation of the compact genetic algorithm,” In Proceedings of
the 2001 Congress on Evolutionary Computation CEC2001, pp. 624–
629, IEEE Press, COEX, World Trade Center, 159 Samseong-dong,
Gangnam-gu, Seoul, Korea, 27-30 2001.

[Arei00] S. Areibi, “A review of circuit partitioning,” School of Engineering,
Technical Report, University of Guelph, 2000.

[Arei01] Shawki Areibi, “Memetic Algorithms for VLSI Physical Design: Imple-
mentation Issues,” In Genetic and Evolutionary Computation Confer-
ence (GECCO), 2001.

[Arei93] Shawki Areibi and Anthony Vannelli, “Circuit partitioning using a tabu
search approach,” In ISCAS, pp. 1643–1646, 1993.

[Arei94] S. Areibi and A. Vannelli, “Advanced search techniques for circuit par-
titioning,” In P. Pardalos and H. Wolkowicz, editors, Quadratic Assign-
ment and Related Problems, pp. 77–96, AMS, 1994.

[Baza99] Kia Bazargan, Ryan Kastner, and Majid Sarrafzadeh, “3-d floorplan-
ning: Simulated annealing and greedy placement methods for reconfig-
urable computing systems,” In IEEE International Workshop on Rapid
System Prototyping, pp. 38–, 1999.

[Beas93a] David Beasley, David R. Bull, and Ralph R. Martin, “An overview of
genetic algorithms: Part 1, fundamentals,” University Computing, vol.
15, No. 2, pp. 58–69, 1993.

206

BIBLIOGRAPHY 207

[Beas93b] David Beasley, David R. Bull, and Ralph R. Martin, “An overview
of genetic algorithms: Part 2, research topics,” University Computing,
vol. 15, No. 4, pp. 170–181, 1993.

[Bish98] William D. Bishop, “Reconfigurable Hardware Objects for Dynamic
Memory Management,” In Proceedings of the 1998 CITO Researcher
Retreat, Hamilton, Ontario, Canada, May 1998.

[CD88] T.B.M. Carlstedt-Duke, “A solution to high performance acceleration of
digital system design,” In IEEE Colloquium on Hardware Accelerators
for VLSI CAD - A Tutorial, 1988.

[Celo03a] Celoxica, “Handel-c language reference manual for dk 2.0,” 2003.

[Celo03b] Celoxica, “http://www.celoxica.com/ (accessed: July 7, 2004),” 2003.

[Chan97] Pak K. Chan and Martine D. F. Schlag, “Acceleration of an FPGA
router,” In Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE Sympo-
sium on FPGAs for Custom Computing Machines, pp. 175–181, IEEE
Computer Society Press, Los Alamitos, CA, 1997.

[Coho03] James Cohoon, John Karro, and Jens Lienig, “Evolutionary algorithms
for the physical design of vlsi circuits,” In Advances in evolutionary
computing: theory and applications, pp. 683–711, Springer-Verlag New
York, Inc., 2003.

[Comp00a] K. Compton and S. Hauck, “An introduction to reconfigurable com-
puting,” 2000.

[Comp00b] K. Compton and S. Hauck, “An introduction to reconfigurable com-
puting,” 2000.

[Comp00c] K. Compton and S. Hauck, “Reconfigurable computing: A survey of
systems and software,” 2000.

[Comp99] K. Compton and S. Hauck, “Configurable computing: A survey of sys-
tems and software,” 1999.

[De J89] Kenneth A. De Jong and William M. Spears, “Using genetic algorithm
to solve NP-complete problems,” In James D. Schaffer, editor, Proc.
of the Third Int. Conf. on Genetic Algorithms, pp. 124–132, Morgan
Kaufmann, San Mateo, CA, 1989.

[DeHo99] André DeHon and John Wawrzynek, “Reconfigurable comput-
ing: what, why, and implications for design automation,” In Proceedings
of the 36th ACM/IEEE conference on Design automation conference,
pp. 610–615, ACM Press, 1999.

[Fidu82] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” In Proceedings of the 19th conference
on Design automation, pp. 175–181, IEEE Press, 1982.

BIBLIOGRAPHY 208

[Fidu88] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” In Papers on Twenty-five years of elec-
tronic design automation, pp. 241–247, ACM Press, 1988.

[Glov95] Glover, F. and Kelly, J. P. and Laguna, M., “Genetic algorithms and
tabu search: Hybrids for optimization,” Computers Ops Research, vol.
22, pp. 111–134, 1995.

[Grah95] Paul Graham and Brent Nelson, “A hardware genetic algorithm for the
travelling salesman problem on SPLASH 2,” In Will Moore and Wayne
Luk, editors, Field-Programmable Logic and Applications, pp. 352–361,
Springer-Verlag, Berlin, / 1995.

[Grah96] P. Graham and B. Nelson, “Genetic algorithms in software and in hard-
ware - A performance analysis of workstations and custom computing
machine implementations,” In Kenneth L. Pocek and Jeffrey Arnold,
editors, IEEE Symposium on FPGAs for Custom Computing Machines,
pp. 216–225, IEEE Computer Society Press, Los Alamitos, CA, 1996.

[Gurw03] Gurwant Koonar, A Reconfigurable Hardware Implementation of Ge-
netic Algorithmjs for VLSI CAD Design Master’s thesis, University of
Guelph, 2003.

[Hama97] Y. Hamadi and D. Merceron, “Reconfigurable architectures: A new
vision for optimization problems,” 1997.

[Hauc98] S. Hauck, “The future of reconfigurable systems,” 1998.

[Hayk99] Simon Haykin, Neural Networks: A Comprehensive Foundation, Second
Edition, Prentice Hall PTR, 1999.

[Kang03] Sung-Mo Kang and Yusuf Leblebici, CMOS Digital Integrated Circuits:
Analysis and Design (Third Edition), pp. 244, McGraw-Hill, New York,
2003.

[Kern70] B. Kernighan and S. Lin, “An effective heuristic procedure for par-
titioning graphs,” The Bell Systems Technical Journal, pp. 291–308,
1970.

[Kirk83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by sim-
ulated annealing,” Science, Number 4598, 13 May 1983, vol. 220, 4598,
pp. 671–680, 1983.

[Koza97] John R. Koza, Forrest H Bennett III, Jeffrey L. Hutchings, Stephen L.
Bade, Martin A. Keane, and David Andre, “Evolving sorting net-
works using genetic programming and rapidly reconfigurable field-
programmable gate arrays,” In Tetsuya Higuchi, editor, Workshop on
Evolvable Systems. International Joint Conference on Artificial Intelli-
gence, pp. 27–32, Nagoya, 1997.

BIBLIOGRAPHY 209

[Loo02] S M Loo, B Earl Wells, N Freije, and J Kulick, “Handel-C for Rapid
Prototyping of VLSI Coprocessors for Real Time Systems,” In South-
eastern Symposium on System Theory, 2002.

[Luo99] Zhen Luo, Margaret Martonosi, and Pranav Ashar, “An edge-endpoint-
based configurable hardware architecture for VLSI CAD layout design
rule checking,” In Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE
Symposium on FPGAs for Custom Computing Machines, pp. 158–167,
IEEE Computer Society Press, Los Alamitos, CA, 1999.

[Mall88] Sivanarayana Mallela and Lov K. Grover, “Clustering based simu-
lated annealing for standard cell placement,” In Proceedings of the
25th ACM/IEEE conference on Design automation, pp. 312–317, IEEE
Computer Society Press, 1988.

[Mart01] Peter Martin, “A hardware implementation of a genetic programming
system using FPGAs and Handel-C,” Genetic Programming and Evolv-
able Machines, vol. 2, No. 4, pp. 317–343, 2001.

[Mart02a] Peter Martin, “A Pipelined Hardware implementation of Genetic Pro-
gramming using FPGAs and Handel-C,” Technical Report, Department
of Computer Science, University of Essex, 2002.

[Mart02b] Peter Martin, “An analysis of random number generators for a hard-
ware implementation of genetic programming using fpgas and handel-
c,” 2002.

[Mazu99] Pinaki Mazumder and Elizabeth M. Rudnick, Genetic algorithms for
VLSI design, layout & test automation, Prentice Hall PTR, 1999.

[MCNC90] MCNC, “1990 MCNC Layout Benchmark Set,” 1990.

[Megs98] Megson and Bland, “Synthesis of a systolic array genetic algorithm,” In
IPPS: 11th International Parallel Processing Symposium, IEEE Com-
puter Society Press, 1998.

[Mich94] Zbigniew Michalewicz, Genetic Algorithms + Data Structures = Evo-
lution Programs (Second Edition), Springer-Verlag, New York, 1994.

[Mitc96] Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press,
Cambridge, Massachusetts, 1996.

[Moor65] G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, No. 8, pp. , 1965.

[Nich03] Kristian Nichols, A Reconfigurable Architecture for Artificial Neural
Networks Master’s thesis, University of Guelph, 2003.

BIBLIOGRAPHY 210

[Perk00] Perkins, S. and Porter, R. and Harvey, N.R., “Everything on the chip:
A hardware-based self-contained spatially- structured genetic algorithm
for signal processing,” Evolvable Systems: From Biology to Hardware:
Proc. 3rd International Conference on Evolvable Systems (ICES 2000),
Lecture Notes in Computer Science, vol. 1801, pp. 165–174, 2000.

[Plat98] Marco Platzner and Giovanni De Micheli, “Acceleration of satisfiability
algorithms by reconfigurable hardware,” In Reiner W. Hartenstein and
Andres Keevallik, editors, Field-Programmable Logic: From FPGAs to
Computing Paradigm, pp. 69–78, Springer-Verlag, Berlin, / 1998.

[Pres92] W H Press, S A Teukolsky, W T Vetterling, and B P Flannery, Nu-
merical Recipes in C: The Art of Scientic Computing (Second Edition),
Cambridge University Press, Cambridge, 1992.

[Rama] Pratap Ramamurthy and Jai Vasanth, “VLSI Implementation of Ge-
netic Algorithm,” under review by ACM conference.

[Reev02] Colin R. Reeves and Jonathan E. Rowe, Genetic Algorithms: Principles
and Perspectives: A Guide to GA Theory, Kluwer Academic Publishers,
2002.

[Scot95] Stephen D. Scott, Ashok Samal, and Sharad C. Seth, “HGA: A
hardware-based genetic algorithm,” In FPGA, pp. 53–59, 1995.

[Shac01] Shackleford, Barry and Snider, Greg and Carter, Richard J. and
Okushi, Etsuko and Yasuda, Mitsuhiro and Seo, Katsuhiko and Ya-
suura, Hiroto, “A high-performance, pipelined, fpga-based genetic al-
gorithm machine,” Genetic Programming and Evolvable Machines, vol.
2, No. 1, pp. 33–60, 2001.

[Sitk95] Nathan Sitkoff, Mike Wazlowski, Aaron Smith, and Harvey Silverman,
“Implementing a genetic algorithm on a parallel custom computing ma-
chine,” In Proceedings of the IEEE Symposium on FPGA’s for Custom
Computing Machines (FCCM’95), pp. 180–187, IEEE Press, 1995.

[Smit98] J E Smith and F Vavak, “Replacement strategies in steady state ge-
netic algorithms: Static environments,” In Foundations of Genetic Al-
gorithms 5, Morgan Kaufmann, 1998.

[Supp01] Celoxica Customer Support, “Rc1000 hardware reference manual,”
2001.

[Supp02] Celoxica Support, “http://www.celoxica.com/support/view article.asp
?ArticleID=360 (Accessed: June 25, 2004),” 2002.

[Whit94] Darrell Whitley, “A genetic algorithm tutorial,” Statistics and Com-
puting, vol. 4, pp. 65–85, 1994.

BIBLIOGRAPHY 211

[Wrig03] Michael G. Wrighton and Andr M. DeHon, “Hardware-assisted simu-
lated annealing with application for fast fpga placement,” In Proceed-
ings of the 2003 ACM/SIGDA eleventh international symposium on
Field programmable gate arrays, pp. 33–42, ACM Press, 2003.

[Xili03] Xilinx, “Corporate backgrounder,” 2003.

[Zhon98a] Peixin Zhong, Pranav Ashar, Sharad Malik, and Margaret Martonosi,
“Using reconfigurable computing techniques to accelerate problems in
the CAD domain: A case study with boolean satisfiability,” In Design
Automation Conference, pp. 194–199, 1998.

[Zhon98b] Peixin Zhong, Margaret Martonosi, Pranav Ashar, and Sharad Ma-
lik, “Accelerating boolean satisfiability with configurable hardware,”
In Kenneth L. Pocek and Jeffrey Arnold, editors, IEEE Symposium
on FPGAs for Custom Computing Machines, pp. 186–195, IEEE Com-
puter Society Press, Los Alamitos, CA, 1998.

