An Evolving Curriculum to Match the Evolution

of

Reconfigurable Computing Platforms

Graham Schelle*, Daniel FayT, Dirk Grunwald*, Dan Connors' and John Bennett'
*Dept. of Computer Science

University of Colorado at Boulder

Boulder, CO USA
TDept. of Electrical and Computer Engineering

University of Colorado at Boulder

Boulder, CO USA
{schelleg,faydr,grunwald,dconnors,jkb } @colorado.edu

Abstract— Reconfigurable platforms have evolved from “sea
of gates” architectures into diverse System on a Chip (SoC)
platforms with embedded processor cores and dedicated hard-
ware components. This evolution has greatly increased the
performance of this technology, but creates challenges when
teaching the new technology to Computer Science and Elec-
trical Engineering graduate students. Previously, knowledge of
Hardware Description Languages (HDLs) was the only prereq-
uisite for advanced courses in reconfigurable computing, but
now knowledge of embedded processors, complex tool suites,
and hardware/software co-design form the basic foundation of
education in this field. At the University of Colorado at Boulder
we have partnered with Xilinx, a leading manufacturer of FPGAs,
and endeavored to create a curriculum that addresses these
challenges. Through a graduate level embedded systems course
that hybridizes microprocessor-based software with dedicated
hardware and various seminar courses on reconfigurable com-
puting, we have been able to observe how students best learn
subject matter in this area and what subject matter they find
challenging. In this paper, we describe our experience teaching
reconfigurable computing with an emphasis on programmable
SoC design.

I. INTRODUCTION

As the diversity and complexity of reconfigurable comput-
ing increases, so must the university curriculum that teaches
it. Cutting-edge reconfigurable computing education not only
requires knowledge of digital design, but also a deep un-
derstanding of hardware/software codesign. In addition to
understanding logic and embedded microprocessors, students
need to know how to divide an application between logic and
processors and how to select the correct tools for design and
debug. As reconfigurable computing evolves toward System
on a Chip (SoC) architectures, reconfigurable computing edu-
cation must follow [1].

Modern FPGA designs reflect the move toward SoC ar-
chitectures for reconfigurable computing. Originally a “sea
of gates” used mainly as glue logic, FPGAs have evolved
to become powerful compute engines containing specialized
hardware blocks like fast carry chains, embedded multipliers,
SRAMs, and full-fledged microprocessor cores.

In parallel to the increased use of embedded components,
FPGA designs that use soft IP (Intellectual Property) blocks

Assembly

Digital Logic Programming
\ Computer /

QOrganization

Embedded Advanced
Systems Computer
Design Architecture
¥
Realtime
Embedded
Systems
|
Hybrid

Reconfigurable
Seminar

Embedded
Systems \ Software
Defined

Radio

Fig. 1. Reconfigurable course sequence at the University of Colorado.

are now commonplace. The standard soft IP includes, at a min-
imum, microprocessors, I/O controllers, and various kinds of
memories. Any FPGA-based reconfigurable computing course
that ignores these embedded and soft components will not
allow students to realize the full potential of modern FPGAs.
As a result, a reconfigurable course must emphasize this
block-based design philosophy over the traditional, gate-based
logic design methodology, relegating digital logic courses to
teaching the latter.

Embracing these trends, our reconfigurable curriculum now
utilizes a programmable System on a Chip design flow. Pro-
grammable System on a Chip refers to the various execution
configurations that can exist on modern FPGAs, which contain
a mixture of components (embedded and soft processors, IP
components) linked together by a variety of interconnects
(buses, Network on Chip, specialized). This design method-
ology differs starkly from traditional HDL-based FPGA de-
signs, as it requires a holistic approach that incorporates both
hardware and software into the overall system design.

Figure 1 shows our graduate reconfigurable curriculum,
which consists of a course in hybrid embedded systems,

a reconfigurable seminar course, and a course in Software
Defined Radio (SDR). Our hybrid embedded systems course
provides students a foundation for further SoC studies by
teaching them how to use the Xilinx tools to realize the full
capabilities of modern FPGAs. Our seminar course provides
an overview of current reconfigurable computing research.
Finally, our SDR course uses the powerful DSP capabilities
of contemporary FPGAs to digitally modulate and demodulate
analog radio signals.

The rest of this paper discusses both how we developed our
reconfigurable computing curriculum as well as the challenges
we faced with these new classes. Section II discusses the
infrastructure improvements and partnerships with industry
critical to our new curriculum’s success. Section III discusses
our experiences developing the Hybrid Embedded Systems
course, sections IV and V present the relevant seminar courses,
and we conclude the paper by discussing the future directions
of our curriculum.

II. INFRASTRUCTURE DEVELOPMENT

In this section, we discuss the hardware and software
foundations that allow our curriculum to keep current with
new developments in reconfigurable computing.

Hardware Platforms. The hardware available to the stu-
dents has greatly increased due to our partnership with Xilinx.
Through various research projects, courses, and individual
contacts, we have procured a variety of FPGA boards. The
Software Defined Radio course, for example, uses the Nal-
latech XtremeDSP boards for signal processing applications,
while the Hybrid Embedded Systems class uses the Digilent
XUPV2P board.

Software Tools. Modern reconfigurable computing archi-
tectures use multiple layers of tools, scripts, and GUIs for
development. This software rises above standard HDL design,
augmenting it with higher-level schematic- and script-based
design flows. This allows students to focus on larger system
design issues and quickly push complicated designs into hard-
ware. Hybrid Embedded Systems leverages Xilinx’s Platform
Studio to facilitate integrating software and hardware into a
single working design, while the Matlab / Simulink / System
Generator for DSP tool chain allows students to quickly reify
their Matlab designs into working hardware implementations.
While different classes require different FPGA hardware plat-
forms, they all use the same suite of Xilinx software tools,
which means students need only learn the tools once.

Technical Support. Historically, FPGA design tools re-
quired dedicated staff to maintain servers and specialized
workstations, apply updates, and answer student inquiries. In
the last few years, however, the licensing and online support
have improved to where the students can find the technical
support they need on their own. Additionally, the tools them-
selves can now be installed on commodity Windows-based
laptops without needing to access a license server. This is in
part due to Xilinx providing a great deal of free software for
the students as well as other EDA vendors providing their tools
at significantly reduced cost.

III. HYBRID EMBEDDED SYSTEMS
A. Goals

Historically, embedded systems have been designed as
primarily either software-centric or hardware-centric designs,
where the design effort centers around either writing software
for a microprocessor/microcontroller or making a specialized
hardware design.

A new course we developed, called Hybrid Embedded Sys-
tems [2], sets out to bridge the gap between these two design
methodologies in order to gain the benefits of both designs.
At the University of Colorado, it replaces the Embedded
Systems Lab course as the third course in the three-course
sequence known as the Embedded Systems Certificate courses
in the Electrical and Computer Engineering department. The
other two classes in this sequence are Embedded Systems
Design [3], a class based around the 8051 microcontroller,
and Realtime Embedded Systems [4], which teaches students
about realtime systems using the Wind River VxWorks [5]
operating system running on Intel Pentium-based hardware
systems. Both of these classes teach embedded systems from
a processor-centric perspective — most of the design work
involves programming the microprocessor such that it acts as
a mediator between the other components in the system.

While there are other hybrid hardware/software design
methodologies, teaching the SoC design flow is ideal for a
semester-long course. In addition to learning about a widely-
used, cutting-edge, design technique, SoC design allows stu-
dents to explore a wide range of different hardware/software
partitions without spending large amounts of time writing,
synthesizing, debugging, and testing custom logic. Instead,
students can evaluate different ways to partition the system
between hardware and software simply by connecting different
pre-existing hardware blocks together using a set of standard-
ized interconnection schemes.

B. Curriculum

Figure 2 shows the three boards that have been used in
Hybrid Embedded Systems: on the left is the Insight Memec
DS-KIT-2VP4LC-NE board, in the center is the Digilent
XUPV2P board, and on the right is the Xilinx ML310 board.
Table I provides a comparison of the features offered by
the three boards. Hybrid Embedded Systems’ debut semester
used primarily the Insight Memec board, although a few final
projects used the ML310.

As the first semester of Hybrid Embedded Systems went on,
the Insight Memec board became inadequate for the following
reasons:

1) Insufficient logic resources. Creating a substantial SoC
design requires large amounts of logic to instantiate all
of the hardware blocks and interconnection bus logic.

2) Lack of onboard memory. The Insight Memec board
does not come with any external SRAMs or DRAMs,
which means that programs must fit into the few kilo-
bytes of Block RAMs provided by its small FPGA.
There is not enough memory to boot, for example,

Feature Memec ML310 XUPV2P
Logic Resources (slices)) 6,768 30,816 30,816
On-Chip Memory (kbits) 504 2448 2448
PowerPC 405s 1 2 2
Audio CODEC No Yes Yes
Video RAMDAC No No Yes
LCD Display Yes Yes No
External Memory No DDR DIMM | DDR DIMM
RS-232 Port Yes Yes Yes
Built-in Speaker Yes No No
Switches/Pushbuttons Yes Yes Yes
LEDs Yes Yes Yes
GPIOs Yes Yes Yes
CompactFlash Interface No Yes Yes
Built in JTAG Controller No No Yes
Ethernet No No Yes
Hard Drive Interface No IDE SATA
PCI Slots No Yes No
TABLE I

FEATURE COMPARISON OF THE INSIGHT MEMEC
DS-KIT-2VP4LC-NE[6], XILINX ML310[7], AND THE DIGILENT
XUPV2P[8].

Embedded Linux or to create large, data-intensive ap-
plications.

3) Lack of external peripherals. A major use of SoCs is to
quickly process large amounts of data in real time. The
Insight Memec board does not have any video input,
video output, or sound input facilities. Additionally,
there is no way to interface the board with mass storage
devices such as hard drives or flash devices.

The next semester, in the Fall of 2005, the course switched
to using a new board, the Digilent XUPV2P board. Compared
to the Insight Memec board, the XUPV2P contains a larger
FPGA, access to external memory, as well as having a large
number of input/output devices directly accessible from the
FPGA, such as a video RAMDAC, an AC97 audio CODEC,
Ethernet, Serial ATA hard drive connectors, a CompactFlash
interface, and more general-purpose I/O (GPIO) connectors.
This is in contrast to the ML310, whose similar featureset is
accessed through the PCI bus, complicating projects that do
not use an embedded operating system like Embedded Linux
or VxWorks. While many of these features can be obtained
for the Insight Memec board, they require the purchase of
additional hardware.

Another advantage that the XUPV2P board has over the
Insight Memec board is that it is a significantly better value:
for academic customers, the XUPV2P board costs US$299,
while the Insight Memec board costs US$199 and the ML310
costs US$999. The cost advantage that the Insight Memec has
over the XUPV2P board becomes smaller when one takes into
account the XUPV2P’s built-in USB-based JTAG connectivity.

The class itself is divided into two parts. The first half of
the class consists of a lecture discussing theory as well as the
operation of the tools and equipment used during the semester.
The lecture consisted of the following parts:

1) VHDL. (3 weeks) Provide an introduction to VHDL,

which is the “supported” HDL for this course. Also
part of the VHDL teaching is how VHDL is used for

synthesis and simulation. This gives some insight into
how simulators work.

2) Basic hardware design using the Xilinx Integrated
Software Environment (ISE) (1 week). Show the
students how to do basic logic design using the Xilinx
ISE tools, as well as how to use the tools to synthesize
the design.

3) Introduction to the Embedded Developers’ Kit
(EDK) (3 weeks). Students learn to add and configure
IP blocks, including custom IP that they develop.

4) Debugging Tools (1/2 week). Students learn how to use
ChipScope Pro, GDB, and XMD.

5) Hardware/Software co-design (1/2 week).

6) Profiling (1 week). Students learn to evaluate software
performance, and to develop hardware accelerators for
critical functions.

7) Floating-point (1/2 week). Students learn the basics of
adding floating-point functionality to their designs.

8) Multiple processors (1/2 week). Students learn the
basics of multiprocessing, including the implementation
of multiple processor designs.

In addition to the lecture material, there were also struc-
tured laboratory assignments. Assigned every other week, the
students receive a new assignment that serves as a tutorial to
teach the tools used in the class.

1) Lab Familiarization; VHDL Tutorial. This is the
standard introductory lab, where the goal is to just make
sure that everything works for the student. This lab also
introduced the students to VHDL.

2) ISE/ModelSim/VHDL. A tutorial that introduces the
students to developing logic designs in Xilinx ISE and
simulating those logic designs using ModelSim SE.

3) ISE/VHDL. In this lab, the students made and imple-
mented a simple 4-bit binary counter on the XUPV2P
board so that they became familiar with synthesizing
simple logic designs to hardware.

4) EDK Base System Builder (BSB). This lab introduced
the students to Base System Builder, a wizard-based tool
for creating working hardware/software platforms to be
used as a foundation for more advanced designs.

5) Using the EDK. Continues where the previous lab left
off, by introducing the students to adding IP blocks to
the design made in Base System Builder.

6) SW Development and Debugging. Introduces the de-
bugging tools XMD, GDB, and ChipScope Pro.

7) Advanced Topics. This final lab gives the students
hands-on experience with performance tuning. Experi-
ence with profiling, caching, and hardware acceleration.

C. Final Projects

In the two semesters that this class has been offered, a
variety of final projects have been completed by students.
Some of the best of these are described below:

« Parameterizable cache emulator This project conducted

microarchitectural design exploration by using the FPGA
as a parameterizable hardware cache emulator.

Fig. 2.

« MP3 player using APU acceleration The students doing
this project used the Auxiliary Processing Unit (APU)
interface on the PowerPC 405 contained on a Virtex-4 to
interface with hardware accelerating MP3 playback.

o Hardware Edge Detection This project implemented an
edge detection algorithm in hardware to detect shapes in
real-time video. Input is through the video card, output
is to a TV screen, and information is displayed.

e Audio Streaming over Ethernet This group created a
real-time MP3 streaming server. The overall functionality
is where one can connect an audio source to the audio-in
jack of the XUPV2P board, and have the input encoded
into an MP3 and sent out over Ethernet to the network
as either an HTTP stream or Icecast/Shoutcast stream.
The design used two PPC405s to move data from the
audio CODEC, to the hardware MP3 accelerator, and out
through the Ethernet port.

e AC-3 Audio encoding/Decoding This group developed
and AC3 audio encoder/decoder. Since the computation
requires a significant amount of floating-point computa-
tion, the group integrated a PLB-attached floating-point
unit into their design.

IV. RECONFIGURABLE COMPUTING SEMINAR

In addition to the Hybrid Embedded Systems course, we
have offered a seminar course to our graduate students on
reconfigurable computing. This course consists of reading 1-2
papers a class and having group discussions culminating in
group research projects. Having these classroom discussions
allows instructors to examine the diverse body of work that
encompasses reconfigurable computing and determine what is
most interesting in terms of education and research.

Interestingly, the term reconfigurable computing has been
increasingly used to describe a variety of platforms, not just
FPGAs. With the DARPA Polymorphic Computing Architec-
tures Funding in 2000, many projects arose that raised the
level of reconfigurability to tile-based multiprocessor designs
connected by a Network on Chip (NoC) [9] [10]. It is impor-
tant to include these projects when discussing reconfigurable
computing, as traditional FPGAs have also left the pure logic

Boards used in Hybrid Embedded Systems: Insight Memec DS-KIT-2VP4LC-NE (left), Digilent XUPV2P (center), and Xilinx ML310 (right).

arena embedding processors, high speed transceivers, and DSP
cores. This observation has led us to gear our education in the
seminar courses towards the entire spectrum of reconfigurable
computing, beginning with fine-grained FPGA architectures
and ending with multicore processor designs. Simply dis-
cussing FPGA architectures and applications is no longer
enough when discussing reconfigurable computing.

The seminar course is available to both ECE and CS grad-
uate students. As with the hybrid embedded systems course,
the students enter with a variety of background knowledge
and experience. However, in our experience, most students
are typically interested in systems research (e.g. architecture,
compilers, networks). Since this class consists mainly of
reviewing and discussing papers, students from a variety of
backgrounds can participate. In the future, we expect that
students from other areas such as parallel processing will
use this seminar course to complement to their research in
computer science and engineering.

A. Topics Of Interest

The reconfigurable computing seminar covers roughly 50
papers over the course of a semester. We do not enumerate
the papers here, but categorize areas of interest. Overall, the
goal is to present a variety of architectures, applications, and
tools that are directly related to reconfigurable computing.

o Coarse Grained Reconfigurable Architectures. We
begin the class by exploring the variety of reconfig-
urable computing architectures that exist. GARP [11]
and RaPid [12] are two examples of these architectures.
These non-traditional architectures (i.e. not solely FPGA
logic) present how heterogeneous components can work
together in reconfigurable computers. We emphasize the
aspects of performance and usability to the software and
hardware designer communities. The lack of accepted
benchmarks for these designs has often frustrated students
when making performance comparisons. However, the re-
search does good comparisons against standard processor
implementations of application sets.

« Application Space Driven Architecture Exploration.
With so many different configurations and architectures

in reconfigurable computing, we then discuss architecture
exploration tools [13]. This part of the class is particularly
interesting in that reconfigurable computing architecture
research papers typically present a given architecture
and then map applications onto it. With these tools,
however, one instead presents the application and then
finds the best architecture for it. Students found this
section helpful in comparing what architectural features
are most important to a given application set.

o Network on Chip Interconnect. We discuss NoC re-
search as a needed component to System on Chip de-
signs [14]. We discuss how power consumption issues,
leads many architects to move toward NoC architectures.
We emphasize this in order to compare the current state
of reconfigurable computing with that of well-understood
processor designs. Students with a good knowledge of
processor design are interested in the challenges of cre-
ating a Network on Chip that meets processor communi-
cation needs. Networking students also find this section
of the class novel and interesting due to the network
challenges that come from the “onchip” nature of NoCs.

o High Level Reconfigurable Computing Languages.
Discussing the difficulties in writing “code” for reconfig-
urable computers is of particular interest to computer sci-
ence students. We explore various languages that are used
to target specific platforms, emphasizing the performance
tradeoffs with writing raw VHDL and C code [15] [16].
Comparison of languages against each other make for
good semester projects, exposing the students to multiple
languages and mapping those languages down to imple-
mentations.

V. SOFTWARE DEFINED RADIO SEMINAR

We briefly present our Software Defined Radio (SDR)
seminar here as an example of an emerging research field
that benefits greatly from having a reconfigurable computing
curriculum in place.

The course itself is not focused on reconfigurable com-
puting; rather, it is more concentrated in DSP concepts and
the software tools that exist to create and simulate SDR
algorithms. Topics include smart antennas, signal filtering, and
example SDR platforms. SDR is an excellent application space
where reconfigurable computing platforms can allow students
to implement their designs. Specifically, using Nallatech’s
XtremeDSP boards along with the Matlab/Simulink/System
Generator for DSP tool flow, students can place SDR al-
gorithms onto real hardware. Without other reconfigurable
computing courses, especially the hybrid embedded systems
course, we would be unable to teach students how to use
the reconfigurable computing platforms within a semester.
Currently, students unfamiliar with the Xilinx tool flow can use
alternate implementation platforms, notably the GNU Software
Radio project [17].

VI. FUTURE OF RECONFIGURABLE COMPUTING
EDUCATION

Reconfigurable Computing education at the University of
Colorado has grown from simple logic design into complex
SoC design education. In the future, the curriculum will need
refinement in tool selection, and an emphasis on reconfigurable
computing in other research fields. We also expect that the
Hybrid Embedded Systems course will continue to evolve to
match the increasing complexity of designs.

A. Tool Selection Challenges

There are a number of tools that can be used to develop
SoC designs. From high level languages to the standard FPGA
vendor tools, it has been difficult to determine the best ones
for students to learn. In our experience, the best support
and maintenance has come from established vendors (Xilinx,
Mentor Graphics, etc.), but using less supported newer tools
may be a benefit to students (SystemC, Confluence, etc.). We
still need to reduce the number of tools used in our curriculum,
and we need to integrate their usage into other courses. For
the present, we are staying with the Xilinx and Matlab design
flows, as they are well-supported by industry.

B. Reconfigurable Computing Integration into Other Fields

We also are making efforts to introduce reconfigurable
computing into existing and new graduate-level courses. As
noted in section V, we currently offer a seminar course in
the area of Software Defined Radio. This experience can be
applied to other seminar courses in a variety of subject areas.

For example, architecture courses could benefit from explo-
ration tools such as SystemC, allowing students to quickly see
how design choices affect a variety of performance metrics.
In parallel processing courses, we can use the availability of
multiple RISC processors onchip to do real implementations
of concepts learned in class. Finally, in compiler courses, the
increasing complexity of compilers can be made apparent by
examining hybrid reconfigurable computing platforms.

C. Future Developments in the Hybrid Embedded Systems
Course

In the future, less course time needs to be spent on tutorials
to acquaint the students with the tools and hardware. One way
to do this is to reduce the number of labs by combining several
tutorial labs into one lab, since each lab takes only a few hours.
Similarly, the lecture portion of the class should spend less
time on tool-related topics and more time on theory.

Future offerings of this course need to provide some dis-
cussion of appropriate hardware/software tradeoffs in hybrid
embedded systems. Examples include how control-intensive
code is most appropriate for a microprocessor-type device,
the powerful capabilities of DSP code in an FPGA, and the
places where FPGAs are particularly useful, such as when the
application exhibits large amounts of fine-grained parallelism
and/or the data types have non-standard bitwidths. The major
bottlenecks to high performance in SoC designs, such as on-
chip/offchip bandwidth and latency, need to be discussed as

well. Other issues that merit discussion include time-to-market
versus cost and performance tradeoffs, and concurrent designs
that have multiple processing elements working at once.

Additionally, the course could provide some treatment of
issues concerning power consumption, an issue that is criti-
cally important in many current embedded systems, and will
become even more important in the future. Xilinx provides a
tool, called XPower, that estimates the power consumed by
the FPGA using ModelSim traces as input.

Since there are many possible directions the course can
take, an option might be to let students guide the learning.
We could allow the students, for the last few labs, to choose
from several different possible design choices. Possible topics
could include:

1) DSP. Have a lab that deals with issues specific to
using the FPGAs as powerful Digital Signal Processors
(DSPs).

2) Multiprocessing. Have a tutorial which shows the stu-
dents how to create multiprocessor setups. Such setups
could include making a heterogeneous system with
multiple, different cores, e.g. two PowerPC processors
and/or one or more MicroBlaze processors.

3) Fault tolerance. As the features on integrated cir-
cuits become ever smaller, their sensitivity to radiation-
induced errors increases. Additionally, harsh operating
environments, such as outer space, place new demands
on integrated circuits. A lab that explores techniques to
mitigate these problems, such as error-correcting codes
(ECC) for memories and running logic in lockstep,
would allow students to gain experience making fault-
tolerant systems.

4) Multi-gigabit I/0. The Xilinx Virtex-II Pro FPGAs have
several Rocket I/O multi-gigabit transceivers, which are
differential serial lines running at multiple gigabaud.
These lines can be used for implementing Serial ATA
(SATA) disk interfaces.

5) Embedded Operating Systems. These could be done
using either the XUPV2P or the ML310, to study FPGA-
based systems running either Embedded Linux.

VII. CONCLUSIONS

We have described the evolving graduate level reconfig-
urable computing curriculum at the University of Colorado.
As students’ interests have progressed to using the variety
of embedded cores on modern FPGAs, we have adapted the
curriculum to teach programmable System on Chip design
and research practices. Balancing training on one specific tool
flow versus educating general design processes has been the
most notable challenge in Hybrid Embedded Systems. The
seminar course has identified interesting areas of research
in reconfigurable computing, but must remain responsive to
the rapidly evolving technology and the students’ background
knowledge and interests. We believe that these courses will
increase in popularity, as have the related embedded systems
courses that are currently offered.

[1]
[2]
[3]
[4]
[3]
[6]
[7]
[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

REFERENCES

H. D. Man, “System-on-chip design: Impact on education and research.”
IEEE Design & Test of Computers, vol. 16, no. 3, pp. 11-19, 1999.
“Ecen 5633 hybrid embedded systems,” http://ece.colorado.edu/
academics/courses/ECEN_5633.html.

“Ecen 5613 - embedded system design,” http://ece.colorado.edu/
academics/courses/ECEN_5613.html.

“Ecen 5623 - real-time embedded systems,” http://ece.colorado.edu/
academics/courses/ECEN_5623.html.

“Vxworks 6.0, http://www.windriver.com/products/device_
technologies/os/.

“Virtex-ii pro lc development kit,” http://www.memec.com/uploaded/
VirtexIIProLC_1.pdf.

“MI1310 documentation and tutorials,” http://www.xilinx.com/products/
boards/ml310/current/index.html.

“Virtex-ii pro development system,” http://www.digilentinc.com/info/
XUPV2P.cfm.

M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The raw microprocessor: a computational fabric for software circuits
and general-purpose programs,” in Micro, IEEE, vol. 22. IEEE
Computer Society Press, 2002, pp. 25-35.

K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, N. Ran-
ganathan, D. Burger, S. W. Keckler, R. G. McDonald, and C. R. Moore,
“Trips: A polymorphous architecture for exploiting ilp, tlp, and dlp,”
ACM Trans. Archit. Code Optim., vol. 1, no. 1, pp. 62-93, 2004.

J. R. Hauser and J. Wawrzynek, “Garp: A MIPS processor with
a reconfigurable coprocessor,” in [EEE Symposium on FPGAs for
Custom Computing Machines, K. L. Pocek and J. Arnold, Eds.
Los Alamitos, CA: IEEE Computer Society Press, 1997, pp. 12-21.
[Online]. Available: citeseer.ist.psu.edu/hauser97garp.html

C. Ebeling, D. C. Cronquist, P. Franklin, J. Secosky, and S. G.
Berg, “Mapping applications to the rapid configurable architecture,”
in Proceedings of the 5th IEEE Symposium on FPGA-Based Custom
Computing Machines (FCCM ’97). 1EEE Computer Society, 1997.
M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V. Prabhu, and
J. Rabaey, “Design methodology of a low-energy reconfigurable single-
chip dsp system,” J. VLSI Signal Process. Syst., vol. 28, no. 1-2, pp.
47-61, 2001.

W. J. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in Proceedings of the Design Automation Conference,
Las Vegas, NV, June 2001, pp. 684—689.

M. B. Gokhale, J. M. Stone, J. Arnold, and M. Kalinowski, “Stream-
oriented fpga computing in the streams-c high level language,” in FCCM
’00: Proceedings of the 2000 IEEE Symposium on Field-Programmable
Custom Computing Machines. Washington, DC, USA: IEEE Computer
Society, 2000, p. 49.

L. Benini, D. Bertozzi, D. Bruni, N. Drago, F. Fummi, and M. Poncino,
“Systemc cosimulation and emulation of multiprocessor soc designs,”
Computer, vol. 36, no. 4, pp. 53-59, 2003.

“Gnu radio - the gnu software radio,” http://www.gnu.org/software/
gnuradio/.

