
FPGA Implementations of Fast Fourier Transforms for
Real-Time Signal and Image Processing

I.S.Uzun* A.Amira A.Bouridane

School of Computer Science

The Queen’s University of Belfast
BT7 1NN Belfast, United Kingdom

*i.s.uzun@qub.ac.uk

Abstract

Applications based on Fast Fourier Transform (FFT)
such as signal and image processing require high
computational power, plus the ability to experiment with
algorithms. Reconfigurable hardware devices in the form
of Field Programmable Gate Arrays (FPGAs) have been
proposed as a way of obtaining high performance at an
economical price. At present, however, users must
program FPGAs at a very low level and have a detailed
knowledge of the architecture of the device being used.

 To try to reconcile the dual requirements of high
performance and ease of development, this paper reports
on the design and realisation of a High Level framework
for the implementation of 1-D and 2-D FFTs for real-time
applications. Results show that the parallel
implementation of 2-D FFT achieves virtually linear
speed-up and real-time performance for large matrix
sizes. Finally, an FPGA-based parametrisable
environment based on the developed parallel 2-D FFT
architecture is presented as a solution for frequency-
domain image filtering application.

1. Introduction

Fourier transforms play an important role in many digital
signal processing applications including acoustics, optics,
telecommunications, speech, signal and image processing
[1,17,18]. However, direct computation of Discrete
Fourier Transform (DFT) requires on the order of N2
operations where N is the transform size. The FFT
algorithm, first explained by Cooley and Tukey [1],
opened a new area in digital signal processing by
reducing the order of complexity of DFT from N2 to
N log2N.

Since the early paper by Cooley and Tukey, a large
number of FFT algorithms have been developed. Among
these, the radix-2, radix-4, split-radix and FHT algorithms
are the ones that have been mostly used for practical
applications due to their simple structure, with a constant
butterfly geometry, and the possibility of performing
them “in place”.

Most of the research to date for the implementation
and benchmarking of FFT algorithms have been
performed using general purpose processors [3,4], Digital
Signal Processors(DSPs) [5,6,7] and dedicated FFT
processor ICs [8,9]. However, as Field Programmable
Gate Arrays (FPGAs) have grown in capacity, improved
in performance, and decreased in cost, they have become
a viable solution for performing computationally
intensive tasks (i.e computation of FFT), with the ability
to tackle applications for custom chips and programmable
DSP devices [10-14].

Although there has been extensive research on the
hardware implementation of the FFT algorithms, there are
some inherent drawbacks of existing studies. They are
designed and optimized for:
• fixed type of ASIC, DSP and FPGA platform;
• fixed type of FFT algorithm; and
• certain fixed design parameters such as transform

size (N), input/output data wordlengths (L).
This narrows the application area of such

implementations.
This paper is concerned with :

• the design and implementation of a parametrisable
architecture, which provides a framework for the
implementation of different types of 1-D FFT algorithms;
• the development of an FPGA-based FFT library by
implementing radix-2, radix-4, split-radix and FHT
algorithms under the same framework in order to provide
system designers and engineers with the flexibility to
meet different application requirements with given
hardware resources;
• the design and implementation of a generic parallel
2-D FFT architecture for real-time image processing
applications; and
• the development of an FPGA-based parametrisable
system for frequency-domain filtering of large images.

The FFT architectures have been designed using
Handel-C language [15]. Although the task could have
been accomplished using traditional Hardware
Description Languages (such as VHDL or Verilog),
Handel-C has been selected as we aimed to evaluate its
rapid design capabilities and suitability for the design of
IP cores.

The target hardware for the implementation and
verification of architectures is Celoxica RC1000-PP PCI
based FPGA development board equipped with a Xilinx
XCV2000E Virtex FPGA [10,16].

The composition of the rest of the paper is as follows.
The proposed system for the implementation of 1-D and
2-D FFTs is given in section 2. A mathematical
background of the FFT algorithms is given in Section 3.
The proposed architectures for 1-D and parallel 2-D FFT
are described in Section 4. The results and the analysis for
the implementations of 1-D and 2-D FFT designs are
presented in Section 5. The environment developed for
frequency-domain image filtering application is described
in Section 6. Concluding remarks are given in Section 7.

2. Proposed System

The environment for the proposed system as shown in
Figure 1 consists of a GUI for use in mapping the 1-D
and 2-D FFTs on the FPGAs. The user receives the result
as parametrisable Handel-C code and/or EDIF netlist file
from the library with the suitable generic specified
parameters. The Handel-C codes stored in the FFT library
are parameterisable and can be accessed using the GUI
interface to implement the design on the FPGAs. The
generic parameters for Handel-C code are respectively:

- the FFT dimension (1-D or 2-D);
- the FFT algorithm (radix-2,radix-4,split-radix, FHT);
- the transform length (N);
- the input and output data word-length (Li, Lo);
- the coefficients word-length (W),
- the number of processor elements (p) in parallel 2-D
FFT architecture; and
- FPGA device type.

3. Fast Fourier Transforms: a review

3.1 1-D DFT and Its Fast Computation

The DFT of an N-point discrete-time complex sequence
x(n), indexed by n = 0,1,…,N-1, is defined by

()∑ ⋅=
−

=

1

0

N

n

kn
MWnx)k(X , 110 −= N,..,,k (1)

where N/j
N eW π2−= and NW is referred as the twiddle

factor.
The excessively large amount of computations

required to compute the DFT directly when N is large has
prompted alternative methods for computing the DFT
efficiently. This problem was alleviated with the
development of special fast algorithms, collectively
known as fast Fourier transform.

Most of FFT algorithms decomposes the overall
N-point DFT into successively smaller and smaller

User's
Specification

Graphical User Interface
(GUI)

Generator

Parametrisable
Handel-C code/

EDIF

FPGA

Generic
parameters

 - FFT Type (1-D/2-D)
 - FFT Algorithm
 - FFT length (N)
 - Input/Output data
word-length (L)
 - Word-length of the
coefficients (W)
 - Number of PEs (p)
 - FPGA device

1-D and 2-D
FFTs Library

Figure 1. Proposed system for the FFTs implementation.

transforms known as a butterfly. An overview of the most
common FFT algorithms is presented in the following
subsections. Again, references [1,2,17,18,19] contain a
detailed development of these FFT algorithms.

3.1.1 Radix-2n FFT Algorithms

For Cooley-Tukey radix-2 algorithm, decimation-in-
frequency (DIF) decomposition, Eq. (1) is decomposed
into even and odd frequency components [1]:

 ()∑
−

=
+ ⋅+=

1

0
2

N/2

n

nk
N/2N/2nnk WxxX (2)

()∑
−

=
++ ⋅⋅−=

1

0
12

N/2

n

nk
N/2

n
N/2N/2nnk WWxxX (3)

For radix-2 FFT algorithm, the smallest transform or
butterfly (basic computational unit) used is the 2-point
DFT as shown in Figure 2.a.

The radix-4 algorithm can be obtained by
decomposing Eq. (2) and (3) into X4k, X4k+2, X4k+1 and
X4k+3 frequency components. The radix-4 butterfly has 4
inputs and 4 outputs, essentially combining two stages of
a radix-2 algorithm in one. Figure 2.b shows the radix-4
butterfly.

The split-radix algorithm [19] decomposes the odd
frequency component in Eq (3) into 4k+1 and 4k+3
frequency components as follows;

()∑ ⋅⋅⋅+−⋅−=
−

=
++++

14

0
4

3
432414

/N

n

nk
/N

n
N/Nn/Nn/Nnnk WWxjxxjxX (4)

()∑ ⋅⋅⋅−−⋅+=
−

=
++++

14

0
4

3
432434

/N

n

nk
/N

n
N/Nn/Nn/Nnnk WWxjxxjxX (5)

The L-shape butterfly element of split-radix FFT
algorithm is given in Figure 2.c.

3.1.2 The Fast Hartley Transform

The Discrete Hartley Transform (DHT) belongs to the
family of frequency transforms. The significant difference
between DHT and DFT is that DHT is a real-valued
transform.

x(n+3N/4)

-j
-1
 j

-1

-1

j
-1

 -j

W0
N

Wn
N

W2n
N

W3n
N

x(n)

x(n+N/4)

x(n+N/2)

X(k)

X(k+N/4)

X(k+N/2)

X(k+3N/4)

x

x

x

x

 -j

Wk
N

X(2k)

X(2k+1)x

x(2n)

x(2n+1)

(a)

x(n+3N/4)

Wn
N

W3n
N

x(n)

x(n+N/4)

x(n+N/2) X(k+1)

X(k+3)

x

x -1

 -1

j

 -j

X(2k)

(c) (b)

Figure 2. The "butterfly" used in (a) radix-2, (b) radix-4, (c)

split-radix algorithms.

The DHT is defined for a real-valued N-point

sequence x(n), n=0,1,…,N-1, by the following equation
[2]:

∑ −=⎟
⎠
⎞

⎜
⎝
⎛⋅=

−

=

1

0
110 ,2N

n
nk N,...,,kkn

N
casxH π (6)

where cas(x) = cos(x) + sin(x).
The FHT algorithm for the computation of DHT

resembles the radix-2 FFT algorithm. The FHT algorithm
is based on the decomposition of Eq (6) as
follow:

[] ()

[] () ()
() ()∑

⎭
⎬
⎫

⎩
⎨
⎧

−
+

⋅−=

∑ ⋅+=

−

=
++

−

=
+

12

0
/212

12

0
/22

2 4
2 4

4

/N

n
Nnnk

/N

n
Nnnk

N/nsinN/k)nN(cas
N/ncosN/nkcas

xxH

N/nkcasxxH

ππ
ππ

π
(7)

Each of the (N/2)-point DHT’s can be further
decomposed in a similar fashion to complete the FHT
DIF algorithm.

3.2 The 2-D FFT

The 2-D DFT of a NxN matrix is defined in a manner
similar to the 1-D case [17,18]. The 2-D DFT is given by:

() ()∑ ∑=
−

=

−

=

+−1

0

1

0

2
2121

1 2

2211
N

n

N

n

N/nknkjen,nx)k,k(X π (8)

where 10 21 −≤≤ Nk,k .
A standard approach to computing the 2-D FFT of an

NxN matrix is to perform a 1-D FFT on the rows of the
matrix, followed by a 1-D FFT on the columns. The
number of arithmetic operations required will therefore be
O(N2logrN), where r is the radix and N is the matrix size.

3.2.1 The Parallel Algorithm for 2-D FFT

Let N=qp, where N is the order of the squared input
matrix, p is the number of (1-D FFT) processors and q is
an integer. Each processor is allocated a unique working
set of rows/columns. The algorithm consists of following
four steps:

Step 1. 1-D FFT on rows: Processor i computes 1-D
FFT on rows (qi, qi+1,…,qi+q-1) of input matrix, where
i=0,1,…p-1. Because each processor executes, in parallel,

a 1-D FFT on q different rows, this step has the
computational complexity of : O((N2/p)log2N).

Step 2. Transpose the matrix: Row/Column
transposition of matrix is required before execution of
FFT on columns.

Step 3. 1-D FFT on columns: Same as in Step-1, but
on columns.

Step 4. Final matrix transposition of the result matrix.

4. FFT Architectures

4.1 (1-D) FFT Architecture

The 1-D FFT architecture consists of a single DIF
radix-2,Radix-4, Split-Radix or FHT butterfly, two
(single in case of FHT) dual-port RAMs and an address
generator unit. The simplified architectural block diagram
of the 1-D FFT design depicted in Figure 3.

Input and Output Data Memory : The 1-D FFT
architecture supports two different memory modes,
internal and external working modes.

i) Internal Memory Mode: There are two different
internal memory configurations – single-memory and
dual-memory configuration (also called as double-
buffering method).

The single-memory configuration provides the
simplest memory interface. In this mode, memory A is
used as input, working and output memory. Input data is
loaded into memory A (data load phase), then FFT is
started (computation phase) and when the FFT is
complete, the result vector is read out of the memory. In
this mode, memory B is not used.

In the dual memory configuration; input, computation
and output operations are overlapped, so that the FFT
processor is never left in an idle state waiting for an I/O
operation. During the execution of input data on memory
A (or B), a new vector of input data is written into
memory B (or A), concurrently. This mode provides high
throughput rates for real-time applications.

ii) External Memory Mode: In external memory mode,
real and imaginary parts of input and output data and the
twiddle coefficients are stores in external SRAM memory
banks. The data transfer mechanism to and from the
external SRAM memory banks has been designed for use
in a wide variety of applications. The storage of
input/output data in external SRAM memory rather than
internal memory (i.e. block RAM, distributed RAM)
allows transformations up to 1M-point without the need
for additional internal buffering.

Data Format : To provide the system designer with
maximum flexibility, the input/output data and the
twiddle factor word-lengths have been described as
parameters so that the FFT designs can be used in a wide
range of applications such as image/video processing,
communications.

Radix-2 / Radix-4
Split-Radix/FHT

Butterfly Unit

N x 2*L-bit
Dual Port RAM

Memory A

N x 2*L-bit
Dual Port RAM

Memory B(1)

N/2N(2) x 2*W-bit
Twiddle

LUT
Address

Generation Unit

S
caling

x(n)

X(k)

(1) Working memory B is only used in Dual Memory configuration.
(2) LUT table is N and 2N words for radix-2 and radix-4 algorithms, respectively.

Figure 3. Functional block diagram of 1-D FFT architecture.

The input and output data is represented by L-bit
fixed-point real and imaginary components (just real
component in case of FHT) in the two’s complement
format. The input/output data is loaded into/from the FFT
processor in the normal order. The twiddle factors (sine
and cosine values), which are generated by the FFT
processor internally, have been represented by W-bit
fixed-point accuracy in the two’s complement format.

Butterfly Unit : The butterfly operation is the heart of
the FFT algorithm. It takes data words from memory and
computes the FFT. The results are written back to the
same memory locations since an in-place algorithm is
used. The butterfly element is pipelined in order to
compute a result every clock cycle. It consists of parallel
L-bit multipliers, L-bit and (L+W)-bit adders/subtractors.
The hardware utilization for the butterfly elements of
each algorithm are summarized in Table 1. The block
diagram of how the butterfly operation for radix-2
algorithm is partitioned between 7 pipeline stages is
shown in Figure 4.

In the computation of the FFT, scaling of the
intermediate results is necessary in order to prevent
overflows. To avoid possibility of overflow, each stage of
the FFT is scaled down by a factor of 2 and 4 in radix-
2/FHT and radix-4/split-radix algorithms, respectively. In
this way, the final FFT output is scaled down by N.

Address Generation Unit (AGU) : The purpose of the
AGU is to provide the I/O RAMs and twiddle coefficient
Look-Up Tables (LUTs) with the correct addresses. Since
address generation during input, output and FFT
computation processes are different, it keeps track of the
mode of the operation and generates the required address.
It is also responsible of unscrambling (bit-reversal) of
output data at the end of each FFT execution.

Table 1. Hardware requirement comparison for different FFT

algorithm butterflies.

FFT
Algorithm

L-bit
Multiplier

L-bit
Add/Subt

(L+W)-bit
Add/Subt

Radix-2 4 4 2
Radix-4 12 16 6

Split-Radix 8 16 4
FHT 4 6 2

Data
Read Mult1L-bit

Add/Subt Mult2 Mult3 (L+W)-bit
Add/Subt

Data
Write

X
Y
W

X+Y
X-Y (X-Y)xW X

Y

Figure 4. Pipeline diagram of DIF-FFT Radix-2 butterfly.

4.2 Parallel 2-D FFT Architecture

Figure 5 illustrates the structure of proposed parallel 2-D
FFT processor architecture. This architecture is structured
with p Processor Elements (PE) which share 4 memory
banks (M0,…M3) under the control of one Control Unit
(CU). Each PEi is essentially a 1-D FFT processor with
attached working registers and Processor Element local
Memory (PEMi) for the storage of associated row/column
vectors. The 1-D FFT processor includes one of the N-
point 1-D FFT cores (radix-2, radix-4, split-radix and
FHT) associated with related twiddle factors LUTs.

The local memory PEMi consists of two (single in
case of FHT) dual-port NxL-bit deep memories in order to
store the real and imaginary (just real in case of FHT)
parts of the L-bit precision input/output samples. A three-
stage sequence of operations is used to compute
transforms with this PE interface, as follows:

Step 1. The associated input row/column data vector is
transferred into the local memory PEMi of processor i;

Step 2. When the input data load operation has
completed, the 1-D FFT PE is started.

Step 3. When the 1-D FFT is completed, the result
vector is read out of the local memory. The bit-reversal
operation according to FFT type is performed on the fly
by the AGU, so that no clock cycles are wasted.

The CU serves as the “operating manager” of the
entire system. The functions of the CU include resource
(external shared memory) management and supervision of
the parallel execution of PEs. A processor ID is allocated
by CU to each PE. In this way CU keeps track of the
associated row/column vector set for each PE. CU
handles the scheduling of shared memory through two
circular queues for reading and writing requests. Each PE
sends its associated processor ID to the CU (read or write
queue), when it is ready to accept a new input
row/column vector or when it completes the1-D FFT.

The Memory Interconnection (MI) that includes a
crossbar switch is designed to provide access for multiple
memory requests. The service discipline for memory
requests is such that no PE gets accesses to a memory
bank while another is attempting to access the same bank.

The external shared memory consists of 4 memory
banks which are directly connected to FPGA. Each
memory bank can contain up to 2MBytes (arranged as
512Kx32-bit) of data giving a total physical address space
of 8MBytes. The real part of the input/intermediate/output
matrix is stored in the first two banks (bank0 and bank1)
while the imaginary part is stored in bank2 and bank3.

1-D FFT
PE1

1-D FFT
PEp

1-D FFT
PE2 Control

Unit

Interconnection N
etw

ork

E
xternla S

hared M
em

ory
Interconnection

Bank0
(M0)

Bank1
(M1)

Bank2
(M2)

Bank3
(M3)

External MemoryFPGA

Radix-2 /
Radix-4
Butterfly

Mem A
(PEMi)

Twiddle
LUT

Addres
s

Gen.
Unit

x(n)
X(k)

S
caling

Figure 5. Functional block diagram of parallel 2-D FFT

architecture.

5. FPGA Implementation

A parametrisable Handel-C coding approach has been
used to implement proposed (1-D and 2-D) FFT designs
to be independent of I/O data wordlengths (L,W), input
vector/matrix size (N) and number of PEs (p).

The implementations target the Celoxica RC1000 PCI-
based FPGA development board. The RC1000-PP board
used is a standard PCI bus card equipped with the Virtex-
E2000 FPGA chip (package :bg560, speed grade 6). It
has 8MBytes of SRAM directly connected to the FPGA
in four 32-bit wide memory banks. All are accessible by
the FPGA and any device on the PCI bus in parallel. A
schematic block diagram of the RC1000 board is shown
in Figure 6.

Bank0

Bank1
Bank2

Bank3PCI

XCV2000E
DMA

Control

Status8 Bit

Figure 6. Schematic view of the FPGA/Banks part in the

RC1000-PP board.

5.1 1-D FFT Implementation

Having implemented all the algorithms under a common
framework, the performance of four different 1-D FFT
algorithms have been comprehensively evaluated for the
FFT lengths from 1K-point to 256K-point. Figure 7
illustrates the performance results of each algorithm in
terms of maximum system frequency and chip area. It is
worth mentioning that the radix-2 outperforms other
algorithms in terms of area and system frequency.

Table 2. Computation time across different algorithms for a

1024-point FFT.
Design Freq (MHz) Comp. Time (µsec)
Radix-2 84 121.6
Radix-4 80 68

Split-Radix 63 160
FHT 60 343

Figure 7. Performance results, influence of transform length.

Computation time across implemented algorithms for a
1024-point FFT is shown in Table 2. It is consistently
seen in our evaluation that the radix-4 is by far the most
efficient algorithm in terms of computation time. If the
choice of algorithm is to be made solely based on
memory requirements, the FHT algorithm is the best since
the memory requirement of the FHT is exactly half of the
other algorithms.

5.2 Parallel 2-D FFT Implementation

The 2-D FFT design has been implemented for the
following matrix sizes (N=128, 256, 512, 1024) and
number of PEs (p = 1,2,4,8) considering the hardware
resources available on Virtex-2000E FPGA chip. Again,
the designs are completely parametrisable, so higher input
matrix sizes and number of PEs can be implemented on
advanced development platforms (such as Virtex-II or
Apex-II FPGAs interfaced with larger external memory).

The speed-up of a parallel algorithm is defined as
Sp=Ts/Tp, where Ts is the execution time using one
processor and Tp is the time of the algorithm executed
using p processors. Figure 9 shows the computation time
and speed-up figures as a function of the number of
processors obtained for parallel 2-D FFT implementation
based on different (1-D) FFT algorithms described in the
previous section, for the matrix sizes N = 256 and 1024.

Shared memory designs are strongly affected by the
design of memory arbitration unit. The speed-up
decreases with an increase of the PEs because memory of

conflict delay increases. This effect can be seen in Figure
9, where speed-up figures are plotted against the number
of processors in the system. The performance of parallel
2-D FFT design is also affected by type of FFT algorithm
used.

Table 2. Frames per second (fps) for 2D-FFT
(a: based on Radix-2, b: based on Radix-4 algorithm).

 Matrix Size
 128 256 512 1024

P a a b a a b
1 112 25 43 6 2 4
2 215 47 78 12 4 8
4 382 87 107 20 8 16
8 420 94 99 35 13 12

It is worth mentioning that the transposition steps

defined in the parallel 2-D FFT algorithm in section 3.2.1
is implemented simultaneously with the transfer of
column data vectors to PE’s local memory with no delay
penalty.

Table 3 compares the performance of parallel 2-D FFT
processor implementations based on Radix-2 and Radix-4
FFT algorithms for different matrix size and number of
processor values. It can be seen that a real-time
performance is obtained using just one processor for the
matrix sizes N=128 and 512. It is also worth noting that a
real-time performance is obtained for the matrix size
N=512 with 8 PEs, based on 1-D Radix-2 FFT core,
using %45 of the slices and %30 of the BlockRAMs
available on Virtex-2000E FPGA chip. For matrix size
N=1024, it is possible to process 16 frames-per-second,
with 4 PEs based on 1-D Radix-4 FFT core, which meets
medical/astronomical image processing frame rate
requirements.

Figure 10 illustrates the performance results of parallel
2-D FFT implementation in terms of maximum system
frequency (fmax) and chip area against number of PEs for
the matrix sizes N=256 and 1024. The chip area
requirement increases linearly as a the number of PEs
increases for all of the (1-D) FFT algorithms while fmax
slightly decreases.

Table 3 shows the performance comparison of existing
(FPGA-based) 2-D FFT works in terms of frame rate per
second. Shirazi et.al. [20]. implemented 2-D FFT on a
custom computing machine called Splash-2. Dick [21]
proposed a reconfigurable architecture for 2-D FFT using
polynomial transforms on XC4000E FPGA device. He
proposed that his architecture is %46 efficient than a row-
column processor. Dillon[22] developed a parallel system
using two Virtex-II devices and achieved the performance
of 120 fps. Our design shows improvements when
compared to [20] and [21] in terms of performance.
Although high performance can be achieved in [23], it is
not a suitable FPGA solution for low cost applications.

Table 3. Performance comparison with existing designs
based on FPGAs.

Design FPGA Used Input Size Frame
Rate

Shirazi et al. [20] 2 x XC4000E 512x512 2.12 fps
Dick [21] XC4000E 512x512 24 fps
Dilon Eng. [22] 2 x

XC2V6000 2048x2048 120 fps

Proposed XCV2000E 512x512 35 fps

Since the 2-D FFT is frequently used as a benchmark

for performance measuring, Table 4 gives performance
results for a relevant comparison between our
implementation and other implementations on
multiprocessor platforms.

The data given by Table 3 and Tables 4 can be used to
predict the usability of the proposed architecture as a
general 2-D FFT engine.

Table 4. Confronting 2-D FFT performances on multiprocessor

based platforms (in miliseconds).

Platform 1024x1024
 1PE 4PE 16PE

256x256
 1PE 4PE 6PE

Cavadini
et.al [24] (1)

90.7 23.0 6.4 6.1 1.9 0.83

Hartley et.al.
[25] (2)

3164 1169 264 157.5 62.7 13.9

Sgro [26] (3) 1045 272 74 52.2 13.6 3.7
Ercan [23] (4) - - - - 45 -

(1) Frequency Domain Engine (FDE) based on VLSI SPITFFIRE FFT
Processor
(2) Multiprocessor system based on TI TMS320C40 DPS.
(3) Multiprocessor system based on SHARC DSPs.
(4) Multiprocessor system based on 4-SHARC DSPs.

6. Application Case Study: Frequency
Domain Image Filtering

The frequency domain image filtering is one of the most
important applications where 2-D FFT can be applied.
The 2-D convolution in spatial/time domain is commonly
used for image filtering. It is fast and easy if the input
image and the filter kernel being used are relatively small.
But, as the image or kernel grows in size the
computational complexity increases geometrically.
Filtering of large images can be done much faster in
frequency domain using 2-D FFT, based on the
convolution property of the Fourier transform as follows
[27]:

Step 1. Compute 2-D FFT of input image and filter:
FFT{I(x,y)} and FFT{H(x,y)}.

Step 2. Apply filter H(u,v) to the FFT of input image
by point-by-point multiplication: Y(u,v) = I(u,v)*H(u,v).

Step 3. Compute the 2-D IFFT of result: IFFT{Y(u,v)}
The speed-up is approximately N2/N logrN= N/logrN,

which is significant when dealing with large images.

Figure 9. Computation time and speed-up versus number of PEs: (a) matrix size of 256x256. (b) matrix size of 1024x1024.

Figure 10. Area and fmax versus number of PEs: (a) matrix size of 256x256 (b) matrix size of 1024x1024.

6.1 Environment for Frequency Domain Image
Filtering Application

Figure 11 illustrates the proposed environment for 2-D
frequency-domain image filtering application. The
environment consists of a host application (GUI), an
image database and a single FPGA-chip coprocessor
based on the RC1000 development board.
• Host Application(GUI): The GUI enables application
users to concentrate on experimenting conveniently with
different FFT algorithms and architectures to investigate
best system trade-offs (such as area, speed, performance)
rather than concentrating on the low level (and complex)
structure of FPGAs. It gives the user the ability to set
different design parameters according to application
requirements (frame rate, image size) and hardware
resources (FPGA area, memory etc.). The parameters
include forward and inverse FFT core algorithm type
(radix-2, radix-4, split-radix, FHT) the number of 1-D
FFT/IFFT PEs (p=1,2,4,8) and filter type (band-pass,
high boost etc.) along with associated filter parameters.
• Image Database: Image database includes sample test
images and application specific images such as large
medical and astronomical images.

• FPGA Coprocessor: The FPGA Coprocessor is based
on RC1000 PCI development board. The frequency
domain filtering is completely performed by FPGA
co-processor. The real and imaginary parts of the input
image are stored in SRAM Bank0 and Bank1 while the
filter coefficient matrix H(u,v) is stored in Bank2 and
Bank3 using 16-bit fixed-point format.

7. Conclusion

Due to the importance and use of FFT in many signal and
image processing applications, a range of 1-D FFT
algorithms including radix-2, radix-4, split-radix and FHT
have been implemented using proposed parametrisable
framework architecture. In addition, an efficient for the
implementation of 2-D FFTs has also been proposed and
implemented. A complete environment based on the
developed parallel 2-D FFT architecture has been
presented as a solution for 2-D frequency-domain image
filtering application. The performances of
implementations have been discussed, investigated and
compared with existing works. High speed-up and
efficiency have been attained for the parallel
implementation of 2-D FFT compared to existing works.

- Input Image
- Filter Coeffs.

Point-to-Point
Multiplication

Virtex-2000E
FPGAParallel

2-D Forward FFT
 - Radix-2
 - Radix-4
 - Split-Radix
 - FHT

Parallel
2-D Inverse FFT
 - Radix-2
 - Radix-4
 - Split-Radix
 - FHT

RC1000 Dev. Board

SRAM
Bank 0

SRAM
Bank 1

Input/Output
Image

SRAM
Bank 2

SRAM
Bank 3

Filter
Coeffs.

- Output Image

Design Paremeters
- FFT Type
- Number of PEs
- Filter Type
 *Filter params.

Figure 11. FPGA-based Frequency Domain Image Filtering Environment.

8. References

[1] J.W. Cooley and J. W. Tukey, "An Algorithm for
the Machine Computation of the Complex Fourier
Series," Math.of Computation, Vol. 19, April 1965, pp.
297-301.
[2] R.N. Bracewell, “Discrete Hartley Transform”, J.
Opt. Soc. Amer., vol. 73, no. 12, pp. 1832–1835, 1983.
[3] Frigo, M. and Johnson, S. G, “FFTW: An Adaptive
Software Architecture for the FFT”, ICASSP conference
proceedings, 3:1381-1384, 1998.
[4] Ganapathiraju, A. et.al, “Contemporary View of
FFT Algorithms”, Proc. of the IASTED, pp. 130-133,
1998.
[5] Datasheet, "Analog Devices DSP Selection Guide
2002 Edition", Analog Devices, 2002.
[6] Datasheet, "TI C62x and C67x DSP Benchmarks",
Texas Instruments, 2002.
[7] Datasheet, "Motorola DSP 56600 16-bit DSP
Family Datasheet”, Motorola Ltd.,2002.
[8] M. Wosnitza: "High Precision 1024-point FFT
Processor for 2-D Object Detection", Ph.D. Thesis, ISBN
3-89649-443-0, 1999.
[9] Baas, B. M., “A low-power, high-performance
1024-point FFT processor”, IEEE Journal of Solid State
Circuits. pp. 380-387, 1999.
[10] URL: www.xilinx.com.
[11] Datasheet, "FFT Megacore Function User Guide",
Altera Ltd., 2002.
[12] Datasheet, "Xilinx 1024-point FFT/IFFT Core
Datasheet", Xilinx Ltd., 2002.
[13] Datasheet, "CS248 FFT/IFFT Core Datasheet",
Amphion Ltd., 2002.
[14] Datasheet,"FFT/WinFFT/Convolver Transform",
Mentor Graphics, 2002.
[15] URL: www.celoxica.com.
[16] Datasheet, "RC1000 Reconfigurable hardware
development platform", Celocixa Ltd., 2001.
[17] E.O. Brigham, "The Fast Fourier Transform and its
Application", Prentice Hall, 1988.
[18] C.S. Burrus and T.W. Parks, "DFT/FFT and
Convolution Algorithms", Wiley, New York, 1985.

[19] P. Duhamel, "Implementation of split-radix FFT
algorithms for complex, real and real-symmetric data"
IEEE Trans. on ASSP, vol. 34, pp. 285-295, April 1986.
[20] N. Shirazi et.al, "Implementation of a 2-D Fast
Fourier Transform on a FPGA-Based Custom Computing
Machine", IEEE Symposium on FPGAs for Custom Conf.
Comp. Mach., September 1999.
[21] C. Dick, "Computing Multidimensional DFTs Using
Xilinx FPGAs", The 8th Intr. Conf. On Sig. Pro. App.
And Tech., September, 1998.
[22] T. Dillon, "Two Virtex-II FPGAs Deliver Fastest,
Cheapest, Best High-Performance Image Processing
System", Xilinx Xcell Journal, 41, 2001.
[23] M.F. Ercan, “A Parallel Architecture for Knowledge
Based Autonomous Navigation,”, Singapore Robotic
Games 2003 Symposium, 2003
[24] Cavadini, M. et.al., “Multiprocessor system for
high-resolution image correlation in real time”, IEEE
Transactions on VLSI Systems, 9:439 –449, 2001.
[25] D. A. Hartley and S. P. Kshirsagar, “Architecture
and modeling of a parallel digital processor based image
processing system,” in Proc. SPIE Int. Society Optical
Eng., vol. 2308, 1994, pp. 1807–1815.
[26] J. A. Sgro, “An efficient MIMD/SIMD architecture
for the analog devices SHARC(tm) DSP,” Tech. Rep.,
Alacron, Inc., 1998.
[27] R.C. Gonzales and R. E. Woods. "Digital Image
Processing", Addison-Wesley, 2002.

