MicroBlaze Tutorial on EDK 10.1 using Sparatan 11 E
Behavioural Simulation of MicroBlaze System

Ahmed Elhossini

January 24, 2010

1 Introduction

1.1 Objectives

This tutorial will demonstrate process of simulating a MicroBlaze system using the Embedded Development
Kit (EDK) and ModelSim. ModelSim is an HDL simulation tool that is able to perform several types of
simulations. In this tutorial we will use ModelSim to perform behavioral and timing simulations for an
embedded system based on MircoBlaze. Behavioral simulation is used to test the functionality of the
system using an abstracted model of the different component of the system. This simulation allows the
designer to check the functionality of the system before moving to other stages of the design process.
Timing simulation is performed on an HDL model of the system after completing the place and route
phase. This model include a detailed information about the design. This simulation shows the behavior of
the system when it is physically implemented on the FPGA.

1.2 System Requirements

You must have the following software installed on your PC to complete this tutorial:
e Windows 2000 SP2/Windows XP
e EDK 10.1i.
e ISE 10.1i.

ModelSim SE 6.3c.

Familiarity with Xilinx ISE 10.1 design flow.

Complete the tutorial: “MicroBlaze Tutorial on EDK 10.1 using Sparatan III E”. We will use the
same MicroBlaze system for simulation in this tutorial.

Note: The design is based on the Spartan IIl E Starter Kit. However the board itself is
not required to complete this tutorial.

1.3 Tutorial Steps

In this tutorial, the following steps will be performed:

e Preparing the MicroBlaze system for simulation using EDK.

% Xilinx Platform Studio

Create new or open existing project

:-\ ‘ Baze System Builder wizard [recommended)
BSB @

I@ () Blank ¥PS praject
E () Open a recent project

Browse for More Projects... v

ore Projects

Browse for M
E F.

Browze installed EDF. examples [projects] here

I] l [Cancel l l Help

Figure 1: Open an Existing Design

Building the behavioral simulation model for the MicroBlaze system.

Performing behavioral simulation using ModelSim.

Building the timing simulation model for the MicroBlaze system.

Performing timing simulation using ModelSim.

By the end of this tutorial you will be able to simulate the EDK design using ModelSim.

2 Preparing the Design for Simulation

The first step in this tutorial is to prepare the MicoBlaze system for simulation. This involves building the
simulation library required by ModelSim to simulate EDK systems. Follow the following steps:

e Open XPS, by selecting Start — All Programs — Development — Xilinx ISE Design Suite 10.1 —
EDK — Xilinx Platform Studio

e Open the design you created in the tutorial “MicroBlaze Tutorial on EDK 10.1 using Sparatan III
E” as shown in Figure

The design will be loaded as shown in Figure

e Now we will start building the simulation library. Select Simulation — Compile Simulation Libraries.
This step is required only once as the simulation library can be used later to simulate any other
system.This will start the “Simulation Library Compilation Wizard” that will be used to setup the
compilation process of the simulation library as shown in Figure [3| Click Next.

e The second screen of the wizard will be used to select the simulation software as shown in Figure
EDK simulation supports only two types of simulators: i) ModelSim 6.3¢ SE and ii) NCSim which
is not supported on windows platform. For this reason ModelSim 6.3c is used in this tutorial to
simulate MicoBlaze system. It is important to know that if ModelSim 6.3c is not installed in your
system, the wizard will not continue. Select ModelSim 6.3c and then Click Next.

File Edit View Project Hardware Software Device Corfiguration Debug Simulation Window Help

[=]1
DR EL DR :we BN RBOR MBS : @A Ra M EX:Br:xx:manbw
E 'I\. Buslneeiisces | Pots | Addresses | [ByeBiF Fiters
ject | Applicalions | P Catslog | B Bus Connection 1P Type 1P Version
Soltware Ficiscls o microblaze 7104
{£4dd Software &pplication Project > dimd Irnb_w100 100.a
IID efault: microblaze_0_boctloop | i Ib_v10 1.00.a
- FIDefault: micioblaze_0_smdstub "';";Pﬁ Z F‘H“B — ‘2?35
= [ElProject: TestApp_M o D db_ g brb_bram_ii_crtt 210.3
P',:';Ew it f_‘? B im_cot nb_bram_i_enti 210.2
Eveavtable: C:\Prajectshmb_tut_1ATesté; R o oo
Compler Dptens » cesiom o 0 custom_ip 1.0
am"\j“ D OIP Swiches dBi *ps_gpio 100.a
eadets @ LL03 80F sps_gpin 1008
@ A525 DCE wpe_uaille 1.00a
- ctock_ganevaior_ 0 clock_gensrator 201
@ proc_aps seser 0 proc_sysreset 200
< | =
< || Prttorm Stugio] | System Assembly View | Block Diagrem

Oupit | Waring | Enor |

More Info

Figure 2: Loaded Design

- Simulation Library Compilation Wizard - Welcome

Welcome to the EDK Simulation Library
Compilation Wizard

Thiz tool helps you compile the simulation libraries required to simulate systems
desighed using thiz installation of EDK.

Before pou can simulate systems designed using EDE., you need to compile the
HDL libraries available in this installation of EDK and 1SE.

Some of the EDK libraries are stored in a secure format. This limits simulation
support ta specific simulatars

< Back

[

Mext »

] [Cancel

]

Figure 3:

Simulation Library Compilation Wizard - Welcome

2

& Simulation Library Compilation Wizard - Select Simulator

Select Simulator
This panel helps you select the simulator for which HDL libraries will be compiled .'E *E

“what is pour simulator?
(=) Model3im
HCSim

Current simulator version:
Model Technology ModelSim SE vsim 6.3c Simulator 2007.09 Sep 11 2007

Only specific versions of the simulators are supported. Please verify that the selected simulator version satisfies the
fallowing requirements:

Model5im SE/PE 6.3c

MCSim iz not supported on Windows

[< Back ” Mext > l [Cancel]

Figure 4: Simulation Library Compilation Wizard - Select Simulator

The third screen of the wizard is used to select the HDL language used by the simulator as shown in
Figure [5] ModelSim 6.3c supports both VHDL and Verilog. It is up to you to select which language,
however, selecting both language will allow to use any of them if required by it will require more disk
space. Select Both VHDL and Verilog and then Click Next.

The fourth screen of the wizard is used to select the directory in which ISE simulation models are
compiled as shown in Figure [f] You can select any location to store the library files. As mentioned
earlier the library could be used by any design for simulation, so selecting the library location is
important. Select a suitable location and Click Next.

The next screen of the wizard is used to select the directory in which EDL simulation models are
compiled as shown in Figure[7] Select a suitable location and Click Next.

The next screen is used to setup some options related to the EDK library as shown in Figure
Nothing needs to be changed in this screen. Click Next.

The next screen of the wizard shown in Figure 9] is used for the compilation options for third par-
ty/user peripherals that need to be compiled with the library. We do not have such peripherals in
our design so we can move to the next screen. Click Next.

Now the compilation process will start as shown in Figure The compilation process will take
some time. When the compilation process complete the wizard window will be as shown in Figure
When the compilation process complete, the library files will be stored in the directory specified
in the previous steps. The files can be used later for the simulation processes by selecting these
directories with other designs. Click Next to continue.

The next screen of the wizard shows some information about the simulation process in the EDK.
Click Next.

The wizard now will show the summary screen (Figure . This window shows the details of the
compilation process. Now the simulation library building is complete and we are ready to simulate

Simulation Library Compilation Wizard - Indicate the HDLs supported| by your. simulator rg|

Indicate the HDLs d by your si

tulti-language support offers the most simulation options in the EDK |‘E ..,E

What HDLs does wour simulator support?
(%) BothYHDL and Verilog

O WHDL

() Werilag

Thiz tool will not verify your simulator license.

After compilation, you will be able to perfarm following types of simulation:

- Behavioral Simulation in YHDL and Yerilog
- Structural Simulation in YHOL and Yerilog
- Timing Simulation in %HOL and Yerilog

[< Back ” Mext » l [Cancel]

Figure 5: Simulation Library Compilation Wizard - HDL Support

Simulation Library Compilation Wizard - Gather information to compile ISE simulation L... rg|

Gather inf tion to ile ISE simul.

libraries
Indicate data needed to compile the HDL libranies for the hardware primitives available on <iline FPGAz fE ..,E

ISE haz a number of HDL libraries that are required for simulating spstems built using EDE.

(%) Compile (or re-compile] the libraries into directory indicated belaw

() Use the compiled libraries in the directory indicated below [do not compile)

Directory for compiled libraries

|E:\Pmiects\mb_tul_1 hize_lib |

Mote: if zpecified directory does not exist, it will be created

Install Smarthd odels into the directory given below

[C: it 10 TS E Ssmartmodefinitsinstalled_nt |

Fleaze make sure the LMC_HOME environment variable is zet to the indicated path.

[< Back] I Mest > l [Cancel]

Figure 6: Simulation Library Compilation Wizard - Information to compile ISE simulation models

Simulation Library Compilation Wizard - Gather information to compile EDK simulation ... E|

Gather inf tion to pile EDK simulation libraries
Indicate data needed to compile the HDL libraries for the hardware compaonents avallable in EDE FE .;E

EDK. has a number of HOL libraries that are required for simulation of spstems buit using EDE.

(%) Compile (or re-compile] the libraries into directory indicated below

Uze the compiled libraries in the directory indicated below [do nat compils).

Directary to store compiled libraries

[C:\Proistshmb_tut_1hedk_it] |

Mote: if zpecified directory does not exist, it will be created.

| want to compile other project specific simulation libraries.

[< Back ” Mext l [Cancel]

Figure 7: Simulation Library Compilation Wizard - Information to compile EDK simulation models

Simulation Library Compilation Wizard - Set EDK library compile optons

Set EDK library compile optons
Setting zome compile option: can help reduce compile times W%
¥
L

EDK. Library Compile Options
() Compile all library items

(3)iDo not compile deprecated library elementsi

[< Back] I Mest » l [Cancel]

Figure 8: Simulation Library Compilation Wizard - EDK library options

Simulation Library Compilation Wizard - Gather information for compiling other per

Gather information for compiling other peripheral repositories

Indicate ather EDK. compliant repositories used in this %P5 project. ff L 3

Thiz page helps you to compile the simulation libraries that are used by this particular %P5 project. Al the libraries in
fallowing repositories will be compiled. If pou want ta change repository paths, you need to da that in XPS project option
panel.

Project Specific Repositories:

Currently there is no user repository being set for thiz praject.

The repositories are compiled such that the repositary at the top has the highest precedence. The output will be written out
into following directary:

|ExProjects\mb_tut_Thsimiibsmtiy |

[< Back ” Compile > l [Cancel]

Figure 9: Simulation Library Compilation Wizard - Compiling other peripherals

Simulation Library Compilation Wizard - Compile ISE and EDK libraries

Compile ISE and EDK libraries

The simulation libraries are now being compiled. The libraries are large. hence this step may require an W
amaunt of time to complete. T

Compiling 15E Simulation Libraries

Starting ISE library compilation

1%
Mumber of campile errars found: 0
Compiling EDK. Simulation Libraries
Compile EDK. Library Wiew Log

)

< Back Mext

Figure 10: Simulation Library Compilation Wizard - Compiling ISE and EDK library (start)

% Simulation Library Compilation Wizard - Compile ISE and EDK libraries

Compile ISE and EDK libraries

The simulation libraries are now being compiled. The libraries are large, hence this step may require an X
arnount af time to complete. i

Compiling |SE Simulation Libraries

Compilation iz completed.

IIIIIIIIIIIIIIIIIIIIIIIIII“IIIIIIIIIIIIIIIIIIIIIIIII]]

Mumber of compile erors found: 0

Compiling EDK Simulation Libraries

Compilation iz completed.

Mumber of campile errars found: 0

[< Back] I Mest > l [Cancel]

Figure 11: Simulation Library Compilation Wizard - Compiling ISE and EDK library (completed)

- Simulation Library Compilation Wizard - Understand simulator specific setup requirem... rz|

i

Using these libraries requires you to fully understand the EDE, simulation flow and perform special simulator specific setup.

Understand simulator specific setup requirements

To leam how to set up for simulation in EDK, please read following help topic:

Simulation in Platform Studio

Ta learn how to et up Smarthodels, please read following help topic:

Setting Up Smarttdodels

*You will encounter significant simulation problems if vou do not perfarm the setup requirements outlined above. This iz a
manual step; this tool does not setup the simulation environment for you,

[< Back ” Mext » l [Cancel]

Figure 12: Simulation Library Compilation Wizard - Simulation Requirements

» Simulation Library Compilation Wizard - Finish

Library Compilation Completed!

The compiled libraries are now ready for use.

Summary:

ISE Simulation Library Fath:
C:\Projectshmb_tut_1kise_libh
Compilation was skipped

EDEK. Simulation Library Path:

C:hProjectsimb_tut_Thedk_libh

Compilation was skipped

Simulator: mbi

Simulator Version: Madel Technology ModelSim SE vsim 6.3z Simulator
2007.09 Sep 11 2007

Supported HOL: both WHDL and Yerilog

Smartmodel iz not installed by the wizard,

Save as default simulation library paths for new XPS projects.

[< Back ” Finizh l [Cancel]

Figure 13: Simulation Library Compilation Wizard - Summary
the design.

3 Building the Behavioral Simulation Model

In the previous section we used the “Simulation Library Compilation Wizard” to build the simulation
library required by ModelSim to simulate EDK designs. In this section we will setup EDK for the behavioral
simulation for our MicroBlaze system and then build a simulation model for the system. Behavioral
simulation is performed to verify the functionality of the system. the model being simulated does not
include any information about the underlying technology and the timing information associated with it.
Follow the following steps:

e In the EDK main window Select Project — Project Options. The project options dialog box
will be displayed, select the HDL and Simulation tab as shown in Figure

e In the HDL and Simulation tab do the following selections as shown in Figure

— In the HDL section select VHDL.
— In the Simulator Compile Script section select ModelSim.
— In the Simulation Test Bench section select Generate test bench template.

— In the Simulation Models section select Behavioral and select Allow Mixed Language
Behavioral files.

— Click Ok.

e Now we are ready to build the simulation model of the system. Select Simulation — Generate
Simulation HDL Files in the EDK main window. This will build the simulation files required to
simulate your system. The simulation files will be stored under the directory Simulation\ Behavioral
in your project directory. Check the content of this directory. You will notice that several VHDL

Device and Repositony Hierarchy and Flow H DLandSwnuIahon

HOL Simulator Compile Script
(& vHDL () Werilog () ModelSim () NCSim

Simulation Test Bench

Generate test bench template

Simulation Models
(®) Behavioral () Structural (O Timing
Allow Mixed Language Behavioral Files

[D, H Cancel ” Help]

Figure 14: Change Simulation Setting for Behavioral Simulation

twpuct.uct

Generating simulator compile script ...

Generating sSimulator helper scripts ...
Sirmulation Model Generator done!

Done!

Output |Waming Error

Figure 15: Building Simulation Model Completed

10

files are created for each component of the system. The file system_tb.vhdl is a test bench VHDL
file create using EDK to control the IO signals of the system during the simulation.

Open the file system_tb.vhdl in the EDK window by selecting File—Open and then browse to
the file location as stated above. The contains the required VHDL code required to instantiate the
system inside ModelSim, and two VHDL processes that provides both the clock and reset signals for
the system as shown in the following code:

— system_tb.vhd

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

library UNISIM;
use UNISIM.VCOMPONENTS.ALL;

entity system_tb is
end system_tb;

architecture STRUCTURE of system_tb is

constant sys_clk_pin_ PERIOD : time := 20000.000000 ps;
constant sys_rst_pin LENGTH : time := 320000 ps;

component system is

port (
fpga_0_RS232_DCE_RX_pin : in std_logic;
fpga_0_RS232_DCE_TX _pin : out std_logic;
fpga_0_LEDs_8Bit_GPIO_d_out_pin : out std_logic_vector(0 to 7);
fpga_0_DIP_Switches_4Bit_GPIO_in_pin : in std_logic_vector(0 to 3);
fpga_-0_-DDR_SDRAM_DDR_DQS_Div_ I DDR_.SDRAM_DDR_DQS_Div_O : inout std_logic;
fpga_0_.DDR_SDRAM_DDR_Clk_pin : out std_logic;
fpga_.0_-DDR_SDRAM_DDR_Clk_n_pin : out std_logic;
fpga_0_.DDR_SDRAM_DDR_Addr_pin : out std_logic_vector(12 downto 0);
fpga_-0_.DDR_SDRAM_DDR_BankAddr_pin : out std_logic_vector(1 downto 0);
fpga_0_.DDR_SDRAM_DDR_CAS_n_pin : out std_logic;
fpga_.0_-DDR_SDRAM_DDR_CE_pin : out std_logic;
fpga_0_.DDR_SDRAM_DDR_CS_n_pin : out std_logic;
fpga_ 0_.DDR_SDRAM_DDR_RAS_n_pin : out std_logic;
fpga_.0_-DDR_SDRAM_DDR_-WE_n_pin : out std_logic;
fpga_0_.DDR_SDRAM_DDR._DM pin : out std_logic_vector(1 downto 0);
fpga_0_-DDR_SDRAM_DDR_DQS : inout std_logic_vector(1l downto 0);
fpga_0_.DDR_SDRAM_DDR._DQ : inout std_logic_vector(15 downto 0);
sys-clk_pin : in std_logic;
sys_rst_pin : in std_logic

)i

end component;
— Internal signals

signal fpga-0_.DDR_SDRAM_DDR_Addr_pin : std_logic_vector(12 downto 0);
signal fpga_.0_DDR_SDRAM_DDR._BankAddr_pin : std_logic_vector(1 downto 0);
signal fpga_.0_.DDR_SDRAM_DDR_CAS_n_pin : std_logic;

signal fpga-0_DDR_SDRAM_DDR_CE_pin : std_logic;

signal fpga-0_.DDR_SDRAM_DDR_CS_n_pin : std_logic;

signal fpga_.0_.DDR_SDRAM_DDR_Clk_n_pin : std_logic;

signal fpga-0_DDR_SDRAM_DDR_Clk_pin : std_logic;

signal fpga-0_-DDR_SDRAM_DDR_DM_pin : std_logic_vector(1l downto 0);
signal fpga_.0_DDR_SDRAM_DDR._DQ : std_logic_vector(15 downto 0);

signal fpga_-0_-DDR_SDRAM_DDR_DQS : std_logic_vector(1 downto 0);

signal fpga_0_DDR_SDRAM_DDR_DQS_Div_ I DDR_SDRAM_DDR_DQS_Div_O : std_logic;
signal fpga_.0_.DDR_SDRAM_DDR_RAS n_pin : std_logic;

signal fpga_.0_.DDR_SDRAM_DDR_WE_n_pin : std_logic;

signal fpga_0_DIP_Switches_4Bit_GPIO_in_pin : std_logic_vector(0 to 3);

signal fpga-0_-LEDs_8Bit-GPIO_d_out_pin : std_logic_vector(0 to 7);

11

signal fpga_0_-RS232_DCE_RX _pin : std_logic;
signal fpga_-0_-RS232_DCE_TX _pin : std_logic;
signal sys_clk_pin : std_logic;
signal sys_rst_pin : std_logic;

begin

dut : system
port map (

fpga_0_RS232_DCE_RX_pin = fpga_-0_.RS232_DCE_RX_pin,
fpga_0_-RS232_DCE_TX_pin = fpga_0_.RS232_DCE_TX _pin,
fpga_0_LEDs_8Bit_GPIO_d_out_pin = fpga_0_LEDs_8Bit_GPIO_d_out_pin,
fpga_0_DIP_Switches_4Bit_GPIO_in_pin = fpga_0_DIP_Switches_4Bit_GPIO_in_pin,
fpga_0_.DDR_SDRAM_DDR_DQS_Div I_.DDR_SDRAM_DDR_DQS_Div_O = fpga_.0_DDR_SDRAM_DDR_DQS_Div_ I DDR_SDRAN
fpga_0_DDR_SDRAM_DDR_Clk_pin = fpga_0_.DDR_SDRAM_DDR_Clk_pin,
fpga_-0_-DDR_SDRAM_DDR_Clk_n_pin = fpga_-0_DDR_SDRAM_DDR_Clk_n_pin,
fpga_-0_.DDR_SDRAM_DDR_Addr_pin = fpga_.0_.DDR_SDRAM_DDR_Addr_pin,
fpga_0_.DDR_SDRAM_DDR_BankAddr_pin = fpga_.0_.DDR_SDRAM_DDR_BankAddr_pin,
fpga_-0_.DDR_SDRAM_DDR_CAS_n_pin = fpga_.0_.DDR_SDRAM_DDR_CAS_n_pin,
fpga_.0_-DDR_SDRAM_DDR_CE_pin = fpga_.0_.DDR_SDRAM_DDR_CE_pin,
fpga_0_.DDR_SDRAM_DDR_CS_n_pin = fpga_ 0_.DDR_SDRAM_DDR_CS_n_pin,
fpga_.0_-DDR_SDRAM_DDR_RAS_n_pin = fpga_ 0. DDR_SDRAM_DDR_RAS_n_pin,
fpga_0_.DDR_SDRAM_DDR_WE_n_pin = fpga_ 0_DDR_SDRAM_DDR_WE_n_pin,
fpga_0_DDR_SDRAM_DDR_DM_pin = fpga_0_.DDR_SDRAM_DDR_DM _pin,
fpga_-0_-DDR_SDRAM_DDR_DQS = fpga-0.DDR_SDRAM_DDR_DQS,
fpga_-0_.DDR_SDRAM_DDR_DQ = fpga_ 0_DDR_SDRAM_DDR_DQ),
sys-_clk_pin = sys_clk_pin,
sys_rst_pin = sys_rst_pin

);

— Clock generator for sys_clk_pin

process
begin
sys_clk_pin < ’0’;
loop
wait for (sys_clk_pin_.PERIOD/2);
sys_clk_pin < not sys_clk_pin;
end loop;

end process;

— Reset Generator for sys_rst_pin

process
begin
sys_rst_pin < '1’;
wait for (sys_rst_pin LENGTH);
sys_rst_pin <= not sys_rst_pin;
wait;

end process;

— START USER CODE (Do not remove this line)

— User: Put your stimulus here. Code in this

— section will not be overwritten.

12

¥ ModelSim SE 6.3c
File Edt view Compile Simulats Add Library Teols Layout ‘Window Help

e @ @B@| e[2] %

J Layout [HoDesign hdl

[¥lame Type Path =
[+ Jl) migvm Library $MODEL_TECH
sv_std Library $MODEL_TECH
() viealzooo Library $MODEL_TECH
:H]l ieee Library $MODEL_TECH
(#-{l) modelsim_ib Library $MODEL_TECH
:H]l std Library $MODEL_TECH
&-{] std_developerskt Lbrary $MODEL_TECH
:H]l synopsys Library $MODEL_TECH
(z-{l] veriog Uibrary $MODEL_TECH
] I— _>|J
-l Il tibrary b
Transcript Hd
o o e, e srsan doh T2l

"+ 5 = Inad the design for simulation. (MadzISim vsim®
45 command with 'system_th') After loading the design,
#+ set up signal displays (optional) and run the simulation.
4 4% (ModedSim 'run comman;

ppe

L | = set up signal st display and launch a list window
4t Madelsim ‘add -list’ commands are Found in*_list.do
¥ seripts, {see system_list. do)
v
L **+ w =5 set Up signal wave display and launch a waveform window,
"+ Madelsim ‘add -wave' commands are Found in *_wave.do
4+ scripts, (see system_wave.do)
"

by =2 print this message
¢ e

£
t3

[+l

Modelsim:>
-l F Transerpt |

[how: 0ps Delta; 0 [simasystem_tb Y

Figure 16: Modelsim Started

— END USER CODE (Do not remove this line)
end architecture STRUCTURE;

configuration system_tb_conf of system_tb is
for STRUCTURE
for all : system
use configuration work.system_conf;
end for;
end for;

end system_tb_conf;

This code can be modified to add customized simulation scenarios for the system. We do not need to
modify the code as it generates all the signals required to run the system (clock and reset signals).

4 Behavioral Simulation

In the previous section we used EDK to generate a simulation model for our design. Now we are ready to
use ModelSim to perform behavioral simulation. Select Simulation— Launch HDL Simulator. This
will start ModelSim as shown in Figure[I6] The ModelSim main window contains several windows at start

up.

The transcript window is used to enter ModelSim commands that are used to control the simulation.
EDK simulator script define five commands to simulate EDK systems and a help window is displayed in
the transcript window as shown below:

13

#:**

>k sk >k skk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk sk skok skok sk k

4 HHE
*** Simulation Setup Macros (system_setup.do)

kkk

*** ¢ = compile the design by running the EDK compile script.
*** Assumes ISE and EDK libraries were compiled earlier

*** for ModelSim. (see system.do)

kkk

*** s = load the design for simulation. (ModelSim ’vsim’

*** command with ’system_tb’) After loading the design,

*** set up signal displays (optional) and run the simulation.

*** (ModelSim ’run’ command)

4 HHE

*** 1 = set up signal list display and launch a list window.

*** ModelSim ’add -list’ commands are found in *_list.do

*** scripts. (see system_list.do)

kkk

*** w = set up signal wave display and launch a waveform window.
*** ModelSim ’add -wave’ commands are found in *_wave.do

*** scripts. (see system_wave.do)

kokok

*** h = print this message

ok >k

#:**

>k sk >k sk ok sk sk sk sk sk ok skk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk skok skok sk k

e In the transcript window enter the command “c” at the command line. This will compile the design

which will take sometime. Then enter the command “s” which loads the design in ModelSim. After
loading the design, the different component of the design are shown in the Workspace window as
shown in Figure [I7] and the Objects windows show the internal signals of any selected component.

Enter the command “w” to load the waveform that will display some signals defined by the simulation
script generated by EDK. In behavioral simulation, the simulation scripts displays all input/output
signals of each component in the system and the designer can add any other signal if required.

Enter the command run 1 ms. This will start the simulation of the MicroBlaze system for 1 ms.
After the simulation complete the waveform window will show the changes in all the selected signals
of the system. Clock the Plus button at the top right corner of the waveform window to maximize
the view. The results should look like Figure

You can go through different signals and watch activity on each signal. For example the signal
fpga_ 0_.RS232 _DCE_TX _pin is the serial output of the system. The activities on this signal is
corresponding the output of the software running on MicroBlaze as the standard output of the
system is configured to use the RS232 interface (refer to the tutorial “MicroBlaze Tutorial on EDK
10.1 using Sparatan III E”).

14

Fls Edt View Comple Smulate Add Transcript Tools Layour Window Help

O &) & @ [m||cuam|tes B owmdRBm mesam] oo o
Layout [simulace 4 |
Workspace Hel x| | objects Hol x|
Instance Design unit | Design unit bype Name: Value Kind
o
dut Systemitru... Architacture o
& lne_o92 system_th(s...Process
@ ine_103 system_th(s...Process
W st _Jagic_misc std_logic_misc Package
M attributes attributes Package
i inif_pkg ipif_pka Package
1l family_support farmily_supp... Parkags -
[proc_common_pkg proc_comm... Package e
1l std_logic_unsigned std_logic_un., Package -
Il std_logic_arith std_lagic_ar..,Package
M vrka voka Package
[l vical_primitives vital_primiti... Package
[vical_timing vital_timing Package o
o textio textio Package o
Ml microblaze_isa micrablaze_isa Package
[l micoblaze_types microblaze ... Package
[l rumeric_std rumeric_std Package
I v bypes vitypes Package
Il veomponents veomponents Package
Il std_logic_1164 std_logic_1... Package _
[l standard standard Package
== gl albl Hodule:
& #INITIAL#30 glbl Process
B #ASSIGH#40 albl Process
A |
l)]hmw Fian e J B Memories ‘ K] | -
2 1 =
M 4> —
-l JA Transcript | Ay
[How: 0 ps Delta: 0 [sirm:fystem _th P

Figure 17: Modelsim - Design Compiled and Loaded

File Edt View Compille Simulate Add Transcript Toos Layout Window Help
NS E& 4 W& D2 | A]Hg\py—mH
Layolt [stamlace v “ - of H [nd g3t

K4PE

workspace Hdl x| objects i Hat x|
Instance unit_|Designunitbype '+ ||| ¥[Name: valug Kird
dut system(stru,.. Architecture e
@ ine_3z system_th(s.. Process
@ lne_103 system_th(s...Process
I std_logic_misc std_logic_misc Package
M sttributes attributes Package
1l ivif_pkg ipf_pkg Package
1l Famiy_support Family_supp. .. Package e
[l proc_common_pkg proc_comm... Package v
[l std_logic_unsigned std_logic_un.. Package £
1l std_logic_orith std_logic_ar...Package
ol vk wpkg Package
W vital_primitives vital_primiti... Package
W vital_timing vital_timing Package e
W textio textio Package e
W microblaze_isa microblaze_isa Package
[l microblaze_types microblaze ... Package
1l rumeric_std rumeric_std Package
I v types vitypes Package
W veomponents wveamponents Packags
i std_logic_t 164 std_logic_1... Package L
M standard standard Package
= bl abl Module:
& FINITIAL#30 albl Process
B FASTIGH#40 albl Process
[T —
l,[lhmw Esim [i Fies J B2 Memories ‘ el A =

Wave window display setup done.

vsIM S5 |

-[1A Transript |

[How: 0 ps Delta: 0 [stmefsystem_th 4

Figure 18: Modelsim - Loading the Waveform Window

15

T4 ModelSim SE 6.3c Q@

Fle Edt View Comple Smulate Add Wave Tools Layout Window Help

EETERE LT \ mulim @ RE|t e B wnd LBD BT 5| T

LOR0R SN SREREReNEn T ErErRtRENrRNtDsInnonsNeReIuetesrenttniENntetensnenInsIereaunet) seentetesrNnty
1]

1000000 ns

g v

[Mow: 1 ms Deka: 41 [simssystem_th [opsto 1050 us

Figure 19: Modelsim - Simulation Output

5 Building the Timing Simulation Model

In the previous sections we performed behavioral simulation for a MicroBlaze system using ModelSim. We
can use this simulation to verify the functionality of the system specially in the case of a custom hardware
being implemented. In this section we are going to perform timing simulation which is performed using a
simulation model generated from the post place and route net-list. This include all the timing information
about the underlying technology (in our case it will include the timing information of Spartan III E FPGA).

e The first step is to change the simulation setting for timing simulation by selecting Project—Project
Options. Select HDL and Simulation tab and in the Simulation Models section select Timing
as shown in Figure 20| and then Click Ok.

e Build the timing simulation model by selecting Simulation— Generate Simulation HDL Files.
The process will take sometime and then the EDK console window will show a message to indicate
the completion of the process as shown in Figure

6 Timing Simulation

The simulation scripts generated for ModelSim define the same menu discussed earlier to control the
simulation process. Execute the commands “c” and “s” to compile and load the design. When the
design is loaded as shown in Figure all the components in the simulation model are displayed in the
Workspace Window. Compare the components tree of the timing simulation model to the behavioral
simulation model (see Figure [17).

Execute the command “w” to load the waveform. The timing simulation model is extracted from the
post place and route net-list. For this reason the information about the internal signals of each component
are different and so are not included in the waveform (compare this to the behavioral model waveform).

16

Project Options

Device and Fepository | Hierarchy and Flow H D_!:_Er_jfl__g_l_lj]y_l_ﬁl_!9_{1_: |
HDL Simulatar Compile Seript
(® wHDL () Werilog (® ModelSim () NCSim

Simulation Test Bench

Generate test bench template

Simulation Models
() Behavioral () Stractural (%) Timing

Aillow Miked Language Behavioral Files

ok J(e)]

Figure 20: Change Simulation Setting for Timing Simulation

twpuct. uct
Generating Siwulator compile script ...

Generating siwulator helper scripts ...
Jimulation Model Generator done!

Done!

Output |W’aming Error

Figure 21: Building Simulation Model Completed

17

Fle Edt Vew Comple Smulate Add Structure Tooks Layout Window Help
O W4 AED [| AR tes FH oefABR RPN o 2
Layout [simulace vl
Objects Hl x|
iame value kind
systemistru,
P line_52 system_tbis...Process
@ line_103 system_tbis.. Process
M std_logic_signed std_logic
Ml std_logic_arith std_logic_ar . Package
Il voackage vpackage Package
Il vical_primitives vital_primit... Package
1 voomponents@Ci, Package o
M vical timing vital_timing Package o
Ml textio textio Package
1l veomponents veomponents Package
Il std_logic_1164 std_logic_L... Package
Il standard standard Package
=raf abl bl Module
& #INITIAL#30 albl Process
B #ASSIGHE40 albl Process
B #ASIIGNE4] albl Process
B #ASSIGHE42 albl Process
B #INITIAL#44 albl Process
B #INITIAL#S2 albl Process
I Il virary | Esim | 5 Fies J B Memaries ‘ < | N
Transcript
1
ysit 4>
1A rranseriot |
How: 0 ps_Delta: 0 sim:fsystem_th

a)

Figure 22: Modelsim - Design Compiled and Loaded

Fle Edt View Complle Simulate Add Transcript Tools Layout Window Help

Sy [rel &
s vl [&S || [F @

workspace Ha x| obpects H x| [gl ave - default Helx|
hiame vahue ind A

B i

architecture
Imb_bram Architecture
¢ Ml microblaze_... x_buf(x_bu... Architecture

-l microblaze_... x_ut4tx ... Archicecture
- B microblaze .. x_buf(x_bu... Architecture
-l microblaze_... x At ... Archicecture
e Bl proc_sys r... % ubdix ... Architecture o
- [dor_sdram ... x_sff(x_sff... Architecture o

ol ek _sdram
ol ek _sdram (
-l ek _sdram (
Bl de_sdram_ (.
Bl ek _sdram_... x_buf(:
Bl ek _sdram_... x_buf(:
Bl dek_sdram_... x_buf(x_bu... drchitecture
Bl dek_sdram_... x_buf(x_bu... drchitecture
Bl dek_sdram_... x_buf(x_bu... drchitecture
(
1§
§
§
(
(
(

Architecture =
Architecture
Architecture
. Architeckure
x_bu... Architeckure -
x_bu... Architeckure -

Bl dek_sdram_... x_buf(x_bu... drchitecture
Ll ok _sdram_... x_buf
Ll ok _sdram_...x_bUF(x_bu... Avchitecture
-l ok _sdram_...x_bUF(x_bu... Avchitecture
Bl ook _sdram_...x_buf(x_bu... avchitecture
-l ek _sdram,
-l ek _sdram,

)| —
lmumaw Eisin | i Fies J B Memaries ‘ EE o

x_bu... Architerture

Architecturs
Architecturs =]

1(1;1HL2)

vsii 5| =
1A vransari | bl
Mow: 0 ps_Dela: 0 sim: {system_th

3 = &

Figure 23: Modelsim - Loading the Waveform Window

18

[ModelSim SE 6.3¢
Fll= Edt View Comple Smulste Add Wave Tools Layout Window Help

DSES ¢ BBL A% w #| SeRE|tes B wns LB PP aw|

s e w || Lk [N mf B] aaaa
d

U There i3 an 'U'IOCUZ0 - in an arithnetic operand, the result will be 'X'(es).

0 FO DD o D D 0 e e 0000 Ao oA Aoy
o T T[T

Figure 24: Modelsim - Simulation Output

Start the simulation by executing the command run 1 ms. The timing simulation will start. Notice
that the timing simulation will take much longer time compared to the behavioral simulation. That is
because the timing simulation model contains more information about the internal structure of the system
and technology being used to implement the system (Spartan III E FPGA). The resulting waveform should
look like Figure

Compare the resulting waveform of the timing simulation to waveform of the behavioral simulation
(Figure . Notice the timing differences in each input/output signals of the system. The results of
the timing simulation is the closest to the actual implementation on board. If simulation results show
something wrong in the system performance, this will be the same when the system is implemented on the
board.

7 Summary

In this tutorial we performed both behavioral and timing simulation for a MicroBlaze system. We used
ModelSim 6.3c SE to perform both types of simulation after creating a simulation library using EDK.
Behavioral simulation allows the designer to verify the functionality of the system while timing simulation
allows the designer to investigate timing related issues and verify the functionality of the system on a
specific technology.

19

	Introduction
	Objectives
	System Requirements
	Tutorial Steps

	Preparing the Design for Simulation
	Building the Behavioral Simulation Model
	Behavioral Simulation
	Building the Timing Simulation Model
	Timing Simulation
	Summary

