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Abstract 
 

Applications based on Fast Fourier Transform (FFT)  
such as signal and image processing require high 
computational power, plus the ability to experiment with 
algorithms. Reconfigurable hardware devices in the form 
of Field Programmable Gate Arrays (FPGAs) have been 
proposed as a way of obtaining high performance at an 
economical price. At present, however, users must 
program FPGAs at a very low level and have a detailed 
knowledge of the architecture of the device being used. 

 To try to reconcile the dual requirements of high 
performance and ease of development, this paper reports 
on the design and realisation of a High Level framework 
for the implementation of 1-D and 2-D FFTs for real-time 
applications. Results show that the parallel 
implementation of 2-D FFT achieves virtually linear 
speed-up and real-time performance for large matrix 
sizes. Finally, an FPGA-based parametrisable 
environment based on the developed parallel 2-D FFT 
architecture is presented as a solution for frequency-
domain image filtering application. 
 
1. Introduction 
 
Fourier transforms play an important role in many digital 
signal processing applications including acoustics, optics, 
telecommunications, speech, signal and image processing 
[1,17,18]. However, direct computation of Discrete 
Fourier Transform (DFT) requires on the order of N2 
operations where N is the transform size. The FFT 
algorithm, first explained by Cooley and Tukey [1], 
opened a new area in digital signal processing by 
reducing the order of complexity of DFT from N2 to        
N log2N. 

Since the early paper by Cooley and Tukey, a large 
number of FFT algorithms have been developed. Among 
these, the radix-2, radix-4, split-radix and FHT algorithms 
are the ones that have been mostly used for practical 
applications due to their simple structure, with a constant 
butterfly geometry, and the possibility of performing 
them “in place”. 

Most of the research to date for the implementation 
and benchmarking of FFT algorithms have been 
performed using general purpose processors [3,4], Digital 
Signal Processors(DSPs) [5,6,7] and dedicated FFT 
processor ICs [8,9]. However, as Field Programmable 
Gate Arrays (FPGAs) have grown in capacity, improved 
in performance, and decreased in cost, they have become 
a viable solution for performing computationally 
intensive tasks (i.e computation of FFT), with the ability 
to tackle applications for custom chips and programmable 
DSP devices [10-14]. 

Although there has been extensive research on the 
hardware implementation of the FFT algorithms, there are 
some inherent drawbacks of existing studies. They are 
designed and optimized for: 
• fixed type of ASIC, DSP and FPGA platform; 
• fixed type of FFT algorithm; and 
• certain fixed design parameters such as transform 

size (N), input/output data wordlengths (L). 
This narrows the application area of such 

implementations. 
This paper is concerned with : 

• the design and implementation of a parametrisable 
architecture, which provides a framework for the 
implementation of different types of 1-D FFT algorithms; 
• the development of an FPGA-based FFT library by 
implementing radix-2, radix-4, split-radix and FHT 
algorithms under the same framework in order to provide 
system designers and engineers with the flexibility to 
meet different application requirements with given 
hardware resources; 
• the design and implementation of a generic parallel  
2-D FFT architecture for real-time image processing 
applications; and 
• the development of an FPGA-based parametrisable 
system for frequency-domain filtering of large images.  

The FFT architectures have been designed using 
Handel-C language [15]. Although the task could have 
been accomplished using traditional Hardware 
Description Languages (such as VHDL or Verilog), 
Handel-C has been selected as we aimed to evaluate its 
rapid design capabilities and suitability for the design of 
IP cores. 



The target hardware for the implementation and 
verification of architectures is Celoxica RC1000-PP PCI 
based FPGA development board equipped with a Xilinx 
XCV2000E Virtex FPGA [10,16]. 

The composition of the rest of the paper is as follows. 
The proposed system for the implementation of 1-D and 
2-D FFTs is given in section 2. A mathematical 
background of the FFT algorithms is given in  Section 3. 
The proposed architectures for 1-D and parallel 2-D FFT 
are described in Section 4. The results and the analysis for 
the implementations of  1-D and 2-D FFT designs are 
presented in Section 5. The environment developed for 
frequency-domain image filtering application is described 
in Section 6. Concluding remarks are given in Section 7. 
 

2. Proposed System 
 
The environment for the proposed system as shown in 
Figure 1 consists of a GUI for use in mapping the 1-D 
and 2-D FFTs on the FPGAs. The user receives the result 
as parametrisable Handel-C code and/or EDIF netlist file 
from the library with the suitable generic specified 
parameters. The Handel-C codes stored in the FFT library 
are parameterisable and can be accessed using the GUI 
interface to implement the design on the FPGAs. The 
generic parameters for Handel-C code are respectively:  
 

- the FFT dimension (1-D or 2-D); 
- the FFT algorithm (radix-2,radix-4,split-radix, FHT); 
- the transform length (N); 
- the input and output data word-length (Li, Lo); 
- the coefficients word-length (W), 
- the number of processor elements (p) in parallel 2-D 
FFT architecture; and 
- FPGA device type. 

 
3. Fast Fourier Transforms: a review 
 
3.1 1-D DFT and Its Fast Computation 
 
The DFT of an N-point discrete-time complex sequence 
x(n), indexed by n = 0,1,…,N-1, is defined by 
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The excessively large amount of computations 

required to compute the DFT directly when N is large has 
prompted alternative methods for computing the DFT 
efficiently. This problem was alleviated with the 
development of special fast algorithms, collectively 
known as fast Fourier transform. 

Most of FFT algorithms decomposes the overall        
N-point DFT into successively smaller and smaller  
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Figure 1. Proposed system for the FFTs implementation. 

transforms known as a butterfly. An overview of the most 
common FFT algorithms is presented in the following 
subsections. Again, references [1,2,17,18,19] contain a 
detailed development of these FFT algorithms. 
 
3.1.1 Radix-2n FFT Algorithms 
 
For Cooley-Tukey radix-2 algorithm, decimation-in-
frequency (DIF) decomposition, Eq. (1) is decomposed 
into even and odd frequency components [1]: 
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For radix-2 FFT algorithm, the smallest transform or 
butterfly (basic computational unit) used is the 2-point 
DFT as shown in Figure 2.a. 

The radix-4 algorithm can be obtained by 
decomposing Eq. (2) and (3) into X4k, X4k+2, X4k+1 and 
X4k+3 frequency components. The radix-4 butterfly has 4 
inputs and 4 outputs, essentially combining two stages of 
a radix-2 algorithm in one. Figure 2.b shows the radix-4 
butterfly. 

The split-radix algorithm [19] decomposes the odd 
frequency component in Eq (3) into 4k+1 and 4k+3 
frequency components as follows; 
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The L-shape butterfly element of split-radix FFT 
algorithm is given in Figure 2.c. 
 
3.1.2 The Fast Hartley Transform 
 
The Discrete Hartley Transform (DHT) belongs to the 
family of frequency transforms. The significant difference 
between DHT and DFT is that DHT is a real-valued 
transform. 
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Figure 2. The "butterfly" used in (a) radix-2, (b) radix-4,  (c) 

split-radix algorithms. 
 
The DHT is defined for a real-valued N-point 

sequence x(n), n=0,1,…,N-1, by the following equation 
[2]: 
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where cas(x) = cos(x) + sin(x). 
The FHT algorithm for the computation of DHT 

resembles the radix-2 FFT algorithm. The FHT algorithm 
is based on the decomposition of Eq (6) as 
follow:
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Each of the (N/2)-point DHT’s can be further 
decomposed in a similar fashion to complete the FHT 
DIF algorithm. 
 
3.2 The 2-D FFT 
 
The 2-D DFT of a NxN matrix is defined in a manner 
similar to the 1-D case [17,18]. The 2-D DFT is given by: 
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where 10 21 −≤≤ Nk,k . 
A standard approach to computing the 2-D FFT of an 

NxN matrix is to perform a 1-D FFT on the rows of the 
matrix, followed by a 1-D FFT on the columns. The 
number of arithmetic operations required will therefore be  
O(N2logrN), where r is the radix and N is the matrix size. 
 
3.2.1 The Parallel Algorithm for 2-D FFT 
 
Let N=qp, where N is the order of the squared input 
matrix, p is the number of (1-D FFT) processors and q is 
an integer. Each processor is allocated a unique working 
set of rows/columns. The algorithm consists of following 
four steps: 

Step 1. 1-D FFT on rows: Processor i computes 1-D 
FFT on rows (qi, qi+1,…,qi+q-1) of input matrix, where 
i=0,1,…p-1. Because each processor executes, in parallel, 

a 1-D FFT on q different rows, this step has the 
computational complexity of : O((N2/p)log2N ). 

Step 2. Transpose the matrix: Row/Column 
transposition of matrix is required before execution of 
FFT on columns. 

Step 3. 1-D FFT on columns: Same as in Step-1, but 
on columns. 

Step 4. Final matrix transposition of the result matrix. 
 
4. FFT Architectures  
 
4.1 (1-D) FFT Architecture 
 
The 1-D FFT architecture consists of a single DIF         
radix-2,Radix-4, Split-Radix or FHT butterfly, two 
(single in case of FHT) dual-port RAMs and an address 
generator unit. The simplified architectural block diagram 
of the  1-D FFT design depicted in  Figure 3. 

Input and Output Data Memory : The 1-D FFT 
architecture supports two different memory modes, 
internal and external working modes. 

i) Internal Memory Mode: There are two different 
internal memory configurations – single-memory and 
dual-memory configuration (also called as double-
buffering method).  

The single-memory configuration provides the 
simplest memory interface. In this mode, memory A is 
used as input, working and output memory. Input data is 
loaded into memory A (data load phase), then FFT is 
started (computation phase) and when the FFT is 
complete, the result vector is read out of the memory. In 
this mode, memory B is not used. 

In the dual memory configuration; input, computation 
and output operations are overlapped, so that the FFT 
processor is never left in an idle state waiting for an I/O 
operation. During the execution of input data on memory 
A (or B), a new vector of input data is written into 
memory B (or A), concurrently. This mode provides high 
throughput rates for real-time applications. 

ii) External Memory Mode: In external memory mode, 
real and imaginary parts of input and output data and the 
twiddle coefficients are stores in external SRAM memory 
banks. The data transfer mechanism to and from the 
external SRAM memory banks has been designed for use 
in a wide variety of applications. The storage of 
input/output data in external SRAM memory rather than 
internal memory (i.e. block RAM, distributed RAM) 
allows transformations up to 1M-point without the need 
for additional internal buffering. 

Data Format : To provide the system designer with 
maximum flexibility, the input/output data and the 
twiddle factor word-lengths have been described as 
parameters so that the FFT designs can be used in a wide 
range of applications such as image/video processing, 
communications.  
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Figure 3. Functional block diagram of 1-D FFT architecture. 

The input and output data is represented by L-bit 
fixed-point real and imaginary components (just real 
component in case of FHT) in the two’s complement 
format. The input/output data is loaded into/from the FFT 
processor in the normal order. The twiddle factors (sine 
and cosine values), which are generated by the FFT 
processor internally, have been represented by W-bit 
fixed-point accuracy in the two’s complement format. 

Butterfly Unit : The butterfly operation is the heart of 
the FFT algorithm. It takes data words from memory and 
computes the FFT. The results are written back to the 
same memory locations since an in-place algorithm is 
used. The butterfly element is pipelined in order to 
compute a result every clock cycle. It consists of parallel 
L-bit multipliers, L-bit and (L+W)-bit adders/subtractors. 
The hardware utilization for the butterfly elements of 
each algorithm are summarized in Table 1. The block 
diagram of how the butterfly operation for radix-2 
algorithm is partitioned between 7 pipeline stages is 
shown in Figure 4. 

In the computation of the FFT, scaling of the 
intermediate results is necessary in order to prevent 
overflows. To avoid possibility of overflow, each stage of 
the FFT is scaled down by a factor of 2 and 4 in radix-
2/FHT and radix-4/split-radix algorithms, respectively. In 
this way, the final FFT output is scaled down by N. 

Address Generation Unit (AGU) : The purpose of the 
AGU is to provide the I/O RAMs and twiddle coefficient 
Look-Up Tables (LUTs) with the correct addresses. Since 
address generation during input, output and FFT 
computation processes are different, it keeps track of the 
mode of the operation and generates the required address. 
It is also responsible of unscrambling (bit-reversal) of 
output data at the end of each FFT execution. 

 
Table 1. Hardware requirement comparison for different  FFT 

algorithm butterflies. 

FFT 
Algorithm 

L-bit 
Multiplier 

L-bit 
Add/Subt 

(L+W)-bit 
Add/Subt 

Radix-2 4 4 2 
Radix-4 12 16 6 

Split-Radix 8 16 4 
FHT 4 6 2 
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Figure 4. Pipeline diagram of DIF-FFT Radix-2 butterfly. 

 
4.2 Parallel 2-D FFT Architecture 
 
Figure 5 illustrates the structure of proposed parallel  2-D 
FFT processor architecture. This architecture is structured 
with p Processor Elements (PE) which share 4 memory 
banks (M0,…M3) under the control of one Control Unit 
(CU). Each PEi is essentially a 1-D FFT processor with 
attached working registers and Processor Element local 
Memory (PEMi) for the storage of associated row/column 
vectors. The 1-D FFT processor includes one of the N-
point 1-D FFT cores (radix-2, radix-4, split-radix and 
FHT) associated with related twiddle factors LUTs. 

The local memory PEMi consists of two (single in 
case of FHT) dual-port NxL-bit deep memories in order to 
store the real and imaginary (just real in case of FHT) 
parts of the L-bit precision input/output samples. A three-
stage sequence of operations is used to compute 
transforms with this PE interface, as follows: 

Step 1. The associated input row/column data vector is 
transferred into the local memory PEMi of processor i; 

Step 2. When the input data load operation has 
completed, the 1-D FFT PE is started. 

Step 3. When the 1-D FFT is completed, the result 
vector is read out of the local memory. The bit-reversal 
operation according to FFT type is performed on the fly 
by the AGU, so that no clock cycles are wasted. 

The CU serves as the “operating manager” of the 
entire system. The functions of the CU include resource  
(external shared memory) management and supervision of 
the parallel execution of PEs. A processor ID is allocated 
by CU to each PE. In this way CU keeps track of the 
associated row/column vector set for each PE. CU 
handles the scheduling of shared memory through two 
circular queues for reading and writing requests. Each PE 
sends its associated processor ID to the CU (read or write 
queue), when it is ready to accept a new input 
row/column vector or when it completes the1-D FFT.  

The Memory Interconnection (MI) that includes a 
crossbar switch is designed to provide access for multiple 
memory requests. The service discipline for memory 
requests is such that no PE gets accesses to a memory 
bank while another is attempting to access the same bank. 

The external shared memory consists of 4 memory 
banks which are directly connected to FPGA. Each 
memory bank can contain up to 2MBytes (arranged as 
512Kx32-bit) of data giving a total physical address space 
of 8MBytes. The real part of the input/intermediate/output 
matrix is stored in the first two banks (bank0 and bank1) 
while the imaginary part is stored in bank2 and bank3. 
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Figure 5. Functional block diagram of parallel 2-D FFT 

architecture. 

5. FPGA Implementation 
 
A parametrisable Handel-C coding approach has been 
used to implement proposed (1-D and 2-D) FFT designs 
to be independent of I/O data wordlengths (L,W), input 
vector/matrix size (N) and number of PEs (p). 

The implementations target the Celoxica RC1000 PCI-
based FPGA development board. The RC1000-PP board 
used is a standard PCI bus card equipped with the Virtex-
E2000 FPGA chip (package :bg560, speed grade 6). It 
has 8MBytes of SRAM directly connected to the FPGA 
in four 32-bit wide memory banks. All are accessible by 
the FPGA and any device on the PCI bus in parallel. A 
schematic block diagram of the RC1000 board is shown 
in Figure 6. 

Bank0

Bank1
Bank2

Bank3PCI

XCV2000E
DMA

Control

Status8 Bit

 
Figure 6. Schematic view of the FPGA/Banks part in the 

RC1000-PP board. 

5.1 1-D FFT Implementation 
 
Having implemented all the algorithms under a common 
framework, the performance of four different 1-D FFT 
algorithms have been comprehensively evaluated for the 
FFT lengths from 1K-point to 256K-point. Figure 7 
illustrates the performance results of each algorithm in 
terms of maximum system frequency and chip area. It is 
worth mentioning that the radix-2 outperforms other 
algorithms in terms of area and system frequency. 

 
Table 2. Computation time across different algorithms for a 

1024-point FFT. 
Design Freq (MHz) Comp. Time (µsec) 
Radix-2 84 121.6 
Radix-4 80 68 

Split-Radix 63 160 
FHT 60 343 

 

 
Figure 7. Performance results, influence of transform length. 

Computation time across implemented algorithms for a 
1024-point FFT is shown in Table 2. It is consistently 
seen in our evaluation that the radix-4 is by far the most 
efficient algorithm in terms of computation time. If the 
choice of algorithm is to be made solely based on 
memory requirements, the FHT algorithm is the best since 
the memory requirement of the FHT is exactly half of the 
other algorithms.  
 
5.2 Parallel 2-D FFT Implementation 
 
The 2-D FFT design has been implemented for the 
following matrix sizes (N=128, 256, 512, 1024) and 
number of PEs  (p = 1,2,4,8) considering the hardware 
resources available on Virtex-2000E FPGA chip. Again, 
the designs are completely parametrisable, so higher input 
matrix sizes and number of PEs can be implemented on 
advanced development platforms (such as Virtex-II or 
Apex-II FPGAs interfaced with larger external memory). 

The speed-up of a parallel algorithm is defined as 
Sp=Ts/Tp, where Ts is the execution time using one 
processor and Tp is the time of the algorithm executed 
using p processors. Figure 9 shows the computation time 
and speed-up figures as a function of the number of 
processors obtained for parallel 2-D FFT implementation 
based on different (1-D) FFT algorithms described in the 
previous section, for the matrix sizes N = 256 and 1024. 

Shared memory designs are strongly affected by the 
design of memory arbitration unit. The speed-up 
decreases with an increase of the PEs because memory of 



conflict delay increases. This effect can be seen in Figure 
9, where speed-up figures are plotted against the number 
of processors in the system. The performance of parallel 
2-D FFT design is also affected by type of FFT algorithm 
used.  

Table 2. Frames per second (fps) for 2D-FFT                          
(a: based on Radix-2, b: based on Radix-4 algorithm). 

 Matrix Size 
 128 256 512 1024 

P a a b a a b 
1 112 25 43 6 2 4 
2 215 47 78 12 4 8 
4 382 87 107 20 8 16 
8 420 94 99 35 13 12 
 
It is worth mentioning that the transposition steps 

defined in the parallel 2-D FFT algorithm in section 3.2.1 
is implemented simultaneously with the transfer of 
column data vectors to PE’s local memory with no delay 
penalty. 

Table 3 compares the performance of parallel 2-D FFT 
processor implementations based on Radix-2 and Radix-4 
FFT algorithms for different matrix size and number of 
processor values. It can be seen that a real-time 
performance is obtained using just one processor for the 
matrix sizes N=128 and 512. It is also worth noting that a 
real-time performance is obtained for the matrix size 
N=512 with 8 PEs, based on 1-D Radix-2  FFT core, 
using %45 of the slices and %30 of the BlockRAMs 
available on Virtex-2000E FPGA chip. For matrix size 
N=1024, it is possible to process 16 frames-per-second, 
with 4 PEs based on 1-D  Radix-4 FFT core, which meets 
medical/astronomical image processing frame rate 
requirements.  

Figure 10 illustrates the performance results of parallel 
2-D FFT implementation in terms of maximum system 
frequency (fmax) and chip area against number of PEs for 
the matrix sizes N=256 and 1024. The chip area 
requirement increases linearly as a the number of PEs 
increases for all of  the (1-D) FFT algorithms while fmax 
slightly decreases. 

Table 3 shows the performance comparison of existing 
(FPGA-based) 2-D FFT works in terms of frame rate per 
second. Shirazi et.al. [20]. implemented 2-D FFT on a 
custom computing machine called Splash-2.   Dick [21] 
proposed a reconfigurable architecture for 2-D FFT using 
polynomial transforms on XC4000E FPGA device. He 
proposed that his architecture is %46 efficient than a row-
column processor. Dillon[22] developed a parallel system 
using two Virtex-II devices and achieved the performance 
of 120 fps. Our design shows improvements when 
compared to [20] and [21] in terms of performance. 
Although high performance can be achieved in [23], it is 
not a suitable FPGA solution for low cost applications. 

Table 3. Performance comparison with existing designs      
based on FPGAs. 

Design FPGA Used Input Size Frame 
Rate 

Shirazi et al. [20] 2 x XC4000E 512x512 2.12 fps 
Dick [21] XC4000E 512x512 24 fps 
Dilon Eng. [22] 2 x 

XC2V6000 2048x2048 120 fps 

Proposed XCV2000E 512x512 35 fps 

 
Since the 2-D FFT is frequently used as a benchmark 

for performance measuring, Table 4 gives performance 
results for a relevant comparison between our 
implementation and other implementations on 
multiprocessor platforms. 

The data given by Table 3 and Tables 4 can be used to 
predict the usability of the proposed architecture as a 
general 2-D FFT engine. 

 
Table 4. Confronting 2-D FFT performances on multiprocessor 

based platforms (in miliseconds). 

Platform 1024x1024 
 1PE       4PE     16PE 

256x256 
 1PE       4PE       6PE 

Cavadini 
et.al [24] (1) 

90.7 23.0 6.4 6.1 1.9 0.83 

Hartley et.al. 
[25] (2) 

3164 1169 264 157.5 62.7 13.9 

Sgro [26] (3) 1045 272 74 52.2 13.6 3.7 
Ercan [23] (4) - - - - 45 - 

 

(1) Frequency Domain Engine (FDE) based on VLSI SPITFFIRE FFT 
Processor 
(2) Multiprocessor system based on TI TMS320C40 DPS. 
(3) Multiprocessor system based on SHARC DSPs. 
(4) Multiprocessor system based on 4-SHARC DSPs. 
 

6. Application Case Study: Frequency 
Domain Image Filtering 
 
The frequency domain image filtering is one of the most 
important applications where 2-D FFT can be applied. 
The 2-D convolution in spatial/time domain is commonly 
used for image filtering. It is fast and easy if the input 
image and the filter kernel being used are relatively small. 
But, as the image or kernel grows in size the 
computational complexity increases geometrically. 
Filtering of large images can be done much faster in 
frequency domain using 2-D FFT, based on the 
convolution property of the Fourier transform as follows 
[27]: 

Step 1. Compute 2-D FFT of input image and filter: 
FFT{I(x,y)} and FFT{H(x,y)}. 

Step 2. Apply filter H(u,v) to the FFT of input image 
by point-by-point multiplication: Y(u,v) = I(u,v)*H(u,v). 

Step 3. Compute the 2-D IFFT of result: IFFT{Y(u,v)}  
The speed-up is approximately N2/N logrN= N/logrN, 

which is significant when dealing with large images. 



     
Figure 9. Computation time and speed-up versus number of PEs: (a) matrix size of 256x256. (b) matrix size of 1024x1024. 

     
Figure 10. Area and fmax versus number of PEs: (a) matrix size of 256x256 (b) matrix size of 1024x1024. 

 
 

6.1 Environment for Frequency Domain Image 
Filtering Application 
 

Figure 11 illustrates the proposed environment for 2-D  
frequency-domain image filtering application. The 
environment consists of a host application (GUI), an 
image database and a single FPGA-chip coprocessor 
based on the RC1000 development board. 
• Host Application(GUI): The GUI enables application 
users to concentrate on experimenting conveniently with 
different FFT algorithms and architectures to investigate 
best system trade-offs (such as area, speed, performance) 
rather than concentrating on the low level (and complex) 
structure of FPGAs. It gives the user the ability to set 
different design parameters according to application 
requirements (frame rate, image size) and hardware 
resources (FPGA area, memory etc.). The parameters 
include forward and inverse FFT core algorithm type 
(radix-2, radix-4, split-radix, FHT ) the number of 1-D 
FFT/IFFT PEs (p=1,2,4,8) and filter type (band-pass, 
high boost etc.) along with associated filter parameters. 
• Image Database: Image database includes sample test 
images and application specific images such as large 
medical and astronomical images. 
 
 

• FPGA Coprocessor: The FPGA Coprocessor is based 
on RC1000 PCI development board. The frequency 
domain filtering is completely performed by FPGA       
co-processor. The real and imaginary parts of the input 
image are stored in SRAM Bank0 and Bank1 while the 
filter coefficient matrix H(u,v) is stored in Bank2 and 
Bank3 using 16-bit fixed-point format. 
 
7. Conclusion 
 
Due to the importance and use of FFT in many signal and 
image processing applications, a range of 1-D FFT 
algorithms including radix-2, radix-4, split-radix and FHT 
have been implemented using proposed parametrisable 
framework architecture. In addition, an efficient for the 
implementation of 2-D FFTs has also been proposed and 
implemented. A complete environment based on the 
developed parallel 2-D FFT architecture has been 
presented as a solution for 2-D frequency-domain image 
filtering application. The performances of 
implementations have been discussed, investigated and 
compared with existing works. High speed-up and 
efficiency have been attained for the parallel 
implementation of 2-D FFT compared to existing works. 
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Figure 11. FPGA-based Frequency Domain Image Filtering Environment. 
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