
digilent, inc.
www.digilentinc.com

Contains material Digilent, Inc.C

 19 Pages

Xilinx ISE/WebPack:
Introduction to Schematic Capture and Simulation
Revision: February 7, 2003

Overview

This document is intended to assist new entry-level users of the Xilinx ISE/WebPack software. It uses
simple logic circuits to illustrate the various CAD tools in the ISE environment. This document should
be referenced while the reader has access to a computer running the Xilinx tools, so that all procedures
can be preformed as the document proceeds.

Background

Over the past several generations, engineers have created Computer Aided Design (CAD) tools to
assist in all aspects of modern design. From architectural design, to mechanical engineering, to circuit
design, CAD tools have revolutionized they way in which engineers work. Since the 1960’s, CAD
tools have been used in digital circuit design to “capture” a virtual copy of a circuit on a computer, and
then to simulate the circuit so that various behaviors could be investigated and modified before the
circuit was actually built. Since their inception, CAD tools have been continuously evolving. Modern
tools allow very precise simulations (down the picosecond), they allow circuits to be automatically
synthesized from an easily written high-level definition, and they allow designs to be reformatted so
they can be implemented in a variety of technologies.

Starting in the 1980’s, digital engineers could use powerful
new technologies to implement complex digital systems on a
single chip, right on the desktop. These chips, called “Field
Programmable Gate Arrays” (or FPGAs), and the software
used to program them, has revolutionized digital design and
ushered in a new class of CAD tools.

FPGA CAD software typically includes schematic capture,
simulation, implementation, and device programming tools.
All of these tools can be started from a single “navigator”
tool that coordinates the files and processes associated with a
given design project. The navigator shows all source files, all
CAD tools that can be used with the source files, and any
output or status messages and files that result from running a
given tool. The remainder of the document presents the
Xilinx tools, staring with the Project Navigator.

Design Entry

Schematic HDL State Diagram

Synthesis
Test pattern

entry

SimulationTranslate

Implement

CAD tool general design flow

Using ISE/WebPack Page 2

The Project Navigator

The entry point to the Xilinx ISE or WebPack tool is the Project Navigator. The
Project Navigator provides an user interface that organizes all files and programs
associated with a given design. It is divided into four main panels as shown. The
sources panel shows all source files associated with a given design. Double-clicking on
a file name shown in this panel will open the file in the appropriate CAD tool. The

processes panel shows all processes that are available for a given source file (different source files
have different process options). Double-clicking on any process name will cause that process to run.
The console panel shows process status, including all warnings and errors that result from running a
given process on a given source file. The HDL editor panel shows the HDL source code for any
selected HDL source file. The project navigator will also open other windows as needed for some
applications (for example, the schematic capture tool opens in a separate window).

When working with Digilab boards and the ISE tool, you never need to leave the Project Navigator
environment. All required steps, from design creation to ultimately programming the board, can be
completed from within the Project Navigator framework.

Project

Manager

Console Window

HDL Editor
Window

Processes
Window

Sources
Window

Using ISE/WebPack Page 3

Starting a new project

New projects can be defined from within the project navigator. The project navigator can be started
from the windows Start menu, or by double-clicking the desktop icon. After the Project Navigator
window opens, a new project can be created, or an existing project can be opened. In general, a new
project should be created for each new lab exercise or each new design. The project navigator can be
configured to automatically load the last project used, or to not load any project (see the “properties”
dialog box).

Selecting “new project” from the File pull-down menu will open the New Project dialog box, where
all information for a new project can be entered. Enter a descriptive name (such as lab3) in Project
Name box, and choose an appropriate directory in the Location box. This directory will store all design
files and all intermediate files, so you will want to choose a directory that is protected and backed-up.
Choose the appropriate device family (CoolRunner for the XCRP board, or Spartan 2 for a “Digilab 2”
FPGA board), and the appropriate device type (e.g., xcr3064XL PC44 for the XCRP board). Finally,
choose XST VHDL as the design flow and click OK. This same new-project definition procedure is
used for any new design. The remainder of this exercise presents schematic capture in the ISE
environment.

Schematic Capture in ISE/WebPack

To create a new schematic, right-click on the device entry in the source window of the project
navigator (the device entry is below the project name in the sources window) and select New Source.
In the window that appears, select Schematic and enter a descriptive File name. Make sure to select
add to project, and then click Next and Finish to bring up the schematic editor window. The schematic
editor is simply a blank palette to which shapes (representing circuit components) and lines
(representing wires) can be added. The schematic tool can be used effectively using tool-bar buttons or
pull-down menu choices. In general, the tool-bar buttons and pull-down menus offer the same
functions, but the pull-down menus offer some unique features; you are encouraged to experiment with
them.

Using ISE/WebPack Page 4

To draw a schematic, components must be added and interconnected with wires. To add components,
click the Add Symbol (or component) tool-bar button to cause the component library to be displayed in
a menu on the right of the schematic entry window. The components shown in the menu depend on
which device family was selected in the new project setup window – different families use different
schematic symbol libraries. Under Categories, select “Logic”, which restricts the Symbol menu to
displaying only the more basic logic components like AND and OR gates. To add a particular
component, scroll through the menu to locate it, or type its name in the box at the bottom of the menu.
Components can be moved after they have been added, so it’s generally a good idea to add all needed
components first, and then to rearrange them into a neater circuit once they are all present. Selected
components can be “dragged and dropped” onto the schematic drawing palette.

In this example, we’ll create the circuit specified by: Y = A.B + B’.C. This circuit requires two and2
gates, an or2 gate, and an inv gate. These components can be added the schematic by selecting them

Creating a new schematic source file

Using ISE/WebPack Page 5

from the component menu as described, and then dragging-and-dropping them to place them on the
schematic palette.

Add
component

C
om

ponent A
dd m

enus and options

Add
wire

Add I/O
marker

Add net
name

Zoom in Zoom in
box

Select
Cursor

Once the needed components are in place, wires can be added by pressing the add wire tool button, and
then clicking on the source and destination component pins. When connecting components with wires,
be sure some amount of wire exists between all component pins. Note that it is difficult to tell whether
a wire segment exists between the inverter and the AND gate. In general, enough wire should be used
so that it is obvious that the pins are not directly touching. Wires can be ended in “space” by double
clicking the screen area where the wire is to be terminated. Labels can be added to wires by selecting
the Add Wire Name button, and then selecting the wire, or by double-clicking on the wire. Circuit
inputs and outputs (as opposed to internal nodes) are identified by selecting the Add I/O marker button
and clicking on the end of each input or output wire. Unique default names are automatically assigned
to I/O markers. To change the default names, click on the select cursor toolbar button, and then
double-click on each I/O marker in the schematic. In the window that appears, enter a new name,
chose whether the net is an input or output, and click OK.

Using ISE/WebPack Page 6

Hierarchical design

For all but the simplest circuits,
schematics can be made much more
readable if certain well-defined parts of
the circuit are grouped inside of a
“wrapper” called a macro or symbol (just
like in computer programming, where
often-used code is placed inside of a
subroutine). When creating a macro, it is
important to make sure all inputs and
outputs have I/O markers, and that all I/O
markers are named. These names will
appear as pin labels on the macro symbol.
A macro can be created from any
schematic page, and everything on the
schematic page will be placed inside the
macro symbol. To create a macro for a
given schematic source, select the Xilinx
Project Navigator window. From within
that window, select the schematic source
file name in the Sources in Project panel,
and then select the “Create Schematic
Symbol” process available under the
“Design Entry Utilities” entry in the
Processes for Current Source panel. The
screen shot on the right shows a macro
being created for a circuit named
“circuit1”.

After a macro has been created, it is
available as a component in the schematic
capture tool. The new macro component
can be added to a schematic by selecting
the circuit macro name in the symbols
panel in the schematic editor (in this case,
a macro named cirucit1 would be selected). If it is difficult to find the macro, the symbols search field
can be narrowed by selecting the project name in the Categories panel of the schematic capture
window, or by typing the macro’s name in the Symbol Name Filer box.

Using just these basic methods, schematics for circuits of arbitrary complexity can be created.

Using ISE/WebPack Page 7

Basic Logic Simulation

A logic simulator allows a designer to observe circuit outputs in response to all combinations of inputs
before the circuit is implemented in hardware. Simulating a circuit is perhaps the best technique an
engineer can use to ensure that all required features are present, and that no unintended behaviors have
been inadvertently designed in. For larger designs, simulation is far cheaper and far less error prone
than designing and testing a hardware prototype. If errors are observed in the simulator’s output, the
circuit can easily be corrected and re-simulated as often as necessary.

The simulator requires two kinds of inputs: the circuit description source file, and a set of stimulus
values that define all input logic inputs for the duration of the simulation. The circuit description
source must be an HDL file; if a schematic source is created, an HDL file is automatically generated
whenever the schematic is saved. No matter what type of source file is used to describe a circuit, the
designer must define the stimulus inputs.

The simulator functions by dividing the overall simulation into very small time steps (typically 10ps,
but this value can be changed by the user). At each time step, the simulator finds all signals that have
changed during the preceding time step, and processes those signals as dictated by the circuit’s HDL
source file. If output signals must change as a result of that processing, then changes to these signals
are “scheduled” for a later time step (signal changes are scheduled for a later time step because signals
can’t change voltage values instantaneously).

Different simulators provide various methods for designers to define input signals over time. Most
simulators provide at least three methods, including a graphical interface, a text file based interface,
and a command line interface. Any of these methods can be used with the ModelSim simulator
included with the Xilinx ISE/WebPack CAD tools. Graphical interfaces are most useful when defining
small numbers of inputs (up to 20 or so) that require relatively few changes over time (e.g., each of the
20 signals might need 20 or 30 changes between ‘0’ and ‘1’). When dealing with a greater number of
input signals (possibly numbering in the hundreds), or a greater number of signal changes over time
(possibly in the tens of thousands), a graphical interface is too cumbersome. In this case, a text file
based interface is used. The third method using the command line interface is most useful when
changing a few signals once or twice to make some quick adjustments to the end of a graphical or text
file based simulation.

The ModelSim simulator is a state-of-the-art tool that has many features to assist engineers in creating
stimulus inputs, editing circuit descriptions, and analyzing circuit outputs. Only the most basic features
of the ModelSim graphical interface and command line interface are presented here – more involved
features will be introduced in a later tutorial. A later section of this document (dealing with creating
HDL source files) will present creation of text-based stimulus files.

ModelSim graphical user interface

The ModelSim tool uses two different graphical interfaces. The “waveform viewer” interface shows
simulator state and all past simulator outputs, but it does not allow any waveforms to be modified (it is,
as the name implies, strictly a waveform viewer). The waveform editor allows input stimulus to be
created using a “point and click” interface to set logic levels on input signals. These separate tools can
be used together to create a simple yet powerful simulator interface.

Using ISE/WebPack Page 8

The figure below shows an example of the waveform viewer. From this figure alone, it is not possible
to determine which of the a, b, c, and y signals are inputs and which are outputs, nor is possible to
discern whether the inputs were defined using a graphical interface, a text-based interface, or the
command line.

In fact, the signals a, b, and c are inputs, and they were defined using the waveform editor. The
simulator created the output signal y by processing the inputs. Note that by assigning a ‘0’ to a LLV
signal and a ‘1’ to a LHV signal, the signal values can easily be mapped to a truth table. Each row in a
truth table represents a unique combination of inputs, and each “vector” time-slice in the figure below
represents a unique combination of inputs. A vector (or more properly, a “test vector”) is simply a
label given to the set of all circuit inputs and outputs at a given point in the simulation. Vector duration
is defined by the smallest amount of time that all inputs are stable; thus, the border between
consecutive vectors is defined by one or more signal changes. By definition, vectors are non-
overlapping and seamless throughout the entire simulation. In general, all vectors have the same
duration, but this is not a requirement. A good simulation contains enough vectors so that all signals in
the design are driven to both LHV and LLV.

{{ { {{ { {{ {

1 2 3 4 5 6 7 8 9"Vectors"

Signal
names

Values applied during
next simulation step

Simulator control icons
(restart, run, continue etc.)

Running a simulation

Since Xilinx has incorporated ModelSim into their CAD tool framework, the simulator can be run
without leaving the project navigator. But prior to running the simulator, a stimulus file should be
created (the simulator can be run without a stimulus file using the command line interface, but it is a
good design practice – and easier – to create a stimulus file first). Xilinx includes a graphical tool that
can be used to create stimulus files. To start this tool, right-click on the source to be simulated in the
Sources in Project panel of the Project Navigator. Then, select New Source, choose the Test Bench
Waveform file type, and enter a file name (do not choose the same name as your circuit source file).

Using ISE/WebPack Page 9

Click next, and then select the
source file that the Test Bench
Waveform should be associated
with (which in this case is the
default choice). Clicking finish
will start the waveform editor.

The waveform editor may open
with a dialog box that allows
users to modify several
parameters as shown in the figure
below. In this example, three
parameters can be set: the time
scale, the time at which output
values should be checked, and
the time at which inputs should
be assigned. These parameters
are useful for more advanced
users; for now, simply click OK
to accept the defaults. We will
return to these features in a later
tutorial.

When the waveform
editor opens, all “top
level” signals are
shown on the far left
of the window (these
are the signals to
which input or output
connectors have been
attached, or, for future
reference, the signals
listed in a VHDL port
statement).
To the right of the
signal names,
stretching to the far
end of the window,
are grid positions
underneath a time
base that defaults to
100ns per simulation
step. Left-clicking a
signal under any time
step will cause that
signal to toggle from
a ‘0’ to a ‘1’ or vice-
versa. By clicking

Using ISE/WebPack Page 10

signal names at the appropriate time steps, simulation input patterns can readily be defined. Note that
output signals are also shown in the waveform editor. Recall that the simulator, and not the user,
defines outputs in response to input stimulus. Output signals are shown so the user can enter expected
values for each input vector. During the course of the simulation, the simulator compares the value
entered by an user with the values generated by the simulator. If at any point the values do not match,
the simulator issues an error statement. If no values are assigned to output signals, or if all correct
values are assigned to output signals, then the simulator will not issue an error message.

When the waveform editor window opens, a second window showing the source code for the circuit to
be simulated is opened as well. For this design, the source file is shown as a Xilinx VHDL netlist of
the schematic (because XST VHDL was selected as the project type). VHDL source files will be
presented in later.

Once the desired values have been entered into the waveform editor, click “save waveform”. A dialog
box may open asking how many time steps (or vectors) should pass between the last input change and
the end of the simulation – for now, select the default (‘1’).

To run the simulator, select the test bench waveform filename in the “Sources in Project” panel of the
Project navigator (this file will have a .tbw extension). Then, under the “ModelSim Simulator” entry in
the “Processes for Current Source” panel, select “Simulate Behavioral VHDL Model”. This will start
and run the ModelSim simulator after automatically loading both the circuit netlist and stimulus
waveform (see figure below).

Using ISE/WebPack Page 11

When ModelSim starts, four different windows are displayed, including the command, structure,
signals, and wave viewing windows. The command window (below) shows status, error and warning
messages, and it provides a prompt at which command line instructions can be entered.

Using ISE/WebPack Page 12

The structure window shows all files used by the
simulator in outline form. This window is useful in
more complex circuits when a designer wants to find a
component that might be buried under layers of
hierarchy (we will use this feature in later labs). In this
case, expanding the UUT entry (UUT stands for “Unit
Under Test”) will show all component files required by
the current design.

The signals window shows all signals that are available
to the simulator. This window can be used to add or
remove signals from the waveform viewer, or to “force”
logic values onto signals in an override fashion.

The fourth window is
the waveform-viewing
window shown earlier. The waveform-viewing window shows the
current waveforms, and provides panning, zooming, and cursor
functions. This window also offers some toolbar buttons that can be
used to restart and run the simulator.

When the simulator finishes running with the netlist and stimulus
values, it is typically zoomed in and panned to the far right. To see the
entire simulation, click the “zoom full” toolbar button (the rightmost
magnifying glass icon on the waveform viewer toolbar).

As mentioned above, the simulator can also be run in command line mode. This is useful for tacking
on a few more vectors to the end of a simulation without modifying the stimulus file and restarting the
simulation. One very useful command is “run XXYY”, where XX is some number of time steps, and
YY provides the units (the yy field can be fs, ps, ns, us, or ms).

Using ISE/WebPack Page 13

A second useful command can set a signal to a given value. Called a “force function”, its syntax is
“force signal_name value”, where signal_name is the name of a signal to be driven to some value (e.g.,
‘0’ or ‘1’), and value is the value the signal should assume during the next simulator time step (see
preceding figure).

Using the Xilinx VHDL tools

To implement VHDL designs in the WebPack environment, a text editor is required to create the
VHDL source file, a synthesizer is needed to translate the source file to a form that can be downloaded
to a chip, and a simulator is needed to check the results. Other tools, like a floorplanner and/or timing
analyzer, might also be needed for more complex designs (these tools will be discussed in a later
tutorial).

Any text editor can be used to create a VHDL source file. Xilinx supplies an editor with WebPack, and
this editor uses colors and auto-indents to make the source file more readable (its use is
recommended). To start the Xilinx HDL editor, right-click on the device name in the Sources in
Project panel, and select New Source (or, select Project->Add New Source from the Navigator
window). In the window that appears, choose VHDL Module and enter a name for the source file, and
then click Next. This opens a dialog box (shown below) where an architecture name can be chosen
(the default name can always be used), and a table where input and output signals can be defined. This
is actually an optional step – if signals are defined here, they will automatically appear in a port
statement within an entity statement (and if signals are not defined here, the user must type that
information into the editor).

For this example, we will define
a circuit with the behavior Y <=
A’B + C. Enter A, B, and C in
the dialog box table as inputs,
and enter Y as an output (be sure
to change the direction of Y to
out). Change the architecture
name if desired (any text string is
acceptable). For now, the
remaining fields in the dialog
box can be ignored, so click Next
and then Finish in the ensuing
summary dialog box. The HDL
editor opens with part of the
required VHDL code present (see
figure below).

Using ISE/WebPack Page 14

Referring to that VHDL source file, the library statements are needed to make various VHDL items
visible to the current source file, and the entity and architecture statements were created using the
information entered in the “define VHDL source” dialog box. All that remains is to complete the
architecture statement with a description of the circuit. As shown in the source file, the VHDL
behavioral statement

Y<= (not A and B) or C

was entered to define the circuit for this exercise (you should type that same statement as well).

The VHDL source file is now complete, and it can be simulated or synthesized and then downloaded to
the Digilab board. To simulate the source file, use the simulation procedures presented above (namely,
create a stimulus file using WebPack’s waveform editor, then run ModelSim using that stimulus file to
check the results).

Using ISE/WebPack Page 15

To synthesize a VHDL source, highlight its name in the Source in Project panel in the Project
navigator, and then double-clicking the Synthesize process in the Processes for Current Source panel.
If synthesis completes without errors, a green check mark will be displayed by the synthesize process,
and a ‘process completed successfully” message will appear in the status window at the bottom of the
Project Navigator window. If errors are present, error messages in the status window will guide you
towards appropriate corrective action. Note that if error messages are related to problems in the source
file, double-clicking the red “error” icon in the status window will automatically jump to the offending
line in the source file.

It is possible (and sometimes desirable) to add VHDL modules into schematics. To create a schematic
symbol for the VHDL module, select the VHDL source file name in the Source in Project panel, and
double-click on the “Create Schematic Symbol” process in the Processes for Current Source panel.
This will create a symbol that can be added to any schematic.

Many good on-line VHDL references exist. You are encouraged to search for them, or to purchase a
reference manual (see the website for recommendations on good VHDL titles)

Using ISE/WebPack Page 16

Downloading a design

The Xilinx programmable chip on the Digilab board can easily be configured with circuits that have
been designed in the Xilinx CAD tools (or, for that matter, in CAD tools from other vendors like
Mentor Graphics or Cadence). Circuits downloaded into the Xilinx chip can directly drive any of the
I/O devices on the Digilab board. Before a circuit can be downloaded, input and output signals in the
circuit must be associated with physical pins on the chip, and the Xilinx chip targeted by the design
must be specified. Once this information is entered, the Xilinx backend tools can process the circuit
source files into a chip-specific and design-specific file that can be transferred to the Digilab board.

Assigning physical pin definitions

The Xilinx tools use an “User Configuration File” (or .ucf file) to define user constraints like physical
pin to circuit net mappings. Information can be added directly to the .ucf file using a text editor, or
indirectly using a windows interface called the Xilinx Constraints Editor. To use the text editor, select
the top-level source file in the Sources in Project panel of the project navigator, and then select “Edit
Implementation Constraints File” in the Processes for Current Source panel. This will open an editor,
and load a standard .ucf file template that is full of useful information in comment fields. To associate
a physical pin with a given net name, type: NET “netname” LOC = “PXX” on a separate line in the .ucf
file. In the statement, “netname” (quotes included) is the name of the net to attach to pin number XX
(quotes and the letter P included).

Using ISE/WebPack Page 17

To use the more user-friendly Constraints Editor to assign pin mappings, select the top-level source file
in the Sources in Project panel of the project navigator, and then select “Edit Implementation
Constraints (Constraints Editor)” in the Processes for Current Source panel. This brings up the
Constraints Editor tool shown below. When the “Ports” tab is selected, all top-level signals in the
design are shown in the leftmost “Port Name” column in the window. The next two columns can be
used to define signals that are to connect to physical pins on the chip. A signal can be connected to a
physical pin on the Xilinx chip by simply providing the Port Direction (Input or Output) and Location
(PXX, where XX is the pin number) in the appropriate boxes. Pin numbers for all boards can be found
in the appropriate Reference Manual at the Digilent website.

Whenever the .ucf file is modified, a dialog box is displayed that asks whether a “reset” should be
performed. In general, a reset should be chosen so that any changes can be incorporated into the
configuration file that will be downloaded to the Xilinx chip.

After pin mappings have been defined, ensure the proper device is targeted. This information is
available as the second entry in the Sources in Project panel of the project navigator. If that entry
shows the incorrect device type (i.e., if the device type shown does not match the Xilinx chip type on
the Digilab board), then right-click on the device name, select “properties”, and then select the proper
Xilinx device.

Using ISE/WebPack Page 18

As a final step before running the backend tools (here, “backend” tools refers to all CAD programs that
process the design after it has been captured), ensure the “JTAG” configuration mode is selected (this
step should be skipped when using CPLD based boards like the XCRP board). To set the JTAG
configuration mode, select the top-level source file in the Sources in Project panel of the project
navigator, and then right-click on the “Generate Programming File” entry in the Processes for Current
Source panel. Select “properties” in the box that appears, and then select “JTAG” in the startup mode
tab.

After the data discussed above has been entered, the backend tools can be run. These tools,
“synthesize”, “implement design”, and “generate programming file” can be run individually by double-
clicking on the appropriate process in the Processes panel, or they can be run together by clicking on
the last process (i.e., “generate programming file”). The project navigator uses make files, which
means that if any process is executed, the tools first check to see whether any data files required by that
process have changed. If they have, any prerequisite processes are run before the selected process.

Programming the Xilinx chip

After generating a programming file, the final step is to configure the device using the Impact
programmer. Note that iMPACT 5.1 must be run with administrator privileges. Before running the
“Configure Device (iMPACT)” process, attach the programming cable to the PC and to the circuit
board, and apply power to the board (this will allow the iMPACT programmer to automatically detect
the board – otherwise, the board must be manually selected). Start the iMPACT programmer, and wait

Using ISE/WebPack Page 19

until the board is identified. When the board and programming cable have been detected, an image of
the Xilinx chip will be displayed in the programmer window. To download a design, right-click on the
chip image, and select “Program” (the top-most entry). In the dialog box that opens, be sure the “Erase
Before Programming” box is checked (if present), and click OK. This will transfer the configuration
file from the PC to the Xilinx chip.

Using iMPACT as a stand-alone programmer

When ISE/WebPack is installed, the iMPACT programmer is installed as a stand-alone application, so
that it can be used to download designs separately from the project navigator. Before starting iMPACT
from the Windows start menu, ensure the file to be downloaded (a .jed file for a CPLD, or a .bit file for
other Xilinx devices) is available somewhere in your directory structure. Also make sure the Digilab
board is attached to the PC and powered on (and, if a JTAG/PORT switch exists, ensure it is in the
JTAG position).

When iMPACT starts, it displays three dialog boxes (“Configure Device”, “Boundary Scan Mode”,
and “Automatically connect to cable”); generally, the defaults should be chosen. Clicking finish in the
third box displays a new dialog box
where a configuration file can be chosen.
Navigate to the desired file, and click
“open”. Right click on the image of the
Xilinx chip, and select “Program” (the
top-most entry). For CPLD
programming, be sure the “Erase Before
Programming” box is checked, and click
OK. The configuration file will be
transferred from the PC to the CPLD.

More information

This presentation has been somewhat
brief. For more information, see the tutorials available on the Xilinx website (www.xilinx.com and
search on tutorial), and the ModelSim website (www.model.com).

