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Abstract. Accelerating a genetic algorithm (GA) by implementing it in a reconfigurable field programm-
able gate array (FPGA) is described. The implemented GA features: random parent selection, which
conserves selection circuitry; a steady-state memory model, which conserves chip area; survival of fitter
child chromosomes over their less-fit parent chromosomes, which promotes evolution. A net child chro-
mosome generation rate of one per clock cycle is obtained by pipelining the parent selection, crossover,
mutation, and fitness evaluation functions. Complex fitness functions can be further pipelined to main-
tain a high-speed clock cycle. Fitness functions with a pipeline initiation interval of greater than one can
be plurally implemented to maintain a net evaluated-chromosome throughput of one per clock cycle.
Two prototypes are described: The first prototype (c. 1996 technology) is a multiple-FPGA chip imple-
mentation, running at a 1 MHz clock rate, that solves a 94-row × 520-column set covering problem
2,200× faster than a 100 MHz workstation running the same algorithm in C. The second prototype
(Xilinx XVC300) is a single-FPGA chip implementation, running at a 66 MHZ clock rate, that solves a
36-residue protein folding problem in a 2-d lattice 320× faster than a 366 MHz Pentium II. The current
largest FPGA (Xilinx XCV3200E) has circuitry available for the implementation of 30 fitness function
units which would yield an acceleration of 9,600× for the 36-residue protein folding problem.

Keywords: genetic algorithm, genetic algorithm processor, reconfigurable-computing, FPGA

1. Introduction

Evolutionary computing has roots that extend back as far as the 1950s [1], [2].
In the 1960s, evolutionary programming (EP) was described by Fogel et al. [3],



34 shackleford et al.

and in the 1970s, evolution strategies (Evolutionsstrategie) were described by Ingo
Rechenberg [4]. Also during this time, genetic algorithms (GAs) were described
by John Holland [5]. Recent developments in genetic algorithms are described
in [6], [7]. GAs are well suited to finding solutions for complex optimization prob-
lems [8], [9].

However, GAs have one major drawback, which is their slow execution speed
when implemented in software on a conventional computer. Parallel processing [10]
has been one approach to overcoming the speed problem of GAs.

Our approach for accelerating the execution speed of a GA was to implement
as a hardware pipeline the functions of parent selection, crossover, mutation, and
survival. Programming of the GA machine is accomplished by designing a pipelined
fitness function circuit for the problem to be solved.

Operating at a clock rate of 1 MHz, the first prototype [11], [12], consisting of
a multi-chip implementation, solved a set-covering problem at a processing rate of
one million crossovers per second which was a 2;200× speedup over the problem
execution on a 100 MHz workstation. A recent prototype, based upon a PCMCIA
plug-in card using a single FPGA chip to implement the entire system, including
the cost function, operated at 66 MHz and yielded a 320× acceleration of a protein
folding problem when compared to a 366 MHz processor running a software version
of the same algorithm.

In the next section we will survey previous related work and describe the details
of the GA. Then we will discuss the architecture of a high-performance pipelined
implementation of the algorithm. Programming of the GA machine will be illus-
trated with the set coverage problem and a protein folding problem. Finally, we will
describe the two FPGA-based prototype implementations and experimental results.

2. Hardware implementation of a survival-driven, steady-state GA

In the Section 2.1 we will first review some related work of implementing a genetic
algorithm directly into FPGA-based hardware, then we will explain the survival-
driven, steady-state GA (Figure 1) in sections 2.2 and 2.3. Next, in Section 2.4, we
will discuss the rationale of the algorithm and lastly, in Section 2.5, provide some
empirical assurance of the algorithm’s effectiveness.

2.1. Related work

Graham and Nelson [13] incorporated the Splash 2 machine [14] to solve a 24-city
Traveling Salesman Problem. With a population of 256, the hardware running time
for the problem was 11.2 s, which was a 10:6× speed-up over a software implemen-
tation of their algorithm running on a 125 MHz workstation. The implementation
required one-fourth of a Splash 2 board which is composed of 16 FPGA chips along
with a crossbar interconnection.

Sitkoff et al. [15] used the Armstrong III machine [16] to solve a 500-component
circuit partitioning problem. With a population of 96, the hardware running time for
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Figure 1. Survival-driven, steady-state genetic algorithm that is readily implementable in hardware.

the problem was 48.5 s, which was a 3:0× speed-up over a software version of the
algorithm running on a 60 MHz workstation. A distributed version of the algorithm
incorporating three nodes of the Armstrong III machine achieved an 8:6× speed-up.

Kitaura et al. [17] have implemented a steady-state GA with roulette wheel selec-
tion. The pipelined architecture is implemented in a Lucent Technologies ATT2C40
FPGA (43K equivalent gates) and, running with at a clock rate of 33 MHz, achieves
a speedup of 730x when compared with a 333 MHz DEC Alpha workstation running
the same algorithm compiled in C.

Yoshida et al. [18] have designed and simulated a hardware architecture based
on a steady-state GA with simplified tournament selection.

Kajitani et al. [19] used an evolvable hardware chip to implement a pros-
thetic hand controller. The chip consists of GA-specific hardware, reconfigurable
hardware, chromosome memory, training data memory, and an NEC V30 16-bit
CPU core. Running at a clock rate of 33 MHz, the evolvable hardware chip was
approximately 62× faster than a 200 MHz Sparc 2 running the same GA program.
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Also described in [19] was a “genetic reconfiguration of DSPs” (GRD) chip
(Markkaa et al. [20]) that achieved a 15× speedup of an adaptive equalizer evo-
lution when compared to a 200 MHz Sparc 2. Further description by Murakawa
et al. [21] of the GRD chip indicates that a network of nine GRD chips is approx-
imately 160× faster than a Sun Ultra 2 200 MHZ, workstation when evolving an
equalizer network.

Salami [22] has described the design and simulation of a genetic algorithm proces-
sor implementing a generational GA. Predicted clock frequency for a Xilinx XC4013
FPGA chip ranged from 6.26 MHZ to 11.2 MHz, depending upon the processor
configuration.

Bland and Megson [23] have described the design and simulation of a generic
systolic array for genetic algorithms. Analysis indicated that the system clock would
run at 12.5 MHz when implemented on a Xilinx XC4006 FPGA chip.

Scott et al. [24] have described the design and implementation of a hardware-
based genetic algorithm. The prototype was implemented on a BORG FPGA proto-
typing board [25]. When compared against the same algorithm running on a Silicon
Graphics 4D/440 with four MIPS R3000 CPUs running at 33 MHz, the prototype
achieved speedups of 13× to 19× on a suite of arithmetic function optimizations.

Turton and Ardlan [26] have described the design and simulation of a hardware
version of a parallel genetic algorithm to be used for the real-time optimization
problem of disk scheduling.

Tufte and Haddow [27] have described the prototyping of a hardware GA pipeline
for hardware evolution.

2.2. Notation, functions, and data structures

The population of np chromosomes along with their fitness values is stored in a
one-dimensional array Population. Each Population array entry is composed of nd
bits of chromosomedata and nf bits of chromosomefitness.

The function Random(i) returns a random integer in the range 0 to i− 1 inclusive
for any positive integer i.

The problem-specific Fitness(cdata) function evaluates the goodness of the prob-
lem solution expressed by the chromosome cdata. The returned value is an integer
in the range of 0 to 2nf − 1 with greater values representing fitter solutions.

The function Crossover(cut prob, parent1data, parent2data) creates new child chro-
mosomes by aligning the two parent chromosomes and then randomly cutting them
into segments with a probability of cut prob at each bit position. The composite
child chromosome is then assembled by starting at one end and alternately tak-
ing segments from each parent. The value of cut probe will determine the type of
crossover. Near 0.0, crossover will tend to be single-point (with the possibility of no
crossover and multi-point crossover also occurring). The middle range of cut prob
between 0.0 and 0.5 will tend to produce multi-point crossover, with higher values
producing more cutpoints. Values near 0.5 will tend to produce uniform crossover
(with a parent selection probability of 0.5).
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The Mutation(mutation prob, cdata) function takes the data portion of a chro-
mosome and then considers each bit independently and with a probability muta-
tion prob, logically inverts the bit. As mutation prob moves from 0.0 to 0.5, the type
of mutation will vary from none, to probably single-point, to probably multi-point, to
complete randomization of the chromosome. A mutation prob of 1.0 simply inverts
the chromosome.

The algorithm terminates when the Evolutionary Stasis function returns a true
value. The criteria for evolutionary stasis are dependent upon the problem being
solved.

2.3. Algorithm explanation

Initially, a population of randomly generated chromosomes is created, evaluated
(i.e., assigned fitness values), and stored in the Population array. A single location
in the array contains both chromosomedata and chromosomefitness.

Parent chromosomes are selected randomly from the Population array. The pre-
vious parent1 becomes the new parent2 and then a new parent1 is chosen randomly
from the Population array. By permitting each parent to serve both as the first par-
ent and then, the second parent, only one memory access cycle is required for each
crossover operation.

Since the basis of the algorithm is survival of fitter offspring over less-fit parents,
the lesser-fit parent of each pair randomly chosen for crossover and mutation will
become the candidate for replacement by a surviving child. Data relating to the
lesser-fit parent are kept in the two variables: worst fitness and worst adrs.

After two parent chromosomes have been selected, a child chromosome is created
by the Crossover function. It is then exposed to the possibility of mutation. After
mutation, the child is ready for evaluation by the problem-specific Fitness function.
The survival of the child chromosome is determined by comparing its fitness value
with that of the lesser fit of the two parents.

If the fitness of the new child chromosome is greater than worst fitness, then the
child data and fitness are stored in the Population array at the location pointed to
by worst adrs.

As the process of selection, generation, and survival/replacement continues, the
overall fitness of the population will increase and the survival rate of new off-spring
will diminish. At some point, the entire population will achieve the same fitness (but
not necessarily the same solution) and the offspring survival rate will drop to zero.
At this point, evolution has probably ceased and the algorithm may be terminated.

2.4. Rationale of the survival-driven, steady-state GA construction

Our survival-driven, steady-state genetic algorithm has been devised specifically for
efficient implementation in hardware. In the following subsections, we will discuss
motivation for our choices.
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1. Population storage: By choosing a steady-state GA over a generational GA, the
Population array can be implemented as a single memory which results in a
significant chip area savings.

2. Parent selection: Parents are selected randomly which results in economy of imple-
mentation because there is no need for a circuit to select parents according to
fitness. By letting the old first parent become the new second parent, only one
memory access cycle is required on each system clock cycle to produce a parent-
pair for crossover and mutation.

3. Crossover and mutation: Crossover and mutation are performed every clock cycle,
resulting in a new child chromosome being generated every clock cycle. Crossover
cutpoints are specified as a probability of any bit position being a cut-point with
higher probabilities resulting in more randomly distributed cutpoints per chro-
mosome pair. Syswerda’s uniform crossover can also be readily implemented with
the crossover circuit.

The crossover and mutation implementation architectures rely on a shifting
template register which eliminates long wires and promotes a “bit-sliced” design
that is amenable to FPGA implementation.

4. Survival-driven evolution: Since there is no evolutionary force created by random
parent selection, evolution is promoted through survival. Only offspring that are
more fit than the lesser-fit of their two parents survive to be transferred into the
population, replacing the lesser-fit parent in the process.

2.5. Validly of survival-driven, steady-state GA

As previously mentioned, the survival-driven, steady-state GA was created expressly
for efficient implementation in hardware in terms of both component cost (i.e.,
minimum chip area) and system speed (crossover/s). The question then arises: have
compromises been made that damage the functional integrity of the GA?

To provide some empirical assurance that our GA was still valid, we evaluated its
performance using the Royal Road R1 function shown in Figure 2 [28], [29], [30].

The intent of the Royal Road function (actually a class of functions) was to test
the Building Block Hypothesis [6] which states that crossover combines highly-fit
portions of chromosomes (called schemas) into increasingly fit chromosomes. The
function was so named because it was thought that the presence of the first-level
schemas s1–s8 would act as a “royal road,” leading a GA quickly to the optimum
solution of all 1s. However, this did not turn out to be the case and the function
proved to be somewhat difficult for the classical GA to solve; taking on average,
over 61,000 crossovers to generate the optimum solution.

The first-level schemas s1–s8 for the R1 function are defined to be eight contigu-
ous 1s aligned on 8-bit boundaries as shown in Figure 2. These are shown as being
detected by 8-input AND gates. Each valid, first-level schema contributes a fitness
of 8 to the overall fitness score.

The second-level schemas s9–s12 are aligned on 16-bit boundaries and are com-
posed of first-level schemas. Each valid second-level schema contributes a fitness
of 16 to the overall fitness score. In a similar manner, the two third-level schemas
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Figure 2. The Royal Road R1 function. Modules marked with an “&” represent the logical AND
function.

s13 and s14 each contribute a fitness of 32 and the single, fourth-level schema s15
contributes a fitness of 64.

The optimum solution of 64 contiguous 1s has a fitness of 256. The quantiza-
tion of fitness values can be seen in Figure 3 where the fitness of each surviving
chromosome is plotted according to the crossover count.

Our results (Figure 3) are encouraging. Using a population of 256, no muta-
tion, and a cutpoint probability of 0.1, we typically found the optimum answer

Figure 3. Performance of survival-based genetic algorithm on the Royal Road R1 function. The fitnesses
of surviving child chromosomes are plotted as they replace less-fit parents. The optimum score (256) was
reached after 6,152 crossovers.
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in 10× fewer crossover cycles than the GA used in the Royal Road experiment
described by Mitchell in Chapter 4 of [7].

The GA used in the experiment described by Mitchell used sigma truncation
selection instead of proportional selection to slow down convergence on highly fit
solutions. The crossover method was single-point with 0.7 rate per pair for parents.
The bit mutation probability was 0.005.

3. Pipelined architecture for survival-driven, steady-state genetic algorithm

The FPGA-based GA machine (Figure 4) is organized as a six-stage pipeline [31]
with each stage being allotted the same amount of processing time equal to the

Figure 4. GA pipeline.
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clock period. The organization of the pipeline will be discussed in Section 3.1 and
a bit-sliced design of the data path, amenable to FPGA implementation, will be
discussed in Section 3.2. Factors affecting pipeline performance will be discussed in
Section 3.3.

3.1. Pipeline description

The first three stages of the six-stage pipeline are devoted to parent selection. The
fourth stage performs crossover and mutation. Fitness evaluation is performed in
the fifth stage. Survival is determined in the sixth stage. Subsections 1–6 will detail
the operation of each stage respectively.

1. Address generation: The first stage of the pipeline is devoted to random num-
ber generation. Random numbers are used through out the GA machine, most
notably to address the population memory in the selection of parent chromo-
somes. The random number generator is a cellular-automata design based upon
the work of Wolfram [32] which allows random numbers to be economically gen-
erated on every clock cycle.

2. Memory cycle: The second stage of the pipeline is used as the population memory
access cycle. During this cycle, the memory will either be read, or written, with
a memory write cycle (survival) taking precedence over a memory read cycle
(parent selection).

Population memory read/write is determined by the survival comparator in
the sixth stage of the pipeline. When the comparator’s output is 0, the address
multiplexer will select the random number generator as the address source; when
the output is 1, the least-fit address register (sixth stage) will supply the address
for the write operation.

3. First parent stage: The third stage of the pipeline holds the first parent along with
its fitness and address. When a write to the population memory takes place, the
loading of the registers at this stage will be inhibited. This prevents the surviv-
ing child chromosome from “writing through” the memory and possibly exert-
ing undue evolutionary influence in case it is a highly-fit chromosome. Whether
write-through occurs or not is dependent upon the design of the memory cell—in
some cases, the data that was written into a memory will appear at the memory’s
output at the of the write cycle. If this occurs, and steps are not taken to pre-
vent this data from being loaded into the pipeline, it will act as a selection bias
for surviving chromosomes.

4. Second parent stage: At the beginning of the fourth stage of the pipeline, the
prior first parent becomes the current second parent. This allows a new pair of
parent chromosomes to be presented for crossover on every memory read cycle,
even though the memory has only a single read-port.

Due to their short logic paths (Figure 4), both crossover and mutation can be
accomplished during this stage. The output of the crossover circuit is connected
directly the mutation circuit whose output is connected to the child register.
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Also during this stage, the lesser-fit parent is selected for replacement, pending
survival determination in the sixth pipeline stage.

As in the prior stage, the survival signal is used to inhibit the loading of the
parent register.

5. Fitness evaluation: During the fifth stage, the child chromosome is evaluated by
the problem-specific fitness function. If the fitness function contains extremely
long logic paths, it can also be pipelined to bring its cycle time in line with the
rest of the machine as long as an equal number of delay stages are inserted
between the child register and the evaluated child register. The least-fit parent
address and fitness should also be delayed in a similar manner.

6. Survival determination: At the sixth and final stage of the pipeline, a new child
chromosome and its fitness are held in the evaluated child register. During this
stage, the fitness is compared with the fitness held in the least-fit register. If the
child chromosome is more fit, it is written into the population memory at the
address held by the least-fit register, replacing the parent at that address. A less
fit child chromosome is discarded at this point.

3.2. Datapath bit-slice implementation and cost analysis

The data path represents a significant portion of the GA machine’s circuitry and
therefore should be implemented as efficiently as possible. Along with the cost
requirement, we should note that the GA machine will probably be resynthesized
for each application and that the target technology will probably be an FPGA. So,
it would also be advantageous to consider designs that are readily tessellated and
favor local connections.

Figure 5 shows our implementation of a data path bit-slice for a single bit of
an nd-bit chromosome. The cost is a function of the FPGA technology used in the
implementation, but we can make a rough estimate based upon a technology using
four-input LUTs (look-up tables). In the bit-slice, there are five logic functions (four
multiplexers and the mutation function) and seven flip-flops. It we further assume
that a LUT has two outputs—one that comes from the look-up table directly and
the other that has been clocked through a flip-flop—then the cost for the bit-slice
would be eight LUTs. The cost in LUTs for the pipeline datapath would be 8nd.

In the following subsections, we will discuss the implementations of the functions
in Figure 5 as they are encountered, moving from left to right.

Figure 5. Pipeline datapath bit-slice (see Figure 4).
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1. Parent registers: When a surviving child chromosome is written to the popula-
tion memory, it should be prevented from re-entering the pipeline via memory
write-through (discussed in Section 3.1.3). The reason for this is that very fit child
chromosomes might tend to recirculate (crossover does not guarantee that the
child will be different from both of the parents) and thereby diminish the genetic
diversity of the population. To prevent this re-entry, we have hold controls on
the parent registers. The hold signal is active whenever there is a population
memory write cycle.

2. Crossover: It is clear that each bit position requires a two-input multiplexer to
select between the two parents. The problem is how to control the multiplexer
aggregate. Control based at a single point would require lines to all multiplexer
address inputs. This would pose a burden on FPGA routing capacity and chip
I/O pins if the datapath were sliced across chips.

Our solution (Figure 6a) was to send a crossover template to all multiplexers
via a shift register (one bit per bit-slice). This requires one flip-flop per slice, but
has the advantage of only needing two adjacent-slice connections. It also allows
the number of cutpoints to be varied dynamically by controlling the input pat-
tern to the template shift register. Figure 6b illustrates typical crossover patterns
resulting from cutpoint probabilities in the range of 0.05 to 0.5.

We create the crossover pattern probabilistically by a comparator connected to
a threshold register and the random number generator that generates a random
integer in the range of 0 to rmax. The probability pc of a cutpoint at any bit is

pc =
Tc

�rmax + 1�

where Tc is the cutpoint threshold.
When the random number is less than the threshold, the comparator’s output

is true which causes a toggle flip-flop to change state and thus change the selec-
tion pattern being applied to the template shift register. Increasing the threshold
increases the number of cutpoints. Syswerda’s uniform crossover algorithm [33]
can be implemented by removing the toggle flip-flop and using the comparator’s
output as the template input.

3. Mutation: The mutation function (Figure 7a) uses a technique very similar to
crossover in that the mutation information is conveyed to the data bits serially
via shift registers. In order to lessen the possibility of correlation between muta-
tion and crossover, we have chosen to have two random bit streams traveling
in opposite directions, each with a 1’s density of Tm/�rmax + 1� where Tm is the
mutation threshold and rmax′ as before, is the maximum possible random number.
A mutation occurrence for any bit is defined as two ones appearing simultane-
ously at the same position in each of the shift registers. The event is detected
by a two-input AND function which causes an XOR function to invert the bit at
that position coming from the crossover multiplexer. The AND-XOR function
can be implemented by a three-input LUT.



44 shackleford et al.

Figure 6. Crossover: (a) implementation; (b) crossover template patterns shown for 100 clock cycles for
a 30-bit chromosome with cutpoint probabilities pc-i ranging from 0.05 to 0.5.

The two random bit streams are implemented similarly to the crossover tem-
plate stream, except that a toggle flip-flop is not connected to the comparator’s
output. The probability of a mutation pm at any bit is

pm =
(

Tm
rmax + 1

)2

:
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Figure 7. Mutation: (a) implementation; (b) mutation template patterns shown for 100 clock cycles for
a 30-bit chromosome with bit-mutation probabilities pm-i ranging from 0.01 to 0.05.

Figure 7b illustrates mutation patterns resulting from mutation probabilities in
the rage of 0.01 to 0.05.

4. Child registers: The result of the crossover and mutation functions is stored in
the child register. This register is connected to both the fitness function circuit
and the final stage of the pipeline (evaluated child register) which serves as the
data input register to the population memory.
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3.3. Performance calculation

As mentioned earlier, the GA machine is organized as a pipeline with each
pipe-line stage being allocated the same amount of processing time. In this case,
the processing time for each stage Ts is the reciprocal of the clock frequency fc′

Ts =
1
fc
:

So, for example, a machine running at 100 MHz would have 10 ns available at
each stage for the logic signals to propagate from stage’s input register through the
LUTs, wires and switches implementing the function of the stage and then reach
the input register of the next stage in time for the next clock. The same conditions
also apply to the pipelining of the fitness function.

However, before discussing the pipelining of fitness functions, we should intro-
duce the concept of initiation interval. The initiation interval is the time interval,
measured in clock cycles, before a new operand can be introduced into a pipeline.
Initiation interval should not be confused with latency, which is simply the delay,
measured in clock cycles, of a pipeline.

Figure 8a shows a pipelined fitness function unit with a latency of 3 and an initi-
ation interval of 1. The net fitness evaluation rate is one per clock cycle. Figure 8b
shows a piplined fitness function with a latency of 3 and an initiation interval of 3.
The net result rate is one per three cycles. Figure 8c shows the grouping of three
pipelined fitness function units, each with a latency of 3 and an initiation interval

Figure 8. Pipeline initiation interval and latency: (a) fitness function unit with a latency of 3 and an
initiation interval of 1 yields one fitness evaluation per clock cycle; (b) fitness function unit with latency
of 3 and initiation interval of 3 yields one fitness evaluation per three clock cycles; (c) three fitness
function units with latencies of 3 and initiation intervals of 3 yield one net evaluation per clock cycle.
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of 3. By staggering the data insertion times of each unit by one clock cycle, a net
result rate of one per clock cycle can be attained.

Since the GA pipeline has an initiation interval of 1, the rate at which chro-
mosomes can be produced will be the same as the clock frequency fc . The net
throughput rate R of evaluated chromosomes will depend upon the initiation inter-
val Ii of the fitness function unit and the number of function units implemented Nf
(subject to the constraint Nf ≤ Ii):

R = fc ·
Nf

Ii
:

For example, with a clock frequency of 100 MHz, an initiation interval of 36 for
the fitness function pipeline, and an implementation of 18 fitness function units, the
net evaluated chromosome generation rate would be 50 million per second.

4. Problem examples

We will consider two problems, the set covering problem and the protein folding
problem, and then discuss the construction of fitness function circuits for each.

4.1. Set covering problem

For our first example, we will consider the NP-hard set covering problem [34], [35].
The set covering problem is an optimization problem that models many resource-
selection problems and is important for logic circuit minimization [36], [37], [38].

The set covering problem can be defined as follows: given a collection C of finite
sets, each with non-negative cost, find a minimum-cost sub-collection C ′ such that
every element within the sets in C belongs to at least one set in C ′.

To illustrate the set-coverage problem we will consider the prime-implicant reduc-
tion sub-problem of the logic minimization problem [39] shown in Figure 9: The
truth table describes the logic function to be implemented. The 1s of this func-
tion are plotted on a Karnaugh map [40] which allows us readily see the prime
implicants.

We can now see that all but one of the 1s are covered by at least two prime impli-
cants. The problem is to select a minimum-cost set of prime implicants that covers
all 1s on the map. We will use the number of gate inputs required to implement the
prime implicant as its cost.

The prime implicants can now be plotted onto a set-coverage table (Figure 10)
with the rows representing each set (prime implicant) and the columns representing
the elements within the sets (1s of the logic function covered by the prime impli-
cant). If an element is contained within a set, the column representing that item is
said to be covered by the set. The objective then, is to find a minimum-cost set of
rows whose elements cover all columns.
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Figure 9. Logic minimization problem.

Mapping of the trial solution on to the chromosome is straight forward: each row
in the table is represented by a bit in the chromosome. If the bit is a 1, then the row
is considered to be a part of the trial solution. The cost of the solution is the sum
of the costs of the selected rows. However, the fitness of the solution must consider
both the legality (all columns might not be covered) and cost of the trial solution.

In order to provide an evolutionary gradient that will move the population
towards legal solutions (all columns covered), the number of covered columns must

Figure 10. Set-coverage problem.
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Figure 11. Set-coverage fitness function circuit.

be integrated into the fitness function. The fitness function circuit in Figure 11
achieves this by counting the number of covered columns (by means of a carry-save
adder [31], [34] connected to the outputs of the OR gates that detect column
cover) and then subtracting this value from the total number of columns The 1’s
complement of the difference is then used as the most-significant portion of the
fitness value. This will cause the most-significant portion of the fitness value to be
all 1s when all columns are covered. Thus maximizing the fitness values of legal
solutions. The least significant portion of the fitness value is composed of the 1’s
complement of the total cost of the selected rows. Thus, as the cost decreases, the
fitness will increase. The initiation interval of this fitness function is one clock cycle.

4.2. Protein folding problem

Lau and Dill [41] described a two-dimensional square lattice model for protein fold-
ing. Unger and Moult [42] have described the application of a genetic algorithm to
discover the minimum-energy conformation for such a lattice-constrained protein.
They have also shown that the problem is NP-hard [43]. Although we have imple-
mented the two-dimensional version of the problem, the cost function that we will
describe is readily extended to three dimensions.

To summarize the problem, a chain of amino acids or residues comprise a protein
as shown schematically in Figure 12. The amino acids can divided into hydropho-
bic residues which are repelled by the solvating water molecules, and hydrophilic
residues which can form hydrogen bonds with water molecules. So, when a protein
chain is allowed to fold and seek its lowest energy conformation, the hydrophobic
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Figure 12. Folding a simple protein in a 2-d lattice: The objective is to fold the chain of residues by
using the relative operations �straight; left; right� so as to maximize hydrophobic residue adjacencies, thus
minimizing free energy. At most, only one residue may occupy a lattice position.

residues will tend to the clustered together in the center and the hydrophilic residues
will tend to be on the outside.

A simple child-evaluation function that will drive the GA towards solutions of
this kind can be constructed by modeling the conformational energy of the protein.
Since smaller values of the function will represent more-fit offspring, we use the
term “cost function” to refer to this type of inverted fitness function. The adaptation
of the GA pipeline to handle a cost function is simple: the worst parent becomes
that parent with the largest (rather than smallest) evaluation and the child survives
if its cost is less than that of the worst parent.

The protein-energy cost function is calculated as follows: if no hydrophobic
residues are adjacent in the lattice and there is no multiple occupancy of any lat-
tice position, then the energy is defined to be zero. For every every pair of adjacent
hydrophobic residues in the lattice, the energy is reduced by one. We count the
effect of adjacent residues on the chain because it simplifies the hardware and has
no effect on the functional performance due to being a constant. In the event of
folding “collisions” where two or more residues try to occupy the same lattice posi-
tion, the number of collisions is multiplied by a constant (larger than the greatest
possible number of adjacent hydrophobic pairs) and added to the energy.

Figure 12 shows an example of folding a simple protein. Its linear conformation is
defined to have a free energy of zero. When folded as shown, there are four adjacent
hydrophobic residue pairs, each pair reducing the energy by 1, for a total energy of
−4 (note that “adjacency” is defined here to mean “next to”, either horizontally or
vertically, but not diagonally).

The chromosome data format for the 2-d lattice protein folding problem is shown
in Figure 13. For the 2-d problem there are three folding choices at each pep-
tide bond between the residues—straight, left, and right. In the 3-d version of the
problem, up and down would be added. For protein with nr residues there are
3�nr−1� possible conformations. For the 36-residue problem illustrated, the solution
space is approximately 5 × 1016. Encoding each fold as a pair of bits as shown in
Figure 13, the chromosome length will be 2�nr − 1� bits. The 36-residue example
has a chromosome length of 70 bits.

The pipelined cost function is shown in Figure 14. The pipeline has a latency
of 2nr and an initiation interval of nr . The folding cost algorithm is built around
the lattice coordinates of the folded protein. To obtain these coordinates, the
chromosome is shifted two bits per clock cycle into the lattice coordinate state
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Figure 13. Chromosome data format for the 2-d lattice protein folding problem:

machine. As a function of the chromosome’s folding directions, residue coordinates
along with a hydrophobic marking bit will emerge from the state machine.

The information on each residue then enters an nr-stage pipeline where each
residue’s lattice coordinates and hydrophobic status are both held in a register
associated with the stage and then passed on to the next stage for comparison.
For example, the first residue’s information is simply held in the first state storage
register. The second residue’s information is compared with the first then stored in
the second. The third is compared with the first and second and then stored in the
third, and so on.

At each stage, a collision comparison and an adjacency comparison are made.
Collision is detected by lattice coordinate equality for two residues. When a collision
occurs, the collision count is incremented and passed to the next stage. Adjacency
is detected by a difference of 1 in either (not both) the x or y lattice coordinate
and both residues being hydrophobic. As with the a collision detection, when an
adjacency is detected, the adjacency count is incremented and the resultant value is
passed to the next pipeline stage.

At the end of the pipeline, the collision counts and adjacency counts are totaled
in separate accumulators as positive and negative numbers respectively. The final
folding cost is a composite of the two numbers. If collisions have occurred, the
collision number will comprise the most significant part of the folding cost. If no
collisions have occurred, the negative adjacency count will be sign-extended and it
will then represent the folding cost.

5. Prototypes and experiments

5.1. Prototype for the coverage problem

The prototype GA machine for the set coverage problem (Figure 15) was designed
with the Tsutsuji1 [44], [45] logic synthesis system and implemented on an Aptix
AXB-MP3 field programmable circuit board (FPCB) populated with six FPGAs.
Three FPGAs were devoted to the GA pipeline and three were devoted to the
fitness function for the set coverage problem.

The Aptix AXB-MP3 FPCB consists of three field programmable interconnect
components (FPICs) and a component plug-in area wired to the FPIC I/O. Each
FPIC has 100 programmable I/O connections wired to each of the other FPICs as
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Figure 14. Cost function design architecture for 2-d lattice protein folding problem. For every hydropho-
bic residue adjacency, the folding cost is reduced by 1. The number of collisions between residues is
appended to the most significant part of the folding cost. The unit has a latency of 2nr and initiation
interval of nr .
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Figure 15. System prototype block diagram.

shown in Figure 15. Additionally, each FPIC has 640 external programmable I/O
wired to the component plug-in area. Connected to each FPIC is an additional
diagnostic FPIC that is connected to a logic analyzer interface. Each FPIC also
has 170 programmable I/O connections to each of two Altera EPF81188A FPGAs.
This particular FPGA is described as having 1,008 logic elements or 12,000 “usable
gates.” Also connected to each FPIC via a 50-bit bus is a 256w × 40b RAM memory
board. The three memory boards form the 256w × 120b population memory. The
system is monitored via the logic analyzer interface.

The fitness function circuit for the set coverage problem is designed directly by
logic synthesis as a function of a set-specification file. The set-specification file is
first transformed into a logic equation file according to a structure similar to that of
Figure 11. The logic equation file is then partitioned according to expected FPGA
capacity and then each partition is compiled into a gate-level design that can be
mapped onto an FPGA.

5.2. Experiment—set coverage problem

The set coverage problem considered had 94 rows and 520 columns. This is to say
that the objective was to find a minimum-sized set of rows whose elements covered
all of the 520 columns. The minimum set size was known before hand to be 15.
The problem in this case was not a logic minimization problem (with different cost
prime implicants), but a memory tester allocation problem (with each tester having
the same cost).
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Figure 16. Set-coverage problem: survivor solution cost vs. crossover count.

The problem was cast in the following manner: Each tester, which performs a
specific memory test, was allocated a row in the set coverage table. The chromo-
some represents the rows that are to be used. The columns in the set coverage
table represent possible memory chip faults that can be uncovered by the various
memory tests. A 1 in the 94-bit chromosome indicates that the tester assigned to
that bit position is to be used. The objective is to be able to find all faults (i.e.,
cover all columns) with as few testers as possible.

Running at a clock frequency of 1 MHz (one million evaluated chromosomes per
second) and with a population of 256 chromosomes, the FPGA-based implemen-
tation was approximately 2,200× faster than the software version of the algorithm
which produced about 450 evaluated chromosomes per second.

Figure 16 shows a typical run. Solutions that incompletely cover the set table
are termed invalid and are assigned extra penalty costs in a manner similar to that
shown in Figure 11. For this problem, once all columns are covered, the cost simply
becomes the number of 1s in the chromosome.

5.3. Protein folding problem prototype

The entire problem, comprising the 512-word × 82-bit (70-bit chromosome + 12-bit
cost) population memory, GA pipeline, PC interface, and a single cost function, was
implemented on a single Xilinx XCV300 FPGA which has 6,144 LUTs, each paired
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with a flip-flop. Approximately 2,000 LUTs each were used for the PC interface,
GA pipeline, and cost function.

The GA pipeline, population memory, and pipelined cost function were first
designed and simulated using the Tsutsuji logic synthesis system. The design was
then transformed by hand into VHDL. The VHDL design was then entered into
Xilinx’s Foundation 2.1i design system incorporating Synopsys logic synthesis.

We used an Annapolis Micro Systems Wildcard, which contains a single XCV300
FPGA, to implement the prototype. The Wildcard, is configured as a PCMCIA
card (slightly larger than a credit card) and plugs into a laptop PC. The Wildcard
is supplied with a VHDL design that enables the card to interface with the PC’s
Cardbus and communicate with a program running on the PC.

5.4. Protein folding experiment

The experiment is designed to run in real time with the experimenter varying the
crossovers per run, crossover probability, and mutation probability via sliders on
the control screen (Figure 17) as the problem is repeatedly run with new random
population initializations. Running at 66 MHz with a run-length limit of 50,000
crossovers, provides a displays update rate of 36.67 Hz (i.e., 36.67 50,000-crossover
runs/s). At this rate the experimenter can effectively “tune in” the optimal cross-
over and mutation parameters in real time by watching the shape of the cost curve
change as a function of parameter settings.

Figure 17. Protein folding problem: real-time control screen. For a 50,000 crossover run, the screen
is updated at a rate of 36.67 runs per second which allows real-time adjustment of the mutation and
crossover parameters.
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Figure 18. Protein folding problem: (a) Survivor solution cost vs. crossover count for a single run with
a population of 512, cutpoint probability of 0.06, and a bit mutation probability of 0.015. The optimal
folding energy of −24 was obtained after approximately 5,000 crossovers. (b) Pattern of hydrophobic
residues in target protein. Native folding energy is −10 due to counting of neighboring hydrophobic
residues. (c) A minimum folding-energy (−24) conformation.

Figure 18a shows a run of the problem with a population of 512, cutpoint prob-
ability of 0.06, and a mutation probability of 0.015. Figure 18b shows the pat-
tern of hydrophobic residue in the 36-residue protein used in the experiment.
Figure 18c shows an optimal conformation of this protein as defined by the minimal
energy grouping of hydrophobic residues.

The maximum power dissipation allowed by the Wildcard is 3.3 W. As we
increased the clock frequency, the power dissipation also increased. At 66 MHz,
the Wildcard’s power dissipation limit of 3.3 W was reached.

As discussed earlier, the pipelined cost function has an initiation interval of nr or
36 clock cycles in the case of our example. With a single cost circuit, the prototype
achieves an acceleration of 320× over a 366 MHz Pentium II running the same
algorithm in C. However, as discussed in Section 3.3, when the pipeline initiation
interval is greater than 1, multiple units can be implemented up to the limit imposed
by the initiation interval or chip area limitations. Figure 19 shows the accelerations
possible with the current Virtex series of FPGA chips manufactured by Xilinx. By
implementing a design with 30 cost function units in a Xilinx XCV3200E FPGA,
an acceleration of 9,600× could be obtained.

6. Discussion

We have demonstrated that problem-specific, FPGA-based reconfigurable machines
have the potential to vastly improve the performance of certain problems over
software-based implementation on general purpose computers: Running at a clock
speed of one per-cent that of a 100 MHz workstation, the GA machine still achieved
a 2,200× performance improvement for the initial prototype over the software
implementation of the algorithm.

However, there is one critical problem that could limit the useful application of
reconfigurable machines, and that is problem throughput: the number of different
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Figure 19. Protein folding problem: performance scaling as a function of FPGA size.

problems that can be solved in a given time period as opposed to the speed of
a single problem’s solution. For the set-coverage problem on the GA machine,
solutions can be found in milliseconds, yet to reprogram the fitness function FPGAs
for a different data set takes several hours when using conventional logic synthesis
tools. Below we will discuss some possible solutions to the throughput problem:

1. Dynamically reconfigurable fitness function: For the set-coverage problem, for
example, a data-independent design could be realized by designing the fitness
function circuit so that the state of a flip-flop would determine the member-
ship of an element in a set. The design cost would be one LUT per element.
The problem in Section 5.2 would require 48,000 LUTs to implement the table
portion. Using the same technology (c. 1996) as the experiment (1008 LUTs
per FPGA) would require 52 FPGAs for the table plus another two FPGAs for
carry-save adders. However, with current technology, the entire system could be
implemented in a single Xilinx XCV3200E FPGA which has approximately 65K
LUTs. Reconfiguration could be carried out in less than 1 ms by using multiple
serial scan chains.

2. ASIC implementation: By incurring the development cost for a VLSI ASIC, a
programmable fitness function for a given problem domain could be placed on
a single chip. This would have the highest absolute performance and throughput
of all options.

3. Special layout algorithm: Since the structure of the fitness function if known for a
given problem domain, it should be possible to directly compile the fitness func-
tion circuit in a manner similar to that of a silicon compiler. The circuit density
would probably not be as great as an optimized FPGA, but the reconfiguration
could be accomplished in the time required to load the FPGA’s configuration
pattern (10–100 ms).

4. High-performance hardware compilation: Development is currently proceeding on
a hardware compiler [46] that will compile directly from a subset of C++ to
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target FPGA programming bit stream. In an initial test, a 12,800 LUT encryption
algorithm was compiled, placed, and routed in 16 minutes.

7. Conclusion

We have addressed the problem of slow execution speed of the software implemen-
tation of the genetic algorithm by designing a pipelined genetic algorithm processor
that can generate one new, evaluated chromosome per machine cycle.

High performance is obtained by eliminating parent selection based upon fit-
ness and using random selection instead. In addition to being simple to implement,
random selection also has the advantage of maintaining high genetic diversity in
the offspring and thus avoiding premature convergence on highly fit solutions that
appear early in the evolutionary cycle. However, the intent of fitness-based selec-
tion that highly fit chromosomes should exert a greater evolutionary influence on
the population is still maintained by the fact that highly fit chromosomes have a
longer lifetime and thus have more crossover opportunities.

The initial prototype [11], [12] was implemented with a commercial FPGA pro-
totyping board (c. 1996 technology). Programming the prototype to solve a 94-row
by 520-column set coverage problem required three FPGAs for the fitness function
circuit and three FPGAs for the GA pipeline. Running at 1 MHz, the prototype
generated one million new chromosomes per second which was 2,200× faster than
a 100 MHz workstation executing the same algorithm written in C.

A recent single-chip (6144 LUTs) prototype, embodying the population mem-
ory, GA pipeline, and cost function for a 36-residue protein folding problem, pro-
duces 66 million unevaluated chromosomes per second. The cost function has a
pipeline initiation interval of 36 which results in an evaluated chromosome through-
put of 1.83 million chromosomes per second. The net acceleration over a 366 MHz
Pentium II executing the same algorithm in C is 320×.

Employing the current largest FPGA chip (64K LUTs) and implementing 30 par-
allel cost function circuits would result in an evaluated chromosome throughput of
55 million chromosomes per second—a net acceleration of 9,600× over the software
implementation.

Work still remains, however, on the problem of quickly reconfiguring fitness
function FPGAs to ensure high problem throughput.

Note

1. Tsutsuji was previously marketed in Japan by Yokogawa Hewlett-Packard, Ltd. and Zuken
Incorporated.
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