BUILDING UP A COURSE IN RECONFIGURABLE COMPUTING

Christophe Bobda
Departement of Computer Science 12
University of Erlangen-Nuremberg
Am Weichselgarten 3, 91058 Erlangen, Germany
bobda@cs.fau.de

ABSTRACT

The last decade has experienced an increase interest on re-
configurable computing (RC). This evolution was boosted by
FPGAs which have grown from simple glue logic elements to
complex devices able to implement several complex hardware
applications and be partially and dynamically reconfigured
at run-time. Despite the high number of courses offered in
the last years in reconfigurable computing, we could not find
a course covering all aspects of reconfiguration. The large
magority of reconfigurable computing courses are limited to
FPGA programming. This is in part due to the fact that
no textbook actually exists in this area. In this paper, we
present our experience in providing a course in RC from
the scratch. Our goal in designing this course is to provide
a strong theoretically and practical background to students
by covering all aspects of RC as usually reflected in confer-
ences and industry.

1. INTRODUCTION

General purpose computing is based on the traditional Von
Neumann Computing model. A given program is computed
by a sequential execution of its instructions. Instructions
as well as data are stored in a memory. An instruction
is fetched from the memory and decoded. The required
operands are then collected from the memory before the
instruction can be executed. After execution, the result is
written back in the memory. This computation paradigm
involves five steps in general: Instruction Read, Decoding,
Reading of Operands, Execution, and Write Result. The
main advantage of the Von Neumann computing paradigm
is that it can be used to program almost all existing algo-
rithms. The architecture has a high degree of flexibility.
Nevertheless, each Algorithm to be implemented on a Von
Neumann computer has to be coded into its sequential com-
putational behavior. l.e. the algorithm has to be adapted to
the hardware to be sequentially executed even if it is inher-
ent parallel. The Drawback of the Von Neumann computers
can be overcame by directly implementing the best compu-
tational paradigm adapted to a given application in hard-
ware. In this case, parallelism can be exploited to increase
the performance. For each function to be implemented, the
optimal hardware, usually called an Application Specific
Processor (ASP), will be built. We said that the hardware
is adapted to the algorithm. While the main advantage of
ASPs is their speed, ASPs are not flexible at all. A func-
tion implemented in an ASP cannot be changed anymore.
Ideally, we would like to have the advantages of the Gen-
eral Purpose Processors (GPP) and ASPs combined in one
device. That means we will like to have a device which

is flexible enough to implement any kind of algorithm and
efficient enough to run very fast. This degree of perfor-
mance and flexibility can be reached only if the device can
be dynamically adapted to algorithms. Devices, which are
able to be dynamically adapted to match the computation
paradigm of a given application are called reconfigurable de-
vices, adaptive devices or Reconfigurable Processing Units
(RPU). The adaptation of the hardware to new algorithms
is done by changing the device configuration.

2. COURSE PURPOSE

With the rapid changing in the area of reconfigurable com-
puting. the purpose of the course ”reconfigurable comput-
ing” is to provide to students, the necessary knowledge for
understanding and designing reconfigurable systems. The
course provides a strong theoretical and practical back-
ground to students by covering all aspects of RC as usu-
ally reflected in conferences and industry. This include the
architectures of reconfigurable systems, the algorithms and
the applications. A considerable part of the course is de-
voted to lab, which are done on the basis of the Xilinx
FPGAs, one of the few FPGAs on the market to support
partial reconfiguration.

3. COURSE CONTENT

The course is intended for graduate students in computa-
tional engineering with focus on microelectronics, informa-
tion technology or sensor technology. However, the course
is also open to computer science students who have com-
pleted introductory digital logic design. It is organized in
two parts: In the first part the readings are done while in
the second part exercises and lab alternate. The reading as
well as the exercises are done in a frequency of two hours per
week each. Exercises are offered either as theoretical exer-
cises for a better understanding of the theoretical materials
or as lab for dealing with reconfiguration in the praxis. The
parts covered are:

e Architecture of reconfigurable systems: In this
section, technology as well as the coupling possibilities
of reconfigurable systems is considered, from the fine
grained look up table (LUT) based reconfigurable sys-
tems like the field programmable gate arrays (FPGA)
to the new coarse grained technology.

e Design and implementation: This section consid-
ers the implementation of reconfigurable systems. It
covers the steps needed (design entry, functional simu-
lation, logic synthesis, technology mapping, place and
route and bit stream generation) to implement today’s
FPGAs. We focus deeply in logic synthesis for FPGAs,
in particular LUT technology mapping.

Proceedings of the 2005 IEEE International Conference on Microelectronic Systems Education (MSE’05)
0-7695-2374-9/05 $20.00 © 2005 IEEE

e Temporal partitioning: This section considers the
high level synthesis for reconfigurable systems. It cov-
ers the implementation of large functions which cannot
fit in one FPGA. Several temporal partitioning tech-
niques are explained.

e Temporal placement: In this section, stand alone re-
configurable systems are considered. We assume that
a kind of OS for reconfigurable systems is in charge
of managing the resources of the system and allocate
space on a device for the computation of incoming
tasks. We therefore present several temporal place-
ment approaches for on-line placement.

e On-line and Dynamic Interconnection: Modules
dynamically placed at run-time on a given device need
to communicate with each other and also exchange
data with off-chip devices. Therefore, they dynami-
cally create a need of communication on the chip. This
chapter reviews and explains the different approaches
to solve this dynamic intercommunication need.

e Designing a reconfigurable application on Xil-
inx Virtex FPGA: This section considers the im-
plementation of a reconfigurable application on Xilinx
FPGAs. Apart from the steps (design entry, functional
synthesis, technology mapping, place and route and
bitstream generation) needed in logic synthesis, the
generation of partial bitstreams for component to be
placed at run-time on the FPGA is considered. This is
done using the modular design flow.

e System on programmable chip: System on pro-
grammable chip is a hot topic in reconfigurable com-
puting. This is mainly the integration of a system made
upon some peripherals (UART, Ethernet, VGA, etc.)
but also computational (Coding, filter, etc.) hardware
modules on one programmable chip. We present the
current usable solutions: The Xilinx EDK, the Altera
Excalibur and the Atmel System designer

e Applications: This section presents applications of
reconfigurable systems. It covers the use of reconfig-
urable system in computer architecture (rapid proto-
typing, reconfigurable supercomputer, reconfigurable
massively parallel computers) and suitable algorithms
for reconfigurable systems (distributed arithmetic, net-
work packet processing, etc...)

4. LABORATORY SUPPORT
The laboratory includes:

e Capturing a design using VHDL: This is done using
the Synopsys FC2 design environment. The produced
EDIF-file is used as entry for the Xilinx ISE-tool

e Implementation of a design using Xilinx ISE. Here we
use the Xilinx ISE 4 for synthesizing the EDIF-design
produced in the previous step. The result is a bitstream
used for configuring the FPGA.

e The Modular design. Here, we use the Xilinx ISE 6,
which includes the tool for the modular design. Stu-
dents learn how to design a large project in a team of
engineers. They also learn how to constraint a com-
ponent to a given location, how to place bus-macros
among components to insure a signal integrity on re-
configuration, and how to produce the partial bit-
stream for each reconfigurable module.

According to the goal seeked, we use three different plat-
forms.

1. The first one is a Digilab XLA, featuring a Spartan
XLA. Because this device is not supported in the cur-
rent Xilinx CAD tool (the ISE), we must first provide
an EDIF implementation of our design. That is why we
first use the Synopsis FC2 to produce the EDIF-files.

2. The second platform is the Xilinx-Digilab XCR fea-
turing a Spartan 3 FPGA. Since the device on this is
supported in the newest Xilinx tool, the complete de-
sign (VHDL entry, Synthesis, download) is done in just
one environment.

3. The third platform used is the RC200 board of Celox-
ica. This board is used here for pure demonstration.
This is the only board available in our Lab to support
partial reconfiguration.

The software used as well as part of the hardware are fully
or partly donated by the company Xilinx as part of its uni-
versity programs. Apart from the first lab done on Unix
workstations, all the remaining labs were done on Windows
PCs.

5. COURSE MATERIAL

All the course material (slides, assignments and tutorials)
are disseminated via the world-wide web [1]. Students gen-
erally utilize a split-screen approach with one window con-
taining tutorial instructions and a second window exercising
the appropriate CAD tool needed for the design. A script
is also provided to students as a preliminary version of a
textbook, thus the web access to the script is restricted.
All the remaining materials are free for access.

The lab consists of two designs. The first one is the im-
plementation of a digital alarm clock. This lab helps the
student to understand the relation between a circuit run-
ning in FPGA and the peripherals on the board. The sec-
ond design is a traffic light control (TLC). This design is
divided in three blocks. The first one is a finite state ma-
chine (FSM) for interpreting the pedestrians need, the sec-
ond one is a VGA module in charge of displaying a traffic
light infrastructure on the screen. The third module is a
light visual (LV) module to construct the infrastructure by
computing the colors to be display at a given location by
the VGA module. The FSM sends the command on the be-
havior of a pedestrian to the LV which then computes the
corresponding color.

6. EXPERIENCES

In the first lab, students found it difficult to exchange the
files from one tool (the Synopsis FC2 to another (the Xil-
inx ISE). Also, this process was time consuming. With the
tools remotely installed, the designs could not be done in
the foreseen time. Once we moved to the integrated Win-
dows design in the remaining labs, the students felt more
comfortable and all the designs could be done on time with
many iterations

REFERENCES

[1] Christophe, Bobda, “Reconfigurable Computing”,
http://wwwl2.informatik.uni-erlangen.de/edu/rc/

Proceedings of the 2005 IEEE International Conference on Microelectronic Systems Education (MSE’05)
0-7695-2374-9/05 $20.00 © 2005 IEEE

