Tutorial 5
4- Bit Counter with Xilinx ISE 9.2 and Spartan 3E

Introduction

This tutorial will introduce a 4-bit counter. With four bits the counter will count from O to 9, ignore
10 to 15, and start over again. The timing of the counter will be controlled by a clock signal that is
chosen by the programmer. There will also be a reset button and a pause switch.

The VHDL code was already written in the last tutorial, but this tutorial will break the code down
into understandable segments. VHDL is an acronym inside of an acronym. The ‘V’ stands for Very
High Speed Integrated Circuit (VHSIC) and ‘HDL’ stands for Hardware Descriptive Language.
VHDL is a powerful language with numerous language constructs that are capable of describing very
complex behavior needed for today’s programmable devices.

Objective

The objective of this lab is to understand the segments of VHDL code and the concepts of a counter.
A button will be used to clock the counter. Whenever the button is pushed the counter value will be
incremented by 1. LED’s will be used to project the numerical value (in binary) of the counter output.
After the proper function of the counter is verified, a 50 MHz clock from the Spartan board will
replace the button and the programmer will adjust the speed so the counter operation can be
visualized from the LED’s.

Process

Create VHDL code in Xilinx ISE 9.2.

Synthesize VHDL code and use ModelSim to check behavior.
Upload counter to Spartan board and increment using button.
Reprogram board using the 50 MHz clock and adjust speed.

el NS

Implementation

1. Start Xilinx ISE 9.2 and create a new project called “tutorial_5.” Choose a project location (folder
on the C drive) that will be easy to find. On the Device Properties window choose the settings
shown in figure 1.

=
EE New Project Wizard - Device Properties

Select the Device and Design Flaw for the Project

Property Mame Walue

Product Categom General Purpose w
Farnily Spartan3E A
Device =C35500E “
Package FG320 w
Speed I-4 v
Top-Level Source Type HOL

Synthesis Tool ®ST WHDLAerilog) W
Simlator Modeksir-<E YHDL v
Preferred Language WHDL W
Enable Enhanced Dezign Summary

Enable Mezzage Filtering il

Dizplay Incremental Meszages [F]

¢ Back] I Mewt »] [Cancel

Figure 1 New Project Wizard - Device Properties settings.

Click “Next>" until the Summary window appears, then click “Finish.”

2. Under the “Project” menu select “New Source...” In the Select Source Type window, highlight
“VHDL Module” and enter the file name “counter”. Click “Next>".

=
ES New Source Wizard - Select Source Type

q IP [Caoreaen f Architecture Wizard)
o] Schematic

Y | Werilog Module File name:

T YHDL Module |counter |
WHDL Library Lesers
P |WVHDL Package
WHDL Test Bﬂmh CAFPGAMutorial5]
| Embedded Processar

&dd to project

< Back Eext ¥ l [Cancel

Figure 2 Creating a new source with the New Source Wizard.

In the Define Module window, list the port names in the “Port Name” Column. The ports are the
lines going into and out of the device. Specify whether the port is an input (in) or an output (out)
in the “Direction” column. The ‘inout’ selection will not be used in this tutorial. The box in the
“Bus” column gets checked if the line will carry more than one bit. If “Bus” is selected, specify
the most significant bit (MSB) and the least significant bit (LSB) in the appropriate column.
Figure 3 shows the setup for the counter. Notice all ports carry one bit except for ‘count_out’,
which will carry four bits (3 downto 0). When finished entering data, click “Next>".

[P p—y .-‘
ES New Source Wizard - Define Module Q|E|g|
Entity Mame f.counter |
Architecture Mame -lBehaviDraI
Fort Mame Direction Buz M5B LSE -~
clk. fin +]
reset Ein +]
pause iin + (]
count_out éuut w 31 i]
fin]
Ein ~]
lin + (]
Ein ~]
fin + (]
[éin ~] |
(o (e] [

Figure 3 Counter setup in the Define Module window.

On the Summary window, click “Finish”. The counter.vhd file will appear in the ISE workspace
along with a design summary. Go ahead and close the design summary by right clicking on the
“Design Summary” tab and selecting “Close”.

There are three basic parts to a VHDL file.

i. library IEEE
This is where libraries are declared. Libraries allow the use of certain commands

and operators.

ii. entity “entity name” is
This is where the inputs and outputs are defined.

iii. architecture “architecture name” of “entity name” is
This is where we define the entity’s behavior using VHDL.

ISE’s New Source Wizard took care of the library declarations and the entity. The programmer
will write the architecture that defines the devices behavior.

5. The first part of writing the architecture is to declare some signals. Think of a signal as a wire that
carries data between logic circuits that make up the counter. Signals exist within the device and
are not inputs or outputs. That is why signals are not declared in the entity.

Three signals will be declared. A signal to carry the value of the counter called ‘temp_count’, a
signal to carry the adjusted clock signal called ‘slow_clk’, and a signal that determines how much
the clock will be slowed called ‘clk_divide’.

The signals are declared after the architecture statement and before the begin command:

architecture Behavioral of counter is
signal declarations go here

begin

The syntax of a signal declaration looks like this:

signal signal name : type_name := “expression” ;

Here are the signal declarations to type into the architecture:

signal temp_count : std_logic_vector (3 downto 0) := “0000"” ;
signal slow_clk : std_logic ;
signal clk_divider : std_logic_vector(l downto 0) := “00”;

Signal ‘temp_count’ is of type ‘std_logic_vector’ which carries 4 bits. The bits are given an initial
value of “0000”. Notice the expression in enclosed in double quotes (‘). This is the case for
expressions of multiple bits. When writing an expression for a single bit the syntax calls for single
quotes (*’). This is a common syntax error when writing VHDL code.

Signal ‘slow_clk’ is of type ‘std_logic’ and no initial condition is specified. Do not forget the
semicolon at the end of each declaration.

Signal ‘clk_divide’ is of type ‘std_logic_vector’ which carries 2 bits. The bits are given an initial
value of “00”.

Checking syntax after each bit of programming is a good habit to get into. It is much easier to
trouble shoot small sections of code rather than writing the whole program and then going back to
find an error. To check syntax in ISE, expand the “Synthesize - XST” process in the Processes
window and double click on the “Check Syntax™ process. A green checkmark will appear next to
the process icon if no errors are found. Errors that are found will be displayed in the ISE
Transcript window along the bottom of the screen.

Save the changes in the VHDL file and check the syntax before going on to step 6.

Processes for counter - Behavioral L

¥ Design Utiities
‘%‘ Usger Constraints
=-f2 Sunthesize - <ST
@ Wiew Synthesis Repart
[5] View RTL Schematic
@ Yiew Technaology 5chematic

e Check "* ik

P2 Generate'Post-Synthesis Simulation Model
2 Implement Diesign A

Figure 4 Checking VHDL syntax in ISE.

6. In VHDL, the most common way to implement sequential circuits is by using a process. There
can be multiple processes in a design. All processes will execute concurrently. A process
communicates with the rest of the design using signals or ports declared outside of the process
(this was done in step 5). A process is activated when there is a change in a signal that has been
predefined in a sensitivity list. Two processes will define the behavior of the counter.

Below the signal declarations, the command word ‘begin’ declares the beginning of ‘Behavioral’,
which is the name that was given to the architecture. Below “begin”, enter the first process for the
clock divider as shown below.

clk_division : process (clk, clk_divider)

begin
if clk'event and clk = '1l' then
clk_divider <= clk_divider + 1;
end if;

slow_clk <= clk_divider (1) ;

end process;

Here is the explanation of the ‘clk_division’ process:

a. clk_division : process (clk, clk_divider)
The name of the process is ‘clk_division’ and the sensitivity list includes the ‘clk’ input.
The process will run every time the clk or clk_divider signal changes.

b. begin
This begins the code that describes the process.

c. if clk’event and clk = ‘1’ then
clk_divider <= clk_divider + 1;
end if;

If the ‘clk’ signal is a rising edge then ‘clk_divider’ gets incremented.

d. slow_clk <= clk_divider(1l);
‘slow_clk’ gets the MSB (most significant bit) of the ‘clk_divider’ signal. The more bits
that ‘clk_divider’ has, the longer the ‘slow_clk’ period will be.

e. end process;
This is the end command that goes at the end of each process. It is the termination of the
begin command.

7. The next process defines the counting. It follows much of the same syntax but uses several more
‘if” statements. Type the following process.

counting : process(reset, pause, slow_clk, temp_count)

begin
if reset = '1l' then
temp_count <= "0000";
elsif pause = 'l' then
temp_count <= temp_count;
else

if slow_clk'event and slow_clk= '1l' then
if temp_count < 9 then
temp_count <= temp_count + 1;
else
temp_count <= "0000";
end if;
end if;
end if;

count_out <= temp_count;

end process;

Here is the explanation of the counting process. The first, second, and last lines have been
omitted. Except for the names chosen by the programmer, the lines are in all processes.

a. if reset = ‘1’ then
temp_count <= “0000";
If ‘reset’ is high then ‘temp_count’ gets zero (counter is reset). This is not dependent on a
clock signal so the ‘reset’ is asynchronous.

b. elsif pause = ‘1’ then
temp_count <= temp_count;
If ‘pause’ is high then ‘temp_count’ gets ‘temp_count’ (counter doesn’t change). This
‘pause’ signal is also asynchronous. (the elsif spelling is intentional, do not use elseif)

c. else
if slow_clk’event and slow_clk = ‘1’ then
If ‘reset’ and ‘pause’ are low then ‘slow_clk’ is checked for a rising edge. The process
drops into the next if statement if a rising edge is detected.

d. if temp_count < 9 then
temp_count <= temp_count + 1;
else
temp_count <= “0000";
end if;
‘temp_count’ will be incremented if it has a value of less than nine. If equal to or greater
than nine, temp count gets zero.

€. end if;
end if;
Each ‘if” statement must be closed with an ‘end if’. This can get tricky when you have
several if statements inside of each other. Indenting (tab) the text helps keep track of the
hierarchy of the ‘if” statements.

f. count_out <= temp_count;
‘count_out’ gets the value of ‘temp_count’. This is the output of the counter.

Below the processes is the final line of the VHDL module, which terminates the ‘begin’
command that appears just below the architecture declaration.

end Behavioral;

Save the changes then double click the “Synthesize - XST” process in the Processes window to
synthesize counter.vhd. A syntax check will be done as part of this process and any errors will
appear in the ISE Transcript window. A green check mark will appear next to the process icon if
no errors are found.

9. A testbench is a VHDL file that tests the behavior of a particular device. Like all VHDL files, it
has three basic parts: the library declarations, the entity, and the architecture. The New Source
Wizard will take care of the library declarations and the entity. The process will be designed to
test the counter.

Under the “Project” menu select “New Source” or click on the New Source button on the Project
Navigator toolbar.

%@’ Eit'i'té

Figure 5 New Source Button.

In the New Source Wizard - Select Source Type window, select “VHDL Test Bench”, enter
“counter_tb” as the file name and then click “Next>". It is common practice to give a testbench
file the same name as the device it is testing. Adding “tb” to the file name identifies it as a
testbench.

-
E= New Source Wizard - Select Source Type
EMM File

%] IP [Coregen & Architecture Wizard)

File: narme:

|counter_tb |

Location:

CAFPGAMutarial_5 [[.]

Add to project

< Back [NETd{} I ’ Cancel
bt

Figure 6 Creating a testbench with the New Sources Wizard.

In the Associate Source window ‘counter’ already highlighted because it is the only source
available. Click “Next>", and then click “Finish” on the Summary window.

The testbench will open in the ISE workspace for editing. The New Sources Wizard has made the
library declarations, and taken care of the entity. Writing the architecture is all that remains.

10. The architecture starts with a component declaration. This makes the counter available for use
inside the testbench entity. Signals are declared after the component declaration. The signals will
connect the counter to the testbench entity.

Below the signal declarations, declare a time constant that will define the period of the clock
signal.

constant clk_period : time := 10 ns;

The New Source Wizard has already begun the architecture by instantiating the counter as the
unit under test (uut). The instantiation wires the counter to the testbench.

Below the instantiation, a process called “tb” has been started. Change the name from “tb” to
“clock” and delete the existing commands inside the process. Create a process that will
complement the ‘clk’ signal every 10 ns (clk_period). This will give the clock signal a period of
20 ns.

clock : PROCESS
BEGIN

clk <= NOT clk;
wait for clk_period;

END PROCESS;

The next process, “pause_test”, will control the pause signal. Pause will stay low for 74
clk_periods (37 clock signal periods) and then go high for 6 clk_periods (3 clock signal periods).

pause_test : PROCESS

BEGIN
pause <= '0"';

wait for clk_period*74;
pause <= '1"';

wait for clk_period*6;

END PROCESS;

The last process, “reset_test”, will control the reset signal. Reset will be low for 53 clock signal
periods and then go high for 1 clock signal period.

reset_test : PROCESS

BEGIN
reset <= '0"';

wait for clk_period*106;
reset <= '1"';

wait for clk_period*2;

END PROCESS;

The last line of the testbench is the end command which is the termination of the begin command
referring to architecture behavior. Save the changes made to the testbench file.

. Simulate the behavior of the counter using ModelSim. Select “Behavioral Simulation” from the
pulldown menu in the Sources window and highlight counter_tb.vhd. This will bring up the
“ModelSim Simulator” toolbox in the Processes window. Click on the small box with the “+”
symbol next to the toolbox and then double click on “Simulate Behavioral Model”.

Figure 7 Pulldown menu in 'Sources' window.

ModelSim will generate a behavioral waveform if there are no errors in the testbench. The

Sources for: | Behavioral Simulation . b Processes for counter_th_vhd - behavic
'n?'j tutarial 5 [Add Existing Source

= £ #c3s500e-4fg320 [Create Mew Source
i counter_th_vhd - behavior [counter_th.vhd] = $‘ MaodelSim Simulatar

ehavioral Model

Simula rE_El

@—:c Proceszes

Figure 8 Starting ModelSim.

waveform can be used to test the counter and aid in its design.

If there are errors, Modelsim’s Transcript window will display information to help troubleshoot
the problem. Figure 10 shows the transcript error message generated when a semicolon was

removed from line 54 in counter_tb.vhd.

10

- Campiling entity counter_th_vhd

- Compiling architecture behavior af counter_tb_vhd

= Error; counter_th.vhd[55]: near "walt'; expecting: ;'

== Error C:AModeltech_xe_starterwin32roemyoom failed.
Error in macro . fcounter_th_vhd fdo line B

C:./Modeltech_=e_starterwin32soemvocom faled.

while executing

Figure 9 Error message in Transcript window.

Once the waveform has been generated, undock the Wave window and zoom out to see the
features of the waveform.

; w | o k

Figure 10 ModelSim zoom tools.

The wave representing ‘count_out’ is displayed in binary. The data can be displayed in an easier
to read format. To change to a base ten display, right click on the wave name in the left column,
select “radix”, and select “unsigned”.

4

v

+i4p foounter th vhd/count aut | 0100
Object Declaration

Symbolic

Farmat r Binary
Oital
Cut Ot Dz;mal
Copy Chtl-C
Dielet Hexadtecimal
wEE A5C|
[nzert Divider Drefauilt
|rizert Breakpoint
Faorce...
MaoFaorce
Clack. ..
Properties. ..
|

Figure 11 Changing radix of count_out waveform.

11

12. Once the counter is working properly it is time to create a UCF (user constraint file) and assign
the FPGA pins to the counter’s inputs and outputs. The clock and reset will be assigned to the
north and south buttons. The pause will be assigned to switch 0, and bits 0-3 of count_out will be
assigned to LED’s 0-3. Pin assignments can be found in the Spartan 3E Starter User Guide

Select “Synthesis/Implementation” from the pulldown menu on the Sources window. In the
Processes window expand the “User Constraints” toolbox and double click on “Assign Package
Pins”. Choose “Yes” when Project Navigator asks to add a UCF file to the project.

Processes for: counter - Behavioral -
1 Add Exizting Source

[Create Mew Source
= Yiew Design Summary
B Design Utiities
=] ﬁ Usger Constraintz
@ Create Timing Constraints

Azzign Package Pinsg
Create frea Eomtra

[£1 Fdit Canshaints [Test w

Figure 12 Starting Xilinx Pace to create UCF.

After the Xilinx PACE program starts, resize the Design Object List - I/O Pins window until the
Termination column is visible. Enter the pin assignments in the Loc column. The Spartan
board’s buttons need the “PULLDOWN?” constraint to function properly. Enter “PULLDOWN”
in the Termination column for ‘clk’ and ‘reset’. Refer to figure 14.

B Design Object List - I/0 Pins

| 170 Name [1/0 Direction] Loc |Bank| 1#0 S5td. | Vrel|Vcco| Drive St Termination |
B [nput W4 BAME, PULLD O
. count_ouks 03 | Dutput F1z BAME,

. count_outs T3 | Dutput E12 BAME,

. count_outs 2 | Dutput ET11 BAME.

. count_outs 3 | Dutput F11 BAME.

B oz [nput L13 BAME,

B reset [rput K17 BAME,
£

Figure 13 Pin assignments in Xilinx PACE.

Click the save button when the pins assignments have been entered. When the Bus Delimiter
window comes up, make sure “XST Default: <> is selected and press “OK”. Close the Xilinx
PACE program.

3 Xilinx PACE - C:\FPGAMutoria
File Edit Yiew IOBs Areas Tools

Bus Delimiter

Select 10 Bus Delimiter

. #5T Default; < »

DS W&o 6|k

" %57 Optional {}

Figure 14 Saving in Xilinx PACE. Figure 15 Select XST Default <>.

12

Double click “Edit Constraints (text)” in the Processes window to view the UCF in the ISE
workspace. This will make it easy to edit the UCF later on in step 15.

Processes for counter - Behavioral

3

‘& Deszign Utilities
=] ‘ﬁ‘ dzer Constraints
Create Timing Canstraints
Azzigh Package Pinz
Create Area Constraints
B Edt rt]
P2 5ynthesize - XS T

Figure 16 Opening the UCF in ISE workspace.

13. Plug the Spartan 3E board into your computer and turn the board’s power on. Expand the
“Generate Programming File” process in the Processes window and double click “Configure
Device iMPACT).

Processes for: top_sequence - Structural
% Design Utilitiss
‘ﬁ‘ User Constraints
P 5unthesize - 35T
21 Implement Design
=] {]@Generate Pragramming File
@@Programming File Generation Feport

|

Generate PROM, ACE, or JTAG File
£ hotfi T]

P Updatz Bitstream with Processor D ata

< | »

E‘—ﬁ Processes |

Figure 17 Selecting iMPACT will run all processes.

[

All the processes will run (this may take a minute or two). Ignore the warning on the “Implement
Design” process. When all the processes have finished, iMPACT will start. Select the top radio
button and click “Finish”.

E iMPACT - Welcome to iMPACT

Fleaze zelect an action from the lizt below

%I:anigure devices uzing Boundary-Scan [TAG]

| Automatically connect to a cable and identify Boundar-Scan chain w

Figure 18 Welcome to iMPACT.

13

iMPACT will run a boundary scan that will appear in the ISE workspace. Assign count.bit to the
FPGA (xc3s500e) and bypass the other two devices.

i i
T A 50w A 50w
a a
wedeslle xcflds xc2cBda
--- file ¥ - --- file ¥ - --- file ¥ -

= Assign New Configuration File

Look in: |29 C:/FPGA/utarial_5/ v & m ek EEE
.. [tutorials_araphics §EIRea= A=

) _nogo (Cywork

B_Hmsgs B:-:st

File name: |n::n:nunter.|:nit |

File type: | All Design Files [it "Bt " nky *.isc * bad] v|

Figure 19 Assigning bit file to the FPGA.

14. Highlight the FPGA icon, right click the white space inside the ISE workspace, and select
“Program...” Click “OK” on the Programming Properties window.

{nl {nl
TOI FoMIume A ECXILINK
]]]
xc3s500e xcflds wc2cbda
counter kit --- file ¥ --- --- file ¥ ---
TOD

Werify
et Device ID
Get Device Signature/Usercode

Asgign Meww Configuration File, ..

Figure 20 Programming the FPGA.

The Spartan board should now be programmed. Pressing the north button will increment the
counter. You may have to press the button a few times because of the clock divider. The four
LED’s represent a four bit binary number. Switch O is the pause and the south button is the reset.
Verify the counter is working properly.

14

15.

16.

Close iMPACT by closing the “Boundary Scan” in the ISE workspace (do not save changes when
prompted).

f ﬁ@ Boundary Scan
sluse Cthers

Figure 21 Closing iMPACT.

If not already done, open the UCF in the ISE workspace by double clicking “Edit Constraints
(text)” in the Processes window.

Connect the Spartan board’s 50 MHz clock to the counter. Edit the line in the UCF that connects
“clk” by removing the “PULLDOWN” constraint and changing “V4” to “C9”. Save the changes
and reprogram the Spartan board (steps 12 and 13).

NET "clk" LOC = "C9";

The counter is now being clocked by the Spartan board’s 50 MHz clock and not the push button.
All other pin assignments are the same.

Notice that all four LED’s appear to be on. They are changing, but because the counter is
operating at a speed of 50 MHz, the changes cannot be seen. Toggle the pause switch on and off
to see that the counter is working.

The clock divider determines the frequency of the slow clock. Basically the slow clock is the
output of the clock divider’s MSB. When the clock divider’s MSB is low then slow clock is low.
When the clock divider’s MSB is high then slow clock is high.

Every rising edge of the clock signal (50 MHz clock) will increment the clock divider. That

means that the frequency of the slow clock is the frequency of the clock signal divided by 2",
where 7 is the number of bits in the clock divider signal. Each period of the slow clock

increments the counter so the time it takes for the counter to increment is 2" divided by the
frequency of the clock signal.

The clock input is tied to the 50 MHz clock and the clock divider signal has two bits. The
frequency of the slow clock is calculated to be 12.5 MHz and the period is 80 ns.

fslow?clk = SOMHZ /(22)

) 1/12.5 MHz=80ns
=12.5MHz

15

12.5 MHz is much too fast. The counter is incrementing every 80ns. If the clock divider is
changed to 24 bits then the slow clock will operate at less than 3 Hz and the counter will
increment every 0.3 seconds.

-fxlow_clk = SOMHZ /(224)

) 1/2.98 Hz=0.34s
=298 Hz

Making the clock divider signal 24 bits will slow the counter enough so the changes can be seen
in the LED’s.

To change the clock divider, start by closing IMPACT (as in step 14) and opening counter.vhd in
the ISE workspace.

Edit the clock divider signal to make it 24 bits. Instead of typing 24 zeros in the initial expression,
hex notation is used (specified by the “x”) so only six zeros are needed.

signal clk_divider : std_logic_vector (23 downto 0) := x"000000";

The other change to make is in the clock division process. The slow clock gets the most
significant bit (MSB) of the clock divider so change the (1) to a (23).

slow_clk <= clk_divider (23);

Save the changes made to counter.vhd and reprogram the Spartan board (steps 12 and 13).

Commented copies of counter.vhd, counter_tb.vhd, and counter.ucf are attached to the back of
this tutorial for reference.

This tutorial was authored by Stephen Tomany. Stephen is a Junior in the Electrical Engineering
Department at The University of New Mexico in Albuquerque. Questions or comments can be sent to
stomany @unm.edu.

Rev. 01/24/08

16

counter.vhd

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity counter is

port (clk : in std_logic;
reset : in std_logic;
pause : in std_logic;
count_out : out std_logic_vector (3 downto 0));

end counter;
architecture Behavioral of counter is

signal temp_count : std_logic_vector (3 downto 0) := x"0";
signal slow_clk : std_logic;

—— Clock divider can be changed to suit application.

—-— Clock (clk) is normally 50 MHz, so each clock cycle

—— 1s 20 ns. A clock divider of 'n' bits will make 1

—— slow_clk cycle equal 2”n clk cycles.

signal clk_divider : std_logic_vector (23 downto 0) := x"000000";

begin

—— Process that makes slow clock go high only when MSB of
—— clk_divider goes high.

clk_division : process (clk, clk_divider)

begin
if (clk = '1l' and clk'event) then
clk_divider <= clk_divider + 1;
end if;

slow_clk <= clk_divider (23);

end process;

counting : process(reset, pause, slow_clk, temp_count)
begin
if reset = 'l' then
temp_count <= "0000"; —— Asynchronous reset.
elsif pause = '1l' then
temp_count <= temp_count; —— Asynchronous count pause.
else
if slow_clk'event and slow_clk ='1l' then -- Counting state
if temp_count < 9 then
temp_count <= temp_count + 1; —- Counter increase
else
temp_count <= "0000"; —— Rollover to zero

17

end if;

end if;
end if;
count_out <= temp_count; —— Output
end process;
end Behavioral; —— End module.

18

counter_tb.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

USE ieee.std_logic_unsigned.all;
USE ieee.numeric_std.ALL;

ENTITY counter_tb_vhd IS
END counter_tb_vhd;

ARCHITECTURE behavior OF counter_tb_vhd IS

—— Component Declaration for the Unit Under Test (UUT)
COMPONENT counter
PORT (
clk : IN std_logic;
reset : IN std_logic;
pause : IN std_logic;
count_out : OUT std_logic_vector (3 downto 0)
)
END COMPONENT;

——Inputs

SIGNAL clk : std_logic := '0';

SIGNAL reset : std_logic := '0';

SIGNAL pause : std_logic := '0';

—--Outputs

SIGNAL count_out : std_logic_vector (3 downto 0);
constant clk_period : time := 10 ns;

BEGIN

—-— Instantiate the Unit Under Test (UUT)
uut: counter PORT MAP (

clk => clk,

reset => reset,

pause => pause,

count_out => count_out

)i

clock : PROCESS
BEGIN

clk <= NOT clk;
wait for clk_period;

END PROCESS;

pause_test : PROCESS

BEGIN
pause <= '0"';

wait for clk_period*74;
pause <= '1"';

wait for clk_period*6;

19

END;

END PROCESS;

reset_test : PROCESS

BEGIN
reset <= '0"';

wait for clk_period*106;
reset <= '1"';

wait for clk_period*2;

END PROCESS;

20

counter.ucf

UCF for the 4 bit counter

=+

Change "clk" pin assignment to "V4" (BTN_NORTH) to
manually control the clock signal (don't forget "PULLDOWN")

Change "clk" to "C9" (CLK_50MHz) to run counter off
50MHz clock

NET "clk" LOC = "C9"

NET "count_out<0>" LOC = "F12" ; # LED<O>

NET "count_out<l>" LOC = "E12" ; # LED<1>

NET "count_out<2>" LOC = "E11" ; # LED<2>

NET "count_out<3>" LOC = "F11" ; # LED<3>

NET "pause" LOC = "L13" ; # SW<0>

NET "reset" LOC = "K17" | PULLDOWN ;

21

