
ENG241 Fall 2005 VHDL Tutorial 1

VHDL Tutorial

ENG241 Fall 2005 VHDL Tutorial 2

Goals

• Introduce the students to the following:
– VHDL as Hardware description language.
– How to describe your design using VHDL.
– Why use VHDL as an alternative to schematic

capture.
– Syntax of VHDL.
– Hierarchical Design.

ENG241 Fall 2005 VHDL Tutorial 3

VHDL

• VHDL stands for VHSIC (Very High Speed
Integrated Circuit) HDL (Hardware
Description Language).

• HDLs are used to model hardware
• VHDL is used to describe digital systems.
• Initially was intented for documentation,

and simulation.
• Now used for synthesis.

ENG241 Fall 2005 VHDL Tutorial 4

VHDL program components

• Library Declaration.
• Entity Declaration.
• Architecture Body.

ENG241 Fall 2005 VHDL Tutorial 5

Library Declaration

• This declare standard data types and some
procedures used in modelling the design.

Library IEEE; -- Declare the IEEE library

Use IEEE.STD_LOGIC.1164.all; --Use package 1164

• Packages are containers for related functional units.
• Library contains declaration of different packages and components.

ENG241 Fall 2005 VHDL Tutorial 6

Entity Declaration
• Entity describes the input/output configuration for

the modelled system.
entity and2 is

port (a,b in : std_logic;
f out : std_logic);

end and2;
Port Name

Data Type

Direction

Entity Name

ENG241 Fall 2005 VHDL Tutorial 7

Architecture Body
• Architecture body is used to describe the

internal structure of the modelled system.
architecture dataflow of and2 is
--signal and component declaration here

begin
f <= a and b;

end dataflow;
Architecture Name

Entity

Concurrent Statements

ENG241 Fall 2005 VHDL Tutorial 8

Complete Model
Library IEEE;
Use IEEE.STD_LOGIC.1164.all;

entity and2 is
port (a,b in : std_logic;

f out : std_logic);
end and2;

architecture dataflow of and2 is
begin

f <= a and b; --Data flow model
end dataflow;

ENG241 Fall 2005 VHDL Tutorial 9

Complete Model
entity and2 is --Three Model Styles

port (a,b in : std_logic; --1. Data Flow
f out : std_logic); --2. Structured

end and2; --3. Behavioural
architecture dataflow of and2 is
begin

f <= a and b;
end dataflow;

architecture structured of and2 is
begin

u1 : oldand2 port map (a,b,f);
end structured;

architecture behaviour of and2 is
begin
and_proc: process (a,b)
begin

if a = b then
f <= ‘1’;

else
f <= ‘0’;

end if;
end behaviour;

ENG241 Fall 2005 VHDL Tutorial 10

Data Types

• Every data object in VHDL can hold a
value that belongs to a set of values.

• This set of values is specified using a type
declaration.
– Predefined types.
– User defined types

ENG241 Fall 2005 VHDL Tutorial 11

Predefined Data Types

• Boolean “False, True”
• Bit (0,1)

– Bit_Vector -array of bits (100011)
• Character ‘a’ ,”ASCII”
• INTEGER (3 , 12)
• REAL (1.5 , 0.23)

ENG241 Fall 2005 VHDL Tutorial 12

STD_LOGIC Data Type

• This data type is used to define signals that could
be found in standard digital system.

• This data type is defined in the IEEE library
Package IEEE.STD_LOGIC.1164.

• It could have the following values:
– ‘1’ => Forcing Logic 1
– ‘0’ => Forcing Logic 0
– ‘Z’ => High Impedance
– ‘U’ => Un-initialized
– ‘X’ => Forcing Unknown
– ‘-’ => Don’t care
– ‘W’=> Weak Unknown
– ‘L’ => Weak 0
– ‘H’ => Weak 1

ENG241 Fall 2005 VHDL Tutorial 13

STD_LOGIC_VECTOR Data Type

• Array of STD_LOGIC.
• It could be used to represent a bus in digital

systems.
--MSB in the left and LSB in the right
signal data_bus : std_logic_vector (7 downto 0);

--LSB in the left and MSB in the right
signal data_bus : std_logic_vector (0 to 7);

ENG241 Fall 2005 VHDL Tutorial 14

STD_LOGIC_VECTOR Data
Type

• Signals or Variables of this data type could be
accessed completely , partially, or bit by bit.

--MSB in the left and LSB in the right
signal data_bus : std_logic_vector (7 downto 0);
signal data_bus_nipple : std_logic_vector (3 downto 0);

--Inside the architecture
data_bus_nipple <= “0101”; --load data in 4 bit signal
data_bus (3 downto 0) <= data_bus_nipple; --connect it to the first

4
data_bus (6 downto 4) <= “100”; --assign the other 3 bits
data_bus (7) <= not data_bus_nipple (3); --and the final bit

ENG241 Fall 2005 VHDL Tutorial 15

Concurrent Statements
• Inside the architecture body we use concurrent statements.

– Signal assignment
f <= a and b;

– Processes
and_proc : process (a,b)
begin

.
--sequential statements
.

end process;
– Component instantiation

u1 : and2 port map (as,bs,fs);

ENG241 Fall 2005 VHDL Tutorial 16

Concurrent Statements

• The concurrent statements are executed without
any specific order.

• The architecture body could contain any
combination of the 3 types of concurrent
statements.

ENG241 Fall 2005 VHDL Tutorial 17

Concurrent Statements

This circuit could be modelled as following:
f<= z or w;
z<= x and y;
x<= not a;
w<= a and b;
y<= not b;

ENG241 Fall 2005 VHDL Tutorial 18

Generate Statement

• Used to generate multiple concurrent statements
with the same pattern.

signal x : std_logic_vector (3 downto 0);
signal y,z : std_logic_vector (3 downto 0);

for i in 0 to 2 generate
x(i) <= (y (i) and y (i+1)) or z (i);

end generate;

ENG241 Fall 2005 VHDL Tutorial 19

Process Block
proc_name : process (x,y)
variable z: std_logic;
begin

z:= x or y;
if z= ‘0’ and y=‘1’ then

m<= z;
else

m<= not x;
end if;

end process;
Note: The process block is considered a single concurrent statement.

Process name

Sensitivity List

Variable Deceleration

Sequential Statements

ENG241 Fall 2005 VHDL Tutorial 20

Component Instantiation

• It has two parts:
– Component Declaration in arch. Body before the begin line:

component and2 --like entity declaration
port (a,b : in STD_LOGIC;

f : out STD_LOGIC);
end component;

– Component Instantiation inside the arch. Body:
u1: and2 port map (a=>x,f=>z,b=>y); --No order required

or simply
u1: and2 port map (x,y,z); --Has to be in order

Component port Arch. Signal

ENG241 Fall 2005 VHDL Tutorial 21

Sequential Statements

• Sequential Statements are used inside the
process, function or procedure blocks.

• This may be regarded as normal
programming language (The order of the
statements affect the result of execution).

• Can make use and change the values of
signals and variables

ENG241 Fall 2005 VHDL Tutorial 22

Sequential Statements
• If statement

if x = y then
z<= ‘1’; --if true

else
z<= ‘0’; --if false

end if;
• Case statement

signal y : std_logic_vector (1 downto 0);
signal m : std_logic_vector (3 downto 0);

case (y) is
when "00" => m <=“1001”;
when "01" => m<=“0101”;
when "10" => m<=“1100”;
when "11" => m<=“0001”;
when others => m<=“0000”;

end case;

ENG241 Fall 2005 VHDL Tutorial 23

Sequential Statements

• Other statements like for and while are also
existing but requires attention.

signal v: std_logic_vector (3 downto 0);

for i in 0 to 2 loop --shifting right using for loop
v(i) <= v(i+1);

end loop;

v(3) <= ‘0’;

Note: In this example the signal is regarded as a register.

ENG241 Fall 2005 VHDL Tutorial 24

Object Types

• Signals
– Ports.

port (a: in std_logic; ……

– Internal Signals.
signal x : std_logic;

• Variable
variable x : integer;
x:= 5;

• Constants
constant gnd : bit := 0;

ENG241 Fall 2005 VHDL Tutorial 25

Signals

• Declared as ports or inside the architecture body.

– Ports.
port (a: in std_logic; ……

– Internal Signals.
signal x : std_logic;

• Signals are regarded is wires in some models and as
memory storage (register) in other models.

signals

ENG241 Fall 2005 VHDL Tutorial 26

Signals
•The order of signal assignments in the same
block is not important.

f<= z or w;
z<= x and y;
x<= not a;
w<= a and b;
y<= not b;

ENG241 Fall 2005 VHDL Tutorial 27

Signals
• Signals can’t have two drivers.
Note: In this example the process is considered a single driver

signal x,y,x : std_logic; --signal declaration
.
.
x<= y or z; -- first driver

uproc : process (y,z) -- second driver
Begin

if y = z then
x <= ‘1’;

else
x <= ‘0’;

end if;
end process;

ENG241 Fall 2005 VHDL Tutorial 28

Conditional Signal Assignment

• Signal Assignment could be conditional.
signal x : STD_LOGIC;
signal y : STD_LOGIC_VECTOR (2 downto 0);

with y select
x<= ‘0’ when “00” ,

‘0’ when “01”,
‘0’ when “10”,
‘1’ when “11”,
‘0’ when others;

ENG241 Fall 2005 VHDL Tutorial 29

Conditional Signal Assignment

• Signal Assignment could be conditional.
signal x : STD_LOGIC;
signal y : STD_LOGIC_VECTOR (2 downto 0);

x<= ‘0’ when y = “00” else
‘0’ when y = “01” else
‘0’ when y = “10” else
‘1’ when y = “11” else
‘0’;

ENG241 Fall 2005 VHDL Tutorial 30

Variables

• Same variable concept as computer programming
languages.

• Declared inside a process block ,function or
procedure.
uproc: process (x,y)
variable z : std_logic;
begin

z := ‘0’; --variable could have different values
z := x or y;

end process;

ENG241 Fall 2005 VHDL Tutorial 31

Variables

• The scope of the variable is inside the unit it
declared in (process, function or procedure).
uproc: process (x,y)
variable z : std_logic;
begin

z := ‘0’; --variable could have different values
z := x or y;

end process;
z:= ‘1’; -- This variable is out of scope

ENG241 Fall 2005 VHDL Tutorial 32

Operators

• Logic operators: They are bit-wise operators
(and , or , xor , xnor , nand , nor , not)

x<= y and z;
a<= (b and c) or (d and e);
j <= (h and i and k)

Note: Parenthesis are used to group terms.

m<= (n not k); m<= (n and (not k));
g<= f and h or p; g<= (f and h) or p;

ENG241 Fall 2005 VHDL Tutorial 33

Operators

• Arithmetic operators: Defined for predefined data
types.

• For user defined data types they should be
defined.
- + Add , - Subtract , * multiply , / divide.

• Division is not always defined
signal v,w,x : integer;
w <= 5;
v <= 3;
x <= w + v; -- x = 8

ENG241 Fall 2005 VHDL Tutorial 34

Operators for STD_LOGIC

• Although STD_LOGIC type is defined in VHDL
libraries. It is considered a user defined data type.

• Some extra package declaration are required.
library IEEE;
use IEEE.STD_LOGIC.1164;
use IEEE.STD_LOGIC.ARITH.all;
use IEEE.STD_LOGIC.UNSIGNED.all; --unsigned operations

or
use IEEE.STD_LOGIC.SIGNED.all; --signed operations

ENG241 Fall 2005 VHDL Tutorial 35

Operators for STD_LOGIC;
use IEEE.STD_LOGIC.unsigned.all;

signal x,y : std_logic_vector (3 downto 0);
signal za :std_logic_vector (3 downto 0);
signal zm :std_logic_vector (7 downto 0);

x<=“0101”; --5
y<=“1101”; --13

za<= x + y; -- za = “0010”; = 2; wrong answer
Zm<= x * y; -- zm = “01000001”; 65; right answer

ENG241 Fall 2005 VHDL Tutorial 36

Operators for STD_LOGIC;
use IEEE.STD_LOGIC.unsigned.all;

signal x,y : std_logic_vector (3 downto 0);
signal za :std_logic_vector (4 downto 0);
signal zm :std_logic_vector (7 downto 0);

x<=“0101”; --5
y<=“1101”; --13

za<= x + y; -- za = “0010”; = 2; wrong answer
Zm<= x * y; -- zm = “01000001”; 65; right answer

ENG241 Fall 2005 VHDL Tutorial 37

Operators for STD_LOGIC;
use IEEE.STD_LOGIC.unsigned.all;

signal x,y : std_logic_vector (3 downto 0);
signal za :std_logic_vector (3 downto 0);
signal zm :std_logic_vector (7 downto 0);

x<=“0101”; --5
y<=“1101”; --13

za<= ‘0’&x + ‘0’&y; -- za = “10010”;= 18; right answer
Zm<= x * y; -- zm = “01000001”; 65; right answer

concatenation

ENG241 Fall 2005 VHDL Tutorial 38

Operators for STD_LOGIC;
use IEEE.STD_LOGIC.signed.all;

signal x,y : std_logic_vector (3 downto 0);
signal za :std_logic_vector (3 downto 0);
signal zm :std_logic_vector (7 downto 0);

x<=“0101”; --5
y<=“1101”; --(-3)

za<= ‘0’&x +’0’&y; -- za = “00010”;= 2 (; wrong answer
Zm<= x * y; -- zm = “11110001”; -15; right answer

ENG241 Fall 2005 VHDL Tutorial 39

Example
This Figure Shows a Full Adder Circuit

ENG241 Fall 2005 VHDL Tutorial 40

Example
• First declare Xor2 ,And2 and Or3 entities and architectures

entity and2 is
port (a,b : in std_logic;

c : out std_logic);
end and2;
architecture dataflow of and2 is
begin

c<= a and b;
end dataflow;

entity or3 is
port (a, b,c : in std_logic;

d : out std_logic);
end and2;
architecture behavior of or3 is
begin

and3_proc : process is
begin

if a = ‘0’ and b = ‘0’ and c=‘0’ then
d <= ‘0’;

else
d <= ‘1’;

end if;
end process;

end behavior;

entity xo2 is
port (a,b : in std_logic;

c : out std_logic);
end xor2;

architecture dataflow of and2 is
begin

c<= a xor b;
end dataflow;

ENG241 Fall 2005 VHDL Tutorial 41

Example
• Now use them to implement a register

component or3 is
port (a, b,c : in bit; d : out bit);

end component;
begin

u0 : xor2 port map (a, b , w);
u1 : xor2 port map (w, ci, s);
u2 : and2 port map (a, b, x);
u3 : and2 port map (a, ci, y);
u4 : and2 port map (b, ci, z);
u5 : or2 port map (x,y,z, co);

end struct;

entity full_adder is
port (a , b , ci: in std_logic;

s ,co: out std_logic);
end entity;

architecture struct of full_adder is
--Internal signals

signal w,x,y,z : std_logic;
--component declaration

component and2
port (a,b : in bit; c : out bit);

end component;
component xo2

port (a,b : in bit; c : out bit);
end component;

	VHDL Tutorial
	Goals
	VHDL
	VHDL program components
	Library Declaration
	Entity Declaration
	Architecture Body
	Complete Model
	Complete Model
	Data Types
	Predefined Data Types
	STD_LOGIC Data Type
	STD_LOGIC_VECTOR Data Type
	STD_LOGIC_VECTOR Data Type
	Concurrent Statements
	Concurrent Statements
	Concurrent Statements
	Generate Statement
	Process Block
	Component Instantiation
	Sequential Statements
	Sequential Statements
	Sequential Statements
	Object Types
	Signals
	Signals
	Signals
	Conditional Signal Assignment
	Conditional Signal Assignment
	Variables
	Variables
	Operators
	Operators
	Operators for STD_LOGIC
	Operators for STD_LOGIC;
	Operators for STD_LOGIC;
	Operators for STD_LOGIC;
	Operators for STD_LOGIC;
	Example
	Example
	Example

