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Tutorial 5 
4- Bit Counter with Xilinx ISE 9.2 and Spartan 3E 

 

Introduction 
 

This tutorial will introduce a 4-bit counter. With four bits the counter will count from 0 to 9, ignore 

10 to 15, and start over again. The timing of the counter will be controlled by a clock signal that is 

chosen by the programmer. There will also be a reset button and a pause switch.  

 

The VHDL code was already written in the last tutorial, but this tutorial will break the code down 

into understandable segments. VHDL is an acronym inside of an acronym.  The ‘V’ stands for Very 

High Speed Integrated Circuit (VHSIC) and ‘HDL’ stands for Hardware Descriptive Language. 

VHDL is a powerful language with numerous language constructs that are capable of describing very 

complex behavior needed for today’s programmable devices. 

 

 

Objective 
 

The objective of this lab is to understand the segments of VHDL code and the concepts of a counter. 

A button will be used to clock the counter. Whenever the button is pushed the counter value will be 

incremented by 1. LED’s will be used to project the numerical value (in binary) of the counter output. 

After the proper function of the counter is verified, a 50 MHz clock from the Spartan board will 

replace the button and the programmer will adjust the speed so the counter operation can be 

visualized from the LED’s. 

 

 

Process 
 

1. Create VHDL code in Xilinx ISE 9.2. 

2. Synthesize VHDL code and use ModelSim to check behavior. 

3. Upload counter to Spartan board and increment using button. 

4. Reprogram board using the 50 MHz clock and adjust speed. 

 

 

Implementation 
 

1. Start Xilinx ISE 9.2 and create a new project called “tutorial_5.” Choose a project location (folder 

on the C drive) that will be easy to find. On the Device Properties window choose the settings 

shown in figure 1.  
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Figure 1 New Project Wizard - Device Properties settings. 

 

Click “Next>” until the Summary window appears, then click “Finish.” 

 

 

2. Under the “Project” menu select “New Source…” In the Select Source Type window, highlight 

“VHDL Module” and enter the file name “counter”. Click “Next>”. 

 

 

Figure 2 Creating a new source with the New Source Wizard. 
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3. In the Define Module window, list the port names in the “Port Name” Column. The ports are the 

lines going into and out of the device. Specify whether the port is an input (in) or an output (out) 

in the “Direction” column. The ‘inout’ selection will not be used in this tutorial. The box in the 

“Bus” column gets checked if the line will carry more than one bit. If “Bus” is selected, specify 

the most significant bit (MSB) and the least significant bit (LSB) in the appropriate column. 

Figure 3 shows the setup for the counter. Notice all ports carry one bit except for ‘count_out’, 

which will carry four bits (3 downto 0). When finished entering data, click “Next>”. 

 

 

 

Figure 3 Counter setup in the Define Module window. 

 

 

On the Summary window, click “Finish”. The counter.vhd file will appear in the ISE workspace 

along with a design summary. Go ahead and close the design summary by right clicking on the 

“Design Summary” tab and selecting “Close”. 

 

 

4. There are three basic parts to a VHDL file. 

 

i. library IEEE 

This is where libraries are declared. Libraries allow the use of certain commands 

and operators. 

 

ii. entity “entity name” is 

This is where the inputs and outputs are defined. 

 

iii. architecture “architecture name” of “entity name” is 

This is where we define the entity’s behavior using VHDL. 

 

ISE’s New Source Wizard took care of the library declarations and the entity. The programmer 

will write the architecture that defines the devices behavior. 
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5. The first part of writing the architecture is to declare some signals. Think of a signal as a wire that 

carries data between logic circuits that make up the counter. Signals exist within the device and 

are not inputs or outputs. That is why signals are not declared in the entity. 

 

Three signals will be declared. A signal to carry the value of the counter called ‘temp_count’, a 

signal to carry the adjusted clock signal called ‘slow_clk’, and a signal that determines how much 

the clock will be slowed called ‘clk_divide’. 

 

The signals are declared after the architecture statement and before the begin command: 

 
 

architecture Behavioral of counter is 

 

  signal declarations go here 

 

begin 

 

 

 

The syntax of a signal declaration looks like this: 

 
 

signal signal name : type_name := “expression” ; 

 

 

 

Here are the signal declarations to type into the architecture: 

 
 

signal temp_count : std_logic_vector(3 downto 0) := “0000” ; 

signal slow_clk : std_logic ; 

signal clk_divider : std_logic_vector(1 downto 0) := “00”; 

 

 

 

Signal ‘temp_count’ is of type ‘std_logic_vector’ which carries 4 bits. The bits are given an initial 

value of “0000”. Notice the expression in enclosed in double quotes (“”). This is the case for 

expressions of multiple bits. When writing an expression for a single bit the syntax calls for single 

quotes (‘’). This is a common syntax error when writing VHDL code. 

 

Signal ‘slow_clk’ is of type ‘std_logic’ and no initial condition is specified. Do not forget the 

semicolon at the end of each declaration. 

 

Signal ‘clk_divide’ is of type ‘std_logic_vector’ which carries 2 bits. The bits are given an initial 

value of “00”. 

 

Checking syntax after each bit of programming is a good habit to get into. It is much easier to 

trouble shoot small sections of code rather than writing the whole program and then going back to 

find an error. To check syntax in ISE, expand the “Synthesize - XST” process in the Processes 

window and double click on the “Check Syntax” process. A green checkmark will appear next to 

the process icon if no errors are found. Errors that are found will be displayed in the ISE 

Transcript window along the bottom of the screen. 



 5 

Save the changes in the VHDL file and check the syntax before going on to step 6. 

 

 

 

Figure 4 Checking VHDL syntax in ISE. 

 

 

6. In VHDL, the most common way to implement sequential circuits is by using a process. There 

can be multiple processes in a design. All processes will execute concurrently. A process 

communicates with the rest of the design using signals or ports declared outside of the process 

(this was done in step 5). A process is activated when there is a change in a signal that has been 

predefined in a sensitivity list. Two processes will define the behavior of the counter. 

 

Below the signal declarations, the command word ‘begin’ declares the beginning of ‘Behavioral’, 

which is the name that was given to the architecture. Below “begin”, enter the first process for the 

clock divider as shown below. 

 

 

 
clk_division : process (clk, clk_divider) 

 

begin 

 

 if clk'event and clk = '1' then 

  clk_divider <= clk_divider + 1; 

 end if; 

 

 slow_clk <= clk_divider(1); 

 

end process; 

 

 

 

 

Here is the explanation of the ‘clk_division’ process: 

 

a. clk_division : process (clk, clk_divider) 

The name of the process is ‘clk_division’ and the sensitivity list includes the ‘clk’ input. 

The process will run every time the clk or clk_divider signal changes. 
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b. begin 

This begins the code that describes the process. 

 

c. if clk’event and clk = ‘1’ then 

 clk_divider <= clk_divider + 1; 

 end if; 

If the ‘clk’ signal is a rising edge then ‘clk_divider’ gets incremented. 

 

d. slow_clk <= clk_divider(1); 

‘slow_clk’ gets the MSB (most significant bit) of the ‘clk_divider’ signal. The more bits 

that ‘clk_divider’ has, the longer the ‘slow_clk’ period will be. 

 

e. end process; 

This is the end command that goes at the end of each process. It is the termination of the 

begin command. 

 

 

7. The next process defines the counting. It follows much of the same syntax but uses several more 

‘if’ statements. Type the following process. 

 

 
 

counting : process(reset, pause, slow_clk, temp_count) 

 

begin 

 

 if reset = '1' then 

 temp_count <= "0000"; 

 elsif pause = '1' then 

 temp_count <= temp_count; 

 else 

 if slow_clk'event and slow_clk= '1' then 

    if temp_count < 9 then 

  temp_count <= temp_count + 1; 

    else 

  temp_count <= "0000"; 

    end if; 

 end if; 

 end if; 

 

count_out <= temp_count; 

 

end process; 

 

 

 

Here is the explanation of the counting process. The first, second, and last lines have been 

omitted. Except for the names chosen by the programmer, the lines are in all processes. 

: 

a. if reset = ‘1’ then 

  temp_count <= “0000”; 

If ‘reset’ is high then ‘temp_count’ gets zero (counter is reset). This is not dependent on a 

clock signal so the ‘reset’ is asynchronous. 
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b. elsif pause = ‘1’ then 

temp_count <= temp_count; 

If ‘pause’ is high then ‘temp_count’ gets ‘temp_count’ (counter doesn’t change). This 

‘pause’ signal is also asynchronous. (the elsif spelling is intentional, do not use elseif) 

 

c. else 
if slow_clk’event and slow_clk = ‘1’ then 

If ‘reset’ and ‘pause’ are low then ‘slow_clk’ is checked for a rising edge. The process 

drops into the next if statement if a rising edge is detected. 

 

d. if temp_count < 9 then 

temp_count <= temp_count + 1; 

else 

temp_count <= “0000”; 

end if; 

‘temp_count’ will be incremented if it has a value of less than nine. If equal to or greater 

than nine, temp count gets zero. 

 

e.  end if; 
end if; 

Each ‘if’ statement must be closed with an ‘end if’. This can get tricky when you have 

several if statements inside of each other. Indenting (tab) the text helps keep track of the 

hierarchy of the ‘if’ statements. 

 

f. count_out <= temp_count; 

‘count_out’ gets the value of ‘temp_count’. This is the output of the counter. 

 

 

 

 

8. Below the processes is the final line of the VHDL module, which terminates the ‘begin’ 

command that appears just below the architecture declaration. 

 

 
 

end Behavioral; 

 

 

 

Save the changes then double click the “Synthesize - XST” process in the Processes window to 

synthesize counter.vhd. A syntax check will be done as part of this process and any errors will 

appear in the ISE Transcript window. A green check mark will appear next to the process icon if 

no errors are found. 
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9. A testbench is a VHDL file that tests the behavior of a particular device. Like all VHDL files, it 

has three basic parts: the library declarations, the entity, and the architecture. The New Source 

Wizard will take care of the library declarations and the entity. The process will be designed to 

test the counter. 

 

Under the “Project” menu select “New Source” or click on the New Source button on the Project 

Navigator toolbar. 

 

 

 

Figure 5 New Source Button. 

 

 

In the New Source Wizard - Select Source Type window, select “VHDL Test Bench”, enter 

“counter_tb” as the file name and then click “Next>”. It is common practice to give a testbench 

file the same name as the device it is testing. Adding “tb” to the file name identifies it as a 

testbench. 

 

 

 

Figure 6 Creating a testbench with the New Sources Wizard. 

 

 

In the Associate Source window ‘counter’ already highlighted because it is the only source 

available. Click “Next>”, and then click “Finish” on the Summary window. 

 

The testbench will open in the ISE workspace for editing. The New Sources Wizard has made the 

library declarations, and taken care of the entity. Writing the architecture is all that remains. 



 9 

10. The architecture starts with a component declaration. This makes the counter available for use 

inside the testbench entity. Signals are declared after the component declaration. The signals will 

connect the counter to the testbench entity. 

 

Below the signal declarations, declare a time constant that will define the period of the clock 

signal. 

 

 
 

constant clk_period : time := 10 ns; 

 

 

 

The New Source Wizard has already begun the architecture by instantiating the counter as the 

unit under test (uut). The instantiation wires the counter to the testbench. 

 

Below the instantiation, a process called “tb” has been started. Change the name from “tb” to 

“clock” and delete the existing commands inside the process. Create a process that will 

complement the ‘clk’ signal every 10 ns (clk_period). This will give the clock signal a period of 

20 ns. 

 

 
 

clock : PROCESS 

 BEGIN 

 

 clk <= NOT clk; 

  wait for clk_period; 

   

 END PROCESS; 

 

 

 

The next process, “pause_test”, will control the pause signal. Pause will stay low for 74 

clk_periods (37 clock signal periods) and then go high for 6 clk_periods (3 clock signal periods). 

 

 
 

pause_test : PROCESS 

 BEGIN 

  

 pause <= '0'; 

  wait for clk_period*74; 

 pause <= '1'; 

  wait for clk_period*6; 

  

 END PROCESS; 
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The last process, “reset_test”, will control the reset signal. Reset will be low for 53 clock signal 

periods and then go high for 1 clock signal period.  

 

 
reset_test : PROCESS 

 BEGIN 

  

 reset <= '0'; 

  wait for clk_period*106; 

 reset <= '1'; 

  wait for clk_period*2; 

  

 END PROCESS; 

 

 

 

The last line of the testbench is the end command which is the termination of the begin command 

referring to architecture behavior. Save the changes made to the testbench file. 

 

 

11. Simulate the behavior of the counter using ModelSim. Select “Behavioral Simulation” from the 

pulldown menu in the Sources window and highlight counter_tb.vhd. This will bring up the 

“ModelSim Simulator” toolbox in the Processes window. Click on the small box with the “+” 

symbol next to the toolbox and then double click on “Simulate Behavioral Model”. 

 

 

Figure 7 Pulldown menu in 'Sources' window. 

 

Figure 8 Starting ModelSim. 

 

 

 

ModelSim will generate a behavioral waveform if there are no errors in the testbench. The 

waveform can be used to test the counter and aid in its design. 

 

If there are errors, Modelsim’s Transcript window will display information to help troubleshoot 

the problem. Figure 10 shows the transcript error message generated when a semicolon was 

removed from line 54 in counter_tb.vhd. 
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Figure 9 Error message in Transcript window. 

 

 

Once the waveform has been generated, undock the Wave window and zoom out to see the 

features of the waveform. 

 

 

Figure 10 ModelSim zoom tools. 

 

The wave representing ‘count_out’ is displayed in binary. The data can be displayed in an easier 

to read format. To change to a base ten display, right click on the wave name in the left column, 

select “radix”, and select “unsigned”. 

 

 

Figure 11 Changing radix of count_out waveform. 
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12. Once the counter is working properly it is time to create a UCF (user constraint file) and assign 

the FPGA pins to the counter’s inputs and outputs. The clock and reset will be assigned to the 

north and south buttons. The pause will be assigned to switch 0, and bits 0-3 of count_out will be 

assigned to LED’s 0-3. Pin assignments can be found in the Spartan 3E Starter User Guide 

 

Select “Synthesis/Implementation” from the pulldown menu on the Sources window. In the 

Processes window expand the “User Constraints” toolbox and double click on “Assign Package 

Pins”. Choose “Yes” when Project Navigator asks to add a UCF file to the project. 

 

 

Figure 12 Starting Xilinx Pace to create UCF. 

 

After the Xilinx PACE program starts, resize the Design Object List - I/O Pins window until the 

Termination column is visible. Enter the pin assignments in the Loc column. The Spartan 

board’s buttons need the “PULLDOWN” constraint to function properly. Enter “PULLDOWN” 

in the Termination column for ‘clk’ and ‘reset’. Refer to figure 14. 

 

 

Figure 13 Pin assignments in Xilinx PACE. 

 

Click the save button when the pins assignments have been entered. When the Bus Delimiter 

window comes up, make sure “XST Default: <>” is selected and press “OK”. Close the Xilinx 

PACE program. 

 

 
Figure 14 Saving in Xilinx PACE. 

 
Figure 15 Select XST Default <>. 
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Double click “Edit Constraints (text)” in the Processes window to view the UCF in the ISE 

workspace. This will make it easy to edit the UCF later on in step 15. 

 

 

Figure 16 Opening the UCF in ISE workspace. 

 

 

13. Plug the Spartan 3E board into your computer and turn the board’s power on. Expand the 

“Generate Programming File” process in the Processes window and double click “Configure 

Device (iMPACT). 

 

 

Figure 17 Selecting iMPACT will run all processes. 

 

 

All the processes will run (this may take a minute or two). Ignore the warning on the “Implement 

Design” process. When all the processes have finished, iMPACT will start.  Select the top radio 

button and click “Finish”. 

 

 

 

Figure 18 Welcome to iMPACT. 
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iMPACT will run a boundary scan that will appear in the ISE workspace. Assign count.bit to the 

FPGA (xc3s500e) and bypass the other two devices. 

 

 

Figure 19 Assigning bit file to the FPGA. 

 

 

14. Highlight the FPGA icon, right click the white space inside the ISE workspace, and select 

“Program…” Click “OK” on the Programming Properties window. 

 

 

Figure 20 Programming the FPGA. 

 

 

The Spartan board should now be programmed. Pressing the north button will increment the 

counter. You may have to press the button a few times because of the clock divider. The four 

LED’s represent a four bit binary number. Switch 0 is the pause and the south button is the reset. 

Verify the counter is working properly. 
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15. Close iMPACT by closing the “Boundary Scan” in the ISE workspace (do not save changes when 

prompted). 

 

 

Figure 21 Closing iMPACT. 

 

 

If not already done, open the UCF in the ISE workspace by double clicking “Edit Constraints 

(text)” in the Processes window. 

 

Connect the Spartan board’s 50 MHz clock to the counter. Edit the line in the UCF that connects 

“clk” by removing the “PULLDOWN” constraint and changing “V4” to “C9”. Save the changes 

and reprogram the Spartan board (steps 12 and 13). 

 
 

NET "clk" LOC = "C9"; 

 

 

 

The counter is now being clocked by the Spartan board’s 50 MHz clock and not the push button. 

All other pin assignments are the same. 

 

Notice that all four LED’s appear to be on. They are changing, but because the counter is 

operating at a speed of 50 MHz, the changes cannot be seen. Toggle the pause switch on and off 

to see that the counter is working. 

 

 

16. The clock divider determines the frequency of the slow clock. Basically the slow clock is the 

output of the clock divider’s MSB. When the clock divider’s MSB is low then slow clock is low. 

When the clock divider’s MSB is high then slow clock is high.  

 

Every rising edge of the clock signal (50 MHz clock) will increment the clock divider. That 

means that the frequency of the slow clock is the frequency of the clock signal divided by n2 , 

where n is the number of bits in the clock divider signal. Each period of the slow clock 

increments the counter so the time it takes for the counter to increment is n2  divided by the 

frequency of the clock signal. 

 

The clock input is tied to the 50 MHz clock and the clock divider signal has two bits. The 

frequency of the slow clock is calculated to be 12.5 MHz and the period is 80 ns. 

 

MHz

MHzf clkslow

5.12

)2(/50 2

_

=

=

   nsMHz 805.12/1 =  
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12.5 MHz is much too fast. The counter is incrementing every 80ns. If the clock divider is 

changed to 24 bits then the slow clock will operate at less than 3 Hz and the counter will 

increment every 0.3 seconds. 

 

Hz

MHzf clkslow

98.2

)2(/50 24

_

=

=

   sHz 34.098.2/1 =  

 

 

Making the clock divider signal 24 bits will slow the counter enough so the changes can be seen 

in the LED’s. 

 

To change the clock divider, start by closing iMPACT (as in step 14) and opening counter.vhd in 

the ISE workspace. 

 

Edit the clock divider signal to make it 24 bits. Instead of typing 24 zeros in the initial expression, 

hex notation is used (specified by the “x”) so only six zeros are needed.  

 
 

signal clk_divider : std_logic_vector(23 downto 0) := x"000000"; 

 

 

 

The other change to make is in the clock division process. The slow clock gets the most 

significant bit (MSB) of the clock divider so change the (1) to a (23). 

 
 

slow_clk <= clk_divider(23); 

 

 

 

Save the changes made to counter.vhd and reprogram the Spartan board (steps 12 and 13).  

 

Commented copies of counter.vhd, counter_tb.vhd, and counter.ucf are attached to the back of 

this tutorial for reference. 

 

 

 

 

 

 

 

 

 

This tutorial was authored by Stephen Tomany. Stephen is a Junior in the Electrical Engineering 

Department at The University of New Mexico in Albuquerque. Questions or comments can be sent to 

stomany@unm.edu. 

 

Rev. 01/24/08 
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counter.vhd 
 

 
library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

 

entity counter is 

 

port ( clk : in std_logic; 

   reset : in std_logic; 

   pause : in std_logic; 

   count_out : out std_logic_vector(3 downto 0)); 

end counter; 

 

architecture Behavioral of counter is 

 

signal temp_count : std_logic_vector(3 downto 0) := x"0";  

signal slow_clk : std_logic; 

 

-- Clock divider can be changed to suit application. 

-- Clock (clk) is normally 50 MHz, so each clock cycle 

-- is 20 ns. A clock divider of 'n' bits will make 1 

-- slow_clk cycle equal 2^n clk cycles.  

signal clk_divider : std_logic_vector(23 downto 0) := x"000000"; 

 

begin  

 

-- Process that makes slow clock go high only when MSB of  

-- clk_divider goes high. 

 

clk_division : process (clk, clk_divider) 

 

begin 

 if (clk = '1' and clk'event) then 

  clk_divider <= clk_divider + 1; 

 end if; 

  

 slow_clk <= clk_divider(23); 

 

end process; 

 

 

counting : process(reset, pause, slow_clk, temp_count) 

 

begin 

 if reset = '1' then  

 temp_count <= "0000";   -- Asynchronous reset.  

 elsif pause = '1' then 

  temp_count <= temp_count;  -- Asynchronous count pause. 

 else 

  

  if slow_clk'event and slow_clk ='1' then  -- Counting state 

   if temp_count < 9 then  

    temp_count <= temp_count + 1; -- Counter increase  

   else  

    temp_count <= "0000";   -- Rollover to zero 
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   end if; 

  end if; 

 end if; 

 

count_out <= temp_count;   -- Output 

 

end process; 

 

end Behavioral;     -- End module. 
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counter_tb.vhd 
 

 
LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

USE ieee.std_logic_unsigned.all; 

USE ieee.numeric_std.ALL; 

 

ENTITY counter_tb_vhd IS 

END counter_tb_vhd; 

 

ARCHITECTURE behavior OF counter_tb_vhd IS  

 

 -- Component Declaration for the Unit Under Test (UUT) 

 COMPONENT counter 

 PORT( 

  clk : IN std_logic; 

  reset : IN std_logic; 

  pause : IN std_logic;           

  count_out : OUT std_logic_vector(3 downto 0) 

  ); 

 END COMPONENT; 

 

 --Inputs 

 SIGNAL clk :  std_logic := '0'; 

 SIGNAL reset :  std_logic := '0'; 

 SIGNAL pause :  std_logic := '0'; 

 

 --Outputs 

 SIGNAL count_out :  std_logic_vector(3 downto 0); 

  

 constant clk_period : time := 10 ns; 

 

BEGIN 

 

 -- Instantiate the Unit Under Test (UUT) 

 uut: counter PORT MAP( 

  clk => clk, 

  reset => reset, 

  pause => pause, 

  count_out => count_out 

 ); 

 

 clock : PROCESS 

 BEGIN 

 

 clk <= NOT clk; 

  wait for clk_period; 

   

 END PROCESS; 

  

 pause_test : PROCESS 

 BEGIN 

  

 pause <= '0'; 

  wait for clk_period*74; 

 pause <= '1'; 

  wait for clk_period*6; 
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 END PROCESS; 

  

 reset_test : PROCESS 

 BEGIN 

  

 reset <= '0'; 

  wait for clk_period*106; 

 reset <= '1'; 

  wait for clk_period*2; 

  

 END PROCESS; 

 

END; 
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counter.ucf 
 

 
# UCF for the 4 bit counter 

 

 

# Change "clk" pin assignment to "V4" (BTN_NORTH) to 

# manually control the clock signal (don't forget "PULLDOWN") 

 

# Change "clk" to "C9" (CLK_50MHz) to run counter off 

# 50MHz clock 

 

NET "clk"  LOC = "C9" ; 

NET "count_out<0>"  LOC = "F12"  ; # LED<0> 

NET "count_out<1>"  LOC = "E12"  ; # LED<1> 

NET "count_out<2>"  LOC = "E11"  ; # LED<2> 

NET "count_out<3>"  LOC = "F11"  ; # LED<3> 

 

NET "pause"  LOC = "L13"  ; # SW<0> 

NET "reset"  LOC = "K17" | PULLDOWN ; 


