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Goals

• Introduce the students to the following:
– VHDL as Hardware description language. 
– How to describe your design using VHDL.
– Why use VHDL as an alternative to schematic 

capture.
– Syntax of VHDL.
– Hierarchical Design.
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VHDL

• VHDL stands for VHSIC (Very High Speed 
Integrated Circuit) HDL (Hardware 
Description Language).

• HDLs are used to model hardware 
• VHDL is used to describe digital systems.
• Initially was intented for documentation, 

and simulation. 
• Now used for synthesis.
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VHDL program components 

• Library Declaration.
• Entity Declaration.
• Architecture Body.
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Library Declaration

• This declare standard data types and some 
procedures used in modelling the design.

Library IEEE;  -- Declare the IEEE library

Use IEEE.STD_LOGIC.1164.all; --Use package 1164

• Packages are containers for related functional units.
• Library contains declaration of different packages and components.
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Entity Declaration
• Entity describes the input/output configuration for 

the modelled system.
entity and2 is

port ( a,b in  : std_logic;
f out : std_logic);

end and2;
Port Name

Data Type

Direction

Entity Name
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Architecture Body
• Architecture body is used to describe the 

internal structure of the modelled system.
architecture dataflow of and2 is
--signal and component declaration here

begin
f <= a and b;

end dataflow;
Architecture Name

Entity

Concurrent Statements
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Complete Model
Library IEEE;
Use IEEE.STD_LOGIC.1164.all;

entity and2 is
port ( a,b in  : std_logic;

f out : std_logic);
end and2;

architecture dataflow of and2 is
begin

f <= a and b; --Data flow model
end dataflow;
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Complete Model
entity and2 is --Three Model Styles

port ( a,b in  : std_logic; --1. Data Flow
f out : std_logic); --2. Structured

end and2; --3. Behavioural
architecture dataflow of and2 is
begin

f <= a and b; 
end dataflow;

architecture structured of and2 is
begin

u1 : oldand2 port map (a,b,f);
end structured;

architecture behaviour of and2 is
begin
and_proc: process (a,b)
begin

if a = b then
f <= ‘1’;

else
f <= ‘0’;

end if;
end behaviour;
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Data Types

• Every data object in VHDL can hold a 
value that belongs to a set of values.

• This set of values is specified using a type 
declaration.
– Predefined types.
– User defined types
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Predefined Data Types

• Boolean “False, True”
• Bit (0,1)

– Bit_Vector -array of bits (100011)
• Character ‘a’ ,”ASCII”
• INTEGER (3 , 12)
• REAL (1.5 , 0.23)
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STD_LOGIC Data Type

• This data type is used to define signals that could 
be found in standard digital system.

• This data type is defined in the IEEE library 
Package IEEE.STD_LOGIC.1164.

• It could have the following values:
– ‘1’ => Forcing Logic 1
– ‘0’ => Forcing Logic 0
– ‘Z’ =>  High Impedance
– ‘U’ => Un-initialized
– ‘X’ => Forcing Unknown
– ‘-’ => Don’t care
– ‘W’=> Weak Unknown
– ‘L’ => Weak 0
– ‘H’ => Weak 1
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STD_LOGIC_VECTOR Data Type

• Array of STD_LOGIC.
• It could be used to represent a bus in digital 

systems.
--MSB in the left  and LSB in the right
signal data_bus : std_logic_vector (7 downto 0);

--LSB in the left  and MSB in the right
signal data_bus : std_logic_vector (0 to 7);
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STD_LOGIC_VECTOR Data 
Type

• Signals or Variables of this data type could be 
accessed completely , partially, or bit by bit.

--MSB in the left  and LSB in the right
signal data_bus : std_logic_vector (7 downto 0);
signal data_bus_nipple : std_logic_vector (3 downto 0);

--Inside the architecture
data_bus_nipple <= “0101”;   --load data in 4 bit signal
data_bus (3 downto 0) <= data_bus_nipple; --connect it to the first 

4
data_bus (6 downto 4) <= “100”; --assign the other 3 bits
data_bus (7) <= not data_bus_nipple (3); --and the final bit



ENG241 Fall 2005 VHDL Tutorial 15

Concurrent Statements
• Inside the architecture body we use concurrent statements.

– Signal assignment
f <= a and b;

– Processes
and_proc : process (a,b)
begin

.
--sequential statements
.

end process;
– Component instantiation

u1 : and2 port map (as,bs,fs);
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Concurrent Statements

• The concurrent statements are executed without 
any specific order.

• The architecture body could contain any 
combination of the 3 types of concurrent 
statements.
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Concurrent Statements

This circuit could be modelled as following:
f<= z or w;
z<= x and y;
x<= not a;
w<= a and b;
y<= not b;
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Generate Statement

• Used to generate multiple concurrent statements 
with the same pattern.

signal x : std_logic_vector (3 downto 0);
signal y,z : std_logic_vector (3 downto 0);

for i in 0 to 2 generate
x(i) <= (y (i) and y (i+1) ) or z (i);

end generate;
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Process Block
proc_name : process (x,y)
variable z: std_logic;
begin

z:= x or y;
if z= ‘0’ and y=‘1’ then

m<= z;
else

m<= not x;
end if;

end process;
Note: The process block is considered a single concurrent statement.

Process name

Sensitivity List

Variable Deceleration

Sequential Statements
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Component Instantiation

• It has two parts:
– Component Declaration in arch. Body before the begin line:

component and2 --like entity declaration
port (a,b : in STD_LOGIC;

f : out STD_LOGIC);
end component;

– Component Instantiation inside the arch. Body:
u1: and2 port map (a=>x,f=>z,b=>y); --No order required

or simply
u1: and2 port map (x,y,z); --Has to be in order

Component port Arch. Signal
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Sequential Statements

• Sequential Statements are used inside the 
process, function or procedure blocks.

• This may be regarded as normal 
programming language (The order of the 
statements affect the result of execution).

• Can make use and change the values of 
signals and variables
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Sequential Statements
• If  statement

if  x = y then
z<= ‘1’; --if true

else
z<= ‘0’; --if false

end if;
• Case statement

signal y : std_logic_vector (1 downto 0);
signal m : std_logic_vector (3 downto 0);

case (y) is       
when "00" =>         m <=“1001”;
when "01" =>         m<=“0101”;
when "10" =>         m<=“1100”;
when "11" =>         m<=“0001”;      
when others =>      m<=“0000”;

end case;



ENG241 Fall 2005 VHDL Tutorial 23

Sequential Statements

• Other statements like for and while are also 
existing but requires attention.

signal v: std_logic_vector (3 downto 0);

for i in 0 to 2 loop --shifting right using for loop
v(i) <= v(i+1);

end loop;

v(3) <= ‘0’;

Note: In this example the signal is regarded as a register.
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Object Types

• Signals
– Ports.

port  ( a: in std_logic; ……

– Internal Signals.
signal x : std_logic;

• Variable
variable x : integer;
x:= 5;

• Constants
constant gnd : bit := 0;
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Signals

• Declared as ports or inside the architecture body.

– Ports.
port  ( a: in std_logic; ……

– Internal Signals.
signal x : std_logic;

• Signals are regarded is wires in some models and as 
memory storage (register) in other models.

signals
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Signals
•The order of signal assignments in the same 
block is not important.

f<= z or w;
z<= x and y;
x<= not a;
w<= a and b;
y<= not b;
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Signals
• Signals can’t have two drivers.
Note: In this example the process is considered a single driver

signal x,y,x : std_logic; --signal declaration
.
.
x<= y or z; -- first driver

uproc : process (y,z)        -- second driver
Begin

if y = z then
x <= ‘1’;

else
x <= ‘0’;

end if;
end process;
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Conditional Signal Assignment

• Signal Assignment could be conditional.
signal x : STD_LOGIC;
signal y : STD_LOGIC_VECTOR (2 downto 0);

with y select
x<= ‘0’ when “00” , 

‘0’ when “01”,
‘0’ when “10”,
‘1’ when “11”,
‘0’ when others;
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Conditional Signal Assignment

• Signal Assignment could be conditional.
signal x : STD_LOGIC;
signal y : STD_LOGIC_VECTOR (2 downto 0);

x<= ‘0’ when y = “00” else
‘0’ when y = “01” else
‘0’ when y = “10” else
‘1’ when y = “11” else
‘0’;
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Variables

• Same variable concept as computer programming 
languages.

• Declared inside a process block ,function or 
procedure.
uproc: process (x,y)
variable z : std_logic;
begin

z := ‘0’; --variable could have different values
z := x or y;

end process;
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Variables

• The scope of the variable is inside the unit it 
declared in (process, function or procedure).
uproc: process (x,y)
variable z : std_logic;
begin

z := ‘0’; --variable could have different values
z := x or y;

end process;
z:= ‘1’; -- This variable is out of scope
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Operators

• Logic operators: They are bit-wise operators
( and , or , xor , xnor , nand , nor , not)

x<= y and z;
a<= (b and c) or (d and e);
j <= (h and i and k)

Note: Parenthesis are used to group terms.

m<= (n not  k); m<= (n and (not  k));
g<= f and h or p; g<= (f and h) or p;
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Operators

• Arithmetic operators: Defined for predefined data 
types.

• For user defined data types they should be 
defined.
- +  Add , - Subtract , * multiply , / divide.

• Division is not always defined
signal v,w,x : integer;
w <= 5;
v <= 3;
x <= w + v;   -- x = 8
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Operators for STD_LOGIC

• Although STD_LOGIC type is defined in VHDL 
libraries. It is considered a user defined data type.

• Some extra package declaration are required.
library IEEE;
use IEEE.STD_LOGIC.1164;
use IEEE.STD_LOGIC.ARITH.all;
use IEEE.STD_LOGIC.UNSIGNED.all; --unsigned operations

or
use IEEE.STD_LOGIC.SIGNED.all; --signed operations
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Operators for STD_LOGIC;
use IEEE.STD_LOGIC.unsigned.all;

signal x,y : std_logic_vector (3 downto 0);
signal za :std_logic_vector (3 downto 0);
signal zm :std_logic_vector (7 downto 0);

x<=“0101”; --5
y<=“1101”; --13

za<= x + y; -- za = “0010”; = 2; wrong answer
Zm<= x * y; -- zm = “01000001”; 65; right answer
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Operators for STD_LOGIC;
use IEEE.STD_LOGIC.unsigned.all;

signal x,y : std_logic_vector (3 downto 0);
signal za :std_logic_vector (4 downto 0);
signal zm :std_logic_vector (7 downto 0);

x<=“0101”; --5
y<=“1101”; --13

za<= x + y; -- za = “0010”; = 2; wrong answer
Zm<= x * y; -- zm = “01000001”; 65; right answer
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Operators for STD_LOGIC;
use IEEE.STD_LOGIC.unsigned.all;

signal x,y : std_logic_vector (3 downto 0);
signal za :std_logic_vector (3 downto 0);
signal zm :std_logic_vector (7 downto 0);

x<=“0101”; --5
y<=“1101”; --13

za<= ‘0’&x + ‘0’&y; -- za = “10010”;= 18; right answer
Zm<= x * y; -- zm = “01000001”; 65; right answer

concatenation
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Operators for STD_LOGIC;
use IEEE.STD_LOGIC.signed.all;

signal x,y : std_logic_vector (3 downto 0);
signal za :std_logic_vector (3 downto 0);
signal zm :std_logic_vector (7 downto 0);

x<=“0101”; --5
y<=“1101”; --(-3)

za<= ‘0’&x +’0’&y; -- za = “00010”;= 2 (; wrong answer
Zm<= x * y; -- zm = “11110001”; -15; right answer
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Example
This Figure Shows a Full Adder Circuit
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Example
• First declare Xor2 ,And2 and Or3 entities and architectures

entity and2 is
port ( a,b : in std_logic;

c : out std_logic );
end and2;
architecture dataflow of and2 is
begin

c<= a and b; 
end dataflow;

entity or3 is
port ( a, b,c : in std_logic;  

d : out std_logic );
end and2;
architecture behavior of or3 is
begin

and3_proc : process is
begin

if a = ‘0’ and b = ‘0’ and c=‘0’ then
d <= ‘0’;

else
d <= ‘1’;

end if;
end process;

end behavior;

entity xo2 is
port ( a,b : in std_logic;  

c : out std_logic );
end xor2;

architecture dataflow of and2 is
begin

c<= a xor b; 
end dataflow;
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Example
• Now use them to implement a register

component or3 is
port ( a, b,c : in bit;  d : out bit );

end component;
begin

u0 : xor2  port map ( a, b , w);
u1 : xor2  port map ( w, ci, s );
u2 : and2 port map ( a, b, x);
u3 : and2 port map ( a, ci, y );
u4 : and2 port map ( b, ci, z );
u5 : or2    port map (x,y,z, co);

end struct;

entity full_adder is
port (a , b , ci: in std_logic;

s ,co: out std_logic);
end entity;

architecture struct of full_adder is
--Internal signals

signal w,x,y,z : std_logic; 
--component declaration

component and2 
port ( a,b : in bit;  c : out bit );

end component;
component xo2 

port ( a,b : in bit;  c : out bit );
end component;
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