

AREA/CONGESTION-DRIVEN PLACEMENT FOR VLSI

CIRCUIT LAYOUT

A Thesis

Presented to

The Faculty of Graduate Studies

of

The University of Guelph

by

ZHEN YANG

In partial fulfilment of requirements

for the degree of

Master of Science

June, 2003

c©Zhen Yang, 2004

2

ABSTRACT

AREA/CONGESTION-DRIVEN PLACEMENT FOR VLSI

CIRCUIT LAYOUT

Zhen Yang

University of Guelph, 2003

Advisor:

Professor Shawki Areibi

This thesis presents and compares several global wirelength-driven placement algo-

rithms. Both flat and hierarchical approaches are implemented to find the effectiveness

of these approaches. Experiments conducted indicate that the Attractor-Repeller Placer

(ARP) method produces the best results and a hierarchical approach can reduce the

computation time of ARP by almost 85%. An evolutionary based hybrid algorithm for

circuit placement is also presented, where a pure Genetic algorithm is combined with a

local search, constructive technique and clustering technique to explore the solution space

more effectively. In addition to wirelength optimization, the issue of reducing excessive

congestion in local regions such that the router can finish the routing successfully is also

considered in this thesis via a post-processing congestion reduction technique. Results

obtained show that the flat congestion-driven placement approach reduces the congestion

by about 51% with a slight increase on the wirelength .

1

Acknowledgements

I would like to take this opportunity to express my sincere appreciation and thanks

to my advisor, Dr. Shawki Areibi, for his great help and guidance, and also the

inspiration he provided me at difficult times. He made me strive for excellence

at every point of this work. Without his moral support, constructive critism, and

invaluable help, this work would never have been possible.

I want to especially thank my husband Wenxin Wang and my parents for their

continuous encouragement and support.

And finally, many thanks to all my friends and well-wishers who exhorted me

to work dedicatedly towards the fulfillment of the objectives of this research.

i

To

my family

whose love and encouragement helped accomplish this

thesis.

ii

Contents

1 Introduction 1

1.1 Electronic Design Automation . 1

1.2 The VLSI Design Process . 2

1.2.1 Specification . 2

1.2.2 Functional Design . 3

1.2.3 Logical Design . 4

1.2.4 Circuit Design . 4

1.2.5 Physical Design . 4

1.2.6 Fabrication and Testing . 5

1.3 Motivation . 5

1.3.1 Interconnect in sub-micron Design 5

1.3.2 Global Placement . 6

1.3.3 Multi-Level Clustering . 7

1.3.4 Congestion Reduction . 8

1.4 Overview of Research Approaches 9

1.5 Contributions . 10

iii

1.6 Thesis Organization . 11

2 Background 12

2.1 Introduction . 12

2.2 Physical Design . 13

2.2.1 Circuit Partitioning . 14

2.2.2 Circuit Placement . 15

2.2.3 Global and Detailed Routing 16

2.3 Layout Styles . 17

2.3.1 Gate Array Layout . 17

2.3.2 Standard Cell Layout . 19

2.3.3 Macro Cell Layout . 20

2.3.4 Full-Custom Layout . 20

2.4 Standard-Cell Placement . 22

2.4.1 Problem Overview . 23

2.4.2 Traditional Quadratic Measure 24

2.4.3 Placement Cost Functions 26

2.5 Hierarchical Placement Approach 29

2.6 Approaches for the Standard-Cell Placement 31

2.6.1 Wirelength-driven Placement Approaches 31

2.6.2 Generating a Legal Placement 39

2.7 Test Circuits . 40

2.8 Summary . 42

iv

3 Mathematical/Heuristic Based Approaches 44

3.1 Introduction . 44

3.2 Constructive Placement Algorithms 45

3.2.1 Attractor Repeller Placer . 45

3.2.2 Cluster-Seed Based Placement 49

3.2.3 Partitioning Based Placement 51

3.3 Clustering & Iterative Improvement Techniques 52

3.3.1 Weighted Hyper-edge Clustering Technique 52

3.3.2 Tile Based Iterative Improvement 54

3.4 Results Comparison . 56

3.5 Evolutionary Based Placement . 63

3.5.1 Pure Genetic-based Placement Algorithm 65

3.5.2 Memetic-based Placement Algorithm 74

3.5.3 Numerical Results . 74

3.6 Summary . 85

4 Congestion-driven Placement 88

4.1 Introduction . 88

4.2 Congestion Based Technique . 89

4.2.1 Congestion Cost . 89

4.2.2 Previous Work . 91

4.3 Proposed Congestion Reduction Approach 102

4.3.1 Congestion Reduction in Placement 104

4.4 Experimental Results . 110

v

4.4.1 Flat Level Placement with Congestion Reduction 110

4.4.2 Hierarchical Placement with Congestion Reduction 114

4.5 Summary . 118

5 Conclusions 121

5.1 Wirelength Driven Placement . 122

5.2 Congestion Driven Placement . 123

5.3 Future Work . 124

A Glossary 125

B GA Parameter Tuning 126

B.1 Pure GA Results at Flat Level . 127

B.2 Pure GA Results at Clustering Level-1 136

B.3 Pure GA Results at Clustering Level-2 145

B.4 Pure GA Results at Clustering Level-3 154

Bibliography 163

vi

List of Tables

2.1 MCNC Benchmarks Used for Testing 41

2.2 Statistical Information of MCNC Benchmarks 42

3.1 Initial Placement Solutions without Improver at Flat Level 57

3.2 Initial Placement Solutions without Improver at Cluster Level-1 . . 58

3.3 Initial Placement Solutions without Improver at Cluster Level-2 . . 58

3.4 Initial Placement Solutions without Improver at Cluster Level-3 . . 59

3.5 Final Placement Solutions at Flat Level with Tile-based improver . 61

3.6 Final Placement Solutions at Cluster Level-3 with Tile-based im-

prover at top level . 62

3.7 Final Placement Solutions at Cluster Level-3 with Tile-based im-

prover at top and lowest level . 62

3.8 Final Placement Solutions at Cluster Level-3 with Tile-based im-

prover at all levels . 63

3.9 Pure GA (different initial solutions comparison) 80

3.10 Pure GA Solutions within 5 runs 80

3.11 Results Comparison of Memetic Algorithms 82

3.12 Placement Results at Different Clustering Levels 83

vii

3.13 Placement Results with Tile-based Improver 84

3.14 Results Comparison of Hierarchical Approach 84

3.15 Results Comparison of Different Approaches (flat level) 86

3.16 Results Comparison of Different Approaches (Clustering Level-3) . . 86

4.1 Topology Matrix T . 92

4.2 Tested Circuit Statistics . 110

4.3 Congestion Reduction After ARP+Tile Placement 112

4.4 Distribution of Congested Regions After ARP+Tile Placement . . 113

4.5 Congestion Reduction After ARP Placment 114

4.6 Tested Circuit Statistics . 115

4.7 Congestion Reduction Only at Clustering Level-3 115

4.8 Congestion Reduction at All Clustering Levels 116

4.9 Congestion Reduction after Hierarchical Placement 119

viii

List of Figures

1.1 VLSI Design Flow . 3

1.2 Interconnect and Gate Delay . 6

1.3 Overall Approaches for Placement Problem 9

2.1 Circuit Placement . 13

2.2 Physical Design Cycle . 14

2.3 Different Layout Styles for Digital Integrated Circuits 17

2.4 Gate Array Layout . 18

2.5 Standard Cell Layout . 19

2.6 Macro Cell Layout . 21

2.7 Full Custom Layout . 21

2.8 High Performance Layout . 22

2.9 An Example of Standard-cell Layout 24

2.10 Interconnection Topologies . 28

2.11 Wirelength Estimation by Bounding Box 29

2.12 Multilevel Clustering Hierarchy . 30

2.13 Different Approaches to Layout Problems 32

2.14 Pairwise Interchange . 36

ix

2.15 Placement Legalization . 39

3.1 Effect of the Repellers and Attractors (“+”represents locations of

movable cells, “X” represents location of I/O pads on the chip pe-

riphery, and “o” represents locations of attractors). 46

3.2 An Outline of the Placement Procedure ARP. 48

3.3 An Example of Cluster-Seed Based Placement Algorithm 50

3.4 A Cluster-Seed Based Constructive Algorithm 51

3.5 A Multi-Way Partitioning Based Placement Algorithm 53

3.6 Weighted Hyperedge Clustering . 54

3.7 A Tile-Based Algorithm . 56

3.8 Comparison of the Wirelength and Time (without improver) 60

3.9 Overall Approach for Genetic Placement 65

3.10 A Genetic Placement Algorithm 66

3.11 String Encoding . 67

3.12 Roulette Wheel . 69

3.13 Different Selection Methods . 70

3.14 One-Point and Two-Point Order Crossover 71

3.15 Effect of Different Crossover Operators 71

3.16 Mutation Operator . 72

3.17 Effect of Different Mutation Operators 73

3.18 A Memetic Algorithm . 75

3.19 Parameter Tuning of Circuit Bio (at flat level) 76

3.20 Parameter Tuning of Circuit Avq.large (at flat level) 77

x

3.21 Different Injection Rates for Different Size Circuits 79

4.1 Layout of a Circuit and Global Bins 90

4.2 Example of Region Growth Relieving Congestion 95

4.3 Routing Estimation Model . 96

4.4 Cell Inflation Example . 97

4.5 Example of Region Expansion . 100

4.6 Expansion Area Overlaps and Double Expansion Scheme 102

4.7 Congestion-driven Hierarchical Placement 103

4.8 Bounding Box Routing Estimation Model 105

4.9 Congested Region Identification . 107

4.10 Identify the Congested Regions . 108

4.11 Congested Region Expansion . 109

4.12 Congestion Reduction After ARP+Tile Placement 112

B.1 Parameters Tuning of Circuit Fract (at flat level) 127

B.2 Parameters Tuning of Circuit Prim1 (at flat level) 128

B.3 Parameters Tuning of Circuit Struct (at flat level) 129

B.4 Parameters Tuning of Circuit Ind1 (at flat level) 130

B.5 Parameters Tuning of Circuit Prim2 (at flat level) 131

B.6 Parameters Tuning of Circuit Bio (at flat level) 132

B.7 Parameters Tuning of Circuit Ind2 (at flat level) 133

B.8 Parameters Tuning of Circuit Ind3 (at flat level) 134

B.9 Parameters Tuning of Circuit Avq.large (at flat level) 135

B.10 Parameters Tuning of Circuit Fract (at clustering level-1) 136

xi

B.11 Parameters Tuning of Circuit Prim1 (at clustering level-1) 137

B.12 Parameters Tuning of Circuit Struct (at clustering level-1) 138

B.13 Parameters Tuning of Circuit Ind1 (at clustering level-1) 139

B.14 Parameters Tuning of Circuit Prim2 (at clustering level-1) 140

B.15 Parameters Tuning of Circuit Bio (at clustering level-1) 141

B.16 Parameters Tuning of Circuit Ind2 (at clustring level-1) 142

B.17 Parameters Tuning of Circuit Ind3 (at clustering level-1) 143

B.18 Parameters Tuning of Circuit Avq.large (at clustering level-1) . . . 144

B.19 Parameters Tuning of Circuit Fract (at clustering level-2) 145

B.20 Parameters Tuning of Circuit Prim1 (at clustering level-2) 146

B.21 Parameters Tuning of Circuit Struct (at clustering level-2) 147

B.22 Parameters Tuning of Circuit Ind1 (at clustering level-2) 148

B.23 Parameters Tuning of Circuit Prim2 (at clustering level-2) 149

B.24 Parameters Tuning of Circuit Bio (at clustering level-2) 150

B.25 Parameters Tuning of Circuit Ind2 (at clustring level-2) 151

B.26 Parameters Tuning of Circuit Ind3 (at clustering level-2) 152

B.27 Parameters Tuning of Circuit Avq.large (at clustering level-2) . . . 153

B.28 Parameters Tuning of Circuit Fract (at clustering level-3) 154

B.29 Parameters Tuning of Circuit Prim1 (at clustering level-3) 155

B.30 Parameters Tuning of Circuit Struct (at clustering level-3) 156

B.31 Parameters Tuning of Circuit Ind1 (at clustering level-3) 157

B.32 Parameters Tuning of Circuit Prim2 (at clustering level-3) 158

B.33 Parameters Tuning of Circuit Bio (at clustering level-3) 159

B.34 Parameters Tuning of Circuit Ind2 (at clustring level-3) 160

xii

B.35 Parameters Tuning of Circuit Ind3 (at clustering level-3) 161

B.36 Parameters Tuning of Circuit Avq.large (at clustering level-3) . . . 162

xiii

Chapter 1

Introduction

1.1 Electronic Design Automation

The last few decades has brought explosive growth in the electronics industry due

to the rapid advances in integration technologies and the different benefits of large-

scale system design. As a result, System-on-Chip (SoC) designs have become one of

the main driver of the semiconductor technology in recent years. By employing third

part intellectual property (IP) cores, designers can improve design productivity and

cut development costs and time. However, as more and more complex functions

are integrated into a small package, State-of-art VLSI chips, such as the INTEL

Pentium IV or Itanium II, contain hundreds of millions transistors [Kang03]. De-

signing such a multi-million transistor chip and ensuring that it operates correctly

when the first silicon returns is a daunting task that is virtually impossible without

the help of Computer Aided Design (CAD) tools [Raba03].

The phrase associated with the task of automatically designing a circuit using

1

CHAPTER 1. INTRODUCTION 2

CAD tools is called Design Automation (DA). The ultimate goal of the DA research

field is to fully automate the tasks of designing, verifying, and testing a circuit.

Unfortunately, there is still a long way from this goal to be achieved. No software

package is currently capable of handling the enormous and often contradicting

design goals required in the modern VLSI design. For such a complicated problem,

the feasible approach is to use divide-and-conquer strategy in which the whole

design task is broken down into several sub-tasks that are more manageable to a

single software tool.

1.2 The VLSI Design Process

The VLSI design cycle starts with a formal specification of a VLSI chip that follows

a series of steps, and eventually produces a packaged chip. A typical VLSI design

process is illustrated in Figure 1.1. Note that in Figure 1.1 the verification following

each design step plays a very important role in the entire design cycle. The failure to

properly verify a design in its early phases typically causes significant and expensive

re-design at a later stages, which ultimately increases the time-to-market [Kang03].

1.2.1 Specification

The design process of a VLSI circuit begins with a formal specification of the circuit.

The factors to be considered in this process include: performance, functionality,

and the physical dimensions. The end results are specifications for the size, speed,

power, and functionality of the VLSI circuit. The basic architecture of the circuit

is also specified.

CHAPTER 1. INTRODUCTION 3

Logic Design

Circuit Design

Physical Design

Fabrication/Testing

 specification

According to the specification the main
functional units of the chip are identified.

Functional units are described in terms of
logic equations.

Logic is physically designed or technology−
mapped.

Implementation of logic blocks are physically
arranged in the layout area.

Design is fabricated and physically
tested.

The customer specifies the performance ,
functionality, and the physical size of the chip.

Verification
Layout

Verification
Circuit

Verification
Logic

Functional DesignVerification
Functional

Figure 1.1: VLSI Design Flow

1.2.2 Functional Design

Following the specification step, the main functional units of the circuit are de-

termined. In the functional design step the interconnect requirements between

the units, area, power, and other parameters of each unit are also identified and

estimated [Sher93a]. These functional units could either be implemented using

Standard-Cells or FPGA based design styles. The description of this design step is

a high-level description and usually expressed as Register Transfer Logic (RTL).

CHAPTER 1. INTRODUCTION 4

1.2.3 Logical Design

In the logical design stage, the functional units are described in terms of primitive

logic operations (NAND, NOT, etc.). This description could be expressed in a

Hardware Description Language (HDL), such as VHDL and Verilog, which can be

used in simulation and verification [Sher93a].

1.2.4 Circuit Design

Following the logical design, a technology-dependent description of the circuit is cre-

ated. At this design level, the whole circuit is implemented as transistors. In some

implementation topologies, logic equations are broken down and mapped to avail-

able physical circuit blocks in the circuit topology (called technology mapping), or

pre-designed logic circuit implementations (e.g., a standard-cell library) [Thom00].

1.2.5 Physical Design

In this step, the circuit representation of each component is converted into a geo-

metric representation (also called a layout). Connections between different compo-

nents are also expressed as geometric patterns. The end result of physical design is

a placed and routed design, from which the photolithography masks can be derived

for chip fabrication [Sher93a]. Since the physical design problem is an NP-hard

problem it is usually broken down into several sub-problems, referred as partition-

ing, placement and routing. This thesis is mainly concerned with the placement

problem.

CHAPTER 1. INTRODUCTION 5

1.2.6 Fabrication and Testing

Finally, the wafer is manufactured and diced in a fabrication facility. Each chip is

then packaged and tested to ensure that it meets all design specifications and that

it functions properly.

1.3 Motivation

1.3.1 Interconnect in sub-micron Design

The interconnect effects have not been a serious concern in CMOS VLSI chips until

recently, since the gate delays due to capacitive load components dominated the

interconnect delay in most cases [Kang03]. However, with the introduction of deep

sub-micron semiconductor technologies, this picture has undergone rapid changes

[Raba03]. This fact is illustrated in Figure 1.2, where typical interconnect and gate

delays are plotted for different technologies. It can be seen that for sub-micron tech-

nologies, both interconnect and gate delays decrease as the feature sizes decrease

- but at different rates. This is because the gate delay usually decreases in sub-

micron technologies while interconnect capacitance is independent of scaling. The

delay of a circuit, as well as the power dissipation and area, are therefore dominated

by interconnections between logical elements (i.e. transistors) in deep sub-micron

regimes [Bell95]. The most important influence of the increased interconnect delay

is that the placement problem (which determines the location of devices) becomes

very critical in today’s VLSI design. Another important implication of decreasing

devices and wire geometries is that the components in a circuit increase at a sub-

CHAPTER 1. INTRODUCTION 6

1.0

0.1
1.0um 0.5um 0.25um

interconnect

gate delay

delay

Minimum Feature Size

de
la

y
(n

s)

Figure 1.2: Interconnect and Gate Delay

stantial rate. As a result, a placement heuristic that produces excellent results for

small size problem may take weeks or months to obtain a good result. Obviously,

a computationally expensive technique is often useless to the modern just-in-time

fabrication mentality.

1.3.2 Global Placement

Since the interconnect delay of a circuit cannot be ignored and the computation

time of a heuristic must be appropriate for today’s large circuits, an approach that

operates in a reasonable amount of time, while still achieving good solutions is de-

sirable. To search through a large number of candidate placement configurations

efficiently, a heuristic algorithm must be used [Arei01a]. The traditional approach

in placement is to construct a global placement by using constructive placement

heuristic algorithms. A detailed placement follows to improve the initial place-

ment. A modification is usually accepted if a reduction in cost occurs, otherwise

CHAPTER 1. INTRODUCTION 7

it is rejected. Global placement produces a complete placement from a partial or

non-existent placement. It takes a negligible amount of computation time com-

pared to detailed placement and provides a good starting point for them [Shah91].

Usually, global placement algorithms include random placement, cluster growth,

partitioning-based placement [Gare79], numerical optimization, and branch and

bound techniques [Ries94]. One motivation of this thesis is to compare the perfor-

mance of several global placement algorithms.

Genetic algorithms are advanced search heuristic techniques for combinatorial

optimization problems. As an optimization technique, Genetic Algorithms simul-

taneously examine and manipulate a set of possible solutions. In [Coho87] and

[Shah90] the Genetic Algorithm technique was applied to the placement problem

and has been proved a promising placement technique. However, as the size of

placement problem increases the computation time of Genetic Algorithms is also

increased significantly. Besides, Genetic Algorithms are not well suited for fine-

tuning structures which are close to optimal solutions [Gold89]. Thus, another

motivation of this thesis is reducing the complexity of problem size and hybridizing

the Genetic Algorithm with other optimization techniques to find a near optimal

placement solution efficiently.

1.3.3 Multi-Level Clustering

As mentioned previously, the size of placement is increasing at a substantial rate.

Commonly-used heuristics that were appropriate for smaller circuits can not stand

up to the demands placed on them by larger circuits, because the run-time com-

plexity of these heuristics is simply too large. The need for good but fast placement

CHAPTER 1. INTRODUCTION 8

heuristics is evident.

There are two techniques currently used to deal with this problem. The most

obvious method is to implement faster heuristics at the cost of lower-quality solu-

tions. The other is to attempt to reduce, or “cluster” the size of the circuit into a

less-complex form. One such clustering technique is called “multi-level” or “hier-

archical ”clustering. This approach involves two procedures, bottom-up, and then

top-down. The bottom-up procedure reduces the search space by decreasing the

degrees of freedom for cell moves, making a placement heuristic more feasible for

the large circuits. The goals of the top-down procedure are to keep the quality of

solution at a flattened level as close as possible to that of the clustered levels. In this

thesis, one of the main objectives is to identify the effectiveness of this multi-level

clustering technique on solutions obtained by several global placement heuristics.

1.3.4 Congestion Reduction

When solving the placement problem, traditional algorithms mainly focus on min-

imizing total estimated wire-length to obtain better routability and smaller layout

area [AD85, Sun93, Klei91]. However, a placement with less total wire-length but

highly congested regions often lead to routing detours around the region, in turn re-

sults in a larger routed wire-length [Yang01b]. Congested areas can also downgrade

the performance of the global router and, in the worst case, create an unroutable

placement in the fix-die regime [Cald00]. Although the congestion problem is widely

addressed in routing algorithms, the optimization performance is constrained be-

cause the cells are already fixed at the routing stage. It is of value to consider

routability in the placement stage where the effort on congestion reduction would

CHAPTER 1. INTRODUCTION 9

be more effective [Kahn00]. Accordingly, yet another motivation of this thesis is

to incorporate the congestion reduction technique into the wirelength-driven hier-

archical placement approach to minimize congestion as well as total wire-length at

placement stage.

1.4 Overview of Research Approaches

The overall research approaches used to tackle the circuit layout problem are sepa-

rated into two parts (i.e, wirelength-driven placement and congestion-driven place-

ment) and illustrated in Figure 1.3.

Placement
Hierarchical

Placement
Flat

Circuit Placement

From Logical Description
Circuit Generated

Routing

Post Processing
Stage

ClusterSeed

Placement

Partitioning
PlacementOptimization

ARP

Constructive Placement

Iterative
Improvement

Tile Based

Heuristic
Genetic Based

Iterative Improvement

Wirelength Driven
Placement

Congestion Driven

Placement

Figure 1.3: Overall Approaches for Placement Problem

CHAPTER 1. INTRODUCTION 10

In the wirelength-driven placement, a Cluster-Seed based constructive algorithm

and a Genetic based hybrid heuristic (as shown in bold ellipses) are developed.

Both flat and hierarchical approaches are implemented to identify the effectiveness

of multi-level clustering technique on these algorithms. In addition, the congestion

minimization problem is considered in the placement stage via a post-processing

technique and the performance of congestion-driven placement for hierarchical ap-

proach is evaluated.

1.5 Contributions

The main contributions of the thesis can be summarized as:

• Development of a Cluster-Seed technique as a good starting point for local

search and GA.

• Extensive evaluation of several heuristic search techniques on different levels

of clustering.

• Investigation of a GA heuristic technique within a hierarchical approach to

explore solution space effectively.

• Implementation of a congestion-driven placement as a post-processing step to

bridge the gap between the placement and global routing.

• Evaluating the performance of congestion-driven placement for hierarchical

approaches.

CHAPTER 1. INTRODUCTION 11

• Several publications have resulted from this thesis in technical report [Yang02c]

and conference proceedings [Yang02d, Yang02a]. Also, the following manuscripts

have been submitted to Journal of Evolutionary Computations [?] and Jour-

nal of Engineering and Optimization [Yang02b].

1.6 Thesis Organization

Chapter 2 provides a background on the standard-cell placement problem. The

sub-problems of physical design automation are introduced, and the different layout

styles that affect physical design are described. Chapter 3 introduces and compares

several global placement algorithms. The comparison is done at both flat level

and hierarchical level using multilevel clustering technique. An evolutionary hybrid

algorithm is also presented in Chapter 3 and followed by some experimental results.

In Chapter 4, a congestion-driven hierarchical placement algorithm along with some

numerical results are described. Finally, Chapter 5 provides conclusions and a

summary of the future work.

Chapter 2

Background

2.1 Introduction

In a combinatorial sense, physical design automation is a constrained optimization

problem [Sher93a]. We are given a circuit (usually a module-wire connection-list

called a netlist) which is a description of switching elements and their connecting

wires. We seek an assignment of X and Y coordinates of the circuit components

(in the plane or in one of a few planar layers) that satisfies the requirements of the

fabrication technology (sufficient spacing between wires, restricted number of wiring

layers, and so on) and that minimizes certain cost criteria. Figure 2.1 provides an

example of placement, where the circuit schematic of Figure 2.1(a) is placed in

Figure 2.1(b). Practically, all aspects of the physical design problem as a whole are

intractable; that is, they are NP-hard [Hach89]. Consequently, we have to resort to

heuristic methods to solve this complex problem. One of these methods is to break

up the problem into subproblems (partitioning, placement and routing), which are

12

CHAPTER 2. BACKGROUND 13

then solved one after the other. Another technique that is used to simplify the

complexity of physical design automation is to narrow a search to localized regions

of the search space through circuit clustering.

This chapter gives a detailed background on physical design automation in gen-

eral and the circuit placement in particular. Several techniques utilized to solve

standard cell based placement are presented.

6

3

4 2 1

5

7

8

(2, 150, 200)

(5, 180, 120)

Placement

(3, 0, 100)

(cell, x, y)
(1, 200,200)

(4, 0, 200)

(6, 0, 0)
(7, 185, 80)
(8, 185, 0)

2

3

4

5

6

7 8

1

(a) (b)

(5, 7) (6, 7)

Netlist:
(1, 5) (2, 5)
(3, 6) (4, 6)

(7, 8)

In2

In1

In3
In4

In5
In6

In7
In8

Out1

In1

In2

In3In4

In5

In6

In7

In8

out1

Figure 2.1: Circuit Placement

2.2 Physical Design

Physical Design of VLSI circuits is a process of determining the location of devices

and connecting them inside the boundary of a VLSI chip. It is one of many inter-

related complex tasks in VLSI circuit design. Not surprisingly, this complex task

is handled by dividing the original task into more tractable sub-tasks such that a

physical design can be realized in reasonable amount of time. These sub-tasks may

be performed in a slightly different order, iterated or omitted depending on the

CHAPTER 2. BACKGROUND 14

layout style used, the desired time, the desired chip size, and so on. The different

stages of physical design cycle are shown in Figure 2.2.

Partitioning

b

c

e

a

d

Placement

Global Routing

Detailed Routing

b

c

e

a

d

b

c

e

a

d

cutline 2

cutline 3

cutline 1

(b)

(c)

(d)

(a)

Figure 2.2: Physical Design Cycle

2.2.1 Circuit Partitioning

A chip may contain millions of transistors. Layout of the entire circuit cannot

be handled due to the limitation of memory space as well as computation power

available. Therefore, it is normally partitioned by grouping the components into

blocks/subcircuits. The actual partitioning process considers many factors such as,

the size of the blocks, number of blocks, and number of interconnections between

CHAPTER 2. BACKGROUND 15

the blocks. The output of partitioning is a set of blocks and the interconnections

required between the blocks. Figure 2.2(a) shows that the input circuit is parti-

tioned into five blocks (i.e. a,b,c,d and e). In large circuits, the partitioning process

is hierarchical and at the topmost level a chip may have 5 to 25 blocks. Each block

is then partitioned recursively into smaller blocks [Sher93a].

Partitioning has been an active area of research for at least a quarter of a

century and many algorithmic techniques for other sub-tasks of physical design,

such as placement are originated in application to partitioning. For a recent survey

on the partitioning problem, see [Alpe95b].

2.2.2 Circuit Placement

Given an electrical circuit consisting of cells with fixed shapes and fixed terminals,

placement is the task to construct a layout indicating the positions of the cells such

that wirelength and area are minimized. Figure 2.2(b) shows that five blocks have

been placed. Note that some space between the blocks is intentionally left empty

to allow interconnections between blocks. It has been shown that placement is

an NP-hard problem[Chan99]. When a large number of components are involved

an optimal solution can not be obtained by using the exhaustive search method

in reasonable amount of time. Therefore, heuristic algorithms are used to obtain

sub-optimal solutions.

The quality of the placement will not be evident until the routing phase has

been completed. A good routing and circuit performance will heavily depend on

the outcome of the placement tool. This is due to the fact that once the position

of each component is fixed, very little can be done to improve the routing and the

CHAPTER 2. BACKGROUND 16

overall circuit performance. Late placement changes lead to increase die size and

lower quality designs.

2.2.3 Global and Detailed Routing

Following the placement, interconnections between components are physically as-

signed to allowable routing channels. Due to the complexity, the traditional routing

problem is separated into two phases. The first phase is called Global Routing and

generates a “rough” route for each net. In fact it assigns a list of routing regions

to each net without specifying the actual geometric layout of wires, as shown in

Figure 2.2(c). The second phase, which is called Detailed Routing, finds the actual

geometric layout of each net within assigned routing regions. Unlike Global Rout-

ing, which considers the entire layout, a detailed router considers just one region at

a time [Sher93b]. A detailed routing corresponding to the global routing is shown

in Figure 2.2(d).

Physical design is iterative in nature and many steps are repeated several times

to obtain a better layout. For example, an unroutable layout might need to be re-

placed or re-partitioned several times so that the routing can be completed. Clearly,

earlier steps have more influence on the overall quality of the solution. In this sense,

partitioning and placement play a more important role in determining the area and

chip performance, as compared to routing.

CHAPTER 2. BACKGROUND 17

2.3 Layout Styles

Physical design is an extremely complex process and even after breaking the entire

process into several conceptually easier steps, it has been shown that each step

is computationally hard. However, market requirements demand a quick time-to-

market and high yield [Raba03]. As a result, restricted models and design styles

are used in order to reduce the complexity of physical design. An overview of the

different design styles are shown in Figure 2.3. The design styles can be broadly

classified as either Full-Custom or Semi-Custom. In a Full-Custom layout, the

entire circuit is designed by hand. On the other hand, in Semi-Custom layout,

some parts of a circuit are predesigned and placed on some specific place on the

chip. The popular Semi-Custom layout styles include Standard-cells, Macro-cells,

and Gate Arrays.

Digital Circuit Implementation Approaches

Semi−CustomCustom

Cell based Array based

Gate ArrayMacro cellsStandard cells

Figure 2.3: Different Layout Styles for Digital Integrated Circuits

CHAPTER 2. BACKGROUND 18

2.3.1 Gate Array Layout

Gate array layout is a term given to a set of topologies, such as sea-of-gates, mask-

able gate array and a number of other gate array topologies. Gate array layout

style are highly structured topologies, generally consisting of a grid array of pre-

fabricated generalized logic blocks, as shown in Figure 2.4.

Fixed Rows of basic cells

Pads

Figure 2.4: Gate Array Layout

All the blocks have identical size and are separated by vertical and horizontal

spaces called vertical and horizontal channels. A special case of the gate array is

the Field Programmable Gate Array, or FPGA, topology. The feature that makes

FPGA stand out among gate array topologies is that, instead of effecting a design

with a photo-mask, all wires and interconnections are manufactured on the chip, and

programmable fuse are fabricated into the interconnections. The desired design can

be implemented by programming the interconnections between the wires and gates.

Since the entire physical chip is pre-fabricated, the turn-around time is fast. It is

also well suited for automated design due to its highly regular layout style. However,

FPGA is not very space-efficient, because all the wires and interconnections are

CHAPTER 2. BACKGROUND 19

purposely generic to allow a variety of uses. Further more, the fuse-technology

used by FPGA adds a significant delay to interconnections, making it suited for

very speed-demanding or low-power applications. However, the fast turn-around

time and re-programmable feature make it well suited for fast-prototyping a design

in hardware.

2.3.2 Standard Cell Layout

Standard-cell layout style (shown in Figure 2.5) is a topology between full-custom

based and gate array based layout styles. Initially, a circuit is partitioned into

Variable
Height

Channels

Pads Feedthrough cell

Variable
Width Cells

Variable
Length
Rows

Figure 2.5: Standard Cell Layout

several smaller blocks each of which is equivalent to some predefined sub-circuit

(cell). The functionality and the electrical characteristics of each pre-defined cell

are tested, analyzed, and specified. A collection of these cells is called a cell library.

Terminals on cells may be located either on the boundary or distributed through-

out the cell area. All standard cells in the library are restricted to having the same

height, but their width can be chosen by the standard-cell library designer to ac-

CHAPTER 2. BACKGROUND 20

commodate the area of the functional block design. Once a circuit is mapped the

cells are laid out in rows within the chip boundaries. The space between the rows

is called a channel. These channels and the space above and between the rows are

used to implement the interconnections between standard cells. If two cells to be

interconnected lie in the same row or in adjacent rows, then the channel between

the rows is used for interconnection. However, if two cells to be connected lie in

two non-adjacent rows, then their interconnection wire passes through an empty

space (also called Feedthrough) or passes on top of cells.

The standard-cell design style provides a compromise between good design time

and production size because it uses pre-designed standard cell library. It is also well-

suited for automated design because the topology has a great deal of structure.

However, the variable-width aspect causes complications in automation, and the

final result must be fully fabricated. Current State-of-art processors, such as the

Pentium IV make full use of standard cell within their design.

2.3.3 Macro Cell Layout

The Macro cell design style is a generalization of the standard-cell design style.

Usually it is made up of a small number of irregularly shaped blocks, with in-

terconnections being laid down in the spaces between the blocks, as illustrated

in Figure 2.6. The irregular sizes of general blocks introduce complexity to the

placement problem. But the number of modules involved is usually much less than

standard cells.

CHAPTER 2. BACKGROUND 21

Vertical ChannelHorizontal Channel

Figure 2.6: Macro Cell Layout

2.3.4 Full-Custom Layout

When performance or area is of primary importance, handcrafting the circuit topol-

ogy and physical design seems to be the only option. The chip topology for this

style of design is called full-custom layout. An example of full-custom design is

shown in Figure 2.7. This layout style has the greatest flexibility and results in

Figure 2.7: Full Custom Layout

CHAPTER 2. BACKGROUND 22

the smallest chip area. However, it is also the most complicated, and therefore

most time-consuming layout style. Because of the prohibitive design cost involved,

the full-custom layout style is only suitable for large production run chips and for

relatively small chips.

Figure 2.8: High Performance Layout

The greatest flexibility allows another approach, called mixed-layout or high

performance layout style, as shown in Figure 2.8. Normally in the mixed layout

style, a design is laid-out as blocks of other layout styles, where each block is

matched to the layout style which best represents it. For example, a logic array

might be laid-out as a gate-array, while a memory array most likely be laid-out

by hand for speed and space efficiency. Mixed layout style can be a very powerful

design style, and is the style used in industry for very large and very high production

chip design, such as personal computer microprocessors.

CHAPTER 2. BACKGROUND 23

2.4 Standard-Cell Placement

Different design styles impose different restrictions on the layout and have different

objectives in placement problems. The work in this thesis presents new placement

algorithms for standard-cell topology. The standard-cell placement problem is the

problem of arranging a circuit of interconnected equal-height, variable-width, “stan-

dard cell” into parallel rows so that the total interconnection length, placement area,

or some other placement metrics are minimized (i.e. timing for performance driven

designs).

2.4.1 Problem Overview

The placement problem can be stated as follows: Given an electrical circuit con-

sisting of a set of modules, with predefined input and output terminals and inter-

connected in a predefined way, construct a layout indicating the positions of the

modules so that all the nets can be routed and the total layout area is minimized

[Shah91]. In order to fit more functionality into a given chip area and reduce the

capacitive delays associated with longer nets and speed up the operation of the chip,

we need to optimize the chip area usage and minimize the wire-length. In order

to improve the routability and therefore, make the routing stage more manageable,

we need to minimize the congestion areas in the placement stage.

In the standard-cell topology, cells are placed in rows that are separated by

routing channels, as illustrated in Figure 2.9. To be effective, all the cells in the

library have identical heights and the width of the cell can vary to accommodate

for the variation in complexity between the cells. In addition, the logic inputs

CHAPTER 2. BACKGROUND 24

and outputs of the cell are available at pins or terminals along the top or bottom

edge (or both), as illustrated in Figure 2.9. Since standard cells are placed in

rows minimizing layout area is equivalent to minimizing the summation of channel

heights and minimizing the length of the longest row such that no cells in a row

are overlapping, and a maximum row length is not exceeded. In order to utilize

the chip area efficiently, the difference between the row length of all standard cell

rows should be small. During the placement stage normally an approximated total

wire-length of all the nets will be used to measure the quality of the placement

solutions because the actual interconnections between modules are not known.

Standard Cells

Cell Pins

(tracks)
Channels
Routing

D

Q’

Q

Figure 2.9: An Example of Standard-cell Layout

CHAPTER 2. BACKGROUND 25

2.4.2 Traditional Quadratic Measure

Usually, a circuit is represented by a hypergraph G(V,E), where the vertex set

V = {v1, v2, · · · , vn} represent the nodes of the hypergraph (set of cells to be placed),

and E = {e1, e2, · · · , em} represents the set of edges of the hypergraph (set of nets

connecting the cells). The two dimensional placement region is represented as an

array of legal placement locations. The hypergraph is transformed into a graph

(a hypergraph with all hyperedge sizes equal to 2) via clique model for each net.

Each edge ej is an order pair of vertices with a non-negative weight wj assigned

to it. The placement task seeks to assign all cells of the circuit to legal locations

such that cells do not overlap. Each cell i is assigned a location (xi, yi) on the

XY-plane. The cost of an edge connecting two cells i and j with locations (xi, yi)

and (xj, yj) is computed as the product of the squared l2 norm of the difference

vector (xi − xj, yi − yj) and the weight of the connecting edge wij. The total cost,

denoted φ(x, y), can then be given as the sum of the cost over all edges; i.e:

φ(x, y) =
∑

1≤i<j≤N

wij[(xi − xj)
2 + (yi − yj)

2] (2.1)

Minimizing (2.1) produces a placement with a great amount of overlap among

the cells because it attracts cells sharing common nets. Formulation (2.1) can be

rewritten in matrix form as:

φ(x, y) =
1

2
xTCx + dT

x x +
1

2
yTCy + dT

y y + t (2.2)

Vectors x and y denote the coordinates of the N movable cells; matrix C is the

Hessian matrix; vectors dT
x and dT

y and the constant term t result from the contri-

CHAPTER 2. BACKGROUND 26

butions of the fixed cells. Normally the first moment constraints are added to force

the distribution of the cells to be uniform around the center of the placement area.

It follows that the quadratic placement model is given as:

Min φ(x, y)

s.t. Axx = bx

Ayy = by

lx ≤ xi ≤ ux

ly ≤ yi ≤ uy

where Ax and Ay are q × n matrices; q is the number of regions into which the

placement area has been partitioned. The q × 1 vectors bx and by represent the

centers of the q regions. The parameters lx, ux, ly and uy are lower and upper

bounds on the x and y coordinates of the cells. Clearly, the above optimization

problem can be split into two 1-dimensional subproblems and each subproblem can

then be solved independently.

2.4.3 Placement Cost Functions

Every placement method depends on the evaluation metric employed to measure

the goodness of the technique. There are three primary objectives in the automated

placement problem: minimizing chip area, achieving routable designs, and improv-

ing circuit performance. For the standard-cell layout style, since the total chip area

is approximately equal to the area of the modules plus the area occupied by the

interconnect, minimizing the wire-length is approximately equivalent to minimizing

the chip area [Shah91].

CHAPTER 2. BACKGROUND 27

Another important criterion for an acceptable placement is that it should ensure

the routability of the layout (also called congestion minimization) [Sher93a]. With

the maturity of sub-micron technology, complex circuits consisting of millions of

transistors and four to six layers of metal can now be realized on a single chip. For

these circuits, routability becomes very important issue that needs to be considered

during the placement phase, otherwise subsequent routing can become difficult and

inefficient. The work in this thesis mainly focus on wire-length and congestion cost

functions. The congestion metric will be introduced in Chapter 4.

Total Wire Length Estimation

It is computationally expensive to determine the exact total wire-length for all the

nets at the placement stage. As a result, the total wire-length is approximated

during placement. To make a good estimate of the wire-length, we should consider

the way in which routing is actually done by routing tools. Almost all automatic

routing tools use Manhattan geometry; that is, only horizontal and vertical lines

are used to connect any two points. (i.e. two layers are used such that horizontal

lines are allowed in one layer and vertical lines in the other). The shortest route

for connecting a set of pins together is a Steiner tree [Shah91] (Figure 2.10a). In

this method, a wire can branch at any Steiner point along its length so that the

total route is minimum. This method is usually not used by routers, because it

is NP-hard and the complexity of computing both the optimum branching point,

and the resulting optimum route from the branching point to the pins is high. In-

stead minimum spanning tree connections and chain connections are used. Minimal

spanning tree (Figure 2.10b) connections allow branching only at the pin locations.

CHAPTER 2. BACKGROUND 28

Hence, the pins are connected in the form of the minimal spanning tree of a graph.

Chain connections (Figure 2.10c) do not allow any branching at all. Each pin is

simply connected to the next one in the form of a chain. These connections are even

simpler to implement than spanning tree connections, but they result in slightly

longer interconnects. Source-to-sink connections (Figure 2.10d) where the output

of a module is connected to all the inputs by separate wires, are the simplest to

implement. However, they result in excessive interconnect length and significant

wiring congestion and hence, this type of connection is seldom used.

(a) Steiner Tree

Rectilinear Length = 14

(b) Minimum Spanning Tree

Rectilinear Length = 16

(c) Chain

Rectilinear Length = 17

(d) Source-to-Sink

Rectilinear Length = 24

Figure 2.10: Interconnection Topologies

An efficient and commonly used method to estimate the wire-length is the semi-

perimeter method [Sech86]. The wire-length in this method is approximated by half

the perimeter of the smallest bounding rectangle enclosing all the pins (Figure 2.11).

For Manhattan wiring, this method gives the exact wire-length for all two-terminal

and three-terminal nets, provided that the routing does not overshoot the bounding

rectangle. For nets with more pins and more zigzag connections, the semi-perimeter

CHAPTER 2. BACKGROUND 29

wire-length underestimates the actual wire-length. However, this method provides

a good estimate for the most efficient wiring scheme, the Steiner tree. The error

will be larger for minimal spanning trees and still larger for chain connections. In

practical circuits, however, two and three terminal nets are most common, and thus

the semi-perimeter wire length is considered to be a good estimate [Shah91].

HPWL

Pin

Module

Bounding Box

Figure 2.11: Wirelength Estimation by Bounding Box

Overall Cost Function

The overall cost function for standard-cell placement usually consists of three parts

[Sech88]:

COST = costwl + costovershoot + costoverlap (2.3)

1. The costwl is the total half-perimeter wirelength of all nets.

2. The costovershoot is the row length penalty function.

3. The costoverlap is the overlap penalty function.

CHAPTER 2. BACKGROUND 30

2.5 Hierarchical Placement Approach

As the complexity of VLSI circuits increases, a hierarchical improvement approach

becomes essential to shorten the design period [Hage92]. Circuit clustering plays a

fundamental role in hierarchical designs. Identifying highly connected components

in the netlist can significantly reduce the complexity of the circuit and improve the

performance of the design process.

This approach was first applied to the linear placement problem in 1972 with

Scheduler and Ulrich’s paper [Schu72] and has since been applied heavily to the par-

titioning problem. Only recently has it been applied to the standard-cell placement

problem, and then only in limited usage [Sun95, Mall89].

clusters fromed
from cells in
previous level

A B

C D

cluster

Level 1

Level 2

Level 0

cluster
de−cluster

A B

C D

de−cluster

X

Y

(Flat)

Figure 2.12: Multilevel Clustering Hierarchy.

Early methods of clustering performed the desired circuit size reduction in a

single level (e.g. [Mall89]). Research has recently shown that clustering in steps

(illustrated in Figure 2.12), reducing the circuit size gradually by adding interme-

CHAPTER 2. BACKGROUND 31

diate levels to the hierarchy, produces superior results by permitting more gradual

de-clustering [Kary97]. This gradual clustering is often called “multi-level” or

“hierarchical” clustering.

Multi-level clustering is a two-step procedure, first proceeding bottom-up, and

then top-down. The bottom-up technique is clustering, and involves the grouping

of highly connected cells into clusters and clusters into larger clusters, while the

goal of the top-down method is to determine the location for all the clusters, and

then the location of all cells within those clusters [Mall89]. The goal of this is

to reduce the number of entities that need to be improved, and the number of

interconnections between them, through the bottom-up stage. This reduces the

search space by reducing the degrees of freedom for cell moves, making a top-down

method more feasible [Arei01c]. During de-clustering in a single clustering level

heuristic, the difference between positions in clustered cells and flat circuit cells

can be substantial, and significant iterative improvement is necessary to achieve a

high quality solution. In a multi-level heuristic, much smaller differences are created

between levels of the hierarchy, because it is built slowly. During de-clustering, these

differences are more easily managed by simple interchange heuristics, resulting in

a superior quality solution in a shorter amount of time [Arei01b].

2.6 Approaches for the Standard-Cell Placement

It has been shown that circuit placement problem is NP-Complete, therefore, it

cannot be solved exactly in polynomial time [Blan85, Dona80]. Trying to get an

exact solution by evaluating every possible placement to determine the best one

CHAPTER 2. BACKGROUND 32

would take time proportional to the factorial of the number of modules. To search

through a large number of candidate placement configurations efficiently, a heuristic

algorithm must be used [Arei01a].

2.6.1 Wirelength-driven Placement Approaches

Wirelength-driven placement has been extensively studied, since traditional place-

ment approaches mainly focus on minimizing total wire-length to obtain better

routability and smaller layout area. There are a number of established approaches

for it. Depending on the input, the wire-length-driven placement algorithms can

be classified into two major classes: constructive placement methods, and iterative

improvement placement methods, as shown in Figure 2.13. The typical approach in

placement is to construct an initial solution by using constructive placement heuris-

tic algorithms. A final solution is then produced by using iterative improvement

techniques where a modification is usually accepted if a reduction in cost occurs,

otherwise it is rejected.

2.6.1.1 Constructive Placement

Constructive placement produces a complete placement from a partial or non-

existent placement. It takes a negligible amount of computation time compared

to iterative improvement placement and provides a good starting point for them

[Shah91]. However, the solution generated by constructive algorithms may be far

from optimal. Thus, an iterative improvement placement algorithm is performed

next to improve the solution. Usually, constructive placement algorithms include

cluster growth, numerical optimization, partitioning-based placement [Gare79], and

CHAPTER 2. BACKGROUND 33

Algorithms
Placement

Constructive
Placement Improvement

Iterative

Algorithm
Cluster Growth

Optimization
Numerical Force−Directed

Algorithm

Placement
Partitioning Based Genetic−Based

Algorithm

Annealing
Simulated

Figure 2.13: Different Approaches to Layout Problems

branch and bound techniques [Karg86]. The most common constructive methods to

standard-cell placement are discussed in more detail in the following subsections.

Cluster Growth

Cluster growth placement is an early bottom-up constructive algorithm that oper-

ates by choosing a set of seed cells and adding them to a partial placement [Karg86].

Then, recursively, a set of cells are placed adjacent to the seeds, until the placement

has “grown” from the original seed cells. Since these methods consider only the

local environment of each individual cell and place each cell at the best location

available at the moment, the placement results tend to be good locally, but poor

globally. However, they are usually very fast and easy to implement, and therefore

can be used as a starting point for iterative improvement heuristics, instead of a

purely random initial solution.

CHAPTER 2. BACKGROUND 34

Numerical Optimization

One constructive placement approach is numerical optimization. In these methods,

the original standard-cell placement problem is approximated by a similar problem

that can be solved in polynomial time [Thom00]. That is, the placement objec-

tive function is approximated by a mathematical formulation. The formulation is

then solved exactly using mathematical programming techniques such as linear,

non-linear, integer, and dynamic programming techniques [Behj98]. The solution

produced by minimizing this formulation are good from a “global” perspective, but

are sub-optimal according to the actual chip layout, since such a formulation does

not restrict cells to occupy legal position and therefore, result in high overlap among

the cells. To get a legal solution, a legalization heuristic must be used to find a

“good” legal position for each cell. Many methods have been used to approximate

the exact standard-cell problem, the most popular being linear models [JMK91]

and quadratic programming models [Chen84, Behj98, Etaw99b].

Numerical methods are never used alone due to the errors introduced by the le-

galization process. Usually, search techniques are used after the numerical methods

to further improve the quality.

Partitioning-based Placement

Another popular constructive approach is partitioning-based placement which is

an important class of placement algorithms based on repeated division of the given

circuit into densely connected sub-circuits such that the number of nets cut by

the partition is minimized. In an early algorithm, Breuer [Breu77a, Breu77b] uti-

CHAPTER 2. BACKGROUND 35

lized repeated graph bisections to obtain a circuit placement. With each bisec-

tion, the vertices (cells) were assigned to progressively smaller regions. Dunlop

and Kernighan [Dunl85] extended this approach, through the use of an improved

partitioning method [Kern70], and also terminal propagation. Unlike partitioning

algorithms, placement algorithms which are based on partitioning need to consider

not only the internal nets of the subcircuit but also the nets connected to external

modules at higher levels of the hierarchy. Terminal propagation provides a simple

method to insert fixed “dummy” vertices, so that the partitioning considers these

external connections.

Moving beyond simple bisections, Suaris and Kedem [Suar88] explored the use

of quadrisection (a four way partitioning). Huang and Kahng [Huan97] also apply

quadrisection, utilizing a multi-level clustering based partitioning algorithm, and

considering minimum spanning tree lengths, rather than the simple min-cut metric.

Besides, the large scale multi-way partitioning placement approaches that allows

the consideration of global objectives are presented in [Zhon00, Yild01].

Like numerical optimization methods, partitioning-based methods do not di-

rectly attempt to minimize wire-length, and so the solution obtained is sub-optimal

in terms of wire-length. Search heuristics are used to further improve the solution.

2.6.1.2 Iterative Improvement

An iterative improvement heuristic starts with an initial placement solution, and

attempts to improve it by repeatedly modify it. Better solutions are obtained

by perturbing the solution in some way in order to find a cost reduction. Al-

though iterative improvement placement methods can produce a good placement,

CHAPTER 2. BACKGROUND 36

the computation time of such algorithms is also large. Therefore, the heuristics

rely immensely on efficient constructive placements. There are two classes of itera-

tive improvement placement methods: Deterministic and Stochastic heuristics. A

deterministic heuristic interchanges randomly selected pairs of modules and only

accepts the interchange if it results in a reduction in cost [Goto76]. While it is fast,

it gets trapped in a local minimum quickly due to its characteristic. In contrast, a

stochastic heuristic not only accepts the possible perturbation that results in cost

reduction but also uses some “randomness” to accept some poor solution, which

allows the heuristic to avoid the local-optimal and explore the solution space more

effectively. In the following subsections, the most common approaches of iterative

improvement are presented.

Interchange Methods

The interchange methods, such as Pairwise Interchange, Force-Directed Interchange,

are the simplest iterative improvement methods. It swaps the randomly selected

pairs of modules and accepts the interchange if it results in a cost reduction. An

example of pairwise interchange is shown in Figure 2.14. Obviously, such an algo-

rithm is a deterministic heuristic, since it only accepts moves that reduce the total

cost.

Simulated Annealing

In 1983, a new algorithm technique—Simulated Annealing is presented in [Kirk83].

The idea of simulated annealing is originated from the observation of crystal for-

mation. When a material is heated, the modules move around randomly. When

CHAPTER 2. BACKGROUND 37

Pairwise Interchange Type (b)Pairwise Interchange Type (a)

Figure 2.14: Pairwise Interchange

the temperature slowly decreases, the modules move less and finally form a crys-

tal structure. The cooling process is done more slowly, the crystal lattice is more

stronger. The simulated annealing technique has been successfully used in many

phases of VLSI physical design, including circuit placement. Many implementa-

tions of simulated annealing have been applied to the standard-cell problem (e.g.,

[Sech87, Mall89, Sun95]).

The basic procedure in simulated annealing is to start with an initial placement

and accept all perturbations or moves which result in a reduction in cost. Moves

that result in a cost increase are accepted with a probability that decreases with

the increase in cost. A parameter T, called the temperature, is used to control the

acceptance probability of the cost- increasing moves [Shah91].

Obviously, simulated annealing is a stochastic method with hill-climbing ability.

The cooling schedule(ie. the rate of temperature change) determines the quality of

the final solution. Simulated annealing is one of the most established algorithms

for placement problems. It produces good quality results when given a long-enough

time and a good cooling schedule but the computation time is also large. Therefore,

it is only suitable for small to medium sized circuits.

CHAPTER 2. BACKGROUND 38

Genetic based Placement

Genetic algorithms (GA’s) which were introduced by Holland in the 1970s [Holl75],

are a class of optimization algorithms based on the mechanics of natural selection

and natural genetics. They combine the use of string codings and populations with

the power of reproduction and recombination to motivate a surprisingly powerful

search heuristic in many problems. GA’s have been applied to various domains,

including image processing, pipeline control system, machine learning and combina-

tional optimization. In [Coho86], the genetic algorithm was first applied to circuit

placement problem and have been proved a promising placement technique.

The simple Genetic Algorithm starts with an initial set of random solutions,

called a population. A solution string (called a chromosome) is encoded as a binary

or integer string. During each iteration, called a generation, each individual in

the current population is evaluated and assigned a fitness value through a scoring

function. Based on this fitness, individuals are selected for reproduction and their

chance for selection increases with their fitness. A number of genetic operators

are then applied to the parents to generate new individuals, called offsprings. The

commonly used genetic operators are crossover and mutation. A new generation is

formed by selecting the individuals from the parents and offspring according to their

fitness so that the population size can be kept constant. Over many generations, the

fitter individuals tend to predominate the population while the less fit individuals

tend to die-off and eventually one super-fit individual evolve. A detailed explanation

of GA will be introduced in chapter 3

CHAPTER 2. BACKGROUND 39

Iterative Force-Directed Improvement

Force-directed placement explores the similarity between the placement problem

and the classical mechanics problem of a system of bodies attached to springs

[Sher93a].

Starting with an initial solution, this method assumes the cells that are con-

nected by nets exert an attractive force on each other. The magnitude of the force

between any two cells is directly proportional to the distance between the two cells.

When a cell is considered for a move, it is moved in the direction of the total force

exerted on it until this force is zero. This method can be implemented to run

quickly, and has shown to perform well. However, determining the weight function

for each net is difficult, and varies from circuit to circuit.

2.6.2 Generating a Legal Placement

Solving the numerical optimization problem produces an optimal solution according

to a mathematical model of the system, but sub-optimal solution according to the

actual chip layout. This is because the solution does not put cells in slots (cells are

confined to the center of the region), while in standard-cell layout cell positions are

constrained to non-overlapping position in a row. Besides, the solutions generated

by other placement methods, such as partitioning-based placement may have cell

overlaps within a row. Therefore, a legalization heuristic should be used to find a

legal position for each cell after these placement approaches.

A good legalizer should not only legalize the solution but also minimize the

difference in wirelength between the original solution and the legalized solution.

CHAPTER 2. BACKGROUND 40

Figure 2.15 shows an approach (uniform mapping) for generating the legal place-

ment, suggested in [Song92].

8
3

6

9

2

4

7

1

5

(a) Initial Solution

8 1

2 6
7

5

4

9

3

(b) Uniform Legalization

1
3

2

7
6 5

9
4

8

(c) After Legalization

1
3

2

7
6 5

9

8

4

(d) Remove Cell Overlaps

Figure 2.15: Placement Legalization

Figure 2.15 (a) shows the position of cells after the numerical optimization

based placement. Uniform mapping method attempts to move cells to the slots

that are close to their locations so that the routing can ultimately be performed

easily, but it could also generate an overlapping placement, as shown in Figure

2.15(b) and (c). One way to overcome this problem is to resort to a heuristic to

remove all the overlaps while keeping the total half perimeter wire length as short as

possible (shown in Figure 2.15(d)). In addition, since optimality deteriorates when

legalizing the placement solution, iterative improvements have to be performed after

legalization to regain some of the lost optimality.

CHAPTER 2. BACKGROUND 41

2.7 Test Circuits

Table 2.1 and 2.2 show the general information of benchmark circuits used to mea-

sure the performance of the heuristics in this thesis. The circuits used are the

MCNC’91 benchmarks [Kozm91]. This test set consists of ten circuits ranging in

size from 125 cells to over 25,000 cells.

The second column of Table 2.1 shows the number of cells within the circuit.

The third column indicates the pads (i.e I/O connections) that connect the circuit

to the outside world. The fourth column presents the number of nets connecting the

cells within the benchmarks. The total number of pins (i.e connections) within the

circuit is summarized in column five. The sixth column gives the number of rows

where the cells are to be placed (exclusively for the circuit placement problem).

The “Pad Distribution” column indicates the number and location of pads. Table

2.2 shows the net and cell distribution of different benchmarks. The first part

of this table “Nets Incident on Cell” lists the percentage number of cells on one

net, two nets, three nets, four nets and five more nets. The second part “Cells

Incident on Net” shows the percentage number of nets with two cells, three cells,

four cells, and so on. It is important to notice that these benchmarks have different

characteristics.

The circuit have been grouped into three categories according to size: small,

medium, and large, as indicated by the horizontal lines in Table 2.1. This classifi-

cation will be used in the entire thesis to illustrate the effectiveness of the heuristic

techniques developed. The performance of wirelength-driven placement is measured

by total wirelength for all the nets and computation time, while the performance

CHAPTER 2. BACKGROUND 42

of congestion-driven placement is measured by overflow, total wirelength and com-

putation time. All the results shown in this thesis are the average of 5 runs. The

proposed optimization techniques are implemented in the ‘C’ programming lan-

guage on a Sun Ultra10 workstation.

Circuit Cells Pads Nets Pins Rows Pad Distribution
Top Bottom Left Right

Fract 125 24 147 462 6 22 2 0 0
Prim1 752 81 904 5526 16 21 20 20 20
Struct 1888 64 1920 5471 21 64 0 0 0

Ind1 2271 814 2478 8513 15 254 258 302 0
Prim2 2907 107 3029 18407 28 30 16 30 31
Bio 6417 97 5742 26947 46 8 72 9 8

Ind2 12142 495 13419 125555 72 107 126 123 139
Ind3 15059 374 21940 176584 54 113 124 63 74

avq.small 21854 64 22124 82601 80 30 34 0 0
avq.large 25114 64 25384 82751 86 30 34 0 0

Table 2.1: MCNC Benchmarks Used for Testing

Circuit Nets Incident on Cell Cells Incident on Net
1 2 3 4 ≥ 5 2 3 4 5-19 ≥ 20

Fract 16% 27% 24% 8% 24% 47% 30% 10% 19% 0.0%
Prim1 5.6% 18% 25% 33% 19% 55% 26% 6.9% 12.1% 0.0%
Struct 4% 24% 61% 12% 0.0% 39% 60% 0.0% 1.6% 0.0%

Ind1 1.5% 21% 35% 20% 21% 65% 16% 5.5% 12.9% 0.6%
Prim2 1.4% 15% 42% 17% 23% 61% 12% 6.7% 19.9% 0.4%
Bio 0.03% 13% 70% 6.9% 10% 69% 16% 7.5% 5.3% 2.2%

Ind2 1.3% 21% 24% 29% 24% 71% 14% 2.3% 11.5% 1.2%
Ind3 0.1% 5.8% 27% 21% 46% 57% 23% 8.5% 11.2% 0.3%

avq.small 0.29% 24% 42% 12% 20% 62% 28% 7% 3.3% 0.01%
avq.large 0.25% 21% 62% 1% 17% 67% 24% 6% 3.5% 0.01%

Table 2.2: Statistical Information of MCNC Benchmarks

CHAPTER 2. BACKGROUND 43

2.8 Summary

The VLSI design process is broken down into several smaller and tractable sub-tasks

to manage the high complexity of the task. One of these sub-tasks is physical design,

which is still incredibly complex. As a result, this complexity is handled by dividing

the physical design task into more tractable sub-tasks and circuit placement is one

of such sub-tasks. Physical design automation highly depends on the layout style

used. Different layout styles, such as full-custom, gate-array, and standard-cell

layouts can achieve different tradeoffs among speed, cost, fabrication time, and

degree of design automation.

The layout topology used to demonstrate the research work in this thesis is

the standard-cell layout style. The most commonly used metric that measures the

quality of a placement solution is total wire-length for all the nets and many place-

ment approaches have been taken to solve wire-length-driven placement problem

[Shah91], including constructive and iterative improvement methods.

In the following chapters several heuristic based techniques are implemented to

solve the circuit placement based on both wirelength and congestion.

Chapter 3

Mathematical/Heuristic Based

Approaches

3.1 Introduction

The layout of integrated circuits on chips is one of many interrelated complex tasks

in VLSI circuit design. Placement is a sub-problem of circuit layout which is usually

subdivided into an initial placement phase (global/constructive placement) and an

iterative improvement phase (detailed placement). Placement solutions produced

by initial placers will largely influence the convergence of iterative improvement

placement techniques. In this Chapter, the performance of several constructive

placement methods based on (i) Random Placement (ii) Cluster Development (iii)

Bipartitioning Based Algorithms (iv) Quadratic Based Placement are introduced

and compared. The Cluster Development approach is a simple greedy adaptive con-

structive technique whereas Bipartitioning is assumed to be Meta-Heuristic tech-

44

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 45

nique that is suitable for constructing good initial solutions. The quadratic based

placement minimizes a certain quadratic net-length estimation and provides good

relative placement with overlaps (a legalization phase follows to produce feasible

solutions as explained in Chapter 2). Both flat and hierarchical approaches are used

to find the effectiveness of these approaches. An iterative improvement approach

follows the initial placement produced by each technique and the robustness is mea-

sured in terms of both the wirelength and CPU time consumed by the constructive

and local heuristics. In addition, an evolutionary based technique is developed to

explore the solution space effectively.

Section 3.2 introduces the different constructive placement algorithms imple-

mented in this thesis. In section 3.3, a Tile-based iterative improvement method

and a multi-level clustering approach are explained. The experimental results pro-

duced by these different constructive methods are then presented in section 3.4.

Section 3.5 presents an evolutionary algorithm and the corresponding experimental

results. This Chapter concludes with a summary.

3.2 Constructive Placement Algorithms

3.2.1 Attractor Repeller Placer

The Attractor Repeller Placer (ARP)[Etaw99b] is basically broken down into a

relative placement phase followed by legalization and improvement phases. The

traditional wirelength formulation is extended by adding a repelling term such that

upon minimization, a target distance is maintained between the locations of cells

sharing common signals. It also adds attracting forces to pull cells from dense

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 46

to sparse regions resulting in a uniform distribution of the cells on the placement

area. Figure 3.1 illustrates cell spreading based on the AR (Attractor and Re-

peller) model. Figure 3.1(a) shows the initial solution obtained from minimizing

the quadratic wirelength. Clearly, the majority of the cells are located in the center

of the placement area and the amount of overlap between the cells is substantial.

The cell attractors (shown as circles in the figure) are created according to the

current cell positions. Figure 3.1(b-d) illustrate the spreading after including the

cell attractors and repellers. It can be seen that better spreading of the cells can

be achieved in each iteration compared to the preceding iterations.

(a) (b)

(c) (d)

+++
+

+

+

++++++

+++ ++++++++

++

++
++

++

Figure 3.1: Effect of the Repellers and Attractors (“+”represents locations of mov-
able cells, “X” represents location of I/O pads on the chip periphery, and “o”
represents locations of attractors).

The formulations of ARP are convex and neither partitioning nor hard con-

straints are used. Moreover, they are versatile in the sense that they are applicable

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 47

to a variety of problems where a target distance is desired between connected com-

ponents [Etaw99b].

Mathematical Formulation

As indicated in Chapter 2 section 2.4.2, minimizing the quadratic model for wire-

length yields a placement where cells overlap. Consequently, extra efforts need to

be done to remove the overlap. In all previous attempts, the overlap problem is

handled by partitioning the placement area and changing the constraints on cell

locations before solving another optimization problem. An intuitive idea to avoid

partitioning is to maintain a target distance between each connected pair of cells.

In other words, place the cells such that a lower bound on the distance between

their respective locations is maintained. For example, the following formulation

accomplishes this aim, Du and Vannelli [Du98].

ψ(x, y) =
∑

1≤i<j≤N

wij[(xi − xj)
2 + (yi − yj)

2 − dij]
2 (3.1)

Minimizing (3.1) yields a placement with no overlap between connected cells.

However, this model is not convex, and thus convergence to a global optimal answer

is not guaranteed.

In the ARP algorithm, the convex repeller model for the pair of connected cells

i and j is as follows:

f(zij) =















η(zij) if zij ≥ 1

0 otherwise
(3.2)

where η(zij) = zij+ρ(zij) and ρ(zij) ∈ {−ln(zij) − 1, e1−zij − 2}. zij =
(xi−xj)

2+(yi−yj)
2

d
.

The full Attractor-Repeller model for the global placement can then be given as:

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 48

Minf(z) + g(x) + h(y) (3.3)

s.t. lx ≤ xi ≤ ux

ly ≤ yi ≤ uy

Parameter lx, ly, ux and uy are lower and upper bounds on x and y. The first term,

f(z), represents the repelling terms. The second and the third terms, g(x) and

h(y), represent the attracting terms.

Basic Algorithm

Figure 3.2 illustrates the flow of the ARP algorithm. Throughout the remaining

Global Optimization:

Global Optimization:

Stopping criteria is
satisfied

Cell-Attractor Assignment:

Stopping criteria is
not satisfied

(QP model)

 closest attractor
improve placement slightly and assign each cell to

Attractor-Repeller (AR) model

circuit information
Input:Output:

legal placement

Create Attractors:
cell distributionbased on current

. Update AR model accordingly.

Figure 3.2: An Outline of the Placement Procedure ARP.

parts of this thesis, we refer to the new placement method as ARP (Attractor

Repeller Placer). Following the parsing circuit description, an initial placement is

determined using the quadratic formulation of the wirelength. In the subsequent

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 49

iterations, the algorithm proceeds iteratively by solving the AR model. In each

iteration, cells move to fill sparse regions and better spreading of the cells over the

placement floor is achieved. In a subsequent iteration, current attractors are deleted

and new ones are created; the AR-model is updated accordingly. This process

continues until the algorithm reaches a point where no significant movement of the

cells is attained. The algorithm stops when a maximum number of iterations K is

exceeded, or if the ratio of the total area of sparse regions to that of the placement

area is < κ%. Experimentally, the authors of [Etaw99b] found that 5 ≤ K ≤ 10

and κ = 10% are quite sufficient to uniformly spread the cells over the placement

area and achieve good wirelength. One of the main objectives of this thesis is to

utilize the ARP technique at the hierarchical placement stage versus the flat stage

as has been done in [Etaw99b]. Several parameters are adjusted to accommodate

the clustering of cells into sub-clusters.

3.2.2 Cluster-Seed Based Placement

Cluster-Seed placement is a constructive (cluster growth) placement algorithm that

is capable of producing a good initial solution. Cluster growth placement is a

bottom-up method that operates by selecting modules and adding them to a partial

placement [Karg86]. Normally, it contains two functions: (i) selection function and

(ii) placement function. The selection function determines the order in which the

unplaced modules are included in the layout of the chip. The order is a function

of the connectivity between modules. The placement function decides the best

position for the modules according to the availability of vacant space in the region

[Karg86].

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 50

Figure 3.3 shows a simple circuit to be placed using the Cluster-Seed based

method. First, a seed placement is determined by selecting the pads in a random

In2A

In3

In4

(b) Cluster−Seed Placement(a) Input Nellist

1 3

4

5

6
2

OutputA

In2

In3

In4

In1
5 36 1

42

In1

Figure 3.3: An Example of Cluster-Seed Based Placement Algorithm

order and placing those unplaced modules that are directly connected with these

pads. Next, other unplaced modules are selected one at a time in order of their

connectivity to the placed modules (highly connected first) and fixed at a vacant

position close to the placed modules so that the total wire length is minimized.

This step is repeated until all the modules are placed. The Cluster-Seed based

placement algorithm is described in Figure 3.4.

In order to place modules uniformly on the chip (thereby minimizing the chip

area and total row length), an adaptive placement function is utilized in the current

implementation. For Benchmarks that do not have pads at bottom or top of the

chip, a Top-pads-placement() function or Bottom-pads-placement() function is used

respectively. In these two functions, modules are placed in top-down, or bottom-up

fashion respectively so that the modules are uniformly spread out. For circuits

that have both bottom and top pads, a normal-pads-placement() function is used.

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 51

CLUSTER-SEED ALGORITHM
1. Read Benchmark;
2. Set Total mods, placed mods;
3. Place the modules connecting with the

pads directly and update placed mods;
4. While (placed mods 6= Total mods)

If (all the pads on the top side)
Top pads placement();

Elseif (all the pads on the bottom side)
Bottom pads placement();

Else
Normal pads placement();

update placed mods
End While

5. Return the legalized placement solution.

Figure 3.4: A Cluster-Seed Based Constructive Algorithm

Initially, the chip area is partitioned into four equal subregions. Next, modules are

placed by different ways according to the subregions they belong to such that these

modules are spread out evenly. In the final stage, a legalizing function is used to

remove the cell overlap.

3.2.3 Partitioning Based Placement

The netlist partitioning problem can be formulated as a hypergraph H(V,E), with

n vertices V = {v1, v2, ...vn}. Each edge ei ∈ E of the hypergraph connects a subset

of the vertices. The objective is to partition the hypergraph into subsets such that

we minimize the total number of cut edges, while meeting constraints on the total

number of vertices in each partition. The survey of Alpert and Kahng[Alpe95a]

provides four general classifications for current approaches to the traditional par-

titioning problem: Move-Based approaches, Geometric approaches, Combinatorial

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 52

Formulation approaches and Clustering approaches. The move-based approaches

frequently employ iterative improvement, in which an initial partition is optimized

by repeatedly moving a vertex from one cluster to another, or by swapping pairs

of vertices. Kernighan and Lin (KL) [Kern70] proposed a two-way graph parti-

tioning algorithm which became the basis for most of the subsequent partitioning

algorithms. The approach for placement can be summarized as follows: we initially

obtain a placement for the benchmark using a cluster seed approach. We then

follow this with a multi-way partitioning scheme that reduces the number of cuts

between the blocks (i.e rows for the placement problem). A simple optimization

technique follows to place each row optimally within the chip and with respect to

the other rows.

Figure 3.5 shows the Multi-Way partitioning based placement algorithm. First

an initial placement is generated by Random placement or ClusterSeed placement.

Next the multi-way partitioning stage is invoked, where the whole chip is partitioned

into several blocks equal to the number of rows. A move based partitioning approach

is used to minimize the nets cut between the rows. Since the partitioning based

placement does not directly attempt to minimize the total estimated wirelength,

a simple row-based optimization technique is used to optimize the total estimated

wirelength of the solution.

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 53

Multi-Way Partitioning

 the netcuts between these bolcks
blocks and then moving cells to minimize
partitioning thc chip area into several

 Technique

placement solution circuit information

Row based Optimization Initial Placement

Random / ClusterSeed

Input:Output:

Figure 3.5: A Multi-Way Partitioning Based Placement Algorithm

3.3 Clustering & Iterative Improvement Techniques

3.3.1 Weighted Hyper-edge Clustering Technique

As mentioned in Chapter 2 section 2.5, multi-level clustering is an important tool

to manage the complexity of circuits with millions of transistors. In this section

we introduce a simple multi-level clustering technique called “Weighted Hyper-edge

Clustering” [Arei01c], which is an extension to Karypis et. al work [Kary97]. As

seen in the pseudo-code in Figure 3.6, an upper and lower width limit is determined

based on the cell widths in the current hierarchical level. As a potential clustering

of cells is examined, a new cluster is only created if the sum of the constituent cells’

widths is between these width limits. This limitation on sizes prevents excessively

large clusters from impeding improve, yet still reduce the problem size.

Similar to the Karypis’ MHEC method, the weighted Hyper-edge clustering

method is also divided into passes. In the first pass, for each net, cells are greedily

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 54

Weighted Hyper-edge Clustering Algorithm
1. Read Benchmark
2. Sort nets by increasing size
3. For each sorted net

If no cell on net is clustered
If sum of cell widths on net is within limits

Cluster all cells on net
End If

End If
End For

4. For each sorted net
If sum of unclust cell widths is within limits

Cluster all unclust cells on net
End If
End For

5. For each cell in circuit
If not clustered

Create a new cluster from cell
End If
End For

6. Return the Clusted Circuit.

Figure 3.6: Weighted Hyperedge Clustering

clustered together, but only if the sum of the cell width are within width limits. In

the second pass, remaining unclustering cells on each net are also greedily clustered

together if the sum of the cell width are within width limits. Finally, since it is

possible that some cells are only connected to a cluster that is prohibited from

clustering based on its size, a third pass is performed to assign any remaining cells

to a new cluster. The whole process eliminates the huge clusters allows a large

amount of circuit size reduction. Limiting sizes in the first pass only prevents huge

clusters from forming. Therefore, the criteria for selecting size limits need not be

complex. In this implementation, twice the maximum cell width was used to limit

sizes in the first pass. This encourages at most a doubling of the maximum cell size

at each level of the hierarchy. During the De-clustering process, a greedy method for

reducing the legalization error called FLATTEN is used. To minimize the quality

deterioration during circuit flattening, further improvement is performed on the

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 55

circuit at each flattening stage, using a localized search heuristic.

3.3.2 Tile Based Iterative Improvement

A good placement heuristic should consider both quality and computational effi-

ciency issues. The quality of the placement is essential for the performance of the

final circuit whereas computational efficiency is essential for shortening the design

procedure. Tile based iterative heuristic is such a kind of algorithm that produces

good solutions in a reasonable amount of time [Arei01a]. In the Tile based approach,

overlapping tiles or windows [Kenn97] are introduced to localize the arrangement

of cells throughout the placement area. The introduction of tiles is useful for re-

stricting the rearrangement of cells. Each tile contains a small subset of the cells.

Furthermore, cells may belong to more than one tile due to the overlap which exists

between tiles. The Tile iterative approach works as follows. A tile is selected, and

a list of cells within the tile is generated. Subsequently, cells within the selected

tile are rearranged in some fashion. In rearranging the cells, the cells are restricted

to positions within the tile boundaries which keeps cells close to their original posi-

tions. The computational effort required to find improved cell positions is reduced,

since the search for improved cell positions is restricted to positions within the tile

boundaries. Since tiles overlap, cells near the boundaries of a tile may be permitted

to move between tiles. During one pass, tiles are selected randomly, and only once

during each pass. After each pass, the quality of the placement is evaluated and

compared to placements generated by previous passes. The algorithm terminates

when either a maximum number of passes is exceeded, or when the improvement

in the placements over a number of consecutive passes is negligible. Figure 3.7

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 56

summarizes the Tile approach.

TILE-BASED ALGORITHM
1. Input: initial placement s;

estimate wirelength(initial placement);
2. Select Tiles Randomly;
3. For each Tile

While attempted moves < max attempts
select cells i and j;
determine cell shifts();
estimate wirelength(new placement)
if 4Total wirelength ≤ 0 do
update placement();

End While
4. Output Best placement found so far

Figure 3.7: A Tile-Based Algorithm

3.4 Results Comparison

The different constructive heuristic techniques are tested on ten MCNC bench-

marks introduced in section 2.7. The comparison is based on the total wirelength

of all the nets and computation time. The units of total wirelength and compu-

tation time are bounding box wirelength and seconds, respectively. Both flat and

hierarchical approaches are used to find the effectiveness of these approaches. An

iterative improvement approach (Tile-based Improver) follows the initial placement

produced by each technique and the robustness is measured in terms of quality of

solutions produced by the initial placement and final placements achieved using

the local search heuristic. Tables 3.1, 3.2, 3.3, and 3.4, present initial placement

results based on random placement, ARP algorithm, Cluster-Seed algorithm and

partitioning-based algorithm using both a flat level methodology and hierarchical

level approach. Table 3.1 introduces the initial wirelength for several benchmarks

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 57

obtained by the constructive placement techniques at the flat level. Results from

Table 3.1 indicate that initial placement based on the ARP algorithm gives the

best results for all the benchmarks at the expense of more computation time. The

clustering based results shown in Table 3.2, 3.3 and 3.4 were obtained by running

the constructive placement heuristic at clustering level 1, 2, and 3 respectively. The

constructive heuristic was only performed on the circuit at the top level. There is

no further improvement performed on the circuit at top level and succeeding flat-

tening stages. From these three tables, it can be seen that the computation time

and the quality of the solutions were improved as the clustering level increases. In

Table 3.4 (clustering depth is 3), more than 40% of the results produced by different

constructive placement algorithms were improved on average by 30%, especially for

Partitioning based placement and Random placement. In addition, the computa-

tion time of the ARP algorithm which produces the best results in Table 3.4 have

been largely reduced by 85% with a slight increase in total wirelength.

Circuit Random ARP ClusterSeed Partitioning
X+Y T X+Y T X+Y T X+Y T

Fract 87823 0.1 45214 0.5 73716 0.1 55431 0.4
Struct 2.49+6 0.3 705559 9.0 945343 0.2 956804 2.7
Prim1 2.63+6 0.1 1.13+6 8.7 1.85+6 0.1 2.02+6 2.0

Avg 1.74+6 0.2 6.27+5 6.1 9.56+5 0.2 1.01+6 1.7

Ind1 6.20+6 0.5 2.15+6 46.4 4.91+6 0.4 4.75+6 3.7
Prim2 1.64+7 0.4 5.89+6 53.7 1.22+7 0.5 1.17+7 5.6
Bio 1.33+7 1.4 3.06+6 121.2 7.54+6 1.4 7.49+6 9.3

Avg 1.20+7 0.8 3.7+6 73.8 8.2+6 0.8 8.0+6 6.2

Ind2 9.29+7 3.9 2.69+7 388.1 7.19+7 4.3 6.12+7 22.0
Ind3 2.82+8 6.1 6.90+7 410.7 2.08+8 6.8 1.81+8 50.5
avq.s 8.80+7 14.5 1.36+7 732.7 7.38+7 17.0 5.94+7 43.6
avq.l 1.02+8 16.1 1.64+7 877.5 8.64+7 21.8 6.96+7 47.9

Avg 1.41+8 10.1 3.15+7 602.1 1.10+8 12.4 9.28+7 41.0

Table 3.1: Initial Placement Solutions without Improver at Flat Level

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 58

Circuit Random ARP ClusterSeed Partitioning
X+Y T X+Y T X+Y T X+Y T

Fract 83404 0.2 52112 0.3 83672 0.3 66472 0.4
Struct 3.03+6 0.2 926812 3.5 1.95+6 0.3 993096 2.2
Prim1 3.22+6 0.2 1.21+6 5.8 2.69+6 0.1 2.06+6 2.2

Avg 2.11+6 0.2 7.30+5 3.2 1.57+6 0.23 1.04+6 1.6

Ind1 6.58+6 0.4 2.54+6 33.8 5.53+6 0.4 4.49+6 3.3
Prim2 1.97+7 0.3 6.31+6 42.2 1.69+7 0.3 1.13+7 5.1
Bio 1.67+7 1.3 3.18+6 82.2 1.30+7 1.4 5.95+6 8.1

Avg 1.44+7 0.67 4.01+6 52.7 1.18+7 0.7 7.25+6 5.5

Ind2 1.27+8 3.8 3.43+7 226.5 1.03+8 4.0 6.31+7 19.0
Ind3 4.34+8 5.5 7.38+7 362.6 4.07+8 4.7 2.88+8 35.7
avq.s 1.12+8 34.4 1.22+7 443.8 9.19+7 48.7 4.34+7 73.1
avq.l 1.34+8 41.9 1.50+7 575.3 1.19+8 52.9 4.76+7 88.2

Avg 2.01+8 21.4 3.38+7 410.5 1.8+8 27.6 1.1+8 54.0

Table 3.2: Initial Placement Solutions without Improver at Cluster Level-1

Circuit Random ARP ClusterSeed Partitioning
X+Y T X+Y T X+Y T X+Y T

Fract 87120 0.1 50960 0.2 81968 0.2 55168 0.3
Struct 2.52+6 0.2 686972 2.0 1.82+6 0.2 1.01e+06 2.2
Prim1 2.90+6 0.1 1.18+6 4.1 2.40+6 0.1 1.73+6 1.6

Avg 1.84+6 0.13 6.39+5 2.1 1.43+6 0.17 9.32+5 1.37

Ind1 5.73+6 0.6 2.49+6 23.9 4.97+6 0.5 4.18+6 3.2
Prim2 1.66+7 0.4 6.05+6 23.7 1.45+7 0.5 9.72+6 4.7
Bio 1.27+7 1.8 2.99+6 47.9 1.07+7 1.7 5.54+6 7.1

Avg 1.17+7 0.93 3.84+6 31.0 1.0+7 0.9 6.48+6 5.0

Ind2 1.17+8 4.2 3.30+7 178.3 9.80+7 4.2 5.74+7 16.9
Ind3 3.87+8 5.8 7.86+7 285.5 3.00+8 5.7 2.52+8 30.2
avq.s 1.05+8 36.0 1.17+7 354.9 8.21+7 41.4 3.98+7 60.2
avq.l 1.18+8 53.2 1.32+7 451.5 1.04+8 46.1 4.06+7 79.6

Avg 1.82+8 24.8 3.41+7 317.0 1.44+8 24.3 9.71+7 46.4

Table 3.3: Initial Placement Solutions without Improver at Cluster Level-2

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 59

Circuit Random ARP ClusterSeed Partitioning
X+Y T X+Y T X+Y T X+Y T

Fract 73312 0.1 49080 0.2 79352 0.1 58420 0.3
Struct 1.97+6 0.2 659400 1.6 1.46+6 0.2 928436 2.0
Prim1 2.71+6 0.1 1.19+6 3.5 2.34+6 0.1 1.81+6 1.5

Avg 1.58+6 0.13 6.33+5 1.77 1.29+6 0.13 9.32+5 1.27

Ind1 5.35+6 0.5 2.46+6 19.4 4.70+6 0.6 4.05+6 3.3
Prim2 1.51+7 0.5 5.95+6 21.1 1.26+7 0.5 9.18+6 4.4
Bio 8.59+6 1.7 2.92+6 34.4 7.72+6 1.8 4.54+6 6.8

Avg 9.68+6 0.9 3.78+6 25.0 8.34+6 0.97 5.92+6 4.83

Ind2 1.02+8 3.9 3.17+7 150.2 8.67+7 4.0 5.14+7 15.3
Ind3 3.52+8 5.6 7.56+7 202.3 2.87+8 6.0 1.52+8 28.6
avq.s 7.45+7 40.2 1.00+7 218.7 6.89+7 35.7 3.71+7 55.8
avq.l 8.90+7 56.1 1.18+7 264.1 7.89+7 40.1 3.96+7 70.1

Avg 1.54+8 26.4 3.23+7 208.5 1.30+8 21.3 7.01+7 42.4

Table 3.4: Initial Placement Solutions without Improver at Cluster Level-3

Figure 3.8 shows the effects of different clustering depths on solution quality and

computation time of the benchmark Ind2, Avq.small and Avq.large. Obviously, all

results obtained by different placement heuristics were improved as the clustering

depth becomes large, except the ARP algorithm. However, the computation time

of ARP algorithm was reduced significantly for getting almost the same quality of

solution as flat level.

The results shown in table 3.5 are similar to those introduced in table 3.1 except

that a tile based improver is used following the constructive stage. The last row of

the Table 3.5 shows the wirelength improvement produced by iterative improver.

From this table, it can be seen that all results were improved significantly compared

with those initial placement results without iterative improvement at the expense of

more CPU time. It is interesting to notice that the results produced by Partitioning-

based algorithm are close to those produced by ARP algorithm, and these results

are achieved in less time.

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 60

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

0 1 2 3 4 5 6

X
+

Y
 T

o
ta

l
W

ir
e
le

n
g

th

Clustering Level

Global placement Methods and Clustering Level for Ind2 Benchmark

Random
ARP

Partition-based
Cluaterseed

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6

 T
o

ta
l
T

im
e

Clustering Level

Global Placement methods and Clustering Level for Ind2 Benchmark

Random
ARP

Partition-based
Cluaterseed

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

0 1 2 3 4 5 6

X
+

Y
 T

o
ta

l
W

ir
e
le

n
g

th

Clustering Level

Global placement Methods and Clustering Level for Avq.small Benchmark

Random
ARP

Partition-based
Cluaterseed

Genetic

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6

 T
o

ta
l
T

im
e

Clustering Level

Global Placement methods and Clustering Level for Avq.small Benchmark

Random
ARP

Partition-based
Cluaterseed

Genetic

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

1 2 3 4 5 6

X
+

Y
 T

o
ta

l
W

ir
e
le

n
g

th

Clustering Level

Global placement Methods and Clustering Level for Avq.Large Benchmark

Random
ARP

Partition-based
Clusterseed

0

100

200

300

400

500

600

1 2 3 4 5 6

 T
o

ta
l
T

im
e

Clustering Level

Global Placement methods and Clustering Level for Avq.large Benchmark

Random
ARP

Partition-based
Clusterseed

Figure 3.8: Comparison of the Wirelength and Time (without improver)

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 61

Circuit Random ARP ClusterSeed Partitioning
X+Y T X+Y T X+Y T X+Y T

Fract 48341 1.3 33928 2.0 42030 1.6 36697 2.0
Struct 821957 21.3 447726 36.8 631286 31.1 514512 33.8
Prim1 1.08+6 19.8 840792 27.4 1.05+6 15.1 1.07+6 17.4

Ind1 2.29+6 114.0 1.67+6 138.8 1.99+6 95.7 1.93+6 106.2
Prim2 6.19+6 105.8 4.20+6 118.3 5.39+6 83.8 4.84+6 102.8
Bio 3.53+6 177.9 2.31+6 272.5 3.33+6 163.0 3.09+6 179.9

Ind2 3.33+7 458.8 2.01+7 729.6 3.41+7 248.5 2.36+7 449.0
Ind3 9.56+7 734.3 5.09+7 857.0 9.73+7 324.8 7.16+7 510.5
avq.s 2.18+7 756.2 9.65+6 1347.1 2.15+7 569.5 1.42+7 783.2
avq.l 2.60+7 842.2 1.10+7 1463.4 2.64+7 578.8 1.53+7 745.9

Imp % 69% - 26% - 57% - 64% -

Table 3.5: Final Placement Solutions at Flat Level with Tile-based improver

Tables 3.6, 3.7, and 3.8 shows the effects of multi-level clustering technique and

iterative improvement on the initial placement solution. The results of these three

tables were obtained by utilizing the initial placement heuristics at top clustering

level followed by Tile-based iterative improvement at all clustering levels (clustering

depth is 3). It is clear from these tables that results based on the iterative improver

at all levels are superior than other approaches with more CPU time.

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 62

Circuit Random ARP ClusterSeed Partitioning
X+Y T X+Y T X+Y T X+Y T

Fract 51276 0.5 42640 0.6 49156 0.4 42764 0.8
Struct 903340 4.0 495636 7.6 953988 3.6 614100 7.0
Prim1 1.75+6 3.4 1.03+6 9.6 1.52+6 3.7 1.21+6 6.8

Avg 9.01e+05 2.6 5.22e+05 5.9 8.40e+05 2.5 6.22e+05 4.8

Ind1 1.71+6 29.2 2.27+6 50.2 2.53+6 24.3 2.35+6 33.6
Prim2 8.94+6 21.5 4.78+6 46.3 8.29+6 18.1 5.53+6 30.9
Bio 4.49+7 26.8 2.57+6 70.5 4.38+6 25.3 2.76+6 45.1

Avg 1.85e+07 25.8 3.21e+06 55.6 5.07e+07 22.5 3.55e+06 36.5

Ind2 6.24+7 171.2 2.53+7 432.1 5.97+7 149.9 2.81+7 275.3
Ind3 1.98+8 183.3 5.98+7 401.0 1.91+8 161.2 7.54+7 223.0
avq.s 3.93+7 172.0 7.56+6 441.4 3.20+7 165.6 1.03+7 255.0
avq.l 4.80+7 186.9 8.43+6 481.4 4.14+7 173.3 1.11+7 303.1

Avg 8.70e+07 139.6 2.52e+07 438.7 8.10e+07 162.0 3.12e+07 264.0

Table 3.6: Final Placement Solutions at Cluster Level-3 with Tile-based improver
at top level

Circuit Random ARP ClusterSeed Partitioning
X+Y T X+Y T X+Y T X+Y T

Fract 50058 2.1 41260 2.1 46550 2.1 42470 2.3
Struct 1.17+6 36.7 960992 31.2 1.21+6 30.6 748102 30.8
Prim1 2.04+6 25.2 1.36+6 28.5 1.91+6 21.8 1.39+6 24.6

Avg 1.09e+06 21.3 7.87e+05 20.6 1.06e+06 18.1 7.27e+05 19.2

Ind1 2.96+6 73.4 3.10+6 82.4 3.04+6 58.0 4.42+6 102.3
Prim2 1.16+7 89.8 7.74+6 102.0 1.07+7 80.1 8.14+6 79.6
Bio 5.64+6 132.2 3.35+6 139.7 5.67+6 118.0 3.48+6 134.5

Avg 6.73e+06 98.5 4.73e+06 108.3 6.47e+06 85.3 5.35e+06 105.2

Ind2 7.06+7 420.7 2.91+7 580.7 7.54+7 469.6 4.04+7 643.4
Ind3 2.42+8 440.7 2.90+7 591.5 2.11+8 566.3 1.18+8 693.0
avq.s 5.13+7 433.3 1.00+7 578.0 3.59+7 377.2 1.65+7 512.9
avq.l 5.65+7 481.3 1.05+7 610.8 4.98+7 460.2 1.40+7 434.8

Avg 10.50e+07 471.2 1.74e+07 664.0 9.30e+07 652.7 4.72e+07 570.5

Table 3.7: Final Placement Solutions at Cluster Level-3 with Tile-based improver
at top and lowest level

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 63

Circuit Random ARP ClusterSeed Partitioning
X+Y T X+Y T X+Y T X+Y T

Fract 44812 3.3 38492 3.4 45793 3.0 40596 3.5
Struct 1.03+6 35.2 491072 48.7 1.06+6 35.0 588620 41.0
Prim1 1.54+6 37.1 1.36+6 40.8 1.57+6 36.5 1.36+6 40.1

Avg 8.72e+05 25.2 6.30e+05 30.1 5.74e+05 24.8 6.63e+05 28.2

Ind1 2.09+6 118.0 1.69+6 156.5 1.93+6 124.7 1.94+6 137.3
Prim2 8.07+6 111.8 4.45+6 154.0 7.42+6 95.7 5.30+6 150.3
Bio 4.76+6 159.2 2.63+6 253.3 4.93+6 132.9 2.82+6 227.7

Avg 4.97e+06 96.3 2.93e+06 187.6 4.76e+06 117.0 3.35e+06 171.3

Ind2 5.93+7 488.6 2.16+7 802.2 5.58+7 742.7 2.31+7 767.7
Ind3 1.88+8 568.7 5.04+7 894.3 1.75+8 831.5 6.84+7 763.8
avq.s 3.90+7 526.3 7.12+6 1052.8 3.17+7 495.0 9.76+6 814.7
avq.l 4.85+7 554.2 7.85+6 1119.3 4.09+7 562.0 1.08+7 1029.3

Avg 8.37e+07 534.4 2.17e+07 996.8 7.59e+07 523.2 2.80e+07 843.3

Table 3.8: Final Placement Solutions at Cluster Level-3 with Tile-based improver
at all levels

3.5 Evolutionary Based Placement

Evolutionary Algorithms (EA’s) are a class of optimization algorithms that seek

improved performance by sampling areas of the parameter space that have a high

probability for leading to good solutions [Mich92]. The algorithms are called genetic

because the manipulation of possible solutions resembles the mechanics of natural

selection. These algorithms which were introduced by Holland [Holl75] in 1975 are

based on the notion of propagating new solutions from parent solutions, employ-

ing mechanisms modeled after those currently believed to apply in genetics. The

best offspring of the parent solutions are retained for a next generation of mating,

thereby proceeding in an evolutionary fashion that encourages the survival of the

fittest. As an optimization technique, Genetic Algorithms simultaneously examine

and manipulate a set of possible solutions. The power of GA’s comes from the fact

that the technique is robust, and can deal successfully with a wide range of problem

areas, including those which are difficult for other methods to solve.

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 64

There are four main characteristics that make Genetic Algorithms different from

other search and optimization methods [Gold89]. The first difference is that Genetic

Algorithms encode the parameter set for the representation of the actual parame-

ters. Instead of optimizing the value of each parameter, the encoded representation

of the parameters is optimized. In addition, Genetic Algorithms work with a large

population of solutions instead of only a single point in the solution space. Thus,

the probability of finding a false peak is reduced over methods. Furthermore, in the

Genetic Algorithms, each new individual is constructed from two previous individu-

als, which means that in a few iterations, all the individuals in the population have

a chance of contributing their good features to form one super-individual. Finally,

although the approach has a stochastic flavor, it makes use of all the information

obtained during the search and permits the structure exchange of that information.

The first and foremost problem with Genetic techniques is the high computa-

tional demand. To get good results, the algorithm may have to be run for many

generations on a large population. Besides, the parameter tuning of GA’s is also

not a trivial task. Another drawback is that Genetic Algorithms are not guaranteed

to find the global optimum solutions. The theoretical proofs of global convergence

are of little practical value as they assume infinite computation time.

In this section, a Genetic Algorithm based placement is proposed and then com-

bined with local search, constructive technique and clustering technique to overcome

some drawbacks of pure Genetic Algorithm. Figure 3.9 summarize the whole GA

approach proposed in this thesis. At the highest clustering level, the pure GA with

partial good initial results injected is combined with a tile-based local search to

explore the solution space more efficiently. During the de-clustering process, the

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 65

tile-based local search is performed at each clustering level to manage the deterio-

ration generated at each de-clustering phase.

A B

C D

A B

C D

cluster

Level 1

Level 2

Level 0

cluster

X

Y

Inject 5%−30% constructive
technique based good initial results

(Flat)

GA+ Local Search for exploration

Local Search

Local Search

Figure 3.9: Overall Approach for Genetic Placement

3.5.1 Pure Genetic-based Placement Algorithm

A Genetic Algorithm implementation for standard-cell placement used in this the-

sis is shown in Figure 3.10. The algorithm starts with an initial set of random

placement solutions, which are called individuals in a population. These solutions

are coded as strings, called chromosomes. A string represents a solution to the

placement problem. Next, the initial population is evaluated, using the placement-

specific fitness function. Crossover occurs by exchanging part of the parent’s struc-

ture into two new individuals called offspring. Each offspring inherits features of

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 66

their parents. Following crossover, the offspring is mutated with low probability.

By producing incremental random changes in the offspring, mutation ensures that

the genetic algorithm can explore new solutions that may not be in the population

yet. Therefore, it expands the entire search space, in spite of the finite population

size. In this implementation, the replacement method is based on replacing the

most inferior member of a population by new offspring. Since traditional crossover

operator can produce infeasible solutions, a 2-point order crossover is used.

GA for Placement
1. Read Benchmark and encode problem
2. set popsize, max gen;

crossover rate, mutation rate, selection method;
3. Generate initial population randomly
4. While Not Done

For (i=1 to popsize/2)
Select parents(mate1,mate2);
if (random(0,1) ≤ crossover rate)

child = Do Crossover(mate1,mate2);
if (random(0,1) ≤ mutation rate)

Mutation(offspring) and evaluate offspring;
End For

Replacement();
gen = gen + 1 ;

End While
5. Return best placement in current population.

Figure 3.10: A Genetic Placement Algorithm

3.5.1.1 Detailed Implementation

String Encoding

One of the main feature of a Genetic Algorithm applied to an optimization problem

is the fact that it does not deal with the problem itself, but with encodings of

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 67

solutions for this problem. Thus, the Genetic Algorithm explores the space of

these encodings rather than the original solution space. In this Genetic Algorithm,

a standard-cell placement solution string was represented by a set of alleles (the

number of alleles equal to the number of cells). Each allele indicates the index,

the X- coordinates and row number of the cell. Figure 3.11a illustrates the string

encoding of the standard-cell placement given in Figure 3.11b.

2

7 4

3 5

1

8 6

 0

 2

 3

 1

row number cell

(a) String Encoding (b) Placement

allele

 0 20 50 30 0 50 40 30

row_number 0 3 0 2 1 2 3 1

x−coordinate

 cell_index 2 3 1 8 7 6 5 4

1 2 3 4 5 6 7 8

Figure 3.11: String Encoding

Scoring Function

Typically, in GA each individual is evaluated to determine its fitness through a

scoring function. Since the traditional objective of the placement problem involves

minimizing wire-length, each individual is evaluated by a scoring function F (as

summarized by equation 3.4).

F =
1

∑n
i=1HPWLi

(3.4)

where HPWL is the sum of the half perimeter of the smallest bounding rectangle

for each net. HPWLi is the estimated wire-length of net i and n is the number

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 68

of nets. In the implementation, cell overlaps are removed and row lengths are

adjusted before evaluating the chromosome. Removing cell overlaps after every

generation not only gives the algorithm a more accurate picture of the wire-length

but also gives the algorithm repeated chances to optimize the circuit after it has

been perturbed by overlap removal [Yang02c]. Therefore, the row length control

and overlap penalty are not considered in the scoring function.

Initial Population Construction

Two population construction methods were considered. The first method “random

placement” can diversify the initial solutions by placing cells end-to-end in rows

quickly. However, it tends to have a slower rate of convergence due to the low qual-

ity of solutions produced. The second population construction approach designed

attempts to inject a few good placement solutions produced by ClusterSeed method

(introduced in section 3.2.2) into the initial population thus increasing its chance

to converge to good suboptimal solutions faster.

Selection Function

In the selection function, three methods were considered.

• Roulette Wheel: It is a proportionate selection scheme in which the slots

of a roulette wheel are sized according to the fitness of each individual in

the population (Figure 3.12 shows an example). An individual is selected

by spinning the roulette wheel and locating the position of the marker. The

probability of selecting an individual is therefore proportional to its fitness.

Roulette wheel selection typically provides the highest selection pressure in

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 69

the initial generations, especially when a few individuals have significantly

higher fitness values than other individuals.

Figure 3.12: Roulette Wheel

• Binary Tournament: In this method, two individuals are picked at random

from the pool and the individuals with higher fitness value are selected. These

two individuals are immediately replaced into the population for the next

selection operation.

• Ranking: in the third method, all individuals in the population are sorted

according to their score. In each iteration, two individuals are selected from

the population as parents, in order. This process is repeated N/2 times (“N”

is the population size).

Tournament selection provides more pressure in later generations when the fit-

ness values of individuals are not significantly different. Thus, roulette wheel selec-

tion is more likely to converge to a suboptimal result than Tournament selection

if individuals have large variations in fitness values. Several experiments were con-

ducted as shown in Figure 3.13, and accordingly, Binary Tournament selection was

incorporated into the algorithm.

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 70

1.22e+07

1.23e+07

1.24e+07

1.25e+07

1.26e+07

1.27e+07

1.28e+07

1.29e+07

1.3e+07

1.31e+07

1.32e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Medium Size Circuit: Bio (gen:100 pop:24)

Roulette Wheel
Binary Tournament

Ranking

9.95e+07

1e+08

1.005e+08

1.01e+08

1.015e+08

1.02e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Large Size Circuit: avq_large (gen:100 pop:24)

Roultette Wheel
Binary Tournament

Ranking

Figure 3.13: Different Selection Methods

Crossover Operator

Once two chromosomes are selected, the crossover operator is used to generate two

offspring. The traditional crossover operator used in GA may produce infeasible

solutions for the standard cell placement problem, therefore a crossover operator

called Order crossover (used in [Mazu99]) is considered. Figure 3.14a shows a one-

point order crossover operator where each pair of parents generates two children

with a probability equal to the crossover rate. In this method, a single cut point

is chosen at random. The crossover operator first copies the array segment to the

left point from one parent to one offspring. Then it fills the remaining part of the

offspring by going through the other parent, from the beginning to the end and

taking those elements that were left out, in order. The two-points order crossover

operator is similar to one-point order crossover operator, except that it has to

choose two crossover points randomly. An example of two-point order crossover

operator is illustrated in Figure 3.14b. Figure 3.15 shows experimental results

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 71

for two benchmarks based on the different crossover operators. Clearly, two-point

crossover operator produces better results than one-point crossover operator and

thus, all results presented in this thesis are based on the two-point order crossover

operator.

 2 1 3 8 7 5 9 6 4 10

 8 1 2 3 4 9 10 5 6 7

 2 1 3 8 7 4 9 5 6 10

Crossover Point

 2 1 3 8 7 5 9 6 4 10

 8 1 2 3 4 9 10 5 6 7

 1 9 5 6 4 3 7 10 8 2

Crossover Point1 Crossover Point2

(a) One−Point Order Crossover (b) Two−Point Order Crossover

Figure 3.14: One-Point and Two-Point Order Crossover

1.22e+07

1.23e+07

1.24e+07

1.25e+07

1.26e+07

1.27e+07

1.28e+07

1.29e+07

1.3e+07

1.31e+07

1.32e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Medium Size Circuit: Bio (gen:100 pop:24)

1-point order crossover
2-point order crossover

9.85e+07

9.9e+07

9.95e+07

1e+08

1.005e+08

1.01e+08

1.015e+08

1.02e+08

0 10 20 30 40 50 60 70 80 90 100

W
ir

e
le

n
g

th

Generations

Large Size Circuit: avq_large (gen:100 pop:24)

1-point order crossover
2-point order crossover

Figure 3.15: Effect of Different Crossover Operators

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 72

Mutation Operator

Following crossover, each offspring is mutated with a probability equal to the muta-

tion rate. In GAs, mutation produces incremental random changes in the offspring

generated through crossover. It not only plays the crucial role of replacing the gene

values lost during the selection process, but also provides the gene values that were

not presented in the initial population. Two mutation operators m1 and m2 were

tested. Operator m1 mutates an individual by interchanging randomly selected pair

of cells without changing the x-coordinate and row number. Figure 3.16 illustrates

the mutation process. Its random nature allows for a broader exploration of the

solution space. However, it typically increases a string’s score due to its disruptive

x−coordinate 0 20 50 30 0 50 40 30

cell_index 2 3

row_number 0 3 0 2 1 2 3 1

 8 7 5 46 1

x−coordinate 0 20 50 30 0 50 40 30

cell_index 2 3

row_number 0 3 0 2 1 2 3 1

 8 7 5 41 6

Figure 3.16: Mutation Operator

effect on the placement solution. Therefore, another mutation operator m2 was

considered, where a cell c1 is randomly chosen and swap its location with another

randomly selected cell c2, if and only if cell c2 is located in the same or up or down

row of cell c1. Figure 3.17 shows the results of different mutation operators for

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 73

medium size benchmark “Bio” and large size benchmark “avq.large”. Obviously,

mutation operator m2 produces much better results than m1, and therefore m2

mutation operator was included in the algorithm.

1.22e+07

1.24e+07

1.26e+07

1.28e+07

1.3e+07

1.32e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Medium Size Circuit: Bio (gen:100 pop:24)

m1
m2

9.9e+07

9.95e+07

1e+08

1.005e+08

1.01e+08

1.015e+08

1.02e+08

0 10 20 30 40 50 60 70 80 90 100

W
ir

e
le

n
g

th

Generations

Large Size Circuit: avq_large (gen:100 pop:24)

m1
m2

Figure 3.17: Effect of Different Mutation Operators

Replacement Function

Following mutation, the population for next generation is then chosen from the

combined set of parents and offsprings. In order to keep the best individuals around

all the time, a method call elitism was used, where two worst individuals in the

population and two children are compared and the two fittest individuals are kept

to next generation. The elitism strategy guarantees that the best individual in the

current generation will appear in the subsequent generation, protecting the search

from regression [Mitc96, Grew95].

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 74

3.5.2 Memetic-based Placement Algorithm

Genetic Algorithms are not well suited for fine-tuning structures which are close

to optimal solutions [Gold89]. Incorporation of local improvement operators into

the recombination step of a Genetic Algorithm is essential if a competitive Genetic

Algorithm is desired. Memetic algorithms (MAs) are evolutionary algorithms (EAs)

that apply a separate local search process to refine individuals (i.e improve their

fitness by hill-climbing). Under different contexts and situations, MAs are also

know as hybrid EAs, genetic local searchers. Memetic Algorithms (MAs) have

been shown to be very effective for many combinatorial optimization problems,

including the quadratic assignment problem (QAP), traveling salesman problem

(TSP) and many others.

Combining global and local search is a strategy used by many successful global

optimization approaches, and MAs have in fact been recognized as a powerful algo-

rithmic paradigm for evolutionary computing. In particular, the relative advantage

of MAs over EAs is quite consistent on complex search spaces.

The proposed Memetic Algorithm (shown in Figure 3.18) for circuit placement

is based on the Genetic Algorithm introduced in section 3.5.1. In each generation,

a Tile-based local search heuristic (introduced in section 3.3) is performed on part

of the population to improve their fitness.

3.5.3 Numerical Results

All numerical results were obtained using the full set of MCNC benchmark circuits,

introduced in section 2.5. For all the tables shown in this section, the “X+Y” col-

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 75

MEMETIC ALGORITHM
1. Read Benchmark and encode solution space
2. set popsize, max gen, gen=0;

set crossover rate, mutation rate;
3. Generate initial population randomly
4. Evaluate the initial population
5. While (gen ≤ max gen)

Apply Generic GA
Apply Tile-based algorithm to Population;

End While
6. Return best solution in current population.

Figure 3.18: A Memetic Algorithm

umn lists the total wirelength of all the nets measured by bounding box wirelength

and the “Time” column lists the computation time measured by second.

3.5.3.1 Pure Genetic Algorithm Results

GA Parameter Tuning

The proposed pure Genetic Algorithm (introduced in section 3.5.1) is run for differ-

ent sizes of population, number of generation, crossover rates and mutation rates.

Figure 3.19 and 3.20 shows the parameter tuning for the medium size circuit “Bio”

and the large size circuit “avq.large”.

It can be seen that the performance of the genetic algorithm is improved as

the population and generation size are increased. However, running the GA for

a larger population and generation size also increases the computation time. The

generation and population graphs in both Figure 3.19 and 3.20 indicate that the

Genetic Algorithm shows a very rapid improvement in the beginning of the search

and then levels off at later stages of the search. Hence, in this thesis the generation

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 76

1.2e+07

1.22e+07

1.24e+07

1.26e+07

1.28e+07

1.3e+07

1.32e+07

0 50 100 150 200 250 300 350 400 450 500

W
ir

e
le

n
g

th

Different Generation Size

Medium Size Circuit: Bio (pop:24 mu:0.3% cross:0.9)

generatons

1.19e+07

1.2e+07

1.21e+07

1.22e+07

1.23e+07

1.24e+07

1.25e+07

1.26e+07

20 40 60 80 100 120 140 160 180 200

W
ir

e
le

n
g

th

Different Population Size

Medium Size Circuit: Bio (gen:100 mu:0.3% cross:0.9)

population

1.22e+07

1.23e+07

1.24e+07

1.25e+07

1.26e+07

1.27e+07

1.28e+07

1.29e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Different Mutation Rate (%)

Medium Size Cirucit: Bio (gen:100 pop:24 cross:0.9)

mutation rate

1.22e+07

1.23e+07

1.24e+07

1.25e+07

1.26e+07

1.27e+07

1.28e+07

1.29e+07

1.3e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Different Crossover Rate

Medium Size Circuit: Bio (gen:100 pop:24 mu:0.3%)

crossover rate

Figure 3.19: Parameter Tuning of Circuit Bio (at flat level)

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 77

9.9e+07

9.95e+07

1e+08

1.005e+08

1.01e+08

1.015e+08

1.02e+08

0 50 100 150 200 250 300 350 400 450 500

W
ir

e
le

n
g

th

Different Generation Size

Large Size Circuit: avq_large (pop:24 mu:0.02% cross:0.99)

generatons

9.98e+07

1e+08

1.002e+08

1.004e+08

1.006e+08

1.008e+08

1.01e+08

1.012e+08

20 40 60 80 100 120 140 160 180 200

W
ir

e
le

n
g

th

Population

Large Size Circuit: avq_large (gen:100 mu:0.02% cross:0.99)

population

9.97e+07

9.98e+07

9.99e+07

1e+08

1.001e+08

1.002e+08

1.003e+08

1.004e+08

1.005e+08

1.006e+08

1.007e+08

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

W
ir

e
le

n
g

th

Different Mutation Rate (%)

Large Size Circuit: avq_large (gen:100 pop:24 cross:0.99)

mutation rate

9.96e+07
9.98e+07

1e+08
1.002e+08
1.004e+08
1.006e+08
1.008e+08

1.01e+08
1.012e+08
1.014e+08
1.016e+08
1.018e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Different Crossover Rate

Large Size Circuit: avq_large (gen:100 pop:24 mu:0.02%)

crossover rate

Figure 3.20: Parameter Tuning of Circuit Avq.large (at flat level)

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 78

and population size for the pure GA are set to 100 and 24, respectively. For the

crossover rate, clearly the more it close to the value 1, the better the quality of the

solution is. However, for the mutation rate, both too low and too high values result

in bad solutions. In this thesis, for the pure GA the crossover rate is set to either

0.9 or 0.99 and the mutation rate are different for each circuit, ranging from 0.02%

to 1.2%.

Effect of Different Population Constructors

The initial generation of the population is an important issue that needs to be

addressed in any GA implementation. In this thesis, two methods are used to

generate initial populations. Table 3.9 shows the results comparison of different

initial population constructors. The first column presents results produced by the

pure Genetic Algorithm with random initial population, whereas the results in

second column is generated by the pure Genetic Algorithm with combined initial

population. The combined population is constructed by injecting partially good

initial solutions based on the Cluster-Seed method (presented in section 3.2.2) into

the random initial solutions. The last row in the Table 3.9 clearly indicates that

the injections of good initial solutions improve the quality of the pure Genetic

Algorithm significantly on average by 38%.

Figure 3.21 shows the experimental results of different injection rate for small

size circuit “Prim1”, medium size circuit “Bio” and large size circuit “avq.large”.

Based on these experimental results, the injection rates for different benchmarks

are set, ranging from 5% to 30%. The GA parameter tuning for the rest circuits

are shown in Appendix B.

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 79

1.76e+06

1.78e+06

1.8e+06

1.82e+06

1.84e+06

0 10 20 30 40 50 60 70 80 90 100

W
ir

e
le

n
g

th

Injection Rate of good initial solutions

Small Size Circuit: Prim1 pop:24 gen:100

Injection Rate

7.4e+06

7.45e+06

7.5e+06

7.55e+06

7.6e+06

0 10 20 30 40 50 60 70 80 90 100

W
ir

e
le

n
g

th

Injection Rate of good initial soutions

Medium Size Circuit: Bio pop:24 gen:100

Injection Rate

5.075e+07

5.08e+07

5.085e+07

5.09e+07

5.095e+07

5.1e+07

0 10 20 30 40 50 60 70 80 90 100

W
ir

e
le

n
g

th

Injection Rate of good initial solutions

Large Size Circuit: avq.large pop:24 gen:100

Injection Rate

Figure 3.21: Different Injection Rates for Different Size Circuits

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 80

Pure GA Results (gen:100 popsize:24)
Bench Random Initial Solution Injection Initial Solution
Mark Total RowLength Time Total RowLength Time

Fract 62555 672 3.4 62234 664 3.5
Prim1 2.24e+06 5140 27.6 1.80e+06 5170 29.1
Struct 2.31e+06 2368 108.1 943931 2408 114.4

Ind1 5.43e+06 4812 167.0 4.50e+06 4824 185.0
Prim2 1.51e+07 9440 261.5 1.04e+07 9460 264.2
Bio 1.22e+07 4968 831.7 7.44e+06 4992 863.7

Ind2 8.88e+07 14008 2835.3 6.40e+07 14040 2935.1
Ind3 2.78e+08 26552 4585.6 1.59e+08 26424 4685.5

avq.small 8.69e+07 9104 7721.4 3.98e+07 9128 7815.2
avq.large 9.98e+07 9400 11067.1 5.09e+07 9400 11700.2

Wirelength Imp - 38%

Table 3.9: Pure GA (different initial solutions comparison)

All the results shown in above tables are the average of 5 runs. Table 3.10 shows

the results within 5 runs for the pure GA with the combined initial population. In

this table, the first three columns illustrate the best, worst and average results

within 5 runs. Column ”SD” shows the standard deviation results of each circuit.

Circuit Best Worst Average SD
X+Y Time X+Y Time X+Y Time X+Y Time

Fract 61207 3.6 63531 3.5 62234 3.5 751 0.06
Prim1 1.78e+6 29.6 1.82e+6 30.1 1.80e+6 29.1 1.0e+4 0.68
Struct 930148 114.0 954492 115.4 943931 114.4 23500 0.5

Ind1 4.42e+6 185.4 4.55e+6 183.2 4.50e+6 185.0 1.0e+5 2.4
Prim2 1.03e+7 263.4 1.05e+6 264.7 1.04e+7 264.3 6.0e+3 2.0
Bio 7.42e+6 865.3 7.46e+6 862.7 7.44e+6 863.7 2.0e+4 0.9

Ind2 6.39e+7 2933.3 6.41e+7 2930.2 6.40e+7 2935.1 9.0e+4 7.3
Ind3 1.58e+8 4688.6 1.59e+8 4687.4 1.59e+8 4685.5 6.0e+5 3.0
avq.s 3.88e+7 7814.7 4.14e+8 7816.2 3.98e+7 7814.0 9.0e+5 2.1
avq.l 5.08e+7 11699.4 5.09e+7 11695.3 5.09e+7 11700.2 4.0e+4 2.5

Table 3.10: Pure GA Solutions within 5 runs

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 81

3.5.3.2 Memetic Algorithm Results

As indicated in section 3.5.2, a pure GA is not well suited for exploring the solu-

tion space. To improve the fine local tuning capability of a Genetic Algorithm, a

Memetic (hybrid) Genetic Algorithm was proposed in this thesis. Table 3.11 com-

pares the performance of a pure Genetic Algorithm with three different Memetic

Algorithms. The pure GA is combined with Tile-based local search in three differ-

ent ways, referred to here as (i)“GA-ME-1” (before the crossover) (ii)“GA-ME-2”

(after the crossover) (iii)“GA-ME-3” (before and after the crossover). Cluster-Seed

based results are injected into both pure GA and Memetic algorithms as part of

the initial population. From the last row of the table, it can be seen that the total

wire-length improvement achieved by the different Memetic algorithms is 44%, 43%

and 47% respectively. Obviously, integrating GA with local search in the first two

Memetic methods reduce the amount of wire-length and CPU time on average by

44% and 17% respectively. The last method “GA-ME-3” enhances the wire-length

quality at the expense of an increase in CPU time on average by 40%.

3.5.3.3 Hierarchical Approach Results

It is evident from the previous section that Memetic Algorithms produce much

better results than pure Genetic Algorithms. Yet the computation time of GA (even

for Memetic Algorithm) is large. One technique used to deal with this problem is

to utilize a multi-level hierarchical approach.

Table 3.12 illustrates the effects of different clustering depths on solution quality

and computation time of the pure GA. For the results in the second, third and forth

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 82

Performance of Memetic Algorithms
Bench Pure GA GA-ME-1 GA-ME-2 GA-ME-3
Mark X+Y Time X+Y Time X+Y Time X+Y Time

Fract 62234 3.5 34997 15.1 35942 15.4 34953 31.1
Prim1 1.80e+06 29.6 995713 233.2 1.02e+06 219.6 1.00e+06 467.8
Struct 943931 114.4 504720 288.8 490276 251.0 460289 600.7

Ind1 4.50e+06 185.0 2.21e+06 926.9 2.07e+06 876.6 2.14e+06 1806.0
Prim2 1.04e+07 264.2 5.48e+06 741.3 5.44e+06 685.8 5.47e+06 1451.5
Bio 7.44e+06 863.7 3.98e+06 1256.8 4.01e+06 1240.0 3.12e+06 2492.7

Ind2 6.40e+07 2935.1 2.97e+07 3185.7 3.08e+07 3055.8 2.78e+07 6522.6
Ind3 1.59e+08 4685.5 9.92e+07 5716.4 1.01e+08 5313.4 9.31e+07 11405.4

avq.small 3.98e+07 78152. 2.10e+07 5278.9 2.09e+07 5033.9 2.02e+07 10130.6
avq.large 5.09e+07 11700.2 2.34e+07 6422.6 2.35e+07 6065 2.27e+07 12387.4

Improve 0% 0 % 44% 15% 43% 20% 47% -39%

Table 3.11: Results Comparison of Memetic Algorithms

columns, the clustering depth is 1, 2, and 3 respectively. The pure GA with partially

injected good initial solutions was invoked at the top clustering level only. There

is no further improvement performed on the circuit at top level and succeeding

flattening stages. The results clearly show that, as the clustering technique is

integrated within the pure Genetic Algorithm, the run time is largely reduced,

especially for clustering level-3 (the run time is decreased by 85%). However, the

total wirelength is also increased by 32%.

The quality deterioration is partially due to the approximations made when

the circuit is clustered and local improvements performed at the top level. It

is these approximations that lead to significant quality deterioration during de-

clustering, when these approximations made at the top hierarchical level “trickle-

down” through each de-clustering step. Therefore, localized improvers should be

used to minimize this deterioration as it is introduced at each de-clustering phase.

Since most improvement work is done at the top level, an improver that can find

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 83

Circuit Flat GA Clust-level-1 Clust-level-2 Clust-level-3
X+Y Time X+Y Time X+Y Time X+Y Time

Fract 62234 3.5 80124 2.0 78864 1.7 54548 1.5
Struct 943931 114.4 2.99e+06 30.3 2.41e+06 20.6 1.39e+06 14.3
Prim1 1.80e+06 29.6 3.15e+06 20.4 2.83e+06 14.8 2.18e+06 9.4

Ind1 4.50e+06 185.0 6.46e+06 78.2 5.61e+06 67.6 3.81e+06 47.6
Prim2 1.04e+07 264.3 1.94e+07 137.2 1.64e+07 100.7 1.21e+07 54.2
Bio 7.44e+06 863.7 1.63e+07 598.7 1.25e+07 367.3 6.15e+06 64.6

Ind2 6.39e+07 2933.3 1.26e+08 1512.5 1.16e+08 1000.5 7.42e+07 642.5
Ind3 1.59e+08 4685.5 4.30e+08 2303.3 3.85e+08 1216.3 2.86e+08 816.3

avq.small 3.98e+07 7813.0 8.44e+07 3232.2 7.45e+07 1693.1 4.51e+07 1203.2
avq.large 5.09e+07 11700.2 1.33e+08 7323.4 1.13e+08 3416.4 6.13e+07 1606.4
Total 33.46+07 28478 73.7e+07 12006 65.38+07 6205 49.17+07 4460

Improve 0% 0% -55% 58% -49% 78% -32% 85%

Table 3.12: Placement Results at Different Clustering Levels

a local minimum efficiently is needed. In this thesis, a Tile-based local search is

used as the local improver. Table 3.13 shows the effectiveness of the Tile-based

local search used during de-clustering. All the results shown in second and third

columns were attained by applying three levels of clustering. The second column

“Clust-GA-No-Imp” lists the placement solutions without further improvement at

each clustering level, while the third column “Clust-GA-Imp” shows the results

with Tile-based improver at each clustering level. Obviously by performing the

local improver during de-clustering, the hierarchical approach achieves almost the

same quality of solution as the flat approach, with 3 times speed up.

Table 3.14 shows the results obtained by a Genetic Algorithm (Pure GA), a GA

with clustering technique (GA-GC), a Memetic Algorithm with simple Tile-based

local search (GA-Tile) and a GA based on clustering technique with a Tile-based

local search embedded (GA-GC-Tile). It is clear from this table that the algorithm

based on both clustering and simple local search produces high quality solutions.

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 84

Circuit Flat Pure GA Clust-GA-No-Imp Clust-GA-Imp
X+Y Time X+Y Time X+Y Time

Fract 62234 3.5 54548 1.5 39482 4.9
Struct 943931 114.4 1.39e+06 14.3 736966 62.2
Prim1 1.80e+06 29.1 2.81e+06 9.4 2.09e+06 32.3

Ind1 4.50e+06 185.0 3.87e+06 47.6 2.22e+06 166.6
Prim2 1.04e+07 264.2 1.21e+07 54.2 7.76e+06 158.2
Bio 7.44e+06 863.7 6.15e+06 64.6 4.43e+06 275.4

Ind2 6.40e+07 2935.3 7.42e+07 642.5 5.42e+07 1185.5
Ind3 1.59e+08 4685.6 2.86e+08 861.3 1.81e+08 1374.6

avq.small 3.98e+07 7815.7 4.51e+07 1203.0 3.53e+07 1219.4
avq.large 5.09e+07 11700.2 6.13e+07 1606.4 4.30e+07 2144.6
Total 33.46+07 28478 49.17e+07 4460 32.07e+07 9271

Improve 0% 0% -32% 85% 4% 67%

Table 3.13: Placement Results with Tile-based Improver

Performance of Hierarchical Approach
Bench Pure GA GA-GC GA-Tile GA-GC-Tile
Mark X+Y Time X+Y Time X+Y Time X+Y Time

Fract 62234 3.5 39482 4.9 34953 31.1 34627 22.9
Prim1 1.80e+06 29.6 2.09e+06 32.3 1.00e+06 467.8 964815 438.2
Struct 943931 114.4 736966 62.3 460289 600.7 464454 544.8

Ind1 4.50e+06 185.0 2.22e+06 166.6 2.14e+06 1806.0 1.97e+06 1318.4
Prim2 1.04e+07 264.2 7.76e+06 158.5 5.47e+06 1451.5 5.31e+06 1286.9
Bio 7.44e+06 863.7 4.43e+06 275.4 3.12e+06 2492.7 2.77e+06 2157.9

Ind2 6.40e+07 2935.1 5.42e+07 1185.5 2.78e+07 6522.6 3.10e+07 5420.7
Ind3 1.59e+08 4685.5 1.81e+08 1374.3 9.31e+07 11405.4 8.06e+07 7521.4

avq.small 3.98e+07 7815.7 3.53e+07 1219.4 2.02e+07 10130.6 1.35e+07 9711.6
avq.large 5.09e+07 11700.2 4.30e+07 2144.6 2.27e+07 12387.4 1.60e+07 11060.4

Total 33.46+07 28478 32.07e+07 9271 17.67+07 47294 15.26+07 39478

Improve 0% 0% 4% 67% 47% -39% 54% -27%

Table 3.14: Results Comparison of Hierarchical Approach

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 85

The results shown in the first two columns indicate that by combining the clustering

technique with GA the computation time involved in producing the same quality

of solutions as the flat pure Genetic Algorithm was largely reduced by 67%. The

amount of improvement in total estimated wire-length achieved using Memetic

algorithm (GA-Tile) is 47% but the computation time involved using a Memetic

algorithm also increases largely. A clustering Memetic Algorithm (GA-GC-Tile)

improves the solution quality by 54% and the computation time is less than that

of the flat Memetic Algorithm (GA-Tile).

The flat and hierarchical Memetic approaches are also compared with ARP

algorithm, as shown in Tables 3.15 and 3.16. For the small size circuits, the results

produced by the Memetic approaches are close to or even better than those of

ARP methods. For the medium and large size circuits, both flat and hierarchical

Memetic approaches can not produce competitive results. The computation time of

Memetic algorithms are much higher than ARP methods. The results comparison

indicates that although Memetic algorithms are a powerful algorithmic paradigm

for evolutionary computing, the Memetic algorithm presented in this thesis still

need to be improved for larger size circuits.

3.6 Summary

In this Chapter, several constructive techniques for circuit placement were intro-

duced and compared. Both flat and hierarchical approaches were used to find the

effectiveness of these approaches. Most solutions obtained by the ARP algorithm

and Partitioning based algorithm are superior to those obtained by the ClusterSeed

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 86

Performance Comparison (Flat Level)
Bench ARP Memetic GA
Mark X+Y Time X+Y Time

Fract 33928 2.0 34953 31.1
Prim1 840792 27.4 1.00e+06 467.8
Struct 447726 36.8 460289 600.7

Avg 4.41e+05 22.0 4.98e+05 366.5

Ind1 1.67e+06 138.8 2.14e+06 1806.0
Prim2 4.20e+06 118.5 5.47e+06 1451.5
Bio 2.31e+06 172.4 3.12e+06 2492.7

Avg 2.73e+06 143.2 3.58e+06 1916.3

Ind2 2.01e+07 729.6 2.78e+07 6522.6
Ind3 5.09e+07 857.3 9.31e+07 11405.4

avq.small 9.65e+06 1219.4 2.02e+07 10130.6
avq.large 1.10e+07 2144.6 2.27e+07 12387.4

Avg 3.06e+07 1237.2 4.10e+07 10111.0

Table 3.15: Results Comparison of Different Approaches (flat level)

Performance Comparison (clustering level-3)
Bench ARP Memetic GA
Mark X+Y Time X+Y Time

Fract 38492 3.4 34627 22.9
Prim1 1.36e+06 40.8 964815 438.2
Struct 491072 48.0 464454 544.8

Avg 6.30e+05 30.7 4.88e+05 335.2

Ind1 1.69e+06 156.4 1.97e+06 1318.4
Prim2 4.45e+06 154.0 5.31e+06 1286.9
Bio 2.63e+06 253.5 2.77e+06 2157.9

Avg 2.92e+06 187.6 3.35e+07 1587.1

Ind2 2.16e+07 802.2 3.10e+07 5420.7
Ind3 5.04e+07 894.3 8.06e+07 7521.4

avq.small 7.12e+06 1052.8 1.35e+07 9711.6
avq.large 7.85e+06 1119.3 1.60e+07 11060.4

Avg 2.18e+07 969.0 3.52e+07 8428.0

Table 3.16: Results Comparison of Different Approaches (Clustering Level-3)

CHAPTER 3. MATHEMATICAL/HEURISTIC BASED APPROACHES 87

based algorithm and Random placement. By using the multi-level clustering tech-

nique, the computation time of the ARP algorithm which produces the best results

was reduced significantly by 85%. By performing the iterative improvement on the

initial placement solution at clustering level-3, the quality of the results produced

by Partitioning based placement was close to those produced by the ARP algorithm

in less time.

An evolutionary based algorithm (GA) was developed to explore the solution

space more effectively. By injecting the high quality solutions into the initial popu-

lation, the convergence rate of the pure GA was dramatically increased. In order to

improve the final local tuning capability of a pure GA, a Memetic Algorithm that

combines global and local search (by using GA to perform exploration while the

local search performs exploitation) was presented. It was shown that this hybrid

search technique is very effective. While the placement quality is improved by the

Memetic algorithm, the computation time is still high, especially for large circuits.

To deal with this problem, a clustering technique was incorporated in the pure

Genetic Algorithm and Memetic Algorithm. As can be seen from the experimen-

tal results, the hierarchical approaches produced the same or even better solutions

than the flat approaches with less computation time.

In Chapter 4 another objective of the placement problem (congestion minimiza-

tion) is introduced and a post processing technique is incorporated into a traditional

wirelength-driven placement algorithm (ARP) to reduce the congestion.

Chapter 4

Congestion-driven Placement

4.1 Introduction

Physical design is a complex process, therefore, it is usually broken down into

various sub-steps in order to handle the complexity of the problem. Inherent in

decomposing any problem is the fact that every time a given subproblem is solved,

some information about relationships/dependencies with other subproblems is lost.

This chapter tackles this problem by simultaneously considering the routing prob-

lem within the placement phase. The merits of performing both processes jointly

seems unquestionable, especially for circuits with millions of transistors. Traditional

placement algorithms mainly focus on minimizing total estimated wire length to

obtain better routability and smaller layout area [AD85, Sun93, Klei91]. However,

a placement with less total wire length but highly congested regions often leads

to routing detours around the region, in turn resulting in a larger routed wire

length [Yang01b]. Congested areas can also downgrade the performance of global

88

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 89

routers, and in the worst case, create an unroutable placement in the fix-die regime

[Cald00]. If congested regions are detected, a new placement of cells in these (and

maybe other) regions is necessary. This can lead to several iterations of the place-

ment phase to get a routable placement. For small designs, such iterations may

be acceptable, but with the growing complexity of chips (i.e. state-of-art chips

have tens of millions of movable objects [Bren02]) routing problems cannot be han-

dled in reasonable time. Therefore, congestion is becoming an important objective.

Although the congestion problem is widely addressed in routing algorithms, the

optimization performance is constrained because the cells are already fixed at the

routing stage. Hence, it is of value to consider routability in the placement stage

where the effort on congestion reduction would be more effective.

In this chapter, the previous work on congestion reduction is introduced in

section 4.2. In section 4.3, a congestion reduction technique is presented and incor-

porated into a placement approach. One of the main contributions of this thesis is

to investigate the effectiveness of flat and hierarchical approaches for congestion-

driven placement. The corresponding results are shown in section 4.4.

4.2 Congestion Based Technique

4.2.1 Congestion Cost

In general, the congestion problem can be modeled as the summation of a linear

[Wang99] or quadratic [Chen94] function of difference between routing demand and

routing supply based on the global bin concept. First, a given chip is partitioned

into a set of rectangular regions, called global bins. The boundaries of global bins

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 90

are called global bin edges. Figure 4.1 shows an example with 16 global bins. For

Global Edges

Global Bins

Figure 4.1: Layout of a Circuit and Global Bins

each global bin edge e, the routing demand de is the number of wires that cross this

boundary; the routing supply se is the number of wires that are allowed to cross

boundary. The difference between routing demand and supply is formally described

as :

overflowe =















de − se if de > se;

0 if de ≤ se.

The total overflow of a placement is defined as the summation of the overflow

for all global edges 1. Thus, a placement with less total overflow is less congested.

The supply of routing resources can be computed from the technology parameters

of the design. The demand for routing resources depends on the placement and

routing solutions. However, fully accurate routing demand is not available until

after detailed routing. Therefore, estimation algorithms are required for congestion

1The amount of total overflow reflects the amount of total shortage of routing resources in the
placement.

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 91

analysis during an earlier phases of the design. Two new congestion estimation

models: a Rent’s rule based model and a probabilistic model were proposed in

[Yang01b, Lou01], respectively.

4.2.2 Previous Work

In the last couple of years several new approaches have been developed in order to

take into consideration congestion during the placement phase. These congestion

reduction techniques can be classified into two types:

• Integrating congestion into a traditional wirelength-based placement

algorithm [Chen94, Meix90, Para98, Hou01, Bren02].

• Performing a post placement processing step to reduce the congestion

[Wang99, Wang00b, Wang00c, Yang01a, Wang00a].

In the rest of this section, a brief survey of the existing major methods of

congestion reduction is provided.

4.2.2.1 Integrated Approach

In [Meix90], a congestion-driven placement based on a multi-partitioning technique

was introduced. It uses pre-determined Stenier trees to model the net topologies,

which accounts for wiring congestion into account. The objective of the algorithm

is to minimize the total number of track segments for the interconnections of all

nets. Usually, the multi-partitioning process is subject to a balance criterion which

admits only those partitions whose partitions satisfy user specified area constraints.

In the proposed approach, the authors not only consider the total amount of cell

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 92

area Aci of each partition, but also account for the wiring area necessary for the

interconnections. One way to accomplish this is to translate the track demand of

each partition Pi into an equivalent wiring area Awi by examining the net topologies

for all nets.

During the partitioning process, the objective can be evaluated using the topology-

matrix T and the concept of a distribution vector of a net (shown in Table 4.1).

Partitions Nets
1 ... n ... N

partition 1 t11 ... t1n ... t1N

. . .
partition 2 ti1 ... tin ... tiN

. . .
partition L tL1 ... tLn ... tLN

Table 4.1: Topology Matrix T

In this table, tin is defined as the number of cells of net n assigned to partition

i. Each row corresponds to one partition, and each column describes the cell dis-

tribution of a net. A distribution vector d is used to represent the cell distribution

of each net in the partition i. For example, the distribution vector d for net n is

defined as follows:

d[i] =















1 if tin > 0;

0 otherwise.

The authors define the nets with
∑L

i=0 d[i] ≥ 2 as global nets, and nets with

∑L
i=0 d[i] = 1 as local nets. For global nets, the interconnections are implemented

as Steiner trees on the partitioning-graph. During the partitioning process, there

may be 2L different distribution vector d[i] occurring, where L is the number of

partitions. In order to accelerate the algorithm, the Stenier trees are calculated

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 93

only once in a preprocessing step. Once the net topology of each net is determined

by the distribution vector, the wiring area Awi of partition i can be derived by

examining the net topologies of all nets. For a global net, all edges of the corre-

sponding Steiner trees are considered. For each local net, the wiring area is assumed

as 0.5 times the half perimeter of the corresponding region. The intra-cell wiring

of all cells assigned to partition i is also considered. The total area of partition i is

defined as:

Ai = Awi + Aci

where Aci is the total cells area of partition i, and Awi is the total wiring area for the

interconnections. An upper and lower bound of the total area is then introduced for

each partition. Keeping the total area of every partition within the upper and lower

bounds gives rise to a better distribution of cells and wiring over the placement area

because a high track demand for a partition leads to a low cell population in a par-

tition and vice versa. A partitioning is said to be accepted if the balance criterion is

satisfied. After each cell-based moving, the corresponding columns of the topology-

matrix, the Steiner trees, and the wiring areas of affected partitions need to be

updated. The experimental results have shown that the number of track segments

is significantly reduced by 16% on average compared to recursive min-cut bisection

and global optimization methods. However, the number of partitions allowed in

this approach has to be restricted because the number of distribution vectors grows

exponentially with the number of partitions and the proposed algorithm is only

tested on five relatively small sea-of-gates designs. Besides, the amount of change

made to the wirelength and computation time used are not mentioned in [Meix90].

In [Chen94], a routability model based on the supply versus demand analysis

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 94

of routing resource over an array of regions on a chip was proposed. The analysis

results produced by this routability model is then transformed into a component

of the cost function of simulated annealing. Initially, every region contains the

same amount of routing supply. Existing wiring of power, clocking nets, regular

cells, and mega cells are considered to be an obstacle to routing. The routing

resource supply decreases when any of these is found in a region. Based on the

equations presented in [Chen94], the real routing supply of each region can be easily

obtained without expensive calculations during the pre-processing. The routing

resource demand model used is based on net bounding box. A special technique

used to handle nets overlapping with mega cells (a cell that is much larger than

any regular cell and has a subset of metal layers fully blocked at current design

level) is also introduced. While the reduction of the congestion clearly highlights

the advantages of the model, the proposed approach discards the extensive research

work on wirelength minimization, and it significantly degrades placement speed.

P.N. Parakh [Para98] proposed a method that drives quadratic placement to

relieve congestion while simultaneously solving for minimal wire length. In this

paper, a placement produced by the quadratic placer is iteratively partitioned into

regions, and placed with new center of gravity constraints. Before each successive

placement, internal route estimation and region-based global route are performed

on each region to estimate the supply-demand ratios. The interplay between rout-

ing analysis and quadratic placement is accomplished by using a growth matrix to

permit global treatment of congestion. The use of growth matrix causes cell posi-

tions to reflect supply-demand ratios of different regions. Resource limited regions

are expanded (or reduced) to account for the wiring demand imposed on them. The

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 95

horizontal ratio is used to stretch the region in the Y direction, while the vertical ra-

tio stretches the region in the X direction. The growth factors disperse cells within

a region and influence other cell positions while permitting the solver to minimize

the objective function. For example, in Figure 4.2(a) a region is deemed vertically

congested according to the horizontal supply-demand ratio. Therefore a vertical

expansion is then performed. After expansion, some internal horizontal nets could

become vertical, thus relieving congestion (as shown in Figure 4.2(b)). If the region

is shrunk horizontal based on the vertical ratio, during the next iteration more nets

from the previous iteration could become vertical, further relieving congestion (as

shown in Figure 4.2(c)). In addition, congestion induced by incorrect pin order-

ing is relieved by relaxing the pin constraints to a single dimension such that the

routing congestion is further reduced.

(b) Vertical Expansion (c)Routes Transformation (a) Horizontal Congestion

congested region

Figure 4.2: Example of Region Growth Relieving Congestion

The performance of the proposed algorithm is tested on the ISCAS-89 bench-

marks [ISCA89] and the experimental results shows up to 20% reductions in average

demand-supply excess. The total route length determined by a global router for all

benchmark circuits is increased by 2.3% on average.

A similar congestion-driven placement algorithm based on cell inflation was pro-

posed in [Hou01]. Instead of expanding the congested regions, it expands the cells

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 96

inside the congested bins such that the congestion is checked and eliminated while

doing the partitioning process. A Star estimation model is adopted to estimate the

routing of each net. For example in Figure 4.3, a five-pin net is first transformed

into a star-model net (shown in Figure 4.3(b)). The route that connects each pin

to the center is estimated. When there are two possible routing paths for a net,

the probabilities that the route go through path A or B are equal. According to

this method, the result of routing estimation is shown in Figure 4.3(c). Finally,

the total number of tracks required of all the global bins that the net has passed

through represents the routing demand of this net.

Pin3

Pin1

Pin2

Pin4

Pin5

(b) Star model

0.5

0.5

0.5

1.5 0.5

1.0

0.5

0.5 0.5

0.5
0.5

1.0

1.51.0 1.0Pin3

Pin1

Pin2

Pin4

Pin5

(a) Five−pin net (c) Routing estimation of the five−pin net

Figure 4.3: Routing Estimation Model

In the routing estimation and congested bin detecting stage, the real area of the

cell is used. After the congested bins are identified, the cells in the congested bins

are expanded. In next partitioning loop, during which the expanded virtual areas

of cells are used, some cells located in the congested bins will be forced to move to

other bins because of the area-balance rule. As a result, the number of cells located

in the congested bins will decrease. In general, a bin with less cells will have fewer

nets to be passed through and therefore the congestion will be reduced. After the

global placement, a cell based moving is performed to erase the routing congestion

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 97

more deeply. An example for cell inflation is shown in Figure 4.4. There are four

cells and five nets in the top-left congested bin A and the areas of the four cells

located in bin A are expanded. After next partition loop, due to area balance, cell

C is forced to move to bin B. As a result, there are only three cells and four nets

in bin A. Thus, the routing resource supply increases while the routing demand

decreases, as shown in Figure 4.4(b).

C

C

(b) After cell Inflation(a) Before cell Inflation

bin B

congested bin A congested bin A

bin B

Figure 4.4: Cell Inflation Example

The performance of the proposed approach is tested on a set of sample circuits

from American industry. The experimental results show that the maximum con-

gestion (the number of track shortage in the most congested bin at both x and

y directions) can be cut down by about 30-40%, while the total wirelength in-

creased slightly (there is no detail numerical results of total wirelength increasing

reported). Besides, the run time of the presented approach is doubled compared

with the conventional wirelength-driven partitioning placement approach.

In ISPD’02, U. Brenner [Bren02] and his colleague presented a fast but reliable

method to estimate the congestion in a region at the global placement stage and

incorporated this congestion estimation model into a partitioning based placement

algorithm. The proposed congestion estimator is a simplified probabilistic region

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 98

global router. Based on this router, in the first placement run, the congested regions

are found and the cells inside these congested regions are inflated. The inflation rate

of each cell is updated according to the congestion estimation of the region that the

cell is currently placed in. Following that, a repartitioning method is performed on

the congested regions to move cells out of regions that are too full (with respect to

the inflated cell size). In this process, only the congested regions that are too full but

have neighboring regions with some free capacity are considered. For each selected

region, a repartitioning subroutine is called to compute a new partitioning positions

for the cells in this region. The new partitioning is accepted if the overcrowding

is reduced. This repartitioning process is performed repeatedly as long as it yields

a reasonable improvement on the wirelength. The presented algorithm is tested

on five benchmark circuits from IBM Microelectronics. Experimental results show

that the usage of the most critical routing edges is reduced by 9.0% on average

and the bounding box netlength is increased by 8.5%. Although the CPU-time for

placement increased by 8.7% the total CPU-time for placement and global routing

is decreased by about 47%.

4.2.2.2 Post-processing Approach

In practice, combining a global router and placer is an effective way to improve

routability, but researchers keep studying other efficient approaches to handle the

increasing design size.

In a recent study [Wang99, Wang00b], the behavior of congestion minimization

in placement was analyzed from both theoretical and experimental perspectives. In

these papers, the authors first pointed out that congestion minimization and wire-

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 99

length minimization correlate with each other in a global view but conflict each

other in local regions. According to this relationship, they further proposed a two

stage process to reduce the congestion in a layout, where the wirelength driven

global placement (which can also reduce the congestion globally) is performed ini-

tially. A post-processing stage is then used to reduce local congested spots. They

found that the congestion objective function is very ill behaved and therefore, di-

rectly using it will not produce low congestion placement. By incorporating a more

sensitive congestion objective function, called “overflow with look-ahead” into a

Net-centric algorithm at the post-processing stage, the congestion of eight MCNC

standard-cell benchmark circuits was reduced by 36.9% on average. Nevertheless,

this method need to use the same routing model in the placement as the model

used in the final routing stage.

While congestion was reduced significantly by using the technique presented in

[Wang99, Wang00b], the wirelength was also increased by 5-10%. The increase in

wirelength implies that placement is changed. This change may result in viola-

tions to other performance constraints (i.e timing and couplings) which are hard

to achieve. However, since much of performance constraints including timing and

coupling are locally stable, there will be no violations in the constraints as long as

the change in the placement is bounded locally. In [Wang00c], a heuristic method,

named “Multi-Center Congestion Reduction” was proposed for congestion mini-

mization with minimal change in placement. This method also belongs to a post-

processing congestion reduction technique. During the post-processing stage, a

normal distribution is utilized to approximate the actual congestion. The tool then

derives an equation from the normal distribution to estimate the amount of con-

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 100

gestion on a layout. Each congested spot is then identified by finding a minimum

bounding rectangular region of a set of connected congested bins. Next, the con-

gestion reduction regions are formed by using each congested spot as a center to

expand. The technique is based on a scheme called “flexible expansion scheme”

which can decrease congestion while keeping placement unchanged as much as pos-

sible. Figure 4.5 illustrates the expansion scheme. The current congested region

Expand to right

Expand downward

Expand upward

Expand to left

Current region

New region

Figure 4.5: Example of Region Expansion

is first expanded in four possible ways: up, down, left and right. The routability

of the four newly expanded regions are evaluated and the one with best estimated

routability is picked as the new region. The procedure is repeated until the es-

timated routability of the new region is better than an expected value. If the

routability of the new region is worse than that of the original region or the new

region occupies the whole layout area the technique is invoked again. Finally, a

random greedy method [Wang99] is performed within each expanded congestion

reduction region to relieve the congestion. The experimental results based on the

MCNC standard-cell benchmark circuits show that this algorithm can reduce con-

gestion by 41% (almost by the same amount as in [Wang99]) and increase the

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 101

wirelength by only 1.8% on average.

Although it is reported in [Wang99, Wang00c, Wang00b] that the post-processing

technique is more efficient than directly minimizing congestion, reducing congestion

after a wirelength placement is a non-trivial problem. Traditionally, some perturba-

tion is performed on an existing placement within a window around the congested

spots [Wang00c, Tsay92]. Local improvement within small windows has limited ef-

fect, whereas expanding search windows may cause interactions between congested

areas, making the optimization results unpredictable. To identify a combination of

expansion scheme for all the congested regions such that the maximum congestion

over the core area is minimized, a novel, integer linear programming based tech-

nique is introduced in [Yang01a]. Based on the bounding box routing estimation

model, one congested region is represented by a minimum bounding rectangular re-

gion of a set of connected congested bins. As indicated in [Yang01a], the congestion

reduction should be performed within a larger region than the congested region be-

cause of the larger solution space. However, a larger expansion area requires longer

running time and increases the likelihood of the overlap regions, which may cause

unexpected new congested regions (as shown in Figure 4.6(a)). Hence, all the con-

gested regions are expanded by using an ILP based double expansion technique

which can find the expansion range for each congested region to avoid the regions

overlap. This is accomplished by assigning two expansion areas (as seen in Figure

4.6(b)) for each region, transforming the expansion area selection problem (choose

the larger expansion area or smaller one) into an integer programming problem,

and then solving the ILP problem. Once the expansion areas are determined, a

local improvement based on cell swapping is performed for each expansion area to

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 102

reduce the congestion.

Possibly new
congested areas

Smaller expansion area

Congested region k

Larger expansion area

Expansion areas

Congested regions

(a) Overlaps between expansion areas (b) Two expansion areas for a congested region

Figure 4.6: Expansion Area Overlaps and Double Expansion Scheme

The experimental circuits are chosen from IBM-PLACE benchmarks [IP] and

the results show that the total overflow is considerably reduced after global routing.

For the best case among all the results, the total overflow of the circuit turns to

zero by congestion reduction. As for the total routed wirelength, almost all the

circuits have shorter wire-lengths after congestion reduction. The decrease in routed

wirelength is about 3.6% on average. In addition, the short amount of running time

illustrates that the method can scale well for large circuits.

In the next section, a congestion-driven placement approach is presented, based

on the post-processing technique. Both flat and hierarchical approaches are used

to find the effectiveness of these approaches.

4.3 Proposed Congestion Reduction Approach

The congestion-driven placement method (as shown in Figure 4.7) proposed in this

thesis is based on incorporating the congestion reduction technique into a hierarchi-

cal placement algorithm. The clustering technique used in the hierarchical place-

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 103

ment algorithm is same as the technique previously introduced in Chapter 3. In

[Wang99], M. Wang and his colleagues pointed out that a post-processing technique

minimizes congestion effectively because the congestion correlates with wirelength

in a global view. Therefore, the congestion reduction of the proposed congestion-

driven placement method is done in a post-placement-optimization process. To

demonstrate the effectiveness of the proposed congestion reduction method, both

flat and hierarchical approaches are implemented.

Congestion Reduction

Routing Estimation

Congested Region

Expanding

Congestion Reduction

Identification

Congested Region

Module Description
and Netlist

Multi−Level Clustering

Wirelength Minimization

Valid Coordinates for

Each Standard−Cell

De−Clustering

Figure 4.7: Congestion-driven Hierarchical Placement

For the flat approach, the placement input of the congestion reduction is pro-

duced by a quadratic placer ARP [Etaw99a] followed by an iterative improvement

approach. The congestion reduction technique (presented in section 4.3.1) is then

performed to further optimize the routability of the placement solution. As for the

hierarchical approach, the algorithm starts by performing the multi-level clustering

technique on the flat layout to group the highly connected cells gradually and thus

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 104

reduce the complexity of the circuit. At the highest level of the hierarchy, similar to

the flat approach, a good quadratic placement algorithm (ARP) is then performed

followed by an iterative improvement algorithm to optimize the total estimated

wirelength as well as the average congestion. Ultimately, a congestion reduction

technique is invoked to further reduce the local congestion.

4.3.1 Congestion Reduction in Placement

During the congestion reduction stage, the core area of the chip is divided into m×n

grids (also called global bins). For standard-cell designs, n is set to the number of

standard-cell rows; m is set so that the average number of cells per global bin is

less than 3.

The routing supply is determined as follows: initially the placement without

congestion reduction is run and the routing demand is estimated by the bounding

box router (introduced later in this section). Based on the estimated routing de-

mand, the routing capacities of the global bin edges is then set such that certain

amount of overflow is generated.

Routing Estimation

In order to evaluate the congestion during placement, a fast and accurate routing

estimation is required. In the traditional routing estimation models, the minimum

spanning tree model is the most accurate but also the most computationally ex-

pensive. The bounding box model requires the least computation for updating but

generates reasonable estimation. Therefore, in this thesis a bounding box model

used in [Chen94] is considered.

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 105

(k)
ij,hC

C (k)
ij,v

b(i,j)

(k)
ij,hC

height
bounding box

(k)C

net K

bounding box width

ij,v

Figure 4.8: Bounding Box Routing Estimation Model

As illustrated in Figure 4.8, for each global bin b(i, j) at column i and row

j, the number of horizontal wire crossings on its right edge by net K is repre-

sented as Ck
ij,h. Similarly, the number of vertical wire crossings on its bottom

edge by net k is represented as Ck
ij,v. The bounding box of net K is described by

xmin(k), xmax(k), ymin(k), ymax(k). Based on the probability of having a wire

within a global bin covered by the bounding box of net K, the Ck
ij,h and Ck

ij,v are

computed as follows:

Ck
ij,h =















q(k)
ymax(k)−ymin(k)+1

xmin(k) ≤ i < xmax(k); ymin(k) ≤ j ≤ ymax(k)

0 otherwise

Ck
ij,v =















q(k)
xmax(k)−xmin(k)+1

xmin(k) ≤ i ≤ xmax(k); ymin(k) ≤ j < ymax(k)

0 otherwise

where q(k) is a compensation factor adopted from [Chen94]. The existence of

q(k) is based on the fact that the bounding box wirelength model under-estimates

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 106

the actual wiring for nets with more than three terminals. Its value depends on the

number of terminals of net k. For 2-terminal or 3-terminal nets, q is 1 and slowly

increases to 2.79 for nets with 50 terminals. This bounding box model approximates

the routing demand efficiently even though it over-estimates routing demand near

the boundaries of a net bounding box.

According to the routing estimation for each net, the total estimated routing

demand for the right and bottom edge of each global bin b(i, j) can be described

as :

Cij,h =
N

∑

k=1

Ck
ij,h

Cij,v =
N

∑

k=1

Ck
ij,v

The number of tracks for vertical and horizontal global bin edges is represented

as Caph and Capv. For bin(i, j), the overflow of the right edge OFij,h is max(Cij,h−

Caph, 0), and the overflow of the bottom edge OFij,v is max(Cij,v − Capv, 0). The

congestion cost function of the design is modeled by a combination of wirelength

(represented by routing demand) and quadratic function of overflow. Based on this

congestion cost function, the solution generated by the congestion reduction tech-

nique is accepted if the over crowding is reduced, even if the wirelength gets worse

slightly. The horizontal congestion CONGcostv and vertical congestion CONGcostv

are:

CONGcosth =
m−1
∑

i=1

n
∑

j=1

(Cij,h +OF 2
ij,h)

CONGcostv =
m

∑

i=1

n−1
∑

j=1

(Cij,v +OF 2
ij,v)

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 107

The total congestion cost CONGCost is the sum of CONGcosth and CONGcostv .

In addition, the total overflow OF of the layout is the sum of overflow over all the

global bin edges:

OF =
m−1
∑

i=1

n
∑

j=1

OFij,h +
m

∑

i=1

n−1
∑

j=1

OFij,v

Identification of Congested Regions

A global bin is congested if one of its four global edges is congested. The congested

region identification is accomplished by picking a congested global bin as the seed,

checking the neighborhood bins and including the congested bins into the current

congested region. The minimum rectangle that contains these congested bins is

considered as one congested region. A new seed is then picked to form the next

congested region. Since a large congested region may degrade the effect of the

congestion reduction within its range, a maximum number of congested bins in one

congested region is set to prevent forming too large congested regions. Figure 4.9

shows an example of congested region identification.

bin(i,j)

congested

congested region 3

bin(2,3)

congested region 2

 (a) neighbood bins (b) total congested regions

congested
bin(0,0)

congested region 1

neighborhood
bins

Figure 4.9: Congested Region Identification

Initially, a set of neighborhood bins (shown in Figure 4.9(a)) around the first

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 108

selected congested bin b(0, 0) are checked. The congested bins within this neighbor-

hood are then included into this congested region. Once the first congested region

is identified, the algorithm proceeds by picking the next unselected congested bin

(i.e. b(2, 3)) as a new seed and forming next congested region. Finally, the total

three congested regions are found (as shown in Figure 4.9(b)). A pseudo code for

the identification of congested regions is shown in Figure 4.10.

Indentify Congested Regions
1. set i=0, j=0;
2. FOR each global bin i

IF (bini congested and distinct)
Add(bini, regionj);
FOR all the neighboring bins of bin i
IF (congested and distinct)
Add(bini, regionj);

END FOR
END IF
i++ and j++;
END FOR

3. Repeat all the congested regions.
4. Stop.

Figure 4.10: Identify the Congested Regions

.

Congested Region Expansion

For a single congested region, the larger the expansion area is, the better the opti-

mization result can be obtained due to the larger solution space [Yang01a]. How-

ever, the expansions of multiple congested regions may lead to region overlaps and

thus generate new congested regions. In this thesis, a congested region is expanded

in four possible ways: up, down, left and right. For the vertical region expansion

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 109

(up and down), the region has one more row of global bins; For the horizontal

expansion (left and right), the region has one more column of global bins. (an

example is shown in Figure 4.11).

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�
�

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����

�
�

�
�

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�������
�������
�������
�������
�������

�����
�����
�����
�����
�����

�������
�������
�������
�������
�������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����

original congested region

expansion area

Figure 4.11: Congested Region Expansion

Congestion Reduction

Once the congested regions are determined, a congestion optimization process based

on a greedy cell-swapping is then performed in each region. The main objective

of the heuristic is to reduce the congestion effectively and make as few modifi-

cation (perturbation) as possible. A candidate cell is randomly chosen from an

un-expanded congested region and another is picked from the expansion area. This

pair of selected cells are then swapped and the routing estimation is re-evaluated.

The swap will be accepted if the total congestion cost in the chip area is lower after

swapping, otherwise it is rejected. After each swapping process, the cell overlaps

are removed. The algorithm stops when a certain number of iterations is reached

and the row lengths are adjusted before the termination.

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 110

4.4 Experimental Results

In this thesis, the quality of the congestion reduction method is measured by the

overflow based on the bounding box routing. Benchmarks used to evaluate the

performance of congestion-driven placement will be based on those presented in

Chapter2.

Since all the results shown in the literature are based on the flat level place-

ment, one of the main objectives of this thesis is to identify if the post-processing

congestion reduction approach can be extended to multi-level clustering.

4.4.1 Flat Level Placement with Congestion Reduction

Circuits Cells Nets Grids #c/bin V/H Cap

Fract 125 147 6x9 2.3 6/6
Prim1 752 904 16x21 2.2 11/10
Struct 1888 1920 21x32 2.8 8/7

Ind1 2271 2478 15x54 2.8 19/7
Prim2 2907 3029 28x49 2.1 16/13
Bio 6417 5742 46x60 2.3 11/10

Ind2 12142 13419 72x76 2.2 17/20
Ind3 15059 21940 54x111 2.5 27/20

avq.small 21854 22124 80x114 2.4 12/10
avq.large 23114 25384 86x120 2.2 12/10

Table 4.2: Tested Circuit Statistics

This section shows the performance of the congestion-driven placement at the

flat level. Table 4.2 shows the statistic information for all the test circuits. The

third column “Grids” shows the number of rows and columns of global bins for

each circuit. The fourth column “#c/bin” shows the average number of cells in each

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 111

global bin. The last column of this table gives the vertical/horizontal capacities used

in the bounding box routing. For each circuit, the vertical/horizontal capacities

are intentionally adjusted so that a layout with certain amount of overflow can be

achieved.

Table 4.3 illustrates the effect of congestion reduction as a post-processing after

a high-quality wirelength-driven placement (ARP+Tile). The first three columns

of this table present the overflow, total wirelength and running time of the place-

ment without congestion reduction, while the remaining columns present the same

information of the placement with congestion reduction. The percentage of over-

flow and wirelength improvement produced by congestion reduction method are

also shown. For different size of circuits, the average improvement on the overflow

and wirelength are shown in row “Ave-Imp”. The last row “T-Imp” shows the

overall improvement on the overflow and wirelength. As can be seen, after con-

gestion reduction the total overflow of most circuits are reduced largely by 51%

on average. As of total bounding box wirelength, all the circuits have a longer

wirelength after congestion reduction. The wirelength increasing rate is about 3%

on average. This indicates that the high quality placement solution generated by

the wirelength-driven placer (ARP+Tile) is degraded slightly due to the reduc-

tion of overflow. Figure 4.12 summarizes the improvement on the congestion and

wirelength for medium and large size circuits.

Finally, the computation time of the congestion-driven placement is increased

largely compared with the wirelength-driven placement. This fact suggests that a

more efficient congestion reduction method is needed when using the post processing

technique to reduce the congestion.

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 112

Congestion Estimation After ARP+Tile Placement (flat level)

Bench Without Congestion Reduction With Congestion Reduction
Marks OF Wire Time OF Imp% Wire Imp% Time

Fract 10.43 33928 1.8 3.4 66.04% 36534 -8% 2.0
Prim1 6.63 840792 27.3 2.02 69.50% 862097 -2.5% 28.1
Struct 21.10 447726 37.1 13.06 38.08% 457590 -2.2% 41.8

Ave-Imp - - 58% - -4.23% -9%
Ind1 58.07 1.66+6 137.1 18.80 67.62% 1.68+6 -1.2% 148.9

Prim2 224.48 4.20+6 116.2 162.86 27.45% 4.28+6 -1.9% 149.9
Bio 105.73 2.31+6 266.2 58.68 44.50% 2.34+6 -1.3% 427.8

Ave-Imp - - 46% - -1.47% -40%
Ind2 196.18 2.01+7 720.4 104.06 46.96% 2.04+7 -1.5% 1601.4
Ind3 4733.54 5.09+7 900.1 3300.16 30.28% 5.33+7 -4.7% 2001.3

avq.small 446.08 9.65+6 1350.2 187.60 57.94% 9.77+6 -1.2% 3948.4
avq.large 322.92 1.10+7 1464.6 138.52 57.10% 1.12+7 -1.8% 3248.9
Ave-Imp - - 48.07% - -2.3% -144%
T-Imp - - 51% - -3% -64%

Table 4.3: Congestion Reduction After ARP+Tile Placement

0 100 200 300 400 500

Ind1

Prim2

Bio

Ind2

Avq.s

Avq.l

Congestion Reduction after ARP+Tile Placement

Total Overflow

D
iff

er
en

t C
irc

ui
ts

with congestion
without congestion

0 5 10 15 20 25

Ind1

Prim2

Bio

Ind2

Avq.s

Avq.l

Congestion Reduction after ARP+Tile Placement

Total Wirelength

D
iff

er
en

t C
irc

ui
ts

with congestion
without congestion

Figure 4.12: Congestion Reduction After ARP+Tile Placement

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 113

Table 4.4 lists the distribution of congested regions in 4 quadrants of each bench

mark. Columns “L-B”,“L-T”,“R-B”and “R-T” show the number of congested re-

gions in left-bottom, left-top, right-bottom and right-top regions. The last column

“cong reg Imp” illustrates the improvement on the number of congested regions

respectively. Comparing this table with Table 4.3, we can see that the congested

regions for almost all the test circuits are decreased after performing congestion re-

duction. For circuit Prim2 and Ind3, there is an increase in the number of congested

regions but the total overflow of these two circuits is decreased. This indicates that

although the congested regions of these circuits are increased the average overflow

of each congested region is decreased and therefore the total overflow is decreased.

Bench Before Congestion Reduction After Congestion Reduction cong
Marks Total Reg Distribution Total Reg Distribution Reg

Regions L-B L-T R-B R-T Regions L-B L-T R-B R-T Imp
Fract 3 1 1 0 1 3 1 1 0 1 0%
Prim1 3 1 1 1 0 2 2 0 0 0 33%
Struct 17 1 2 7 7 14 1 2 5 6 18%

Ind1 25 9 6 5 5 21 9 5 2 5 16%
Prim2 37 16 13 0 8 38 16 15 1 6 -3%
Bio 57 4 18 0 35 41 4 16 0 21 28%

Ind2 78 5 0 10 63 70 6 0 8 56 10%
Ind3 276 85 85 79 27 296 101 90 86 19 -7%

avq.small 200 53 14 89 44 145 39 7 73 26 28%
avq.large 129 46 17 50 16 108 45 13 41 9 16%

Table 4.4: Distribution of Congested Regions After ARP+Tile Placement

Table 4.5 is similar to table 4.3, except that the input of the congestion reduction

is not a high quality placement but a pure ARP placement. Comparing this table

with Table 4.3, it can be seen that the initial overflow (i.e. without congestion

reduction) of the high quality placement (ARP+Tile) is much less than that of

a lower quality wirelength-driven placement (ARP). This clearly indicates that a

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 114

Congestion Estimation After ARP Placement (flat level)

Bench Without Congestion Reduction With Congestion Reduction
Marks OF Wire Time OF Imp% Wire Imp% Time

Fract 14.69 45211 0.8 8.6 45.49% 45070.5 0.3% 1.0
Prim1 105.78 1.13+6 18.3 34.94 66.76% 1.13+6 0% 29.1
Struct 673.21 706165 16.4 297.25 55.84% 680721 3.6% 23.9

Ave-Imp - - 56.03% - 1.3% -
Ind1 1338.25 2.15+6 89.1 555.04 58.46% 2.16+6 -0.4% 96.1

Prim2 1010.17 5.88+6 104.2 500.65 50.54% 5.89+6 -0.2% 121.2
Bio 679.61 3.06+6 151.6 653.06 77.66% 2.97+6 3% 359.2

Ave-Imp - - 62.00% - 0.8% -
Ind2 3871.33 2.71+7 790.4 1244.43 67.86% 2.63+7 3% 2047.4
Ind3 11259.82 6.90+7 1159 4522.86 59.31% 6.90+7 0% 4071,5

avq.small 902.96 1.36+7 1827 181.38 79.90% 1.31+7 3.7% 2973.6
avq.large 801.00 1.64+7 2256 162.17 79.76% 1.54+7 6% 3085.4
Ave-Imp - - 71.61% - 3.1% -

Table 4.5: Congestion Reduction After ARP Placment

good wirelength-driven placer can optimize the wirelength as well as the average

congestion at the same time. Hence, it is reasonable to say that a two stage process

for congestion reduction is very useful. In the first stage, the total wirelength and

average congestion is minimized by a wirelength objective function. In the second

stage, the local congestion is further minimized by a congestion-based objective

function.

4.4.2 Hierarchical Placement with Congestion Reduction

In this section the performance of the Congestion-driven hierarchical placement is

presented. (Table 4.6 shows the statistic information for all the test circuits).

Table 4.7 lists the congestion results after performing the congestion reduction

technique as a post processing at top level of the hierarchy. Table 4.8 is similar

to Table 4.7 except that congestion reduction is performed at all levels of the

hierarchy. The first column “without CR” shows the initial overflow, wirelength and

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 115

Circuits Cells Nets Grids #c/bin V/H Cap

Fract 125 147 6x9 2.3 5/5
Prim1 752 904 16x21 2.2 9/8
Struct 1888 1920 21x32 2.8 7/6

Ind1 2271 2478 15x54 2.8 17/5
Prim2 2907 3029 28x49 2.1 14/11
Bio 6417 5742 46x60 2.3 10/9

Ind2 12142 13419 72x76 2.2 16/19
Ind3 15059 21940 54x111 2.5 26/19

avq.small 21854 22124 80x114 2.4 10/7
avq.large 23114 25384 86x120 2.2 10/8

Table 4.6: Tested Circuit Statistics

computation time of the placement. These results are obtained by only performing

the wirelength-based placement and then estimating the congestion of the solution

based on a fixed global bin structure and routing capacities. The second column

“with CR” presents the final placement results with congestion reduction. The

overflow of the final placement with congestion reduction is evaluated based on the

same global bin structure and routing capacities used in column “without CR”.

Congestion Reduction Only at Cluatering level-3
Bench Without CR With CR (final results)
Marks OF Wire Time OF Imp% Wire Imp% Time
Fract 29.36 41850 1.6 45.51 -55% 41913.5 -0.1% 2.4
Prim1 177.94 1.02+6 29.2 280.59 -58% 1.08+6 -6% 38.9
Struct 297.29 470867 37.9 288.38 3% 494952 -5% 61.0

Ind1 435.56 1.83+6 163.9 415.49 5% 1.80+6 -2% 242.1
Prim2 540.63 4.42+6 113.7 737.55 -36% 4.39+6 1% 276.9
Bio 2269.21 2.66+6 234.1 2397.45 -6% 2.70+6 -2% 892.0

Ind2 3228.87 2.13+7 902.8 3413.19 -6% 2.16+7 -1% 2917.7
Ind3 3085.23 5.06+7 953.9 9636.09 -212% 5.29+7 -5% 6043.5

avq.small 499.04 7.02+6 1316.4 746.91 -49% 7.40+6 -5% 5809.2
avq.large 692.08 7.90+6 1503.0 823.14 -16% 8.02+6 -2% 6523.5

Table 4.7: Congestion Reduction Only at Clustering Level-3

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 116

Congestion Reduction at All Clustering Levels
Bench Without CR With CR (final results)
Marks OF Wire Time OF Imp% Wire Imp% Time
Fract 29.36 41850 1.6 60.71 -107% 43399.5 -4% 6.3
Prim1 177.94 1.02+6 29.2 365.11 -105% 1.12+6 -10% 105.9
Struct 297.29 470867 37.9 384.23 -29% 498397 -6% 203.3

Ind1 435.56 1.83+6 163.9 489.87 -12% 1.81+6 1% 709.1
Prim2 540.63 4.42+6 113.7 865.68 -60% 4.50+6 -2% 1116.9
Bio 2269.21 2.66+6 234.1 2438.48 -7% 2.72+6 -2% 4600.0

Ind2 3228.87 2.13+7 902.8 3515.35 -9% 2.15+7 -1% 11291
Ind3 3085.23 5.06+7 953.9 14022.30 -354% 5.36+7 -6% 18268

avq.small 499.04 7.02+6 1316.4 805.37 -61% 7.60+6 -8% 21856
avq.large 692.08 7.90+6 1503.0 953.03 -38% 8.52+6 -8 % 26599

Table 4.8: Congestion Reduction at All Clustering Levels

Results clearly indicate that using a post processing technique for congestion

reduction in a hierarchical design deteriorates the overflow in the circuit compared

to a pure wirelength driven placement. The deterioration of the congestion-driven

hierarchical placement quality can be due to the following reasons:

(1) In the congestion reduction process, the overflow of the placement solution

partially depends on the given routing supply. In the flat level placement the

routing supply is set only once. Based on this routing supply, the congestion

reduction process is performed and the final solution is evaluated. However, in

the hierarchical placement, the routing supply has to be set several times. At

the beginning, we need to set a routing supply to evaluate the initial conges-

tion of the pure wirelength-driven placement solution. This routing supply is

also used to evaluate the final solution produced by congestion-driven place-

ment. During the congestion-driven hierarchical placement process, at each

clustering level the routing supply has to be determined for the congestion

reduction. Therefore, the means to decide the routing supply of each cluster-

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 117

ing level properly is critical for the congestion reduction of the hierarchical

placement. In the presented approach, the routing supply of different cluster-

ing level is only related to the actual average routing demand of the circuit at

that level. There is no relationship between the routing capacities set at each

level and routing capacities used for final evaluation. This could give rise to

mismatch of different routing capacities used at different clustering levels and

finally lead to poor results.

(2) Incorporating a post processing technique into the hierarchical placement

may not be an effective way to reduce the congestion. When performing the

congestion reduction as a post processing only at the top clustering level,

the high quality solution produced by the wirelength-driven placement algo-

rithms could be deteriorated to achieve the congestion gain. Since the quality

of the solution at the highest level is mostly a factor of the improvement

heuristic quality, a solution with lower wirelength quality at the top level

will eventually lead to poor final wirelength solution. According to the ex-

perimental results shown in section 4.4.1, a placement solution with lower

wirelength quality will definitely have more congested regions compared with

a high quality solution. As a result, the overflow of the a placement produced

by the proposed congestion-driven hierarchical placement approach could be

worse than that of a pure wirelength-driven hierarchical placement. Based

on the above analysis, the more the congestion reduction is involved in the

hierarchical placement (i.e performing congestion reduction at all the clus-

tering levels), the higher the overflow has. This is due to the fact that the

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 118

wirelength solution at each clustering level will be destroyed by the succeed-

ing congestion reduction method and finally generate very poor wirelength

and congestion solution. This can be verified by comparing the experimental

results shown in Table 4.7 and Table 4.8. The overflow and wirelength of all

testing benchmarks illustrated in Table 4.8 (where the congestion reduction

is implemented at all clustering levels, except the flat level) is much higher

than that of Table 4.7, where the reduction is only applied to the highest

clustering level.

In order to further investigate the problem, another experiment is considered

and the results are shown in Table 4.9. In this setup, the congestion reduc-

tion is performed after the hierarchical wirelength-driven placement and it

is clear that the congestion of all the test circuits is improved. On average

the improvement is about 37% and the wirelength is increased by about 3%.

This indicates that applying the post processing technique after hierarchi-

cal wirelength minimization stage the congestion can be reduced effectively.

On the other hand if the post processing technique is incorporated into the

hierarchical placement process, the interplay between the wirelength-driven

placement algorithm and the congestion reduction technique will degrade the

contribution of these two method and ultimately result in poor solution.

4.5 Summary

The most typical placement objectives involves wirelength minimization or net-

cut reduction. However, as technology advances, the issue of reducing excessive

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 119

Congestion Estimation After ARP Placement (clustering depth:3)
Bench Without CR With CR (after ARP+clustering)
Marks OF Wire Time OF Imp% Wire Imp% Time
Fract 29.36 41850 1.6 15.79 46.20% 43219 -4% 1.7
Prim1 177.94 1.02+6 29.2 88.36 50.35% 1.04+6 -3% 34.7
Struct 297.29 470867 37.9 182.25 38.69% 495144 -5% 60.6

Ave-Imp - - 45.08% - -4% -41%
Ind1 435.56 1.83+6 163.9 267.03 38.69% 1.84+6 -1% 207.7

Prim2 540.63 4.42+6 113.7 418.09 22.67% 4.50+6 -2% 194.7
Bio 2269.21 2.66+6 234.1 1954.66 23.01% 2.81+6 -6% 1252.2

Ave-Imp - - 28.08% - -3% -194%
Ind2 3228.87 2.13+7 902.8 2846.07 11.86% 2.18+7 -2% 2092
Ind3 3085.23 5.06+7 953.9 2024.16 34.39% 5.22+7 -3% 2795.1

avq.small 499.04 7.02+6 1316.4 252.12 49.48% 7.13+6 -2% 3096.9
avq.large 692.08 7.90+6 1503.0 350.82 49.31% 8.08+6 -2% 3540.4
Ave-Imp - - 39.32% - -2% -147%
T-Imp - - 37.49% - -3% -127%

Table 4.9: Congestion Reduction after Hierarchical Placement

congestion in local regions such that the router can finish the routing successfully

is becoming an important problem. Congestion minimization is widely addressed

in routing algorithms. But the quality of a routing solution is largely determined

by the input placement. Thus, considering routability in the placement stage would

be more effective than that in the routing state.

The existing congestion reduction approaches can be classified into two types.

In the first type, congestion reduction is done in detailed placement or in a post-

optimization process, while in the second type methods, the goal of congestion

reduction is incorporated into the traditional wirelength minimization process. In

this chapter, a post-processing congestion reduction technique is implemented and

incorporated into the flat and hierarchical placement. Results of flat approach ob-

tained show that this technique can reduce the congestion effectively by about 51%

on average with a small increase of the wirelength. For the hierarchical approach it

seems to be more beneficial to incorporate the congestion driven placement phase

CHAPTER 4. CONGESTION-DRIVEN PLACEMENT 120

at the flat level rather than within the levels of hierarchy. Results obtained show

that on average an improvement of 37% can be achieved.

Chapter 5

Conclusions

As the fabrication technologies move to sub-micron design rules, the interconnect

is not scaling at the same rate as the device, and thus the interconnect delay

starts to dominate the gate delay. The most important implication of increasing

interconnect delay is that the relative location of devices is becoming critical. In

other words, circuit placement that determines the position of each component of

the circuit plays a more important role in the whole design process. Besides, the

placement problem size used in industry has grown by orders of magnitude, making

the computationally expensive techniques unable to function in any reasonable

amount of time. Obviously, there is a need for design automation tools that operate

in a reasonable amount of time, while producing good placement solutions.

The overall approaches presented in this thesis are based on two placement

objectives: wirelength minimization and congestion minimization. Both flat and

hierarchical approaches are investigated to find the effectiveness of these approaches.

121

CHAPTER 5. CONCLUSIONS 122

5.1 Wirelength Driven Placement

In this thesis, several global techniques for circuit placement were presented. The

performance of the ARP algorithm was compared with the Random placement,

ClusterSeed based algorithm and the Partitioning-based approach. Both flat and

hierarchical approaches were used to find the effectiveness of these approaches.

Most solutions obtained by the ARP algorithm and Partitioning-based algorithm

are superior to those obtained by the ClusterSeed based algorithm and Random

placement. By using the multi-level clustering technique, the computation time of

the ARP algorithm which produce the best results is reduced significantly by 85%.

By performing the iterative improvement on the initial placement solution at clus-

tering level-3, the quality of the results produced by Partitioning based placement

was close to those produced by the ARP algorithm in less time.

Genetic Algorithms are advanced search heuristic techniques for combinatorial

optimization problems. They are good at exploring the solution, but not well suited

to perform finely tuned search. Combining local improvement with the pure Genetic

Algorithm is essential if a competitive Genetic Algorithm is desirable. Memetic

algorithms (MAs) are evolutionary algorithms (EAs) that apply a separate local

search process to refine individuals (i.e improve their fitness by hill-climbing). Un-

der different contexts and situations, MAs are also know as hybrid EAs, genetic

local searchers. The proposed Hierarchical Memetic Algorithm combines a hierar-

chical design technique, Genetic Algorithm, constructive technique and advanced

local search. Results obtained illustrate that the total estimated wire-length is

improved by 47% on average. This clearly indicates that Memetic Algorithm are

CHAPTER 5. CONCLUSIONS 123

powerful algorithmic paradigm for evolutionary computing. However, the compu-

tation time is also extensive for the Memetic Algorithm. To deal with this problem,

the multilevel clustering technique (introduced in Chapter 3) was incorporated in

the Memetic Algorithm and the experimental results show that the hierarchical

approach produce the same or even better solutions than the flat approach with

less computation time.

5.2 Congestion Driven Placement

As technology advances, congestion minimization is becoming an important prob-

lem for circuit layout. One technique for dealing with local congestion generated

by wirelength minimization is to integrate congestion into a traditional wirelength-

based placement algorithm. Another method is to reduce the congestion in a post

placement processing step. In this thesis, a congestion reduction method based

on post-processing technique is presented and incorporated into a placement ap-

proach. The results were shown that for flat placement this technique can reduce

the congestion effectively by about 51% on average with small increase on the wire-

length. When incorporating the congestion reduction method into the hierarchical

placement, almost all results are worse than those produced by wirelength-driven

hierarchical placement. There are two possible reasons leading to the worse re-

sults. Firstly, the inappropriate determination of routing supply at each clustering

level may cause the worse results. In addition, incorporating the post processing

technique into the hierarchical placement may not be an effective way to reduce

the congestion due to the interactive impact between the wirelength-driven method

CHAPTER 5. CONCLUSIONS 124

and the congestion reduction method and thus neither wirelength nor congestion

can be optimized.

5.3 Future Work

One of the interesting directions for future work involves further improving the

ARP algorithm such that parameters are tuned according to the hierarchical level

and including congestion minimization within objective function to optimize the

wirelength and congestion at the same time. A typical genetic algorithm (GA)

has various parameters that require proper tuning. This process is conventionally

achieved over many trials of the problem using different parameter setting and

is a time-consuming job. Accordingly, another interesting future work focus on

developing an adaptive parameter tuning mechanism to adjust the parameters of

GA for faster convergence or better results. Besides, parallel implementations of

GA is also considered as one of the possible future work to efficiently handle the

large computations of GA.

For the ClusterSeed approach, one interesting direction of future work could

be improving the algorithm so that more knowledge based information about the

benchmark can be used to obtain better solutions. In addition, considering larger

benchmarks, such as IBM benchmarks in the research and developing a parser for

these benchmarks is another possible future work.

Appendix A

Glossary

CAD : Computer Aided Design

CMOS : Complementary Metal Oxide Semiconductor

DA : Design Automation

FPGA : Field Programmable Gate Array

HPWL : Half Perimeter Wire Length

ILP : Integer Linear Programming

IP : Intellectual Property

MCNC : Microelectronics Center of North Carolina

NP-hard : Non Deterministic Polynomial Hard

RTL : Register Transfer Logic

SoC : System on Chip

VHDL : Very High Speed Integrated Circuit Hardware Description Language

VLSI : Very Large Scale Integration

125

Appendix B

GA Parameter Tuning

Figure B.1 to Figure B.9 illustrate the relationships between the quality of the

placement solution (i.e. the total estimated wirelength) and different GA param-

eters on the flat level. Figure B.10 to Figure B.36 show the same relationships

between the quality of the placement solution and different GA parameters on the

clustering level-1, clustering level-2 and clustering level-3. All the results are ob-

tained by Pure Genetic Algorithm (i.e without using Local Search after GA) and

Pure Genetic Algorithm + Clustering Technique. Due to the large computation

time, we choose 30 as the largest population size and 100 as the largest genera-

tion size for all the testing circuits. The GA parameters include: population size,

generation size, mutation rate and crossover rate.

126

APPENDIX B. GA PARAMETER TUNING 127

B.1 Pure GA Results at Flat Level

60000

65000

70000

75000

80000

85000

90000

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Fract pop:24 mu:1.2% cross:0.99

generations

60000

62000

64000

66000

68000

70000

72000

74000

10 15 20 25 30

W
ir

e
le

n
g

th

Population

Fract gen:100 mu:1.2% cross:0.99

population

62000

64000

66000

68000

70000

72000

74000

0 0.5 1 1.5 2 2.5 3

W
ir

e
le

n
g

th

Mutation Rate (%)

Fract gen:100 pop:24 cross:0.99

mutation rate

62000

64000

66000

68000

70000

72000

74000

76000

78000

80000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Fract gen:100 pop:24 mu:1.2%

crossover rate

Figure B.1: Parameters Tuning of Circuit Fract (at flat level)

For circuit Fract, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
1.2% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 128

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

2.45e+06

2.5e+06

2.55e+06

2.6e+06

2.65e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Prim1 pop:24 mu:0.28% cross:0.99

generatons

2.2e+06

2.22e+06

2.24e+06

2.26e+06

2.28e+06

2.3e+06

2.32e+06

2.34e+06

2.36e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Prim1 gen:100 mu:0.28% cross:0.99

population

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

2.45e+06

2.5e+06

0 0.1 0.2 0.3 0.4 0.5 0.6

W
ir

e
le

n
g

th

Mutation Rate (%)

Prim1 gen:100 pop:24 cross:0.99

mutation rate

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

2.45e+06

2.5e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Prim1 gen:100 pop:24 mu:0.28%

crossover rate

Figure B.2: Parameters Tuning of Circuit Prim1 (at flat level)

For circuit Prim1, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produces better solution. 24 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.28% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 129

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

2.45e+06

2.5e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Struct pop:24 mu:0.36% cross:0.99

generatons

2.2e+06

2.22e+06

2.24e+06

2.26e+06

2.28e+06

2.3e+06

2.32e+06

2.34e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Struct gen:100 mu:0.36% cross:0.99

population

2.22e+06

2.24e+06

2.26e+06

2.28e+06

2.3e+06

2.32e+06

2.34e+06

2.36e+06

2.38e+06

2.4e+06

2.42e+06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

W
ir

e
le

n
g

th

Mutation Rate (%)

Struct gen:100 pop:24 cross:0.99

mutation rate

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

2.45e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Struct gen:100 pop:24 mu:0.36%

crossover rate

Figure B.3: Parameters Tuning of Circuit Struct (at flat level)

For circuit Struct, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produces better solution. 24 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.36% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 130

5.4e+06

5.5e+06

5.6e+06

5.7e+06

5.8e+06

5.9e+06

6e+06

6.1e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind1 pop:24 mu:0.3 cross:0.9

generatons

5.3e+06

5.35e+06

5.4e+06

5.45e+06

5.5e+06

5.55e+06

5.6e+06

5.65e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind1 gen:100 mu:0.3 cross:0.9

population

5.4e+06

5.45e+06

5.5e+06

5.55e+06

5.6e+06

5.65e+06

5.7e+06

5.75e+06

5.8e+06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind1 gen:100 pop:24 cross:0.99

mutation rate

5.4e+06
5.45e+06
5.5e+06

5.55e+06
5.6e+06

5.65e+06
5.7e+06

5.75e+06
5.8e+06

5.85e+06
5.9e+06

5.95e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind1 gen:100 pop:24 mu:0.3

crossover rate

Figure B.4: Parameters Tuning of Circuit Ind1 (at flat level)

For circuit Ind1, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produces better solution. 30 is
the best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.3% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 131

1.5e+07

1.52e+07

1.54e+07

1.56e+07

1.58e+07

1.6e+07

1.62e+07

1.64e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Prim2 pop:24 mu:0.5% cross:0.99

generatons

1.49e+07

1.5e+07

1.51e+07

1.52e+07

1.53e+07

1.54e+07

1.55e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Prim2 gen:100 mu:0.5% cross:0.99

population

1.5e+07

1.51e+07

1.52e+07

1.53e+07

1.54e+07

1.55e+07

1.56e+07

1.57e+07

1.58e+07

1.59e+07

1.6e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Prim2 gen:100 pop:24 cross:0.99

mutation rate

1.5e+07

1.52e+07

1.54e+07

1.56e+07

1.58e+07

1.6e+07

1.62e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Prim2 gen:100 pop:24 mu:0.5%

crossover rate

Figure B.5: Parameters Tuning of Circuit Prim2 (at flat level)

For circuit Prim2, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produces better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 132

1.22e+07

1.23e+07

1.24e+07

1.25e+07

1.26e+07

1.27e+07

1.28e+07

1.29e+07

1.3e+07

1.31e+07

1.32e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Bio pop:24 mu:0.3 cross:0.9

generatons

1.22e+07

1.225e+07

1.23e+07

1.235e+07

1.24e+07

1.245e+07

1.25e+07

1.255e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Bio gen:100 mu:0.3 cross:0.9

population

1.22e+07

1.23e+07

1.24e+07

1.25e+07

1.26e+07

1.27e+07

1.28e+07

1.29e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Bio gen:100 pop:24 cross:0.99

mutation rate

1.22e+07

1.23e+07

1.24e+07

1.25e+07

1.26e+07

1.27e+07

1.28e+07

1.29e+07

1.3e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Bio gen:100 pop:24 mu:0.3

crossover rate

Figure B.6: Parameters Tuning of Circuit Bio (at flat level)

For circuit Bio, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produces better solution. 24 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
0.3% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 133

8.85e+07

8.9e+07

8.95e+07

9e+07

9.05e+07

9.1e+07

9.15e+07

9.2e+07

9.25e+07

9.3e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind2 pop:24 mu:0.3 cross:0.9

generatons

8.86e+07

8.88e+07

8.9e+07

8.92e+07

8.94e+07

8.96e+07

8.98e+07

9e+07

9.02e+07

9.04e+07

9.06e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind2 gen:100 mu:0.3 cross:0.9

population

8.85e+07

8.9e+07

8.95e+07

9e+07

9.05e+07

9.1e+07

9.15e+07

9.2e+07

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind2 gen:100 pop:24 cross:0.99

mutation rate

8.85e+07

8.9e+07

8.95e+07

9e+07

9.05e+07

9.1e+07

9.15e+07

9.2e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind2 gen:100 pop:24 mu:0.3

crossover rate

Figure B.7: Parameters Tuning of Circuit Ind2 (at flat level)

For circuit Ind2, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produces better solution. 24 is
the best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.2% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 134

2.73e+08

2.74e+08

2.75e+08

2.76e+08

2.77e+08

2.78e+08

2.79e+08

2.8e+08

2.81e+08

2.82e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind3 pop:24 mu:0.1% cross:0.99

generatons

2.72e+08

2.73e+08

2.74e+08

2.75e+08

2.76e+08

2.77e+08

2.78e+08

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind3 gen:100 mu:0.3 cross:0.9

population

2.73e+08

2.74e+08

2.75e+08

2.76e+08

2.77e+08

2.78e+08

2.79e+08

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind3 gen:100 pop:24 cross:0.99

mutation rate

2.73e+08

2.74e+08

2.75e+08

2.76e+08

2.77e+08

2.78e+08

2.79e+08

2.8e+08

2.81e+08

2.82e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind3 gen:100 pop:24 mu:0.3

crossover rate

Figure B.8: Parameters Tuning of Circuit Ind3 (at flat level)

For circuit Ind3, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produces better solution. 20 is
the best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.1% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 135

9.96e+07

9.98e+07

1e+08

1.002e+08

1.004e+08

1.006e+08

1.008e+08

1.01e+08

1.012e+08

1.014e+08

1.016e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

avq_large pop:24 mu:0.02% cross:0.99

generatons

1.005e+08

1.006e+08

1.007e+08

1.008e+08

1.009e+08

1.01e+08

1.011e+08

1.012e+08

10 15 20 25 30
W

ir
e

le
n

g
th

Population

avq_large gen:100 mu:0.02% cross:0.99

population

9.97e+07

9.98e+07

9.99e+07

1e+08

1.001e+08

1.002e+08

1.003e+08

1.004e+08

1.005e+08

1.006e+08

1.007e+08

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

W
ir

e
le

n
g

th

Mutation Rate (%)

avq_large gen:100 pop:24 cross:0.99

mutation rate

9.96e+07
9.98e+07

1e+08
1.002e+08
1.004e+08
1.006e+08
1.008e+08

1.01e+08
1.012e+08
1.014e+08
1.016e+08
1.018e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

avq_large gen:100 pop:24 mu:0.02%

crossover rate

Figure B.9: Parameters Tuning of Circuit Avq.large (at flat level)

For circuit Avq.large, as the generation size becomes large the quality of the place-
ment solution is improved. The larger population size produces better solution. 30
is the best population size. The higher the crossover rate is, the better the quality
of the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.02% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 136

B.2 Pure GA Results at Clustering Level-1

58000

60000

62000

64000

66000

68000

70000

72000

74000

76000

78000

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Fract (pop:24 mu:1.6% cross:0.99 clustering level-1)

generations

57000

58000

59000

60000

61000

62000

63000

64000

65000

10 15 20 25 30

W
ir

e
le

n
g

th

Population

Fract (gen:100 mu:1.6% cross:0.99 clustering level-1)

population

58000

59000

60000

61000

62000

63000

64000

65000

66000

0 0.5 1 1.5 2 2.5 3

W
ir

e
le

n
g

th

Mutation Rate (%)

Fract (gen:100 pop:24 cross:0.99 clusternig level-1)

mutation rate

58000

60000

62000

64000

66000

68000

70000

72000

74000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Fract (gen:100 pop:24 mu:1.6% clustering level-1)

crossover rate

Figure B.10: Parameters Tuning of Circuit Fract (at clustering level-1)

For circuit Fract, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 20 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
1.6% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 137

2.7e+06

2.75e+06

2.8e+06

2.85e+06

2.9e+06

2.95e+06

3e+06

3.05e+06

3.1e+06

3.15e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Prim1 (pop:24 mu:0.36% cross:0.99 clustering level-1)

generatons

2.7e+06

2.72e+06

2.74e+06

2.76e+06

2.78e+06

2.8e+06

2.82e+06

2.84e+06

2.86e+06

2.88e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Prim1 (gen:100 mu:0.36% cross:0.99 clustering level-1)

population

2.7e+06

2.75e+06

2.8e+06

2.85e+06

2.9e+06

2.95e+06

3e+06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

W
ir

e
le

n
g

th

Mutation Rate (%)

Prim1 (gen:100 pop:24 cross:0.99 clustering level-1)

mutation rate

2.7e+06

2.75e+06

2.8e+06

2.85e+06

2.9e+06

2.95e+06

3e+06

3.05e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Prim1 (gen:100 pop:24 mu:0.36% clustering level-1)

crossover rate

Figure B.11: Parameters Tuning of Circuit Prim1 (at clustering level-1)

For circuit Prim1, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 24 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.36% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 138

2.7e+06

2.75e+06

2.8e+06

2.85e+06

2.9e+06

2.95e+06

3e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Struct (pop:24 mu:0.24% cross:0.99 clustering level-1)

generatons

2.64e+06

2.66e+06

2.68e+06

2.7e+06

2.72e+06

2.74e+06

2.76e+06

2.78e+06

2.8e+06

2.82e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Struct (gen:100 mu:0.24% cross:0.99 clustering level-1)

population

2.7e+06

2.75e+06

2.8e+06

2.85e+06

2.9e+06

2.95e+06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

W
ir

e
le

n
g

th

Mutation Rate (%)

Struct (gen:100 pop:24 cross:0.99 clustering level-1)

mutation rate

2.7e+06

2.75e+06

2.8e+06

2.85e+06

2.9e+06

2.95e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Struct (gen:100 pop:24 mu:0.24% clustering level-1)

crossover rate

Figure B.12: Parameters Tuning of Circuit Struct (at clustering level-1)

For circuit Struct, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.24% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 139

5.5e+06

5.6e+06

5.7e+06

5.8e+06

5.9e+06

6e+06

6.1e+06

6.2e+06

6.3e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind1 (pop:24 mu:0.5% cross:0.99 clustering level-1)

generatons

5.54e+06

5.56e+06

5.58e+06

5.6e+06

5.62e+06

5.64e+06

5.66e+06

5.68e+06

5.7e+06

5.72e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind1 (gen:100 mu:0.5 cross:0.99 clustering level-1)

population

5.5e+06

5.6e+06

5.7e+06

5.8e+06

5.9e+06

6e+06

6.1e+06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind1 (gen:100 pop:24 cross:0.99 clustering level-1)

mutation rate

5.5e+06

5.6e+06

5.7e+06

5.8e+06

5.9e+06

6e+06

6.1e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind1 (gen:100 pop:24 mu:0.5% clustering level-1)

crossover rate

Figure B.13: Parameters Tuning of Circuit Ind1 (at clustering level-1)

For circuit Ind1, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.9 is the best crossover rate. The larger mutation rate produces better
solution. 0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 140

1.78e+07

1.8e+07

1.82e+07

1.84e+07

1.86e+07

1.88e+07

1.9e+07

1.92e+07

1.94e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Prim2 (pop:24 mu:0.5% cross:0.99 clustering level-1)

generatons

1.79e+07

1.795e+07

1.8e+07

1.805e+07

1.81e+07

1.815e+07

1.82e+07

1.825e+07

1.83e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Prim2 (gen:100 mu:0.5% cross:0.99 clustering level-1)

population

1.79e+07

1.8e+07

1.81e+07

1.82e+07

1.83e+07

1.84e+07

1.85e+07

1.86e+07

1.87e+07

1.88e+07

1.89e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Prim2 (gen:100 pop:24 cross:0.99 clustering level-1)

mutation rate

1.78e+07

1.8e+07

1.82e+07

1.84e+07

1.86e+07

1.88e+07

1.9e+07

1.92e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Prim2 (gen:100 pop:24 mu:0.5% clustering level-1)

crossover rate

Figure B.14: Parameters Tuning of Circuit Prim2 (at clustering level-1)

For circuit Prim2, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 24 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 141

1.54e+07
1.55e+07
1.56e+07
1.57e+07
1.58e+07
1.59e+07
1.6e+07

1.61e+07
1.62e+07
1.63e+07
1.64e+07
1.65e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Bio (pop:24 mu:0.5% cross:0.99 clustering level-1)

generatons

1.54e+07

1.545e+07

1.55e+07

1.555e+07

1.56e+07

1.565e+07

1.57e+07

1.575e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Bio (gen:100 mu:0.5% cross:0.99 clustering level-1)

population

1.54e+07

1.55e+07

1.56e+07

1.57e+07

1.58e+07

1.59e+07

1.6e+07

1.61e+07

1.62e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Bio (gen:100 pop:24 cross:0.99 clustering level-1)

mutation rate

1.54e+07

1.55e+07

1.56e+07

1.57e+07

1.58e+07

1.59e+07

1.6e+07

1.61e+07

1.62e+07

1.63e+07

1.64e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Bio (gen:100 pop:24 mu:0.5% clustering level-1)

crossover rate

Figure B.15: Parameters Tuning of Circuit Bio (at clustering level-1)

For circuit Bio, as the generation size becomes large the quality of the placement
solution is improved. 30 is the best population size. 0.99 is the best crossover rate.
The mutation rate is varied irregularly. 0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 142

1.2e+08

1.21e+08

1.22e+08

1.23e+08

1.24e+08

1.25e+08

1.26e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind2 (pop:24 mu:0.5% cross:0.99 clustering level-1)

generatons

1.202e+08

1.204e+08

1.206e+08

1.208e+08

1.21e+08

1.212e+08

1.214e+08

1.216e+08

1.218e+08

1.22e+08

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind2 (gen:100 mu:0.5% cross:0.99 clustering level-1)

population

1.2e+08

1.205e+08

1.21e+08

1.215e+08

1.22e+08

1.225e+08

1.23e+08

1.235e+08

1.24e+08

1.245e+08

1.25e+08

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind2 (gen:100 pop:24 cross:0.99 clustering level-1)

mutation rate

1.2e+08

1.205e+08

1.21e+08

1.215e+08

1.22e+08

1.225e+08

1.23e+08

1.235e+08

1.24e+08

1.245e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind2 (gen:100 pop:24 mu:0.5% clustering level-1)

crossover rate

Figure B.16: Parameters Tuning of Circuit Ind2 (at clustring level-1)

For circuit Ind2, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 143

4.16e+08

4.18e+08

4.2e+08

4.22e+08

4.24e+08

4.26e+08

4.28e+08

4.3e+08

4.32e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind3 (pop:24 mu:0.5% cross:0.99 clustering level-1)

generatons

4.16e+08

4.17e+08

4.18e+08

4.19e+08

4.2e+08

4.21e+08

4.22e+08

4.23e+08

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind3 (gen:100 mu:0.5% cross:0.99 clustering level-1)

population

4.17e+08

4.18e+08

4.19e+08

4.2e+08

4.21e+08

4.22e+08

4.23e+08

4.24e+08

4.25e+08

4.26e+08

4.27e+08

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind3 (gen:100 pop:24 cross:0.99 clustering level-1)

mutation rate

4.17e+08

4.18e+08

4.19e+08

4.2e+08

4.21e+08

4.22e+08

4.23e+08

4.24e+08

4.25e+08

4.26e+08

4.27e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind3 (gen:100 pop:24 mu:0.5% clustering level-1)

crossover rate

Figure B.17: Parameters Tuning of Circuit Ind3 (at clustering level-1)

For circuit Ind3, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 144

1.29e+08

1.295e+08

1.3e+08

1.305e+08

1.31e+08

1.315e+08

1.32e+08

1.325e+08

1.33e+08

1.335e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

avq_large (pop:24 mu:0.5% cross:0.99 clustering level-1)

generatons

1.285e+08

1.29e+08

1.295e+08

1.3e+08

1.305e+08

1.31e+08

1.315e+08

1.32e+08

1.325e+08

10 15 20 25 30
W

ir
e

le
n

g
th

Population

avq_large (gen:100 mu:0.5% cross:0.99 clustering level-1)

population

1.29e+08

1.295e+08

1.3e+08

1.305e+08

1.31e+08

1.315e+08

1.32e+08

1.325e+08

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

W
ir

e
le

n
g

th

Mutation Rate (%)

avq_large (gen:100 pop:24 cross:0.99 clustering level-1)

mutation rate

1.29e+08

1.295e+08

1.3e+08

1.305e+08

1.31e+08

1.315e+08

1.32e+08

1.325e+08

1.33e+08

1.335e+08

1.34e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

avq_large (gen:100 pop:24 mu:0.5% clustering level-1)

crossover rate

Figure B.18: Parameters Tuning of Circuit Avq.large (at clustering level-1)

For circuit Avq.large, as the generation size becomes large the quality of the place-
ment solution is improved. The larger population size produce better solution. 30
is the best population size. The higher the crossover rate is, the better the quality
of the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 145

B.3 Pure GA Results at Clustering Level-2

50000

55000

60000

65000

70000

75000

80000

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Fract (pop:24 mu:3% cross:0.99 clustering level-2)

generations

53000

54000

55000

56000

57000

58000

59000

60000

61000

62000

10 15 20 25 30

W
ir

e
le

n
g

th

Population

Fract (gen:100 mu:3% cross:0.99 clustering level-2)

population

52000

54000

56000

58000

60000

62000

64000

66000

0 0.5 1 1.5 2 2.5 3

W
ir

e
le

n
g

th

Mutation Rate (%)

Fract (gen:100 pop:24 cross:0.99 clustering-2)

mutation rate

52000

54000

56000

58000

60000

62000

64000

66000

68000

70000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Fract (gen:100 pop:24 mu:3% clustering level-2)

crossover rate

Figure B.19: Parameters Tuning of Circuit Fract (at clustering level-2)

For circuit Fract, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 24 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
3% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 146

2.35e+06

2.4e+06

2.45e+06

2.5e+06

2.55e+06

2.6e+06

2.65e+06

2.7e+06

2.75e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Prim1 (pop:24 mu:0.4% cross:0.99 clustering level-2)

generatons

2.3e+06

2.35e+06

2.4e+06

2.45e+06

2.5e+06

2.55e+06

2.6e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Prim1 (gen:100 mu:0.4% cross:0.99 clustering level-2)

population

2.35e+06

2.4e+06

2.45e+06

2.5e+06

2.55e+06

2.6e+06

2.65e+06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

W
ir

e
le

n
g

th

Mutation Rate (%)

Prim1 (gen:100 pop:24 cross:0.99 clustering level-2)

mutation rate

2.35e+06

2.4e+06

2.45e+06

2.5e+06

2.55e+06

2.6e+06

2.65e+06

2.7e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Prim1 (gen:100 pop:24 mu:0.4% clustering level-2)

crossover rate

Figure B.20: Parameters Tuning of Circuit Prim1 (at clustering level-2)

For circuit Prim1, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
0.4% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 147

2.1e+06

2.15e+06

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Struct (pop:24 mu:0.4% cross:0.99 clustering level-2)

generatons

2.09e+06

2.1e+06

2.11e+06

2.12e+06

2.13e+06

2.14e+06

2.15e+06

2.16e+06

2.17e+06

2.18e+06

2.19e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Struct (gen:100 mu:0.4% cross:0.99 clustering level-2)

population

2.1e+06

2.15e+06

2.2e+06

2.25e+06

2.3e+06

2.35e+06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

W
ir

e
le

n
g

th

Mutation Rate (%)

Struct (gen:100 pop:24 cross:0.99 clustering level-2)

mutation rate

2.1e+06

2.15e+06

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Struct (gen:100 pop:24 mu:0.4% clustering level-2

crossover rate

Figure B.21: Parameters Tuning of Circuit Struct (at clustering level-2)

For circuit Struct, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.4% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 148

4.8e+06

4.9e+06

5e+06

5.1e+06

5.2e+06

5.3e+06

5.4e+06

5.5e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind1 (pop:24 mu:0.3 cross:0.9 clustering level-2)

generatons

5.08e+06

5.1e+06

5.12e+06

5.14e+06

5.16e+06

5.18e+06

5.2e+06

5.22e+06

5.24e+06

5.26e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind1 (gen:100 mu:0.3 cross:0.9 clustering level-2)

population

4.8e+06

4.85e+06

4.9e+06

4.95e+06

5e+06

5.05e+06

5.1e+06

5.15e+06

5.2e+06

5.25e+06

5.3e+06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind1 (gen:100 pop:24 cross:0.99 clustering level-2)

mutation rate

4.8e+06

4.85e+06

4.9e+06

4.95e+06

5e+06

5.05e+06

5.1e+06

5.15e+06

5.2e+06

5.25e+06

5.3e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind1 (gen:100 pop:24 mu:0.5% clusterign level-2)

crossover rate

Figure B.22: Parameters Tuning of Circuit Ind1 (at clustering level-2)

For circuit Ind1, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 149

1.5e+07

1.52e+07

1.54e+07

1.56e+07

1.58e+07

1.6e+07

1.62e+07

1.64e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Prim2 (pop:24 mu:0.5% cross:0.99 clustering level-2)

generatons

1.49e+07
1.495e+07

1.5e+07
1.505e+07

1.51e+07
1.515e+07

1.52e+07
1.525e+07

1.53e+07
1.535e+07

1.54e+07
1.545e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Prim2 (gen:100 mu:0.5% cross:0.9 clustering level-2)

population

1.51e+07

1.52e+07

1.53e+07

1.54e+07

1.55e+07

1.56e+07

1.57e+07

1.58e+07

1.59e+07

1.6e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Prim2 (gen:100 pop:24 cross:0.99 clustering level-2)

mutation rate

1.51e+07

1.52e+07

1.53e+07

1.54e+07

1.55e+07

1.56e+07

1.57e+07

1.58e+07

1.59e+07

1.6e+07

1.61e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Prim2 (gen:100 pop:24 mu:0.5% clustering level-2)

crossover rate

Figure B.23: Parameters Tuning of Circuit Prim2 (at clustering level-2)

For circuit Prim2, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 150

1.16e+07

1.17e+07

1.18e+07

1.19e+07

1.2e+07

1.21e+07

1.22e+07

1.23e+07

1.24e+07

1.25e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Bio (pop:24 mu:1.0% cross:0.99 clustering level-2)

generatons

1.15e+07

1.155e+07

1.16e+07

1.165e+07

1.17e+07

1.175e+07

1.18e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Bio (gen:100 mu:1.0% cross:0.99 clustering level-2)

population

1.16e+07

1.17e+07

1.18e+07

1.19e+07

1.2e+07

1.21e+07

1.22e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Bio (gen:100 pop:24 cross:0.99 clustering level-2)

mutation rate

1.16e+07

1.17e+07

1.18e+07

1.19e+07

1.2e+07

1.21e+07

1.22e+07

1.23e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Bio (gen:100 pop:24 mu:1.0% clustering level-2)

crossover rate

Figure B.24: Parameters Tuning of Circuit Bio (at clustering level-2)

For circuit Bio, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
1% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 151

1.11e+08

1.115e+08

1.12e+08

1.125e+08

1.13e+08

1.135e+08

1.14e+08

1.145e+08

1.15e+08

1.155e+08

1.16e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind2 (pop:24 mu:1.0% cross:0.99 clustering level-2)

generatons

1.11e+08

1.112e+08

1.114e+08

1.116e+08

1.118e+08

1.12e+08

1.122e+08

1.124e+08

1.126e+08

1.128e+08

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind2 (gen:100 mu:1.0% cross:0.99 clustering level-2)

population

1.11e+08

1.115e+08

1.12e+08

1.125e+08

1.13e+08

1.135e+08

1.14e+08

1.145e+08

1.15e+08

1.155e+08

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind2 (gen:100 pop:24 cross:0.99 clustering level-2)

mutation rate

1.11e+08

1.115e+08

1.12e+08

1.125e+08

1.13e+08

1.135e+08

1.14e+08

1.145e+08

1.15e+08

1.155e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind2 (gen:100 pop:24 mu:1.0% clustering level-2)

crossover rate

Figure B.25: Parameters Tuning of Circuit Ind2 (at clustring level-2)

For circuit Ind2, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
1.0% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 152

3.7e+08

3.72e+08

3.74e+08

3.76e+08

3.78e+08

3.8e+08

3.82e+08

3.84e+08

3.86e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind3 (pop:24 mu:0.5% cross:0.99 clustering level-2)

generatons

3.7e+08

3.72e+08

3.74e+08

3.76e+08

3.78e+08

3.8e+08

3.82e+08

3.84e+08

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind3 (gen:100 mu:0.5% cross:0.99 clustering level-2)

population

3.7e+08

3.72e+08

3.74e+08

3.76e+08

3.78e+08

3.8e+08

3.82e+08

3.84e+08

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind3 (gen:100 pop:24 cross:0.99 clustering level-2)

mutation rate

3.7e+08

3.72e+08

3.74e+08

3.76e+08

3.78e+08

3.8e+08

3.82e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind3 (gen:100 pop:24 mu:0.5% clustering level-2)

crossover rate

Figure B.26: Parameters Tuning of Circuit Ind3 (at clustering level-2)

For circuit Ind3, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.9 is the best crossover rate. The mutation rate is varied irregularly.
0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 153

1.135e+08

1.14e+08

1.145e+08

1.15e+08

1.155e+08

1.16e+08

1.165e+08

1.17e+08

1.175e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

avq_large (pop:24 mu:1.0% cross:0.99 clustering level-2)

generatons

1.125e+08

1.13e+08

1.135e+08

1.14e+08

1.145e+08

1.15e+08

1.155e+08

1.16e+08

1.165e+08

1.17e+08

1.175e+08

10 15 20 25 30
W

ir
e

le
n

g
th

Population

avq_large (gen:100 mu:1.0% cross:0.99 clustering level-2)

population

1.135e+08

1.14e+08

1.145e+08

1.15e+08

1.155e+08

1.16e+08

1.165e+08

1.17e+08

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

avq_large (gen:100 pop:24 cross:0.99 clustering level-2)

mutation rate

1.13e+08

1.14e+08

1.15e+08

1.16e+08

1.17e+08

1.18e+08

1.19e+08

1.2e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

avq_large (gen:100 pop:24 mu:1.0% clustering level-2)

crossover rate

Figure B.27: Parameters Tuning of Circuit Avq.large (at clustering level-2)

For circuit Avq.large, as the generation size becomes large the quality of the place-
ment solution is improved. The larger population size produce better solution. 30
is the best population size. The higher the crossover rate is, the better the qual-
ity of the solution is. 0.9 is the best crossover rate. The mutation rate is varied
irregularly. 1.0% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 154

B.4 Pure GA Results at Clustering Level-3

46000
48000
50000
52000
54000
56000
58000
60000
62000
64000
66000
68000

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Fract (pop:24 mu:3% cross:0.99 clustering level-3)

generations

47000

48000

49000

50000

51000

52000

53000

54000

10 15 20 25 30

W
ir

e
le

n
g

th

Population

Fract (gen:100 mu:1% cross:0.99 clustering level-3)

population

46000

48000

50000

52000

54000

56000

58000

60000

0 0.5 1 1.5 2 2.5 3

W
ir

e
le

n
g

th

Mutation Rate (%)

Fract (gen:100 pop:24 cross:0.99 clustering level-3)

mutation rate

46000

48000

50000

52000

54000

56000

58000

60000

62000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Fract (gen:100 pop:24 mu:1% clustering level-3)

crossover rate

Figure B.28: Parameters Tuning of Circuit Fract (at clustering level-3)

For circuit Fract, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 24 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.9 is the best crossover rate. The larger mutation rate produces better
solution. 1% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 155

2.1e+06

2.15e+06

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

2.45e+06

2.5e+06

2.55e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Prim1 (pop:24 mu:0.4% cross:0.99 clustering level-3)

generatons

2.2e+06

2.22e+06

2.24e+06

2.26e+06

2.28e+06

2.3e+06

2.32e+06

2.34e+06

2.36e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Prim1 (gen:100 mu:0.4% cross:0.99 clustering level-3)

population

2.1e+06

2.15e+06

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

W
ir

e
le

n
g

th

Mutation Rate (%)

Prim1 (gen:100 pop:24 cross:0.99 clustering level-3)

mutation rate

2.15e+06

2.2e+06

2.25e+06

2.3e+06

2.35e+06

2.4e+06

2.45e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Prim1 (gen:100 pop:24 mu:0.4% clustering level-3)

crossover rate

Figure B.29: Parameters Tuning of Circuit Prim1 (at clustering level-3)

For circuit Prim1, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
0.4% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 156

1.68e+06

1.7e+06

1.72e+06

1.74e+06

1.76e+06

1.78e+06

1.8e+06

1.82e+06

1.84e+06

1.86e+06

1.88e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Struct (pop:24 mu:0.32% cross:0.99 clustering level-3)

generatons

1.6e+06

1.62e+06

1.64e+06

1.66e+06

1.68e+06

1.7e+06

1.72e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Struct (gen:100 mu:0.32% cross:0.99 clustering level-3)

population

1.62e+06

1.64e+06

1.66e+06

1.68e+06

1.7e+06

1.72e+06

1.74e+06

1.76e+06

1.78e+06

1.8e+06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

W
ir

e
le

n
g

th

Mutation Rate (%)

Struct (gen:100 pop:24 cross:0.99 clustering level-3)

mutation rate

1.62e+06

1.64e+06

1.66e+06

1.68e+06

1.7e+06

1.72e+06

1.74e+06

1.76e+06

1.78e+06

1.8e+06

1.82e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Struct (gen:100 pop:24 mu:0.32% clustering level-3)

crossover rate

Figure B.30: Parameters Tuning of Circuit Struct (at clustering level-3)

For circuit Struct, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
0.32% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 157

4.3e+06

4.4e+06

4.5e+06

4.6e+06

4.7e+06

4.8e+06

4.9e+06

5e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind1 (pop:24 mu:0.5% cross:0.99 clustering level-3)

generatons

4.3e+06

4.35e+06

4.4e+06

4.45e+06

4.5e+06

4.55e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind1 (gen:100 mu:0.5% cross:0.99 clustering level-3)

population

4.3e+06

4.35e+06

4.4e+06

4.45e+06

4.5e+06

4.55e+06

4.6e+06

4.65e+06

4.7e+06

4.75e+06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind1 (gen:100 pop:24 cross:0.99 clustering level-3)

mutation rate

4.3e+06

4.4e+06

4.5e+06

4.6e+06

4.7e+06

4.8e+06

4.9e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind1 (gen:100 pop:24 mu:0.5% clustering level-3)

crossover rate

Figure B.31: Parameters Tuning of Circuit Ind1 (at clustering level-3)

For circuit Ind1, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 0.5% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 158

1.34e+07

1.36e+07

1.38e+07

1.4e+07

1.42e+07

1.44e+07

1.46e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Prim2 (pop:24 mu:1.4% cross:0.99 clustering level-3)

generatons

1.34e+07

1.345e+07

1.35e+07

1.355e+07

1.36e+07

1.365e+07

1.37e+07

1.375e+07

1.38e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Prim2 (gen:100 mu:1.4% cross:0.99 clustering level-3)

population

1.34e+07

1.35e+07

1.36e+07

1.37e+07

1.38e+07

1.39e+07

1.4e+07

1.41e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Prim2 (gen:100 pop:24 cross:0.99 clustering level-3)

mutation rate

1.34e+07

1.35e+07

1.36e+07

1.37e+07

1.38e+07

1.39e+07

1.4e+07

1.41e+07

1.42e+07

1.43e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Prim2 (gen:100 pop:24 mu:1.4% clustering level-3)

crossover rate

Figure B.32: Parameters Tuning of Circuit Prim2 (at clustering level-3)

For circuit Prim2, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 1.4% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 159

7.5e+06

7.6e+06

7.7e+06

7.8e+06

7.9e+06

8e+06

8.1e+06

8.2e+06

8.3e+06

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Bio (pop:24 mu:1.0% cross:0.99 clustering level-3)

generatons

7.54e+06

7.56e+06

7.58e+06

7.6e+06

7.62e+06

7.64e+06

7.66e+06

7.68e+06

7.7e+06

7.72e+06

7.74e+06

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Bio (gen:100 mu:1.0% cross:0.99 clustering level-3)

population

7.5e+06

7.6e+06

7.7e+06

7.8e+06

7.9e+06

8e+06

8.1e+06

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Bio (gen:100 pop:24 cross:0.99 clustering level-3)

mutation rate

7.5e+06

7.6e+06

7.7e+06

7.8e+06

7.9e+06

8e+06

8.1e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Bio (gen:100 pop:24 mu:1.0% clustering level-3)

crossover rate

Figure B.33: Parameters Tuning of Circuit Bio (at clustering level-3)

For circuit Bio, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 1.0% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 160

9.55e+07

9.6e+07

9.65e+07

9.7e+07

9.75e+07

9.8e+07

9.85e+07

9.9e+07

9.95e+07

1e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind2 (pop:24 mu:1.0% cross:0.99 clustering level-3)

generatons

9.54e+07

9.56e+07

9.58e+07

9.6e+07

9.62e+07

9.64e+07

9.66e+07

9.68e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind2 (gen:100 mu:1.0 cross:0.99 clustering level-3)

population

9.55e+07

9.6e+07

9.65e+07

9.7e+07

9.75e+07

9.8e+07

9.85e+07

9.9e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind2 (gen:100 pop:24 cross:0.99 clustering level-3)

mutation rate

9.55e+07

9.6e+07

9.65e+07

9.7e+07

9.75e+07

9.8e+07

9.85e+07

9.9e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind2 (gen:100 pop:24 mu:1.0% clustering level-3)

crossover rate

Figure B.34: Parameters Tuning of Circuit Ind2 (at clustring level-3)

For circuit Ind2, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of the
solution is. 0.99 is the best crossover rate. The mutation rate is varied irregularly.
1.0% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 161

3.34e+08

3.36e+08

3.38e+08

3.4e+08

3.42e+08

3.44e+08

3.46e+08

3.48e+08

3.5e+08

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

Ind3 (pop:24 mu:1.0 cross:0.99 clustering level-3)

generatons

3.34e+08

3.36e+08

3.38e+08

3.4e+08

3.42e+08

3.44e+08

3.46e+08

3.48e+08

10 15 20 25 30
W

ir
e

le
n

g
th

Population

Ind3 (gen:100 mu:1.0% cross:0.99 clustering level-3)

population

3.34e+08

3.36e+08

3.38e+08

3.4e+08

3.42e+08

3.44e+08

3.46e+08

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

Ind3 (gen:100 pop:24 cross:0.99 clustering level-3)

mutation rate

3.34e+08

3.36e+08

3.38e+08

3.4e+08

3.42e+08

3.44e+08

3.46e+08

3.48e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

Ind3 (gen:100 pop:24 mu:1.0% clustering level-3)

crossover rate

Figure B.35: Parameters Tuning of Circuit Ind3 (at clustering level-3)

For circuit Ind3, as the generation size becomes large the quality of the placement
solution is improved. The larger population size produce better solution. 30 is the
best population size. The higher the crossover rate is, the better the quality of
the solution is. 0.99 is the best crossover rate. The larger mutation rate produces
better solution. 1.0% is the best mutation rate.

APPENDIX B. GA PARAMETER TUNING 162

8.45e+07

8.5e+07

8.55e+07

8.6e+07

8.65e+07

8.7e+07

8.75e+07

8.8e+07

8.85e+07

0 20 40 60 80 100

W
ir

e
le

n
g

th

Generations

avq_large (pop:24 mu:1.0% cross:0.99 clustering level-3)

generatons

8.45e+07

8.5e+07

8.55e+07

8.6e+07

8.65e+07

8.7e+07

8.75e+07

10 15 20 25 30
W

ir
e

le
n

g
th

Population

avq_large (gen:100 mu:1.0% cross:0.99 clustering level-3)

population

8.45e+07

8.5e+07

8.55e+07

8.6e+07

8.65e+07

8.7e+07

8.75e+07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

W
ir

e
le

n
g

th

Mutation Rate (%)

avq_large (gen:100 pop:24 cross:0.99 clustering level-3)

mutation rate

8.46e+07

8.48e+07

8.5e+07

8.52e+07

8.54e+07

8.56e+07

8.58e+07

8.6e+07

8.62e+07

8.64e+07

8.66e+07

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ir

e
le

n
g

th

Crossover Rate

avq_large (gen:100 pop:24 mu:1.0% cluatering level-3)

crossover rate

Figure B.36: Parameters Tuning of Circuit Avq.large (at clustering level-3)

For circuit Avq.large, as the generation size becomes large the quality of the place-
ment solution is improved. The larger population size produce better solution. 30
is the best population size. The higher the crossover rate is, the better the qual-
ity of the solution is. 0.9 is the best crossover rate. The mutation rate is varied
irregularly. 1.0% is the best mutation rate.

Bibliography

[AD85] B. W. Kernighan A. Dunlop, “A procedure for placement of standard-
cell VLSI placement,” IEEE Trans. on CAD of Integ. Circ. and Syst.,
4(4), vol. 4, no. 4, pp. 92–98, 1985.

[Alpe95a] C.J. Alpert and A.B. Kahng, “Netlist Partitioning: A Survey,” Integra-
tion, the VLSI Journal, pp. 64–80, 1995.

[Alpe95b] C.J. Alpert and A.B. Kahng, “Recent Directions in Netlist Partition-
ing,” VLSI Journal, vol. 3, No. 19, pp. 1–81, 1995.

[Arei01a] S. Areibi, “Iterative Improvement Heuristics for the Standard Cell
Placement: A Comparison,” In 5th World Multi Conference on Sys-
temics, Cybernetics and Informatics, pp. 89–94, Orlando, Florida, July
2001.

[Arei01b] S. Areibi, M. Moussa, and H. Abdullah, “A Comparison of Ge-
netic/Memetic Algorithms and Other Heuristic Search Techniques,” In
International Conference on Artificial Intelligence, pp. 660–666, Las
Vegas, Nevada, June 2001.

[Arei01c] S. Areibi, M. Thompson, and A. Vannelli, “A Clustering Utility
Based Approach for ASIC Design,” In 14th Annual IEEE International
ASIC/SOC Conference, pp. 248–252, IEEE, ACM, Washington, DC,
September 2001.

[Behj98] L. Behjat, A Concentric Placement Approach for Standard Cell Layout,
M.A.Sc Thesis, ECE Department, University of Waterloo, Ont. Canada,
1998.

[Bell95] A. Bellaouar and M.I. Elmasry, Low-Power Digital VLSI Design,
Kluwer Academic Publishers, Boston, 1995.

[Blan85] J.P. Blanks, “Near Optimal Quadratic Based Placement for a Class of
IC Layout Problems,” IEEE Circuits and Devices, vol. 1, No. 6, pp.
31–37, September, 1985.

163

BIBLIOGRAPHY 164

[Bren02] U. Brenner and A. Rohe, “An Effective Congestion Driven Placement
Framework,” In Interational Symposium on Physical Design, pp. 6,
April 2002.

[Breu77a] M.A. Breuer, “A Class of Min-Cut Placement Algorithms,” In Pro-
ceedings of The 14th DAC, pp. 284–290, IEEE/ACM, New Orleans,
Louisiana, 1977.

[Breu77b] M.A. Breuer, “Min-Cut Placement,” J. Design Automation Fault-
Tolerance Computing, vol. 1, No. 4, pp. 343–362, October 1977.

[Cald00] A. Caldwell, A. Kahng, and I. Markov, “Can recursive bisection alone
produce routable placement,” In Proceedings of IEEE/ACM Design Au-
tomation Conference, pp. 477–482, 2000.

[Chan99] H. Chang, L. Cooks, and M. Hunt, Surviving the SOC Revolution,
Kluwer Academic Publishers, London, 1999.

[Chen84] C. K. Cheng and E. S. Kuh, “Module placement based on resistive
network optimization,” IEEE Trans. on Comp. Aided Design, 3 (3),
pp. 218–225, 1984.

[Chen94] C. E. Cheng, “RISA: Accurate and Efficient Placement Routability
Modeling,” In Proceedings of 1994 Computer Aided Design, pp. 690–
695, 1994.

[Coho86] J. P. Cohoon and P. L. Heck, “Genetic placement,” In Proc. IEEE
International Conf. on CAD, pp. 422–425, 1986.

[Coho87] J.P. Cohoon and W.D. Paris, “Genetic Placement,” IEEE Transaction
on Computer Aided Design, vol. 6, No. 6, pp. 956–964, 1987.

[Dona80] W.E Donath, “Complexity theory and design automation,” In Proceed-
ings of 17th Design Automation Conference, pp. 412–419, 1980.

[Du98] Y. Du and A. Vannelli, “A Nonlinear Programming and Local Improve-
ment Method for Standard Cell Placement,” In Proc. of IEEE Custom
Integrated Circuit Conf., 1998.

[Dunl85] A.E. Dunlop and B.W. Kernighan, “A Procedure for Placement of Stan-
dard Cell VLSI Circuits,” IEEE Transaction on Computer Aided De-
sign, vol. 4, pp. 92–98, January 1985.

[Etaw99a] H. Etawil, S. Areibi, and A. Vannelli, “Attractor-Repeller Approach for
Global Placement.,” In Proceedings of IEEE/ACM ICCAD, pp. 20–24,
1999.

[Etaw99b] H. Etawil, S. Areibi, and T. Vannelli, “Convex Programming based
Attractor-Repeller Approach for Global Placement,” In IEEE Interna-
tional Conference on CAD, pp. 20–24, ACM/IEEE, San Jose, Califor-
nia, November 1999.

BIBLIOGRAPHY 165

[Gare79] M.R. Garey and D.S. Johnson, Computers and Intractability, Freeman,
San Francisco CA, 1979.

[Gold89] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning, Addison-Wesley Publishing Company, Inc, Reading,
Massachusetts, 1989.

[Goto76] S. Goto and E. Kuh, “An approach to the two-dimensional placement
problem in circuit layout,” IEEE Trans, Circuits System, CAS, vol. 25,
No. 4, pp. 208–214, 1976.

[Grew95] G. Grewal, T. C. Wilson, and D. Stacey, An Enhanced Genetic Soluiton
for Scheduling, Module Allocation, and Binding in VLSI Design, AN-
NIE, 1995.

[Hach89] G. Hachtel and C. Morrison, “Linear Complexity Algorithms for Hier-
archical Routing,” IEEE Transactions on Computer Aided Design, vol.
8, No. 1, pp. 64–80, 1989.

[Hage92] L. Hagen and A.B. Kahng, “A New Approach to Effective Circuit Clus-
tering,” In IEEE International Conference on CAD, pp. 422–427, 1992.

[Holl75] J.H. Holland, Adaption in Natural and Artificial Systems, University of
Michigan, Press, Ann Arbor, 1975.

[Hou01] W. Hou, H. Yu, Y. Cai, W. Wu, J. Gu, and W. Kao, “A New
Congestion-Driven Placement Algorithm Based on Cell Inflation,” In
Proceedings of Interational Conference on ASP-DAC, pp. 605–608,
2001.

[Huan97] J.H. Huang and A.B. Kahng, “Partitioning Based Standard Cell Global
Placement with Exact Objective,” In International Symposium on
Physical Design, pp. 18–25, April 1997.

[IP] IBM-PLACE, www.cbl.ncsu.edu/benchmarks/ibm-place2.

[ISCA89] ISCAS-89, www.cbl.ncsu.edu/CBL-Docs/iscas89.html, 1989.

[JMK91] F. Johannes J. M. Kleinhans, G. Sigl and K. Antreich, “GORDIAN:
VLSI placement by quadratic programming and slicing optimization,”
IEEE. Trans. on CAD, vol. 10, no. 3, pp. 356–365, 1991.

[Kahn00] A. Kahng, S. Mantik, and D. Stroobandt, “Requirements for Models
of Achievable Routing,” In Proceedings of International Symposium on
Physical Design, pp. 4–11, April 2000.

[Kang03] Sung-Mo Kang and Yusuf Leblebici, CMOS Digital Integrated Circuits,
McGraw-Hill Publishing Company, Inc, 2003.

BIBLIOGRAPHY 166

[Karg86] P.G. Karger and B.T. Preas, “Automatic Placement: A Review of
Current Techniques,” In Proceedings of The 23rd DAC, pp. 622–629,
IEEE/ACM, Las Vegas, Nevada, 1986.

[Kary97] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel Hy-
pergraph Partioning: Application in VLSI Design,” In Proceedings of
35th DAC, pp. 526–529, ACM/IEEE, Las Vegas, Nevada, June 1997.

[Kenn97] A. Kennings, Cell Placement Using Constructive and Iterative Methods
PhD thesis, University of Waterloo, Ont., Canada, 1997.

[Kern70] B.W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Par-
titioning Graphs,” The Bell System Technical Journal, vol. 49, No. 2,
pp. 291–307, February 1970.

[Kirk83] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi, “Optimization BY Sim-
ulated Annealing,” Science, vol. 220, No. 4598, pp. 671–680, May 1983.

[Klei91] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich, “GORDIAN:
VLSI Placement By Quadratic Programming and Slicing Optimiza-
tion,” IEEE Transaction on Computer Aided Design, vol. 10, No. 3,
pp. 356–365, March 1991.

[Kozm91] K. Kozminski, “Benchmarks for Layout Synthesis - Evolution and
Current Status,” In Proceedings of The 28th DAC, pp. 265–270,
IEEE/ACM, Portland, Oregon, 1991.

[Lou01] J. Lou, S. Krishnamoorthy, and H. S. Sheng, “Estimating Routing
Congestion using Probabilistic Analysis,” In Interational Symposium
on Physical Design, pp. 112–117, April 2001.

[Mall89] S. Mallela and L.K. Grover, “Clustering Based Simulated Annealing
for Standard Cell Placement,” In Proceedings of The 26th DAC, pp.
312–317, IEEE/ACM, Las Vegas, Nevada, 1989.

[Mazu99] P. Mazumder and E.M. Rudnick, Genetic Algorithms for VLSI Design,
Layout & Test Automation, Prentice Hall, Toronto, Canada, 1999.

[Meix90] G. Meixner and U. Lauther, “Congestion Driven Placement Using
a New Multi-Partitioning Heuristic,” In Proceedings of International
Conference on Computer-Aided Design, pp. 332–335, November 1990.

[Mich92] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, Springer-Verlog, Berlin, Heidelberg, 1992.

[Mitc96] M. Mitchell, An Introduction to Genetic Algorithms, The MIT Press,
Cambridge, Massachusetts, 1996.

[Para98] P.N. Parakh, R.B. Brown, and K.A. Sakallah, “Congestion Driven
Quadractic Placement,” In Proceedings of Design Automation Confer-
ence, pp. 275–278, June 1998.

BIBLIOGRAPHY 167

[Raba03] J. Rabaey, A. Chandrakasan, and B. Nikolic, DIGITAL INTEGRATED
CIRCUITS, Pearson Education Publishing Company, Inc, 2003.

[Ries94] B.M. Riess, K. Doll, and F.M Johannes, “Partitioning very large circuits
using analytical placement techniques,” In Proceedings of 31st DAC, pp.
646–651, ACM/IEEE, Las Vegas, Nevada, 1994.

[Schu72] D.M. Schuler and E. Ulrich, “Clustering and Linear Placement,” In
Proceedings of Design Automation Conference, pp. 50–56, IEEE/ACM,
Las Vegas, Nevada, 1972.

[Sech86] C. Sechen and A. Sangiovanni, “The TimberWolf 3.2: A New Standard
Cell Placement and Global Routing Package,” In Proceedings of The
23rd DAC, pp. 432–439, IEEE/ACM, Las Vegas, Nevada, June 1986.

[Sech87] C. Sechen and K-W Lee, “An Improvement Simulated Annealing Algo-
rithm for Row-Based Placement (TW4.2),” In Proceedings of ICCAD,
pp. 478–481, IEEE/ACM, 1987.

[Sech88] C. Sechen, VLSI Placement and Global Routing Using Simulated An-
nealing, Kluwer Academic Publishers, Boston, 1988.

[Shah90] K. Shahookar and P. Mazumder, “A genetic approach to standard cell
placement using metagenetic parameter optimization,” IEEE Trans. on
CAD , vol. 9, pp. 500–511, May 1990.

[Shah91] K. Shahookar and P. Mazumder, “VLSI Cell Placement Techniques,”
ACM Computing Surveys, vol. 23, No. 2, pp. 143–220, 1991.

[Sher93a] N. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer
Academic publishers, 1993.

[Sher93b] N. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer
Academic Publishers, Boston, 1993.

[Song92] L. Song and A. Vannelli, “A vlsi placement method using tabu search
technique,” In Micro-electronics Journal, pp. 167–172, 1992.

[Suar88] P. Suaris and G. Kedem, “An Algorithm for Quadrisection and Its Ap-
plication to Standard Cell Placement,” IEEE Transaction on Circuits
and Systems, vol. 35, pp. 294–303, March 1988.

[Sun93] Wern-Jieh Sun and Carl Sechen, “Efficient and effective placement for
very large circuits,” In Proceedings of IEEE/ACM ICCAD, pp. 170–177,
1993.

[Sun95] W. Sun and C. Sechen, “Efficient and Effective Placement for Very
Large Circuits,” IEEE Transactions on Computer Aided Design of In-
tegrated Circuits and Systems, vol. 14, No. 3, pp. 349–359, march 1995.

BIBLIOGRAPHY 168

[Thom00] M. D. Thompson, A Clustering Utility-based Approach for ASIC Design
PhD thesis, University of Waterloo, Ont. Canada, 2000.

[Tsay92] R. S. Tsay and S. C. Chang, “Early Wirability Checking and 2-D
Congestion-Driven Circuit Placement,” In Proceedings of Interational
Conference on ASIC. IEEE, pp. 50–53, 1992.

[Wang00a] M. Wang and M. Sarrafzadeh, “Modeling and minimization of routing
congestion,” In Proceeding of the 2000 conference on Asia and South
Pacific deisgn automation, pp. 185–190, 2000.

[Wang00b] M. Wang, X. Yang, and M. Sarrafzadeh, “Congestion Minimization
During Placement,” IEEE Transactions on Computer Aided Design,
vol. 19, No. 10, pp. 1140–1148, 2000.

[Wang00c] M. Wang, X. Yang, and M. Sarrafzadeh, “Multi-Center Congestion Es-
timation and Minimization During Placement,” In Proceedings of In-
terational Symposium on Physical Design, pp. 147–152, 2000.

[Wang99] M. Wang and M. Sarrafzadeh, “On The Behavior of Congestion Mini-
mization During Placement,” In Proceedings of Interational Conference
on ASP-DAC, pp. 145–150, 1999.

[Yang01a] X. Yang, R. Kastner, and M. Sarrafzadeh, “Congestion Reduction Dur-
ing Placement Based on Integer Programming,” In Proceedings of In-
terational Conference on Computer-Aided Design, pp. 573–576, 2001.

[Yang01b] X. Yang, R. Lauther, and M. Sarrafzdeh, “Congestion Estimation Dur-
ing Top-down Placement,” In Proceedings of International Symposium
on Physical Design, pp. 164–169, April 2001.

[Yang02a] Z. Yang and S. Areibi, “A Comparison of Several Constructive Tech-
niques for VLSI Circuit Placement,” In 2nd Annual McMaster Op-
timization Conference: Theory and Applications (MOPTA 02), pp. ,
Hamilton, Ontario, Aug 2002.

[Yang02b] Z. Yang and S. Areibi, “Global Placement Techniques: A Comparison,”
Journal of Engineering and Optimization, vol. , No. , pp. , October 2002.

[Yang02c] Z. Yang and S. Areibi, “Global Placement Techniques for VLSI Circuit
Design,” University of Guelph, Technical Report, School of Engineering,
University of Guelph, Jul 2002.

[Yang02d] Z. Yang and S. Areibi, “Global Placement Techniques for VLSI Phys-
ical Design Automation,” In 15th International Conference on Com-
puter Applications in Industry and Engineering, pp. 243–247, ISCA,
San Diego, California, November 2002.

[Yild01] M. Yildiz and P. Madden, “Global objectives for standard cell place-
ment,” In Proceedings of IEEE/ACM GLSVLSI, pp. 68–72, 2001.

BIBLIOGRAPHY 169

[Zhon00] K. Zhong and S. Dutt, “Effective partition-driven placement with si-
multaneous level processing and global net views,” In Proceedings of
2000 Computer Aided Design, pp. 254–259, 2000.

