Tutorial 4
Sequence Detector, ISE 10.1 on the Digilent Spartan-3E board

Introduction

In this lab, we will implement a sequence detector on the Spartan-3E starter board. The sequence
detector will look for the input series “10010.” The LED’s will show how much of the series has been
detected and when the entire series has been entered an additional LED will come on. Circuit input
will be controlled by a reset button, another button that sends a clock pulse, and a switch that will
entera‘l’ora‘0’.

Objective

The objective of this tutorial is to introduce the use of sequential logic. The sequence detector we
will build is a sequential circuit or more specifically a clocked synchronous state machine.

Up to this point we have been working with combinational logic. With combinational logic the
output of the circuit depends only on the current input values. In sequential logic the output depends
on the current input values and also the previous inputs.

When describing the behavior of a sequential logic circuit we talk about the state of the circuit. The
state of a sequential circuit is a result of all previous inputs and determines the circuit’s output and
future behavior. This is why sequential circuits are often referred to as state machines.

Most sequential circuits (including our sequence detector) use a clock signal to control when the
circuit changes states. The inputs of the circuit along with the circuit’s current state provide the
information to determine the circuit’s next state. The clock signal then controls the passing of this
information to the state memory. The output depends only on the circuit’s state, this is known as a
Moore Machine. Figure 1 on the next page shows the schematic of a Moore Machine.

Next-State State Qutput
Logic ’ Memory > Logic ’

clock input

A

inputs 4’ next-state cumrent-state oulputs

clock signal

Figure 1: Schematic of a clocked synchronous state machine (Moore Machine)

A sequential circuit’s behavior can be shown in a state diagram. The state diagram for our sequence
detector is shown in figure 2. Each circle represents a state and the arrows show the transitions to the

next state. Inside each circle are the state name and the value of the output. Along each arrow is the
input value that corresponds to that transition.

reset —p

Figure 2: State diagram for S-bit Sequence 10010

Process

Create project using ISE 10.1

Test behavior of the sequence detector using ISE 10.1.

Configure FPGA with the sequence detector

Test behavior of sequence detector on the Spartan 3E starter board

APwnhE

Implementation

1.

2.

3.

Go to www.fpgamac.com and download the following files into a temporary folder.

top_sequence.vhd
sequence.vhd
sequence_th.vhd
clockbuffer.vhd
top_sequence.ucf

P00 T

Open ISE Project Navigator. If a project is already open, go to the File menu and select “Close
Project”. Now under the File menu select “New Project....” ISE will launch the New Project
Wizard. In the Create New Project window under Project Name: enter your project name. Under
Project Location click the button with the three dots and navigate to where you want the project to
be located. Under Top-Level Source Type: make sure “HDL” is selected and then click “Next>".

In the Device Properties window copy the settings from figure 3 and then click “Next>".

Select the device and design flow for the project

Property Hame Wallue

Product Category Al V
F arnily Spartan3E V
Device XC3S500E ||
Package FG320 ||
Speed Rl V
Top-Level Source Tupe HOL

Synthesgiz Tool #=5T WHDL Y erlog) V
Sirnulator ISE Simulator [WHDL A enilog) V
Prefened Language WHOL V
Enable Enhanced Design Summary

Enable Mezzage Filkering FI

Digplay Incremental Meszages FI

[< Back l [Meut =] [Cancel
Figure 3: Device Properties

4. Click “Next>" on the Create New Source window. Click “Add Source” on the Add Existing

Sources window. Select the five files that you downloaded and click “Open”. When you get the
window in figure 4, click “Next>".

L

Add exizting sources

Source File Copy to Project Add Source
top_zequence.uck

clockbuffer. vhd

OOoOoOod

zequence. vhd
zeguence_thovhd

top_sequence.vhd

(= I &) B R T B I

Adding existing zources iz optional. Additional sources can be added after the project iz created uzing the ''Project-»4dd
Source' or "Project->4dd Copy of Source'' commands.

’ < Back “ Mewt » J ’ Cancel

Figme 4: Add Existing Sources

5. Click “Finish” on the Project Summary window. Click “Ok” on the Adding Source Files...
You have created the project and in the workspace window of ISE you should see a project
summary. You can close the project summary by going under the File menu and selecting
“Close”.

6. Inthe Sources window, expand the file hierarchy by clicking on the small box with the “+”
symbol that is next to top_sequence.vhd (see figure 5). Now open top_sequence.vhd,
sequence.vhd, and clockbuffer.vhd in the ISE workspace by double clicking on the file names.

Sources

Sources for: | Implementation v
'-f‘ﬂ tutarial_4
=] »c:3s800e-5ig320
= ﬂﬁﬁtup_sequence - Structural [top_sequence.vhd]
debounce - clock_buffer - behavioral [clockbuffer vhd]
gequence_recorder - zequence - behavioral [zequence. vhd]
E top_sequence.uck [hop_sequence. ucf]

Eng Sources 1“_“' Files | sy Snapshots |D Libraries

Ficure S: Sowrces Window

Go to the pull down menu in the Sources window and select “Behavioral Simulation”. Now you
can open sequence_tb.vhd in the ISE workspace (see figure 6).

Sources for | Behavioral Simulation

=R s viaral Sirmulation

=) mt Poszt-Route Simulation .

uut - sequence - behavioral [zequence. vhd]
= top_sequence - Structural [fop_sequence. whd]
debounce - clock_buffer - behavioral [clockbuffer. vhd]
sequence_recarder - sequence - behaviaral [zequence. vhd]

E$ Sources lH_"I Files | gy Snapshats |D Libraries
Figure 6: Switching to Behavioral Simulation

7. Take some time to look through the *.vhd files. They have been notated to help you understand
the VHDL code. The layout of the three components is shown in figure 7.

X %

a il
b s
RESET reset c Z
d f
hin cik btn B E
f F
. clk_a deb_clk ok . >

dig_cfk clk

sequence
clockbuffer

top_sequence

Figmre 7: Saucture of top sequence

Highlight the testbench file in the Sources window by clicking on it. In the Processes window,
click on the small box with the “+” symbol that is next to the “Xilinx ISE Simulator” toolbox and
then double click “Simulate Behavioral Model” to start the simulation. See figure 8.

100 ns 200 ns 300 ns 400 ns a00 ns

Figure 8: ISE Simulation of sequence_th.vhid

8. Go to the Source window pulldown menu and select “Implementation” and then click on
top_sequence.ucf to highlight it. In the Processes window expand the “User Constraints” toolbox
and double click “Edit Constraints (Text)”. This will open top_sequence.ucf in the ISE
workspace. See figure 9.

Proceszes for top_sequence. ucf
[AddEsisting Source
[Create Hew Source

= w‘ Idzer Congtraints

The user constraints file has been notated to show
what board features have been connected to the inputs
and outputs of top_sequence.vhd. See figure 10

Edit Constraints [Text]

o |

@f' Processes m Sim Objects

Figwre 9: Edit ucf

HESHESSAE Pin assignments for top Sequence HESSHEHSHEH

The Spartan 3E's 50 MHz clock iz used in the clock huffer.
NET "dig clk™ LoZ = "car ;2 # CLE_SOMHZ

'BESET' and 'btn clk' are tied to buttons

The 'PULLDOWN' constraint makes the hutton return &

lov when it is released, otherwise it will float.

MNET "REZET" Loz TELTT | PULLDOWN ; # BTW Z0UTH
NET "htn clk™ LoC = "iir" | PULLDOWN ; # BTW NORTH

#f#f The data input will he controlled with & switch
NET X" LoC = "L137™ » # 3W<ox

Cutputs are routed to the LED'=s

NET "™ir LoC = "F12™ » # LED<O>
NET "E™ LoC = "E12"™ » # LED<1>
NET ™Cr LoZ = ©"E11"™ » # LED<Z>
NET "D LoZ = ©Fi1"™ » # LED<3>
MNET "E™ LoZ = moilr ; # LED<4>
NET "F™ LoZ = 7"pii™ ; # LED«S>»
HNET ™2 LoC = mFpar # LED<7»

Figure 10: User Constramt File

9.

10.

It is time to program the Spartan 3E board. In the

Processes window you have to run the

“Synthesize - XST”, “Implement Design”, and “Generate Programming File” processes. Instead
of doing each one separately, you can double click on “Generate Programming File”. This will

run all the processes. See figure 11.

As the processes finish running they will be marked
with a green checkmark to indicate no problems were
encountered. The “Implement Design” process may

generate a warning (yellow triangle with an

exclamation point) about excessive skew of the clock

buffer output. This warning can be ignored.

Proceszses for: top_seguence - Structural

[Create Mew Saurce W
= Yiew Design Summary

£ 3 Design Utiities

+ ‘y IJzer Constraints

£ PO Syrithesize - 5T

+- ¥ Jy_ Implement Design

e 8 Generate Programming File

+-#2) Configure Target Device t
E2 Analvze Dezign Uzing Chipsoope L

<l B
E‘—t Processes D Sim Objects

Fi'l:"l= we 11: Generate Prugrmmm'ng File

Connect the Spartan 3E board to the computer and turn the board’s power on. Expand the
“Configure Programming File” process and double click on “Manage Configuration Project
(IMPACT)”. This will launch the iIMPACT program. Click “Finish” on the Welcome to

iMPACT window.

IMPACT will perform a boundary scan and will
display three devices in the ISE workspace.
Pictures of Xilinx IC packages represent the
devices.

We are going to assign the top_sequence.bit file
to the Spartan 3E’s FPGA. The FPGA is
represented in the workspace by the picture of the
Xilinx package labeled *“xc3s500e”. The package
should already be highlighted.

Click on top_sequence.bit in the Assign New
Configuration File window and then click the
“Open” button. The file is now associated with
the FPGA and the next device is highlighted. See
figure 13.

Proceszszes for top_sequence - Structural
+-%F Design Utiities

+ ‘y Uzer Constraints

#0205 yrthesize - 5T

- P QD Implement Design

- P Q) Generate Programming File
=2 Configure T arget Device

P2 Generate Target PROM/ACE File

HEF. hManage Configuration Project [iMPACT]

.EJ.I.
<
E'—I: Processes D Simn Ohjects
Figure 12: Launching ib[PACT

Analyze Design Using Chipscope

e e e e e T

i i
O : I : LN
- A
xo3ds500e =04z xc2cEd
- file ¥ - - file ¥ - - file ¥ -

Look jr: | =3 P/FMAC/completed/TUT_4_Crtutorial_d/ (| 4= £ =

2. =
=3 _ngo

I3 _smzgs

[izim

[templates

(=) butorial 4 =db

[st

File name: |top_sequence. bit
File type: | All Desigr Files [* bit “rbt * rky *isc * bisd]]

’ Cancel Al] ’ Bypass]

top_sequence. bit

(%) Mone
() Enable Prograrmring of 5P Flash Device Attached ta this FPGA

) Enable Prograrmring of BPI Flash Device Attached ta this FPGA

Figure 13: Assien New Confizuration File

Click “Bypass” for the next two devices since we are not programming them and then click “OK”
on the next screen. Now right click on the xc3s500e and select “Program...” from the drop down
menu. See figure 14.

[TC

FoMILm My 37
[“Pogon |

Gel Device ID

Get Device Signature/Usercode c2ch4

®io3
top_ze WRAZE
L add 5PI Flash,.,

Assign Mew Configuration File, .,

Set Programming Properties. ..
Sek Erase Properties. ..
Set Targek Device

Figure 14: Programming the device

10

After the FPGA is programmed a “Program Succeeded” message will be displayed in the ISE
workspace and a yellow LED will show the Spartan 3E has been configured. See Figure 15.

Program Succeeded

Figure 15: Program Succeeded

11. The Spartan 3E is programmed as a sequence detector. The board will hold this program until the
power is turned off, the reset button near the yellow LED is pressed, or you reprogram the board.

The inputs and outputs are labeled in figure 16 on the next page. To reset the state machine press
the reset button (BTN_SOUTH). To enter a ‘1, slide the switch (SWO0) to the high position and
press the clock button (BTN_NORTH). To enter a “0’, slide the switch to the low position and
press the clock button. The LED’s will light to show the state. When the entire sequence has been
detected an additional LED will come on. If you press and hold the clock button, a clock signal
will be sent approximately every 0.23 seconds. This is the time the buffer delays the button signal
from reaching the state machine.

This tutorial was authored by Stephen Tomany. Stephen is a Junior in the Electrical Engineering
Department at The University of New Mexico in Albuquerque. Questions or comments can be sent to
stomany@unm.edu.

Rev. 11/25/08

Revision to Xilinx 10.1 completed by Brian Zufelt. Brian is a Junior in the Electrical Engineering
Department at The University of New Mexico in Albuquerque.

Acknowledgment:

Wakerly, John F. (2006). Digital Design: Principles and Practices. 4™ edition. New Jersey: Pearson
Prentice Hall.

11

Clock (btn_north)

|Reset (btn_south)

E’} S £

o

Figure 16: Programmed Sequence detector

Input (SW0)

12

