
An Architecture Exploration Framework for the
Implementation of Embedded DSP Applications

by

Ahmed Elhossini

A PhD proposal

presented to the University of Guelph

for the degree of

Doctor of Philosophy

in

Systems & Computer Engineering

Guelph, Ontario, Canada, 2007

c©Ahmed Elhossini 2007

Abstract

Advances in chip technology have enabled integrating many functional units on a single chip.
This led to the emergence of the concept of System-on-Chip (SoC). SoC is the foundation for the
development of advanced embedded systems. Embedded systems are widely used today in differ-
ent Digital Signal Processing (DSP) applications that usually require high computation power and
tight constraints. Using SoC technology increases the challenges facing the designer to choose the
optimal design. A tool that helps explore different architectures is required to design an efficient
system. The tool should be able to explore different architectures and evaluate them according to
the given constraints. The design space to be explored depends on the application domain, and the
target platform. Reconfigurable devices, such as Field Programmable Gate Arrays (FPGA), have
evolved to the extent that a complete DSP application can be implemented on a single device. Due
to the variety of architectures and different objectives that constrains the design of SoC embed-
ded systems, Architecture Exploration (AE) could be viewed as a multi-objective optimization
problem.

In this proposal different approaches for architecture exploration are reviewed. Multi-Objective
Evolutionary Algorithms (MOEA) have proven to be an efficient technique in exploring the de-
sign space of DSP embedded systems. An implementation of an architecture exploration frame-
work based on MOEA and analytical evaluation of embedded system is proposed. The design
space is defined by using an experimental core library. Each item in the library is represented
as a set of attributes used for system evaluation. Preliminary results indicate that the proposed
approach is valid for solving the architecture exploration problem.

Based on the preliminary results and the literature review, the following are the recommenda-

tion for future work: i) Enhance the evaluation model; ii) Incorporate run-time reconfiguration to

enable implementing large applications on a single reconfigurable design; iii) The design of DSP

oriented reconfigurable device.

ii

Contents

1 Introduction 1

1.1 Research Motivations . 2

1.2 A Methodology For Design Exploration 3

1.3 Proposal Organization . 6

2 Background 7

2.1 Implementation Approaches for Digital Systems 8

2.2 Reconfigurable Logic Devices . 9

2.2.1 Field Programmable Gate Arrays 11

2.2.2 Runtime Reconfiguration . 14

2.3 Architecture Exploration . 15

2.3.1 The Y Chart . 17

2.3.2 Architecture Exploration and FPGA 19

2.3.3 Evaluation of Embedded Systems 20

2.4 Optimization Algorithms . 20

2.5 Multi-objective Optimization . 22

2.5.1 Pareto Simulated Annealing (PSA) 23

iii

2.5.2 Pareto Reactive Tabu Search (PRTS) 23

2.5.3 Genetic Algorithms . 24

2.5.4 Multi-Objective Evolutionary Algorithms (MOEA) 25

2.6 Summary . 27

3 Literature Review 29

3.1 Architecture Exploration Methodologies 31

3.2 Techniques for Searching the Design Space 33

3.2.1 Searching the Design Space using Exhaustive Methods 33

3.2.2 Searching the Design Space using Heuristic Methods 35

3.3 Architecture Exploration Support Tools 40

3.3.1 Application Modeling . 40

3.3.2 Architecture Description . 42

3.4 Evaluation Techniques for Architecture Exploration 43

3.4.1 Accurate Simulation . 44

3.4.2 Statistical Simulation . 46

3.4.3 Analytical Evaluation . 47

3.5 Architecture Exploration Frameworks 49

3.5.1 Exploration of the Communication Sub-System 49

3.5.2 Exploration of the Computation Sub-system 51

3.6 Target Implementation - CGRA . 61

3.7 Summary . 73

3.7.1 Research Directions . 75

iv

4 Current Proposed Approaches 77

4.1 Core Library . 78

4.2 Implementation Using ECJ . 79

4.3 Chromosome Representation . 81

4.4 Analytical Evaluation Scheme . 82

4.5 Preliminary Results . 85

4.6 Summary . 94

5 Proposed Approaches & Directions 96

5.1 Architecture Exploration Framework 97

5.1.1 Searching the Design Space 97

5.1.2 Core Library . 98

5.1.3 Evaluation Techniques . 99

5.1.4 Integration with Implementation tools 99

5.1.5 Runtime Reconfiguration . 100

5.2 Coarse Grained Reconfigurable Arrays (CGRA) 100

5.3 Work Plan . 101

A Glossary 104

Bibliography 105

v

List of Tables

3.1 Summary of Architecture Exploration Frameworks 59

3.1 Cont .. 60

3.2 CGRA Summary . 72

4.1 Core Library Contents - Processing Cores 79

4.2 Core Library Contents- Communication Channels 79

5.1 Work Plan for the Project . 103

vi

List of Figures

1.1 AE framework . 5

2.1 Implementation of Digital System using ASIC 9

2.2 Implementation Flow of Digital System 10

2.3 FPGA Structure . 13

2.4 General Programmable Logic Block 13

2.5 Problem Definition . 16

2.6 Implementation Flow of Digital System With Architecture Exploration . 18

2.7 The Y-chart: a general scheme for the design of programmable architecture 19

2.8 Evaluation of Embedded Systems . 21

2.9 Local and Global Minima . 21

2.10 Pareto Optimality for Two-Objective Optimization 22

2.11 Heuristic Multi-objective optimization 23

3.1 Architecture Exploration . 30

3.2 Raw Microprocessor Array Architecture 62

3.3 PipeRench Architecture . 64

3.4 RaPiD Architecture . 66

vii

3.5 PACT’s eXtreme Processing Platform 68

3.6 MathStar’s FPOA Architecture . 69

3.7 ARRIVE Architecture . 70

4.1 AE framework . 78

4.2 Chromosome Representation . 81

4.3 Test-bench used for the preliminary results 86

4.4 Results of AE without any constraint, full optimization 86

4.5 Resulting Architecture, for full optimization 87

4.6 Results of AE without performance optimization 88

4.7 Results of AE without power optimization 89

4.8 Results of AE without flexibility optimization 90

4.9 Resulting Architecture, for flexibility optimization off 91

4.10 Results of AE without area optimization 92

4.11 Resulting Architecture without area optimization 92

4.12 Constrained Test-bench used for the preliminary results 93

4.13 Results of AE with constraints . 93

4.14 Resulting Architecture for the constrained Test-Bench 94

5.1 Research State and Directions . 97

5.2 Proposed CGRA . 102

5.3 Reconfigurable Array of Proposed CGRA 102

viii

Chapter 1

Introduction

In the past few decades the demand for embedded Digital Signal Processing (DSP) sys-

tems has been increasing constantly. These systems are used in several applications

such as MP3 players, wireless communication sets and intelligent hearing-aid devices.

Due to the nature of these devices they are usually implemented using System on Chip

(SoC) technology. DSP applications are complex, parallel in nature, and time consuming.

The designers are usually faced with different conflicting design objectives such as low

power, low cost, high flexibility and high performance. For this reason SoC embedded

systems have a heterogenous multi-processor architecture in which different components

are integrated on a single chip. These components range from fully programmable pro-

cessors to dedicated hardware blocks. The designer has to select the proper components

to optimize the different design objectives. Fully programmable processors could be

selected for flexibility, by supporting multiple applications and system extension while

dedicated hardware accelerators are used to optimize hard constraints such as time and

power dissipation.

1

CHAPTER 1. INTRODUCTION 2

Reconfigurable devices, in the form of Field Programmable Gate Arrays (FPGA), are

becoming more and more attractive in implementing digital systems. Modern FPGAs

have high logic density and are equipped with advanced digital blocks in the form of

embedded multipliers, DSP blocks and embedded processors. This enables FPGAs to be

a suitable implementation platform for SoC based embedded systems. Coarse-Grained

Reconfigurable Arrays (CGRA) are also another form of reconfigurable devices. Their

architecture is a compromise between FPGAs, that have high level of reconfigurability

with the cost of more chip area, power consumption and speed, and ASIC implementa-

tions, that lacks flexibility.

Several architectures are available to implement a given DSP application using recon-

figurable devices. Selecting a suitable sub-optimal architecture for the given application

is a very challenging problem. A tool that helps the designer to select the optimal archi-

tecture is of great interest to reduce development time.

Several studies have investigated the architecture exploration problem and introduced

different frameworks for implementing embedded systems [Bech03, Pale04, Khar01,

Asci05a, Kim06]. Most of these studies dealt with the exploration of a parameterized

platform that can be configured and adopted to a specific problem. However none of

these studies dealt with the design of a general architecture with no initial structure. Dif-

ferent optimization and evaluation techniques are investigated in the literature. Selecting

an effective optimization technique for architecture exploration is one of the main goals

of this research.

CHAPTER 1. INTRODUCTION 3

1.1 Research Motivations

The main motivations behind this research proposal can be summarized as follows:

• The complexity of the DSP applications: Implementing DSP applications using

SoC embedded systems increases the complexity and constraints for the designer.

• The design space is very large due to the availability of several Intellectual Property

(IP) cores and embedded processors. Selecting the proper architecture requires ex-

perience and knowledge about the design of digital embedded systems. This makes

it hard for the designer to select an optimal architecture for the given application.

• Searching the design space for optimal configurations can be formulated as multi-

objective optimization problem with conflicting objectives. Solutions obtained of-

fer the SoC designer with a set of sub-optimal configurations (Pareto-optimal set)

which he/she can choose from.

• Most DSP applications are usually developed by software engineers who lack hard-

ware design knowledge and experience required for the design of these systems.

Software engineers need a tool that narrows the gap between the pure software

implementation and SoC implementation.

1.2 A Methodology For Design Exploration

Architecture exploration tools tend to explore the design space to find an optimal or

near optimal solution for a given application. During the exploration phase several

architectures are generated and evaluated to determine their optimality. Optimality is

CHAPTER 1. INTRODUCTION 4

measured by satisfying the normally conflicting constraints and objectives such as area,

performance, power consumption and flexibility. Multi-objective optimization (MOO)

techniques can be used for such effective exploration. The literature shows that Multi-

Objective Evolutionary Algorithms (MOEA) are efficient and robust to explore the com-

plex design space of heterogenous embedded systems [Erba06]. The resulting architec-

ture includes several components from a core library and the mapping of the application

on to the resulting architecture.

The optimality of the generated architectures is then evaluated. Because several ar-

chitectures need to be evaluated, the evaluation technique used should give quick results

with good level of accuracy. An accurate evaluation technique can be performed at a

lower level of abstraction for the selected candidates. Analytical evaluation is usually

used to give quick results. Analytical models for each component in the architecture is

used to estimate the overall performance of the architecture [Niar06]. The evaluation

results are fed back to the optimizer to accept or reject the generated architecture as

illustrated in Figure 1.1.

The research in this proposal is directed towards the design of an architecture ex-

ploration framework for implementing DSP embedded systems on FPGAs and CGRAs.

The research in this proposal can be summarized as shown in Figure 1.1:

1. Different meta-heuristic methods will be investigated to select the proper technique

to search the design space for the given problem. The list includes evolutionary

techniques, simulated annealing, reactive tabu search and random search. This

phase will eventually produce an efficient heuristic method to effectively search

the design space of the given problem.

CHAPTER 1. INTRODUCTION 5

Mathematical
&

Meta-Heuristics Search
the design space

Core Library

Processing CoresCommunication
Channels

Embedded
Processors

Dedicated
Hardware

Accelerator

Point to Point

Common Bus

Evaluation of the
Generation Architecture

ASIC

FPGA

CGRA

User Constraints

User Application

Generated Architecture
Evaluation Results

Modeling Tool

Designer

1

2

34

Implementation
Platform

5

Figure 1.1: AE framework

2. Different evaluation techniques for embedded systems will be examined to develop

a suitable evaluation scheme for the framework. The resulting evaluation technique

will be combined with the search module to build an effective architecture for the

target application.

3. A core library of different architectures will also be developed. It will include

specifications of the components that will be used by the framework to create the

optimal design. The library should contain basic components ranging from pro-

cessing cores to communication channels to build a simple DSP application.

4. Investigate the implementation of the resulting architecture on different platforms

such as ASIC, FPGA, and CGRA. The goal of this phase is to integrate the pro-

posed framework with the appropriate platform using physical design implemen-

CHAPTER 1. INTRODUCTION 6

tation tools.

5. In the case of large applications that do not fit in a single FPGA or CGRA, run-

time reconfigurability will be an alternative solution to swap unused portions of the

design with the required one. The use of runtime reconfiguration will be examined.

This requires investigating the runtime switching and scheduling.

1.3 Proposal Organization

The remainder of the proposal is organized as follows: Chapter 2 provides essential

background on reconfigurable devices, multi-objective optimization techniques and the

architecture exploration process. In chapter 3 a literature review on searching the design

space for architecture exploration, embedded systems evaluation techniques, architecture

exploration frameworks and CGRA architectures is presented. Chapter 4 proposes an

architecture exploration framework based on a modified Multi-Objective evolutionary

algorithm along with preliminary results is given. Finally, chapter 5 gives the proposed

future work and directions.

Chapter 2

Background

Reconfigurable logic devices are commonly used today as the main processing element

of embedded systems. Modern FPGAs contain many resources and embedded blocks

that enable implementing a complete system using a single chip (SoC). The design of

these systems is a complex task due to the availability of different Intellectual Property

(IP) architecture and also the lack of knowledge in the design of these sophisticated

digital embedded systems. Architecture exploration tools are required in the early design

phases to search the design space for an optimal solution. The architecture exploration

problem can be viewed as a multi-objective optimization problem. Several objectives are

optimized with given constraints. Many architectures are generated and evaluated during

the search process. The evaluation phase is a crucial task in the exploration process.

This chapter gives some background on reconfigurable logic devices, the architecture

exploration process, multi-objective optimization, and the evaluation process of embed-

ded systems.

7

CHAPTER 2. BACKGROUND 8

2.1 Implementation Approaches for Digital Systems

The rapid development and advancement in fabricating integrated circuits introduced dif-

ferent approaches to implement Application Specific ICs (ASIC). These approaches are

classified into two main categories: full custom ICs, and semi-custom ICs as illustrated

by Figure 2.1. In the first category all logic cells and routing circuitry are customized.

Designers spend many hours to handcraft and optimize each transistor to implement the

chip. This allows the designer to include analog circuits, optimized memory cells, or

micro-electro-mechanical systems on an IC. Full-custom ICs are the most expensive to

manufacture and design. This approach has a long time-to-market and is therefore in-

tended for specific applications that require a high level of optimization.

On the other hand, in semi-custom ASIC design, all the logic cells are predesigned

and some (or all) of the routing circuitry is customized. Predesigned cells from a cell

library decreases the design challenges faced in full custom design. Semi-custom ASICs

can be further classified to standard-cell base, and gate-array based.

In the standard-cell based ASIC, a library is provided by the vendor. Each cell in

the library has different versions optimized for several design objectives. Full custom

methods are used to optimize each cell during the design of the cell library. Standard

cells are placed in the chip area and the wiring masks are customized by the designer.

Gate arrays are yet another class of semi-custom ASICs. In this design style pre-

optimized gates are placed in the chip area. The designer task is to select the gates

required and customize the routing for a given application. The class of gate arrays in

which the final fabrication is performed by the chip vendor is called masked gate arrays.

Programmable gate arrays (also called reconfigurable devices) is another design style

CHAPTER 2. BACKGROUND 9

Implementation
ASIC

Full Custom Semi-Custom

Standard Cell
Based

Gate-Array Based

Masked Gate Array
Programmable Gate

Array
(Reonfigurable)

Programmable
Logic Devices

Field Pogrammable
Gate Array

Coarse Grained
Reconfigurable

Array

Figure 2.1: Implementation of Digital System using ASIC

where users are able to program the routing and internal configuration of the chip. This

class is widely used today for the implementation of embedded systems.

Figure 2.2 shows a simplified flow for the implementation of digital systems. The

flow starts by a physical synthesis of the Register Transfer Level (RTL) description of

the application combined with the timing constraints. The output of physical synthesis is

a netlist with place-and-route information. The netlist combined with the fixed netlist of

the predefined components (component library) are used by the place and route back-end

tool phase to perform the physical design implementation phase.

2.2 Reconfigurable Logic Devices

Recent development in reconfigurable devices has been possible because of the avail-

ability of logic devices that can be rapidly programmed and reprogrammed for different

CHAPTER 2. BACKGROUND 10

Physical synthesis

Data Store

RTL

Place and route
Optimization

Netlist with place and
route info

Macromodules
fixed netlists

(Timing)
constraints

Physical
Implementation

Figure 2.2: Implementation Flow of Digital System

CHAPTER 2. BACKGROUND 11

applications. The first device introduced from this category of logic devices with reason-

able capacity and possibly efficient computation the Field-Programmable Gate Arrays

(FPGAs).

FPGAs provide the designer with an array of basic configurable logic blocks usually

in the form of Look Up Tables (LUT) and flip flops connected with a programmable

interconnection that enables building different functions and memories for a wide range

of digital systems. Early generations of FPGAs introduced from different vendors like

Xilinx, Altera and others offered relatively fewer logic blocks compared to current gen-

erations that provide more resources and tools to build a complete system on a single

chip (SoC). Recent FPGA generations also provide more coarse blocks for the designers

in the form of embedded multipliers, DSP blocks, multi-gigabit serial I/O and embedded

microprocessors that increase the computation power for DSP applications.

2.2.1 Field Programmable Gate Arrays

An FPGA provides the benefits of custom CMOS VLSI, while avoiding the initial devel-

opment cost, time delay, and inherent risk of a conventional masked gate array. FPGAs

are customized by loading configuration data into their internal memory cells. FPGAs

can either actively read its configuration data from external serial or byte-parallel PROM

(master mode), or the configuration data can be written to the FPGA (slave and peripheral

mode). FPGAs can be programmed an unlimited number of times and support system

clock rates of up to 500 MHz [Xili06].

An FPGA has three major configurable elements as shown in Figure 2.3:

CHAPTER 2. BACKGROUND 12

• Configurable logic blocks (CLB).

• Input/output blocks (IOB).

• Configurable interconnects networks.

The CLB provides the functional elements for constructing user’s logic. The IOB

provides the interface between the package pins and internal signal lines. The pro-

grammable interconnect resources provide routing paths to connect the inputs and out-

puts of the CLB and IOB onto the appropriate networks. Customized configuration is

established by programming internal static memory cells that determine the logic func-

tions and internal connections implemented in the FPGA.

Figure 2.3 depicts an FPGA with a two-dimensional array of logic blocks that can

be interconnected by different types of wires. All internal connections are composed of

metal segments with programmable switching points to implement the desired routing.

An abundance of different routing resources is provided to achieve efficient automated

routing. There are four main types of interconnects, three are distinguished by the rel-

ative length of their segments: single-length lines, double-length lines and long lines.

In addition, buffers drive fast, low-skew nets are most often used for clocks or global

control signals.

The principle elements of the CLB are shown in Figure 2.4. Each CLB contains one

or more flip-flops and one or more independent n-input function generators in the form of

a look-up table. These function generators are very flexible. The CLB may also include

a carry logic for fast implementation of arithmetic operations. A CLB implements most

CHAPTER 2. BACKGROUND 13

Figure 2.3: FPGA Structure

Figure 2.4: General Programmable Logic Block

CHAPTER 2. BACKGROUND 14

of the logic in an FPGA. The flexibility and symmetry of the CLB architecture facilitates

the placement and routing of a given application [Gokh05].

2.2.2 Runtime Reconfiguration

Runtime reconfiguration in FPGAs enables reconfiguring some portions of the FPGA

while the remaining portion operates normally. Modern FPGAs support run-time recon-

figuration in several forms [Dont03].

2.2.2.1 Xilinx Virtex Devices

A Virtex FPGA device supports two types of configurations. The entire device can be

fully configured or partially configured. Partial configuration enables changing some

portions of the device while the remaining portions are operating. The smallest unit that

can be loaded into a Virtex device for configuration is called a bitstream “frame”. Each

frame is responsible for the configuration of a portion of the device that spans the entire

device height and its width normally four reconfigurable blocks (CLBs), which is called

a “tile”. There are two styles of partial configuration in Virtex devices; module-based

partial reconfiguration and small-bit manipulation.

In module-based partial reconfiguration, distinct portions of an FPGA are referred to

as reconfigurable modules. The reconfigurable module can span one or more tiles. The

number of reconfigurable modules should be minimal (i.e., a single reconfigurable mod-

ule) to reduce problems in complex designs. This type of partial reconfiguration is used

for independent design applications and for modules that communicate with each other

CHAPTER 2. BACKGROUND 15

using a special bus macro. Bus macros are responsible of establishing fixed connection

points in the design between the reconfigurable and fixed modules [Xili04].

In small-bit manipulations, the partial reconfiguration is accomplished by making a

small change to the design, and then generating a bitstream based only on the difference

between the two designs. So instead of reconfiguring the entire device, only the portions

of the device that changed are configured [Xili04].

In summary modern FPGA devices support runtime reconfiguration. Using a specific

procedure, FPGAs can be partially configured. Some portions of the device are config-

ured while the remainder of the device operating normally. This allows large applications

to fit in small devices.

2.3 Architecture Exploration

Architecture exploration is the problem of searching the design space of a given applica-

tion to find an optimal hardware implementation. The application is normally described

using a software model and the main objectives of the exploration tool is to construct an

architecture and map the software model to the proposed hardware.

The problem of the architecture exploration is illustrated in Figure 2.5. The appli-

cation is modeled using a set of software blocks modeled in a high level modeling tool

or language. The high level description of the application is then converted into a flow

graph.

Each block Si in the graph has several attributes Ai. These attributes might be the

block size, power dissipation, speed, etc. The target of the architecture exploration is to

specify the cores Cj that construct the proposed architecture and to map block Si to a

CHAPTER 2. BACKGROUND 16

S4

S3

S1

S2

I12

I13

I14

I23

I24

I34

A2

C1

C2

C3

C4

M1

M2

M3

M4

A1

A3

A4

Ci = Hardware Core
Si = Software Block
Mi = Mapping of SW Block i
Ai = Implementation Constraints of SW block i
Ii j = Interfacing HW Core i to HW Core j

Figure 2.5: Problem Definition

specific core Cj . The core Cj can be either a dedicated hardware module, or software

code implemented for a specific processor. The core Cj is chosen from a core library.

The problem is to find the core Cj, the mapping of Si into Cj (Mi), and the interfacing

between each pair of cores Ix,y. Each combination of Mi, Cj, Ix,y will result in a different

architecture. The resulting architectures are then evaluated against the given application

constraints. The most appropriate architecture should meet the overall application con-

straints. An architecture exploration tool is required to explore and evaluate as many

designs as possible. The efficiency of the tool is measured by the total numbers of archi-

tectures identified, how close the resulting architecture is to the optimal architecture, and

the speed of the search process.

The evaluation of the generated architectures is the most important phase of the explo-

ration process. Accurate evaluation will efficiently guide the exploration towards the

optimal solution. However, this might be a time consuming process. Evaluation can

be performed at different levels of abstraction. Each level provides a different accuracy

CHAPTER 2. BACKGROUND 17

measure ranging from the transistor level (more accurate, and more complex), to system

level (less accurate, but more simple) [Giva02b]. At each level of abstraction, a model

should be provided for each core. This model contains information about the power con-

sumption, performance, and area. These models form the core library that is used during

exploration.

Architecture exploration is used to perform system-level design for certain applica-

tion as shown in Figure 2.6. Architecture exploration is added to the digital implementa-

tion flow shown previously in Figure 2.2 to reduce the complexity facing the designer to

build complex DSP systems. The system level design phase takes a system model from

the designer and generates the RTL model and the required timing constrains.

2.3.1 The Y Chart

The Y-chart shown in Figure 2.7 is a general scheme for the design of programmable

architectures. This scheme can be used as the foundation of the architecture exploration

problem [Liev01].

The main advantage of this scheme is that it separates the architecture from the ap-

plication. The application is profiled and processed into software blocks. Mapping of the

application blocks into the architecture is then performed. The result is evaluated and the

architecture, the mapping, and the application are modified if required. This scheme was

the foundation of the concept of platform-based design [Keut00].

CHAPTER 2. BACKGROUND 18

Physical synthesis

Data Store

RTL

Place and route
Optimization

Netlist with place and
route info

Macromodules
fixed netlists

(Timing)
constraints

Physical
Implementation

Architecture Exploration

Application Model

Figure 2.6: Implementation Flow of Digital System With Architecture Exploration

CHAPTER 2. BACKGROUND 19

Application

Mapping

Performance
Analysis

Performance
Numbers

Architecture

Figure 2.7: The Y-chart: a general scheme for the design of programmable architecture

2.3.2 Architecture Exploration and FPGA

FPGAs include several components that enable building complex systems. Embedded

processors, multipliers, memory, and fast I/Os enable implementing multiprocessor sys-

tems on a single FPGA. Therefore, FPGAs are considered to be an appropriate platform

for architecture exploration. Many cores are available for FPGAs that cover almost ev-

ery requirement for any DSP application. These cores range from embedded memory,

DSP blocks and hard-core processors, to soft-cores such as, MicroBlaze, LEON2, and

OpenRisk 1200 [Matt04]. The availability of such variety of cores and soft-processors

increases the number of choices available to the designer. An efficient architecture ex-

ploration tool is therefore required to select the most appropriate modules for any given

application.

CHAPTER 2. BACKGROUND 20

2.3.3 Evaluation of Embedded Systems

Evaluation of embedded systems plays an important role in architecture exploration pro-

cess. It guides the search towards the optimal design that meets the user constraints.

The goal of the evaluation process is to extract performance measures of the evaluated

architecture. These measures can include speed, area, and power consumption. Based

on these measures an architecture can be accepted or rejected.

In general the evaluation of embedded systems can be classified under three cate-

gories, as shown in Figure 2.8. Simulators that perform cycle accurate simulation of the

processor and peripherals tend to give an accurate evaluation at the expense of huge CPU

time. Statistical simulators on the other hand, use statistical information gathered from

the profiled and estimated running time of the application on the given architecture. This

type of simulator gives a good evaluation in reasonable time. In the analytical evaluation

scheme analytical models exist for each computational unit in the embedded architec-

ture. Analytical evaluation gives fast evaluation of a given architecture, with a low level

of accuracy. The accuracy can be enhanced to represent a more realistic environment at

the expense of more computation time. This evaluation scheme is more suitable for AE

tools as a large number of architectures should be evaluated in a short amount of time.

Cycle accurate simulation can be used in later stages when more accuracy is required for

fine tuning of the resulting architecture.

2.4 Optimization Algorithms

The goal of optimization algorithms is to find the “optimal” or “near optimal” solution

among a finite or infinite number of possible solutions, which is achieved by minimizing

CHAPTER 2. BACKGROUND 21

Accurate Simulation
at different

Abstraction Levels

Statistical
Simulation

Analytical
Evaluation

Embedded
System

Evaluation

Figure 2.8: Evaluation of Embedded Systems

or maximizing an objective function.Different techniques can be used to find a solution

to the optimization problem. The literature shows that architecture exploration is an

NP-complete problem [Asci05a] and therefor, an optimal solution cannot be obtained in

polynomial time. The designer can choose to obtain a quick solution at the risk of obtain-

ing sub-optimal solutions. A global optimal solution can be obtained through exhaustive

search.

Heuristics methods are used to find a quick sub-optimal solution for the optimization

problem. Simulated annealing, tabu search and genetic algorithms are a few examples

of such meta heuristics. The goal of these methods is to quickly obtain a near optimal

solution by avoiding local minima as shown in Figure 2.9.

2.5 Multi-objective Optimization

Multi-objective optimization is defined as the problem of finding the parameter vector X

to optimize a set of objective functions f1(X), f2(X),, fn(X). Optimality in multi-

objective optimization is to find a solution that gives an acceptable value for the different

CHAPTER 2. BACKGROUND 22

f

x

Local
Minima

Global
Minima

Figure 2.9: Local and Global Minima

f1

f2 f2
*

f1
*

F*

Pareto - Front

Figure 2.10: Pareto Optimality for Two-Objective Optimization

objective functions compared to the application requirement. Since the objective func-

tions are normally conflicting, several solutions exist for a given problem that meet the

given requirement. The boundary of visible solutions in the solution space is called the

Pareto-front [Pare96]. The solution is called Pareto Optimal if it falls within the Pareto-

Front as shown in Figure 2.10.

The architecture exploration problem can be viewed as a multi-objective optimiza-

tion problem. The architecture exploration tool should search the design space for the

given application to find a Pareto-Optimal architecture. Many heuristic multi-objective

CHAPTER 2. BACKGROUND 23

Genetic Algorithms

Multi-Objective
Optimization

ParetoSimulated
Annealing (PSA)

Random Search
Pareto (RSP)

Pareto Reactive
Tabue Search

(PRTS)

SPEANSGA-II

SPEA-II PSPEA-II

Figure 2.11: Heuristic Multi-objective optimization

optimization approaches are used for efficient architecture exploration as shown Figure

2.11. These approaches will be discussed next.

2.5.1 Pareto Simulated Annealing (PSA)

Simulated Annealing (SA) is a MontCarlo approach for minimizing objective functions

[Suma04, Suma02]. In the simulated annealing algorithm a new configuration is con-

structed by generating a random displacement. If the cost function of this new state is

better than the previous one, the change is accepted, but if it is worse, the new configura-

tion is accepted with a certain probability. The Pareto Simulated Annealing (PSA) is the

multi-objective version of SA. At each step the starting point is a set of configurations

and not a single one.

CHAPTER 2. BACKGROUND 24

2.5.2 Pareto Reactive Tabu Search (PRTS)

The Pareto Reactive Tabu Search (PRTS) [Batt94] is the multi-objective version of the

Tabu Search (TS) algorithm. The key concept of the algorithm is the tabu list which

contains prohibited moves that consists of the most recently visited configurations. The

purpose of this list is to avoid falling in a local minima. The PRTS is an evolution of

the TS algorithm but it employs an adaptive prohibition period and escape mechanism to

support the tuning of a multi-objective problem.

2.5.3 Genetic Algorithms

Genetic Algorithms (GAs) were introduced by John Holland in the 1960s in the Uni-

versity of Michigan in the 1960s and 1970s. Holland’s original goal was not to solve

a specific problem, but to formulate the adaptation phenomenon as it occurs in nature

and to develop algorithms that can be used to import natural adaptation into computer

systems [Mitc96]. Genetic algorithms are considered today a class of optimization algo-

rithms. Genetic algorithms are based on moving from one population of “chromosomes”

(represents a set of initial solutions) to a new population by using a kind of “natural se-

lection” together with the genetics-inspired operators of crossover, and mutation. The

chromosome is represented by a set of “genes” (each gene represents a parameter of the

solution). The operators used in genetic algorithms can be summarized as follows:

• The selection operator, chooses individuals (chromosomes) from the population

that will be allowed to reproduce. Each individual is evaluated to measure its

fitness. The most fit individuals are allowed to produce more offsprings. The

selection is made with the hope that the new offsprings will be more fit than their

CHAPTER 2. BACKGROUND 25

parents.

• The crossover operator, exchanges subparts of two individuals. This operation

imitates the biological recombination between two chromosomes.

• The mutation operator, randomly changes the value of some genes in the chromo-

some. This operation resembles mutation in the gene structure of living organisms

caused by the surrounding environment. This allows genetic algorithms to perform

random jumps in the search space.

Starting by an initial population (initial solutions), using the selection operator certain

individuals are selected to perform crossover and mutation to generate a new population.

The new generations are assumed to be closer to the optimal solution than older gener-

ations. The process is repeated until the target solution is found or a specific number of

generations is reached.

2.5.4 Multi-Objective Evolutionary Algorithms (MOEA)

Multi-objective evolutionary algorithms are the class of genetic algorithms that are used

for the optimizations of different conflicting objectives. In multi-objective optimization

the fitness of each individual should reflect the effect of each objective, which means

it should depend on the different objective functions. Different algorithms exists with

different fitness assignment schemes to solve the multi-objective optimization problem.

Fitness assignment aims to calculate a single fitness value for an individual from the

different conflicting objectives functions.

There are two commonly used multi-objective genetic algorithms found in the litera-

ture, SPEA and NSGA-II.

CHAPTER 2. BACKGROUND 26

2.5.4.1 Strength Pareto Evolutionary Algorithms (SPEA)

Strength Pareto Evolutionary Algorithms (SPEA) is a multi-objective evolutionary opti-

mization algorithm developed by Zitzler et al [Zitz99]. The algorithm was then modified

to SPEA2 in [Zitz01, Zitz02]. Another modification was made to the approach to im-

prove its search capabilities in [Kim04]. The algorithms uses the concept of dominance

to assign fitness values to individuals. It does so by taking into account the number of

individuals a solution dominates and is dominated by according to Pareto optimally. The

algorithm makes use of an external set (archive) that hold the most fit non-dominated

solutions across all generations. Distinct fitness assignment schemes are defined for

the generation population and the archive to always ensure that better fitness values are

assigned to individual in the archive. It uses binary tournament with replacement. Selec-

tion is made only from the archive which contain the non-dominated solutions. Solutions

generated from SPEA2 may require a repair phase if they are infeasible.

2.5.4.2 Non-Dominated Sorting Genetic Algorithm (NSGA)

The Non-dominated Sorting Genetic Algorithm (NSGA) [Srin94, Deb02] is another

multi-objective evolutionary algorithm. Similar to SPEA, it makes use of the concept

of dominance to assign fitness values to the solution. It uses a more complex fitness

assignment scheme based on sorting the population into groups depending on the dom-

inance of each individual. The algorithm is modified by [Deb02] to NSGA-II for better

fitness assignment and faster sorting.

In [Erba06] a comparison is made between SPEA2 and NSGA-II in the field of AE

of general embedded systems. The results show that NSGA-II is superior to SPEA2 in

CHAPTER 2. BACKGROUND 27

most of the test benches used. They gave almost the same results compared to the Pareto

optimal solutions, with NSGA-II being two times faster.

2.5.4.3 Other Multi-Objective Evolutionary Algorithms

There are other MOEA found in the literature, such as MOGA [Fons93], NPGA [Horn94],

PEAS [Know99], and Rudolph elitist GA [Rudo01]. MOGA, and NPGA share some fea-

tures. Both assign fitness to individuals based on non-dominated sorting, and both pre-

serve diversity among solutions of the same non-dominate level. SPEA-II and NSGA-II

are considered an evolution of these algorithms. PEAS use a single parent- single off-

spring EA strategy. A binary string is used to represent individuals. Starting from a

single parent, binary mutation is used to generate an off-spring, which is then compared

to its parent. If the off-spring dominates the parent, the parent is discarded and the off-

spring is used as a parent in the next iteration. If the parent dominate the off-spring, the

off-spring is discarded and binary mutation is used to generate a new off-spring. If non

of them dominate the other, they are compared to an archive that holds the best solution

so far.

Rudolph [Rudo01] introduced a simple MOEA based on a systematic comparison of

individuals from parent and of spring population. A non-dominant set is generated from

both populations as a result of this comparison. This set become the parent set in the next

generation. This algorithm is introduced without simulation to be compared with other

MOEAs.

In summary SPEA-II and NSGA-II are the most advanced and widely used MOEA.

They efficiently solve the AE problem provided a good evaluation scheme is used.

CHAPTER 2. BACKGROUND 28

2.6 Summary

This chapter introduced necessary background on reconfigurable devices, optimization

techniques and architecture exploration. The background material in this chapter can be

summarized as following:

• Modern FPGAs contain resources and capabilities that enable implementing a

complete system on a single chip. Several embedded modules are integrated with

the chip fabric beside several cores provided by the vendors to support different

DSP blocks.

• Architecture exploration is the task of optimizing system parameters to meet dif-

ferent design objectives. Multi-objective optimization techniques can be used to

search the design space of the given problem. Due to the large design space, tools

to assist the design are becoming necessary.

• Meta-Heuristic techniques give pareto-optimal solutions within a reasonable time.

Different meta-heuristic techniques can be used as search algorithms including

evolutionary algorithms that are efficient in exploring the solution space effec-

tively.

Chapter 3

Literature Review

Architecture exploration of embedded systems involves assembling different computa-

tion sub-system (processors, custom logic, memories, and peripherals) and communica-

tion sub-systems (buses and direct links) to meet the application constraints in the form

of speed, area and power consumption. The goal of architecture exploration is to effec-

tively search the design space of a given application to find an optimal or near optimal

hardware implementation that meets the specification. This process includes two main

steps: searching the design space to generate different possible architectures, and the

evaluation of all or a portion of the generated architectures. Depending on the method-

ology used to perform the exploration, the number of architectures generated will vary,

and the number of evaluated architectures will be different. Also, the abstraction level

used to perform different tasks is an issue in this process. The different research issues in

architecture exploration are illustrated in Figure 3.1. The root of the tree is the architec-

ture exploration process. Different research issues are shown in the second level of the

tree. The subsequent levels of the tree show the different methods and approaches used.

29

C
H

A
PT

E
R

3.
L

IT
E

R
A

T
U

R
E

R
E

V
IE

W
30

Architecture
Exploration

Level of
Abstraction

(Section 3.1)

Searching The
Design Space
(Section 3.2)

Evaluation
(Section 3.4)

Target
(Section 3.5)

Exhaustive Heuristic

Local Search Meta Heuristic

Statistical
Simulation

Analytical
Accurate

Evaluation

Trace Driven
Simulation

Genetic
Algorithms

Tabu Search
Simulated
Annealing

System Level
Transistor &
Gate Levels

Platform
Based Design

Methodoligies
(Section 3.1)

Orthogonalizatio
n of Concerns

&
The Y-Chart

Others

Separation
between

Application and
Architecture

Separation
Between

Computation and
Communication

Support Tools
(Architecture Describtion and Generation)

(Section 3.3)

Application
Modeling

Architecture
Description

Intelligent
Approaches

Architecture Exploration
Frameworks
(Section 3.5)

Figure 3.1: Architecture Exploration

CHAPTER 3. LITERATURE REVIEW 31

This chapter introduces literature review on architecture exploration methodologies,

frameworks and different evaluation techniques used to evaluate the quality of solutions

obtained. Coarse grained reconfigurable devices are also reviewed as a possible target

implementation platform.

3.1 Architecture Exploration Methodologies

Architecture exploration for embedded systems aims at finding the optimal hardware ar-

chitecture for a given application. This includes the computation resources that will be

used in the architecture, the mapping of different application modules into the computa-

tion resources, and communication resources used between different components. The

exploration methodology defines the modeling method of the application, the level of

abstraction used to process the exploration (usually system level) [Grie04], and the goal

of the exploration (architecture definition, mapping or communication mapping).

In [Keut00] the concept of orthogonalization of concerns is introduced. This paradigm

states that the separation of various aspects of the design allows more effective explo-

ration of alternative solutions. An essential aspect of this design methodology is the

separation between:

• function and architecture.

• communication and computation.

The first point indicates that the design of the architecture could be independent

from the application itself. This introduced the concept of “Platform Based Design”

[SV04, Mart02] in which a common platform could be used for the implementation of

CHAPTER 3. LITERATURE REVIEW 32

different applications by selecting different components from a core library and choosing

different design parameters. In this case the role of the exploration tool is to search the

design space specified by the platform parameters. The other important task for the tool

is to map the application to different components of the platform. The second point en-

ables exploring the communication between the different components in the architecture

independently of the architecture itself. By communication we mean bus configurations,

topologies and protocols that will be used for data communication between different

computation units. Several frameworks are dedicated for the exploration of the commu-

nication system of embedded systems [Wang05, Lahi04, Kim06].

The separation between function and architecture is the concept behind the Y-chart

scheme discussed earlier in section 2.3.1 and presented in [Liev01]. This scheme permits

multiple target applications to be mapped into one candidate architecture for evaluation

of their performance. It also enables mapping a single application into different architec-

tures to select the best architecture for a specific application. This scheme is employed in

several frameworks and focus mainly on the left side of the chart where the architecture

is explored.

In [Giva02b] a methodology is introduced for the architecture exploration of a param-

eterized platform. To reduce the search time, a graph is built to reflect the dependency

between different parameters. The Y-chart strategy is employed to separate application

design from the architecture. A mapping stage is used to map the application to hard-

ware. Besides, in this methodology the design space is partitioned into clusters according

to dependency between system parameters. Each cluster is exhaustively searched using

an iterative approach to find the optimal solution within the cluster. The authors sug-

gest the use of heuristic methods, such as genetic algorithms, to replace the exhaustive

CHAPTER 3. LITERATURE REVIEW 33

search since it is slow. This methodology is used mainly to optimize a parameterized

SoC, where the system is composed of a fixed number of parameterized components.

The use of this methodology with general architectures, where the computation units

are not defined, is not appropriate. That is because the design space in this case is very

huge (the architecture is not defined yet) and the design parameters are not will defined

[Giva02b, Asci05b].

The separation between the different design aspects of embedded system is a very

useful approach as it enables breaking the exploration process into sub tasks that could be

investigated separately (investigating the architecture independently from the application

for example).

3.2 Techniques for Searching the Design Space

Searching the design space is a basic task that has to be performed efficiently in architec-

ture exploration. In this section a review of different search strategies used in architecture

exploration frameworks is given. Frameworks are classified in this section according to

the employed search approach used to cover different points in the design space.

3.2.1 Searching the Design Space using Exhaustive Methods

Exhaustive search techniques are used to search the design space by covering all possible

solutions in the design space at the expense of high computation time [Forn02].

Exhaustive search is used in [Bech03] for the exploration of an SoC system designed

for GPS. The design flow in this work consists of two phases. Exhaustive search is

used in the first phase in which coarse-grain exploration is used to investigate different

CHAPTER 3. LITERATURE REVIEW 34

solutions at a high level of abstraction, which shortens the time required to search the

design space. In this phase the possible architectures suitable for the given problem are

evaluated and one candidate is selected. The selected architecture is tuned in the second

phase in which fine-grain exploration is performed to select the best parameters for the

selected architecture. Fine-grain exploration is performed at a lower level of abstraction

and different optimizations techniques could be used in this phase.

In the Platune framework [Giva02a] exhaustive search is used to search design space

clusters separately. These clusters are created by investigating the different design pa-

rameters and their dependency. Searching each cluster exhaustively take a much shorter

time than exploring the complete design space and all clusters could be searched in par-

allel.

In exhaustive search, the design space is searched iteratively to find the optimal solu-

tion (global minima). As this search technique is a very time consuming, some heuristic

should be used. In this section two approaches to speed up exhaustive search are re-

viewed:

• Perform exhaustive search in a high level of abstraction to speed the search pro-

cess. Low level tuning is performed on the selected architectures and exhaustive

search could be used here to search the design space which is reduced significantly

[Bech03].

• Use dependency between system parameters to partition the design space into clus-

ters, which are searched independently using exhaustive search [Giva02a].

In the next few subsections several heuristic methods and advanced meta-heuristics

will be further discussed.

CHAPTER 3. LITERATURE REVIEW 35

3.2.2 Searching the Design Space using Heuristic Methods

Heuristics are used when the exhaustive search is not applicable. Due to the huge com-

putational effort required by exhaustive search, several heuristic methods are used in

architecture exploration to speed up the search process.

3.2.2.1 Searching the Design Space using Local Search

Local search heuristic algorithms move from solution to solution in the design space of

the given problem until a sub-optimal solution is found or a time bound is elapsed. Local

search has the advantage of short search time, with the disadvantage of the possibility of

falling into local minima. It is usually combined with pre-analysis of the design space

with the hope that will increase the chance of finding the global minima.

Local search is used in [Forn02] to explore the memory hierarchy for embedded

systems. The authors introduce an iterative local search algorithm based on sensitivity

analysis of the objective function to design parameters. This sensitivity analysis is used

to move the starting point of the search close to a suspected global minima. The sen-

sitivity analysis could be used with other search techniques to improve its performance

[Giva02b].

Local iterative search is used in [Kim06] to explore bus-based SoC architectures .

Limiting the architecture to bus-based SoC reduce the size of the design space which

increases the chance of finding the global minimum (which is not guaranteed). The

iterative approach used in this work is simple but might get stuck in a local minima. This

method is also applied for specific class of architectures (bus based architectures) and

can be time consuming when used with more complicated architectures [Grie04]. Local

CHAPTER 3. LITERATURE REVIEW 36

search is used to build a tool for architecture exploration of dynamically reconfigurable

devices and is introduced in [Mira05]. Preprocessing is used to select (i)the starting point

of search and (ii)the method used to move from one solution to the other in order to reach

a solution at most a few percent away from the global optimum. The accuracy of the final

result depends on the choice of the starting point.

In summary, when local search used in architecture exploration, it is usually combined

with other techniques. These techniques aim to start the search from a point close to the

global minima and reduce the size of the design space to increase the chance that local

search find it. These approaches can be summarized in the following points:

• Sensitivity analysis that measures the change of the objective function to every de-

sign parameter. This help to reshape the design space to improve the performance

of local search [Forn02].

• Reducing the size of the design space by limiting the search to a specific architec-

ture [Kim06].

• Select the starting point and the method used to move from one point in the design

space to the other to reach a solution at most a few percent away from the global

optimum [Mira05].

3.2.2.2 Searching the Design Space using Meta-Heuristic Methods

Meta-heuristic methods are generally applied to problems for which there is no satis-

factory problem-specific algorithm or heuristic; or when it is not practical to implement

such a method. Most commonly used meta-heuristics are targeted to combinatorial op-

timization problems, but of course can handle any other sort of problems. The goal of

CHAPTER 3. LITERATURE REVIEW 37

combinatorial optimization is to find a discrete mathematical object (such as a bit string

or permutation) that maximizes (or minimizes) an arbitrary function specified by the user

of the meta-heuristic. As shown in Section 2.3, architecture exploration can be viewed

as a form of combinatorial problem. For this reason using meta-heuristic search tech-

niques in architecture exploration attracted several researchers. The use of evolutionary

algorithms in architecture exploration is introduced next followed by the use of other

meta-heuristic methods.

3.2.2.3 Searching the Design Space using Evolutionary Algorithms

In Chapter 2 the architecture exploration problem was introduced and shown to be a

multi-objective optimization problem. For this reason multi-objective evolutionary algo-

rithms introduced in section 2.5.3 are commonly used in architecture exploration [Grie04].

Several approaches are used in the literature to treat multiple objectives for the use

in evolutionary algorithms. One common approach is to use Pareto curves to define the

range of optimal solutions. From this category there exist several algorithms such as

SPEA , and NSGA (more information was given in section 2.5.3).

In [Erba06] the authors give a comparative study between two commonly used multi-

objective evolutionary algorithms, SPEA2 and NSGA-II (introduced in Section 2.5.3).

The comparison shows that NSGA-II superior SPEA2 in most of the test benches used.

They gave almost the same results compared to the Pareto-optimal solution, with NSGA-

II is two times faster. SPEA has the advantage of a simpler computation requirement.

SPEA [Zitz99] algorithm and its improvements (SPEA2, SPEA2+) [Zitz01, Zitz02]

are used in Spade framework [Liev01], Sesame framework [Pime06] for searching the

design space of a heterogenous embedded systems.

CHAPTER 3. LITERATURE REVIEW 38

In [Asci05a] SPEA2 is used for the exploration of two parameterized architectures;

VLIW and RISC. Sensitivity analysis of the system parameters is used to build a depen-

dency graph before searching the design space. This work was an extension of the work

introduced in [Giva02a].

The system level architecture exploration framework introduced in [Haub05] makes

use of PISA search strategy. PISA uses SPEA in the optimization phase [Bleu03]. This

framework is design for the architecture exploration of embedded systems targeting re-

configurable devices (FPGA).

NSGA-II usage is investigated in [Pime06] in heterogenous embedded systems, but

the authors selected SPEA for their implementation. NSGA-II is used in [Mouh06] to

optimize the implementation of a four processor system on reconfigurable architecture.

SPEA is widely used for architecture exploration although other algorithms such as

NSGA (and its variations) out perform SPEA. That is because the simple computation

requirement for fitness assignment [Erba06].

Another approach for working with multi-objective without the use of Pareto-curves

is to aggregate different objectives into a single objective (cost) function before the actual

search [Grie04].

This approach is used in [Shin04] to search the design for SoC design. The frame-

work is oriented toward the optimization of communication system as the backbone of

the system. The authors made use of weighted-sum function to combine multiple objec-

tives into a single cost function which is optimized using a simple evolutionary algorithm.

The problem of this approach is the selection of the weigh values of each objective. It

mainly depends on the design requirements which differ from one application to the

other.

CHAPTER 3. LITERATURE REVIEW 39

The same approach is used in [Kris06] where a graded penalty function is used as an

objective function in evaluating the quality of the designs. This framework is design for

high level synthesis of data-paths for data-dominated applications. An evolutionary algo-

rithms is proposed in this work based on a multi-chromosome representation to encode

the data-path, schedules and module allocations.

Different frameworks make use of multi-objective evolutionary algorithms to search

the design space during architecture exploration. The main advantage of evolutionary

algorithms is that they cover a wide range of solutions within the design space in a

reasonable time. Two common multi-objective evolutionary algorithms based on the

concept of Pareto optimality are used for searching the design space: SPEA (and its

alternatives), and NSGA (and its alternatives). SPEA has the advantage of a simpler

computation model, while NSGA has the advantage of better performance [Erba06].

Multiple objectives could be aggregated into a single cost function that is then opti-

mized using evolutionary algorithms (other optimization or search techniques could be

used). A common approach is to use weighted-sum function for the aggregation. While

this approach could minimize the computation cost required by the multi-objective ver-

sion of evolutionary algorithms (SPEA and NSGA), the selection of the weight of each

objective is very critical in the quality of the final solution [Grie04].

3.2.2.4 Searching the Design Space Using Other Meta-Heuristic Methods

In this section a review of other meta-heuristic methods in searching the design space

during architecture exploration is introduced.

In [Pale03], a framework for architecture exploration of embedded system is intro-

duced. A selection of heuristic methods to approximate a Pareto-optimal curves are used.

CHAPTER 3. LITERATURE REVIEW 40

The list of methods includes Random Search Pareto (RSP), the Pareto Simulated Anneal-

ing (PSA) [Suma04, Suma02], and the Pareto Reactive Tabu Search (PRTS)[Batt94].

These methods are used to explore a parameterized Design Space (DS) that defines a set

of feasible architectures. In this work different meta-heuristic methods are combined to

perform architecture exploration of a processor based parameterized system to optimize

the system parameters. Combining different methods makes use of the benefits of each

technique to cover a wide portion of the design space, and overcome the shortage of each

method working alone. Performing different search procedures at the same time can be

time consuming and reduces the benefits of using meta-heuristics search.

A multi-objective tabu search algorithm is introduced in [Slom04] to be used for the

architecture exploration of embedded systems. The introduced tabu search algorithm

uses the concept of Pareto optimality to evaluate each solution according to the differ-

ent objectives. The authors show the results for solving multi-objective optimization in

general.

The majority of the research in using meta-heuristic algorithms in architecture explo-

ration is devoted for the use of evolutionary algorithms. That is because of its ability to

cover more solutions which increases the chance to reach a global optimal solution.

3.3 Architecture Exploration Support Tools

In this section a review of some tools that could be used in modeling the application and

architecture to support architecture exploration is presented.

CHAPTER 3. LITERATURE REVIEW 41

3.3.1 Application Modeling

Several approaches exist in the literature to model the application at different levels of ab-

straction. Kahn Process Networks (KNP) [Kahn74] in which concurrent process commu-

nication is performed through FIFO-organized, unbounded, unidirectional point to point

channels, are used to model applications at a high level of abstraction. Each process rep-

resents a single computational task performed on its local data. Read operations from the

channel is blocking, the process stop until the required data are available, while write op-

erations are non-blocking because the number of channels is assumed unlimited. KNPs

are used in Artemis [Pime01], Spade [Liev01], and Sesame [Pime06, Erba06, Erba03]

frameworks to model the workload of the application to be used during exploration.

Symbolic programs yet another approach used to model the application for architec-

ture exploration [Zivk03]. In this method the application is converted into a symbolic

program that contains information about the application execution requirements such as

loops, conditions, and memory access. This symbolic program is then used during ex-

ploration to model the application. As this symbolic language is just an abstraction of

the actual application, its evaluation or simulation is much simpler and gives reasonable

results. In [Zivk03] an approach is presented to obtain a symbolic program for a given

application.

In [Govi05] a petri-net model is used for Network processor architectures. This

model is used with the Intel IXP architecture [Corp03] to provide a simulation model

that can be used to evaluate different candidate architectures. This work is used with a

specific architecture but the idea of petri-net modeling can be used to model applications

for the architecture exploration tool.

CHAPTER 3. LITERATURE REVIEW 42

Ptolemy is a Java-based component assembly framework with a graphical user inter-

face called Vergil [Le03]. The Ptolemy project studies modeling, simulation, and design

of concurrent, real-time, embedded systems. The focus is on assembly of concurrent

components. The key underlying principle in the project is the use of well-defined mod-

els of computation that govern the interactions between components. A major problem

area being addressed is the use of heterogeneous mixtures of models of computation.

Ptolemy includes a growing suite of domains, each of which realizes a model of compu-

tation. Examples of these models Continuous-time Modeling (CT), Dynamic Dataflow

(DDF) ,Discrete-event Modeling (DM), Finite State Machines and modal model(FSM),

Process Networks (PN), and Synchronous Dataflow (SDF). The framework also includes

a component library, in which most components can operate in several of the domains.

Ptolemy and its new version Ptolemy-II provide a good environment for the modeling

application in different computational models, and it can easily be integrated with other

tools [Le03].

3.3.2 Architecture Description

The architecture of an embedded system could be described at different levels of abstrac-

tions during architecture exploration. Different tools and frameworks introduce different

approaches for architecture description.

The PIRATE framework [Pale04] is used for exploration of a parameterized multi-

processor SOC architecture. In this architecture, IP Cores are connected using param-

eterized interconnection elements and switches. The framework generates an RTL de-

scription of the candidate architecture. This allows power estimation and performance

evaluation using Synopsys tools. The authors introduce an RTL generator for different

CHAPTER 3. LITERATURE REVIEW 43

architectures depending on the given user specification. This can be used for automatic

architecture exploration but the authors do not introduce one in their work. Automatic

generation of RTL models for different architectures could be employed in the architec-

ture exploration process, as it enables evaluating the generated architecture at the RTL

level. However, since evaluation at the RTL level might be time consuming, moving to

higher levels of abstraction is recommended. The V-SAT tool is introduced in [Khar01]

which is a visual tool for SoC exploration. It has three main components, EXPRESSION,

which is an Architecture Description Language (ADL), SIMPRESS, a simulator for ar-

chitecture analysis and evaluation, and V-SAT GUI, user interface for easy specifications

and detailed analysis. The tool does not include an automatic exploration feature. The

architecture description language and the simulator can be used for early design stage

manual/automatic exploration.

In [Mish03] the EXPRESSION language is used for exploration of pipelined processors

by automatically generating an RTL model for the candidate architecture. The gener-

ator tool generates a synthesizable RTL from ADL specification according to the user

constraints. The authors developed a VHDL model for each generic function and sub-

function that can be used in the implementation of the given architecture. Following

synthesis the architecture is evaluated and feedback is sent for further modifications. Us-

ing RTL description allows accurate simulation at RTL and Gate levels. But this will be

very time consuming. Also the tool does not employ the use of soft-core processor as an

implementation component, which affects the flexibility of the resulting system.

CHAPTER 3. LITERATURE REVIEW 44

3.4 Evaluation Techniques for Architecture Exploration

The evaluation of embedded systems plays an important role in the architecture explo-

ration process. Every candidate architecture generated during the search process should

be evaluated to measure its optimality. Accurate evaluation should guide the search pro-

cess towards a near optimal solution. Another effect of the evaluation process is that

accurate simulation is usually time consuming (gate level, cycle accurate simulation pro-

duce an accurate evaluation in the cost of long simulation time). Evaluation at a higher

level of abstraction can reduce the evaluation time significantly with the cost of reducing

the level of accuracy.

Several articles dealing with the evaluation of embedded architectures exist and we

attempt to review and summarize them in the following subsections. First accurate sim-

ulation is covered, followed by statistical simulation and analytical evaluation.

3.4.1 Accurate Simulation

In accurate simulation the behavior of the system is modeled on a clock cycle basis. It

means at any instance of time the state of the simulated model is identical to the actual

implementation. This enables extracting accurate performance measurements before im-

plementing the design. Accurate simulation could be performed at different levels of

abstractions. Instruction set simulators are required to simulate the behavior of different

processors at the instruction level. While the same processor could be simulated at the

RTL level while integrated with other components of the design. In this section a review

of some tools that is used to perform accurate simulation is given.

The WARTS framework is introduced in [Hill93]. It provides a set of tools for (i) pro-

CHAPTER 3. LITERATURE REVIEW 45

filing applications running on MIPS and SPARC systems, (ii) cache performance profiler.

(iii) Cache simulator. This tool set can be used to analyze application performance on a

specific architecture. However, it does not provide any power analysis.

SIMIC tool is introduced in [Magn95]. It is an instruction level simulator. It can be

used for efficient memory system analysis in embedded systems. Again this framework

does not support power analysis. It can only give performance estimation for the memory

system, hence can help in system optimization.

SimpleScalar [Burg97] is yet another tool set for simulation of MIPS like architec-

tures (SimpleScalar architecture). This tool set provides a fast and accurate simulation for

applications running on an architecture derived from MIPS-IV ISA. The authors provide

a set of tools for functional simulation, cache simulation, profiling and timing simulation.

However the tool lacks any power analysis as well.

Energy estimation and optimization is added to SimpleScalar using SimplePower

framework introduced in [Vija00]. SimplePower makes use of the SimpleScaler tool-set

to perform a transition sensitive, cycle accurate energy evaluation.

WATTCH framework is introduced in [Broo00]. It is built over SimpleScalar and

provides it with a power evaluation methodology that is missing in SimpleScalar. The

WATTCH framework is widely used for evaluation of candidate architectures in archi-

tecture exploration operation.

An Instruction Level Simulator (ILS) is introduced in [Hadj03, Hadj99]. This sim-

ulator provides an accurate performance evaluation for different architectures specially

VLIW architectures. This tool can be used for efficient architecture exploration. The ex-

ploration tool can generate different architectures using the Instruction Set Description

Language (ISDL) [Hadj00]. This language is used to describe different architectures.

CHAPTER 3. LITERATURE REVIEW 46

After describing the architecture using ISDL, the ILS is used to performance evaluation

of the new architecture. The tool set also includes a synthesis tool from ISDL. It can help

in later development stages.

The High level Performance Estimator (HiPerE) is introduced in [Moha02]. This

tool is part of the MILAN framework [Baks01] which is an integrated framework for

simulation of embedded systems. The authors introduce a General Model (GenM) which

captures the capabilities of a large class of SoC architectures. This simulator is used for

architecture exploration in MILAN framework [Baks01].

Accurate simulators provide cycle by cycle measures of the embedded system. This

process is very time consuming and is suitable only for the verification of the final design.

3.4.1.1 Trace-Driven Simulation

In trace-driven simulation, an initial program run is performed to extracts all memory

accesses and store them in a trace which is used for performance estimation. It is more

efficient in the estimation of the performance of the memory sub-system. But the concept

could be applied for the estimation of the complete system performance. Trace driven

simulation is used in several frameworks for the evaluation the generated architecture.

In [Kim06] it is used for the evaluation of bus-based SoC architecture. In [Bech03] it

is used for the evaluation of a multi-processor configurable chip (SPP chip-set). And in

[Liev01] it is used for the evaluation of a heterogenous embedded system.

3.4.2 Statistical Simulation

The basic idea in statistical simulation is to model a workload’s important performance

characteristics with a synthetic trace, and execute the trace in a statistical simulator to

CHAPTER 3. LITERATURE REVIEW 47

obtain a performance estimate. Because the performance estimation quickly converges,

the simulation speed is improved dramatically and so it is a good choice for architecture

exploration [Josh06]. In [Oski00] Hybrid Processor Simulator (HLS) is proposed. It uses

statistical and symbolic execution to evaluate design alternatives. It does not simulate a

precise order of program instructions, but it uses statistical profile of the application pro-

gram to generate a synthetic instruction stream. This stream, is symbolically executed

like normal simulators. The statistical profile is based on the workload of the application.

The authors use a processor structure close to the one used with SimpleScaler simula-

tor [Burg97]. This structure is configurable to enable validation against MIPS R10K

processor.

An improved version, HLS++ is introduced in [Bell04] by modeling the workload at

the granularity of the basic block and by changing the processor model to more closely

reflect components in modern microprocessors. The authors claim that these modifica-

tion raises the accuracy of HLS by a factor 3.78.

In [Josh06] an enhanced version of HLS++,(SS-HLS++) is introduced. This tool

profiles the input program to collect statistics about its execution (Statistical Profile). The

statistical profile is used to generate a synthetic trace. The instructions in the synthetic

trace are simulated using trace-driven simulator to obtain a performance estimate. They

introduced an improvement in each step to increase the accuracy of HLS++.

Statistical simulators in general are faster, and less accurate than cycle-accurate sim-

ulators. They require the existence of statical information about the application. The

statistical information requires an efficient profiler which might not be available for most

of the processors used in the framework.

CHAPTER 3. LITERATURE REVIEW 48

3.4.3 Analytical Evaluation

In analytical evaluation the performance of the embedded system is estimated using an-

alytical models that give a high level of abstraction of system components. The overall

performance of the system is estimated using the component models. This estimation

is performed using analytical evaluation scheme that is developed from the knowledge

about the behavior of the system. Evaluation results are obtained in a reasonable time

compared to accurate simulation. The accuracy of analytical evaluation depends on the

accuracy of the developed analytical model for system behavior and components.

A combined simulation and analytical estimation framework is introduced in [Chak03b]

for network processor architectures. The authors propose an analytical model for net-

work processors that can be used for performance simulation and evaluation for such

systems. Their analytical model is based on a real time calculus introduced in [Chak03a]

that can be used in the analysis of various system properties, timing and loads of different

components.

Analytical evaluation provides an estimation for the performance of embedded sys-

tems. The accuracy of analytical evaluation is lower than other evaluation techniques,

but the speed gained from using this technique makes it suitable for use in the process of

architecture exploration.

Some work is presented for using artificial intelligent approaches such as neural net-

works and fuzzy logic combined with analytical analysis to improve the its accuracy.

Neural networks are used for performance estimation in [Oyam04]. This work introduce

a methodology for training and using neural networks for the estimation of the perfor-

mance of different architectures.

CHAPTER 3. LITERATURE REVIEW 49

In [Hart01] a survey of different CGRA architectures, and fuzzy logic is used for the

evaluation of different implementation during architecture exploration of these architec-

ture. The use of artificial intelligent approach for embedded system evaluation is very

interesting and requires more investigation.

In [Yi06] a survey of simulation and benchmark tools available and their use in ar-

chitecture exploration is introduced. It gives a good comparison of different types of

simulators and detailed steps involved in using them for architecture exploration.

3.5 Architecture Exploration Frameworks

Different frameworks are found in the literature that support architecture exploration.

A group of these frameworks are geared for the exploration of a specific parameterized

architecture. A parameterized architecture is a predefined architecture that has fixed

main parameterized computation units, and it has the ability to change parameters such

as memory size, bus width, cache size and cache association [Giva02b, Giva02a]. The

architecture exploration framework goal is to choose system parameters that meet the

application requirements. Another group of frameworks deal with a generalized archi-

tecture model (i.e., no predefined architecture). The framework is responsible for gen-

erating a suitable architecture, including all the system components and parameters for

the given application. These frameworks may also include tools for profiling and sim-

ulation. Some frameworks are limited for the exploration of the memory hierarchy of

the architecture. Other frameworks are dedicated for exploring the communication sub-

system of embedded systems. In this case the computation sub-system and the mapping

of different software blocks to computation sub-system is defined and the framework is

CHAPTER 3. LITERATURE REVIEW 50

used to optimize the communication between different computation modules according

to the software model.

3.5.1 Exploration of the Communication Sub-System

In this section a review of some frameworks that deals with the exploration of the com-

munication sub-system is introduced. Communication sub-system refers to different

buses , direct links, and protocols used for the communication between different compu-

tation modules in the architecture.

An architecture exploration approach for SoC design is introduced in [Shin04]. This

approach is centered on the optimization of the communication sub-system and during

this optimization application mapping is performed. The concept of separation between

computation and communication is employed here. This work makes use of a standard

parameterized bus architecture as the backbone of the system. A simple genetic algo-

rithm is used for the optimization of the parameterized bus system. The optimization

is performed in three steps. First, a system interconnect is optimized based on spec-

ifications with pseudo masters that characterize the behavioral requirements of them.

Then, the mapping of multiple IPs to multiple interconnects is to be optimized. (Hard-

ware/software partitioning is also performed in this phase.) Finally, each IP is fine-tuned

to fully exploit the optimized interconnect. The GA (evolutionary algorithm) is used to

generate a population of configurations using normal operations (crossover , mutation).

Each architecture corresponding to a configuration is simulated at the RTL level using

cycle accurate simulation. The simulation results are used to select the best individual.

The authors also compare GA with simulated annealing. They suggest that GA outper-

forms SA according to their experimental results as it finds optimal solution faster and

CHAPTER 3. LITERATURE REVIEW 51

more reliable in general, while SA heavily depends on the quality of the initial configura-

tion. The evaluation of the generated architectures is performed using tools provided by

the bus architecture provider. That makes this approach very dependant on the used ar-

chitecture, although the authors assumes that this approach could be applied for general

SoC design.

Iterative exploration for bus-based SoC architecture is introduced in [Kim06]. The

authors introduce a multi-step iterative approach for bus architecture exploration. The

technique is composed of three phases. In the first phase a list of possible candidates

is quickly generated and evaluated using performance estimation method introduced in

[Kim03], which has an estimation error of 10%. This estimation method is based on the

queuing model of the system where processing elements are regarded as customers and

a bus with its associated memory is regarded as a single server. The performance is esti-

mated by calculating the utilization of that server. In the second phase of the exploration

process trace-driven simulation is used to carefully examine the candidate architectures

selected earlier. If the performance of the best candidate is not improved from the pre-

vious iteration, the search loop is terminated. Otherwise it continues to phase three, in

which a new set of candidate architectures are generated by changing the processing ele-

ments or the bus architecture and is fed to the next iteration. The iterative approach used

in this work is simple but might get stuck in a local minima. This methodology also is

applied for specific class of architectures (bus based architectures) and can be time con-

suming when used with more complicated architectures.

Frameworks in this category make use of the concept of separation of concerns be-

tween computation and communication sub-systems. The optimization of the communi-

CHAPTER 3. LITERATURE REVIEW 52

cation sub-system is performed separately from the computation system.

3.5.2 Exploration of the Computation Sub-system

Computation sub-system refers to the different components of the systems such as pro-

cessors, memories, peripherals and hardware accelerators. In this section different frame-

works used for exploring the computation sub-system is presented.

3.5.2.1 Frameworks for the Exploration of Parameterized Architecture

This category of frameworks deal with the exploration of parameterized SoC, where the

system is composed of a fixed number of parameterized components. The framework is

used to optimize these system parameters.

A framework for architecture exploration of embedded system is introduced in [Pale03].

A selection of heuristic methods to approximate a Pareto-optimal curves are used. These

methods are used to optimize a parameterized system. The WATTCH frame work [Broo00]

is used for simulation and evaluation for the different resulting architectures. The frame-

work is used to optimize a super-scaler microprocessor-based system.

A framework for architecture exploration for an SoC system designed for GPS hand

held devices is introduced in [Bech03]. The framework is used to explore the design

space of a multi-processor configurable chip (SPP chip-set). The design flow consists

of two phases. The first phase performs a coarse-grain exploration in which the solution

is investigated exhaustively at a higher level of abstraction. In this phase the possible

architectures suitable for the given problem are evaluated and one candidate is selected.

Using high level of abstraction during this phase shortens the time required to search the

design space. Two performance metrics are used for system evaluation; the execution

CHAPTER 3. LITERATURE REVIEW 53

time and power consumption. The selected architecture is fine tuned in the second phase

in which fine-grain exploration is performed to select the best parameters for the selected

architecture. Trace driven simulation is used for evaluating the candidate architectures.

The application is modeled using a graph that defines the work load of the application

on the different architecture components. Using two-steps optimization is supposed to

reduce the search time for the optimal solution. The main idea of this work is to use

a high level of abstraction during the first phase that performs the real search. This

approach does not guarantee that the selected architecture is the optimal one. It might

give satisfying results for the chip-set and the specific applications it designed for.

The architecture exploration methodology introduced in [Giva02b] is used to build

the Platune framework [Giva02a] which is also based on a parameterized multi-processor

SoC introduced in [Giva02b]. The framework includes a set of simulators for the CPU,

cache and memory for architecture evaluation. As discussed before in section 3.1 the

methodology is based on finding the dependency between the parameters of the SoC.

So applying the methodology on other architectures my not be possible. Also when the

architecture is not defined the task will be more difficult. In [Asci04a] multi-objective

evolutionary algorithms replaced exhaustive search for exploring the design space clus-

ters generated by the dependency graph.

Another framework based on the multi-objective evolutionary algorithms (MOEA) is

introduced in [Asci05a]. SPEA2 is used to search the design space. The authors make

use of SPEA2 for the exploration of two parameterized architectures, VLIW based ar-

chitecture and RISC based architecture introduced in [Giva02a]. Their VLIW architec-

ture is described in [Asci01, Asci05b]. The use of SPEA2 in exploration is discussed

in [Asci04a, Asci04b]. The authors show a detailed description of using SPEA2 to

CHAPTER 3. LITERATURE REVIEW 54

model their parameterized architecture. The concept of dependency graph that enables

clustering the design space according to the parameters of the underlying architecture

[Giva02b], is used with the VLIW architecture. Instead of using exhaustive search,

MOEA is used to search each cluster. The dependency graph will remain the issue of

this approach as it is architecture dependent, and with more generalized architecture it

might be impossible to form such a graph.

Design space exploration for a multi-processor on chip is introduced in [Mouh06].

In this work NSGA-II multi-objective evolutionary algorithm is used to optimize the im-

plementation of a 4-processor system on FPGA. MicroBlaze soft-core processor is used

to build the multi-processing system. The system is used to implement a simple net-

work on chip protocol for message transfer between the four processors. The goal of

this framework is to optimize the implementation resources of the FPGA. Three objec-

tives are selected for optimization: number of used blocks of the block ram (memory

blocks on FPGA), number of slices used, and number of cycles used. By varying the

configuration parameters of four MicroBlaze soft cores, different alternative architec-

tures could be generated. The evaluation of each architecture is performed through the

real implementation on FPGA board connected to a host workstation. The information

collected from the real implementation is used to measure the optimality of each gener-

ated architecture. The authors compare this evaluation approach with cycle accurate RTL

simulation of each generated architecture, and their results show that the physical imple-

mentation gives faster evaluation than RTL simulation, although it remains in the hours

range. This approach is suitable only for implementing multi-processing systems using

soft-core processors on FPGA. It can not be applied for hard core processor, where no

configuration could be made to control resources, or with ASIC implementation where

CHAPTER 3. LITERATURE REVIEW 55

real implementation is not possible.

3.5.2.2 Frameworks for the Exploration of Generalized Architectures

In this section a review of architecture exploration frameworks used for the exploration of

a generalized architecture is given. These frameworks are used to generate a sub-optimal

heterogenous architecture for a given application.

An architecture exploration tool for dynamically reconfigurable architectures is in-

troduced in [Mira05]. A local search algorithm is used to build a tool that aims to select

computational resources, mapping of application nodes to the computational resources,

and task schedules on the programmable processors for the implementation on a dy-

namically configurable device. Two performance metrics are used during optimization:

computation time, and solution cost. This tool is designed specifically for configurable

devices (FPGAs) that support dynamic configuration (an example is Virtex family from

Xilinx). The selection of the starting point of search and the move from one solution

to the other are developed in order to reach a solution at most a few percent away from

the global optimum. The disadvantage of this tool is that it is designed to employ a spe-

cific task graph that represents the scheduling of the application and the mapping of each

node to the hardware architecture. This graph is used to evaluate each solution during the

search by determining the longest path in the graph, which give an approximate evalua-

tion of the systems. Combined with the local search algorithm used the resulting solution

will be far from the global optimal solution.

The Architectures and Methods for Embedded Media Systems (Artemis) [Pime01]

is a design framework that provides tools of modeling and simulation for embedded

systems. It efficiently explores the design space of heterogeneous embedded systems,

CHAPTER 3. LITERATURE REVIEW 56

at multiple levels of abstraction, and for a wide range of applications that run on these

architectures. The Artemis framework is based on two simulation frame works: Spade

framework (system-level performance analysis and design space exploration)[Liev01],

and the Sesame framework (simulation of embedded-system architectures for multilevel

exploration)[Pime06, Erba06, Erba03].

The Spade framework is introduced in [Liev01]. It is used with heterogenous signal

processing systems to quickly build models of architectures at a high level of abstraction.

The application is modeled using Kahn Process Networks [Kahn74] in which processes

are connected through unbounded FIFOs. This framework is integrated with the explo-

ration system in [vdH00] to generate and evaluate different architectures in the design

space. The evaluation is performed through Co-Simulation of the application and the

architecture using trace driven simulation.

The Sesame framework is introduced in [Pime06]. In this framework multi-objective

optimization evolutionary algorithms (MOEA) are used for architecture exploration. The

architecture exploration problem is formulated in [Erba03]. Their evaluation model and

the use of MOEA is introduced in [Erba06]. This framework includes a complete set of

tools that can be used for the architecture exploration of heterogenous systems.

A system level architecture exploration framework based on evolutionary algorithms

and slack-based list scheduler is introduced in [Haub05]. This framework supports ex-

plicit communication modeling and time-multiplexed architecture modeling in a single

model. The application is modeled using a process graph. This framework employs PISA

[Bleu03] evolutionary framework as the optimization engine. The authors emphasis the

support of explicit communication during system level design space exploration. This

framework is used for the architecture exploration of embedded systems targeting recon-

CHAPTER 3. LITERATURE REVIEW 57

figurable devices (FPGA), when multiple configurations are required to be scheduled on

a single device. The exploration process handles both the scheduling and communication

optimization. Architectures are modeled using a process graph where both scheduling

and communication could be represented.

In a system level design methodology is introduced for the exploration of the mem-

ory hierarchy for embedded systems. Their goal is to specify the cache size, memory

size, association levels and other parameters that define the memory sub-system. To re-

duce the search time, the authors introduce an iterative local search algorithm based on

the sensitivity analysis of the cost function with respect to the tuning parameters of the

memory sub-system. Sensitivity analysis entails measuring the change of the objective

function to every design parameter which is performed in the first phase of the optimiza-

tion process. In the second phase a local search algorithm that exploits the sensitivity

information is performed. This approach is assumed to perform a faster search. Evalua-

tion of the possible architectures is performed using a mix of cycle-accurate Instruction

Set Simulator (ISS), and analytical evaluation. Sensitivity analysis here is used with lo-

cal search which limited the benefits of this method. Using other search techniques with

the sensitivity analysis could result in avoiding local minima.

A framework for design space exploration during high-level synthesis of data-paths

for data-dominated applications is introduced in [Kris06]. The framework uses GA to

concurrently perform scheduling and allocation with the aim of finding schedules and

module combinations that lead to superior designs while considering user-specified la-

tency and area constraints. The authors propose a new GA technique that makes use of a

multi-chromosome representation to encode data-path schedules and module allocations

and efficient heuristics to minimize functional and storage area costs, while minimizing

CHAPTER 3. LITERATURE REVIEW 58

circuit latencies. The framework provides the flexibility to perform different types of

scheduling using a simple and fast list-scheduling technique. A graded penalty function

is used as an objective function in evaluating the quality of designs to enable the GA

to quickly reach areas of the search space where designs meeting user constraints are

most likely to be found. Using GA gives the framework the ability of generating several

alternative data-path designs. The proposed GA also performs register minimization for

the data-path design. The proposed GA has the advantage of using multi-chromosome to

represent different architectures,but it is designed for a specific problem. Applying this

approach for other applications requires further investigation.

Different frameworks discussed in this section are summarized in Table 3.1. Sev-

eral architecture exploration frameworks deal with the exploration of a parameterized

SOC platform based on a single processor by changing the platform parameters (Mem-

ory size, Cache size and communication configuration). Other frameworks deal with the

exploration of a generalized architecture which may include several processors commu-

nicating through a communication network. Mutli-objective evolutionary algorithms are

commonly used for searching the design space during architecture exploration. Different

evaluation techniques at different levels of abstractions are used for the evaluation of the

generated architectures.

C
H

A
PT

E
R

3.
L

IT
E

R
A

T
U

R
E

R
E

V
IE

W
59

Project Year Architecture Modeling Optimization Technique Employ
Y Chart

Abstract
Level

Evaluation

[Kim06] 2003 Communication Sub-
system (Parameterized
Bus Architecture)

RTL Model GA No RTL Level Cycle Accurate Simula-
tion of the RTL model.

[Shin04] 2004 Communication Sub-
system

Queuing Model Multi-Step Iterative Ap-
proach

Yes 1st Phase: Queuing
Model
2nd Phase: Trace Driven
Simulation.

Platune [Giva02a,
Giva02b]

2001 Computation Sub-
System (Parameterized
SOC based on MIPS
R3000)

Parameterized SOC Cluster Design Space us-
ing Parameter Depen-
dency Graph. Exhaus-
tive search explores each
cluster.

Yes System
level

Different Simulators for
CPU, cache and inter-
connection buses.

DSE [Pale03] 2003 Computation Sub-
System (Parameterized
SOC)

A Collection of Heuris-
tic Methods (RSP, PSA,
PRTS)

No System
level

Using WATTCH Frame-
work [Broo00]

[Bech03] 2003 Computation Sub-
System (Parameterized
Multi-processor Chip)

Multi-Level Exhaustive
Exploration

No Multi-
Level

Trace Driven Simulation

Ascia et al [Asci05a,
Asci04a, Asci05b,
Asci04b, Asci01]

2004-
2005

Computation Sub-
System (Parameterized
VLIW Architecture)

Parameterized SOC Cluster Design Space us-
ing Parameter Depen-
dency Graph. SPEA2
explores each cluster.

Yes System
Level

Estimation of Different
Measures (Performance,
area, and power)

[Mouh06] 2006 Computation Sub-
System (Parameterized
Multi-processor System
Using MicroBlaze)

RTL Model NSGA-II Multi-
Objective Evolutionary
Algorithm

No RTL Level Performance Mea-
sured from Physical
Implementation

Table 3.1: Summary of Architecture Exploration Frameworks

C
H

A
PT

E
R

3.
L

IT
E

R
A

T
U

R
E

R
E

V
IE

W
60

Project Year Architecture Modeling Optimization Technique Employ
Y Chart

Abstract
Level

Evaluation

SPADE [Liev01] 1999 Computation Sub-
System (Explore Het-
erogeneous Signal
Processing Systems)

Kahn Process Networks Integrate with the frame-
work of [vdH00] to gen-
erate and evaluate differ-
ent architectures in the
design space

Yes System
Level

Co-Simulation using
Trace Driven Simula-
tion.

[Forn02] 2002 Computation Sub-
System (Memory
Hierarchy Exploration)

Sensitivity Analysis and
Local Search

No Cycle Accurate Instruc-
tion Set Simulator (ISS)

Sesame [Pime06,
Erba06, Erba03]

2006 Computation Sub-
System (General Hetero-
geneous Architecture)

Kahn Process Networks Multi-objective Opti-
mization Using SPEA2

Yes System
Level

Co-Simulation using
Trace Driven Simula-
tion.

[Mira05] 2005 Computation Sub-
System (Dynamically
Reconfigurable Archi-
tectures)

Task Graph and RTL
Model

Local Search No RTL Level Cycle Accurate Simula-
tion

[Haub05] 2005 Computation Sub-
System (Embedded
Systems Targeting
Reconfigurable Devices)

Process Graph and RTL
Model

PISA Evolutionary
Framework

No RTL Level

[Kris06] 2006 Computation Sub-
System (Scheduling and
Allocation for Data-Path
Design)

GA with graded objec-
tive function, and Multi-
Chromosome Represen-
tation

No

Table 3.1: Cont ..

CHAPTER 3. LITERATURE REVIEW 61

3.6 Target Implementation - CGRA

Architecture exploration of embedded systems aims to propose an efficient hardware im-

plementation for a given application. The target platform of the architecture exploration

process affects the design space explored. In section 2.1 a background of the different

implementation approaches was given. An important class of these approaches is recon-

figurable devices. Reconfigurable devices such as FPGA was the goal of several architec-

ture exploration frameworks in the literature such as [Mira05, Haub05]. Coarse grained

reconfigurable arrays are another possible platform for implementing of embedded sys-

tems. In this section a review of some coarse-grained reconfigurable arrays (CGRA) and

their support for architecture exploration are presented.

Fine-grained reconfigurable logic devices (FPGAs) allow the design of hardware

down to the required bit level through configurability. If an application requires 7 or

17-bit arithmetic for an operation, the hardware can directly be configured to fit what is

needed. The configurability of this devices comes at the cost of more circuit area, more

power consumption, and lower speed. Every level of configurability requires more mul-

tiplexing, buffering, routing, and/or memory, thus, requiring more transistors and their

interconnection.

Several researchers have studied the use of more coarse-grained reconfigurable de-

vices in [Also00, Bitt97, Chen92, Wang93, Ebel96, Gold00, Hart94, Haus97, LN03,

Mars99, Mirs96, Miya98, Srik00, Wain97, Zhan00]. These devices consists of an array

of more coarse operators forming a reconfigurable computing machines. This category

of devices has the advantages of less circuit area, less power consumption, and higher

performance. The use of coarse-grained configurable arrays (CGRAs) also make it easier

CHAPTER 3. LITERATURE REVIEW 62

Compute
Resources

Programmable
Routers

Figure 3.2: Raw Microprocessor Array Architecture

to target for higher level development tools. System level design and platform based de-

sign rules can be applied to build tools for CGRAs. In [Hart01] a comparison between 19

different architectures was carried out. The comparison shows that there is no common

structure that can be used for all applications, which means that the design of CGRAs is

application dependent. Coarse-grained operators inside CGRAs are optimized to work in

a specific application domain to gain an efficient implementation. The application should

meet the domain requirement of the CGRA to gain a significant improvement compared

with other configurable devices.

The Raw chip is introduced in [Tayl02, Wain97] from MIT. It is a two-dimensional

array of programmable tiles, each having: a 32-bit MIPS-like microprocessor, local in-

struction and data caches, and a 32-bit pipelined floating point unit (FPU) as well as

several routers and writing channels to support the four on-chip 2-D mesh networks. The

structure of this chip is shown in Figure 3.2. It shows a 4× 4 Raw array that has actually

been fabricated [Tayl02].

The Raw machine uses a switched network for communicating directly between the

CHAPTER 3. LITERATURE REVIEW 63

processors. The length of wires in the architecture is bounded by the width if a tile and

each routing segment is registered on tile boundaries. There are two types of commu-

nication networks. One is statically configured for predictable performance. This type

provides a high performance compared to traditional multi-processor communication.

The other type is dynamically configurable through wormhole routing [Bitt97].

The structure of the static network of the raw machine allows it to operate as a

pipeline of ALUs and FPUs for a stream of data.

The dynamic networks, on the other hand, are used for less predictable forms of data

movements such as cache misses, some forms of data I/O, and operations that happen

only occasionally.

Most of the internal operations are handled by the compiler. The compiler control

cash coherency, cache misses, and routing of data over the internal routing.

Another example of CGRA is PipeRench [Gold00, Schm02], a project from Carnegie

Mellon University. It was implemented with the goal of developing a reconfigurable

device for hardware virtualiztion. The structure of this device is shown in Figure 3.3 by

employing runtime configuration. The structure of the device enables any application

even if it does not fit to still execute. The use of coarse-grained architecture reduces the

amount of configuration data that must be quickly swapped in and out of the hardware

regions in the CRGA.

The hardware is organized in pipeline stages called “stripes”. Each stripe consists of

16 processing elements (or PEs) that contain 8-bit-wide logic and an 8-entry register file.

PEs in each stripe are interconnected in a way that support virtualiztion.

Each PE contains shifters and multiplexors that can be configured to operate on in-

puts, and a collection of 8 3-bit LUTs. In addition to the LUTs, specialized carry logic is

CHAPTER 3. LITERATURE REVIEW 64

Stripe 0 PEPEPE PE

Stripe 3 PEPEPE PE

Stripe 1 PEPEPE PE

Stripe 2 PEPEPE PE

R0 State Store

128

Register File
Connections

Configuration Store

762

Input Queue

128

Output Queue

128

Figure 3.3: PipeRench Architecture

also included to support fast addition. Using the interconnect available, the PEs can be

easily combined to form wider operations, including wide shifts using the input shifters.

The configuration of the entire stripe require transferring 672 bits of data.

If the application does not fit the physical hardware, the entire stripe can be swapped

out and other stripes can be loaded. As the amount of information required to perform

swapping is small, this structure can be used for real time virtualization of large applica-

tion.

On chip registers are used to store the configuration data of each strip, both running

and swapped out. So if a strip is required to be swapped out, it is transferred directly from

there registers. The structure of PipeRench can store up to 256 virtual strips [Schm02].

PipeRench supports applications with only limited feedback. Despite this, many

data-path-oriented application-such as FFTs, DCTs, and many encryption algorithms-

require only feed-forward structures and map reasonably well to the architecture. This

structure combines the concept of coarse-grained operators, and runtime reconfigurabil-

CHAPTER 3. LITERATURE REVIEW 65

ity.

Another CGRA architecture called RaPiD [Ebel96, Cron99, Cron98, Ebel97] (for

Reconfigurable Pipelined Data-path) was developed by the University of Washington.

This structured is developed to be a coarse-grained architecture, that can be targeted

to a specific application domain and support development at high level of abstraction.

RaPiD’s architecture provides the end user with the required tools to ease the application

development. Other researchers still investigating the same architecture and related ones

[Comp04, GmbH].

The structure of RaPiD architecture is shown in Figure 3.4. As shown the coarse-

grained functional units has a common data bus with width between 8- of 32-bits. There

is a single flexible routing channel connect these channel.

Data stream from external memory is controlled through a Stream Manager. It con-

trol the data in/out from the CRGA architecture. This architecture supports runtime

reconfiguration. Some functional units can be altered during the operation of the appli-

cation. The dynamic configuration is controlled through an Instruction Generator, and a

Configurable Instruction Decoder.

The number and function of the functional units depends on the application domain

for which the device will be used. ALUs, multipliers, registers, and even processors.

Other units can be added to depending on the application. For example hardware FFT

unit can be added for the DSP application domain.

The routing channel has segments of various lengths to support communications at

different distances between function units. This interconnection is also dynamic to sup-

port runtime configuration. This routing structure has the ability to support feedback

connection through some segments of the routing system. This enables implementing

CHAPTER 3. LITERATURE REVIEW 66

Configurable Interconnect

Configurable Instruction Decoder

F
IF

O

F
IF

O

A
L

U

M
U

L
T

R
A

M

R
E

G

F
IF

O

F
IF

O

A
L

U

M
U

L
T

R
A

M

R
E

G

Stream
 Manager

Instruction Generator

External
Memory

External
Sensor

Input Stream Output Stream

Figure 3.4: RaPiD Architecture

some logic that require feedback.

The Stream Manager, which produces the input data and consumes the output data,

is essentially a memory interface with an address generator and FIFO for each input or

output stream.

XPP is a commercial CGRA and stands for the eXtreme Processing Platform(XPP)

[Baum03, GmbH]. It is a computing array with a data-driven processing model and hier-

archial configuration management developed by PACT ”Informations techologie GmbH”.

The PACT XPP was developed to handle streaming data applications such as signal or

media processing. It is provided as an IP for custom VLSI implementation.

The architecture of the XPP device is shown Figure 3.5 at four different levels. The

XPP device consists of several Processing Array Clusters (PACs). A configuration man-

agement (CM) unit controls the configurability of the array. There are different level of

configurability management. Supervising CM control the overall configurability of the

CHAPTER 3. LITERATURE REVIEW 67

device. Each cluster has a CM that controls its configurability, forming a configuration

management hierarchy.

The PAC itself is an array of Processing Array Elements (PAEs) connected through

switch boxes for routing between vertical and horizontal busses, and switches for seg-

menting the horizontal busses. Each PAC also includes I/O resources as well.

Each PAE contains three units: a function unit, a forward register (FREG), and a

backward register (BREG). The function unit can be an ALU Object or RAMs. The

FREG and BREG objects are used for routing support, data flow, counters, adder/subtractors

and barrel shifters.

The ALU object can consume and produce data based on the data driven computation

model. It produces two types of packets, data packets that contain the results of an

operation and the event packets that contain the condition or state bits resulting from the

operation.

XPP makes use of a data-driven computation model which mean that functional units

operate only when all of their inputs are available, and their output is read by the next

XPP unit. The CM units communicate with PAEs to know when they can be reconfig-

ured. This enables runtime reconfiguration of the PAEs during operation.

The hierarchical configuration management system also enables configuring differ-

ent parts of the device with different applications. So each part of the device operate

independently.

Field Programmable Object Array (FPOA) produced by MathStar [Helg03] is an-

other example of CGRAs. The MathStar architecture is intended to be optimized for a

particular application domain. The customer chooses the functional units required for his

application. This functional units is called Silicon Objects. These objects are designed to

CHAPTER 3. LITERATURE REVIEW 68

PAC
I/O

I/O

CM

PAC
I/O

I/O

CM

PAC
I/O

I/O

CM

PAC
I/O

I/O

CM

SCM

RAM

Config.
Manager SM

I/O

I/O

Config
Bus

XPP Device
PAC & Configuration Manager

ALU
Object

FREG
Object

BREG
Object

PAE

data/event
inputs

Config
Reg

&
SM

data/event
outputs

ALU

ALU-Object KEY

Switch

PAE

Connection Box

Figure 3.5: PACT’s eXtreme Processing Platform

CHAPTER 3. LITERATURE REVIEW 69

fit in any part of the design. This makes the device cost effective and shortens the time-

to-market. The device is structured as a two-dimensional object array. The design of

this FPOA provides a time to market of less than a month with 1-GHz operation speeds.

Figure 3.6 shows the internal structure of this device. The array can be heterogeneous or

homogeneous, depending on the particular mix of Silicon Objects chosen for the array.

These Silicon Objects include multipliers, and other functional units. The architecture

also supports various I/O standards including high speed serial I/O as well as internal

RAM. FPOA supports 21-bit busses to communicate 16 data bits, a one-bit data-valid

flag, and 4 control/state bits. The functionality of the control bits depends on the Silicon

Object itself.

As shown in Figure 3.6, each Silicon Object can communicate directly with its 8

immediate neighbors. And with one level of pipelining this can be extended to be 24

other cells. Using more levels of pipelining, a Silicon Object’s output signals can reach

the rest of the array.

The ARRIVE (ARm microprocessor with Reconfigurable Instruction-flow controlled

Vliw Extension) architecture introduced in [Zabe06],is considered a DSP oriented CGRA

architecture. It introduced a high level of Instruction Level Parallelism (ILP), flexibility

and scalability. The structure is based on an enhanced RISK processor (ARM7 pro-

cessor). This processor is tightly coupled with an reconfigurable ALU array, a vector

load/store unit and a control flow manipulation unit. This structure also supports con-

text switching between different configurations. The structure is introduced as a VHDL

RTL model. The authors also introduce an architecture exploration framework for their

CGRA. The structure of the arrive CGRA is shown in Figure 3.7. The ARM processor is

connected to the ALU array through the processor bus. The ALU array is connected in a

CHAPTER 3. LITERATURE REVIEW 70

LV
D

S

LV
D

S

LV
D

S

LV
D

S

LV
D

S

LV
D

S

Ser/
Des

Ser/
Des

RAM RAM RAM RAM

RAM RAM RAM RAM

KEY

Register
File

ALU

Multiply/
Accumulate

Routing
Neighborhood
(1-2 cycles)

Nearest
Neighborhood
Connections

Figure 3.6: MathStar’s FPOA Architecture

two dimension configuration.

Table 3.2 gives a comparison between different architectures presented in this section.

CGRAs provide the configurability of FPGA with a lower configuration effort (data re-

quired for configuration are smaller in size, and short configuration time), and higher

performance close to that of ASIC. CGRA that support run-time reconfiguration will be

a appropriate choice for implementing DSP systems. CGRAs support DSP application

through providing programmable ALUs in their PEs. The support of configurable blocks

that perform DSP operations (MAC, FFT) requires investigation. The support of paral-

lelism, which is required by almost every DSP application, is through the availability of

different resources that can operate in parallel (LUTs , ALUs, Processors). The support

of parallel processing through instruction set parallelism and multi-threading is also of

interest.

CHAPTER 3. LITERATURE REVIEW 71

Name Source Array PE Support
Runtime
Reconfigu-
ration

Processor Support DSP

Raw [Tayl02,
Wain97]

2D Array MIPS CPU
+ Cach + 32
FPU

No 32-bits
MIPS-like

No

PipeRench [Gold00,
Schm02]

1D Array of
Strips

Shifter
+ Mul-
tiplixors
+ LUT +
Register
File

Yes None No

RaPiD [Ebel96,
Cron99,
Cron98,
Ebel97]

1D Com-
mon Bus

Coarse-
grain
blocks
(ALU, FFT,
DCT)

Yes None Yes

PACT XPP [Baum03,
GmbH]

Hierarchal
2D Struc-
ture

ALU + Reg
file

Yes None No

MathStar [Helg03] 2D Array ALU or
Multiplier

No None No

ARRIVE [Zabe06] ARM + 2D
Array

ALU + Reg No ARM Yes

Table 3.2: CGRA Summary

CHAPTER 3. LITERATURE REVIEW 72

PE PE PE PE

PE PE PE PE

PE PE PE PE

Switches

Init Loop Mode

LoopInit

LoopInit

Reg

Reg

Reg

Comp

Mode

Mode

Comp

C
tr

l

Reg

PC

R5
R4
R3
R2
R1
R0

Register File

ALU

Shift

Data Reg.

Address Reg.

INC

Address
Context
RALU

Context
VLSU

Address
Context
RALU

Context
VLSU

Address
Context
RALU

Context
VLSU

Address
Context
RALU

Context
VLSU

Address
Context
RALU

Context
VLSU

Address
Context
RALU

Context
VLSU

Address
Context
RALU

Context
VLSU

Address
Context
RALU

Context
VLSU

PC

ARM
Reconfigurable ALU

ARM Memory

R7

R6

R5

Local
Registers

PE

PE

R4

R3

R2

R1

R0

Memory

Memory

CFMU

CCM
VLSU

Figure 3.7: ARRIVE Architecture

CHAPTER 3. LITERATURE REVIEW 73

3.7 Summary

In this chapter, a literature review of the architecture exploration process was presented.

According to the Y-chart scheme introduced in section 2.3.1 different issues in the do-

main of architecture exploration were highlighted. First, different methodologies for

architecture exploration were reviewed. Next, miscellaneous approaches used in archi-

tecture exploration frameworks to search the design space were introduced and several

support tools for architecture exploration were given. Methods to evaluate embedded

systems architectures were also explored. Frameworks for architecture exploration of

embedded system is then reviewed. Finally, a review of several CGRA as possible archi-

tectures platforms was given. From the literature review the following can be concluded:

• The concept of orthogonalization of concerns [Keut00] is crucial for architecture

exploration. It enables separating the exploration process into phases depending

on different concerns. This concept was the base of many methodologies for ar-

chitecture exploration.

• A review of different techniques to search the design space are given:

1. Exhaustive search is used in architecture exploration to find the optimal ar-

chitecture. Due to its time consuming nature, iterative search is modified to

give suboptimal solutions in a reasonable time.

2. Local search is a simple heuristic approach used in architecture exploration.

It gives results in a reasonable time, however solutions obtained are subopti-

mal. This approach is used in architecture exploration combined with a priori

analysis of the application to limit search in the design space.

CHAPTER 3. LITERATURE REVIEW 74

3. Meta-heuristic approaches is the form of evolutionary algorithms are com-

monly used as a search technique in architecture exploration. Two commonly

used algorithms are SPEA2 and NSGA-II, the former has a simpler compu-

tational model. Evolutionary algorithms have some edge over local search

techniques by covering a wide range of alternative solutions quickly.

4. Other meta-heuristic algorithms such as tabu search and simulated annealing

have a limited use in architecture exploration.

• Three different categories of evaluation techniques were reviewed, accurate sim-

ulation, statistical simulation and analytical evaluation. A combined statistical-

analytical evaluation methodology seems to be a robust way to perform efficient

evaluation in a reasonable time.

• The review of several CGRA architectures indicate that they share the following

common useful features:

1. Provide coarse-grained blocks for efficient implementations of different ap-

plications. These blocks range from simple LUTs to a complete processor.

2. Support runtime reconfiguration which enables implementing large applica-

tion on a single chip. This support is through different reconfiguration man-

agement techniques.

3. The support of DSP is limited. CGRAs support DSP application through

providing programmable ALUs in their PEs. The support of configurable

blocks that perform DSP operations (MAC, FFT) requires investigation.

4. The support of parallelism, which is required by almost every DSP applica-

CHAPTER 3. LITERATURE REVIEW 75

tion, is through the availability of different resources that can operate in par-

allel (LUTs , ALUs, Processors). The support of parallel processing through

instruction set parallelism and multi-threading is limited.

The design of a DSP oriented CGRA that can support runtime reconfiguration

should provide an efficient platform for architecture exploration for such applica-

tions.

3.7.1 Research Directions

Conclusions obtained from previous subsection can be used to guid our research in the

following directions:

1. The Design of an Architecture Exploration Framework for DSP application

In this part of the project the following research points will be investigated:

(a) Investigate the exploration of the design space of DSP applications and their

mapping to a heterogenous embedded architectures. Evolutionary algorithms

will be investigated to be the tool to search the design space. Evolutionary

algorithms could be combined with other algorithms to improve the perfor-

mance.

(b) Exploring the different architectures will include exploring both the com-

putational sub-system and the communication sub-system (buses and direct

links). The exploration of the computation and communication sub-system

could be combined or performed separately. Separating the exploration of the

two sub-system has the advantage of reducing the size of the design space to

be explored. Both options will be investigated.

CHAPTER 3. LITERATURE REVIEW 76

(c) During the exploration process each point in the design space represents a so-

lution architecture. An evaluation strategy that gives fast and accurate results

should be used. A hybrid analytical-statistical approach will therefore be in-

vestigated. Using intelligent methods such as neural networks to improve the

accuracy of analytical evaluation will be studied.

2. The design of DSP oriented CGRA

In this part the following will be investigate:

(a) Different implementation technologies could be the target of the architecture

exploration process. The support of DSP applications in modern CGRA is

limited. In this research project the implementation of DSP oriented CGRA

will be investigated. The support for DSP will be through including coarse

grained blocks of commonly used operators in DSP applications.

(b) DSP applications are parallel in nature and requires processors that support

parallelism at different levels (instruction level, multi-threading and proces-

sor level). In this project the implementation of CGRA that support these

features will be investigated.

(c) Integrating the architecture exploration framework of part two with the pro-

posed CGRA architecture will be studied to map DSP application.

Chapter 4

Current Proposed Approaches

In chapter 3 a review of several architecture exploration frameworks, search techniques

and evaluation techniques is given. The review shows that multi-objective evolution-

ary algorithms are efficient tools to search the design space for near optimal results.

It also shows that statistical and analytical based evaluation is suitable for architecture

exploration at high level of abstraction as they provide quick results with a reasonable

accuracy.

In this chapter the preliminary results for an architecture exploration framework

based on SPEA2 is introduced. The input to the design exploration too is a graph that

represents the application. The output of the framework is a possible architecture that

is considered to be a near optimal hardware implementation of the given application.

The resulting architectures are composed of components chosen from an experimental

core library estimated from real implementations. The core library used in the prelim-

inary results contains three processors and a general representation of special function

cores. It also contains different communication channels and buses. The details of the

77

CHAPTER 4. CURRENT PROPOSED APPROACHES 78

Mathematical
&

Meta-Heuristics Search
the design space

Core Library

Processing CoresCommunication
Channels

Embedded
Processors

Dedicated
Hardware

Accelerator

Point to Point

Common Bus

Evaluation of the
Generation Architecture

ASIC

FPGA

CGRA

User Constraints

User Application

Generated Architecture
Evaluation Results

Modeling Tool

Designer

1

2

34

Implementation
Platform

5

Figure 4.1: AE framework

implementation and the results are described in the following subsections.

Figure 4.1 shows the general architecture exploration framework introduced in chap-

ter 1 with shaded circles indicating what has been implemented in this chapter.

4.1 Core Library

The core library contents are shown in Table 4.1 and Table 4.2. Table 4.1 contains infor-

mation about processing cores included in the library. This library represents the platform

used for computation and communication sub-systems. For each core four metrics are

provided for four different attributes. These metrics include relative speed, area, power

consumption and flexibility. Flexibility represents the ability of modifying the imple-

CHAPTER 4. CURRENT PROPOSED APPROACHES 79

Core Speed Area Power Flexibility
PPC 1.2 0.6 0.5 0.95

RCore 1.9 0.7 0.1 0.8
MB 1.4 0.6 0.8 0.95

HW-Core 0.1 0.5 0.2 0.2

Table 4.1: Core Library Contents - Processing Cores

Core Speed Area Power
OBP 0.4 0.1 0.6
FSL 0.1 0.4 0.1
LMB 0.1 0.3 0.5
SPB 0.2 0.2 0.2

Table 4.2: Core Library Contents- Communication Channels

mentation. All these metrics are assumed to be in per-instruction units. The “HW-Core”

represents a general model for custom IP cores.

Table 4.2 includes information about communication channels that can be used to

connect different components of the resulting systems. Three measures are available

for each communication channel. These measures are also relative and per instruction

unit. “SPB” stands for Special Peripheral Bus, which is a general model for custom bus

depending on the implemented hardware.

4.2 Implementation Using ECJ

ECJ [Labo06] is a Java-based evolutionary computation framework. It enables building

different applications that uses Genetic Algorithms (GA) in their operation. The frame-

work provides a set of Java classes that are used to define each GA operation (Selection,

cross-over, mutation, evaluation). The problem is defined through a parameter file that

contain a set of parameters for each operation of the evolutionary algorithms. Each class

CHAPTER 4. CURRENT PROPOSED APPROACHES 80

of the framework reads a set of parameters that control its behavior. The problem is de-

fined by writing one or more classes and overriding the behavior of the base class for a

specific problem. At least a class inherited from a class called Problem should be writ-

ten to specify the evaluation scheme for each individual in the generation [Labo06]. By

writing new classes , new set of parameters can be added to define the specific problem.

The framework contains a built-in parser that is used to parse the parameter file for a spe-

cific problem. Each class in the framework starts by a setup phase the makes use of this

parser to extract its specific parameters. The framework contains a GUI for loading the

parameter file and displaying the results. ECJ contains an implementation for SPEA2.

This implementation is used to perform architecture exploration within the framework.

In this work, three classes are added to define the architecture exploration problem.

First a class based on the IntegerVectorIndividual class. It is called ExplorationIndi-

vidual. This class is used to represent an individual in a given generation as a vector of

integer numbers. The class is modified from its parent to interpret the genomes in the

individual chromosome into the architecture it represents and displays it to the user.

The second class is based on the SPEA2MultiObjectiveFitness. It is called Ex-

plorationFitness. This class is used to define the stoping criteria for the evolutionary

process. It represents the SPEA2 fitness beside four problem specific finesses , one for

each objective, to be optimized. The four objectives are performance, area, power con-

sumption, and flexibility.

The third and the most important class is based on the Problem class. It is called

ExplorationProblem. This class is used to evaluate each individual. The class has a

member function called evaluate which is called for each individual to be evaluated. In

this problem each individual represents a specific architecture that is a solution for the

CHAPTER 4. CURRENT PROPOSED APPROACHES 81

M1 M2 M3 M4 C1 C2 C3 I12 I13 I14 I21 I23 I24 I31 I32 I34 I41 I42 I43

b) Example Architecture

1 2 1
1 3 32

PPC MB Rcore MB

a) Chromosome Codding

Mapping Cores Communication Channel

Mapping Cores Communication Channel

C1 C2 C3

C4

C4

C1 C2 C3 C4

1 1 1 1 12 2 232 24
OPB OPB OPB OPB OPBFSL FSL FSL FSL FSLLMBSPB4

Figure 4.2: Chromosome Representation

given problem. The problem is defined in the parameter file. The problem is described

as the number of software blocks and properties for each block results from profiling the

given application. It is assumed that these properties are the size (number of instructions)

and the number of iterations. The evaluate use the problem definition described above

with a hard-coded definition for the core library defined in section 4.1.

4.3 Chromosome Representation

The chromosome coding used in this work is shown in Figure 4.2 for four software blocks

problem. As shown first four genes are used for mapping of the software blocks on the

architecture cores. The next four genes are used to define the cores (Note: core 3 is not

used) and the remaining genes are used to define the communication channels between

each core and the other (Note: communication channels for unused cores are ignored).

Changing the chromosome’s genes values give a new architecture and software mapping

CHAPTER 4. CURRENT PROPOSED APPROACHES 82

into it. The chromosome length (cl) is calculated from the number of software blocks sb

using Equation (4.1).

cl = (sb × 2) + (sb − 1) × sb (4.1)

4.4 Analytical Evaluation Scheme

Analytical approach is used for architecture evaluation. The architecture represented

in the chromosome is evaluated using the metrics of the cores as found in the library

introduced in Section 4.1. Each chromosome gene is decoded and the information about

the architecture are extracted. For each software block, the corresponding IP core it is

mapped to is selected, from the core library and the information about that core is used

to calculate four cost function for each objective. If the core is not used for any software

block it does not affect the cost function. The performance cost calculation depends on

how the software blocks are mapped to the IP cores. Area and Flexibility cost functions

are the sum of those of each used IP core. The power cost function is the sum of the

effect of each software core. The same calculation is performed for the communication

cost. The total cost functions is the sum of all the cost functions. The fitness for each

objective is then calculated from the cost function.

Equation 4.2 is a formulation of the software model used in the proposed framework

and represented using graphes as shown in Figure 4.3. Each software block S(k) has

size sk. For each pair of software blocks S(k1) and S(k2), software block S(k1) makes

im calls to S(k2).

CHAPTER 4. CURRENT PROPOSED APPROACHES 83

S(k) = {sk}

im = {S(k1) −→ S(k2)} (4.2)

Equations 4.3 and 4.4 is a formulation of the experimental library introduced in sec-

tion 4.1. Each core C(i) is represented by four parameters tci for speed, aci for area,

fci for flexibility and pci for power consumption. The bus B(j) is represented by three

parameters tbj for speed, abj for area and fbj for flexibility.

C(i) = {tci, aci, fci, pci} (4.3)

B(j) = {tbj, abj, fbj} (4.4)

The mapping of the software application into hardware, is expressed by equation 4.5.

Each software block S(k) is mapped to a hardware block C(i). If the software block

mapped to C(i1) calls another software block mapped to C(i2) then the bus B(j) is used

for communication between the two hardware cores.

S(k) −→ C(i)

B(j) = {C(i1) −→ C(i2)} (4.5)

Equation 4.6 is used to calculate the overall performance values for the used hardware

CHAPTER 4. CURRENT PROPOSED APPROACHES 84

cores, while equation 4.7 is used to calculate the performance values for communication

busses.

Tc = max

(

∑

k

tci × sk

)

Ac =
∑

i

∑

k

aci × sk

Fc =
∑

i

∑

k

fci × sk

Pc =
∑

i

∑

k

pci × sk (4.6)

Tb =
∑

j

∑

k

tbj × im

Ab =
∑

j

∑

k

abj × im

Pb =
∑

j

∑

k

pbj × im (4.7)

Equation 4.8 is then used to calculate the four cost functions used for the evaluation of

the generated architecture.

max(f1 = Tc + Tb)

max(f2 = Ac + Ab)

max(f3 = Fc)

max(f4 = Pc + Pb) (4.8)

CHAPTER 4. CURRENT PROPOSED APPROACHES 85

4.5 Preliminary Results

Preliminary results were obtained by the proposed framework using the test-bench are

shown in Figure 4.3. The test-bench consists of 6 software blocks. Specification-Level

Intermediate Formate (SLIF) [Vahi95] graph is used to represent the given application.

The design is entered to the framework using a file which includes a description for each

node and edge. It gives the user the flexibility to set constraints for the implementation

(such as timing requirements). Each node represents a software block, and the edge rep-

resents dependency relationship. An edge between software block A and software block

B means that software block A is calling software block B, and the number represent the

number of times the call is made which are extracted from profiling the given application.

Each software block has some attributes. In the simple model used in the primarily test

these attributes are the size of the software block.

The system is evaluated with test-bench of figure 4.3. Different runs are made, each

with 400 generations, each contains 200 individuals. In each run the framework investi-

gates 80000 possible architectures. The best individual of the run according to SPEA2

fitness is then selected as output. The average fitness for each objective and for SPEA2

fitness across each generation are plotted for each run.

Figure 4.4 shows the result of a run with full optimization for the four objectives and

with no constraints. As shown area, performance and power consumption improve on

average with each generation, while the flexibility is reduced. Increasing the over-all

performance of the system reduces its flexibility.

As shown in Figure 4.5 the tool selected two PPCs to implement the architecture.

CHAPTER 4. CURRENT PROPOSED APPROACHES 86

S1
10

S2
500

S3
7

S4
3

S5
600

S6
100

10 50

50 30 100

S2
500

Key:

Block Size

Block Name

Figure 4.3: Test-bench used for the preliminary results

Crossover = 1 , Mutation = 0.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385

Generation

Performance

Crossover = 1 , Mutation = 0.005

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Generation

Power

Crossover = 1 , Mutation = 0.005

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Generation

Flexibility

Crossover = 1 , Mutation = 0.005

0

10
20

30
40

50

60
70

80

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385

Generation

Area

Figure 4.4: Results of AE without any constraint, full optimization

CHAPTER 4. CURRENT PROPOSED APPROACHES 87

Best Individual of Run:
Evaluated: T
Fitness: [f1034594987|0.083333336| f1070386383|1.6000003| f1072366351|1.8360308| f1059723636|0.6644509|
SPEA2Fitness: S=28.0 R=0.0 D= 2.9239842904162815E-9 F=2.9239842904162815E-9
Genome Value is:
 4 4 4 4 2 4 1 1 1 1 1 3 2 1 2 1 3 3 3 3 4 4 3 4 2 3 2 1 3 3 2 3 1 2 3 4 4 3 3 3 3 3
Software Block 1 is mapped to core 4.
Core 4 is PPC.
Software Block 2 is mapped to core 4.
Core 4 is PPC.
Core 4(PPC) is connected to core 2(PPC) through LMB Bus.
Software Block 3 is mapped to core 4.
Core 4 is PPC.
Software Block 4 is mapped to core 4.
Core 4 is PPC.
Software Block 5 is mapped to core 2.
Core 2 is PPC.
Software Block 6 is mapped to core 4.
Core 4 is PPC.
Core usage: 2 PPC,0 RCore,0 MB,0 HW-Core,

PPC
1,2,3,4,6

PPC
5

LMB

Figure 4.5: Resulting Architecture, for full optimization

Five out of the six blocks given in the test-bench are mapped to the first PPC, while

the final block (has the larger size) is running separately on the second PPC. LMB is

used for communication between the two processors. The architecture proposed by the

framework is at a high level of abstraction. More optimization can be made in lower

levels through out the implementation process. Note that the performance and flexibility

are not well optimized compared to the other two objectives, since the optimization of

performance contradict with optimization of the flexibility given the library introduced

earlier.

The framework gives the user the ability to turn off/on the optimization for any of the

four objectives. Figure 4.6 shows the results of the run with performance optimization

turned off. As shown the over-all SPEA2 fitness is improved. This run results the same

architecture shown in Figure 4.5.

Figure 4.7 shows the results after turning the power optimization off. Note when the

power optimization was turned off, the performance optimization improved relatively.

The resulting architecture is the same that of the previous two runs (shown in Figure 4.5).

CHAPTER 4. CURRENT PROPOSED APPROACHES 88

Crossover = 1 , Mutation = 0.005

0

0.5

1

1.5

2

2.5

3

3.5

4

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Generation

Power

Crossover = 1 , Mutation = 0.005

0

10

20

30

40

50

60

70

80

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Generation

Area

Crossover = 1 , Mutation = 0.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Generation

Flexibility

SPEA2 Fitness
(Crossover = 1, Mutation = 0.005)

0
10

20
30
40

50
60
70

80
90

0 20

40

60

80

10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

Generation

Figure 4.6: Results of AE without performance optimization

CHAPTER 4. CURRENT PROPOSED APPROACHES 89

SPEA2 Fitness
(Crossover = 1, Mutation = 0.005)

0
10
20
30
40
50
60
70
80
90

100

0 22

44

66

88

11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

Generation

Crossover = 1 , Mutation = 0.005

0

0.5

1

1.5

2

2.5

3

3.5

4

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Generation

Performance

Crossover = 1 , Mutation = 0.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Generation

Flexibility

Crossover = 1 , Mutation = 0.005

0

5
10

15
20

25
30

35
40

45

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Generation

Area

Figure 4.7: Results of AE without power optimization

CHAPTER 4. CURRENT PROPOSED APPROACHES 90

SPEA2 Fitness
(Crossover = 1, Mutation = 0.005)

0

50

100

150

200

250

0 22

44

66

88

11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

Generation

Crossover = 1 , Mutation = 0.005

0

1

2

3

4

5

6

7

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Generation

Performance

Crossover = 1 , Mutation = 0.005

0

50

100

150

200

250

1 28 55 82 109 136 163 190 217 244 271 298 325 352 379

Generation

Area

Crossover = 1 , Mutation = 0.005

0

1

2

3

4

5

6

7

8

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376

Generation

Power

Figure 4.8: Results of AE without flexibility optimization

Turning the flexibility optimization off results in a good optimization of all the other

three objectives as shown in Figure 4.8. The resulting architecture is shown in Figure

4.9. It is clear that when the flexibility is turned off the system is all implemented in pure

HW. That is because HW-core gives the best metrics in the library except for flexility.

Turning the area optimization off result in a much larger architecture consisting of

3 processors as shown in Figure 4.11. The larger blocks are given a separate processor

(PPC). The other three blocks are mapped to a single processor (RCore). Communication

between the three processor is through FSL links. Note that the communication channels

are created to communicate only in the direction of the communication given in the test-

CHAPTER 4. CURRENT PROPOSED APPROACHES 91

Best Individual of Run:
Evaluated: T
Fitness: [f1092616192|10.0| f1084227584|5.0| f1135411200|346.0| f1065353216|1.0|
SPEA2Fitness: S=56.0 R=0.0 D= 5.70507395797929E-37 F=5.70507395797929E-37
Genome Value is:
 4 4 4 4 4 4 1 1 2 4 3 4 2 3 3 4 3 1 1 1 1 2 4 4 1 1 2 1 3 3 2 2 3 4 3 4 4 3 3 3 3 3
Software Block 1 is mapped to core 4.
Core 4 is HW-Core.
Software Block 2 is mapped to core 4.
Core 4 is HW-Core.
Software Block 3 is mapped to core 4.
Core 4 is HW-Core.
Software Block 4 is mapped to core 4.
Core 4 is HW-Core.
Software Block 5 is mapped to core 4.
Core 4 is HW-Core.
Software Block 6 is mapped to core 4.
Core 4 is HW-Core.
Core usage: 0 PPC,0 RCore,0 MB,1 HW-Core,

HW-Core
1,2,3,4,5,6

Figure 4.9: Resulting Architecture, for flexibility optimization off

bench. The average fitness of the run are shown in Figure 4.10. Note that the flexibility

fitness is improved because of the use of more processors.

The framework enables adding constraints to a specific block of the input application.

The test-bench is modified as shown in Figure 4.12. Timing constraints are added to

blocks 1,2 and the results of this run are shown in Figure 4.13. Note that the performance

is not well optimized because of the timing constraints added to the test-bench.

The resulting architecture is shown in Figure 4.14. As shown 2 processors and one

HW accelerator is used. The two constrained blocks are implemented in two separate

modules to operate in parallel to meet the timing constraints. For the two larger blocks,

one is implemented in a separate units (block 4 is mapped to a separate PPC), and the

other one is mapped to the hardware accelerator.

The results obtained show that the proposed architecture exploration framework effi-

ciently explore the design space for a heterogenous architectures. The framework inves-

tigate thousands of architectures from the design space. The framework give different

solutions for a given problem according to the optimization method and the user con-

straints.

CHAPTER 4. CURRENT PROPOSED APPROACHES 92

SPEA2 Fitness
(Crossover = 1, Mutation = 0.005)

0
20
40
60
80

100
120
140
160
180
200

0 22

44

66

88

11
0

13
2

15
4

17
6

19
8

22
0

24
2

26
4

28
6

30
8

33
0

35
2

37
4

39
6

Generation

Crossover = 1 , Mutation = 0.005

0

0.5

1

1.5

2

2.5

3

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Generation

Performance

Crossover = 1 , Mutation = 0.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 28 55 82 109 136 163 190 217 244 271 298 325 352 379

Generation

Flexibility

Crossover = 1 , Mutation = 0.005

0

0.5

1

1.5

2

2.5

3

3.5

4

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Generation

Power

Figure 4.10: Results of AE without area optimization

Best Individual of Run:
Evaluated: T
Fitness: [f1065976356|1.0742841| f1071396444|1.7204089| f1065353216|1.0| f1064315550|0.9381503|
SPEA2Fitness: S=18.0 R=0.0 D= 5.388997455955294E-12 F=5.388997455955294E-12
Genome Value is:
 2 5 2 5 4 2 4 2 2 1 1 3 1 3 1 2 2 2 1 2 2 3 4 4 2 4 1 3 4 1 2 3 3 1 1 2 4 3 3 2 2 1
Software Block 1 is mapped to core 2.
Core 2 is RCore.
Core 2(RCore) is connected to core 5(PPC) through FSL Bus.
Software Block 2 is mapped to core 5.
Core 5 is PPC.
Core 5(PPC) is connected to core 4(PPC) through FSL Bus.
Software Block 3 is mapped to core 2.
Core 2 is RCore.
Software Block 4 is mapped to core 5.
Core 5 is PPC.
Software Block 5 is mapped to core 4.
Core 4 is PPC.
Software Block 6 is mapped to core 2.
Core 2 is RCore.
Core usage: 2 PPC,1 RCore,0 MB,0 HW-Core,

PPC
5

PPC
2,4

RCore
1,3,6

FSL

FSL

Figure 4.11: Resulting Architecture without area optimization

CHAPTER 4. CURRENT PROPOSED APPROACHES 93

S1
10

S2
500

S3
7

S4
3

S5
600

S6
100

10 50

50 30 100

50

50

S2
500

50

Key:

Timing
Constraints

Block Size

Block Name

Figure 4.12: Constrained Test-bench used for the preliminary results

Crossover = 1 , Mutation = 0.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Generation

Performance

Crossover = 1 , Mutation = 0.005

0

0.5

1

1.5

2

2.5

3

3.5

4

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Generation

Power

Crossover = 1 , Mutation = 0.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Generation

Flexibility

Crossover = 1 , Mutation = 0.005

0

10

20

30

40

50

60

70

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391

Generation

Area

Figure 4.13: Results of AE with constraints

CHAPTER 4. CURRENT PROPOSED APPROACHES 94

Best Individual of Run:
Evaluated: T
Fitness: [f1065381435|1.003364| f1071870415|1.7769107| f1067594376|1.2671671| f1060693417|0.72225434|
SPEA2Fitness: S=2.0 R=0.0 D= 0.01733504179607747 F=0.01733504179607747
Genome Value is:
 5 6 5 6 1 5 1 3 2 2 1 4 4 3 3 4 3 3 1 2 2 2 2 3 4 4 3 3 2 1 4 2 4 1 2 2 4 1 2 4 2 4
Software Block 1 is mapped to core 5.
Core 5 is PPC.
Core 5(PPC) is connected to core 6(HW-Core) through SPB Bus.
Software Block 2 is mapped to core 6.
Core 6 is HW-Core.
Core 6(HW-Core) is connected to core 1(PPC) through OBP Bus.
Software Block 3 is mapped to core 5.
Core 5 is PPC.
Software Block 4 is mapped to core 6.
Core 6 is HW-Core.
Software Block 5 is mapped to core 1.
Core 1 is PPC.
Software Block 6 is mapped to core 5.
Core 5 is PPC.
Core usage: 2 PPC,0 RCore,0 MB,1 HW-Core,

PPC
1,3,6

PPC
5

HW-Core
2,4

SPB

OBP

Figure 4.14: Resulting Architecture for the constrained Test-Bench

4.6 Summary

In this chapter, a framework for architecture exploration based on SPEA2 and analytical

evaluation is introduced. The results of running a test-bench on the framework are given.

The results show the ability of the framework to optimize multiple objectives. The frame-

work enables the user to constraint some blocks of the input application. The proposed

framework require modifications to add more details to the resulting architecture such as

the memory structure and I/O communication. An experimental library is used by the

framework to search the design space. Accurate library measures should be obtained to

get more accurate results. Given these results, further investigations are required in the

following points:

1. Investigate the effect of the crossover, selection and mutation operators on the

exploration process.

2. Study the use of other MOEA such as NSGA-II for architecture exploration. Some

CHAPTER 4. CURRENT PROPOSED APPROACHES 95

modifications may be required for the chromosome representation of the architec-

ture for more efficient representation (The chromosome size increase exponentially

with the application size).

3. Investigate combining MOEA with other search techniques to exploit different

points in the design space may improve the fitness of the framework results.

4. Study combining different evaluation approaches with analytical evaluation to in-

crease the accuracy of the evaluation phase.

Chapter 5

Proposed Approaches & Directions

In this chapter proposed approaches and research directions will be summarized. From

the literature review presented in Chapter 3 the research in this thesis will tend to focus

on two directions. The first is set to investigate the design of an architecture exploration

framework for the design and implementation of embedded DSP systems. The frame-

work’s main goal is to generate near optimal architectures for a given DSP application. In

Chapter 4 a framework based on SPEA-II evolutionary algorithms and a simple analyt-

ical evaluation scheme was implemented and some preliminary results were presented.

Further enhancements and modifications are planned and will be further discussed in this

chapter.

The second directions is geared towards the design of a Coarse Grained Reconfig-

urable Array (CGRA) chip optimized for DSP applications. The plan is to integrate it

with the proposed framework for mapping DSP application efficiently. The support of

parallelism at the architecture level will be also investigated.

Figure 5.1 shows the current research state and directions that will be discussed in

96

CHAPTER 5. PROPOSED APPROACHES & DIRECTIONS 97

Architecture Exploration
Framework

CGRA
Architecture Exploration

Framework

Searching The
Design Space

Develope the
Evaluation

Model

Using SPEA2 Using NSGA
Study the effect

of different
parameters

Analytical
Evaluation

Statistical
Anaylsis

Use Intelligant
approachs

Runtime
Reconfiguration
and Integration

Library
Development

No started yet

Investigated Results obtained

Partialy investigated

Figure 5.1: Research State and Directions

the following sections.

5.1 Architecture Exploration Framework

As presented in Chapter 4, the preliminary design exploration framework makes use of

an experimental library to form the design space. SPEA-II multi-objective evolutionary

algorithm is used for searching the design space, with two point crossover to generate

new generations and different selection, and mutation rates. A preliminary evaluation

techniques are used to evaluate different architectures during the search.

5.1.1 Searching the Design Space

The performance of the optimization tool SPEA-II can be further improved by experi-

menting with different crossover techniques and the population sizes used in each gener-

CHAPTER 5. PROPOSED APPROACHES & DIRECTIONS 98

ation. A study of the effect of different parameter settings will be carried out. According

to the literature review NSGA-II optimization tool produces better results at the cost of

more computation time [Erba06]. The use of NSGA-II will also be studied and further

modifications of both algorithms may be required. The chromosome representation of

the architecture given in section 4.2 will need to be modified accordingly. More investi-

gation for the crossover, selection and mutation effect on the exploration process will be

performed.

The proposed framework performs exploration of both the computation and commu-

nication sub-systems concurrently. The design space formed by both computation and

communication cores is complex and huge and searching it is time consuming. Sepa-

rating the design space into two parts (computation and communication) and searching

them in two different phases will be investigated.

5.1.2 Core Library

The library introduced in section 4.1 contains a set of GPP and IP cores that can be used to

build a heterogenous embedded system and described at a very high level of abstraction.

The metrics in the library should be accurate to reflect more realistic usable components.

To gain this accurate metrics physical implementation should be made for DSP applica-

tions with different architectures. This allows compiling accurate information about the

performance and power consumption of each component in a actual implementations.

So far the library covers a small set of components. More components should be added

to the library in order to give the tool more alternatives. Different IP cores from different

vendors will be investigated and added to the library.

CHAPTER 5. PROPOSED APPROACHES & DIRECTIONS 99

5.1.3 Evaluation Techniques

A simple analytical evaluation approach is used in the preliminary framework. Future

work will be directed toward two main points:

1. Study the development of a hybrid analytical-statistical evaluation approach to be

used during the exploration. This will be first investigated at a high level of abstrac-

tion to speed up the exploration process. Fine tuning of the resulting architecture

could be performed at a lower level at a later stage.

2. Study the use of techniques such as fuzzy logic and neural networks to improve

the accuracy of the evaluation phase [Hart01, Oyam04].

5.1.4 Integration with Implementation tools

The framework should be integrated with other developed tools as shown in Chapter 2

(Figure 2.6) to perform hardware implementation of the generated architecture. Inte-

gration implies generating the necessary files required by the implementation tools to

perform physical realization of the design. The files include the source code for software

block, HDL for IP cores and any other files required by the implementation tool. The

result of this framework can be implemented either using FPGA or ASIC. The support

for both flows will be investigated. Also in the second part of the project we propose the

design of a DSP oriented CGRA. The support for this device will be also studied.

CHAPTER 5. PROPOSED APPROACHES & DIRECTIONS 100

5.1.5 Runtime Reconfiguration

If the application to be implemented requires more resources than is available, the de-

signer then will have to resort to one of two options: (i) add another chip which increases

the cost of the design and affect the performance due to the communication between the

two devices, (ii) employ runtime reconfiguration to dynamically replace unused portions

of the device with other units. Adding runtime reconfiguration to the design requires

adding a scheduling unit that is responsible for selecting the units to be replaced. The

support for runtime reconfiguration in the framework will be investigated to be an alter-

native choice for implementing large designs.

5.2 Coarse Grained Reconfigurable Arrays (CGRA)

CGRAs provide a compromise solution between fine-grain reconfigurable devices such

as FPGAs and ASIC if optimized for a specific application domain [Hart01]. The sec-

ond research direction will be geared toward the design and implementation of a DSP

based CGRA. A review of different reconfigurable architectures was introduced in chap-

ter 3. The study indicates that CGRAs can support DSP application by providing pro-

grammable ALUs in their PEs. The support of configurable blocks that perform DSP

operations such as MAC and FFT requires further investigation. Also the support of par-

allel processing is through the availability of different resources that can be configured

to operate in parallel such as LUTs , ALUs, Processors. The support of parallel process-

ing through instruction set parallelism and multi-threading is limited and requires further

studying.

The following is a summary of what will be investigated:

CHAPTER 5. PROPOSED APPROACHES & DIRECTIONS 101

1. Design of CGRA for DSP application. The CGRA will include explicit DSP blocks

such as MAC and FFT. All of these blocks will be reconfigurable to operate in

different modes with different data sizes. These blocks will be part of the recon-

figurable array of Figure 5.2. The reconfigurable array could have the general

structure shown in Figure 5.3.

2. Investigate adding support needed in the proposed CGRA for explicit parallelism

at the architecture level as shown in Figure 5.2. This figure shows an example of

two data paths attached with a configurable control unit. These two units could

be configured through the reconfigurable switches and reconfigurable routing to

operate as a single processor with two explicit threads, one VLIW machine, or

two separate processors. Increasing the number of units will increase the level of

parallelism that is supported.

3. High level synthesis is required to map DSP application to the proposed architec-

ture. The framework proposed in the first phase could be modified to target the

new CGRA architecture. As the components will be optimized for DSP applica-

tion, accurate results can be obtained from the framework.

5.3 Work Plan

The work plan for this project is summarized in table 5.1. This give an approximate time

line for the experimental work:

CHAPTER 5. PROPOSED APPROACHES & DIRECTIONS 102

Reconfigurable
Control

Reconfigurable
Control

ALU ALU
Reconfigurable

Array
Reconfigurable

Array

Reconfigutable
Routing

Reconfigutable
Switch

Figure 5.2: Proposed CGRA

MACALU

MAC CON

CON

ALU

MACALUCON

REC

ALU = Arithmetic Unit
CON = Configurable Controllers
MAC = Multiply Accummulate
ROUT = Routing Network
REC = Reconfigurable Logic

Figure 5.3: Reconfigurable Array of Proposed CGRA

CHAPTER 5. PROPOSED APPROACHES & DIRECTIONS 103

Number Phase Schedule Description
1 Development of Architecture

Exploration framework
W07 - F07

• Development of the opti-
mization framework.

• Development of the core li-
brary.

• Development of the evalu-
ation scheme.

• Linking the framework to
the physical implementa-
tion tools.

2 Runtime reconfiguration F07

• Investigate using runtime
reconfiguration to imple-
ment large DSP applica-
tions, and integrate that
with the framework.

3 Implementation of a DSP ori-
ented CGRA

F07-S08

• Design of the reconfig-
urable arrays. IP cores
from different vendors
could be used in this
phase.

• Design of the reconfig-
urable processing unit
shown in Figure 5.2.

• Physical implementation
of the proposed architec-
ture.

• Modify the proposed archi-
tecture exploration frame-
work to work with the new
CGRA.

Table 5.1: Work Plan for the Project

Appendix A

Glossary

SoC : System on Chip

DSE : Design Space Exploration

MOEA : Multi-Objective Evolutionary Algorithms

MOO : Multi-Objective Optimization

VLIW : Very Long Instruction Word

RISC : Reduces Instruction Set Computer

FPGA : Field Programmable Gate Array

CGRA : Coarse-grained Reconfigurable Array

FPU : Floating Point Unit

PE : Processing Element

104

Bibliography

[Also00] A. Alsolaim, J. Becker, M. Glesner, and J. Starzyk, “Architecture and ap-
plication of a dynamically reconfigurable hardware array for future mobile
communication systems,” In Proceedings 2000 IEEE Symposium on Field-
Programmable Custom Computing Machines, 17-19 April 2000, pp. 205–14,
Dept. of Electr. & Comput. Eng., Ohio Univ., Athens, OH, USA, IEEE Com-
put. Soc, Napa Valley, CA, USA, / 2000.

[Asci01] G. Ascia, V. Catania, and M. Palesi, “Parameterised system design based on
genetic algorithms,” In Proceedings of IEEE 9th International Workshop on
Hardware Software C-Design/CASHE, 25-27 April 2001, pp. 177–82, Dipt.
di Ingegneria Inf. e delle Telecommun., Catania Univ., Italy, ACM, Copen-
hagen, Denmark, / 2001.

[Asci04a] G. Ascia, V. Catania, and M. Palesi, “A ga-based design space exploration
framework for parameterized system-on-a-chip platforms,” Ieee Transac-
tions on Evolutionary Computation, vol. 8, No. 4, pp. 329–346, AUG 2004.

[Asci04b] Giuseppe Ascia, Vincenzo Catania, Maurizio Palesi, and Davide Patti,
“Multi-objective optimization of a parameterized vliw architecture,” In Pro-
ceedings - 2004 NASA/DoD Conference on Evolvable Hardware, Jun 24-26
2004, pp. 191–198, IEEE Computer Society, Los Alamitos;Massey Univer-
sity, Palmerston, CA 90720-1314, United States;New Zealand, Seattle, WA,
United States, 2004 Compilation and indexing terms, Copyright 2006 Else-
vier Inc. All rights reserved.

[Asci05a] G. Ascia, V. Catania, and M. Palesi, “A multiobjective genetic approach for
system-level exploration in parameterized systems-on-a-chip,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol.
24, No. 4, pp. 635–45, 04/ 2005.

[Asci05b] G. Ascia, V. Catania, M. Palesi, and D. Patti, “Exploring design space of vliw
architectures,” In 16th International Conference on Application-Specific Sys-
tems, Architecture and Processors, 23-25 July 2005, pp. 86–91, Dipt. di In-
gegneria Informatica e delle Telecomunicazioni, Universita di Catania, Italy,
IEEE, Samos, Greece, / 2005.

105

BIBLIOGRAPHY 106

[Baks01] A. Bakshi, V. K. Prasanna, and A. Ledeczi, “Milan: a model based inte-
grated simulation framework for design of embedded systems,” In Workshop
on Languages, Compilers and Tools for Embedded Systems. (LCTES 2001),
22-23 June 2001, pp. 82–7, Dept. of Electr. Eng. Syst., Univ. of Southern
California, Los Angeles, CA, USA, ACM, Snowbird, UT, USA, 08/ 2001.

[Batt94] R. Battiti and G. Tecchiolli, “The reactive tabu search,” ORSA Journal on
Computing, vol. 6, No. 2, pp. 126–40, 1994.

[Baum03] V. Baumgarte, G. Ehlers, F. May, A. Nuckel, M. Vorbach, and M. Weinhardt,
“Pact xpp - a self- reconfigurable data processing architecture,” Journal of
Supercomputing, vol. 26, No. 2, pp. 167–84, 2003.

[Bech03] A. Bechini, P. Foglia, and C. A. Prete, “Fine-grain design space exploration
for a cartographic soc multiprocessor,” Computer Architecture News, vol. 31,
No. 1, pp. 85–92, 03/ 2003.

[Bell04] Robert H. Bell, Jr. Lieven Eeckhout, Lizy K. John, and Koen De Bosschere,
“”deconstructing and improving statistical simulation in hls”,” 2004.

[Bitt97] Ray Bittner and Peter Athanas, “Wormhole run-time reconfiguration,” In
Proceedings of the 1997 ACM 5th International Symposium on Field-
Programmable Gate Arrays, FPGA, Feb 9-11 1997, pp. 79–85, Virginia
Polytechnic Inst and State Univ, Blacksburg, VA, USA, ACM, New York,
NY, USA, Monterey, CA, USA, 1997 Compilation and indexing terms,
Copyright 2006 Elsevier Inc. All rights reserved.

[Bleu03] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “Pisa - a platform and
programming language independent interface for search algorithms,” In Evo-
lutionary Multi-Criterion Optimization. Second International Conference,
EMO 2003. Proceedings, 8-11 April 2003, pp. 494–508, Comput. Eng. &
Networks Lab., ETH Zurich, Switzerland, Springer-Verlag, Faro, Portugal, /
2003.

[Broo00] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for archi-
tectural -level power analysis and optimizations,” In Proceedings of 27th
International Symposium on Computer Architecture, 10-14 June 2000, pp.
83–94, Dept. of Electr. Eng., Princeton Univ., NJ, USA, ACM, Vancouver,
BC, Canada, / 2000 Also available on CD-ROM in PDF format.

[Burg97] D. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” Com-
puter Architecture News, vol. 25, No. 3, pp. 13–25, 06/ 1997.

[Chak03a] S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework for analysing
system properties in platform-based embedded system designs,” In 6th De-
sign Automation and Test in Europe (DATE 03), 3-7 March 2003, pp. 190–5,
Swiss Fed. Inst. of Technol., Zurich, Switzerland, IEEE Comput. Soc, Mu-
nich, Germany, / 2003.

BIBLIOGRAPHY 107

[Chak03b] S. Chakraborty, S. Kunzli, L. Thiele, A. Herkersdorf, and P. Sagmeister,
“Performance evaluation of network processor architectures: combining sim-
ulation with analytical estimation,” Computer Networks, vol. 41, No. 5, pp.
641–65, 04/05 2003.

[Chen92] D. C. Chen and J. M. Rabaey, “A reconfigurable multiprocessor ic for rapid
prototyping of algorithmic-specific high-speed dsp data paths,” IEEE Journal
of Solid-State Circuits, vol. 27, No. 12, pp. 1895–904, 12/ 1992.

[Comp04] Katherine Compton and Scott Hauck, “Flexibility measurement of domain-
specific reconfigurable hardware,” In ACM/SIGDA Twelfth ACM Interna-
tional Symposium on Field-Programmable Gate Arrays - FPGA 2004, Feb
22-24 2004, pp. 155–161, Department of ECE, University of Wisconsin-
Madison, Madison, WI 53706, United States, Association for Computing
Machinery, Monterey, CA., United States, 2004 Compilation and indexing
terms, Copyright 2006 Elsevier Inc. All rights reserved.

[Corp03] Intel Corporation, “Intel ixp 2400 network processor hardware reference
manual. revision 7,” November 2003.

[Cron98] D. C. Cronquist, P. Franklin, S. G. Berg, and C. Ebeling, “Specifying and
compiling applications for rapid,” In Proceedings IEEE Symposium on FP-
GAs for Custom Computing Machines, 15-17 April 1998, pp. 116–25, Dept.
of Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA, IEEE Com-
put. Soc, Napa Valley, CA, USA, / 1998.

[Cron99] D. C. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling, “Archi-
tecture design of reconfigurable pipelined datapaths,” In Proceedings 20th
Anniversary Conference on Advanced Research in VLSI, 21-24 March 1999,
pp. 23–40, Dept. of Comput. Sci. & Eng., Washington Univ., Seattle, WA,
USA, IEEE Comput. Soc, Atlanta, GA, USA, / 1999.

[Deb02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evolutionary
Computation, vol. 6, No. 2, pp. 182–97, 04/ 2002.

[Dont03] S. Donthi and R. L. Haggard, “A survey of dynamically reconfigurable fpga
devices,” In Proceedings of the 35th Southeastern Symposium on System
Theory, 16-18 March 2003, pp. 422–6, Dept. of Electr. & Comput. Eng.,
Tennessee Technol. Univ., Cookeville, TN, USA, IEEE, Morgantown, WV,
USA, / 2003.

[Ebel96] C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapid-reconfigurable
pipelined datapath,” In 6th International Workshop on Field-Programmable
Logic and Applications. FPL ’96, 23-25 Sept. 1996, pp. 126–35, Dept. of
Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA, Springer-Verlag,
Darmstadt, Germany, / 1996.

BIBLIOGRAPHY 108

[Ebel97] C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and S. G. Berg, “Map-
ping applications to the rapid configurable architecture,” In Proceedings. The
5th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines Cat. No.97TB100186), 16-18 April 1997, pp. 106–15, Dept. of
Comput. Sci. & Eng., Washington Univ., Seattle, WA, USA, IEEE Comput.
Soc, Napa Valley, CA, USA, / 1997.

[Erba03] C. Erbas, S. C. Erbas, and A. D. Pimentel, “A multiobjective optimization
model for exploring multiprocessor mappings of process networks,” In First
IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign
and Systems Synthesis, 1-3 Oct. 2003, pp. 182–7, Dept. of Comput. Sci.,
Amsterdam Univ., Netherlands, ACM, Newport Beach, CA, USA, / 2003.

[Erba06] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective optimization
and evolutionary algorithms for the application mapping problem in multi-
processor system-on-chip design,” IEEE Transactions on Evolutionary Com-
putation, vol. 10, No. 3, pp. 358–74, 06/ 2006.

[Fons93] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective op-
timization: formulation, discussion and generalization,” In Proceedings of
ICGA-93: Fifth International Conference on Genetic Algorithms, 17-22 July
1993, pp. 416–23, Dept. Automatic Control & Syst. Eng., Sheffield Univ.,
UK, Morgan Kaufmann, Urbana-Champaign, IL, USA, / 1993.

[Forn02] William Fornaciari, Donatella Sciuto, Cristina Silvano, and Vittorio Zac-
caria, “A sensitivity-based design space exploration methodology for embed-
ded systems,” Design Automation for Embedded Systems, vol. 7, No. 1-2, pp.
7–33, 2002.

[Giva02a] T. Givargis and F. Vahid, “Platune: a tuning framework for system-on-a-
chip platforms,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, No. 11, pp. 1317–27, 11/ 2002.

[Giva02b] Tony Givargis, Frank Vahid, and Jorg Henkel, “System-level exploration for
pareto-optimal configurations in parameterized system-on-a-chip (december
2002),” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 10, No. 4, pp. 416–422, 2002.

[GmbH] PACT Informationstechnologie GmbH, “The xpp white paper,” .

[Gokh05] Maya B. Gokhale and Paul S. Graham, Reconfigurable Computing, Springer,
2005.

[Gold00] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. R. Taylor,
“Piperench: a reconfigurable architecture and compiler,” Computer, vol. 33,
No. 4, pp. 70–7, 04/ 2000.

[Govi05] S. Govind and R. Govindarajan, “Performance modeling and architecture
exploration of network processors,” In Proceedings. Second International

BIBLIOGRAPHY 109

Conference on the Quantitative Evaluation of Systems, 19-22 Sept. 2005, pp.
189–98, Supercomput. Educ. & Res. Center, Indian Inst. of Sci., Bangalore,
India, IEEE Comput. Soc, Torino, Italy, / 2005.

[Grie04] M. Gries, “Methods for evaluating and covering the design space during early
design development,” Integration, The VLSI Journal, vol. 38, No. 2, pp. 131–
83, 12/ 2004.

[Hadj00] G. Hadjiyiannis, S. Hanono, and S. Devadas, “Isdl: an instruction set de-
scription language for retargetability and architecture exploration,” Design
Automation for Embedded Systems, vol. 6, No. 1, pp. 39–69, 2000.

[Hadj03] G. Hadjiyiannis and S. Devadas, “Techniques for accurate performance eval-
uation in architecture exploration,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 11, No. 4, pp. 601–15, 08/ 2003.

[Hadj99] G. Hadjiyiannis, P. Russo, and S. Devadas, “A methodology for accurate per-
formance evaluation in architecture exploration,” In Proceedings 1999 De-
sign Automation Conference, 21-25 June 1999, pp. 927–32, Lab. for Comput.
Sci., MIT, Cambridge, MA, USA, IEEE, New Orleans, LA, USA, / 1999.

[Hart01] R. Hartenstein, “A decade of reconfigurable computing: a visionary retro-
spective,” In Proceedings Design, Automation and Test in Europe. Confer-
ence and Exhibition 2001, 13-16 March 2001, pp. 642–9, Dept. of Comput.
Sci., Kaiserslautern Univ., Germany, IEEE Comput. Soc, Munich, Germany,
/ 2001.

[Hart94] R. W. Hartenstein, R. Kress, and H. Reinig, “A new fpga architecture for
word-oriented datapaths,” In Field-Programmable Logic. Architectures, Syn-
thesis and Applications. 4th International Workshop on Field-Programmable
Logic and Applications, FPL ’94. Proceedings, 7-9 Sept. 1994, pp. 144–55,
Kaiserslautern Univ., Germany, Springer-Verlag, Prague, Czech Republic, /
1994.

[Haub05] C. Haubelt, S. Otto, C. Grabbe, and J. Teich, “A system-level approach to
hardware reconfigurable systems,” In Proceedings of the ASP-DAC 2005.
Asia and South Pacific Design Automation Conference 2005, 18-21 Jan.
2005, pp. 298–301, Dept. of Comput. Sci., Erlangen-Nuremberg Univ., Er-
langen, Germany, IEEE, Shanghai, China, / 2005.

[Haus97] J. R. Hauser and J. Wawrzynek, “Garp: a mips processor with a reconfig-
urable coprocessor,” In Proceedings. The 5th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines Cat. No.97TB100186),
16-18 April 1997, pp. 12–21, California Univ., Berkeley, CA, USA, IEEE
Comput. Soc, Napa Valley, CA, USA, / 1997.

[Helg03] D. R. Helgemo, “Digital signal processing at 1 ghz in a field-programmable
object array,” In IEEE International SOC Conference, 17-20 Sept. 2003, pp.
57–60, MathStar, Inc., Minneapolis, MN, USA, IEEE, Portland, OR, USA, /
2003.

BIBLIOGRAPHY 110

[Hill93] M. D. Hill, J. R. Larus, A. R. Lebeck, M. Talluri, and D. A. Wood, “Wis-
consin architectural research tool set,” Computer Architecture News, vol. 21,
No. 4, pp. 8–10, 1993.

[Horn94] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched pareto genetic al-
gorithm for multiobjective optimization,” In Proceedings of the First IEEE
Conference on Evolutionary Computation. IEEE World Congress on Compu-
tational Intelligence, 27-29 June 1994, pp. 82–7, Genetic Algorithms Lab.,
Illinois Univ., Urbana, IL, USA, IEEE, Orlando, FL, USA, / 1994.

[Josh06] A. Joshi, J. J. Yi, R. H. Bell Jr, L. Eeckhout, L. John, and D. Lilja, “Eval-
uating the efficacy of statistical simulation for design space exploration,” In
ISPASS 2006. IEEE International Symposium on Performance Analysis of
Systems Software, 19-21 March 2006, pp. 70–9, Dept. of Electr. & Comput.
Eng., Texas Univ., Austin, TX, USA, IEEE, Austin, TX, USA, / 2006.

[Kahn74] Gilles Kahn, “The semantics of a simple language for parallel programming,”
Proc. of the IFIP Congress 74, pp. 471–475, 1974.

[Keut00] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli,
“System-level design: orthogonalization of concerns and platform-based de-
sign,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 19, No. 12, pp. 1523–43, 12/ 2000.

[Khar01] A. Khare, A. Halambi, N. Savoiu, P. Grun, N. Dutt, and A. Nicolau, “V-
sat: A visual specification and analysis tool for system-on-chip exploration,”
Journal of Systems Architecture, vol. 47, No. 3-4, pp. 263–75, 04/ 2001.

[Kim03] Sungchan Kim, Chaeseok Im, and Soonhoi Ha, “Schedule-aware perfor-
mance estimation of communication architecture for efficient design space
exploration,” In First IEEE/ACM/IFIP International Conference on Hard-
ware/ Software Codesign and Systems Synthesis, 1-3 Oct. 2003, pp. 195–200,
Sch. of Eng. & Comput. Sci., Seoul Nat. Univ., South Korea, ACM, Newport
Beach, CA, USA, / 2003.

[Kim04] M. Kim, T. Hiroyasu, M. Miki, and S. Watanabe, “Spea2+: improving the
performance of the strength pareto evolutionary algorithm 2,” In Parallel
Problem Solving from Nature - PPSN VIII. 8th International Conference.
Proceedings, 18-22 Sept. 2004, pp. 742–51, Dept. of Knowledge Eng. &
Comput. Sci., Doshisha Univ., Kyoto, Japan, Springer-Verlag, Birmingham,
UK, / 2004.

[Kim06] Sungchan Kim and Soonhoi Ha, “Efficient exploration of bus-based system-
on-chip architectures,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 14, No. 7, pp. 681–92, 07/ 2006.

[Know99] J. Knowles and D. Corne, “The pareto archived evolution strategy: a new
baseline algorithm for pareto multiobjective optimisation,” In Proceedings
of the 1999. Congress on Evolutionary Computation-CEC99, 6-9 July 1999,

BIBLIOGRAPHY 111

pp. 98–105, Dept. of Comput. Sci., Reading Univ., UK, IEEE, Washington,
DC, USA, / 1999.

[Kris06] V. Krishnan and S. Katkoori, “A genetic algorithm for the design space ex-
ploration of datapaths during high-level synthesis,” IEEE Transactions on
Evolutionary Computation, vol. 10, No. 3, pp. 213–29, 06/ 2006.

[Labo06] George Mason University’s ECLab Evolutionary Computation Laboratory,
“Ecj release 14 and 15,” 2006.

[Lahi04] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration for
optimizing on-chip communication architectures,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 23, No. 6,
pp. 952–61, 06/ 2004.

[Le03] Edward A. Le, “Overview of the ptolemy project,” Technical Re-
port UCB/ERL M03/25, University of California, Berkeley, CA, 94720,
USA,, July 2003.

[Liev01] P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettere, “A methodology
for architecture exploration of heterogeneous signal processing systems,” In
1999 IEEE Workshop on Signal Processing Systems. SiPS 99. Design and
Implementation, 20-22 Oct. 1999, pp. 197–207, Dept. of Inf. Technol. &
Syst., Delft Univ. of Technol., Netherlands, Kluwer Academic Publishers,
Taipei, Taiwan, 11/ 2001.

[LN03] Katarzyna Leijten-Nowak and Jef L. Van Meerbergen, “An fpga architecture
with enhanced datapath functionality,” In ACM/SIGDA 11th ACM Interna-
tional Symposium on Field Programmable Gate Arrays, Feb 23-25 2003, pp.
195–204, Eindhoven University of Technology, Design Automation Section,
Eindhoven, Netherlands, Association for Computing Machinery, Monterey,
CA, United States, 2003 Compilation and indexing terms, Copyright 2006
Elsevier Inc. All rights reserved.

[Magn95] P. Magnusson and B. Werner, “Efficient memory simulation in simics,” In
Proceedings of Simulation Symposium, 9-13 April 1995, pp. 62–73, Swedish
Inst. of Comput. Sci., Kista, Sweden, IEEE Comput. Soc. Press, Phoenix,
AZ, USA, / 1995.

[Mars99] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings,
“A reconfigurable arithmetic array for multimedia applications,” In Proceed-
ings of FPGA ’99. ACM/SIGDA Seventh International Symposium on Field
Programmable Gate Arrays, 21-23 Feb. 1999, pp. 135–43, Hewlett Packard
Labs., Bristol, UK, ACM, Monterey, CA, USA, / 1999.

[Mart02] Grant Martin and Jean-Yves Brunel, “Platform-based co-design and
co-development: Experience, methodology and trends,” In The ninth
IEEE/DATC Electronic Design Processes Workshop, April 2002.

BIBLIOGRAPHY 112

[Matt04] Daniel Mattsson and Marcus Christensson, Evaluation of Synthesizable CPU
cores Master’s thesis, Computer Science and Engineering Program, Depart-
ment of Computer Engineering,Chalmers University of Technology, 2004.

[Mira05] B. Miramond and J. M Delosme, “Design space exploration for dynamically
reconfigurable architectures,” In Proceedings. Design, Automation and Test
in Europe, 7-11 March 2005, pp. 366–71, LaMI, Univ. d’Evry Val d’Essonne,
France, IEEE Comput. Soc, Munich, Germany, / 2005.

[Mirs96] E. Mirsky and A. DeHon, “Matrix: a reconfigurable computing architec-
ture with configurable instruction distribution and deployable resources,” In
Proceedings IEEE Symposium on FPGAs for Custom Computing Machines,
17-19 April 1996, pp. 157–66, IEEE Comput. Soc. Press, Napa Valley, CA,
USA, / 1996.

[Mish03] P. Mishra, A. Kejariwal, and N. Dutt, “Rapid exploration of pipelined pro-
cessors through automatic generation of synthesizable rtl models,” In Pro-
ceedings 14th IEEE International Workshop on Rapid Systems Prototyping,
9-11 June 2003, pp. 226–32, Architectures & Compilers for Embedded Syst.
Lab., California Univ., Irvine, CA, USA, IEEE Comput. Soc, San Diego, CA,
USA, / 2003.

[Mitc96] Melanie Mitchell, An Introduction To Genetic Algorithms, The MIT Press,
1996.

[Miya98] T. Miyamori and U. Olukotun, “A quantitative analysis of reconfigurable co-
processors for multimedia applications,” In Proceedings IEEE Symposium on
FPGAs for Custom Computing Machines, 15-17 April 1998, pp. 2–11, Syst.
ULSI Eng. Lab., Toshiba Corp., Japan, IEEE Comput. Soc, Napa Valley, CA,
USA, / 1998.

[Moha02] S. Mohanty and V. K. Prasanna, “Rapid system-level performance evalu-
ation and optimization for application mapping onto soc architectures,” In
Proceedings 15th Annual IEEE International ASIC/SOC Conference, 25-28
Sept. 2002, pp. 160–7, Dept. of Electr. Eng., Univ. of Southern California,
Los Angeles, CA, USA, IEEE, Rochester, NY, USA, / 2002.

[Mouh06] R. B. Mouhoub and O. Hammami, “Multiprocessor on chip: beating the
simulation wall through multiobjective design space exploration with direct
execution,” In Proceedings. 20th International Parallel and Distributed Pro-
cessing Symposium, 25-29 April 2006, pp. 8, ENSTA, France, IEEE, Rhodes
Island, Greece, / 2006.

[Niar06] S. Niar and N. Inglart, “Rapid performance and power consumption es-
timation methods for embedded system design,” In Proceedings Seven-
teenth IEEE International Workshop on Rapid System Prototyping, 14-16
June 2006, pp. 47–53, Universite de Valenciennes et du Hainaut-Cambresis,
France, IEEE Comput. Soc, Chania, Crete, Greece, / 2006.

BIBLIOGRAPHY 113

[Oski00] M. Oskin, F. T. Chong, and M. Farrens, “Hls: combining statistical and sym-
bolic simulation to guide microprocessor designs,” In Proceedings of 27th
International Symposium on Computer Architecture, 10-14 June 2000, pp.
71–82, Dept. of Comput. Sci., California Univ., Davis, CA, USA, ACM,
Vancouver, BC, Canada, / 2000 Also available on CD-ROM in PDF format.

[Oyam04] M. S. Oyamada, F. Zschornack, and F. R. Wanger, “Accurate software per-
formance estimation using domain classification and neural networks,” In
Proceedings. SBCCI 2004. 17th Symposium on Integrated Circuits and Sys-
tems Design, 7-11 Sept. 2004, pp. 175–80, Inst. de Inf., Univ. Fed. do Rio
Grande do Sul, Porto Alegre, Brazil, ACM, Porto de Galinhas, Pernambuco,
Brazil, / 2004.

[Pale03] G. Palermo, C. Silvano, and V. Zaccaria, “A flexible framework for fast
multi-objective design space exploration of embedded systems,” Integrated
Circuit and System Design, vol. 2799, pp. 249–258, 2003.

[Pale04] C. Palermo and C. Silvano, “Pirate: A framework for power/performance
exploration of network-on-chip architectures,” Integrated Circuit and System
Design, vol. 3254, pp. 521–531, 2004.

[Pare96] V. Pareto, “Cours d’economie politique,” F. Rouge, Lausanne, Technical Re-
port, F. Rouge, Lausanne, 1896.

[Pime01] A. D. Pimentel, L. O. Hertzbetger, P. Lieverse, P. van der Wolf, and E. E.
Deprettere, “Exploring embedded-systems architectures with artemis,” Com-
puter, vol. 34, No. 11, pp. 57–63, 11/ 2001.

[Pime06] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to exploring
embedded system architectures at multiple abstraction levels,” IEEE Trans-
actions on Computers, vol. 55, No. 2, pp. 99–112, FEB 2006.

[Rudo01] ”Günter Rudolph”, “”evolutionary search under partially ordered finite
sets”,” In ”M F. Sebaaly”, editor, ”Proceedings of the International NAISO
Congress on Information Science Innovations (ISI 2001)”, pp. ”818–822”,
”ICSC Academic Press”, ”2001”.

[Schm02] H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, and R. Reed Taylor,
“Piperench: A virtualized programmable datapath in 0.18 micron technol-
ogy,” In Proceedings of the IEEE 2002 Custom Integrated Circuits Confer-
ence, 12-15 May 2002, pp. 63–6, Dept. of Electr. & Comput. Eng., Carnegie
Mellon Univ., Pittsburgh, PA, USA, IEEE, Orlando, FL, USA, / 2002 Also
available on CD-ROM in PDF format.

[Shin04] Chulho Shin, Young-Taek Kim, Eui-Young Chung, Kyu-Myung Choi,
Jeong-Taek Kong, and Soo-Kwan Eo, “Fast exploration of parameterized
bus architecture for communication- centric soc design,” In Proceedings -
Design, Automation and Test in Europe Conference and Exhibition, DATE

BIBLIOGRAPHY 114

04, Feb 16-20 2004, pp. 352–357, Institute of Electrical and Electronics En-
gineers Computer Society, Piscataway, United States, Paris, France, 2004
Compilation and indexing terms, Copyright 2006 Elsevier Inc. All rights re-
served.

[Slom04] Frank Slomka, Karsten Albers, and Richard Hofmann, “A multiobjective
tabu search algorithm for the design space exploration of embedded sys-
tems.,” In DIPES, pp. 227–236, 2004.

[Srik00] S. Srikanteswara, J. H. Reed, P. Athanas, and R. Boyle, “A soft radio archi-
tecture for reconfigurable platforms,” IEEE Communications Magazine, vol.
38, No. 2, pp. 140–7, 02/ 2000.

[Srin94] ”N Srinivas and Kalyanmoy Deb”, “”multiobjective optimization using non-
dominated sorting in genetic algorithms”,” ”Evolutionary Computation”,
vol. ”2”, No. ”3”, pp. ”221–248”, ”1994”.

[Suma02] B. Suman, “Multiobjective simulated annealing - a metaheuristic technique
for multiobjective optimization of a constrained problem,” Foundations of
Computing and Decision Sciences, vol. 27, No. 3, pp. 171–91, / 2002.

[Suma04] B. Suman, “Study of simulated annealing based algorithms for multiobjec-
tive optimization of a constrained problem,” Computers & Chemical Engi-
neering, vol. 28, No. 9, pp. 1849–71, 08/15 2004.

[SV04] A. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis, and M. Sgroi,
“Benefits and challenges for platform-based design,” In Proceedings 2004.
Design Automation Conference, 7-11 June 2004, pp. 409–14, Dept. of EECS,
California Univ., Berkeley, CA, USA, ACM, San Diego, CA, USA, / 2004.

[Tayl02] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H.
Hoffman, P. Johnson, Jae-Wook Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The raw microprocessor: a computational fabric for software circuits and
general-purpose programs,” IEEE Micro, vol. 22, No. 2, pp. 25–35, 03/ 2002.

[Vahi95] F. Vahid and D. D. Gajski, “Slif: a specification-level intermediate format for
system design,” In Proceedings the European Design and Test Conference.
ED&TC 1995, 6-9 March 1995, pp. 185–9, Dept. of Comput. Sci., California
Univ., Riverside, CA, USA, IEEE Comput. Soc. Press, Paris, France, / 1995.

[vdH00] P. van den Hamer, W. P. M. van der Linden, P. Bingley, and N. W.
Schellingerhout, “A system simulation framework. software environments
for designing complex products,” In Proceedings of ACM/IEEE-CAS/EDAC
Design Automation Conference, 5-9 June 2000, pp. 699–704, Philips Res.
Lab., Eindhoven, Netherlands, ACM, Los Angeles, CA, USA, / 2000.

[Vija00] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye, “Energy-
driven integrated hardware-software optimizations using simplepower,” In

BIBLIOGRAPHY 115

ISCA-27: The 27th Annual International Symposium on Computer Architec-
ture, Jun 10-Jun 14 2000, pp. 95–106, Pennsylvania State Univ, University
Park, PA, USA, Institute of Electrical and Electronics Engineers Computer
Society, Los Alamitos, CA, USA, Vancouver, BC, Can, 2000 Compilation
and indexing terms, Copyright 2006 Elsevier Inc. All rights reserved.

[Wain97] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar,
Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev
Barua, Jonathan Babb, Saman Amarasinghe, and Anant Agarwal, “Baring
it all to software: Raw machines,” Computer, vol. 30, No. 9, pp. 86–93,
1997.

[Wang05] Haili Wang, Jinian Bian, Yawen Niu, Kun Tong, and Yunfeng Wang, “Ca-
ex: a tuning-incremental methodology for communication architectures in
embedded systems,” In Embedded Software and Systems. First International
Conference, ICESS 2004. Revised Selected Papers, 9-10 Dec. 2004, pp.
74–80, Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China,
Springer-Verlag, Hangzhou, China, / 2005.

[Wang93] Q. Wang and P. G. Gulak, “An array architecture for reconfigurable data-
paths,” In W. Moore and W. Luk, editors, More FPGAs. Oxford Interna-
tional Workshop on Field-Programmable Logic and Applications, pp. 35–46,
Abingdon EE&CS Books, Oxford, England, 1993.

[Xili04] Inc Xilinx, “Two flows for partial reconfiguration: Module based or differ-
ence based,” 2004.

[Xili06] Inc Xilinx, “Virtex-5 family overview,” October 2006.

[Yi06] J. J. Yi and D. J. Lilja, “Simulation of computer architectures: simulators,
benchmarks, methodologies, and recommendations,” IEEE Transactions on
Computers, vol. 55, No. 3, pp. 268–80, 03/ 2006.

[Zabe06] M. Zabel, S. Kohler, M. Zimmerling, T. B. Preuber, and R. G. Spallek, “De-
sign space exploration of coarse-grain reconfigurable dsps,” In 2005 Inter-
national Conference on Reconfigurable Computing and FPGAs ReConFig
2005, 28-30 Sept. 2005, pp. 8, Inst. of Comput. Eng., Dresden Univ. of Tech-
nol., Germany, IEEE Computer Society, Puebla City, Mexico, / 2006.

[Zhan00] H. Zhang, V. Prabhu, V. George, M. Wan, M. Benes, A. Abnous, and J. M.
Rabaey, “A 1-v heterogeneous reconfigurable dsp ic for wireless baseband
digital signal processing,” In 2000 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers, 7-9 Feb. 2000, pp. 1697–704, Dept.
of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA, IEEE,
San Francisco, CA, USA, 11/ 2000.

[Zitz01] ”Eckart Zitzler, Marco Laumanns, and Lothar Thiele”, “”spea2: Improv-
ing the strength pareto evolutionary algorithm”,” -, Technical Report, ”Com-
puter Engineering and Networks Laboratory (TIK), Swiss Federal Institute
of Technology (ETH) Zurich”, ”May” 2001.

BIBLIOGRAPHY 116

[Zitz02] Eckart Zitzler, Marco Laumanns, and Lothar Thiele, “Spea2: Improving the
strength pareto evolutionary algorithm for multiobjective optimization,” In
K. C. Giannakoglou, D. T. Tsahalis, J. Periaux, K. D. Papaliliou, and T. Fog-
arty, editors, Evolutionary Methods for Design, Optimisation and Control
with Application to Industrial Problems. Proceedings of the EUROGEN2001
Conference, Athens, Greece, September 19-21, 2001, pp. 95–100, Interna-
tional Center for Numerical Methos in Engineering, CIMNE, 2002.

[Zitz99] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: a com-
parative case study and the strength pareto approach,” IEEE Transactions on
Evolutionary Computation, vol. 3, No. 4, pp. 257–71, 11/ 1999.

[Zivk03] V. D. Zivkovic, E. Deprettere, E. de Kock, and P. van der Wolf, “Fast and ac-
curate multiprocessor architecture exploration with symbolic programs,” In
6th Design Automation and Test in Europe (DATE 03), 3-7 March 2003, pp.
656–61, Leiden Univ., Netherlands, IEEE Comput. Soc, Munich, Germany,
/ 2003.

