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Why we need Reconfigurable Computing Education 
Reiner Hartenstein, IEEE life fellow, TU Kaiserslautern, http://hartenstein.de
Abstract. Reconfigurable Computing, the second RAM-based
machine paradigm offers drastic reduction of the electric energy
budget and speedup factors by several orders of magnitude -
compared to using the von Neumann paradigm, now loosing its
dominance. This paper advocates to introduce a dual paradigm
transdisciplinary education by using Configware Engineering
as the counterpart of Software Engineering. by new curricula in
CS and CE for providing an integrating dual paradigm mind set
supporting a  unification in dealing with problems, which are
shared across many different application domains - to cure
severe qualification deficiencies of our graduates. 

1.PREFACE

Currently the dominance of the basic computing paradigm is
gradually wearing off with the advent of Reconfigurable
Computing (RC) - bringing profound changes to the practice of
both, scientific computing and ubiquitous embedded systems,
as well as new promise of disruptive new horizons for
affordable very high performance computing. Due to RC the
desk-top personal supercomputer is near. To obtain the payoff
from RC we need a new understanding of computing and
supercomputing. For bridging the translational gap, the
software / configware chasm, we need to think outside the box.

Sceptic about the significance of
RC, some colleagues from CS
pointed toward the rise and fall of
hardware / software co-design
(HS codesign). Sure, this has been
obscured by renaming conference
series and changing slogans of the
EDA industry: co-design, H/S co-
design, CODES, High-Level
Synthesis, System Synthesis,
ESDA (electronic system design
automation), ESL (electronic

system-level design). However, the truth is, that hardware /
software codesign is a long-lasting success story within the
(also undersurface) embedded systems success story [1] [2] -
despite troublesome experiences with EDA industry products.
A fall happened inside the CS curricula because the currently
still dominant CS culture mainly failed to cure the hardware /

software chasm. This is a reason, why
embedded software is often
implemented by hardware people. The

embedded systems scene now is running its own curriculum
development effort, since typical CS graduates are not really
qualified and tend to miss this most important job market1. 

Inside the embedded Systems scene at first glance the use of
reconfigurable devices like FPGAs has looked more like a
variety of hardware design, but on a strange platform. Now we

have 2 reconfigurable computing scenes (fig. 4). Meanwhile
FPGAs are also used everywhere for high performance in
scientific computing, where this is really a new computing
culture - not at all a variety of hardware design. Instead of HS
codesign we have here software / configware co-design (SC
co-design), which is really a computing issue. This major new
direction of developments in science will determine how
academic computing will look in 2015 or even earlier. The
instruction-stream-based mind set will loose its monopoly-like
dominance and the CPU will quit its central role - to be more
an auxiliary clerk, also for software compatibility issues.

This new direction has not yet drawn the attention of the
curriculum planner within the embedded systems scene. For
computer science this is the opportunity of the century, of

1).  The amount of software code implemented for embedded 
systems doubles very 10 months [4] (fig. 5).
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anti machine  18,800

Fig. 1. ~10 million hits.

... found by Google (January 2006)

FPGA and ... # of hits FPGA and ... # of hits
... embedded 3,280,000 .... mathematics 171,000
... memory 2,370,000 ..... fuzzy 167,000

.... computer 2,230,000 .... fluid dynamics 162,000
... control 1,690,000 .... astrophysics  158,000

.... performance 1,650,000 ... acceleration 156,000
... video 1,620,000 ... bio 140,400

... wireless 1,490,000 .... genetic 127,000
.... conference 1,090,000 .... sensing 121,000
... automotive 915,000 ... weather 118,200
... multimedia 731,000 ... chemistry 115,800

... manufacturing 715,000 ... speed-up 115,000
... medical 710,000 ... molecular 113,000

... high performance 706,000 ... computer architecture 113,000
.. signal processing 647,000 .... HDTV 107,000

.... virtual 594,000 .... mechanics 104,000
... low power 541,000 .... neural network 92,100

... VLSI 524,000 ...artificial intelligence 89,500
... physics 508,000 .... DNA 87,200

... knowledge 415,000 .... pattern recognition 79,000
.... CAD 411,000 ... software defined radio 75,500
... music 398,000 .... crypto 70,600
.... vision 365,000 ....computer graphics 66,200
.... coding 317,000 supercomputing 65,800
... defense 287,000 ... HPC 57,400

... image processing 272,000 .... data mining 55,800
.... environmental 257,000 .... combustion 46,600

... chemical 247,000 .network architecture 38,800
..... vector 239,000 ... black hole 30,000

... computational 238,000 ... multi protocol 27,100
... intelligence 231,000 ... petroleum 27,000
.... evolution 212,000 ... oil and gas 22.300

Fig. 2. FPGAs going into every application area.
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decampment for heading toward new horizons. This should
be a wake-up call to CS curriculum development. Each of the
many different application domains has only a limited view
of computing and takes it more as a mere technique than as a
science on its own. This fragmentation makes it very difficult
to bridge the cultural and practical gaps, since there are so
many different actors and departments involved. Only
Computer Science can take the full responsibility to merge
Reconfigurable Computing into CS curricula for providing
Reconfigurable Computing Education from its roots. CS has
the right perspective for a transdisciplinary unification in
dealing with problems, which are shared across many
different application domains. This new direction would also
be helpful to reverse the current down trend of CS enrolment.

2.  THE PERVASIVENESS OF THE FPGA

The FPGA (field-programmable gate array) is an array of gate
level reconfigurable elements (rE) embedded in a reconfigurable
interconnect fabrics [5]. Its configware code (reconfiguration
code [6]: fig 10) is stored in a distributed hRAM memory (hRAM

for „hidden RAM“), hidden in
the background of the FPGA
circuitry. Comparable to

booting a computer the configware has to be loaded after each
power-on. FPGAs are with 6 billion US-Dollars the fastest
growing segment of the semiconductor market. Complex

projects can be implemented on FPGAs, commodities off the
shelf (COTS), without needing very expensive customer-
specific silicon. The growth of the number of design starts is
predicted from 80.000 in 2006 to 115.000 in 2010
[Dataquest]. Impressive are the hit rates by Google (fig 1) for
FPGA with almost 10 millions, and of „Reconfigurable
Computing" with almost 300,000 [7]. The combination of
topic area keywords and FPGA (fig. 2) illustrates, that
FPGAs massively go in a wide variety of application areas.

The Strategic Significance of Reconfigurable Computing.
The area of embedded systems is unthinkable without FPGAs
[8]. This has been the driving force behind the commercial
break-through of FPGAs. The pervasiveness of FPGAs within
the embedded systems community is demonstrated by the
number of hits by Google (fig 1) [7] upon FPGA combined
with application areas like embedded (3,280,000), wireless
(1,490,000), automotive (915,000), multimedia (731,000), sig-
nal processing (647,000), music (398,000), image processing
(272,000) and others. About 90% of all software is implement-
ed for embedded systems [4] (Rammig‘s law in fig 5) dominat-
ed by FPGAs usage, where frequently hardware / configware /
software partitioning problems have to be solved. The quasi
monopoly of the von Neumann mind set in most of our CS cur-
ricula prohibits this dichotomic qualification of our graduates,
needed for the requirements of the contemporary and future job
market. At a summit meeting of US state governors Bill Gates
has drastically criticized this Situation in CS education. 

FPGAs in Scientific Computing. The Pervasiveness of FP-
GAs is not limited to embedded systems, but is also spread
over practically all areas of scientific computing, where high
performance is required and access to a supercomputing cen-
ter is not available or not affordable.Some examples are:
medical (710,000), physics (508,000), chemical (247,000),
mathematics (171,000), fluid dynamics (162,000), astro-
physics (158,000), bio (140,000), weather (118,000) and oth-
er mostly non-embedded scientific applications.

FPGAs and the EDA industry. The pervasiveness of FPGAs
also reaches the EDA (Electronic Design Automation) industry,
where all major firms spend a substantial effort to offer a variety
application development tools and environments for FPGA-
based product development. Also FPGA vendors have
cooperations with firms in the EDA industry and offer such tools
and development environments. Since this is a highly complex
market his paper does not go into detail because of a lack of space. 
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Fig. 3. The Reconfigurable Computing Paradox: a) FPGA integration density, b) FPGA usage speedup factors.
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Configware Industry. After switch-on of the supply power the
configuration code has to be downloaded to the FPGA’s hRAM,
which is a kind booting like known from the vN processor. But
the source of this code for FPGAs1 is not software: it definitely
does not program instruction streams. The advent of FPGAs
provides a second RAM-based fundamental paradigm: the Kress-
Kung machine [10], which, however, is not instruction-stream-
based. Instead of organizing the schedule for instruction

executions the compilation
for FPGAs has to organize
the resources by placement

and routing.and, based on the result, to implement the data
schedules for preparing the data streams moving through these
resources (fig 6d). FPGAs or, the Kress-Kung machine,
respectively, has no „instruction fetch“ at run time. Not to
confuse students and customers with the term „software“ another
term is used for these non-procedural programming sources of
RC: the term configware. Not only FPGA vendors offer
configware modules to their customers. Also other commercial
sources are on the market: a growing configware industry - the
little sister of the software industry. 

3.  THE RECONFIGURABLE COMPUTING PARADOX

Compared to software implementations sensational speed-up
factors have been reported for software to configware migra-
tions by using FPGAs. Fig. 3 b shows a few speedup factors
picked up from literature, reporting a factor of 7.6 in accelerat-
ing radiosity calculations [11], a factor of 10 for FFT (fast Fou-
rier transform), a speedup factor of 35 in traffic simulations
[12]. For a commercially available Lanman/NTLM Key Recov-
ery Server [13] a speedup of 50 - 70 is reported. Another cryp-
tology application reports a factor of 1305 [15]. A speedup by a
factor of 304 is reported for a R/T spectrum analyzer [17]. In the
DSP area [18] for MAC [18] operations a speedup factor of 100
has been reported compared to the fastest DSP on the market
(2004) [19]. Already in 1997 versus the fastest DSP a speedup
between 7 and 46 has been obtained [20]. In Biology and genet-
ics (also see [21] [21]) a speedup of up to 30 has been shown in
protein identification [23], by 133 [24] and up to 500 [25] in ge-
nome analysis, as well as 288 with the Smith-Waterman pattern
matching algorithm at the National Cancer Institute [27]. In the
multimedia area we find factors ranging from 60 to 90 in video
rate stereo vision [28] and from 60 to 90 in real-time face detec-
tion [29], and of 457 for hyperspectral image compression [30].
In communication technology we find a speedup by 750 for
UAV radar electronics [31]. These are just a few examples from
a wide range of publications [33] [34] [36] [37] [38] [40] [42]
reporting substantial speedups by FPGAs.

Alternatives to the FPGA. With the MoM-2, an early re-
configurable computer architecture the following speedup
factors have been obtained: 54 for computing a 128 lattice
Ising model, >160 for Lee Routing, >300 for an electrical rule
check, >300 for a 3by3 2D FIR filter [18], and between 2,300
and 15,000 for grid-based VLSI design rule check [43] [44]
[45] [46]. Instead of FPGAs, which have been very small at
that time, the MoM-2 used DPLA, a programmable PLA,
which has been designed at Kaiserslautern and manufactured
via the multi-university VLSI project E.I.S [47]. The DPLA
has been especially efficient for computing Boolean expres-

sions. At the time it has been designed, a single DPLA re-
placed 256 state of the art FPGAs available commercially.

Saving electric energy. A number of publications reports a
substantial reduction of the amount of the electricity invoice by
up to an order of magnitude though a partial software to config-
ware migration using FPGAs. This is economically highly in-
teresting, which is illustrated, for example by the yearly
electricity bill of about 50 million US-Dollars, more than Goo-
gle’s entire equipment cost. How are such power savings by
FPGA possible, although the wireless communication industry
complaints, that FPGAs are so power-hungry [48]. This is an-
other facet of the Reconfigurable Computing paradox.

FPGA’s bad efficiency. The trend line in fig. 3 b, obtained
by linear extrapolation, indicates that FPGA performance
doubles every year. By the year 2005, 2 decades after the mar-
ket introduction of the first little FPGA, this yields a lead of a
factor of substantially more than 10,000 over the 8080-com-
patible microprocessor. These unbelievable performance
margins contrast against the very bad technological parame-
ters of the FPGA, like area efficiency.integration density,
clock frequency, and, compared to hardwired ASICs: power
dissipation [43]. The effective integration density (transistors
per chip) of FPGAs (fig 3 a) is substantially more than 4 or-
ders of magnitude (more than 10,000) behind the Gordon
Moore curve. Three categories of overhead are contributing:
wiring overhead, reconfigurability overhead, and routing
congestion. Due to wiring overhead, the physical integration
density, i. e. the real number of transistors, is down by about

1).in this context the term FPGA does not mean non-FPGA on-
chip-modules like processor cores etc., which are usually embedded 
in modern so-called platform-FPGAs.

Fig. 5.  
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2 orders of magnitude because wiring patterns take most of
the chip area. The logical integration density is reduced by an-
other 2 orders of magnitude, since, roughly only 1 of about a
hundred transistors directly deserves the application, whereas
the other 99 transistors are needed for reconfigurability. A
third overhead effect, growing with the size of the FPGA, is
routing congestion, because of local excess demands of rout-
ing resources not all rEs can be connected. FPGAs have more
bad parameters. The FPGA clock frequency with around 500
MHz is about almost an order of magnitude lower that of
8080-compatible newest microprocessors with around 3
GHz. Compared to non-reconfigurable ASICs the power dis-
sipation of FPGA-based solutions is substantially higher. All
these parameters look very bad. Why are finally the perfor-
mance and even electricity consumption results so good? This
is the Reconfigurable Computing Paradox.

Explaining the paradox. How are these tremendous speed-
ups by up to 4 orders of magnitude and the enormous power
savings by about one order of magnitude g possible despite of
the really bad technology parameters of FPGAs? The impact of
the paradigm shift is the solution of this riddle. It is the paradigm
shift, which brings completely different optimization mecha-
nisms, which are so tremendously more effective and capable to
override all these bad parameters. It is the main advantage that
the machine paradigm is not instruction-stream-based and
avoids the von Neumann bottleneck and related problems by
three categories of new features: (1) highly parallel distributed
memory organization with auto-sequencing memory banks
(ASM), and, (2) no caches, and, (3) stalling-proof massive pipe-
lining. Another reason is the fact, that the development of im-
portant parameters of von Neumann processors (fig. 5) are
slowing down or stopping (like d. g. the growth of the clock fre-
quency), or even negative growth rates, like the computational
density (the computational effect per transistor). We should not
forget the increase of power dissipation of microprocessors, so
that even faster future models would need liquid cooling. 

Proven by a multimedia application example. It has been
demonstrated [91], that all algorithms needed for a world
HDTV set (frame rate conversions, noise and artefacts removal,
contrast improvements, image data format standards conver-
sion, adaptation to a wide variety of screen sizes, media server
nerwork functions and many more algorithms) can be success-
fully operated with 8 memory banks on board of a coarse grain
array (rDP) chip needing a clock frequency of only 250 MHz.

Minimizing the number of memory cycles. The most im-
portant means of speedup is the enormous reduction of the num-
ber of memory cycles needed with reconfigurable solutions-
because of the growing processor communication bandwidth
gap sometimes called memory wall [99]. After switching on the
supply power, the downloading of configware code into the
hRAM, which reminds to booting, is a kind of super „instruction
fetch“ before run time. FPGAs or, the Kress-Kung machine, re-
spectively, has no „instruction fetch“ at run time. By avoiding
the memory wall this massively contributes to the speedup ob-
tained by software to configware migration (fig 3 b). 

Algorithmic cleverness. RC is also the case for highly effec-
tive algorithm transformations. For instance, in genome analysis
a datapath width of 64 bits is an overkill, causing an immense
wasting of resources, because here 2 bit path width is an opti-
mum. The space in this paper is too short to mention all occa-
sions to draw an enormous payoff from fine grain parallelism.

Often the many enormous speedups having been published are
the result of algorithmic cleverness of the implementer. By the
way: this kind of algorithmic cleverness is usually not taught at
academic CS and CE departments.

4.  WHAT MEANS RECONFIGURABLE COMPUTING

It may be called the second paradox of Reconfigurable Comput-
ing, that despite of its enormous pervasiveness, most profession-
als inside computer Science and related areas do not really
understand its issues. To support configware engineering
projects often a hardware expert is hired who may be good im-
plementer, but is not a good translator. From a traditional CS per-
spective most people do not understand the key issues of this
paradigm shift, or, do not even recognize at all, that RC is para-
digm shift.A good approach of explanation is to compare the mid
set of the Software area vs. the one of the configware field. An
dominant obstacle for understanding is also the lack of a com-
mon accepted terminology, which massively causes confusion.

Software Engineering vs. Configware Engineering. In total we have 3
different kinds of programming sources (fig 6). The dual-para-
digm model can be illustrated by contrasting via Nick Treden-
nick’s model of computer history (fig 6a vs. fig 6c). With the
classical software processor only the algorithm is variable, where-
as the resources are fixed (hardwired), so that only one type of pro-
gram source is needed: software (fig 6a), from which the compiler
generates software machine code to be downloaded into the in-
struction RAM - the instruction schedule for the software proces-
sor (fig 6b). For the Kress-Kung machine paradigm, however, not
only the algorithm, but also the resources are programmable, so
that we need two different kinds of programming sources (fig 8):
Configware and Flowware (fig 6c). 

1) Configware [6] deserves structural programming of the
resources by the „mapper“ using placement and routing or
similar mapping methods (for instance by simulated
annealing [49] [50] [51] [52] [53]) (fig 6d). 

2) Flowware [54] deserves programming of the data
streams by the „data scheduler“ (fig 6d), which generates
the flowware code needed for downloading into the generic
address generators (GAG) within the ASM auto-sequencing
memory banks (fig 6d)

These two different fundamental machine principles, von Neu-
mann software machine vs. the Kress-Kung machine, the config-
ware machine, are contrasted by fig.9. 

Flowware Languages are easy to implement [54] [55]. A com-
parison with software programming languages is interesting [5].
Flowware language primitives for control instructions like jumps
and loops can be simply adopted from classical software lan-
guages, however, for being used for manipulation of data ad-
dresses instead of instruction addresses. Flowware languages are
more powerful than software languages and permitting parallel
loops by using several data counters used simultaneously, such
flowware language primitives are more powerful than these soft-
ware primitives. Not handling instruction streams, flowware lan-
guages are much more simple (because at run time there is only
"data fetch", however, no "instruction fetch". 

Terminology. Since the basic paradigm is not instruction-stream-
based, necessarily the term „Configware“ should be used for
program sources, instead of the term „Software“, which would be
confusing (fig 10). The term „software“ must be unconditionally
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restricted to traditional sources of classical instruction-stream-
based computing (which is reasoned in fig 6). In fact this paradigm
relies on data streams, however, not on instruction streams.

Equivocalities of the term „data stream“. In computing and
related areas there is a babylonian confusion around the term
„stream“, „stream-based“ or „data stream“. There is an urgent
need to establish a standards committee to work on
terminology. For the area of reconfigurable computing the best
suitable definition of „data stream“ has been established around
the year 1980 by the systolic array scene [56] [57], where data
streams enter and leave a datapath array being a pipe network
(illustrated by fig 11). In fact, there a set of data streams is a data
schedule specifying, which data item has to enter or leave which
port of the array at which point of time. 

The tail is wagging the dog.  Because if their memory-cycle-
hungry instruction-stream-driven sequential mode of operation
microprocessors usually need much more powerful accelerators
[43]: the tail is wagging the dog. The instruction-stream-based-
only fundamental mind set (vN-only paradigm) as a common
model often is still a kind of monopoly inside the qualification
background of CS graduates. The real model practiced now is not
the von Neumann paradigm (vN) handed down from the
mainframe age. In fact, during the PC age it has been replaced by
a symbiosis of the vN host and the non-vN (i. e. non-instruction-
stream-based) accelerators. Meanwhile we have arrived at the
(kind of post-PC) morphware age with a third basic model,
where the accelerator has become programmable
(reconfigurable). Useful for application development are Co-
Compilers (fig 14), automatically partitioning from the
programming source into software and configware [59]. The
methodology is known from academic co-compilers [59] [60],
easy to implement since most of their fundamentals have been
published decades ago [62]. There is a number of trend
indications pointing toward an auxiliary clerk role of the CPU for
running old software and taking care of compatibility issues.
„FPGA main processor vs. FPGA co-processor“ asks the CEO of
Nallatech [64]: Is it time for vN to retire? The RAMP project, for
instance proposes to run the operating system on FPGAs [65]. In
fact, in some embedded systems, the CPU has this role already
now. But often the awareness is missing. 

The Dichotomy of Machine Paradigms is rocking the
foundation walls of Computer Science. Because of the lack of
a common terminology this duality of paradigms is difficult
to understand for people with a traditional CS background. A
taxonomy of platform categories and their programming
sources, quasi of a terminology floor plan, should help to
catch the key issues (fig 10). The Kress-Kung machine is the
data-stream-based counterpart of the instruction-stream-
based von Neumann paradigm. The Kress-Kung machine
does not have a program counter (fig 9 b), and, its processing
unit is not a CPU (fig 9 a). Instead, it is only a DPU (Data
Path Unit): without an instruction sequencer (fig 9 b).

The enabling technology of the Kress-Kung machine has one
or mostly several data counters as part of the Generic Adress
Generators (GAG) [66] [68] [69] within data memory banks
called ASM (Auto-Sequencing Memory, see fig 9 b). ASMs send
and/or receive data streams having been programmed from Flow-
ware sources [67] (fig 11). An ASM is the generalization of the
DMA circuit (Direct Memory Access) [70] [71] for executing
block transfers without needing to be controlled by instruction
streams inside. ASMs, based on the use of distributed memory ar-

chitectures [75] are very powerful architectural resources, support-
ing the optimization of the data storage schemes for minimizing
the number of memory cycles [69]. The MoM Kress-Kung ma-
chine based on such generic address generators has been published
in 1990 [72] [73]. The use of data counters replacing the program
counter has first been published in 1987 [74].

Hardwired versions of the Kress-Kung machine. We may
distinguish 2 classes of Kress-Kung machines (fig 10): program-
mable ones (morphware: reconfigurable Kress-Kung machine,
needing 2 types of programming sources (see next paragraph and
fig. 6 c/d): Configware for structural programming, and Flow-
ware, for data scheduling. However, also hardwired Kress-Kung
machines can be implemented for instance, (the BEE project
[76]), where the configuration is been frozen and cast into hard-
ware before fabrication. The lack of reconfigurability after fabri-
cation by not using FPGAs of such hardwired Kress-Kung
machines substantially improves the computational density (fig
3 a) for much higher speedup factors and might make sense for
special purpose or domain-specific applications. Since after fab-
rication a reconfiguration is impossible, only one programming
source is needed: Flowware.

Dynamically reconfigurable architectures and their environ-
ment illustrate the specific flavor of Configware Engineering be-
ing able to rapidly shift back and force between run time mode of
operation and configuration mode. Even several separate macros
can be resident in the same FPGA. Even more complex is the situ-
ation when within partially reconfigurable FPGAs some modules
are in run time mode, whereas at the same time other modules are
in the configuration phase, so that a FPGA could reconfigure itself.
Some macros can be removed at the same time, when other macros
are active by being in the run time mode. Configware operating
systems are managing such scenarios [77] [78]. On such a basis
even fault tolerance by self-repair can be implemented [79] [80].
The electronics within the Cibola satellite [81] scheduled to be
launched by October 2006 uses such fault tolerance mechanisms to
cope with fault introduced by cosmic radiation [83]. Dynamic re-
configurability is confusing for beginners and should be introduced
not earlier than art graduate courses. 

New educational approaches needed.  Although configware

# FPGA rDPA

1 terminology field-programmable 
gate array

reconfigurable 
datapath array

2 reconfiguration granularity fine-grained coarse-grained
3 data path width ~ 1 bit e.g. ~ 32 bits
4 physical level of  basic        

reconfigurable units (rU) gate level RT level

5 typical rU examples
LUT (look-up table): 
determines the logic 
function of  the rU (and, 
or, not, etc. or flip-flop)

ALU-like,  floating 
point, special 
functions, etc.

6 configuration time milliseconds microseconds
7 clock cycle time ~ 0.5 GHz ~1 - 3 GHz

8
typical effective integration 
density compared to 
Gordon Moore curve

reduced by a factor    
of more than 10,000 
(fig. 3a)

reduced only by a 
few percent (fig. 12)

Fig. 7.  fine-grained vs. coarse-grained reconfigurability.

# program source is compiled into
1 Software instruction schedule
2 Flowware data schedule
3 Configware placement and routing (into a pipe network)

Fig. 8.  Terminology: sources by compilation targets.
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engineering is a discipline of its own, fundamentally different
from software engineering, and, a configware industry is
already existing and growing, it is too often ignored by our
curricula. Modern FPGAs as COTS (commodities off the
shelf) have all 3 paradigms on board of the same VLSI chip:
hardwired accelerators, microprocessors (and memory
banks), and FPGAs, and we need both, software and
configware, to program the same chip. To cope with the clash
of cultures we need interdisciplinary curricula merging all
these different backgrounds in a systematic way. We need
innovative lectures and lab courses supporting the integration
of reconfigurable computing into progressive curricula.

5.  RECONFIGURABLE SUPERCOMPUTING

The penetration of reconfigurable platforms like FPGAs in the
supercomputing community is demonstrated by the number of
hits of Google [7] in reply to FPGA, in combination with "high
performance computing" (81,200), or supercomputing
(65,500). The pervasiveness of FPGAs for many typical super-
computing application areas is shown by the number of Google
hits on FPGA in combination with, for instance, the keywords
medical (710,000 times), physics (508,000), defense (287,000),
and weather (118,000) etc. (fig 2). In the supercomputing appli-
cation on „oil and gas“ for the migration onto FPGAs a speedup
factor of 17 has been reported [86] [87], together with an enor-
mous reduction of the electricity bill s a side effect, since with
FPGAs you can save energy [88]. A geophysicist reports, that

with 7 US-Cents pro kWh
more than 10,000 US-Dol-
lars per year on the electrici-
ty bill could be saved - for

each 19 inch module with 64 processors: a yearly saving of half
a million US-dollars with 50 such modules[86]. By the way, did
you know, that with a 50 million US-dollars Google‘s yearly
electricity bill exceeds the cost of all its equipment?

Platform FPGAs. So far this paper has pointed toward RC
using FPGAs. Originally simple FPGAs have been general
purpose devices, since flipflops and gates (LUTs) are general
purpose elements. But for completeness it should be
mentioned, that modern FPGAs, which are often called
platform FPGAs, include other modules embedded in their
reconfigurable interconnect fabrics, like, for instance, one or
several microprocessors cores (Power PC, ARM, or others)
multiple memory banks, multipliers, floating point units, etc.,
and fast I/O interfaces. Such platform FPGAs are not fully
general purpose. The particular collection of on-chip extras
usually targets a particular user market segment and makes the
platform more or less domain-specific.

rDPA (reconfigurable Data Path Array). Distinguishing
reconfigurable devices has several dimensions. A second
dimension makes us compare fine-grained vs. coarse-grained
reconfigurability (fig. 7). FPGAs with rEs of ~1 bit datapath
width are fine-grained reconfigurable. However, coarse-
grained reconfigurable architectures (fig 12) [43], rDPAs
(reconfigurable Data Path Array) [89] [90], have path widths
like e. g. 32 bits [91] [96]. like, for instance, the KressArray
[49] [50] [97], a generalization of the systolic array [56] [57],
which is supported by an architecture „Design Space Xplorer“
[51] [52]. For coarse-grained morphware the hRAM and
reconfigurable interconnect fabrics requirements are lower by
4 orders of magnitude since rDPAs [18] have only a few

rDPUs (reconfigurable Data Path Units) [49] [50] [91]
(typically around a hundred, maybe, 64 or 256, for instance).
For the same reason and because of more compact
configuration codes the reconfiguration time is lower by
orders of magnitude (line 6 in fig 7). The table in fig. 7
summarizes several differences between fine grain and coarse
grain. The integration density of rDPAs almost reaches the area
efficiency of the Gordon-Moore curve, which is 4 orders of
magnitude better than that of FPGAs. 

Conforming to the mind set of CS. Other advantages are the
ease of compilation for rDPAs, and configuration times by 2 - 3
orders of magnitudes faster. Because rDPAs and their rDPUs are
objects of a higher abstraction level, where we find ALUs,
registers, and memory banks, these resources come very close to
the mind set of CS experts, where the abstraction level of FPGAs
better fit to the background of hardware people. Another
advantage over FPGAs is the ease of co-compilation. This is a
very important advantage, because the state of the art in
application development tools for FPGAs [98] is insufficient. The
slogan system level design „The business press doesn’t
understand EDA, because EDA is too esoteric." [92] could be
generalized into: „The CS community doesn’t understand EDA,
because EDA is too esoteric“. ESL [18] offered the enticing hope
of specifying a system in an implementation-neutral language,
pushing a button, and out would emerge the full, hardware [/
configware] / software co-design. But the dream remained
elusive [93] The CS community should take the responsibility
instead of waiting for the EDA industry to follow. With the
personal supercomputer (chapter 6), based on an on-chip rDPA
[18] accelerator, and supported by software / configware co-
compilers as demonstrated would de-couple scientific high
performance computing from the problems of the EDA industry.

The communication complexity  in classical supercomputing
is growing disproportionately because of bottlenecks which
are typical for classical supercomputing, mainly determined
by the memory communication gap [99]. Bus systems and
other switching subsystems tend toward a high memory-cy-
cle-hungry overhead [100]: implications of the von Neu-
mann bottleneck Data transport at run time is a dominant
problem, whereas there is no lack of affordable CPU ressou-
rces. A typical mind set is shown by the standard of MPI
(Message Passing Interface), based on Tony Hoare’s model
of Communicating Sequential Processes model (CSP [101]
[102] [103]) for implementing the exchange of messages be-
tween processors in shared memory architectures. The
throughput scalability of a particular application often sub-
stantially misses the peak performance, which the platform
seems to offer [104]. Amdahls law explains just one of sever-

Fig. 9. Fundamental computing machine principles: a) von
Neumann, b) Kress-Kung machine (reconfigurable or fixed).
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DataPath Unit
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(Data Path Unit)
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Check the pervasiveness of 
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al reasons of inefficiency [105]. However, Kress-Kung ma-
chines do not have a von Neumann bottleneck. Fig. 15
summarizes the most important sources of speed-up by mem-
ory cycle saving from software to configware migration

Moving the stool - not the grand piano. Due to the instruction-
stream-based mind set with classical supercomputing the data
are moved between CPUs and memory by buses and/or switch
boxes at run time. This memory-cycle-hungry method
reminds to moving the grand piano to the pianist’s stool (fig.
13). However, the data-stream-based mind set of
Reconfigurable Computing follows the inverse approach:
moving the stool and not the grand piano. Primarily the data
are not transferred from memory directly to/from all rDPUs
[18]. But the locality of an operation is placed to the right
place, where the data stream within a pipe network comes by
anyway. These routes through the pipe networks are optimized
and decided at compile time, are configured before run time,
and remain unchanged all the time during run time.
Intermediate results are not stored in memory, but always

piped through
from one rDPU
to its neighbor.

The only memory cycles are needed for transfers between the
rDPA’s [18] external ports and the ASMs connected to it (fig
9 b and 11). Since most applications have drastically less
rDPUs than data items, there is much less to be moved.
Avoiding instruction fetch at run time is another speedup
aspect. MPI is not needed in such an environment.

Implementation of Flowware. In a pure bred Reconfigurable
Computing system the only form of communication via mem-
ory modules is ba data streams (fig 11) between the rDPA(s)
and the distributed ASM data memory banks, which store only
initial operands and final results, however, no intermediate re-
sults nor other messages. For optimum parallelism the number
of ASM banks [75] should fit to the number of rDPA ports.
Over compilation from flowware sources the data streams are
implemented (fig 6) by programming the Generic Adress
Generators (GAG) [66] [68] [69] [106] within the ASMs
(fig 9 b). Storage schemes are not restricted to vectors and ma-
trixes, since GAGs support a wide variety of analytical trans-
formations for a rich supply of storage schemes with minimum
memory cycle requirements. GAGs usually do not need mem-
ory cycles for run time address computation. Within this con-
text a two-dimensional address space opens up an unexpected
wealth of efficient and easily GAG-transformable storage
schemes [66] [75]. An useful side effect of a 2-D addressing
is an excellent versatile visualization support.

Reconfigurable Supercomputing has been commercialized
by Cray offering a 19 inch module XD1 with 6 Xilinx FPGAs
Virtex-4 [108] and sgi (Silicon Graphics) offers one with its
RASC-Technology [109] promising a speedup by 100 for mis-
sion-critical applications [111]. In cooperation with Nallatech

[86] [87] [113] SGI intends to create a complete ecosystem
around RASC to improve acceptance by markets [109] like bio
informatics, computational chemistry, medicine, media, oil
and gas, most areas working with FFT algorithms, defense etc.
The systems of both vendors are still mainly concurrent and the
reconfigurable parts are re-
stricted to lower levels of the
process hierarchy within a
special library being relatively
obscure to the user. A Co-Compiler is still missing. 

Crooked Labelling.  The difference between Parallel Comput-
ing and Reconfigurable Computing is often blurred by projects la-
belled “reconfigurable”, which however, in fact are based on
classical concurrency on a single chip where several sequential
processes run on several CPUs [114]. This is not Reconfigurable
Computing. This is just classical parallel computing. To avoid
confusion: switching multiplexers or addressing registers at run
time is not „reconfiguration“. Note: Reconfigurable Computing
never has an instruction fetch at run time.

6.  THE PERSONAL SUPERCOMPUTER

The personal supercomputer is near. Because of the ease of co-
compilation, with the computing density better than that of FP-
GAs by 4 orders of magnitude, its much better communication
bandwidth and other advantages (compare fig. 7), the rDPA
[18] is the case for the desktop personal supercomputer.

Clearing out the microprocessor chip. Within 8080-like micro-
processors the CPU takes only a small percentage of the chip
area. Most of the area is lost for caches to cope with the memory
wall. Caches are useful for highly frequented instruction loops
where, however, the acceleration factors are limited and strongly

Fig. 10. Contemporary Terminologie fo the dual paradigm computing age (compare fig 6 and 9).
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hardwired logic (no „program“) (none)

Morphware® [84][85] reconfigurable Logic Configware[6]
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hardwired processor Data-stream-based Flowware[67]
Instruction-stream-based Software von Neumann (vN)

embedded systems + reconfigurable supercomputing, etc. Software + Configware + Flowware dual paradigm: vN + AM

Fig. 11. Data stream:
definition à la snapshot
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depend on the type of application. But for the Kress-Kung
machine caches are useless, since in data loops the values usually
do not repeat. With this paradigm other much more powerful
mechanisms are available to minimize memory cycles. This is the
case for a rDPA as a co-processor, replacing the caches and other
stuff not needed any more on the microprocessor chip.

The Personal Supercomputer. PCs with a powerful program-
mable accelerator on board of the processor chip and using a
co-compiler (fig 14) are the key of the personal supercomputer
(PS). Forerunners of such a PS have been published years ago,
for instance, related to n-body simulation [42]. Astrophysicists
have complained, that even the most powerful available super-
computer enabled the simulation of star clusters only up to a
size of 100. GRAPE, a PC extension board, however support-
ed sizes up to about 1000 [115] [117], but without changing
the algorithm, for example the goal of Prof. Rainer Spurzem
of the more than 300 years old Astronomisches Rechen-Insti-
tut (University of Heidelberg) [116], together with Prof. Rein-
hard Männer (University of Mannheim): a reconfigurable
accelerator AHA-GRAPE [118] supporting much more than
just n-body simulation. However, by orders of magnitude
more powerful is the use of coarse-grained morphware (fig
12). In fact, the PS is near: not only for the desktop of individ-
ual users, but also as a component, not only for networks of re-
configurable computers (NORCs [119] [120]), but

particularly for networks of personal supercomputers
(NOPS), new supercomputing centers reaching hitherto unbe-
lievable very high performance horizons, as well as for grids
of personal supercomputers (GOPS). 

The Technology is available. Coarse-grained reconfigurable
datapath arrays, rDPAs, with up to more than a hundred DPUs
on a single microchip are available already to-day [91]. Since
caches do not make sense for data, such a rDPA could easily be
placed onto the intel-compatible processor chip: the PS chip
would be ready. Also software / configware co-compiler (fig 14)
for the PS have been implemented in academia [59] [60] [121]
[122], for instance accepting C language sources for the coarse-
grained reconfigurable KressArray [49] [50] [97] [124].
Implementing such a co-compiler is no problem and parts of the
methodology are decades old [125]. The personal
supercomputer (PS) is near. Only an investor is missing for a
commercial co-compiler [126].    

7.  CURRICULUM RECOMMENDATIONS 

The Productivity Crisis.  Rapidly growing complexity and
pervasiveness of RC-based multi-paradigm devices leads to a
productivity crisis of major proportions. On the other hand
RC is an efficient approach to cope with the accelerating
VLSI design crisis. While the economic importance of RC
and its FPGAs is widely acknowledged, but the strategic di-
mension of RC has not been appreciated until recently, aca-
demia has failed to pay sufficient attention to the education of
a community of high-quality system designers and config-
ware programmers using such platforms. This has motivated
a recent but ever growing interest in the question of educating
specialists in this domain and this has also been recognized as
a particularly difficult problem.

Fragmentation.  Each of these ap-
plication domains has only a limit-
ed view of computing and takes it
more as a mere technique than as a
science on its own. Consequences
are, that it makes it very difficult to
bridge the cultural and practical
gaps. Given this fragmentation, it
can be rather hard to investigate, since there are so many dif-
ferent actors and departments involved. Including and pro-
gramming reconfigurable platforms in the design of
embedded systems as well as embedded real-time systems
and all other application areas requires more skills at least
from computer sciences. Currently it requires to involve ex-
perts from different backgrounds, with dissenting points of
view, not only for test and verification of such designs, if at
all possible, being very expensive and delaying significantly
the introduction of products.

Consortia. The well-known American ACM/AIS/IEEE
Computing Curricula Commission [129] as well as other con-
sortia deal with curriculum innovation. The European
ARTIST2 [130] [131] [132] consortium works on embedded
system education. ARTES is swedish strategic initiative on
Real-Time-Systems [134]. Career Space is an industrial con-
sortium in information and communication technology (ICT)
[135]: for bridging the current qualification gap, threatening
European prosperity because ICT graduates need solid foun-
dations and skills on both sides: engineering sciences and
computer science, stressing a wide perspective. 

100
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Education missing the job market. Rapidly growing complexity
and pervasiveness of RC-based multi-paradigm devices has caused a
severe design productivity crisis. On the other side Reconfigurable
Computing provides an efficient methodology to solve this crisis.
Most new application areas of FPGAs have only a truncated perspec-
tive „Computing“ and deal with FPGA usage mainly by means of a
bag of tricks, rather than as a fundamental scientific prerequisites ur-
gently needed, so that it is very difficult to bridge the gap between cul-
tures and practices. Many different activists and departments and
departments are involved in this harmful fragmentation.

Algorithmic Cleverness is missing. To-day experts with dif-
ferent backgrounds and diverging points of view are needed,
not only for test and verification of modern designs, experts
with different backgrounds and diverging points of view need-
ed, if possible at all, which is expensive and substantially de-
lays the product introduction. Although the economic necessity
of RC and FPGAs has been widely recognized, the academic
domain mainly missed the education   of a sufficiently large
share of highly qualified system designers and configware de-
velopers. Configware engineering and the programming of
morphware requires much more computer science skills, rather
than tricks from the culture of a particular application domain.
A typical problem is the lack of algorithmic cleverness needed
for software to configware migration. A new taxonomy of al-
gorithms and architectures is needed, which extends the notion
of algorithm beyond the time domain. 

The harmful Monopoly of the von Neumann Paradigm.
Our growing configware industry is still mainly ignored by
our curricula - mainly, but not only, by our CS curricula. Com-
modity of the shelf (COTS) FPGAs have all two paradigms to-
gether and with several memory banks on board of the same
chip. To master the collision of cultures we need transdisci-
plinary curricula which systematically connect or even merge
the different backgrounds. We need innovative courses and
lab courses for integration of Reconfigurable Computing in
advanced curricula. We need to combat trends toward special-
ization as a main goal of education. We need interdisciplinary
curricula which are methodologically interwoven with Com-
puter Science curricula to achieve a unification of fundamen-
tals. We need new computer science curricula, which avoid
the monopoly of the von Neumann model mind set and fully
accept the dual-paradigm model for teaching the foundations
never later than as early as possible at freshmen level.  

Unified foundations needed.  Meanwhile it has become ev-
ident, that many fundamental problems are directly going
across many application domains. We need to counter the
current trend, where specialization is the target of education
systems. We need to go toward interdisciplinary CS-related
curricula for unifying the foundations of the discipline since
it has become evident that fundamental problems are shared
across several different application domains. We need a
transdisciplinary approach toward hardware/configware/soft-
ware co-design, not only in practice, but even more urgently
for curricula in Electrical Engineering, Computer Engineer-
ing, Computer Science, and Information Technology.

Reconfigurable Computing Education. Although the tar-
get areas of all these consortia are the main application do-
mains of reconfigurable resources, FPGAs are hardly
mentioned in their recommendations. Our answer to this one-
eyed viewpoint is our Reconfigurable Computing Education
initiative also including all areas of supercomputing by

founding a new workshop series: The 1st International Work-
shop on Reconfigurable Computing Education (RE education
2006) [136] on March 1, 2006, at Karlsruhe, in conjunction
with the IEEE Computer Society Annual Symposium on
VLSI (ISVLSI) on March 2 - 3, 2006 [137]. I would support
founding an IEEE Computer Society task force, as well as of
a GI / ITG Fachgruppe on Reconfigurable Computing. 

8.  CONCLUSIONS

Compared to the instruction-stream-based von Neumann
paradigm, FPGAs and coarse-grained reconfigurable platforms
for Reconfigurable Computing offer - in addition to drastic
savings on the electric energy budget - speedup factors by
several orders of magnitude. Their programming is RAM-
based too, which in practice leads to a dual paradigm
methodology by using Configware Engineering as the
counterpart of Software Engineering. The 2nd RAM-based
paradigm avoids most of the often serious communication
bottlenecks coming along with concurrent instruction streams.
The personal supercomputer is near, not only for the desktop,
but also for a new road map to large scale supercomputing of
up to now unthinkable highest performance dimensions. Our
academic education system should accept this fascinating
challenge, especially with new curricula in CS and CE for
providing an integrating dual paradigm mind set to bridge the
gap and to cure severe qualification deficiencies of our
graduates. We need a unification in dealing with problems,
which are shared across many different application domains.
Interdisciplinary must become transdisciplinary.
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