
LOW-POWER MULTI-THRESHOLD CMOS CIRCUITS
OPTIMIZATION AND CAD TOOL DESIGN

A Thesis

Presented to

The Faculty of Graduate Studies

of

The University of Guelph

by

WENXIN WANG

In partial fulfilment of requirements

for the degree of

Master of Science

May, 2004

c©Wenxin Wang, 2004

ABSTRACT

LOW-POWER MULTI-THRESHOLD CMOS CIRCUITS

OPTIMIZATION AND CAD TOOL DESIGN

Wenxin Wang

University of Guelph, 2004

Advisors:

Professor Shawki Areibi, Mohab Anis

Over the last two decades, low-power design has become a concern in digital VLSI

design, especially for portable and high performance systems. As technology scales into

the Deep Sub-Micron (DSM) regime, standby subthreshold leakage power increases ex-

ponentially with the reduction of the threshold voltage. Therefore, effective leakage min-

imization techniques are becoming a necessity. Multi-Threshold CMOS (MTCMOS) has

emerged as an effective circuit-level technique that attains a high performance, while

standby subthreshold leakage is minimized by cutting off the power of the inactive blocks

by sleep transistors. As a result, the proper sizing of the sleep transistor is pivotal to the

performance and the leakage power saving of the MTCMOS circuit.

The gate-clustering MTCMOS technique has been proposed as an effective method

to size the sleep transistor. The sizing problem has been modelled as a Bin-Packing

Problem (BPP) and a Set-Partitioning Problem (SPP). However, the computation time

for these solutions is high. In this thesis, two Genetic Algorithms (GAs) are implemented

to reduce the computation time of the CPLEX solver which is applied to the BPP and

SPP problems. In addition, to improve the solution quality and the computation time,

a First-Fit (FF) technique and a Set-Covering (SC) model are proposed. The FF tech-

nique achieves a 12% and 92% reduction, on average, in leakage power and CPU time,

respectively, compared to the leakage power and CPU time of the BPP technique. The

SC model reduces the objective cost of the problem and the computation time by 9% and

99%, respectively, compared to those of the SPP model.

The MTCMOS low-power design methodology involves an iterative design process

that involves an area versus power tradeoff and a timing versus power tradeoff. As a

result, the technique needs to be integrated into the principal design environment. In this

thesis, an automated vector generation engine is introduced to build a vector for each

gate in the gate-level netlist. Based on the vector representation, a MTCMOS design

environment is devised and integrated into the Canadian Microelectronics Corporation

(CMC) digital ASIC design flow.

Acknowledgements

I would like to thank my supervisor professor Shawki Areibi for his guidance and

assistance. Without his criticism, seriousness, and kindness, this work would never

have been possible. Thanks also to my co-advisor professor Mohab Anis who en-

couraged me to work harder and meet the deadline.

I am extremely grateful to the Canadian Microelectronics Corporation for pro-

viding CAD tools and making this work possible. Special thanks to Sean Smith,

who always solves the CAD tool problem immediately. Also, many thanks to Phil

Regier for making sure I could use facilities at University of Waterloo.

Finally, I would like to express my extreme gratitude to my wife, my parents,

my brother, and my sisters. They have been a constant support, help, and encour-

agement during this work.

Wenxin Wang

Guelph, Ontario

i

To

my family

whose love and encouragement helped accomplish this

thesis.

ii

Contents

1 Introduction 1

1.1 Low-Power VLSI Design . 1

1.2 Motivation . 3

1.2.1 MTCMOS Technique . 3

1.2.2 Automatic Design Environment 4

1.3 Research Approach . 5

1.4 Contributions . 6

1.5 Thesis Organization . 6

2 Background 8

2.1 Introduction . 8

2.2 Power Dissipation in CMOS Digital Circuits 9

2.2.1 Dynamic Power Dissipation 10

2.2.2 Static Power Dissipation . 15

2.3 Technology Scaling . 21

2.4 Subthreshold Leakage Reduction Techniques 24

2.4.1 Source Biasing . 25

iii

2.4.2 Stack Effect . 26

2.4.3 Dual VT Partitioning . 26

2.4.4 Variable Threshold CMOS (VTCMOS) 28

2.4.5 Multi-Threshold CMOS (MTCMOS) 29

2.5 Heuristics for Combinatorial Optimization 31

2.5.1 Local Search . 31

2.5.2 Simulated Annealing . 32

2.5.3 Genetic Algorithms (GA) 33

2.6 Test Circuits . 34

2.7 Summary . 35

3 MTCMOS Technique 36

3.1 Introduction . 36

3.2 Gate-Clustering MTCMOS Technique 40

3.2.1 Processing of Discharge Currents 41

3.2.2 Bin-Packing Problem (BPP) 43

3.2.3 Set-Partitioning Problem (SPP) 46

3.3 Genetic Algorithm (GA) for the BPP 51

3.3.1 BPP Results . 54

3.4 Genetic Algorithm (GA) for the SPP 58

3.4.1 SPP Results . 67

3.5 A First-Fit (FF) Technique . 74

3.5.1 Experimental Results of the First-Fit (FF) Approach 77

3.6 A Set-Covering Problem (SCP) Model 78

iv

3.6.1 Comparison of SPP and SCP 80

3.7 Summary . 82

4 MTCMOS Design Environment 85

4.1 Introduction . 85

4.2 CMC Digital ASIC Design Flow . 87

4.2.1 Front-End Portion of IC Design 88

4.2.2 Physical IC Design . 90

4.3 Discharge Current Database Construction 92

4.4 MTCMOS Design Environment . 97

4.4.1 Automatic Vector Generation from RTL 98

4.4.2 Environment Optimization 100

4.4.3 Sleep Transistor Insertion and Circuit Layout 101

4.5 Summary . 102

5 Conclusion 103

5.1 Heuristic/Mathematical Approaches 104

5.2 MTCMOS Design Environment . 105

5.3 Future Work . 105

A Glossary 107

B RTL Code 109

C Gate-Level Netlist 111

Bibliography 117

v

List of Tables

2.1 Influence of scaling on MOS device characteristics. 23

2.2 ISCAS’85 benchmarks used for testing. 34

3.1 Values for Isleep. 46

3.2 Comparison of CPU time(s) for CPLEX and GA. 57

3.3 Comparison of CPLEX and GA for “CLAD benchmark”. 70

3.4 Comparison of CPLEX and GA for “Parity benchmark”. 70

3.5 Comparison of CPLEX and GA for “Mult1 benchmark”. 71

3.6 Comparison of CPLEX and GA for “ALU benchmark”. 71

3.7 Comparison of CPLEX and GA for “Error benchmark”. 73

3.8 Comparison of CPLEX and GA for “AllCh benchmark”. 73

3.9 Comparison of CPLEX and GA for “Mult2 benchmark”. 73

3.10 Leakage comparison between BPP and FF techniques. 77

3.11 CPU time(s) comparison between BPP and FF techniques. 78

3.12 Cost comparison between SPP and SCP techniques. 81

3.13 Comparison of sleep transistor number for SPP and SCP. 81

3.14 Comparison of CPU time(s) for SPP and SCP. 82

vi

List of Figures

1.1 Overall approaches and developed MTCMOS environment. 5

2.1 Different power dissipation types in CMOS circuits. 10

2.2 CMOS inverter for switching power calculation. 11

2.3 Supply current used to charge up the load capacitance. 12

2.4 CMOS inverter for short-circuit power calculation. 13

2.5 Short-circuit current during switching. 14

2.6 Multi-level static CMOS circuit. 15

2.7 Signal glitching in multi-level CMOS circuit. 16

2.8 Leakage mechanism in short-channel nMOS transistor. 17

2.9 Scaling of a typical MOSFET by a factor of S. 21

2.10 Source biasing. 25

2.11 Stack effect. 27

2.12 Dual VT partitioning scheme. 28

2.13 VTCMOS inverter circuit. 29

2.14 Generic structure of a MTCMOS logic gate. 30

3.1 Sleep transistor in MTCMOS circuits. 37

vii

3.2 Approaches for gate-clustering MTCMOS technique. 39

3.3 Discharge current timing diagram and vector modelling. 43

3.4 Heuristic for forming clusters [Anis02]. 44

3.5 Gate-clustering and BPP techniques. 44

3.6 Simple example of the Set-Partitioning Problem (SPP). 47

3.7 Cost function calculation example. 48

3.8 Heuristic for grouping gates into clusters [Anis02]. 50

3.9 Chromosome representation. 51

3.10 Crossover procedure. 54

3.11 Crossover operator. 55

3.12 Convergence of the GA. 56

3.13 Computation time for CPLEX and GA. 57

3.14 Genetic Algorithm (GA) for Set-Partitioning Problem (SPP). . . . 58

3.15 Binary representation of chromosome. 59

3.16 Different parent selection methods. 63

3.17 Fusion crossover operator. 64

3.18 Uniform crossover operator. 64

3.19 Different crossover operators. 65

3.20 Population subgroups and fitness-unfitness landscape. 67

3.21 Results of different generation sizes (Isleep = 300µA). 68

3.22 Results of different population sizes (Isleep = 300µA). 69

3.23 Results of different mutation rates (Isleep = 250µA). 69

3.24 Formation of a single cluster. 75

3.25 First-Fit (FF) heuristic for MTCMOS sleep transistor sizing. 76

viii

3.26 Computation time for SCP and SPP. 83

4.1 Diagram showing ASIC design flow. 86

4.2 CMC digital ASIC design flow [Corp02]. 87

4.3 Standard cell (NAN2D0) test circuit. 93

4.4 Standard cell NAN2D0: 00 to 11 discharge current. 95

4.5 Standard cell NAN2D0: 01 to 11 discharge current. 95

4.6 Standard cell NAN2D0: 10 to 11 discharge current. 96

4.7 Effect of different fanouts on discharge current. 96

4.8 Standard cell NAN2D0 discharge current database. 97

4.9 MTCMOS design flow. 98

4.10 MTCMOS automatic design environment. 100

4.11 Layout example with placed sleep transistor. 102

ix

Chapter 1

Introduction

1.1 Low-Power VLSI Design

Since the invention of the first Integrated Circuit (IC) four decades ago, silicon

technology down scaling continues to meet the increasing demands for higher func-

tionality and better performance at a lower cost. Power dissipation, though not

entirely ignored, has been of little concern until recently. The advances in VLSI

integration technology have made it possible to put a complete System on a Chip

(SoC) which facilitates the development of portable systems. Portable battery-

powered applications such as notebook computers, cellular phones, Personal Digital

Assistants (PDAs), and military equipments profile power dissipation as a critical

parameter in digital VLSI design.

With the increasing prominence of portable systems, it is important to prolong

the battery life as much as possible, since it is the limited battery lifetime that

typically imposes strict demands on the overall power consumption of such systems.

1

CHAPTER 1. INTRODUCTION 2

Although the battery industry has been making efforts to develop batteries with a

higher energy capacity than that of conventional Nickel-Cadmium (NiCd) batteries,

a revolutionary increase of the energy capacity does not seem imminent. Therefore,

portable applications have led to rapid and innovative developments in low-power

circuit designs.

Power dissipation is also crucial for Deep Sub-Micron (DSM) technologies. To

further improve the performance of the circuits and to integrate more functions on a

chip, the feature size has to continue to shrink. As a result, the power dissipation per

unit area grows, increasing the chip temperature. Since the dissipated heat needs

to be removed to maintain an acceptable chip temperature, large cooling devices

and expensive packaging are required in portable devices and high-performance

digital systems such as microprocessors. A recently announced Pentium IV 1 CPU,

operating at a 3.4GHz frequency and 1.3V supply voltage, consumes 130W of power

[Inc04b]. This high power dissipation also requires special Printed Circuit Board

(PCB) technology to deliver large currents from the power supply to the various

devices in the system.

Another important reason for low-power design is reliability. As technologies

continue to scale, not only does the power density increase, but also the current

density increases. Large current densities cause serious problems such as electro-

migration and hot-carrier induced device degradation [Kang03]. In addition, the

heat gradient across the chip causes thermal and mechanical stress leading to early

breakdown. Therefore, the reliability can only be enhanced if power consumption

is reduced.

1Pentium and Pentium IV are trademarks of Intel Corporation.

CHAPTER 1. INTRODUCTION 3

Although power dissipation is important for modern VLSI design, performance

(speed) and area are still the main requirements of a design. However, low-power

design usually involves making tradeoffs such as timing versus power and area versus

power. Increasing performance, while the power dissipation is kept constant, is also

considered to be a low-power design problem.

1.2 Motivation

1.2.1 MTCMOS Technique

Low-power design methodologies range from the device/process level to the algo-

rithmic level. Of all these techniques, lowering the supply voltage (VDD) is the one

that significantly reduces the power consumption because of the quadratic relation-

ship between the supply voltage and the dynamic power consumption [Raba96]. To

compensate for the performance loss due to a lower supply voltage, a transistor’s

threshold voltage (VT) should also be reduced. However, this causes an exponential

increase in the subthreshold leakage current [Kang03]. Therefore, an important re-

search area today is to develop circuit techniques to reduce the subthreshold leakage

currents that are caused by the reduced VT .

Multi-Threshold Complementary Metal Oxide Semiconductor (MTCMOS) is an

effective circuit-level technique that provides a high performance and low leakage

power design strategy [Muto95]. However, the technique employs transistors2 at the

standby mode to isolate the power supply. As a result, the circuit speed at the active

2They are called sleep transistors.

CHAPTER 1. INTRODUCTION 4

mode degrades due to the presence of sleep transistors [Anis02]. Consequently, the

sleep transistor sizing is critical to the performance, the leakage power saving, and

the noise immunity of MTCMOS circuits.

For the past few years, a number of sleep transistor sizing techniques have been

reported in the literature. An innovative gate-clustering MTCMOS technique has

been introduced in [Anis02]. In this technique, the sleep transistor sizing problem is

modelled as a Bin-Packing Problem (BPP) and a Set-Partitioning Problem (SPP).

However, the BPP and the SPP consume an increasingly larger computation time

by the ILP CPLEX solver to find the optimal solutions as the circuit size increases.

Consequently, one motivation for this thesis is to develop heuristic methods to

find solutions that are close to the optimum for the BPP and the SPP in less

computation time. In addition, more simple and effective methods to model sleep

transistor sizing are proposed so that both the solution quality and the computation

time are improved.

1.2.2 Automatic Design Environment

Creating optimal low-power MTCMOS techniques involves tradeoffs such as timing

versus power and area versus power at the different design stages. For designers to

accurately and efficiently balance these tradeoffs, it is necessary for this technique

to be integrated with and applied throughout the entire RTL-to-GDSII flow.

Therefore, another goal of this thesis is to introduce a MTCMOS automatic

design environment and integrate it within the Canadian Microelectronics Corpo-

ration (CMC) digital ASIC design flow.

CHAPTER 1. INTRODUCTION 5

1.3 Research Approach

The overall research approach for the sleep transistor sizing problem and the de-

veloped MTCMOS design environment are illustrated in Figure 1.1.

Gate−Level

Synthesis

LVS & DRC

Placement/Routing

Floorplanning

CMC ASIC Design Flow MTCMOS Design Environment

Netlist

for BPP

for SPP

Circuit Topology
Extraction

Update
Accumulative Delay

Discharge

Vector Generation
Current

Database

Sleep Transistor Sizing
Genetic Algorithm

Genetic Algorithm

Sleep Transistor
Insertion

First−Fit
Technique

Set−Covering
Model

Figure 1.1: Overall approaches and developed MTCMOS environment.

Within the MTCMOS design environment, several heuristic methods are de-

veloped to handle the circuit extraction and vector generation. A discharge cur-

rent database, based on the technology library, is also constructed. In addition, a

CPLEX solver interfacing engine is built to identify the effectiveness of the Meta-

heuristics for solving the BPP and the SPP, compared to the effectiveness of the

CPLEX solver. Finally, a First-Fit (FF) technique and a Set-Covering (SC) model

are proposed to effectively solve the sleep transistor sizing problem.

CHAPTER 1. INTRODUCTION 6

1.4 Contributions

The main contributions of the thesis can be summarized as follows:

• An investigation of the applicability of several heuristic methods for a MTC-

MOS low-power design is conducted.

• The digital design flow for the CMC is automated by incorporating the MTC-

MOS approach.

• Several publications in the form of conference papers [?] and journal papers

have resulted from this thesis.

1.5 Thesis Organization

Chapter 2 presents various power dissipation mechanisms in CMOS digital circuits.

The increased subthreshold leakage, caused by technology scaling, is then discussed.

For each subthreshold leakage reduction approach, the advantages and disadvan-

tages are analyzed. This chapter provides a background and motivates the need for

the work that is presented in later chapters.

The gate-clustering MTCMOS technique is introduced in detail in the first part

of Chapter 3. Two GAs, specifically designed for the BPP and the SPP, are imple-

mented and compared with techniques in the literature. In addition, an effective

FF technique and a SC model are described in Chapter 3 with experimental results.

In Chapter 4, the Canadian Microelectronics Corporation (CMC) digital ASIC

design flow is introduced. An automated vector generation engine and a MTCMOS

CHAPTER 1. INTRODUCTION 7

design environment are developed and integrated into the CMC design flow. Finally,

Chapter 5 provides conclusions and suggestions for future work.

Chapter 2

Background

2.1 Introduction

With the smaller geometries in Deep Sub-Micron (DSM) technology, the number of

gates that need to be integrated on a single chip, power density, and total power are

increasing rapidly. Also, designing for low-power has become increasingly important

in a wide variety of applications. However, creating optimal low-power designs

involves tradeoffs such as timing versus power and area versus power at the different

stages of the design flow. Successful power-sensitive designs require engineers to

have the ability to accurately and efficiently perform these tradeoffs.

To address these issues directly, it is essential to understand the different types

and sources of power dissipation in digital Complementary Metal Oxide Semicon-

ductor (CMOS) circuits. The reason for choosing the CMOS technology is that it

is currently the most dominant digital IC implementation technology.

In this chapter, the most significant power dissipation sources in CMOS circuits

8

CHAPTER 2. BACKGROUND 9

are identified. Then some low-power design techniques to handle the leakage power

are discussed. Finally, several heuristics for combinatorial optimization problems

in VLSI design automation are introduced.

2.2 Power Dissipation in CMOS Digital Circuits

Power dissipation in CMOS digital circuits is categorized into two types: peak

power and time-averaged power consumption. Peak power is a reliability issue that

determines both the chip lifetime and performance. The voltage drop effects, caused

by the excessive instantaneous current flowing through the resistive power network,

affects the performance of a design due to the increased gate and interconnect

delay. This large power consumption causes the device to overheat which reduces

the reliability and lifetime of the circuit. Also noise margins are reduced, increasing

the chance of chip failure due to crosstalk.

The time-averaged power consumption in conventional CMOS digital circuits

occurs in two forms: dynamic and static. Dynamic power dissipation occurs in the

logic gates that are in the process of switching from one state to another. During

this process, any internal and external capacitance associated with the gate’s tran-

sistors has to be charged, thereby consuming power. Static power dissipation is

associated with inactive logic gates (i.e., not currently switching from one state to

another). Dynamic power is important during normal operation, especially at high

operating frequencies, whereas static power is more important during standby, es-

pecially for battery-powered devices. An overview of the different power dissipation

types is given in Figure 2.1.

CHAPTER 2. BACKGROUND 10

Short CircuitSwitching Glitching

Dynamic Power

Power Dissipation in CMOS Circuits

Static Power

Leakage

Figure 2.1: Different power dissipation types in CMOS circuits.

2.2.1 Dynamic Power Dissipation

Dynamic power, primarily caused by the current flow from the charging and dis-

charging of parasitic capacitances, consists of three components: switching power,

short-circuit power, and glitching power.

2.2.1.1 Switching Power Dissipation

In digital CMOS circuits, the switching power is dissipated when current is drawn

from the power supply to charge up the output node capacitance. During this

switching event, the output node voltage typically makes a full transition from 0 to

VDD, and one-half of the energy drawn from the power supply is dissipated as heat

in the conducting pMOS transistors. The energy stored in the output capacitance

during charge-up is dissipated as heat in the conducting nMOS transistors, when

the output voltage switches from VDD to 0. A CMOS inverter circuit, depicted in

Figure 2.2, is presented to illustrate this dynamic power dissipation during switch-

ing. The total capacitive load Cload at the output of the inverter consists of the

CHAPTER 2. BACKGROUND 11

diffusion capacitance of the drains of the inverter transistors, the total interconnect

capacitance, and the input gate oxide capacitance of the driven gates that are con-

nected to the inverter’s output. In most CMOS digital circuits, the switching power

pMOS

nMOS

V in Vout
I

GND

interconnect

load

V DD

C = C +drain

inputC + C

Power Consuming
Transition at the
Output Node

Figure 2.2: CMOS inverter for switching power calculation.

is the dominant component in power dissipation. Figure 2.3 exhibits the supply

current waveform of the inverter circuit. The average switching power dissipation

of the inverter can be calculated from the energy, required to charge up the output

node to VDD and discharge the total output load capacitance to ground (GND).

The generalized expression for the switching power dissipation of a CMOS logic

gate can be written as

Pavg = αT · Cload · V
2

DD · fCLK , (2.1)

where αT is the switching activity factor of the gate, Cload represents the total

load capacitance, VDD is the supply voltage, and fCLK represents the operating

frequency. The switching activity αT is computed by multiplying the probability

CHAPTER 2. BACKGROUND 12

that the output of a gate will be at zero by the probability that the output will

be at one [Kang03]. The parameter αT is a function of several factors, including

the Boolean function performed by the gate, the logic style, and the input signal

statistics.

0.0 1.0n 2.0n 3.0n 4.0n
−100u

300u

200u

100u

0.00

−100m

1.40

400m

900m

1.90

V
ol

ta
ge

 (
V

)
C

ur
re

nt
 (

A
)

Output
Voltage

Input
Voltage

Supply Current to Charge Up
the Output Capacitance

Time (s)

Figure 2.3: Supply current used to charge up the load capacitance.

Equation 2.1 indicates that the supply voltage is the dominant factor in the

switching power dissipation. Thus, reducing the supply voltage is the most effec-

tive technique to reduce the power dissipation. Other methods such as reducing

the switching activity and the load capacitance [Kang03], for reducing the power

consumption are also suggested by the equation.

2.2.1.2 Short-Circuit Power Dissipation

In static CMOS circuits, short circuit power dissipation is generated by the short

circuit current flowing through both the nMOS and the pMOS transistors during

CHAPTER 2. BACKGROUND 13

switching. The short circuit current occurs if a logic gate is driven by the input

voltage waveforms with the finite rise and fall times, as shown in Figure 2.4. Thus,

pMOS

nMOS

V in Vout

GND

C load

V DD

Short−Circuit
Current

Input Signal

and Fall Time
with Finite Rise

Figure 2.4: CMOS inverter for short-circuit power calculation.

both the nMOS and the pMOS transistors in the circuit conduct simultaneously for

a short period of time during the transitions, forming a direct current path between

the power supply and GND. This short circuit current does not contribute to the

charging of the capacitance in the circuit. Figure 2.5 illustrates the input-output

waveforms and the short circuit current of the inverter circuit with zero load capac-

itance in Figure 2.4. If a symmetric CMOS inverter has the same transconductance

(i.e., kn = kp = k) and threshold voltage parameters (i.e., VT,n = |VT,p| = VT),

and if the input voltage waveform has equal rise and fall times (τrise = τfall = τ),

the averaged short-circuit power dissipation with a very small capacitive load is

calculated as follows [Kang03]:

Pavg =
1

12
· k · τ · fCLK · (VDD − 2VT)3, (2.2)

CHAPTER 2. BACKGROUND 14

0.0 1.0n 2.0n 3.0n 4.0n
−100u

300u

200u

100u

0.00

−100m

1.40

400m

900m

1.90

V
ol

ta
ge

 (
V

)
C

ur
re

nt
 (

A
)

Output
Voltage

Input
Voltage

Short−Circuit Current

Time (s)

Figure 2.5: Short-circuit current during switching.

where k is transconductance of the transistors, VT is threshold volatge, and τ rep-

resents the equal rise and fall times. Note that the short-circuit power dissipation

is linearly proportional to the input signal’s rise and fall times. Therefore, reducing

the input transition times will decrease the short-circuit current component. How-

ever, the increased load capacitance (i.e., the output rise/fall time is larger than the

input rise/fall time) can also lead to less short-circuit power dissipation [Veen84].

Yet, this goal should be balanced carefully against other performance goals such as

propagation delay.

2.2.1.3 Glitching Power Dissipation

Glitching power is the power dissipated in the intermediate transitions during the

evaluation of the logic function of the circuit [Ragh96]. In multi-level logic circuits,

the propagation delay from one logic block to the next can cause the input signals to

CHAPTER 2. BACKGROUND 15

the block to change at different times. Thus, a node can exhibit multiple transitions

in a single clock cycle before settling to the correct logic level. These intermediate

erroneous outputs lead to a power loss in charging and discharging the output load

capacitance.

Primarily, glitches occur due to a mismatch or imbalance in the path lengths

in the logic network [Raba96]. Such a mismatch in the path lengths results in

a mismatch in the signal timing with respect to the primary inputs. Figure 2.6

denotes a simple multi-level network. If both NAND gates have the same delay and

three input signals arrive at the same time, the network will suffer from glitching,

as seen in Figure 2.7.

C

DA

B

E

G1

G2

Figure 2.6: Multi-level static CMOS circuit.

To avoid such power loss, designers can use synchronous circuits in which all

the outputs are either latched or gated to synchronize the inputs to the next stage.

Also, dynamic circuits avoid the problem of glitching power by synchronizing the

output with the clock signal. Finally, a careful layout can reduce the skew among

the input signals to each logic gate, leading to lower glitching activity.

CHAPTER 2. BACKGROUND 16

−100m
400m
900m

1.40
1.90

V
ol

ta
ge

 (
V

)

−100m
400m
900m

1.40
1.90

V
ol

ta
ge

 (
V

)

 1.20
1.50

2.10

1.80

V
ol

ta
ge

 (
V

)

Input A, B, C

Net D

Output E

Delay of Gate G1

0.0 1.0n 2.0n 3.0n 4.0n
Time (s)

Figure 2.7: Signal glitching in multi-level CMOS circuit.

2.2.2 Static Power Dissipation

Static power is caused by leakage currents while the gates are idle; that is, no

output transitions. Theoretically, CMOS gates should not be consuming any power

in this mode. This is due to the fact that either pull-down or pull-up networks are

turned off, thus preventing static power dissipation. In reality, however, there is

always some leakage current passing through the transistors, indicating that the

CMOS gates do consume a certain amount of power. Even though the static power

consumption, associated with an individual logic gate is extremely small, the total

effect becomes significant when tens of millions of gates are utilized in today’s

integrated circuits (ICs). Furthermore, as transistors shrink in size (as the industry

moves from one technology to another), the level of doping has to be increased,

thereby causing leakage currents to become larger.

Leakage currents come from a variety of sources within the transistor [Roy00].

CHAPTER 2. BACKGROUND 17

For long-channel transistors, the leakage current is dominated by the reverse diode

leakage and the subthreshold leakage. Other leakage mechanisms are peculiar to

the small-device geometries. In Figure 2.8, a summary of the leakage mechanism

in a short-channel transistor is presented.

n+

p−Well

Drain

I I7 8

I1

I4

Depletion Region
Junction

Depletion Region
Junction

n+

I5

Silicon Dioxide
Source

Gate

 2 3 6I I I

Well

effL

Figure 2.8: Leakage mechanism in short-channel nMOS transistor.

2.2.2.1 Reverse Diode Leakage Current (I1)

The reverse diode leakage occurs when the pn-junction between the drain and the

bulk of the transistor is reverse-biased. The reverse-biased drain junction conducts

a reverse saturation current which is drawn from the power supply. The reverse

leakage current of a pn-junction is expressed as

Ireverse = A · JS(e
qVbias

kT − 1), (2.3)

where Vbias is the reverse bias voltage across the junction, JS is the reverse saturation

current density, and A is the junction area. Since the leakage current is proportional

to the junction area, it is advisable to minimize the area as much as possible in the

CHAPTER 2. BACKGROUND 18

layout. The reverse saturation current density is exponentially proportional to the

temperature as well so that the JS increases dramatically at higher temperatures

[Pier96].

2.2.2.2 Subthreshold Leakage Current (I2)

The subthreshold leakage current (also known as the weak inversion current) occurs

when the gate voltage is below the threshold voltage VT . The subthreshold leakage

current can be approximately formulated as [Anis03]

Isubthreshold = µ0 · Cox ·
W

L
· V 2 · e1.8 · e

(Vgs−VT)

nV , (2.4)

where µ0 is the zero bias mobility, Cox is the gate oxide capacitance, and (W/L)

represents the width to the length ratio of the leaking MOS device. The variable

V in (2.4) is the thermal voltage constant, and Vgs represents the gate to the

source voltage. The parameter n in (2.4) is the subthreshold swing coefficient given

by 1 + Cd/Cox with Cd being the depletion layer capacitance of the source/drain

junction. One important point about (2.4) is that the subthreshold leakage current

is exponentially proportional to (Vgs − VT). Traditionally, the threshold voltage

VT has been high enough that with Vgs = 0, the subthreshold current is very

small. However, with today’s smaller geometry processes such as 90nm, reduced

power supply voltages require the VT to be reduced also, and thus, the subthreshold

leakage at Vgs = 0 becomes significant.

Equation 2.4 indicates that the subthreshold leakage can be reduced by increas-

ing the VT or reducing the Vgs. However, increasing the VT affects performance, as

will be described later on, and so there is a strong tradeoff between performance

CHAPTER 2. BACKGROUND 19

and the power dissipation of a design.

2.2.2.3 Drain-Induced Barrier-Lowering Effect (I3)

Drain-Induced Barrier Lowering (DIBL) occurs when the depletion region of the

drain interacts with the source near the channel surface to lower the source potential

barrier [Roy00]. The source then injects carriers into the channel surface without

the gate playing a role. As a result, the DIBL is enhanced at a higher drain voltage

and shorter Leff . DIBL reduces the VT for short-channel devices [Kao02].

2.2.2.4 Gate-Induced Drain Leakage (I4)

The Gate Induced Drain Leakage (GIDL) current arises in the high electric field

under the gate/drain overlap region which causes a deep depletion [Brew90]. GIDL

occurs at a low VG and high VD bias and generates carriers into the substrate and

drain from the surface traps.

2.2.2.5 Punch-Through (I5)

Punch-Through occurs when the drain and the source depletion region approach

each other and electrically “touch” deep in the channel [Kang03]. Punch-through

is a space-charge condition that allows the channel current to exist deep in the

subgate region, causing the gate to lose control of the subgate channel region.

Punch-Through is regarded as a subsurface version of DIBL, and is obviously an

undesirable condition and should be prevented in normal circuit operation.

CHAPTER 2. BACKGROUND 20

2.2.2.6 Narrow-Channel Effects (I6)

MOS transistors, which have channel widths W of the same order of magnitude

as the maximum depletion region thickness, are defined as narrow-channel devices

[Bohr96]. The most significant narrow-channel effect is that it increases the actual

threshold voltage VT .

2.2.2.7 Gate Oxide Tunnelling (I7)

The gate oxide tunnelling current arises due to the finite (non-zero) probability of an

electron directly tunnelling through the insulating SiO2 layer. The probability, and

thus, the gate tunneling current itself, is a strong exponential function of the gate

oxide layer thickness (tox) and the voltage potential across the gate oxide [Lee03b].

For tox ≥ 2nm, the gate tunnelling current is typically very small, compared to that

of the other forms of leakage current [Yeo00]. In the most recent generation (i.e.,

90nm CMOS technology), the gate oxide thickness is scaled down to a range of

1.2-1.6nm to provide a large current at the reduced voltage supply and to suppress

the short-channel effects [Ono01]. This results in the presence of a significant gate

tunnelling leakage current, which, in some cases, has caught up to the subthreshold

leakage in magnitude [Lee03b].

2.2.2.8 Hot-Carrier Injection(I8)

Reducing the device dimensions to the DSM regime, accompanied by increasing

the substrate doping densities, results in a significant increase of the horizontal

and vertical electrical fields in the channel region. However, electrons and holes

that gain high kinetic energies in the electric field (hot carriers) can be injected

CHAPTER 2. BACKGROUND 21

into the gate oxide. This causes permanent changes in the oxide-interface charge

distribution, degrading the current-voltage characteristics of the MOSFET.

Out of all these leakage currents, the subthreshold leakage is the dominant source

of static power [Kao02]. This thesis focuses on circuit-level techniques to handle the

exponentially increased subthreshold leakage that is caused by technology scaling.

2.3 Technology Scaling

Since the invention of the first Integrated Circuit (IC) in the early 1960s, CMOS

technology has continued to scale down at a dramatic rate. In 1975, Moore pre-

dicted that the number of transistors per square inch in an IC will double every

18 months [Moor75]. With each new process generation, all of the lateral and

some of the vertical dimensions of the transistors are scaled down to allow a higher

level of integration. Figure 2.9 reflects the reduction of the key dimensions of a

typical MOSFET with the corresponding increase of the doping densities. Scaled

Oxide

L’ = L / S

W’ = W / S
 ox oxt ’ = t / S

N ’=N * S N ’=N * S D D D Dx ’ = x / Sj j

Source
Gate

Drain

A ASubstrate Doping N ’ = N * S

Figure 2.9: Scaling of a typical MOSFET by a factor of S.

dimensions and doping densities have an immediate impact on reducing the power

CHAPTER 2. BACKGROUND 22

dissipation, as well as increasing the circuit speed. The primary effect of process

scaling is the reduction of all the capacitance, which provides a proportional de-

crease in the power and circuit delays. As today’s technology scales below 90nm,

the transistor density will continue to grow. The transistor delay will also continue

to improve, at least modestly, to a 30% reduction per generation [Karn02a]. The

continued scaling of the technology has meant that designs that were limited by

the amount of functionality on a chip are now limited by the amount of constrained

power.

In practice, there are two types of scaling strategies for MOSFET devices: full

scaling and constant voltage scaling. In full scaling (also called constant field CF

scaling), proposed by Dennard et al. in 1974 [Denn74], all the horizontal and ver-

tical dimension of the transistor, as well as the power supply, are scaled down by

a factor of S. In order to preserve the magnitude of the internal electric field, the

doping densities need to be increased by the same factor S. In constant voltage

(CV) scaling, proposed by Chatterjee et al. in 1980 [Chat80], all the dimensions of

the MOSFET are reduced by a factor of S, as in full scaling, but the power sup-

ply voltage and the terminal voltage remain unchanged. The doping densities are

increased by a factor of S2 in order to preserve the charge-field relation. Table 2.1

summarizes the scaling factors for all the significant dimensions, power supply, dop-

ing densities of the MOS transistors, and changes in the key device characteristics

for these two scaling strategies [Kang03].

It is evident that CF scaling reduces both the drain and the supply voltage by a

factor of S. Therefore, the power dissipation of the transistor decreases by a factor

of S2, and increases by the factor S in CV scaling. This significant reduction of

CHAPTER 2. BACKGROUND 23

Parameter Constant Field (CF) Constant Voltage (CV)

Channel length (L) 1/S 1/S
Channel width (W) 1/S 1/S

Gate oxide thickness (tox) 1/S 1/S
Junction depth (xj) 1/S 1/S

Power supply voltage (VDD) 1/S 1
Threshold voltage (VT0) 1/S 1

Doping densities (NA, ND) S S2

Oxide capacitance (Cox) S S
Drain current (ID) 1/S S

Delay (τ) 1/S 1/S2

Power dissipation (P) 1/S2 S
Leakage power (Pleakage) exp 1
Power density (P/Area) 1 S3

Power delay produce (PDP) 1/S3 1/S

Table 2.1: Influence of scaling on MOS device characteristics.

the power dissipation is one of the most attractive features of CF scaling. However,

Intel has used CV scaling in their microprocessors until the appearance of 0.8µm

technology, where a 5V supply voltage has been used to maintain the compatibility

with the supply voltage of conventional systems, and also to obtain a higher opera-

tion speed [Inc04a]. CF scaling has been used since 0.5µm technology has evolved.

The main reason for the supply voltage scaling that began in the 0.5µm generation

is that CV scaling increases the drain current densities and the power density by a

factor of S3. This large increase in the current and power densities can eventually

cause serious reliability problems such as electromigration, hot carrier degradation,

oxide breakdown, and electrical over-stress, for the scaled transistor. Another rea-

son for reducing the power supply voltage is to decrease the power consumption

of the chip. However, the CF scaling causes the subthreshold leakage currents to

grow exponentially and become an increasingly larger component of the total power

dissipation [Kao02]. Therefore, effective leakage minimization techniques need to

be designed.

CHAPTER 2. BACKGROUND 24

2.4 Subthreshold Leakage Reduction Techniques

Equation 2.1 denotes that the average switching power dissipation is proportional

to the square of the power supply voltage. Therefore, the reduction of the VDD

significantly reduces the power consumption. Although such a reduction is usu-

ally very effective, the inevitable design tradeoff is an increase in the circuit delay

[Raba96]. This is obvious from the following propagation delay expressions for the

CMOS inverter circuit which are

τPHL =
Cload

kn(VDD − VT,n)

[

2VT,n

VDD − VT,n

+ ln

(

4(VDD − VT,n)

VDD

− 1

)]

(2.5)

and

τPLH =
Cload

kp(VDD − |VT,p|)

[

2|VT,p|

VDD − |VT,p|
+ ln

(

4(VDD − |VT,p|)

VDD

− 1

)]

. (2.6)

The propagation delays in (2.5) and (2.6) indicate that the negative effect of re-

ducing the power supply voltage on delay can be compensated for, if the threshold

voltage of the transistor VT is reduced accordingly. However, a reduction in the

VT will cause an exponential increase in the device subthreshold leakage, as men-

tioned in Section 2.2.2.2. In turn, this increases the static power of the device to

unacceptable levels [FTsa03]. This clearly justifies the need for leakage reduction

techniques, even for current technologies.

Recently, an important area of research focuses on the development of circuit

techniques to reduce subthreshold leakage currents that are affected by the sup-

ply voltage and the threshold voltage [Kao02]. The most commonly used leakage

reduction techniques such as source biasing, dual VT partitioning, VTCMOS, and

CHAPTER 2. BACKGROUND 25

MTCMOS are first reviewed. These techniques reduce leakage currents during the

standby states. As technology continues to scale down, leakage currents become ex-

cessive, and therefore, need to be balanced during the active mode as well [Kao02].

2.4.1 Source Biasing

The concept of source biasing refers to the application of a positive bias voltage

to the source terminal of an “off” nMOS transistor during the standby mode,

which raises the threshold voltage of the transistor [Bell95], as illustrated in Figure

2.10. By taking advantage of the body effect phenomenon the subthreshold leakage

current can be exponentially reduced. In addition, the gate to source voltage (Vgs)

becomes negative. The net effects are that the “off” transistor is turned off more

strongly and the leakage currents can be reduced during the standby mode.

V G

V D

V S
+
−

(a)

GND

Figure 2.10: Source biasing.

CHAPTER 2. BACKGROUND 26

2.4.2 Stack Effect

Two series-connected “off” transistors or transistor “stacks” will have lower leakage

currents than those of a single “off” device due to the self-reverse biasing effects

[Kawa93]. This so-called “stack effect”, shown in Figure 2.11, causes the leakage

current to vary with the circuit primary input vector [Ye98]. Therefore, special

flip-flops can be inserted in the circuit to produce the input vector that provides

the least amount of leakage at the primary input flip-flops [Hatl97]. This technique

can reduce leakage power at the standby mode. However, determining the input

vector that minimizes the leakage current is a difficult problem due to the inherent

logic correlations in the circuit.

In [John02], the stack effect is extended to inserting an extra series of “off”

devices into the single stack paths. This provides a moderate leakage reduction

while a standard single threshold voltage technology is used. One drawback of

this approach is that there are no appropriate CAD tools to identify the single

stack candidates with enough slack such that inserting extra series devices will not

adversely affect the performance.

2.4.3 Dual VT Partitioning

In modern process technology, multiple threshold voltages are provided for each

transistor. A dual VT process provides the designer with transistors that are either

fast (with a high leakage) or slow (with a low leakage). Therefore, a circuit can

be partitioned into high and low threshold voltage gates or transistors, which is a

tradeoff between performance and reduced leakage currents. For instance, in Figure

CHAPTER 2. BACKGROUND 27

Istack−u

Istack−l

V int

(b)
GND

DDV

Figure 2.11: Stack effect.

2.12, the critical path within the circuit should be implemented with a low VT to

maximize the performance, whereas non-critical paths should be implemented with

high VT devices to minimize the leakage currents. As a result, the leakage currents

are significantly reduced in both the standby and active modes, compared to an all

low VT implementation. At the same time, circuit performance is maintained at

low supply voltages.

A limitation of this technique is that CAD tools need to be developed and in-

tegrated into the design flow to optimize the partitioning process. A gate-level

method for assigning dual threshold voltage is described in [Kato00]. Another

method, based on a transistor-lever for a dual VT assignment, achieves a better

leakage reduction because the individual transistors within the gates themselves

are optimized to have multiple threshold voltage options [Ketk02]. The dual VT

partitioning technique can also be combined with other techniques to provide an

even better performance and leakage reduction. A simultaneous input vector con-

CHAPTER 2. BACKGROUND 28

In2

In1

In3
In4

In5
In6

In7
In8

In2

In1

In3
In4

In5
In6

In7
In8

TLVHVT TLV

T V T V

2

3

4

6

1

2

3

4

5

6

7 8

1

5

7 8
OutOut

 (Critical Path)

 Initial all low . Non−critical path gates become high .

Figure 2.12: Dual VT partitioning scheme.

trol and dual VT assignment approach is proposed in [Lee03a], whereas a dual VT

partitioning technique in conjunction with a transistor sizing algorithm is explored

in [Siri99, Karn02b].

2.4.4 Variable Threshold CMOS (VTCMOS)

Variable Threshold CMOS (VTCMOS) is a circuit design technique that has been

developed to reduce standby leakage currents in low VDD and low VT applications

[Hyun01]. Rather than employ multiple threshold voltage process options, a VTC-

MOS circuit inherently uses low threshold voltage transistors, and the substrate

bias voltages of the nMOS and pMOS transistors are generated by the variable

substrate bias control circuit that is depicted in Figure 2.13.

When the inverter circuit in Figure 2.13 is operating in its active mode, the

inverter transistors work as conventional CMOS transistors and do not experience

any body effect. The circuit operates with a low-power dissipation (due to a low

CHAPTER 2. BACKGROUND 29

Vin Vout

VDD = 2 V

Substrate
Bias Control

Circuit

GND

V =

V =

V =

V =

T,p

T,n

Bp

Bn

− 0.2 in Active Mode

− 0.6 in Standby Mode

 0.2V in Active Mode

 0.6V in Standby Mode

2V in Active Mode

4V in Standby Mode

 0V in Active Mode

−2V in Standby Mode

Figure 2.13: VTCMOS inverter circuit.

VDD) and a high switching speed (due to a low VT). When the circuit is in the

standby mode, however, the substrate bias control circuit generates a lower sub-

strate bias voltage for the nMOS transistor and a higher substrate bias voltage for

the pMOS transistor. As a result, the magnitudes of the threshold voltages VT,n

and VT,p both increase in the standby mode due to the body effect. Therefore, the

leakage power dissipation in the standby state can be significantly reduced with

this circuit design technique.

However, with technology scaling, it has been proved that the effectiveness of

VTCMOS reduces as the channel lengths become smaller, or the VT values are

lowered [FTsa03, Karn02a]. Also, VTCMOS is intrinsically more problematic for

reliability since the high voltage across the oxide decreases the lifetime of the device

[FTsa03].

CHAPTER 2. BACKGROUND 30

2.4.5 Multi-Threshold CMOS (MTCMOS)

MTCMOS is a very effective technique to reduce the leakage current of circuits

in the standby mode [Muto95]. The principle of the MTCMOS technique is the

employment of low VT transistors to design the logic gates for which the switching

speed is essential, and the high VT transistors (also called sleep transistors) are used

to effectively isolate the logic gates in the standby state and reduce the leakage

dissipation. The generic circuit structure of the MTCMOS circuit is offered in

Figure 2.14. This method will be explained in more detail in Chapter 3.

DDV

DDV

VT

VT

V T

GND

DDV

pMOS

nMOS

Parasitic
Capacitance

Parasitic
Capacitance

High

High

CMOS Logic
with Low

Virtual

Virtual GND

Sleep

Sleep

Figure 2.14: Generic structure of a MTCMOS logic gate.

Although the MTCMOS circuit technique is effective for controlling leakage

currents in combinational logic, a drawback is that the technique can cause the

internal nodes to float and result in the loss of the stored state for the memory

units and the flip-flops [Liao02]. As a result, researchers have explored MTCMOS

latch designs that can eliminate the leakage currents, yet maintain a state during

the standby mode in [Muto95, Shig97, Kao01]. Another problem of the MTCMOS

CHAPTER 2. BACKGROUND 31

circuit technique comes from the presence of series-connected sleep transistors which

increase the overall circuit area and also add extra parasitic capacitance and delay.

Consequently, the appropriate sleep transistor sizing is pivotal to the performance,

as well as to the leakage power of the entire circuit [Anis02]. Thus, an optimization

problem is introduced.

2.5 Heuristics for Combinatorial Optimization

Most of the problems encountered in VLSI design automation are combinatorial

optimization problems and many of them are NP-hard problems [Gere99]. Combi-

natorial optimization problems are referred to those problems where the variables

used to specify the optimal solution are discrete (i.e., they only can assume a finite

number of distinct values). If the variables range over real numbers, the problem

is called a continuous optimization problem. The qualification NP-hard is often

encountered when discussing the computational complexity of a problem. The

complexity class NP consists of those problems that can not be solved exactly in

polynomial time on a common (deterministic) computer.

A combinatorial problem can be solved exactly if the problem size is sufficiently

small using an algorithm, such as exhaustive search and branch-and-bound, that has

an exponential (or even a higher order) time complexity in the worst case. The exis-

tence of NP-hard problems justifies the use and design of heuristic algorithms such

as local search, simulated annealing, and genetic algorithms that do not guarantee

an optimal solution.

CHAPTER 2. BACKGROUND 32

2.5.1 Local Search

Local search is the simplest search heuristic. It subsequently visit a number of

feasible solutions in the search space until some feasible solution that is better than

all its neighbors is found. The transition from one solution to the next is called a

move. The major disadvantage of local search is that it can get stuck in a local

minimum because it only accepts moves that reduce the total cost. In order to

overcome the main disadvantage of local search, one should be able to escape the

local minimum by accepting the moves with a higher cost (also called hill-climbing

ability). However, this should be done in a way that still guarantees convergence

to some solution.

2.5.2 Simulated Annealing

In 1983, a new algorithm technique—Simulated Annealing is presented in [Kirk83].

The idea of simulated annealing is originated from the observation of crystal for-

mation. When a material is heated, the modules move around randomly. When

the temperature slowly decreases, the modules move less and finally form a crys-

tal structure. The cooling process is done more slowly, the crystal lattice is more

stronger. The simulated annealing technique has been successfully used in many

phases of VLSI physical design, including circuit partitioning and placement. The

basic procedure in simulated annealing is to start with an initial solution and ac-

cept all perturbations or moves which result in a reduction in cost. Moves that

result in a cost increase are accepted with a probability that decreases with the

increase in cost. A parameter T, called the temperature, is used to control the

CHAPTER 2. BACKGROUND 33

acceptance probability of the cost-increasing moves [Shah91]. Obviously, simulated

annealing is a method with hill-climbing ability. The cooling schedule (i.e., the rate

of temperature change) determines the quality of the final solution. It produces

good quality results when given a long-enough time and a good cooling schedule

but the computation time is also large.

2.5.3 Genetic Algorithms (GA)

The theoretical foundations of the genetic algorithm (GA) were originally developed

by Holland [Holl92]. The concept of the GA is based on the evolutionary process

of biological organisms in nature. During the course of evolution, populations

evolve according to the principles of natural selection and “survival of the fittest”.

Individuals that are more successful in adapting to their environment will have a

better chance of surviving and reproducing, whereas individuals that are less fit will

be eliminated. This means the genes from the highly fit individuals will spread to

an increasing number of individuals in each successive generation. The combination

of good characteristics from highly adaptive ancestors can produce even more fit

offspring. In this way, the species evolve to become increasing more suitable to

their environment.

A GA simulates these processes by taking an initial population of individuals

and applying genetic operators in each reproduction phase. In optimization terms,

each individual in the population is encoded into a string or chromosome which

represents a possible solution to a given problem. The fitness of an individual

in evaluated with respect to a given objective function. Highly fit individuals

or solutions are given opportunities to reproduce by exchanging pieces of their

CHAPTER 2. BACKGROUND 34

genetic information in a crossover procedure with other highly fit individuals. This

produces new “offspring” solutions (children) who share some of the characteristics

from both parents. Mutation is often applied after crossover by altering some genes

in the strings. The offspring can either replace the whole population or replace the

less fit individuals. This evaluation-selection-reproduction cycle is repeated until a

satisfactory solution is found.

2.6 Test Circuits

Six combinational circuits are used in [Anis02] and [Anis03] as test benchmarks:

a 4-bit Carry Look Ahead Adder (CLAD), a 32-bit parity checker, a 6-bit array

multiplier design, a 4-bit ALU/Function generator (74181 ISCAS’85 benchmark),

a 32-bit error correcting circuit (C499 ISCAS’85 benchmark), and a 27-bit channel

interrupt controller (C432 ISCAS’85 benchmark). These benchmarks are chosen

to offer a variety of circuits with different structures employing various gates with

different fanouts. In addition, a 16-bit multiplier circuit is developed in this thesis

by using the developed MTCMOS design environment. Table 2.2 lists the general

information of these benchmarks.

Circuit 4-bit 32-bit Parity 6-bit 4-bit 32-bit Error 27-channel 16-bit
CLA Adder Checker Multiplier 74181 ALU Correcting Interrupt Controller Multiplier

Name CLAD Parity Mult1 ALU Error AllCh Mult2
No. of Gates 28 31 30 61 202 160 688
No. of Inputs 9 32 12 14 41 36 32

No. of Outputs 5 1 8 8 32 7 32

Table 2.2: ISCAS’85 benchmarks used for testing.

All the experiments in this thesis are implemented on a SUN Solaris Unix work-

CHAPTER 2. BACKGROUND 35

station that is equipped with dual 440 MHz CPUs and with a 2-Gbit RAM.

2.7 Summary

The main power dissipation mechanisms in CMOS logic circuits have been described

in this chapter. Various phenomena associated with smaller transistor sizes, the

result by technology scaling, have also been discussed.

The methodologies of the CF and the CV scaling are introduced and compared

with each other. To compensate for the performance loss, caused by the scaling

down of the supply voltage, the transistor’s threshold voltage VT should also be

reduced which results in an exponential increase in the leakage current. There-

fore, circuit techniques have to be developed to handle this rising leakage. Dual

VT partitioning, VTCMOS, and MTCMOS are considered to be the most effec-

tive leakage reduction techniques. The optimization problem introduced by the

MTCMOS technique can be solved by heuristic algorithms.

This thesis focuses on the research of the MTCMOS technique. In the follow-

ing chapter, several MTCMOS approaches are introduced to effectively reduce the

leakage current.

Chapter 3

MTCMOS Technique

3.1 Introduction

MTCMOS is an enabling technology that provides a high speed performance and

low-power operation by utilizing both high and low threshold voltage (VT) transis-

tors [Muto95, Muto96]. By using low VT transistors in a signal path, the supply

voltage (VDD) can be lowered to reduce the switching power dissipation without

affecting the performance. Although the switching power can be reduced quadrat-

ically according to the VDD reduction, the VT that has been decreased for the

performance compensation incurs an exponential increase in the subthreshold leak-

age current. In fact, the increased leakage power can dominate the switching power

if the voltage is scaled down aggressively [Chan96]. In many event driven applica-

tions, such as a processor running an X-server or a mobile media terminal, circuits

are usually in an idle state when no computation is being performed. During this

standby state, it is very wasteful to have a large subthreshold leakage current. This

36

CHAPTER 3. MTCMOS TECHNIQUE 37

static power dissipation in the standby mode can be reduced dramatically by using

high VT transistors (sleep transistors) with very low leakage currents to gate the

power supply. Figure 3.1 illustrates the basic circuit scheme of the MTCMOS tech-

nique. Note that, in Chapter 2, both the pMOS and nMOS transistors were utilized

as sleep transistors as illustrated in Figure 2.14. However, it has been proved that

for a purely combinational logic circuit, the circuit performance (speed) can be

increased by employing nMOS transistors alone [Muto95] as illustrated in Figure

3.1(a).

VT

V DD V DD

VT VT

���� Virtual Ground
(VGND)

VGND

GND

nMOS

VV xx

IR

CMOS Logic

with Low

CMOS Logic

with Low

High Sleep

Sleep
Transistor

(a) MTCMOS circuit structure. (b) Sleep transistor modelled as
 resistor in active mode.

Figure 3.1: Sleep transistor in MTCMOS circuits.

Sleep transistors in MTCMOS circuits are controlled by a “sleep” signal that

is used for the active/standby mode control. During the active mode (sleep =

0), the sleep transistor can be approximated by the linear resistor R as seen in

Figure 3.1 (b) [Kao97]. This creates a finite voltage drop (VX = I × R) across

the virtual ground nodes as the gates are discharging. This voltage drop causes

the internal logic to slow down for two reasons: (i) it reduces the gate’s driving

CHAPTER 3. MTCMOS TECHNIQUE 38

capability from VDD to VDD−VX , and, (ii) the internal transistor threshold voltages

increase due to the body effect [Raba96]. Therefore, the resistor should be small,

and consequently, the size of the sleep transistor should be large. This is, however,

a tradeoff between the circuit speed in the active mode and the standby leakage

current, because the total standby leakage current in a chip is proportional to the

width of the sleep transistor [Muto95]. As a result, optimal sizing of the sleep

transistor for an arbitrary circuit to meet a performance constraint is difficult. In

other words, the current “I” flowing through the sleep transistor in the active mode

needs to achieve the required speed.

In the last decade, a number of sleep transistor sizing methodologies have been

reported in the literature [Kao02]. The use of a single sleep transistor to support

the whole circuit has been proposed in [Muto95]. However, sharing a single sleep

transistor for the whole circuit increases the interconnect resistance for the distant

blocks. As a result, the sleep transistor has to be sized larger than expected to

compensate for the added interconnect resistance. An excessively large size sleep

transistor augments the dynamic and leakage power, as well as the area. In order

to reduce the area overhead effectively, a hierarchical sizing method, based on the

mutual exclusive discharge pattern, was introduced in [Kao98]. The cascaded gates

are grouped together by this method, because simultaneous current discharges can

not take place. This method can be efficient for balanced circuits with tree config-

urations, where mutually exclusive discharging gates are easily detected. However,

this method is not efficient for circuits with complicated interconnections and un-

balanced structures [Anis03]. Therefore, a gate-clustering MTCMOS technique is

presented in [Anis01, Anis02]. Although the cluster-based MTCMOS design is bet-

CHAPTER 3. MTCMOS TECHNIQUE 39

ter than the hierarchical sizing design [Long03], the former proposed algorithms

are inefficient and consume a relatively large CPU time and impractical for large

circuit design.

Due to the drawbacks of these techniques, two genetic algorithm (GA) meta

heuristics are proposed in this thesis to improve the computation time of the gate-

clustering MTCMOS technique. Two new models are also proposed to solve the

sleep transistor sizing problem. Both of the models achieve a better solution with

less CPU time than those in [Anis02]. Figure 3.2 is a summary of the overall

approaches that will be introduced in this chapter. This chapter begins with a

brief introduction of the gate-clustering MTCMOS technique in Section 3.2, which is

fundamental to the proposed techniques. Section 2.5.3 presents the implementation

of the GAs, including the experimental results. The two models for sizing the sleep

transistor are presented in Section 3.5 and 3.6.

Current
of Discharge

Processing

Gate
Clustering

Set−covering

GA for BP

GA for SP

Set−Partitioning

Bin−Packing
Model

Model

Model

Model

Performance
Comparison

Model
Comparison

Performance
Comparison

Model
Comparison

Model with

Model with

CPLEX Solver

CPLEX Solver

First−Fit

Research in this ThesisPrevious Research

Figure 3.2: Approaches for gate-clustering MTCMOS technique.

CHAPTER 3. MTCMOS TECHNIQUE 40

3.2 Gate-Clustering MTCMOS Technique

When sleep transistors are absent, the propagation delay (τd) of a CMOS gate can

be expressed as

τd ∝
CLVDD

(VDD − VTL)α
(3.1)

where CL is the load capacitance, VTL is the threshold voltage in the low VT mod-

ule, and α is the velocity saturation index for modelling the short-channel effects

[Kao97]. In the presence of a sleep transistor, the delay of the gate (τ sleep
d) increases

to

τ sleep
d ∝

CLVDD

(VDD − VX − VTL)α
(3.2)

where VX is the potential of the virtual ground. If the gate is assumed to tolerate

a 5% degradation in performance due to the presence of the sleep transistor, then

τd

τ sleep
d

= 95%. (3.3)

According to the analysis in [Anis02], to maintain the gate performance (within a

5% degradation), the size of the sleep transistor can be expressed as

(

W

L

)

sleep

=
Isleep

0.05µnCox (VDD − VTL) (VDD − VTH)
(3.4)

where Isleep is the discharge current flowing through the linearly-operating sleep

transistor, µn is the N-mobility, Cox is the oxide capacitance, and VTH is the thresh-

old voltage of the sleep transistor1.

1VTL and VTH are set at 350mV and 500mV, respectively, for the 0.18µm technology in this
thesis.

CHAPTER 3. MTCMOS TECHNIQUE 41

If the size of the sleep transistor is designed as a constant (i.e., the width W

is fixed), (3.4) implies that the discharge current passing through the sleep tran-

sistor has to be less than the limit value Isleep in order to keep gate performance

degradation within 5%. This is a key parameter for the gate-clustering technique

to guarantee the performance constraint; that is, each gate in the cluster-based

MTCMOS circuit satisfies the performance criteria. This ensures that any combi-

nation of the gates in the path, including the worst case delay path caused by the

worst case input vector, and thus, the whole circuit, also meets the performance

requirements.

To overcome the increased interconnect resistance drawback, introduced by us-

ing a single sleep transistor for the whole circuit in [Muto95, Kao98], the gate-

clustering technique employs multiple sleep transistors, of equal size, distributed

evenly over the circuit. The optimum size W , and consequently Isleep, are chosen

to have a minimal dynamic and leakage power dissipation. This optimization prob-

lem is accomplished by a discharge current processing stage, illustrated in the next

section, and the cluster assignment modelling, presented in Sections 3.2.2 and 3.2.3,

respectively.

3.2.1 Processing of Discharge Currents

The accuracy of sizing the sleep transistor, while the system performance require-

ments are maintained, is heavily dependent on how well the discharge currents at

the output of each gate in the circuit are modelled. Cascaded gates that have exclu-

sive discharge currents are clustered together in [Kao98], because these discharge

currents do not occur at the same time. Therefore, these gates can share one sleep

CHAPTER 3. MTCMOS TECHNIQUE 42

transistor to reduce the total number of sleep transistors, and consequently, the

total area. In fact, taking a triangular shape waveform, the discharge current itself

varies in the time domain. Therefore, more gates that have a partially overlapped

discharge current with the cascaded gates can be added to this cluster to further re-

duce the total sleep transistor number. This idea is adopted by the gate-clustering

technique, and a fundamentally better solution is then achieved in [Anis03].

An innovative method is proposed in [Anis02] to model the discharge current

as a vector. Each discharge current at the output of a gate is represented by a

vector, where the time axis is divided into 10psec time slots (an adequate accuracy

for 0.18µm CMOS technology). Each time slot holds a value that represents the

magnitude of the discharge current at that specific time. For each gate, all the

input transitions, causing the output to switch from logic “1” to logic “0”, are

applied (e.g., 00 to 11, 10 to 11, and 10 to 11 for the two-input NAND gate G1 in

Figure 3.3(a)), and the highest discharge current (peak-value Imax) at the output

of every gate is monitored (a worst case discharge current), while the gate’s fanout

is taken into consideration. Since the delay of a gate changes with the different

transitions, the earliest peak-current time and the latest peak-current time are also

documented (e.g., the t1min and t1max for gate G1 in Figure 3.3(b)). Therefore, a

trapezoid waveform, which is the bold line in the timing diagram of Figure 3.3(b)

and (c), is adopted to represent the discharge current for each gate in the circuit.

This guarantees that the sleep transistor is sized properly, and the circuit meets

the target performance.

Based on the trapezoid waveform, a vector is constructed for each gate (i.e.,

Vec1, Vec2 in Figure 3.3). The vector carries all the information about this gate in

CHAPTER 3. MTCMOS TECHNIQUE 43

1I (G)1

I (G)22 ��

	
��
�

�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������

���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

(b)

(a)

(c)

time

time

G1

G2

I =

t

t t

1max

2max

1min 1maxt

2max2min

14

5I =

Vec2: 0 0 0 0 0 0 0 0 0 0 0 2 4 6 8 10 12 12 12 12 12 12 10 8 6 4 2 0 0 0 0 0 0 0 0 0

Vec1: 0 0 0 0 1 3 5 5 5 5 5 3 1 0

Figure 3.3: Discharge current timing diagram and vector modelling.

the circuit such as the delay of the gate, the fanout of the gate, the delay level, and

the magnitude of the discharge current in each time slot [Anis03]. Figure 3.4 illus-

trates the heuristic used in the gate-clustering MTCMOS technique to efficiently

group the gates into clusters. The main objective of this heuristic is to cluster the

circuit such that their combination does not exceed the maximum current of any

gate within the cluster [Anis02].

3.2.2 Bin-Packing Problem (BPP)

Following the formation of clusters, the maximum discharge current value (i.e., the

peak-value) in the time domain of each cluster is modelled as the cluster capacity

(i.e., the worst case). This static value is then adopted to represent the equivalent

discharge current of the cluster. The main objective here is to assign as many clus-

ters as possible to a sleep transistor such that the accumulated current of clusters

does not exceed the current limit Isleep of the sleep transistor, as show in Figure

CHAPTER 3. MTCMOS TECHNIQUE 44

PROCESSING HEURISTIC
1. Initialize current vectors;
2. Set all gates free to move to any cluster;
3. For all gates in circuit

If gate Gi is not clustered yet
assign gate Gi to new cluster Ck

update cluster current vector
calculate max current, start, and end time

End If
For all other gates in circuit

If gate Gj is not clustered yet
add current of gate Gj to existing cluster Ck

If combination ≤ max current
append gate to cluster
update cluster info
set gate Gj locked in cluster CK

End If
End For

End For
4. Return all clusters formed.

Figure 3.4: Heuristic for forming clusters [Anis02].

G1

G9

G2

G4

G7

G5

G3

G6

G10 G11

G8

Cluster C2

Cluster C4Cluster C3

Cluster C1

Assign to ST1

Assign to ST2

Figure 3.5: Gate-clustering and BPP techniques.

CHAPTER 3. MTCMOS TECHNIQUE 45

3.5. In addition, the number of sleep transistors allocated should be kept to a min-

imum. This problem presentation is analogous to the Bin-Packing Problem (BPP)

in operation research. The BPP [Rard98] can be described as follows: given n items

(a set of clusters) and m bins (sleep transistors) with

IEQj
= capacity of cluster j and

Imax = capacity of each sleep transistor,

the objective is to assign each IEQ to one bin so that the total capacity in each bin

does not exceed Imax, and the number of bins is minimized.

The mathematical formulation of the problem is as follows:

Minimize Z =
m
∑

i=1

yi, (3.5)

subject to
n
∑

j=1

IEQj
xij ≤ Imaxyi i ∈ {1, ..., m},

m
∑

i=1

xij = 1, (3.6)

where

yi =















1, if bin i is used

0, otherwise
xij =















1, if item j ∈ bin i

0, otherwise.

This model is a pure Binary Integer Programming problem (BIP). The objective

function Z to be minimized is analogous to the minimum number of sleep transistors

that are used. The variable yi is analogous to the available sleep transistors. The

variable xij takes a value of “1”, if cluster IEQj
is assigned to sleep transistor i. (3.6)

guarantees that the total discharge current flowing through the sleep transistor is

CHAPTER 3. MTCMOS TECHNIQUE 46

less than the limit value, and each cluster is covered by a sleep transistor once.

CPLEX 7.5 [Inc02], a commercial ILP solver, is used in [Anis02] to solve this BPP

problem and to determine which clusters should be grouped together and to which

sleep transistor they are assigned.

Six different sleep transistor sizes which correspond to six different discharge

current limit values (Isleep) are considered in [Anis02]. The optimum Isleep value

that dissipates the least leakage power in the standby mode is then recorded for each

test circuit. Table 3.1 shows the different values for Isleep and the corresponding

(W/L)sleep and Wsleep by using (3.4), where Lsleep is taken as 180nm for a 0.18µm

CMOS technology.

Isleep (µA) 150 200 250 300 350 400
(W/L)sleep 3.67 4.89 6 7.5 8.56 9.78
Wsleep (µm) 0.66 0.88 1.1 1.32 1.54 1.76

Table 3.1: Values for Isleep.

Even though the Bin-Packing technique is effective for sizing the sleep transistor,

the problems such as the increased wirelength and the routing complexity, caused

by sleep transistor insertion, are also introduced.

3.2.3 Set-Partitioning Problem (SPP)

In order to take the physical location of the gates on the chip into account and

reduce the routing complexity of large circuits, the Set-Partitioning technique is

applied in [Anis02].

The Set-Partitioning Problem (SPP) [Rard98] can be described as follows: given

CHAPTER 3. MTCMOS TECHNIQUE 47

m rows (all the gates in the circuit in this case) and n columns (a set of clusters

in this case), each column covers several rows, with

cj = cost associated with column j.

The objective is to find a subset of columns that covers all the rows once, and the

total cost is minimized. Figure 3.6(b) depicts a feasible solution (S1 = S3 = S5 =

1, S2 = S4 = S6 = 0) for a simple example of the SPP in Figure 3.6(a).

columns (clusters)

rows (gates)

c1 c2 c3 c4 c5 c6

S1 S2 S3 S4 S5 S6jS =

ija =

c =j

(a) A set of clusters. (b) A feasible solution..

G3

G1 G4

S5

S2 S4

G6

S6

S1S3

G2 G5 0 1 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 1

1 0 0 1 0 0

0 0 1 0 0 1

0 0 0 0 1 0

Figure 3.6: Simple example of the Set-Partitioning Problem (SPP).

The mathematical formulation of the SPP is as follows:

Minimize Z =
n
∑

j=1

cjSj, (3.7)

subject to
n
∑

j=1

aijSj = 1

i = 1, ..., m

Sj ∈ 0, 1 j = 1, ..., n, (3.8)

CHAPTER 3. MTCMOS TECHNIQUE 48

where

Sj =















1, if the jth column is selected

0, otherwise
aij =















1, if row i is covered by column j

0, otherwise.

In this model, n is equivalent to the number of clusters that are generated.

Each row (i = 1, ...m) represents a constraint, where gate m should belong. The

column (j = 1, ...n) represents the feasible clusters (i.e., sleep transistors) that

accommodate a set of the gates in the circuit. Therefore, the objective of the low-

power SPP is to find the best collection of clusters such that each gate is covered

by exactly one cluster. The model is also a 0-1 pure integer Linear Programming

(LP) problem which is again solved by using the CPLEX solver.

S jG

Gu

v

d

dvw

uw

G wduv

Figure 3.7: Cost function calculation example.

The cost associated with each cluster is formulated as follows [Anis02]:

cj = (w1 × cj1) + (w2 × cj2), (3.9)

where cj1 is a distance function (i.e., the rectilinear distance between the gates in

CHAPTER 3. MTCMOS TECHNIQUE 49

the cluster), and cj2 represents the difference between the maximum cluster capacity

and the sum of all the currents of the gates in the cluster. For example, in Figure

3.7, group Sj is composed of gates Gu, Gv, and Gw. Coefficients cj1 and cj2 are

calculated by

cj1 = duv + dvw + duw

and cj2 = ISleep −
∑

currenti ∀i.

w1 and w2 in (3.9) are the weights, associated with the cost of the two constraints.

In [Anis02], the weights w1, w2 are assigned equal values of 0.5 to balance the

distance and capacity constraints.

Figure 3.8 shows the heuristic presented in [Anis02] to generate groups of clusters

that are used by the SPP technique. Step 3 is specifically designed to guarantee a

feasible solution.

Both Bin-Packing and Set-Partitioning have been proven to be Non-deterministic

Polynomial (NP)-hard problems [Gare79]. These NP-hard problems can be solved

by exact method such as branch-and-bound technique available in the CPLEX

solver. However, as the problem size (i.e., the number of gates in the circuit) in-

creases, it becomes quite inefficient to solve these problems by an exact method

(e.g., the CPLEX) in a reasonable amount of time. The experimental results in

[Anis03] indicate that the CPU time, used by the CPLEX solver to solve the BPP

and the SPP, increases dramatically as the circuit size increases. Therefore, heuris-

tic methods need to be developed for large circuit designs to produce solutions close

to the optimum in a reasonable amount of time.

CHAPTER 3. MTCMOS TECHNIQUE 50

CLUSTERING HEURISTIC
Create Cluster()
1. Calculate distances between all gates;
2. Initialize maxgates per cluster = n;
3. Create clusters with single gate;
4. For cl = 2; cl ≤ maxgate per cluster

Create n Gate Clusters(cl)
End For

5. For all clusters created calculate cost();
6. Return().

Create n Gate Clusters(cl)
1. For cluster of type cl

create new cluster()
While not done

choose gate with minimum distance
If sum of currents ≤ capacity

append gate to newly created cluster
End If
If total gates within cluster ≥ limit

break;
End While

End For

Figure 3.8: Heuristic for grouping gates into clusters [Anis02].

CHAPTER 3. MTCMOS TECHNIQUE 51

3.3 Genetic Algorithm (GA) for the BPP

With the increasing interest in evolutionary algorithms and their applications to

combinatorial optimization problems, two genetic algorithms (GAs) are designed

and applied to the BPP and SPP for low-power MTCMOS circuit design.

Representation and Fitness Function

The first step in designing a GA for a particular problem is to devise a suitable

representation scheme. The group based representation scheme [Falk94] is adopted

in this BPP oriented GA. Figure 3.9(a) reflects the layout view of a circuit. Eight

clusters (namely, cluster 1, 2... 8) are formed according to the discharge current

processing heuristic, presented in Section 3.2.1. Figure 3.9(b) illustrates the solution

string (chromosome) representation of the group-based encoding method.

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���
���
���

���
���
���

�������
�������
�������

	�	�	�	
	�	�	�	
	�	�	�	

�
�

�
�

�
�

�����
�����
�����

�����
�����
�����
�����

�
�

�
�

�
�

�
�

���
���
���
���

���
���
���
���

�����
�����
�����

�����
�����
�����

���
���
���
���

���
���
���
���

Clusters5

764

8 2

31

Sleep C D EBA
Transistors

(a) Circuit layout.

B E C D A

5 1 72,4,8

Clusters

3,6

First Gene

Sleep Transistor

(b) Group−based representation.

Figure 3.9: Chromosome representation.

CHAPTER 3. MTCMOS TECHNIQUE 52

With this encoding scheme, the genes represent both items (clusters) and bins

(sleep transistors). In this example (as illustrated in Figure 3.9(b)), eight clus-

ters are assigned to five sleep transistors (namely, A, B...E), where the first gene

indicates that sleep transistor B is used to cover clusters 3 and 6.

The fitness function of an individual chromosome is a function of the number

of sleep transistors (bins) that are involved to construct this solution. The fitness

of the chromosome in Figure 3.9(b), constructed with five sleep transistors, is five,

consequently. Apparently, group-based representation can cause chromosomes to

have a variable length.

Initial Population

The initial population in this GA is generated by the First-Fit (FF) heuristic, based

on the previous representation scheme. The first cluster (item), randomly chosen

from all the clusters, is assigned to the first sleep transistor (bin). Once a cluster is

collapsed into a sleep transistor, it is locked in and is unable to participate in the

formation of a new sleep transistor. All the other clusters are then randomly con-

sidered to be appended to the sleep transistor. The criterion that is used to append

a cluster to a sleep transistor is based on the maximum current capacity of the sleep

transistor. Each unlocked cluster is assigned to the lowest-indexed initialized sleep

transistor that it fits. When the current cluster cannot fit into any initialized sleep

transistor, a new sleep transistor is introduced. This process terminates when it is

not possible to append any further clusters to the sleep transistor.

CHAPTER 3. MTCMOS TECHNIQUE 53

Parent Selection Method

Parent selection is the task of assigning reproductive opportunities to each indi-

vidual in the population according to their relative fitnesses. The commonly used

binary tournament selection [Gold91] method is applied to the GA. In a binary

tournament selection, two individuals are chosen randomly from the population.

The more fit individuals (fewer sleep transistors are involved) is then allocated a

reproductive trial. In order to produce a child, two binary tournaments are held,

each of which produces one parent string. These two parent strings are then re-

combined, using crossover and mutation, to produce two children.

Crossover and Mutation Operator

The crossover operator takes genes from each parent string and combines them to

create an offspring. By creating new strings from sub-strings of fit parent strings,

new and promising areas of the search space are explored. As pointed out ear-

lier, group-based representation consists of two parts: sleep transistors and groups

of clusters. Therefore, the crossover operator operates on variable-length chromo-

somes, with genes representing the sleep transistors. The crossover procedure is

illustrated in Figure 3.10, and the concept is presented in Figure 3.11.

Typically, a mutation provides a small random search. Not only does mutation

play the crucial role of replacing the gene value lost during the crossover process,

but also expands the search space. However, due to the small solution space after

grouping the gates into clusters, the mutation operator is not implemented in this

GA.

CHAPTER 3. MTCMOS TECHNIQUE 54

CROSSOVER OPERATOR
1. Select at random two crossing sites, delimiting the

crossing section in each of the two parents;

2. Inject the contents of the crossing section of the first
parent at the first crossing site of the second parent;

3. Eliminate all the clusters occurring twice from the sleep
transistors that were members of the second parent;

4. Adapt the resulting sleep transistors by applying
First-Fit heuristic;

5. Apply steps 2 to 4 to the two parents to generate
the second child.

Figure 3.10: Crossover procedure.

Population Replacement Scheme

Following the crossover operator, the population for the next generation is then

chosen from the combined set of parents and two children. In order to keep the

best individuals around all of the time, a method, called elitism, is used. Two worst

individuals in the population and two children are compared and the two fittest

individuals are kept to next generation. The elitism strategy guarantees that the

best individual in the current generation will appear in the subsequent generation,

protecting the search from regression [Mitc96].

3.3.1 BPP Results

After the generation of the clusters for each test circuit by using the heuristic

in [Anis02], 322 clusters are formed for the 16-bit multiplier circuit which is the

CHAPTER 3. MTCMOS TECHNIQUE 55

E

E �����
�����
�����
�����

���������
���
���������
���
��������������������
���������
���

����������
����������

	�	
	�	
	�	

�

�

�

��������������������
���������
���

�

�

�

�

���������
���

������������

3,7

B E

1,4,5 1,4

A

25

C

6,8

D

Child 1

Injected Sleep Transistor

Before Repair

Appear Twice

4. Reinsert missing clusters.

3,7

B

1,4,5

E

6,8,2

H

Child 1

1. Select crossing sections.

 2,7,3 6,8

GFE

3,7

B

1,4

A

25

C

6,8

D

Parent 1

Parent 2

1,4,5

3. Eliminate empty bin(s)

and bin(s) with doubles.

3,7

B

1,4,5 6,8

DE

Child 1 is
After Repair

Reinserted

 Repairing

Crossing Section

2. Inject crossing section.

Figure 3.11: Crossover operator.

largest BPP size in these experiments. Figure 3.12 illustrates the convergence of

the developed GA for this circuit. Employing 10 populations, the GA find the

optimal solution after 40 generations, as seen from the figure. Therefore, only 10

chromosomes are used to evolve within 100 generations for all the experiments.

The experimental results indicate that these parameters are large enough for the

proposed GA to find the optimal solution for all the test circuits. Since the sub-

threshold leakage power dissipation of a circuit is proportional to the total number

of sleep transistors [Muto95], the leakage power saving, achieved by the GA for each

test circuit, is equivalent to that obtained by the CPLEX solver. Furthermore, the

execution time of the GA for all the experiments, especially for the largest circuit

(Mult2), is largely reduced, compared to that of the CPLEX exact method. Table

3.2 reflects the CPU time in seconds, used by the CPLEX solver and the GA, re-

CHAPTER 3. MTCMOS TECHNIQUE 56

spectively. The column “CPL” lists the CPU time for each test, executed by the

CPLEX ILP solver, whereas column “GA” designates the computation time that

is consumed by the genetic algorithm. Even though most of the CPU times are

small because of the small problem size, the proposed GA still achieves a 89%, on

average, reduction in the CPU time, compared to that of the ILP CPLEX solver.

The principal advantage of the GA implementation arises from the controllable

computation time, compared to that of the CPLEX solver. Figure 3.13 plots the

effect of the size of the sleep transistor (Isleep) with respect to the CPU time, used

by the CPLEX solver and the GA for the ALU and AllCh benchmarks. For both

circuits, there exists a spur point for the CPLEX solver (150 µA for ALU, 250

µA for AllCh), where the computation time is significantly larger than the rest of

the values. However, the GA computational complexity is quite even for all the

benchmarks, which indicates that it scales well for larger circuits.

260

270

280

290

300

0 20 40 60 80 100

N
u

m
b

e
r

o
f

S
T

Generations

The Largest Circuit: Mult2 (pop: 10)

Optimal Solution

Figure 3.12: Convergence of the GA.

CHAPTER 3. MTCMOS TECHNIQUE 57

Circuit Isleep=150 Isleep=200 Isleep=250 Isleep=300 Isleep=350 Isleep=400
CPL GA CPL GA CPL GA CPL GA CPL GA CPL GA

CLAD 0.22 0.01 0.16 0.01 0.03 0.01 0.10 0.01 0.15 0.01 0.19 0.01
Mult1 0.10 0.01 0.13 0.01 0.03 0.01 0.02 0.01 0.05 0.01 0.03 0.01
Parity 0.09 0.01 0.46 0.01 0.04 0.01 0.08 0.01 0.08 0.01 0.02 0.01
ALU 4233.2 0.01 1.36 0.1 0.25 0.01 0.16 0.01 0.18 0.01 0.13 0.01
Error 0.56 0.1 0.89 0.01 0.81 0.01 0.25 0.01 0.06 0.01 0.26 0.01
AllCh 14.01 0.1 37.26 0.1 11284 0.1 3.11 0.1 4.45 0.1 3.53 0.1
Mult2 - - - - - - - - 16299.5 3.0 15286.1 3.0

Avg Imp 92.39% 95.72% 83.68% 85.66% 90.64% 85.08%

- Isleep violation, no feasible solution is found.

Table 3.2: Comparison of CPU time(s) for CPLEX and GA.

0.001

0.01

0.1

1

10

100

1000

10000

150 200 250 300 350 400

T
im

e
(s

e
c

s
)[

L
o

g
 S

c
a

le
s

]

Bin Size (uA)

Circuit: ALU

CPLEX Time
GA Time

0.01

0.1

1

10

100

1000

10000

100000

150 200 250 300 350 400

T
im

e
(s

e
c

s
)[

L
o

g
 S

c
a

le
]

Bin Size (uA)

Circuit: AllCh

CPLEX Time
GA Time

Figure 3.13: Computation time for CPLEX and GA.

CHAPTER 3. MTCMOS TECHNIQUE 58

3.4 Genetic Algorithm (GA) for the SPP

The evolutionary algorithm implemented in this thesis to solve the Set-Partitioning

problem for low-power MTCMOS is a modification of the GA, presented in [Chu95],

where problem-specific knowledge of the SPP is considered. A brief overview of this

GA is presented in Figure 3.14, and the detailed implementation is discussed in the

following sections.

GENETIC ALGORITHM
1. Generate an initial population of N random solutions,

set iteration counter t = 0 ;
2. Select two solutions Pi and Pj from the population using

the MCS method;
3. Combine Pi and Pj to form a new solution C using the

fusion crossover operator;
4. Mutate selected bits in C and perform

dynamic mutation if required;
5. Apply the heuristic feasibility operator to C in an

attempt to make C more feasible;
6. If C is identical to any one of the solutions in the

population, go to step 2, otherwise, set t = t+1;
7. Replace a solution in the population with C using

the SOR scheme;
8. Repeat step 2-7 until t = M non-duplicate solutions have

been generated. The best feasible solution found is the
one with the smallest fitness in the population.

Figure 3.14: Genetic Algorithm (GA) for Set-Partitioning Problem (SPP).

Chromosome Representation

Usually, a 0-1 binary representation is used for the SPP since it is a natural repre-

sentation of the underlying 0-1 integer variables. A n-bit binary string is considered

CHAPTER 3. MTCMOS TECHNIQUE 59

as the chromosome structure, where n is the number of columns (clusters) in the

SPP. Figure 3.15 illustrates the binary representation of a chromosome. A value of

1 for the i-th bit implies that column “i” is in the solution.

 ... nn−1

 ... 1 0 1 1 0 1 0

 1 2 3 4 5Column(Gene)

Bit String

Figure 3.15: Binary representation of chromosome.

Fitness Function

Each individual in the population is evaluated and assigned a fitness accordingly.

Fitness is used in the selection and replacement phases to decide which individ-

uals should be chosen for reproduction and replacement. For the SPP, the lower

the fitness score, the more fit the solution is, because the SPP is a minimization

problem. The traditional operational research algorithms restrict their search to

feasible solutions, and so, no additional term is included in the SPP objective func-

tion to handle constraint violations. Since finding a feasible solution to the SPP

is difficult, in the GA approach, the majority of the solutions, generated by the

crossover operator and mutation operator, may be infeasible [Chu95]. Therefore,

the fitness function used in this GA not only takes into account the costs of the

columns included in the solution (i.e., the SPP objective function value), but also

the degree of the feasibility of a solution.

There are two methods to define the fitness of an individual. The most common

approach is to employ a penalty function to allow the constraints to be violated.

CHAPTER 3. MTCMOS TECHNIQUE 60

According to the magnitude of the violation, a penalty that is proportional to

the size of the infeasibility is generated to degrade the SPP solution fitness. If

the penalty is large enough, highly infeasible individuals will rarely be selected for

reproduction, and the GA will concentrate on feasible or near-feasible solutions. A

typical penalty function p(x) may be defined as follows:

p(x) =
m
∑

i=1

λiφi(x), (3.10)

where λi is a scalar weight that penalizes the violation of the constraint, and φi(x)

is a function of the violation. However, choosing the optimal value for λi is difficult

[Levi94].

Another alternative approach for defining fitness is proposed in [Chu95]. This

method involves separating the single fitness measure into two: one is called fitness

and the other is called unfitness. Each individual can then be represented by a

pair of values fp and up. The fitness fp of an individual p equals its SPP objective

function value which is calculated by

fp =
n
∑

j=1

cjspj, (3.11)

where spj is the value of the j-th bit (column) in the string corresponding to the p-

th individual, and cj is the cost of bit (column) j. The unfitness up of an individual

p measures the amount of infeasibility and is defined as

up =
m
∑

i=1

|wi − 1|, (3.12)

CHAPTER 3. MTCMOS TECHNIQUE 61

where wi =
∑n

j=1
aijspj is the number of columns that cover row i. The absolute

value in (3.12) implies that an individual is feasible, if up = 0, and infeasible, if

up > 0. Originally, this approach was adopted in [Chu95] to evaluate the individual

chromosomes for the general SPP. However, the MTCMOS SPP problem is specially

formulated in [Anis02] so that the feasibility operator, combined with this GA, can

guarantee that all the solutions during the evolution are feasible. Therefore, the

unfitness value of each individual is zero.

Initial Population

The initial population is generated randomly. Each of the initial solutions Sp is

formed by using the following method:

1. Set Sp = ∅, Set U = I;

2. Randomly select a row i ∈ U ;

(a) randomly select a column j ∈ αi such that βj ∩ (I − U) = ∅;

(b) if no such j exists, set U = U − i;

else, add j to Sp, and set U = U − i, ∀i ∈ βj;

3. Repeat step 2 until U = ∅.

where

I = the set of all rows

αi = the set of columns that cover row i

βj = the set of rows covered by column j

U = the set of uncovered rows

CHAPTER 3. MTCMOS TECHNIQUE 62

Parent Selection Method

The maximum compatibility selection (MCS) method, introduced in [Chu95], is

considered to select the parents. In this selection method, one parent Pi is first

selected by using a binary tournament [Gold91], based on the fitness value. The

other parent Pj is then selected to give a maximum compatibility score measured

by

|RPi ∪ RPj| − |RPi ∩ RPj|, (3.13)

where RPi and RPj are the set of rows that are covered by Pi and Pj, respectively. If

j is not unique, then the tie-breaking rule is to select the member of the population

with the lowest fitness score. The goal of this method is to find two parents that

can cover as many rows as possible and have as few rows in common as possible.

This MCS method is specifically designed for a general SPP, where most pop-

ulations are infeasible. However, the MTCMOS SPP is specially formulated such

that the feasibility operator will fully repair a solution after crossover and muta-

tion. Therefore, the commonly used roulette wheel and binary tournament selection

methods are considered instead of the MCS method.

The roulette wheel is a proportionate selection scheme in which the slots of a

roulette wheel are sized according to the fitness of each individual in the population.

An individual is selected by spinning the roulette wheel and locating the position of

the marker. Therefore, the probability of selecting an individual is proportional to

its fitness. In a binary tournament selection, two individuals are picked randomly

from the population, and the individual with least fitness value is selected, as

mentioned in Section 3.3.

CHAPTER 3. MTCMOS TECHNIQUE 63

Tournament selection provides more pressure in later generations, when the fit-

ness values of individuals are not significantly different. Thus, the roulette wheel

selection is more likely to converge to a suboptimal result than the tournament se-

lection, if the individuals have large variations in fitness values. Several experiments

are conducted as plotted in Figure 3.16 , and accordingly, the binary tournament

selection is incorporated into the algorithm.

0

2

4

6

8

10

100 1000 10000 100000

C
o

s
t

Generations

Small Size Circuit: CLAD (pop:100)

Binary Tournament
Roulette Wheel

15

20

25

30

35

100 1000 10000 100000 1e+06

C
o

s
t

Generations

Large Size Circuit: Allch (pop:100)

Binary Tournament
Roulette Wheel

Figure 3.16: Different parent selection methods.

Crossover and Mutation Operator

The fitness based fusion operator [Beas96] and the uniform operator [Sysw89] are

considered to perform the crossover.

The fusion operator takes into account both the structure and relative fitness

of the parent solutions [Beas96]. Such an operator produces only a single child,

whereas a conventional crossover operator usually produces two children. Let P1

and P2 be the parent strings. fp1 and fp2 represent the fitness of parent P1 and P2,

CHAPTER 3. MTCMOS TECHNIQUE 64

respectively. C is the child string, and P1[i] denotes the i-th gene of parent P1. The

fusion operator works by following the procedure in Figure 3.17.

FUSION CROSSOVER
1. i =1
2. if P1[i] = P2[i], then C[i]= P1[i] = P2[i].
3. if P1[i] 6= P2[i], then

(1) C[i] = P1i[i] with probability P = fP2/(fP1 + fP2)
(2) C[i] = P2i[i] with probability 1 − P

4. if i = n, stop; otherwise, set i = i + 1, and go to step 1.

Figure 3.17: Fusion crossover operator.

The idea of the uniform operator is to generate a random crossover mask which

can be represented by the binary string in Figure 3.18. According to the crossover

mask, the offspring is formed by picking the gene from parent P1, if the correspond-

ing binary bit of the crossover mask is 0; otherwise, from parent P2.

Figure 3.19 presents the experimental results for the two benchmarks for the

different crossover operators. Clearly, the fusion crossover operator produces better

results than the uniform operator. Thus, all the results in this thesis are based on

the fusion operator.

Mutation, applied to each offspring after the crossover, works by inverting M

randomly chosen bits of a string, where M is experimentally determined.

Heuristic Feasibility Operator

Since the SPP is highly constrained, new solutions, generated by crossover and

mutation are often infeasible (i.e., some rows may be under-covered and some rows

CHAPTER 3. MTCMOS TECHNIQUE 65

 0 1 1 0 0 1 1 0 0 1

 1 1 0 0 0 1 0 1 0 0

 0 1 1 0 0 1 0 1 1 0

 0 1 0 0 1 1 0 1 0 1

Parent_1

Parent_2

Mask

Child

Figure 3.18: Uniform crossover operator.

0

2

4

6

8

10

100 1000 10000 100000

C
o

s
t

Generations

Small Size Circuit: CLAD (pop:100)

Fusion Crossover
Uniform Crossover

15

20

25

30

35

100 1000 10000 100000 1e+06

C
o

s
t

Generations

Large Size Circuit: Allch (pop:100)

Fusion Crossover
Uniform Crossover

Figure 3.19: Different crossover operators.

CHAPTER 3. MTCMOS TECHNIQUE 66

may be over-covered). A heuristic feasibility operator, presented in [Chu95], is

then used to repair infeasible solutions. The operator begins by identifying all the

over-covered rows, and randomly removes columns, until all the rows are covered

by, at most, one column. The following step is to identify all the under-covered

rows. Some new columns are then selected such that as many under-covered rows

as possible can be covered without causing any other rows to be over-covered. The

solution that is produced by the heuristic operator does not have over-covered rows,

but may have under-covered rows. In general, this operator does not guarantee a

feasible solution. However, since special clusters (columns) that cover only one gate

(row) are introduced by the clustering heuristic (Figure 3.8), the feasibility operator

attempts to fully repair solutions of the MTCMOS SPP following the crossover and

mutation operations. In addition, after the feasibility operation, if the solution is

similar to any parent (i.e., duplication), the algorithm will discard the child and

the evolution process of this generation will be repeated again.

Population Replacement Scheme

Once a child solution has been created via the GA operators, the child will replace

a less fit member of the population. The average fitness and unfitness values of the

population will be improved if the child solution has a lower fitness and unfitness

value than those of parent solutions. During the replacement process, a duplicate

solution needs to be prevented from entering the population. A duplicate child is

one whose solution structure is identical to any one of the solution structures in the

population. Allowing duplicate solutions to exist can reduce the diversity of the

whole population and may lead to premature convergence.

CHAPTER 3. MTCMOS TECHNIQUE 67

A Subgroup Ordering Replacement (SOR) scheme is specifically designed for

population replacement in [Chu95], where the population is divided into four mu-

tually exclusive subgroups with respect to the child. Figure 3.20 illustrates the

fitness-unfitness landscape of the population, where the “x” and “y” axes represent

unfitness and fitness, respectively [Chu95]. Each point in the plot represents an

individual in the population and is positioned according to the individual’s fitness

and unfitness values. These points are separated into four subgroups with respect

to the fitness and unfitness of the child. A child will replace a selected individual of

the first non-empty subgroup in the order of “a”, “b”, “c”, and “d”. Based on the

situation in Figure 3.20, a child solution will first attempt to replace a solution in

subgroup “a”, because it has higher fitness and unfitness values than the child’s2.

If subgroup “a” is empty, then subgroup “b” is considered next. The reason for

considering subgroup “b”, before subgroup “c”, is that the feasible solutions are

harder to find, and therefore, the priority is to first search for a feasible solution

before trying to improve the fitness of the solution. Accordingly, by considering

subgroups “a” and “b” first, the average unfitness of the population will decrease.

3.4.1 SPP Results

GA Parameter Tuning

The generation size and population size are two important parameters in any GA

to determine the solution quality and average execution time. Figure 3.21 and

3.22 portray the effect of different generation and population sizes, respectively,

2The higher the fitness and unfitness a solution has, the inferior the solution.

CHAPTER 3. MTCMOS TECHNIQUE 68

��

������

��

��

	

������
�

��

��

�����
�

Child

0

Optimal

Unfitness

Fitness Population Individual

Subgroup(c) Subgroup(a)

Subgroup(d) Subgroup(b)

Figure 3.20: Population subgroups and fitness-unfitness landscape.

for a small (CLAD) and a large (AllCh) circuits when Isleep equals 300 µA. Both

figures prove that the solution quality (cost) is improved (decreased) with the larger

population or generation size. However, the two figures also indicate that the

computation time will increase as more generations and populations are evolved.

As a result, there is a tradeoff between the solution quality and the CPU time. For

a large circuit, this tradeoff becomes particularly severe.

Figure 3.23 reflects the effect of different mutation rates for two different size

circuits. The experimental results indicate that the larger the mutation rate is,

the worse the solution quality is. This denotes that duo to too much random

perturbation, the offspring has lost its resemblance to the parents. Therefore, the

algorithm loses the ability to converge to a good solution. However, small mutation

rates also result in a larger execution time. The reason for this is that the offspring

with small mutation rates is more likely to be a duplicate child. Under these

circumstances, the evolution process of this iteration needs to be repeated again.

Consequently, the mutation rate is set at ten for the rest of the tests.

CHAPTER 3. MTCMOS TECHNIQUE 69

0

2

4

6

8

10

100 1000 10000 100000
0

10

20

30

40

50

C
o

s
t

C
P

U
 T

im
e

(s
)

Generations

Small Size Circuit: CLAD (pop:100)

Cost
CPU Time

15

20

25

30

35

40

100 1000 10000 100000 1e+06

10

100

1000

10000

100000

C
o

s
t

C
P

U
 T

im
e

(s
)

Generations

Large Size Circuit: AllCh (pop:100)

Cost
CPU Time

Figure 3.21: Results of different generation sizes (Isleep = 300µA).

0

1

2

3

4

5

6

7

8

10 48 86 124 162 200
0

7

14

21

28

35

C
o

s
t

C
P

U
 T

im
e

(s
)

Populations

Small Size Circuit: CLAD (gen:50000)

Cost
CPU Time

28

29

30

31

32

33

34

10 48 86 124 162 200
210

280

350

420

490

C
o

s
t

C
P

U
 T

im
e

(s
)

Populations

Large Size Circuit: AllCh (gen:50000)

Cost
CPU Time

Figure 3.22: Results of different population sizes (Isleep = 300µA).

0

2

4

6

8

10

12

5 14 23 32 41 50
0

5

10

15

20

25

C
o

s
t

C
P

U
 T

im
e

(s
)

Mutation Rate

Small Size Circuit: CLAD (pop:100, gen:10000)

Cost
CPU Time

30

31

32

33

34

35

36

5 14 23 32 41 50

16

32

48

64

80

C
o

s
t

C
P

U
 T

im
e

(s
)

Mutation Rate

Large Size Circuit: AllCh (pop:100, gen:10000)

Cost
CPU Time

Figure 3.23: Results of different mutation rates (Isleep = 250µA).

CHAPTER 3. MTCMOS TECHNIQUE 70

GA Results of Different Circuits

Tables 3.3 and 3.4 compare the performance of the CPLEX ILP solver and GA for

the CLAD and the parity circuits, respectively. The generation size and population

size parameters in the GA heuristic are set at 10,000 and 100, respectively, for each

benchmark. The solution cost (“Cost” column), total sleep transistor number (“ST-

Num” column), and solution time (in CPU seconds) are recorded for each sleep

transistor size (Isleep). The last row in each table evaluates the average performance

improvement, based on the optimal solution obtained by the ILP CPLEX solver.

For CPLEX, these two small SPPs are fairly easy to solve with the optimal solution

being found after only a few branch-and-bound iterations. However, the proposed

GA is not computationally competitive with the CPLEX solver.

CLAD CPLEX GA (Gen=10,000 Pop=100)
Isleep Cost ST-Num Time Cost ST-Num Time

150 3.68 9 0.33 4.52 10 2.7
200 4.33 8 2.16 5.59 9 3.0
250 4.68 6 0.57 6.37 8 3.2
300 5.46 6 3.82 7.05 7 4.1
350 5.78 5 3.93 7.42 7 4.5
400 6.44 5 12.27 8.32 7 4.8

Avg Imp 0% -29.3% -23.1% -0.9%

Table 3.3: Comparison of CPLEX and GA for “CLAD benchmark”.

The advantage of the GA arises from the controllable computation time for the

Mult and ALU test circuits. For both circuits, the modelled SPPs become extremely

more difficult to solve in one particular case than in the others. This can be seen

by examining the CPU time, executed by the CPLEX solver, for the different sleep

transistor sizes in Table 3.5 and 3.6, respectively. The worst solution time in both

CHAPTER 3. MTCMOS TECHNIQUE 71

Parity CPLEX GA (Gen=10,000 Pop=100)
Isleep Cost ST-Num Time Cost ST-Num Time

150 3.41 9 0.7 4.16 9 7.0
200 4.33 8 2.65 4.98 8 5.9
250 4.88 7 16.57 6.33 8 7.2
300 4.99 6 1.58 5.99 7 85.3
350 5.49 6 2.29 7.59 7 11.7
400 5.87 6 2.46 7.82 7 11.0

Avg Imp 0% -27.3% -9.5% -388%

Table 3.4: Comparison of CPLEX and GA for “Parity benchmark”.

circuits is three orders longer than the shortest one. However, the GA’s more even

and less computation time, which is directly proportional to the generation and

population sizes, can be carefully adjusted to generate an acceptable solution in a

reasonable amount of time.

Mult1 CPLEX GA (Gen=10,000 Pop=100)
Isleep Cost ST-Num Time Cost ST-Num Time

150 5.72 18 349.7 5.75 18 2.0
200 3.91 12 1.58 4.32 12 2.4
250 3.62 9 0.11 4.13 10 3.0
300 4.96 9 0.32 6.38 10 3.3
350 5.07 8 0.47 6.38 9 4.5
400 5.36 7 1.19 5.93 8 4.6

Avg Imp 0% -14.8% -6.3% +94.4%

Table 3.5: Comparison of CPLEX and GA for “Mult1 benchmark”.

The 32-bit error correcting, the 27-bit channel interrupt controller, and the

16-bit multiplier are the three largest circuits for the MTCMOS SPP modelling

in this thesis. These three circuits contain more rows (gates) and more columns

(clusters) than the other benchmarks. The CPLEX solver, therefore, requires a

large amount of computation time to find the optimal solution for each case, as

CHAPTER 3. MTCMOS TECHNIQUE 72

ALU CPLEX GA (Gen=100,000 Pop=100)
Isleep Cost ST-Num Time Cost ST-Num Time

150 4.76 17 9.41 6.98 19 246.1
200 5.61 14 47.13 6.74 15 299.7
250 6.63 12 271.47 8.60 15 320.8
300 7.51 11 1299.09 11.27 14 349.8
350 8.43 11 4478.45 11.26 14 391.8
400 9.22 11 8589.01 13.09 12 657.0

Avg Imp 0% -37.4% -17.1% +84.6%

Table 3.6: Comparison of CPLEX and GA for “ALU benchmark”.

shown in Table 3.7, 3.8, and 3.9. The GA, implemented in this section to solve the

SPP, is principally applied to improving the performance for these large circuits.

The experimental results indicate that the GA solution is not very sensitive to the

size of the population. Therefore, a population size P = 100 is used for all circuits

with different sleep transistor sizes. Various generation sizes are then applied to

attempt to find an acceptable solution in a reasonable amount of time. Tables 3.7,

3.8, and 3.9 present the solutions and average performance improvements achieved

by the GA with two generation sizes; namely, 100,000 and 1,000,000. Clearly, more

generations will improve the solution quality (less cost function), but the execution

time also increases to the same order as that of the CPLEX solver. This tradeoff

results in less effectiveness for this pure GA to solve the SPP.

Even the results, generated by the GA, might be unsatisfactory, for most NP-

hard problems in CAD for VLSI design, heuristic methods seem to be the only way

to solve the problems [Gere99]. Heuristics are acceptable if they perform well for

most typical problem instances. It can be envisaged that this GA implementation

can become more effective if a local search heuristic is combined as a hybrid. An

CHAPTER 3. MTCMOS TECHNIQUE 73

alternative method to significantly improve the solution quality for this MTCMOS

sleep transistor sizing problem is using a simpler and more effective model, as

discussed in Section 3.6.

Error CPLEX GA (G:100,000 P:100) GA (G:1,000,000 P:100)
Isleep Cost ST-N Time Cost ST-N Time Cost ST-N Time

150 6.83 32 11125.2 10.02 36 365.8 9.89 36 4822.2
200 7.27 24 60451.3 14.99 32 488.1 13.61 31 9520.4
250 8.42 22 26731.2 16.19 27 585.6 15.38 27 13169.7
300 9.13 20 18875.6 18.46 25 553.9 14.87 23 12535.4
350 10.05 18 18034.6 17.24 23 618.2 15.64 21 15448.6
400 10.97 17 17557.8 22.22 26 849.9 18.15 22 9192.3

A-Imp 0% -88.2% -27.1% +97.7% -66.2% -20.3% +57.7%

Table 3.7: Comparison of CPLEX and GA for “Error benchmark”.

AllCh CPLEX GA (G:100,000 P:100) GA (G:1,000,000 P:100)
Isleep Cost ST-N Time Cost ST-N Time Cost ST-N Time

150 11.10 55 1994.5 20.12 61 463.0 14.40 58 5489.6
200 9.20 39 89390.2 23.76 52 555.6 16.72 46 7309.0
250 9.32 32 116229.4 24.41 44 625.8 21.52 42 8874.7
300 12.65 30 29552.7 25.51 38 936.5 20.73 34 10574.8
350 12.71 26 32080.9 27.92 39 967.7 24.17 36 13713.7
400 14.74 25 40308.9 26.57 37 1075.1 23.95 33 15075.5

A-Imp 0% -112.7% -30.9% +98.5% -74.3% -20.2% +80.3%

Table 3.8: Comparison of CPLEX and GA for “AllCh benchmark”.

3.5 A First-Fit (FF) Technique

In [Anis02, Anis03], a discharge current processing heuristic is first used to cluster

the gates in the circuit. The sleep transistor sizing and distribution problem is then

solved by an Integer Linear Programming (ILP) Bin-Packing formulation that was

CHAPTER 3. MTCMOS TECHNIQUE 74

Mult2 CPLEX GA (G:100,000 P:100) GA (G:1,000,000 P:100)

I†
sleep Cost ST-N Time Cost ST-N Time Cost ST-N Time

350 88.96 415 969.5 120.62 443 1345.2 108.15 443 28994.6
400 25.49 309 59767.8 67.47 349 1796.3 50.35 335 32299.1

A-Imp 0% -110.9% -9.1% +94.8% -59.5% -7.5% -2.4%

† when Isleep < 350µA, no feasible solution is found.

Table 3.9: Comparison of CPLEX and GA for “Mult2 benchmark”.

explained in Sections 3.2.1 and 3.2.2. The discharge current processing heuristic is

utilized to form a set of clusters of gates that, when combined, does not exceed the

maximum current of any gate in the cluster. Following the processing heuristic, the

problem is modelled as a BPP. The objective of the BPP formulation is to assign

each cluster to one sleep transistor such that the number of sleep transistors used

is minimized. Total current in each sleep transistor is constrained such that it does

not exceed the discharge current limit Isleep.

The original Bin-Packing problem consists of placing n objects into a number

of bins. Each object has a weight and each bin has a limited bin capacity. In

[Anis02, Anis03], the weight of each object is represented by the maximum discharge

current of each cluster, and the bin capacity equals the limit current of the sleep

transistor. One problem of using the maximum current of each cluster to represent

the object weight is over-estimating the discharge current at the different time slots.

As illustrated in Figure 3.24(c), the maximum current of the cluster, which is formed

by adding the discharge currents of gate G1 and G2 in the timing diagram, is used

to represent the weight of the cluster (object). It is assumed that the discharge

current of this cluster is equal to Area1 plus Area2. However, the real discharge

current combination of these two gates in the timing diagram consists of only Area2.

CHAPTER 3. MTCMOS TECHNIQUE 75

As a result, more sleep transistors can be used due to the over-estimation.

��
�� ��

��I1+I2(Cluster)

time

time

time

I1(G1)

I2(G2)

(c)

(b)

(a)

Max Current: 0.079mA

Max Current: 0. 065mA

Max Current of Cluster: 0.079mA

Area Area2 1

Figure 3.24: Formation of a single cluster.

Accordingly, a more efficient First-Fit (FF) heuristic technique is proposed to

solve the sleep transistor sizing and the distribution problem directly. As seen in

the pseudo-code of Figure 3.25, the limit on the current of each sleep transistor

is directly taken as the criterion to assign a gate to the sleep transistor. The

algorithm terminates when all the gates are assigned. Without transforming the

dynamic discharge current of a cluster into a static maximum current, the current

over-estimation is avoided, and therefore, the number of sleep transistors can be

reduced. Furthermore, from the pseudo-code of Figure 3.25, it can be seen that

the computational complexity of the FF technique is O(n2), which is similar to the

current processing heuristic proposed in [Anis02]. Thus, the CPU time for solving

the sleep transistor sizing and the distribution problem is improved dramatically,

since the ILP BPP is avoided.

CHAPTER 3. MTCMOS TECHNIQUE 76

FIRST-FIT HEURISTIC
1. Initialize current vectors;
2. Set all gates free to be assigned to a sleep transistor;
3. For all gates in circuit

If gate Gi is not assigned yet
assign gate Gi to new sleep transistor Sk

update sleep transistor info
calculate max current, start, and end time

End If
For all other gates in circuit

If gate Gj is not assigned yet
add current of gate Gj to sleep transistor Sk

If combination ≤ current limit of ST
append gate to sleep transistor
update sleep transistor info
set gate Gj locked in sleep transistor SK

End If
End For

End For
4. Return all sleep transistors used.

Figure 3.25: First-Fit (FF) heuristic for MTCMOS sleep transistor sizing.

CHAPTER 3. MTCMOS TECHNIQUE 77

3.5.1 Experimental Results of the First-Fit (FF) Approach

With the performance degradation within 5% as a basis, Table 3.10 displays a com-

parison of the techniques used in [Anis02] and the proposed FF technique in terms

of the total sleep transistor (ST) area and subthreshold leakage power. The col-

umn “BPP” are CPLEX solver results that are generated by the current processing

heuristic and the BPP technique, whereas the column “FF” gives the results that

are generated by the FF technique. Obviously, the FF technique achieves less or

equal leakage power than the techniques in [Anis02] due to the correct estimation

of the discharge current. The FF technique reduces the leakage power by 12.1%,

on average, for seven test circuits. However, the major advantage of the proposed

FF heuristic is the simplified problem model. Consequently, the large computa-

tion time of the CPLEX solver to solve the BPP is avoided. The speed-up factor,

achieved by the FF approach indicated in the column “S-U” of Figure 3.11, is sig-

nificant. The decrease in the CPU time predicates that the proposed FF heuristic

will be more effective than the techniques in [Anis02], as problem increases in size.

Circuit Optimal Total number Total width of Total number Total width of Leakage
Isleep of STs (BPP) STs (BPP) of STs (FF) STs (FF) savings by FF

CLAD 300µA 3 3.96µm 3 3.96µm 0%
Mult1 300µA 3 3.96µm 2 2.64µm 33%
Parity 300µA 2 2.64µm 2 2.64µm 0%
Alu 250µA 6 6.6µm 4 4.4µm 33%

Error 350µA 5 7.7µm 5 7.7µm 0%
AllCh 300µA 13 16.94µm 11 14.52µm 14.3%
Mult2 350µA 269 414.3µm 258 397.3µm 4.1%

Table 3.10: Leakage comparison between BPP and FF techniques.

CHAPTER 3. MTCMOS TECHNIQUE 78

Circuit Isleep=150 Isleep=250 Isleep=300 Isleep=350 Isleep=400
BPP FF S-U BPP FF S-U BPP FF S-U BPP FF S-U BPP FF S-U

CLAD 0.32 0.01 32 0.13 0.01 13 0.2 0.01 2 0.25 0.01 25 0.29 0.01 29
Mult1 0.11 0.01 11 0.04 0.01 4 0.03 0.01 3 0.06 0.01 6 0.04 0.01 4
Parity 0.19 0.1 2 0.14 0.1 1 0.18 0.1 2 0.18 0.1 2 0.13 0.1 1
Alu 4.2e+3 0.1 4e+4 0.35 0.1 3 0.26 0.1 2 0.28 0.1 3 0.23 0.1 2

Error 0.66 0.1 6 0.91 0.1 9 0.35 0.1 3 0.16 0.1 1 0.36 0.1 3
AllCh 14.1 0.1 140 1.1e+4 0.1 1e+5 3.21 0.1 32 4.55 0.1 45 3.63 0.1 36
Mult2 - - - - - - - - - 1.6e+4 1.5 1e+4 1.5e+4 1.3 1e+4

Avg S-U 7031 18338 7 1440 1439

- Isleep violation, no feasible solution is found.

Table 3.11: CPU time(s) comparison between BPP and FF techniques.

3.6 A Set-Covering Problem (SCP) Model

To take the physical locations of the gates on the chip into consideration, and

thereby reduce the routing complexity of larger circuits, a Set-Partitioning tech-

nique is proposed in [Anis02]. The objective of the low-power SPP is to find an

optimal collection of clusters such that each gate is covered by exactly one cluster

(i.e., one sleep transistor in the MTCMOS technique), while the lowest cost value

is achieved.

The concept and formulation of the Set-Partitioning technique was presented

in Section 3.2.3. The equality constraint in the SPP mathematical formulation,

(3.8), guarantees that all the gates in the circuit are covered once by a single

sleep transistor. Due to these limitations, the SPP is considered to be a highly

constrained problem. As the problem size (i.e., the number of gates in the circuit)

increases, it becomes quite inefficient to solve the model by an ILP solver (CPLEX)

in a reasonable amount of time. The experimental results in [Anis03] signify that

the CPU time, used by CPLEX to solve the SPP, increases dramatically as the

CHAPTER 3. MTCMOS TECHNIQUE 79

circuit size increases.

Accordingly, a SCP model is considered in this thesis to further reduce the

CPU computation time. The same clustering heuristic, Figure 3.8, is used within

the SCP formulation. The major difference between the SPP and the SCP is in the

restriction of the constraints, imposed by the model. By relaxing the sensitivity of

the constraints of the SPP model, the SPP is transformed to a SCP, as shown in

(3.14) and (3.15),

Minimize Z =
n
∑

j=1

cjSj, (3.14)

subject to
n
∑

j=1

aijSj ≥1

i = 1, ..., m

Sj ∈ 0, 1 j = 1, ..., n, (3.15)

where

Sj =















1, if the jth column is selected

0, otherwise
aij =















1, if row i is covered by column j

0, otherwise.

Constraint (3.15) in the SCP model guarantees that all gates in the circuit will

be covered by the sleep transistor at least once, which indicates that some of the

gates can be covered by two or even more sleep transistors. In [Anis02, Anis03],

the current capacity of each sleep transistor is assumed to be of fixed value. As a

result, the relaxed constraints of the SCP technique can increase the number of sleep

CHAPTER 3. MTCMOS TECHNIQUE 80

transistors. However, when one gate is connected to more than one sleep transistor,

the virtual ground wires of the different sleep transistors become common which

balances the discharge currents. As the authors reported in [Long03], the total area

of all sleep transistors can be reduced with the presence of such a current discharging

balance. Therefore, it is useful to have a gate that is assigned to more than one sleep

transistor. Furthermore, the relaxed constraints of the SCP can result in a better

optimization solution because of the larger solution space. For the computation

time, the CPLEX solver spends much less time to search for the feasible solutions

of the SCP, compared to the SPP, due to the relaxation of constraints.

3.6.1 Comparison of SPP and SCP

Tables 3.12, 3.13, and 3.14 compare the results, produced by the SPP and the SCP

techniques, in terms of the solution cost, total number of sleep transistors, and the

CPU time, respectively. All the results are derived from the same gate-clustering

technique that is introduced in [Anis02], and the ILP CPLEX solver is applied to

solve the integer linear programming models.

Table 3.12 confirms that the SCP technique generates a better solution (lower

cost) than the SPP for each test circuit. A reduction in the cost function indicates

a more efficient solution in terms of the distance between the clustered gates and

the efficiency of the clustering mechanism. For all the test circuits, an 8.9% cost

reduction, on average, is gained by the SCP modelling due to the larger solution

space. Column “Imp” in Table 3.13 indicates the reduction of the number of sleep

transistors achieved by the SCP technique compared to the SPP technique. Al-

though the SCP technique improves the cost for each test circuit, the number of

CHAPTER 3. MTCMOS TECHNIQUE 81

sleep transistors is not necessarily reduced. The reasoning behind this is that the

objective function of the SPP and SCP problems is the cost, and not directly the

number of sleep transistors; that is, the leakage power of the circuit. However,

Table 3.13 does signify that the SCP can achieve a comparable solution in terms of

the number of sleep transistors compared to the SPP.

Circuit Optimal Cost of Cost of Cost reduction
Isleep (µA) the SPP the SCP by the SCP

CLAD 150 3.68 3.50 4.9%
Mult1 250 3.62 3.48 3.9%
Parity 150 3.41 2.76 19.1%
Alu 150 4.76 4.48 5.9%

Error 150 6.83 6.27 8.2%
AllCh 250 9.32 8.39 9.9%
Mult2 400 25.5 22.7 10.9%

Table 3.12: Cost comparison between SPP and SCP techniques.

Circuit Isleep=150 Isleep=250 Isleep=300 Isleep=350 Isleep=400
SPP SCP Imp SPP SCP Imp SPP SCP Imp SPP SCP Imp SPP SCP Imp

CLAD 9 10 -11% 6 6 0% 6 6 0% 5 5 0% 5 5 0%
Mult1 18 18 0% 9 10 -11% 9 9 0% 8 8 0% 7 7 0%
Parity 9 9 %0 7 6 +14% 6 6 0% 6 5 +17% 6 5 +17%
Alu 17 18 -6% 12 12 0% 11 11 0% 11 9 +18% 11 9 +18%

Error 32 33 -3% 22 22 0% 20 18 +10% 18 16 +11% 17 16 +6%
AllCh 55 57 -4% 32 36 -13% 30 28 +7% 26 27 -4% 25 24 +4%
Mult2 - - - - - - - - - 415 444 -7% 309 327 -6%

Avg Imp -3.4% -1.4% +2.4% +5.0% +5.6%

- Isleep violation, no feasible solution is found.

Table 3.13: Comparison of sleep transistor number for SPP and SCP.

The main advantage of the SCP model arises from the large reduction in the

CPU time, compared to that of the SPP model due to relaxation of constraints.

Table 3.14 lists the solution times of the CPLEX solver to solve the SPP and the

CHAPTER 3. MTCMOS TECHNIQUE 82

SCP models. Column “S-U” indicates the speed-up factor, achieved by the SCP,

compared to that of the SPP. From the “Avg Imp” row in Table 3.13 and the “Avg

S-U” row in Table 3.14, it is clear that the SCP technique can produce comparable

solutions to those of the SPP with much less computation time. Figure 3.26 plots

the effect of the size of the sleep transistor (Isleep), with respect to the computation

time, for two different benchmarks. Obviously, the speed-up achieved by the SCP

technique is more evident for the larger circuit (i.e., the “AllCh” circuit), which

indicates that this method can scale well for the larger benchmarks.

Circuit Isleep=150 Isleep=250 Isleep=300 Isleep=350 Isleep=400
SPP SCP S-U SPP SCP S-U SPP SCP S-U SPP SCP S-U SPP SCP S-U

CLAD 0.33 0.19 2 0.57 0.40 1 3.82 0.77 5 3.93 0.44 9 12.27 0.65 19
Mult1 3.5e+2 0.09 3889 0.11 0.07 2 0.32 0.18 2 0.47 0.19 2 1.19 0.13 10
Parity 0.7 0.06 12 16.57 0.48 35 1.89 1.58 1 2.29 2.26 1 2.46 2.05 1
Alu 9.41 1.91 5 2.7e+2 1.78 152 1.2e+3 8.99 14 4.4e+3 5.10 863 8.5e+3 9.96 853

Error 1.1e+4 39.2 282 2.6e+4 3033.1 9 1.9e+4 47.2 404 1.8e+4 124.7 150 1.8e+4 4606.3 4
AllCh 2.0e+3 2.45 801 1.2e+5 457.8 261 3.0e+4 7722.8 4 3.2e+4 876.1 36 4.0e+4 4317.4 9
Mult2 - - - - - - - - - 9.6e+2 28.7 34 5.9e+4 1609.7 37

Avg S-U 832 72 72 156 133

- Isleep violation, no feasible solution is found.

Table 3.14: Comparison of CPU time(s) for SPP and SCP.

3.7 Summary

The MTCMOS low-power digital circuit design technique was introduced in this

chapter. The tradeoff between the system performance and the standby leakage

that is associated with this method was then analyzed. Proper sleep transistor

sizing is a key issue that affects the speed, as well as the leakage power of the

circuit.

CHAPTER 3. MTCMOS TECHNIQUE 83

0

2

4

6

8

10

12

14

150 200 250 300 350 400

T
im

e
(s

e
c

s
)

Bin Size (uA)

Small Size Circuit: CLAD

SPP Time
SCP Time

1

10

100

1000

10000

100000

1e+06

150 200 250 300 350 400

T
im

e
(s

e
c

s
)[

L
o

g
 S

c
a

le
]

Bin Size (uA)

Large Size Circuit: AllCh

SPP Time
SCP Time

Figure 3.26: Computation time for SCP and SPP.

The accuracy of sizing the sleep transistor depends on how well the discharge

currents are modelled. Based on the timing diagram, the discharge current is

modelled as a trapezoid vector in the innovative gate-clustering technique, proposed

in [Anis02]. The BPP and SPP models were then employed by the gate-clustering

technique to effectively solve the sleep transistor sizing and distribution problem.

To reduce the large computation time required by the CPLEX solver (to find the

optimal solutions for the BPP and the SPP), two GAs were implemented and

compared. The experimental results show that the BPP can be solved quite well

by the GA. For the hard SPP, however, some work is required to improve the

effectiveness of the GA in the future.

In addition, two models were proposed to effectively handle the sleep transistor

sizing and distribution problem. By eliminating the over-estimated discharge cur-

rent caused by the gate-clustering technique, the proposed FF technique achieved

a leakage reduction of 12.1%, on average, compared to that of [Anis03]. Further-

CHAPTER 3. MTCMOS TECHNIQUE 84

more, the simplified problem model results in much less computational complexity.

In order to reduce the routing complexity for the large circuits, caused by sleep

transistor inserting, the original SPP in [Anis02] is substituted by a SCP model.

Experimental results indicate that the SCP modelling Produces better results than

the SPP modelling in a fraction of the time.

All test circuits in [Anis03] were designed manually by a schematic view. This

design method not only consumes time, but also generates errors easily. For large

circuit designs, CAD (Computer Aided Design) tools, integrated in the design flow,

are required to implement iterative design process. The following chapter focuses

on automating the design flow for MTCMOS.

Chapter 4

MTCMOS Design Environment

4.1 Introduction

Typically, Application Specific Integrated Circuit (ASIC) design is based on a flow

that uses Hardware Description Languages (HDLs). In this flow, the design and

implementation of the logic circuit are coded in either Verilog [Lee03c] or VHDL

[Rush98]. Simulations are performed to check the logic circuit’s functionality. This

is followed by synthesis, where the HDL code is converted to logic gates. Following

the synthesis, the physical design of the ASIC is realized. In this step, the synthe-

sized gates are placed and routed. It is also the step to synthesis the clock tree

and route the clock tree correctly with an acceptable clock skew. Figure 4.1 is a

diagram of an ASIC design flow, beginning with specification of an ASIC design to

a logic synthesis, and finally, the tapeout.

Optimal low-power designs involve decisions about the timing versus power and

area versus power tradeoffs at different stages of the design flow. To enable designers

85

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 86

to accurately and efficiently perform these tradeoffs, it is necessary for low-power

optimization techniques to be integrated within, and applied throughout, the entire

RTL-to-GDSII flow.

Synthesis

No
No

Yes

No Yes

YesNo

Tapeout
GDS II

Specification

Simulation

Pass

Placement

Test Bench RTL Coding

Design Start Point

Standard Cell

Pre−Layout
Timing Analysis

Pass?

Pre−Layout

Post−Layout

and Synthesis

and Routing Annotation

Post−Layout
Timing Analysis

Pass?

Synthesis
Tweaks

Timing
ConstraintsTechnology

Library

Synthesis
Tweaks

Back

Logic
Verification

Pass?

Yes

Figure 4.1: Diagram showing ASIC design flow.

This chapter first introduces the Canadian Microelectronics Corporation (CMC)

digital ASIC design flow in Section 4.2. A new database is then constructed in

Section 4.3 to effectively model the discharge current, based on the MTCMOS

gate-clustering technique. Finally, the MTCMOS low-power design environment is

developed and integrated with the CMC design flow in Section 4.4.

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 87

4.2 CMC Digital ASIC Design Flow

The 0.18 µm CMOS technology from Taiwan Semiconductor Manufacturing Com-

pany (TSMC), supported by CMC, is adopted in this thesis to design all the circuits.

The standard cell library, designed by Virtual Silicon Technology Inc. using the 0.18

µm TSMC process, is adopted to implement the logic functions. The circuit design

begins with a Register Transfer Level (RTL) model and ends with the physical ver-

ification which includes the stream file creation. Computer Aided Design (CAD)

tools, working seamlessly together for the logic synthesis and physical design, play

an important role in this iterative design process.

In order to integrate the MTCMOS automatic design environment with the

traditional design flow, the CMC digital IC design process is introduced first. Figure

4.2 exhibits the flow of this design. A 2-bit pure combinational integer multiplier

circuit is employed as an example to illustrate the design procedures.

Synthesis

Scan Insertion

RTL Simulation

Placement/Routing

Logic/Physical
Verification

Floorplanning

Logic Synthesis Physical Design

First
Encounter

Wroute
Qplace

Silicon
Ensemble

DFII

Compiler

Test
Compiler

Synopsys’s

Verilog XL

Synopsys’s

Verilog XL

Cadence’s

Cadence’s

Design

Post−Layout Timing
Analysis

Analysis
Pre−Layout Timing

Figure 4.2: CMC digital ASIC design flow [Corp02].

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 88

4.2.1 Front-End Portion of IC Design

The purpose of this design portion is to synthesis the design from the RTL code to

the logic level and create scan-based test and test vectors. The timing constraints

for the placement and routing tools are also generated at this stage. The tool that

is integrated with the CMC design flow to perform these tasks is Synopsys’s Design

Compiler (DC).

RTL Simulation

Utilizing either Verilog or VHDL hardware description languages, RTL coding is

the preferable starting point for most designs today. Appendix B provides the RTL

netlist of the 2-bit multiplier circuit in Verilog. In order to ensure that the RTL

code functions properly, Cadence’s Verilog XL simulator is used to simulate the

RTL circuit description, based on the test bench file. In this test bench file, test

vectors with circuit input values and expected output results are utilized to verify

the circuit functionality.

Logic Synthesis

Synopsys’s Design Compiler is a tool combined with the CMC design flow to per-

form logic synthesis. In this step, the RTL code is converted to a netlist of logic

gates. The synthesis process requires two other input files to conduct the conversion

from the RTL to logic gates. The first input file is the technology library file that

contains the standard cells. The library that is selected for this multiplier design

is from the technology foundry TSMC. The second input file constraints file, helps

to optimize the logic being synthesized. Usually, this file consists of information

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 89

such as timing and loading requirements and optimization algorithms that the tool

needs to optimally synthesize the logic gate.

Logic synthesis is a very important step in the ASIC design flow [Lee03c], since

it ensures that the synthesis is tweaked to meet the specified timing performance

and area constraints.

Scan Chain Insertion

The scan-based Design For Testability (DFT) is a structure approach to designing

sequential circuits for testability. This technique allows the chip to be easily tested,

following manufacturing, to ensure that no manufacturing errors nor subsequent

problems (bonding problems, for example) exist within the chip. Usually, Synop-

sys’s Test Compiler is used to implement the scan-based design technique. The

goal of this technique is to connect all sequential elements (flip-flops) to form a

long serial shift register (or scan chain) with multiplexers. The Test Compiler is

then used to create a set of test vectors which can detect “stuck at 1” and “stuck at

0” [Kang03] faults in the chip. Since the multiplier circuit design is for illustration

purposes the scan-based DFT is ignored in the 2-bit multiplier circuit.

Pre-Layout Timing Analysis

When the logic synthesis and scan chain insertion are completed, a structural netlist

(either in Verilog or VHDL format) is generated by the Design Compiler. A static

timing analysis, derived from this netlist, is then performed to detect any possible

timing violation. The circuit netlist, including the scan chain, is again simulated to

guarantee the functionality of the synthesized logic gates. This gate-level netlist,

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 90

based on the technology library, also connects the logic synthesis and the physical

design during the iterative design process. Appendix C shows the gate-level netlist

of the 2-bit multiplier circuit following logic synthesis and simulation. The MTC-

MOS automatic design environment that will be introduced in Section 4.4 works

on this netlist.

4.2.2 Physical IC Design

Once the pre-layout timing analysis of the gate-level netlist is completed, the netlist,

together with the timing information from Synopsys’s Design Compiler, is imported

to the Cadence physical design environment. In this physical portion of the design,

the synthesized logic gates are placed and routed. Following the post-layout tim-

ing analysis, the physical version of the design is verified by the Layout Versus

Schematic (LVS) and Design Rule Check (DRC) tools. Finally, the design is con-

verted into a GDSII (stream) format and is ready for fabrication.

Floorplanning

The objective of this design stage is to create a floorplan for the design, including

a default group of cells, an I/O ring that is connected by an abutment, and defined

placement sites for all the cells. Cadence’s First Encounter is the design tool utilized

for floorplanning stage.

Any macro-cells (such as RAM or hard-core), combined with the design, are

included in this step. The positions of all the I/O cells, combined with the power

pads, corner cells, and I/O feeder cells, are also defined. The power planning

function, called from the First Encounter, can be used to create the power rings

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 91

and power stripes for the design.

Placement and Routing

The task of the placement step is to construct a layout that indicates the positions

of the cells. The timing driven placement tool, Qplace, is adopted for this job.

During the timing driven placement, the placer balances the timing constraints

with routability. Following the placement phase, global and detailed routing are

performed by using Wroute. The Wroute tool can route the high-priority nets (e.g.,

clock, VDD, and VSS) before attempting optimization of other nets to allow for

the most optimal routing. A particularly important task during this design stage

is the clock tree synthesis. CTPKS, the clock tree synthesis engine in the Cadence

PKS, is involved to create a balanced clock tree with an acceptable clock skew.

Post-Layout Timing Analysis

The post-layout timing analysis allows real timing violations such as hold and setup

to be identified. This step is similar to the pre-layout timing analysis except that in

the post-layout timing analysis, the accurate net delay information of the physical

layout is used. In the pre-layout timing analysis, the net delay information is

estimated. The post-layout synthesis is tweaked to fix timing violations during the

resynthesis process, as shown previously in Figure 4.1. Following resynthesis, the

floorplanning, placement and routing are performed iteratively, until all the timing

violations are fixed.

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 92

Logic/Physical Verification and Tape Out

Once the post-layout timing analysis is completed, the design flow is directed to-

wards the final logic verification to ensure correct functionality. DivaLVS in the

Cadence Design Framework II (DF II) is employed to compare the schematic view

(based on the gate-level netlist) with the layout view (based on the DEF file after

Wroute). The DRC is also implemented to verify the geometric constraints. Once

the LVS and the DRC are verified, the design is converted into the GDSII (steam)

format and is ready for manufacturing.

4.3 Discharge Current Database Construction

One of the key issues concerning the gate-clustering MTCMOS technique is mod-

elling the discharge current of each gate in the circuit as a vector. This offers an

automated design environment so that the gate-clustering MTCMOS design envi-

ronment can be easily integrated within the CMC digital design flow. As previously

explained in Section 3.2.1, the construction of the vector for each gate is based on a

trapezoid discharge current waveform. This waveform contains information about

the delay of the gate (when the earliest and latest peak discharge currents occur),

fanout (the duration of the current), and the magnitude of the current in each time

slot.

In order to construct the vector for each gate in the circuit automatically, each

standard cell in the technology library is simulated by Hspice [Comp00], and the

information of the trapezoid waveform is documented. Thus, a database is formed

which works as a look-up table to generate the vectors automatically (this will be

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 93

further described in Section 4.4.1). Figure 4.3 illustrates a two-input NAND gate

test circuit for the Hspice simulation.

vd
d

vd
d

Z
NAN2D0

V
SS

A2

A1
+
− V2:1.8

V1:0

V1:0
V2:1.8

vdc:1.8

V
D

D
gnd

gn
d

gn
d

+
−

+
−

gn
dP

oi
nt

tiedown

gnd!

tr=100p

tr=100p

c=fanout 7f

Figure 4.3: Standard cell (NAN2D0) test circuit.

Some environment variables of this test circuit are: VDD = 1.8V, and tempera-

ture = 25 ◦C. The operational frequency is 500MHz, and the rising/falling time of

the input signals are set to 100ps (5% of the signal period). For each fanout, a load

of 6fF is applied to the output of the gate, since this represents the average input

capacitance of cells in the standard-cell library [Inc99]. Furthermore, a load of 1fF

is applied to the output of each fanout, contributing to the interconnection capac-

itance. Therefore, the total load capacitance of each fanout is 7fF. The threshold

voltages VT of the transistors in the standard cell are set to ±350mV by adjusting

the values of parameters “dvthn” and “dvthp” in the model file [Comp00].

For each standard cell, all the possible input transitions, causing the discharge

current to occur at the output node, are applied, as discussed in Section 3.2.1.

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 94

Figures 4.4, 4.5 and 4.6 present the discharge currents of the two-input NAND gate

of the test circuit (Figure 4.3). These figures indicate that the discharge current

varies with different input transitions. Consequently, the highest discharge current

value (peak value Imax), the earliest (tmin)/latest (tmax) delay time, and the longest

duration time, among these discharge currents, are monitored. In order to correctly

estimate the average discharge current, the peak value is multiplied by the switching

activity of the gate, as explained in [Anis02]. The parameters that are collected by

the database are used to represent the characteristics of the standard cell. For each

standard cell, all parameters are documented at different fanout values. Figure 4.7

reveals the discharge current waveforms of the NAND gate at four different fanouts.

Clearly, the larger the fanout, the longer the switching duration. Figure 4.8 gives an

example of the structure of the discharge current database. Following the database

construction, which is fundamental to the developed MTCMOS design environment

(to be introduced in the next section), the MTCMOS design flow will be described

in more detail.

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 95

Figure 4.4: Standard cell NAN2D0: 00 to 11 discharge current.

Figure 4.5: Standard cell NAN2D0: 01 to 11 discharge current.

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 96

Figure 4.6: Standard cell NAN2D0: 10 to 11 discharge current.

Figure 4.7: Effect of different fanouts on discharge current.

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 97

* ...
* The data format is as follows ;
* cell name fanout tmin tmax duration Imax (µA) ;

STANDARD CELL ;
.
.
.

NAN2D0 1 9 10 8 69.15 ;
NAN2D0 2 10 10 10 76.26 ;
NAN2D0 3 10 11 10 77.71 ;
NAN2D0 4 11 14 11 78.47 ;
NAN2D0 5 12 15 12 79.04 ;
NAN2D0 6 14 16 13 79.23 ;

.

.

.
END STANDARD CELL

Figure 4.8: Standard cell NAN2D0 discharge current database.

4.4 MTCMOS Design Environment

The integration of the CMC digital ASIC design flow with the developed MTCMOS

design environment is illustrated in Figure.4.9.

Following the synthesis of the RTL code (using Synopsys’s Design Compiler),

the gate-level netlist is imported to the MTCMOS design environment. Next, the

circuit topology is extracted and the delay parameters (tmin and tmax) of each gate,

read from the database, are updated to account for the accumulative delay. The

vectors are generated for each gate in the circuit from the updated delay infor-

mation and discharge current database built apriori. In addition, sleep transistors

with different W/L ratios (i.e., different Isleep) are developed in the layout view by

using (3.4). The sizing of the sleep transistor is then estimated by using techniques

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 98

Compiler

RTL Simulation

Synthesis

Placement/Routing

Logic/Physical
Verification

Compiler
Test

Encounter
First

Qplace
Wroute

Ensemble
Silicon

DFII

Scan Insertion

Floorplanning

Design

Verilog XL

Verilog XL Database

Update

Vector Generation

Analysis

Pre−Layout Timing
Analysis

Post−Layout Timing

Accumulative Delay

Circuit Topology
Extraction

Sleep Transistor
Sizing

Sleep Transistor
Insertion

CMC ASIC Design Flow MTCMOS Design Environment

Figure 4.9: MTCMOS design flow.

presented in Chapter 3. Based on the optimization results, sleep transistors with

optimal sizes, combined with the sleep control signal, are inserted into the netlist.

Finally, the new gate-level netlist is exported to the Cadence physical design envi-

ronment. The rest of the design follows the conventional design flow.

Several key issues that are related to the MTCMOS design environment are

explained in more detail in the following subsections; namely, the vector generation,

optimization environment, sleep transistor insertion, and layout implementation.

4.4.1 Automatic Vector Generation from RTL

In order to achieve a proper estimation of the sleep transistor size, the timing

analysis of the discharge current needs to incorporate a number of important issues:

(1) the different input transitions, (2) the circuit topology, (3) the fanout associated

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 99

with each gate, and (4) the glitching currents. Several parameters were introduced

in Section 3.2.1 to characterize the trapezoid discharge current of the gate. Among

the parameters, the earliest delay time (tmin) and the latest delay time (tmax) of each

standard cell (due to the different input transitions) are documented in the database

construction phase, as discussed in Section 4.3. However, the values for these two

parameters are recorded, based on the test circuit in Figure 4.3. Consequently, the

true propagation delay of a gate in the circuit has to be updated according to the

real circuit topology and delay level. In general, the propagation delay Tk of gate

Gk is expressed as follows:

Tkmin
= min{(Timin

+ tkmin
), (Tjmin

+ tkmin
),} (4.1)

and

Tkmax
= max{(Timax

+ tkmax
), (Tjmax

+ tkmax
),}, (4.2)

given that the output of gates Gi, Gj, are inputs to gate Gk.

Step 2 in Figure 4.10 presents a simple heuristic that is developed to update

the propagation delay for each gate in the circuit. Following the delay parameter

updating, an automatic vector generation engine is developed to build a vector for

each gate, according to the information of the updated delay and the database. The

vectorially modelled circuit can then be optimized by using the heuristic techniques

introduced earlier in Chapter 3.

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 100

MTCMOS DESIGN ENVIRONMENT
1. Read gate-level netlist;
2. While (updating the accumulative delay) not done

For all gates in circuit
If Tk of Gk is not updated
If all the fan-in (Gi, Gj...) are updated

update Tk

End If
End If

End For
End While

3. Build a vector for each gate;
4. Solve the ST sizing problem using FF or SCP technique;
5. Insert STs and sleep control signal into netlist;
6. Export the new gate-level netlist.

Figure 4.10: MTCMOS automatic design environment.

4.4.2 Environment Optimization

The objective of step 4 in the MTCMOS design environment as seen in Figure 4.10,

is to solve the sleep transistor (ST) sizing problem by using the First-Fit or SCP

technique, proposed in Sections 3.5 and 3.6, respectively. To evaluate the physical

locations of the gates that are utilized by the SCP technique, an Amoeba placement

tool, combined with the Cadence First Encounter, is applied. This trial placement

is implemented after the logic synthesis, based on the gate-level netlist. The X,

Y coordinates of each gate are then extracted from the Design Exchange Format

(DEF) file. The SCP can thus be formulated in terms of the extracted coordinates

and the constructed vectors. The next step involves calling the CPLEX library to

solve the low-power MTCMOS optimization problem. To facilitate an automatic

design and avoid data translation, a CPLEX solver interface engine is developed

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 101

and integrated into the design environment. The MTCMOS design environment,

illustrated in Figure 4.10, is implemented in the ‘C’ programming language on a

Sun Solaris workstation.

4.4.3 Sleep Transistor Insertion and Circuit Layout

The problem solution, generated by the CPLEX solver, gives the optimal combina-

tion of gates and corresponding sleep transistors. According to the CPLEX results,

the optimally sized sleep transistors are then inserted into the gate-level netlist.

Also, extra nets are added to the netlist, contributing to the virtual ground rails

(VGND) which distribute to the drain terminal of each sleep transistor. All the

source terminals of the sleep transistors are connected to the real ground (GND).

The connection of the “VSS” pin 1 of each gate is then modified to the correspond-

ing virtual ground net, according to the CPLEX solution. Finally, a sleep control

signal is introduced as an extra circuit input signal, and all the gate terminals of

the sleep transistors are connected to this input signal. Appendix C shows the

modified netlist after the MTCMOS technique is applied for the 2-bit multiplier

design example.

The new gate-level netlist, resulting from the MTCMOS design flow, is im-

ported to the Cadence physical design environment. During the floorplan phase, a

cavity is defined where the sleep transistors will be located. The remaining steps

of the physical design follow the conventional ASIC design. Figure 4.11 exempli-

fies the sleep transistor layout implementation. Although this style incurs routing

1Originally, this pin was connected to GND.

CHAPTER 4. MTCMOS DESIGN ENVIRONMENT 102

complexity because of the additional virtual ground rails (VGND), the conventional

placement and routing methods can be adopted with minimal modification by using

commercially available tools (i.e., Qplace and Wroute).

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��

��

���������������������
���������������������
���������������������
���������������������

GND

VGNDCavity

GND

Sleep
Transistor

VDD

Figure 4.11: Layout example with placed sleep transistor.

4.5 Summary

A true low-power design technique has to be tightly integrated into the main design

environment to ensure that the timing versus power and area versus power design

tradeoffs are easily handled during the iterative design process. The Canadian

Microelectronics Corporation (CMC) digital ASIC design flow was introduced in

this chapter. In order to integrate the developed MTCMOS design environment

into the CMC design flow, a discharge current database that characterizes the

standard cells in the technology library was constructed. An automated vector

generation engine and a CPLEX solver interface engine were then designed and

fully integrated with the flow. The gate-level netlist works as the design media,

switching the iterative low-power design among synthesis, MTCMOS design, and

physical design.

Chapter 5

Conclusion

Low-power design is attracting a great deal of attention in VLSI digital design,

especially for portable systems and high performance systems. The reduction of

the transistor size allows a higher integration density and increases the operating

frequency. The rapid switching of millions of transistors dissipates tremendous

power and overheats the chip, reducing the reliability of the chip and necessitating

expensive and large cooling systems. For many event driven applications, such

as mobile devices where circuits spend most of their time in an idle state with

no computation, standby leakage power is the dominant power dissipation. The

MTCMOS technique has emerged as an effective way to achieve high performance

and low-power designs. Since the size of the sleep transistor directly affects the

timing versus power tradeoff, there is an obvious need for a MTCMOS design

environment in which the sleep transistor sizing problem can be solved.

This thesis introduces a new MTCMOS design environment, where effective

methods to solve the sleep transistor optimization problem are integrated.

103

CHAPTER 5. CONCLUSION 104

5.1 Heuristic/Mathematical Approaches

Two genetic algorithms (GAs) are implemented in this thesis to solve the low-power

MTCMOS BPP and SPP. The performance of the GAs is compared with that of

a state-of-the-art ILP solver. For all the MTCMOS test circuits in this paper,

the BPP oriented GA found all the optimum solutions. Even though most of the

computation time of the GA is small due to the small problem size, the proposed

GA still achieves a 89%, on average, reduction in the CPU time, compared to

that of the ILP CPLEX solver. However, the performance of the SPP oriented

GA is not computationally competitive with the CPLEX solver in terms of the

solution quality. Although the GA can improve the solution quality by employing

more populations or generations, the execution time also increases to the same

order used by the CPLEX solver, which degrades the effectiveness of the heuristic

method.

To improve both the solution quality and the computation time of the sleep

transistor sizing problem, a First-Fit(FF) heuristic and a Set-Covering (SCP) model

are proposed in this thesis. By eliminating the over-estimation of the discharge

current, introduced by the gate-clustering technique, the proposed FF technique

achieves a 12% and 92%, on average, reduction in leakage power and CPU time

compared to those of the BPP technique, respectively. As for the SCP technique,

the model is formulated by relaxing the constraints of the SPP model, resulting

in discharge current sharing in the circuit. This phenomena reduces not only the

total area of all sleep transistors but also the noise bouncing on the virtual ground.

The experimental results reveal that the SCP technique improves the cost function,

CHAPTER 5. CONCLUSION 105

leakage power, and computation time by 8.9%, 2%, and 99%, respectively. Large

reductions in the CPU time by the FF and SCP techniques prove that the proposed

methods are effective and scale well with larger circuits.

5.2 MTCMOS Design Environment

VLSI design is an iterative design process to balance area versus power and timing

versus power tradeoffs. It requires a true low-power design technique to be tightly

integrated into the main design environment so that the designers can accurately

and efficiently perform these tradeoffs. In order to develop a MTCMOS automatic

design environment, a discharge current database is constructed that contains all

the information about the standard cells in the technology library. An automated

vector generation engine is then developed to build vectors for all the gates in the

netlist. An ILP CPLEX solver interface is also developed and integrated to solve the

sleep transistor optimization problem. Based on these two tools, a MTCMOS design

environment is developed and fully integrated into the Canadian Microelectronics

Corporation (CMC) digital ASIC design flow.

5.3 Future Work

Although this work presents solutions to existing problems, it has also opened the

door for other research ventures.

For example, the benchmarks used in this thesis are six pure combinational

logic circuits without memory units and flip-flops. The issue is how to design the

CHAPTER 5. CONCLUSION 106

sequential circuits by using the gate-clustering MTCMOS techniques. Furthermore,

how can a MTCMOS latch be effectively designed?

The high and low threshold voltages (VTH and VTL) of the design are adjusted

by modifying the parameters “dvthn” and “dvthp” in the Hspice model file. Future

work in this area should take the form of applying physical layouts to characterize

high and low threshold voltages. Another extension to this work will be to develop

a MTCMOS standard cell library and sleep transistors.

Future work should involve the design and fabrication of a larger MTCMOS

circuit using the newly developed design flow.

Appendix A

Glossary

ALU : Arithmetic Logic Units

ASIC : Application Specific Integrated Circuit

BPP : Bin-Packing Problem

CAD : Computer Aided Design

CF : Constant Field

CMC : Canadian Microelectronics Corporation

CMOS : Complementary Metal Oxide Semiconductor

CMOSP18 : The 0.18-micron CMOS Technology

CV : Constant Voltage

DC : Design Compiler

DEF : Design Exchange Format

DIBL : Drain Induced Barrier Lowering

DFT : Design for Testability

DRC : Design Rule Check

107

APPENDIX A. GLOSSARY 108

DSM : Deep Sub-Micron

DSP : Digital Signal Processing

FF : First-Fit

GA : Genetic Algorithm

GIDL : Gate Induced Drain Leakage

ILP : Integer Linear Programming

IC : Integrated Circuit

IP : Intellectual Property

LVS : Layout Versus Schematic

MTCMOS : Multi-Threshold CMOS

NP-hard : Non Deterministic Polynomial Hard

PCB : Printed Circuit Board

PDA : Personal Digital Assistance

RTL : Register Transfer Logic

SoC : System on Chip

SCP : Set-Covering Problem

SPP : Set-Partitioning Problem

ST : Sleep Transistor

TSMC : Taiwan Semiconductor Manufacturing Company

UDSM : Ultra Deep Sub-Micron

VHDL : Very High Speed Integrated Circuit Hardware Description Language

VLSI : Very Large Scale Integration

VTCMOS : Variable Threshold CMOS

Appendix B

RTL Code

module Circuit6288 2bit (prod out, a in, b in);

output [3:0] prod out;

input [1:0] a in, b in;

wire [3:0] prod top;

wire [1:0] a top, b top;

// Circuit6288 2bit is an I/O wrapper for Ckt6288

TopLevel6288 Ckt6288 (prod top, a top, b top);

PDO08CDG pprod00 (.PAD(prod out[0]), .I(prod top[0]));

PDO08CDG pprod01 (.PAD(prod out[1]), .I(prod top[1]));

PDO08CDG pprod02 (.PAD(prod out[2]), .I(prod top[2]));

PDO08CDG pprod03 (.PAD(prod out[3]), .I(prod top[3]));

PDIDGZ pa00 (.C(a top[0]), .PAD(a in[0]));

PDIDGZ pa01 (.C(a top[1]), .PAD(a in[1]));

PDIDGZ pb00 (.C(b top[0]), .PAD(b in[0]));

PDIDGZ pb01 (.C(b top[1]), .PAD(b in[1]));

endmodule

109

APPENDIX B. RTL CODE 110

module TopLevel6288 (prod out, a in, b in);

output [3:0] prod out;

input [1:0] a in, b in;

assign prod out = a in * b in;

endmodule

Appendix C

Gate-Level Netlist

Netlist After Synthesis

module Circuit6288 2bit (prod out 3 , prod out 2 , prod out 1 ,

prod out 0 , a in 1 , a in 0 , b in 1 ,

b in 0 , VDD, VSS);

output prod out 3 ;

output prod out 2 ;

output prod out 1 ;

output prod out 0 ;

input a in 1 ;

input a in 0 ;

input b in 1 ;

input b in 0 ;

input VDD ;

input VSS ;

wire b top 1 ;

wire \Ckt6288 2bit|n5 ;

wire \Ckt6288 2bit|n1 ;

111

APPENDIX C. GATE-LEVEL NETLIST 112

wire prod top 3 ;

wire \Ckt6288 2bit|n6 ;

wire a top 0 ;

wire \Ckt6288 2bit|n2 ;

wire prod top 2 ;

wire a top 1 ;

wire \Ckt6288 2bit|n3 ;

wire prod top 1 ;

wire b top 0 ;

wire \Ckt6288 2bit|n4 ;

wire prod top 0 ;

supply1 VDD ;

supply0 VSS ;

NOR3D1 \Ckt6288 2bit|U1 (.Z(prod top 3) , .A3(\Ckt6288 2bit—n3) ,

.A2(\Ckt6288 2bit—n2) , .A1(\Ckt6288 2bit|n1) ,

.VSS(VSS) , .VDD(VDD)) ;

NOR3D1 \Ckt6288 2bit|U2 (.Z(prod top 2) , .A3(\Ckt6288 2bit|n2) ,

.A2(prod top 0) , .A1(\Ckt6288 2bit|n3) ,

.VSS(VSS) , .VDD(VDD)) ;

INVD0 \Ckt6288 2bit|U3 (.Z(\Ckt6288 2bit|n2) , .A(b top 1) ,

.VSS(VSS) , .VDD(VDD)) ;

INVD0 \Ckt6288 2bit|U4 (.Z(\Ckt6288 2bit|n3) , .A(a top 1) ,

.VSS(VSS) , .VDD(VDD)) ;

INVD0 \Ckt6288 2bit|U7 (.Z(prod top 0) , .A(\Ckt6288 2bit|n1) ,

.VSS(VSS) , .VDD(VDD)) ;

INVD0 \Ckt6288 2bit|U10 (.Z(\Ckt6288 2bit|n4) , .A(\Ckt6288 2bit|n5) ,

.VSS(VSS) , .VDD(VDD)) ;

NAN2D0 \Ckt6288 2bit|U5 (.Z(\Ckt6288 2bit|n1) , .A2(b top 0) ,

.A1(a top 0) , .VSS(VSS) , .VDD(VDD)) ;

NAN2D0 \Ckt6288 2bit|U8 (.Z(\Ckt6288 2bit|n5) , .A2(b top 0) ,

.A1(a top 1) , .VSS(VSS) , .VDD(VDD)) ;

NAN2D0 \Ckt6288 2bit|U9 (.Z(\Ckt6288 2bit|n6) , .A2(a top 0) ,

.A1(b top 1) , .VSS(VSS) , .VDD(VDD)) ;

MUXB2D0 \Ckt6288 2bit|U6 (.Z(prod top 1) , .SL(\Ckt6288 2bit|n6) ,

APPENDIX C. GATE-LEVEL NETLIST 113

.A1(\Ckt6288 2bit|n5) , .A0(\Ckt6288 2bit|n4) ,

.VSS(VSS) , .VDD(VDD)) ;

PDO08CDG pprod00 (.PAD(prod out 0) , .I(prod top 0)) ;

PDO08CDG pprod01 (.PAD(prod out 1) , .I(prod top 1)) ;

PDO08CDG pprod02 (.PAD(prod out 2) , .I(prod top 2)) ;

PDO08CDG pprod03 (.PAD(prod out 3) , .I(prod top 3)) ;

PDIDGZ pa00 (.PAD(a in 0) , .C(a top 0)) ;

PDIDGZ pa01 (.PAD(a in 1) , .C(a top 1)) ;

PDIDGZ pb00 (.PAD(b in 0) , .C(b top 0)) ;

PDIDGZ pb01 (.PAD(b in 1) , .C(b top 1)) ;

PVDD1DGZ vdd core (.VDD(VDD)) ;

PVSS1DGZ vss core (.VSS(VSS)) ;

endmodule

APPENDIX C. GATE-LEVEL NETLIST 114

Netlist With STs

module Circuit6288 2bit (prod out 3 , prod out 2 , prod out 1 ,

prod out 0 , a in 1 , a in 0 , b in 1 ,

b in 0 , sleep, VDD, VSS);

output prod out 3 ;

output prod out 2 ;

output prod out 1 ;

output prod out 0 ;

input sleep ;

input a in 1 ;

input a in 0 ;

input b in 1 ;

input b in 0 ;

input VDD ;

input VSS ;

wire VSS 1 ;

wire VSS 2 ;

wire VSS 3 ;

wire VSS 4 ;

wire VSS 5 ;

wire sleep top ;

wire b top 1 ;

wire \Ckt6288 2bit|n5 ;

wire \Ckt6288 2bit|n1 ;

wire prod top 3 ;

wire \Ckt6288 2bit|n6 ;

wire a top 0 ;

wire \Ckt6288 2bit|n2 ;

wire prod top 2 ;

wire a top 1 ;

wire \Ckt6288 2bit|n3 ;

wire prod top 1 ;

APPENDIX C. GATE-LEVEL NETLIST 115

wire b top 0 ;

wire \Ckt6288 2bit|n4 ;

wire prod top 0 ;

supply1 VDD ;

supply0 VSS ;

ST250 sleep 1 (.G(sleep top) , .S(VSS) , .D(VSS 1)) ;

ST250 sleep 2 (.G(sleep top) , .S(VSS) , .D(VSS 2)) ;

ST250 sleep 3 (.G(sleep top) , .S(VSS) , .D(VSS 3)) ;

ST250 sleep 4 (.G(sleep top) , .S(VSS) , .D(VSS 4)) ;

ST250 sleep 5 (.G(sleep top) , .S(VSS) , .D(VSS 5)) ;

NOR3D1 \Ckt6288 2bit|U1 (.Z(prod top 3) , .A3(\Ckt6288 2bit—n3) ,

.A2(\Ckt6288 2bit—n2) , .A1(\Ckt6288 2bit|n1) ,

.VSS(VSS 1) , .VDD(VDD)) ;

NOR3D1 \Ckt6288 2bit|U2 (.Z(prod top 2) , .A3(\Ckt6288 2bit|n2) ,

.A2(prod top 0) , .A1(\Ckt6288 2bit|n3) ,

.VSS(VSS 5) , .VDD(VDD)) ;

INVD0 \Ckt6288 2bit|U3 (.Z(\Ckt6288 2bit|n2) , .A(b top 1) ,

.VSS(VSS 4) , .VDD(VDD)) ;

INVD0 \Ckt6288 2bit|U4 (.Z(\Ckt6288 2bit|n3) , .A(a top 1) ,

.VSS(VSS 3) , .VDD(VDD)) ;

INVD0 \Ckt6288 2bit|U7 (.Z(prod top 0) , .A(\Ckt6288 2bit|n1) ,

.VSS(VSS 4) , .VDD(VDD)) ;

INVD0 \Ckt6288 2bit|U10 (.Z(\Ckt6288 2bit|n4) , .A(\Ckt6288 2bit|n5) ,

.VSS(VSS 3) , .VDD(VDD)) ;

NAN2D0 \Ckt6288 2bit|U5 (.Z(\Ckt6288 2bit|n1) , .A2(b top 0) ,

.A1(a top 0) , .VSS(VSS 3) , .VDD(VDD)) ;

NAN2D0 \Ckt6288 2bit|U8 (.Z(\Ckt6288 2bit|n5) , .A2(b top 0) ,

.A1(a top 1) , .VSS(VSS 4) , .VDD(VDD)) ;

NAN2D0 \Ckt6288 2bit|U9 (.Z(\Ckt6288 2bit|n6) , .A2(a top 0) ,

.A1(b top 1) , .VSS(VSS 1) , .VDD(VDD)) ;

MUXB2D0 \Ckt6288 2bit|U6 (.Z(prod top 1) , .SL(\Ckt6288 2bit|n6) ,

.A1(\Ckt6288 2bit|n5) , .A0(\Ckt6288 2bit|n4) ,

.VSS(VSS 2) , .VDD(VDD)) ;

APPENDIX C. GATE-LEVEL NETLIST 116

PDO08CDG pprod00 (.PAD(prod out 0) , .I(prod top 0)) ;

PDO08CDG pprod01 (.PAD(prod out 1) , .I(prod top 1)) ;

PDO08CDG pprod02 (.PAD(prod out 2) , .I(prod top 2)) ;

PDO08CDG pprod03 (.PAD(prod out 3) , .I(prod top 3)) ;

PDIDGZ psleep (.PAD(sleep) , .C(sleep top)) ;

PDIDGZ pa00 (.PAD(a in 0) , .C(a top 0)) ;

PDIDGZ pa01 (.PAD(a in 1) , .C(a top 1)) ;

PDIDGZ pb00 (.PAD(b in 0) , .C(b top 0)) ;

PDIDGZ pb01 (.PAD(b in 1) , .C(b top 1)) ;

PVDD1DGZ vdd core (.VDD(VDD)) ;

PVSS1DGZ vss core (.VSS(VSS)) ;

endmodule

Bibliography

[Anis01] M. Anis, M. Mahmoud, and M. Elmasry, “Efficient Gate Clustering for
MTCMOS Circuits,” In Proceedings of the 14th Annual International
ASIC/SOC Conference, pp. 34–38, Washington, DC, 2001.

[Anis02] M. Anis, S. Areibi, M. Mahmoud, and M. Elmasry, “Dynamic and Leak-
age Power Reduction in MTCMOS Circuits Using an Automated Effi-
cient Gate Clustering,” In Proceedings of the 39th Design Automation
Conference, pp. 480–485, New Orleans, 2002.

[Anis03] M. Anis, S. Areibi, and M. Elmasry, “Design and Optimization of
Multithreshold CMOS (MTCMOS) Circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 22, No.
10, pp. 1324–1342, 2003.

[Beas96] J. E. Beasley and P. C. Chu, “A Genetic Algorithm for the Set Covering
Problem,” Europaen Journal of Operational Research, vol. 94, pp. 392–
404, 1996.

[Bell95] A. Bellaouar and M. I. Elmasry, Low-Power Digital VLSI Design Cir-
cuits and Systems, Kluwer Academics Publications, MA, 1995.

[Bohr96] M. Bohr and et al., “A high-performance 0.25-µm logic technology opti-
mized for 1.8V operation,” In Proceedings of the International Electron
Devices Meeting, pp. 847–850, 1996.

[Brew90] J. Brews, High Speed Semiconductor Devices, Wiley, New York, 1990.

[Chan96] A. Chandrakasan, I. Yang, C. Vieri, and D. Antoniadis, “Design Con-
siderations and Tools for Low-Voltage Digital System Design,” In Pro-
ceedings of the 33rd Design Automation Conference, pp. 113–118, 1996.

[Chat80] P. Chatterjee, W. Hunter, T. Holloway, and Y. Lin, “The Impact of
Scaling Laws on the Choice of n-channel or p-channel for MOS VLSI,”
IEEE Electron Device Letters, vol. 1, No. 10, pp. 220–223, 1980.

117

BIBLIOGRAPHY 118

[Chu95] P. C. Chu and J. E. Beasley, “A Genetic Algorithm for the Set-
Partitioning Problem,” European Journal of Operational Research, vol.
94, pp. 392–404, 1995.

[Comp00] Taiwai Semiconductor Manufacturing Company, “TSMC SPICE
Model,” 2000.

[Corp02] Canadian Microelectronics Corporation, “Tutorial on CMC’s Digital IC
Design Flow,” 2002.

[Denn74] R. Dennard, F. Gaensslen, H. Yu, V. Rideout, E. Bassous, and A.
LeBlanc, “Design of Ion-Implanted MOSFETs with Very Small Dimen-
sions,” IEEE Journal of Solid-State Circuits, vol. SC-9, No. 5, pp. 256–
268, 1974.

[Falk94] E. Falkenauer, “A New Representation and Operators for Genetic Al-
gorithms Applied to Grouping Problems,” Evolutionary Computation,
vol. 2, No. 2, pp. 123–144, 1994.

[FTsa03] Y. F.Tsai, D. Duarte, N. Vijaykrishnan, and M. J. Irwin, “Implications
of Technology Scaling on Leakage Reduction Techniques,” In Proceedings
of the 40th Design Automation Conference, pp. 187–190, Anaheim, 2003.

[Gare79] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman, New York, 1979.

[Gere99] S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, Chichester,
West Sussex, 1999.

[Gold91] D. E. Goldberg and K. Deb, “A comparative analysis of selection
schemes used in genetic algorithms,” Foundations of Genetic Algorithms,
pp. 181–186, 1991.

[Hatl97] J. Hatler and F. Najm, “A Gate-Level Leakage Power Reduction Method
for Ultra Low-Power CMOS Circuits,” In Proceedings of the IEEE Cus-
tom Integrated Circuits Conference, pp. 475–478, Santa Clara, CA, 1997.

[Holl92] J. H. Holland, Adaption in Natural and Artificial Systems, MIT Press,
Cambridge, Massachusetts, 1992.

[Hyun01] I. Hyunsik, T. Inukai, H. Gomyo, T. Hiramoto, and T. Sakurai, “VTC-
MOS Characteristics and Its Optimum Conditions Predicted by a Com-
pact Analytical Model,” In Proceedings of the International Symposium
on Low-Power Electronics and Design, pp. 123–128, 2001.

[Inc02] ILOG Inc., “ILOG CPLEX 7.5 User’s Manual,” 2002.

[Inc04a] Intel Inc., “Intel Microprocessor Quick Reference Guide,” 2004.

BIBLIOGRAPHY 119

[Inc04b] Intel Inc., “Intel Pentium 4 Processor with 512-KB L2 Cache on 0.13 Mi-
cron Process and Intel Pentium 4 Processor Extreme Edition Supporting
Hyper-Threading Technology Datasheet,” 2004.

[Inc99] Virtual Silicon Technology Inc., “Native-18 Standard Cell Library Data-
book,” 1999.

[John02] M. Johnson, D. Somasekhar, L. Chiou, and K. Roy, “Leakage Control
with Efficient Use of Transistor Stacks in Single Threshold CMOS,”
IEEE Transactions on VLSI Systems, vol. 10, No. 1, pp. 1–5, 2002.

[Kang03] S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits, McGraw-
Hill, New York, 2003.

[Kao01] J. Kao and A. Chandrakasan, “MTCMOS Sequential Circuits,” In Pro-
ceedings of the 27th European Solid State Circuits Conference, pp. 861–
869, 2001.

[Kao02] J. Kao, S. Narendra, and A. Chandrakasan, “Subthreshold Leakage
Modeling and Reduction Techniques,” In Proceedings of the Interna-
tional Conference on Computer Aided Design, pp. 141–148, 2002.

[Kao97] J. Kao, A. Chandrakasan, and D. Antoniadis, “Transistor Sizing Issues
and Tools for Multi-threshold CMOS Technology,” In Proceedings of the
34th Design Automation Conference, pp. 409–414, Las Vegas, Nevada,
1997.

[Kao98] J. Kao, S. Narendra, and A. Chandrakasan, “MTCMOS Hierarchical
Sizing Based on Mutual Exclusive Discharge Patterns,” In Proceedings
of the 35th Design Automation Conference, pp. 495–500, Las Vegas,
Nevada, 1998.

[Karn02a] T. Karnik, S. Borkar, and V. De, “Sub-90nm Technologies – Challenges
and Opportunities for CAD,” In Proceedings of the International Con-
ference on Computer Aided Design, pp. 203–206, 2002.

[Karn02b] T. Karnik, Y. Ye, J. Tschanz, L. Wei, S. Burns, V. Govindarajulu, V.
De, and S. Borkar, “Total Power Optimization by Simultaneous Dual-
Vt Allocation and Device Sizing in High Performance Microprocessors,”
In Proceedings of the 39th Design Automation Conference, pp. 486–491,
New Orleans, 2002.

[Kato00] N. Kato, Y. Akita, M. Hiraki, T. Yamashita, T. Shimizu, F. Maki,
and K. Yano, “Random Modulation: Multi-Threshold-Voltage Design
Methodology in Sub-2-V Power Supply CMOS,” IEICE Transactions
on Electronics., vol. E83-C, No. 11, pp. 1747–1754, 2000.

[Kawa93] T. Kawahara, M. Horiguchi, Y. Kawajiri, G. Kitsukawa, T. Kure, and
M. Aoki, “Subthreshold current reduction for decoded-driver by self-
reverse biasing,” IEEE Journal of Solid-State Circuits, vol. 28, No. 11,
pp. 1136–1143, 1993.

BIBLIOGRAPHY 120

[Ketk02] M. Ketkar and S. Sapatnekar, “Standby Power Optimization via Tran-
sistor Sizing and Dual Threshold Voltage Assignment,” In Proceedings
of the International Conference on Computer Aided Design (ICCAD),
pp. 375–378, 2002.

[Kirk83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization BY Simu-
lated Annealing,” Science, vol. 220, No. 4598, pp. 671–680, May 1983.

[Lee03a] D. Lee and D. Blaauw, “Static Leakage Reduction through Simultaneous
Threshold Voltage and State Assignment,” In Proceedings of the 40th
Design Automation Conference, pp. 191–194, Anaheim, 2003.

[Lee03b] D. Lee, W. Kwong, D. Blaauw, and D. Sylvester, “Analysis and Min-
imization Techniques for Total Leakage Considering Gate Oxide Leak-
age,” In Proceedings of the 40th Design Automation Conference, pp.
175–180, Anaheim, 2003.

[Lee03c] W. F. Lee, Verilog Coding for Logic Synthesis, Wiley, Hoboken, New
Jersey, 2003.

[Levi94] D. Levine, A Parallel Genetic Algorithm for the Set Partitioning Prob-
lem, Ph.D. thesis, Illinois Institute of Technology, Department of Com-
puter Science, 1994.

[Liao02] W. Liao, J. M. Basile, and L. He, “Leakage Power Modeling and Reduc-
tion with Data Retention,” In Proceedings of the International Confer-
ence on Computer Aided Design, pp. 714–719, 2002.

[Long03] C. Long and L. He, “Distributed Sleep Transistor Network for Power
Reduction,” In Proceedings of the 40th Design Automation Conference,
pp. 181–186, Anaheim, 2003.

[Mitc96] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cam-
bridge, Massachusetts, 1996.

[Moor75] G. E. Moore, “Progress in Digital Integrated Circuits,” In Proceedings
of the International Electronic Devices Meeting, pp. 11–13, 1975.

[Muto95] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Ya-
mada, “1-V Power Supply High-Speed Digital Circuit Technology with
Multi-Threshold Voltage CMOS,” IEEE Journal of Solid-State Circuits,
vol. 30, No. 8, pp. 847–854, 1995.

[Muto96] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, T. Kaneko, and J.
Yamada, “A 1-V multithreshold-voltage CMOS digital signal processor
for mobile phone applications,” IEEE Journal of Solid-State Circuits,
pp. 1795–1802, 1996.

[Ono01] A. Ono and et al., “A 100nm node CMOS technology for pratical SOC
application requirement,” In Proceedings of the International Electron
Devices Meeting, pp. 511–514, 2001.

BIBLIOGRAPHY 121

[Pier96] R. F. Pierret, Semiconductor Device Fundamentals, Addison-Wesley,
Reading, MA, 1996.

[Raba96] J. M. Rabaey, Digital Integrated Circuits, Prentice Hall, NJ, 1996.

[Ragh96] A. Raghunathan, S. Dey, and N. K. Jha, “Glitch analysis and reduction
in register transfer level power optimization,” In Proceedings of the 33rd
Design Automation Conference, pp. 331–336, 1996.

[Rard98] R. Rardin, Optimization in Operations Research, Prentice Hall, Boston,
1998.

[Roy00] K. Roy and S. C. Prasad, Low-Power CMOS VLSI Circuit Design, Wiley
Interscience, New York, 2000.

[Rush98] A. Rushton, VHDL for Logic Synthesis, Wiley, New York, 1998.

[Shah91] K. Shahookar and P. Mazumder, “VLSI Cell Placement Techniques,”
ACM Computing Surveys, vol. 23, No. 2, pp. 143–220, 1991.

[Shig97] S. Shigematsu, S. Mutah, Y. Matsuya, Y. Tanabe, and J. Yamada, “A
1-V High-Speed MTCMOS Circuit Scheme for Power-Down Application
Circuits,” IEEE Journal of Solid-State Circuits, vol. 32, No. 6, pp. 861–
869, 1997.

[Siri99] S. Sirichotiyakul, T. Edwards, O. Chanhee, Z. Jingyan, A. D. Har-
choudhury, R. Panada, and D. Blaauw, “Stand-by Power Minimization
through Simultaneous Threshold Voltage Selection and Circuit Sizing,”
In Proceedings of the 36th Design Automation Conference, pp. 436–441,
New Orleans, LA, 1999.

[Sysw89] G. Syswerda, “Uniform crossover in genetic algorithms,” In Proceedings
of the Third International Conference on Genetic Algorithms, pp. 2–9,
Morgan Kaufmann, 1989.

[Veen84] H. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and
its Impact on the Design of Buffer Circuits,” IEEE Journal of Solid-State
Circuits, vol. 19, No. 4, , 1984.

[Ye98] Y. Ye, S. Borkar, and V. De, “A New Technique for Standby Leakage
Reduction in High-Performance Circuits,” In Proceedings of the 1998
Symposium on VLSI Circuits, pp. 40–41, 1998.

[Yeo00] Y. C. Yeo, “Direct tunneling gate leakage current in transistors with
ultra thin silicon nitride gate dielectric,” IEEE Transactions on Electron
Devices, pp. 540–542, 2000.

