
R

ISE 7 In-Depth
Tutorial

ISE 7 In-Depth Tutorial www.xilinx.com
1-800-255-7778

"© 2005 Xilinx, Inc. All Rights Reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one
possible implementation of this feature, application, or standard, Xilinx makes no representation that this implementation is free from any
claims of infringement. You are responsible for obtaining any rights you may require for your implementation. Xilinx expressly disclaims any
warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or representations that
this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 3
1-800-255-7778

R

Preface

About This Tutorial

About the In-Depth Tutorial
This tutorial gives a description of the features and additions to Xilinx® ISE™ 7. The
primary focus of this tutorial is to show the relationship among the design entry tools,
Xilinx and third-party tools, and the design implementation tools.

This guide is a learning tool for designers who are unfamiliar with the features of the ISE
software or those wanting to refresh their skills and knowledge.

You may choose to follow one of three tutorial flows available in this document. For
information about the tutorial flows, see “Tutorial Flows.”

Additional Resources
For additional information, go to http://www.xilinx.com/support/support.htm. The
following table lists some of the resources you can access from this page. You can also
directly access some of these resources using the provided URLs.

Resource Description/URL

Tutorial Tutorials covering Xilinx design flows, from design entry to verification
and debugging

http://www.xilinx.com/support/techsup/tutorials/index.htm

Answers
Database

Current listing of solution records for the Xilinx software tools

Search this database using the search function at

http://www.xilinx.com/xlnx/xil_ans_browser.jsp

Application
Notes

Descriptions of device-specific design techniques and approaches

http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp?categ
ory=Application+Notes

Forums Discussion groups and chat rooms for Xilinx software users

http://toolbox.xilinx.com/cgi-bin/forum

Data Sheets Data Sheet, which describe device-specific information on Xilinx device
characteristics, including readback, boundary scan, configuration,
length count, and debugging

http://www.xilinx.com/xlnx/xweb/xil_publications_index.jsp

http://support.xilinx.com/support/techsup/tutorials/index.htm
http://support.xilinx.com/support/searchtd.htm
http://support.xilinx.com/apps/appsweb.htm
http://toolbox.xilinx.com/cgi-bin/forum
http://support.xilinx.com/partinfo/databook.htm
http://www.xilinx.com
http://support.xilinx.com

4 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Preface: About This Tutorial
R

Tutorial Contents
This guide covers the following topics.

• Chapter 1, “Overview of ISE and Synthesis Tools,” introduces you to the ISE primary
user interface, Project Navigator, and the synthesis tools available for your design.

• Chapter 2, “HDL-Based Design,” guides you through a typical HDL-based design
procedure using a design of a runner’s stopwatch.

• Chapter 3, “Schematic-Based Design,” explains many different facets of a schematic-
based ISE design flow using a design of a runner’s stopwatch. This chapter also
shows how to use ISE accessories such as StateCAD, Project Navigator, CORE
Generator™, and ISE Text Editor.

• Chapter 4, “Behavioral Simulation,” explains how to use the ModelSim Simulator to
simulate a design before design implementation to verify that the logic that you have
created is correct.

• Chapter 5, “Design Implementation,” describes how to Translate, Map, Place, Route
(Fit for CPLDs), and generate a BIT file for designs.

• Chapter 6, “Timing Simulation,” explains how to perform a timing simulation using
the block and routing delay information from the routed design to give an accurate
assessment of the behavior of the circuit under worst-case conditions.

• Chapter 7, “iMPACT Tutorial” explains how to program a device with a newly
created design using the iMPACT configuration tool.

Tutorial Flows
This document contains four tutorial flows. In this section, the four tutorial flows are
outlined and briefly described, in order to help you determine which sequence of chapters
applies to your needs. The tutorial flows include:

• HDL Design Flow

• Schematic Design Flow

• Implementation-only Flow

• Device Configuration-only Flow

Xcell Journals Quarterly journals for Xilinx programmable logic users

http://www.xilinx.com/xcell/xcell.htm

Tech Tips Latest news, design tips, and patch information on the Xilinx design
environment

http://www.xilinx.com/xlnx/xil_tt_home.jsp

Resource Description/URL

http://support.xilinx.com/xcell/xcell.htm
http://support.xilinx.com/xlnx/xil_tt_home.jsp
http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 5
1-800-255-7778

Tutorial Flows
R

HDL Design Flow
The HDL Design flow is as follows:

• Chapter 2, “HDL-Based Design”

• Chapter 4, “Behavioral Simulation”
Note that behavioral simulation is optional; however, it is strongly recommended in
this tutorial flow.

• Chapter 5, “Design Implementation”

• Chapter 6, “Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

• Chapter 7, “iMPACT Tutorial”

Schematic Design Flow
The Schematic Design flow is as follows:

• Chapter 3, “Schematic-Based Design”

• Chapter 4, “Behavioral Simulation”
Note that behavioral simulation is optional; however, it is strongly recommended in
this tutorial flow.

• Chapter 5, “Design Implementation”

• Chapter 6,“Timing Simulation”
Note that timing simulation is optional; however, it is strongly recommended.

• Chapter 7, “iMPACT Tutorial”

Implementation-only Flow
The Implementation-only flow is as follows:

• Chapter 5, “Design Implementation”

• Chapter 7, “iMPACT Tutorial”

Device Configuration-only Flow
For this flow, go to Chapter 7, “iMPACT Tutorial.”

http://www.xilinx.com

6 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Preface: About This Tutorial
R

http://www.xilinx.com

ISE 6 In-Depth Tutorial www.xilinx.com 7
1-800-255-7778

Preface: About This Tutorial
About the In-Depth Tutorial . 3
Additional Resources . 3
Tutorial Contents . 4
Tutorial Flows . 4

HDL Design Flow . 5
Schematic Design Flow . 5
Implementation-only Flow . 5
Device Configuration-only Flow . 5

Chapter 1: Overview of ISE and Synthesis Tools
Overview of ISE . 13

Project Navigator Interface . 13
Sources in Project Window . 14

Module View . 14
Snapshot View . 15
Library View. 15

Processes for Source Window . 15
Process View. 15

Transcript Window . 16
Error Navigation to Source . 16
Error Navigation to Solution Record . 16

Workspace . 16
Design Summary . 16
Text Editor . 17
ISE Simulator / Waveform Editor . 17
Schematic Editor . 17

Using Snapshots . 17
Creating a Snapshot . 17
Restoring a Snapshot . 17
Viewing a Snapshot . 18

Using Project Archives . 18
Creating an Archive . 18
Restoring an Archive . 18

Overview of Synthesis Tools . 18
LeonardoSpectrum . 18

Process Properties . 18
Precision Synthesis . 19

Process Properties . 19
Synplify/Synplify Pro . 20

Process Properties . 20
Xilinx Synthesis Technology (XST) . 21

Process Properties . 21

Table of Contents

http://www.xilinx.com

8 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

R

Chapter 2: HDL-Based Design
Overview of HDL-Based Design. 23
Getting Started. 24

Required Software . 24
Optional Software Requirements . 24
VHDL or Verilog? . 24
Installing the Tutorial Project Files . 24
Starting the ISE Software . 25
Stopping the Tutorial . 26

Design Description . 26
Inputs . 27
Outputs . 27
Functional Blocks . 27

Design Entry . 28
Adding Source Files . 28
Checking the Syntax . 29
Correcting HDL errors . 29
Creating an HDL-Based Module . 29

Using the New Source Wizard and ISE Text Editor . 30
Using the Language Templates. 31
Adding a Language Template to Your File. 32

Creating a CORE Generator Module . 33
Creating the CORE Generator Module . 33
Instantiating the CORE Generator Module in the HDL Code. 35

Creating a DCM Module. 38
Using DCM Wizard . 38
Instantiating the DCM1 Macro - VHDL Design . 40
Instantiating the DCM1 Macro - Verilog. 41

Synthesizing the Design . 42
Synthesizing the Design using XST . 43

Entering Constraints . 44
Entering Synthesis Options. 45
Synthesizing the Design . 45
The RTL / Technology Viewer . 45

Synthesizing the Design using Synplify/Synplify Pro . 46
Examining Synthesis Results . 47

Synthesizing the Design using LeonardoSpectrum . 48
Modifying Constraints . 49
Entering Synthesis Options through ISE. 50
The RTL/Technology Viewer . 51

Synthesizing the Design Using Precision Synthesis . 53
Entering Synthesis Options through ISE. 54
The RTL/Technology Viewer . 54

Chapter 3: Schematic-Based Design
Overview of Schematic-based Design . 55
Getting Started. 55

Required Software . 55
Installing the Tutorial Project Files . 56

wtut_sc project . 56
wtut_sc_completed solution project . 56

http://www.xilinx.com

ISE 6 In-Depth Tutorial www.xilinx.com 9
1-800-255-7778

R

Starting the ISE Software . 56
Stopping the Tutorial . 57

Design Description . 57
Inputs . 59
Outputs . 59
Functional Blocks . 59

Design Entry . 60
Opening the Schematic File in the Xilinx Schematic Editor. 60
Manipulating the Window View . 61
Creating a Schematic-Based Macro . 61
Defining the time_cnt Schematic . 62

Adding I/O Markers . 62
Adding Components to time_cnt . 63
Placing the Remaining Components. 65
Correcting Mistakes . 66
Drawing Wires . 66
Adding Buses . 66
Adding Bus Taps . 67
Adding Net Names. 68
Saving the Schematic . 69

Creating and Placing the time_cnt Symbol . 70
Creating the time_cnt symbol . 70
Placing the time_cnt symbol . 70

Creating a CORE Generator Module . 71
Creating a CORE Generator Module . 71

Creating a State Machine Module . 73
Opening StateCAD . 73
Adding New States . 74
Adding a Transition . 75
Adding a State Action. 76
Adding a State Machine Reset Condition . 78

Creating the State Machine Symbol . 79
Creating a DCM Module. 79

Using the Clocking Wizard. 79
Creating the DCM1 Symbol . 82
Creating an HDL-Based Module . 82

Using the New Source Wizard and ISE Text Editor . 82
Using the Language Templates. 84
Adding the Language Template to Your File . 85

Creating the hex2led Symbol . 86
Placing the stmach, ten_cnt, clk_div_262k, DCM1, debounce, and hex2led Symbols 86
Hierarchy Push/Pop . 87
Specifying Device Inputs/Outputs . 88

Adding Input Pins . 89
Adding I/O Markers and Net Names . 89
Assigning Pin Locations . 90
Completing the Schematic . 91

http://www.xilinx.com

10 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

R

Chapter 4: Behavioral Simulation
Overview of Behavioral Simulation Flow . 93
ModelSim Setup . 93

ModelSim PE and SE . 93
ModelSim Xilinx Edition . 94

ISE Simulator Setup. 94
Getting Started. 94

Required Files . 94
Xilinx Simulation Libraries . 95

Updating the Xilinx Simulation Libraries . 95
Mapping Simulation Libraries in the Modelsim.ini File . 95

Adding an HDL Test Bench . 96
Adding Tutorial Test Bench File . 96

VHDL Design . 96
Verilog Design . 97

Behavioral Simulation Using ModelSim . 97
Locating the Simulation Processes . 97
Specifying Simulation Properties . 98
Performing Simulation . 99
Adding Signals . 99

Adding Dividers . 101
Rerunning Simulation. 101
Analyzing the Signals . 102

Saving the Simulation . 103
Behavioral Simulation Using ISE Simulator . 103

Locating the Simulation Processes . 104
Specifying Simulation Properties . 104
Performing Simulation . 105
Adding Signals . 105
Rerunning Simulation . 106

Analyzing the Signals . 107
Creating a Test Bench Waveform Using the Waveform Editor 107

Creating a Test Bench Waveform Source . 107
Applying Stimulus . 109

Chapter 5: Design Implementation
Overview of Design Implementation . 111
Getting Started. 112

Continuing from Design Entry . 112
Starting from Design Implementation . 112

Specifying Options . 113
Translating the Design . 116
Using the Constraints Editor . 116
Using the Pin-out Area Constraints Editor (PACE) . 119
Mapping the Design . 122
Using Timing Analysis to Evaluate Block Delays After Mapping. 124

Estimating Timing Goals with the 50/50 Rule . 124
Report Paths in Timing Constraints Option . 124

Placing and Routing the Design . 125

http://www.xilinx.com

ISE 6 In-Depth Tutorial www.xilinx.com 11
1-800-255-7778

R

Using FPGA Editor to Verify the Place and Route . 126
Evaluating Post-Layout Timing . 128
Creating Configuration Data . 129
Creating a PROM File with iMPACT . 131
Command Line Implementation . 134

Chapter 6: Timing Simulation
Overview of Timing Simulation Flow . 135
Getting Started. 135

Required Software . 135
Required Files . 136

Timing Simulation Using ModelSim . 136
Specifying Simulation Process Properties . 136
Performing Simulation . 138

Adding Signals . 138
Adding Dividers . 140
Rerunning Simulation. 141
Analyzing the Signals . 141
Saving the Simulation . 142

Chapter 7: iMPACT Tutorial
Device Support . 143
Download Cable Support . 144

Parallel Cable III & IV . 144
USB Platform Cable . 144
MultiPro Cable . 144

Configuration Mode Support. 144
Getting Started. 144

Generating the Configuration Files . 144
Connecting the Cable . 145
Starting the Software . 145

Opening iMPACT from Project Navigator . 145
Opening iMPACT stand-alone . 146

Creating a iMPACT New Project File . 146
Using Boundary Scan Configuration Mode . 146

Specifying Boundary Scan Configuration Mode . 146
Assigning Configuration Files . 149
Saving the Project File . 150
Editing Preferences . 150
Performing Boundary Scan Operations . 151

Troubleshooting Boundary Scan Configuration. 154
Verifying Cable Connection . 154
Verifying Chain Setup . 155

Creating an SVF File . 156
Setting up Boundary Scan Chain . 156

JTAG chain setup for SVF generation . 156
Manual JTAG chain setup for SVF generation . 156

Writing to the SVF File . 157
Stop Writing to the SVF. 159

http://www.xilinx.com

12 www.xilinx.com ISE 6 In-Depth Tutorial
1-800-255-7778

R

Playing back the SVF or XSVF file . 159
Other Configuration Modes . 160

Slave Serial Configuration Mode . 160
SelectMAP Configuration Mode . 160

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 13
1-800-255-7778

R

Chapter 1

Overview of ISE and Synthesis Tools

This chapter includes the following sections:

• “Overview of ISE”

• “Overview of Synthesis Tools”

Overview of ISE
ISE™ controls all aspects of the design flow. Through the Project Navigator interface, you
can access all of the various design entry and design implementation tools. You can also
access the files and documents associated with your project. Project Navigator maintains a
flat directory structure; therefore, the user must maintain revision control through the use
of snapshots.

Project Navigator Interface
The Project Navigator Interface is divided into four main subwindows, as seen in
Figure 1-1. On the top left is the Sources in Project window which hierarchically displays
the elements included in the project. Beneath the Sources in Project window is the
Processes for Source window, which displays available processes. The third window at the
bottom of the Project Navigator is the Transcript window which displays status messages,
errors, and warnings and is updated during all project actions. The fourth window to the
right is a multi-document interface (MDI) window referred to as the Workspace. It enables
you to view HTML reports, ASCII files, schematics, and simulation waveforms. Each
window may be resized, undocked from Project Navigator or moved to a new location
within the main Project Navigator window. The default layout can always be restored by
selecting View → Restore Default Layout. These windows are discussed in more detail in
the following sections.

http://www.xilinx.com

14 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 1: Overview of ISE and Synthesis Tools
R

Sources in Project Window
This window consists of three default tabs which provide information for the user. Each
tab is discussed in further detail below.

Module View

The Module View tab displays the project name, any user documents, the specified part
type and design flow/synthesis tool, and design source files. Each file in the Module View
has an associated icon. The icon indicates the file type (HDL file, schematic, core, or text
file, for example). For a complete list of possible source types and their associated icons, see
the ISE Help. Select Help → ISE Help Contents, select the Index tab and search for
Source / file types.

If a file contains lower levels of hierarchy, the icon has a + to the left of the name. HDL files
have this + to show the entities (VHDL) or modules (Verilog) within the file. You can
expand the hierarchy by clicking the +. You can open a file for editing by double-clicking
on the filename.

Figure 1-1: Project Navigator

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 15
1-800-255-7778

Overview of ISE
R

Snapshot View

The Snapshot View tab displays all snapshots associated with the project currently open in
Project Navigator. A snapshot is a copy of the project including all files in the working
directory, and synthesis and simulation sub-directories. A snapshot is stored with the
project for which is was taken, and can be viewed in the Snapshot View. You can view the
reports, user documents, and source files for all snapshots. All information displayed in
the Snapshot View is read-only. Using snapshots provides an excellent version control
system, enabling subteams to do simultaneous development on the same design.

Note: Remote sources are not copied with the snapshot. A reference is maintained in the snapshot.

Library View

The Library View tab displays all libraries associated with the project open in Project
Navigator.

Processes for Source Window
This window contains one default tab called the Process View tab.

Process View

The Process View tab is context sensitive and changes based upon the source type selected
in the Sources for Project window. From the Process View tab, you can run the functions
necessary to define, run and view your design. The Process View tab provides access to the
following functions:

• Add an Existing Source

Provides access to the Add Existing Sources dialog box, in which you can select a file
in your project directory or in a remote directory to add to the project.

• Create New Source

Provides access to the New Source wizard, in which you can create a new source file
and add the new source file to your project.

• View Design Summary

Provides access to the Design Summary, which lists high-level information about your
project, including project overview information, a device utilization summary,
performance information from the Place & Route (PAR) Report, constraints
information, and summary information from all reports with links to individual
report.

• Design Utilities

Provides access to symbol generation, instantiation templates, HDL Converter, View
command line Log File, Launch MTI, and simulation library compilation.

• User Constraints

Provides access to editing location and timing and constraints.

• Synthesize

Provides access to Check Syntax, synthesis, View RTL or Technology Schematic, and
synthesis reports. This varies depending on the synthesis tools you use.

http://www.xilinx.com

16 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 1: Overview of ISE and Synthesis Tools
R

• Implement Design

Provides access to implementation tools, design flow reports, and point tools.

• Generate Programming File

Provides access to the configuration tools and bitstream generation.

The Processes for Source window incorporates automake technology. This enables you to
select any process in the flow and the software automatically runs the processes necessary
to get to the desired step. For example, when you run the Implement Design process,
Project Navigator also runs the synthesis process because implementation is dependent on
up-to-date synthesis results.

Note: To view a running log of command line arguments in the Console tab of the Transcript
window, click the + next to Design Utilities to expand the process hierarchy, and double-click View
Command Line Log File. See the Using Command Line section of Chapter 5, “Design
Implementation” for further details.

Transcript Window
The Transcript window displays errors, warnings, and informational messages. Errors are
signified by a red X next to the message, while warnings have a yellow exclamation mark
(!). Warning and Error messages may also be viewed separate from other console text
messages by selecting either the Warnings or Errors tab at the bottom of the console
window.

Error Navigation to Source

You can navigate from a synthesis error or warning message in the Transcript window to
the location of the error in a source HDL file. To do so, select the error or warning message,
right-click the mouse, and from the menu select Goto Source. The HDL source file opens
and the cursor moves to the line with the error.

Error Navigation to Solution Record

You can navigate from an error or warning message in the Transcript window to the
relevant solution records on the www.xilinx.com/support website. To navigate to the
solution record, select the error or warning message, right-click the mouse, and from the
menu select Goto Solution Record. The default web browser opens and displays all
solution records applicable to this message.

Workspace

Design Summary

The Design Summary lists high-level information about your project, including overview
information, a device utilization summary, performance data gathered from the Place &
Route (PAR) Report, constraints information, and summary information from all reports
with links to individual reports.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 17
1-800-255-7778

Overview of ISE
R

Text Editor

Source files and other text documents can be opened in a user designated editor. The editor
is determined by the setting found by selecting Edit → Preferences, expand ISE General
and click Editor. The default editor is the ISE Text Editor. ISE Text Editor enables you to
edit source files. You can access the Language Templates, a catalog of ABEL, Verilog and
VHDL language, and User Constraint File templates, and use these templates your own
design.

ISE Simulator / Waveform Editor

ISE Simulator / Waveform Editor is a PC-based test bench and test fixture creation tool
integrated in the Project Navigator framework. Waveform Editor can be used to
graphically enter stimuli and the expected response, then generate a VHDL test bench or
Verilog test fixture. For details, refer to “Creating a Test Bench Waveform Using the
Waveform Editor” in Chapter 4.

Schematic Editor

The Schematic Editor is integrated in the Project Navigator framework. The Schematic
Editor can be used to graphically create and view logical designs.

Using Snapshots
Snapshots enable you to maintain revision control over the design. A snapshot contains a
copy all of the files in the project directory. See also “Snapshot View.”

Creating a Snapshot

To create a snapshot:

1. Select Project → Take Snapshot.

2. In the Take a Snapshot of the Project dialog box, enter the snapshot name and any
comments associated with the snapshot.

In the Snapshot View, the snapshot containing all of the files in the project directory along
with project settings is displayed.

Restoring a Snapshot

Since snapshots are read-only, a snapshot must be restored in order to continue work.
When you restore a snapshot, it replaces the project in your current session. To restore a
snapshot:

1. In the Snapshot View, select the snapshot.

2. Select Project → Make Snapshot Current.

Before the snapshot replaces the current project, the current project is stored in a snapshot
so that your work is not lost.

http://www.xilinx.com

18 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 1: Overview of ISE and Synthesis Tools
R

Viewing a Snapshot

The Snapshot View contains a list of all the snapshots available in the current project. To
review a process report or verify process status within a snapshot:

1. Expand the snapshot source tree and select the desired source file.

2. Right-click the mouse over the desired process report.

3. From the menu, select Open Without Updating.

Using Project Archives
You can also archive the entire project into a single compressed file. This allows for easier
transfer over email and storage of numerous projects in a limited space.

Creating an Archive

To create an archive:

1. Select Project → Archive.

2. In the Create Zip Archive dialog box, enter the archive name and location.

The archive contains all of the files in the project directory along with project settings.
Remote sources are not zipped up into the archive.

Restoring an Archive

You cannot restore an archived file directly into Project Navigator. The compressed file can
be extracted with any ZIP utility and you can then open the extracted file in Project
Navigator.

Overview of Synthesis Tools
You can synthesize your design using three synthesis tools. The following section lists the
devices supported by each synthesis tool and includes some process properties
information.

LeonardoSpectrum
This synthesis tool is not part of the ISE package and is not available unless purchased
separately. Two commonly used properties are Optimization Goal and Optimization
Effort. With these properties you can control the synthesis results for area or speed and the
amount of time the synthesizer runs.This synthesis tool is available for both an HDL- and
Schematic-based design flow.

Process Properties

Process properties enable you to control the synthesis results of LeonardoSpectrum. Most
of the commonly used synthesis options available for the LeonardoSpectrum stand-alone
version are available for LeonardoSpectrum synthesis through ISE.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 19
1-800-255-7778

Overview of Synthesis Tools
R

For more information, see the LeonardoSpectrum online help.

Precision Synthesis
This synthesis tool is not part of the ISE package and is not available unless purchased
separately. Two commonly used properties are Optimization Goal and Optimization
Effort. With these properties you can control the synthesis results for area or speed and the
amount of time the synthesizer runs. This synthesis tool is available for both an HDL- and
Schematic-based design flow.

Process Properties

Process properties enable you to control the synthesis results of Precision. Most of the
commonly used synthesis options available for the Precision stand-alone version are
available for Precision synthesis through ISE.

Figure 1-2: LeonardoSpectrum Synthesis Process Properties

http://www.xilinx.com

20 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 1: Overview of ISE and Synthesis Tools
R

For more information, see the Precision online help.

Synplify/Synplify Pro
This synthesis tool is not part of the ISE package and is not available unless purchased
separately. This synthesis tool is not available for a schematic-based design.

Process Properties

Process properties enable you to control the synthesis results of Synplify/Synplify Pro.
Most of the commonly used synthesis options available in the Synplify/Synplify Pro
stand-alone version are available for Synplify/Synplify Pro synthesis through ISE.

Figure 1-3: Precision Synthesis Process Properties

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 21
1-800-255-7778

Overview of Synthesis Tools
R

More detailed information about the specific synthesis options is available in the
Synplify/Synplify Pro online help.

Xilinx Synthesis Technology (XST)
This synthesis tool is part of the ISE package and is available for both an HDL- or
Schematic-based design flow.

Process Properties

Process properties enable you to control the synthesis results of XST. Two commonly used
properties are Optimization Goal and Optimization Effort. Through these properties you
can control the synthesis results for area or speed, and the amount of time the synthesizer
runs.

More detailed information is available in the XST User Guide, available in the collection of
software manuals available with ISE by selecting Help → Online Documentation, or on
the web at http://www.xilinx.com/support/sw_manuals/xilinx7/.

Figure 1-4: Synplify/Synplify Pro Synthesis Process Properties

http://www.xilinx.com

22 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 1: Overview of ISE and Synthesis Tools
R

Figure 1-5: XST Synthesis Process Properties

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 23
1-800-255-7778

R

Chapter 2

HDL-Based Design

This chapter includes the following sections:

• “Overview of HDL-Based Design”

• “Getting Started”

• “Design Description”

• “Design Entry”

• “Synthesizing the Design”

Overview of HDL-Based Design
This chapter guides you through a typical HDL-based design procedure using a design of
a runner’s stopwatch. The design example used in this tutorial demonstrates many device
features, software features, and design flow practices you can apply to your own design.
This design targets a Spartan™-3 device; however, all of the principles and flows taught
are applicable to any Xilinx® device family, unless otherwise noted.

The design is composed of HDL elements and two cores. You can synthesize the design
using Xilinx Synthesis Technology (XST), Synplify/Synplify Pro, LeonardoSpectrum or
Precision.

This chapter is the first in the “HDL Design Flow.” After the design is successfully defined,
you will perform behavioral simulation (Chapter 4, “Behavioral Simulation”), run
implementation with the Xilinx Implementation Tools (Chapter 5, “Design
Implementation”), perform timing simulation (Chapter 6, “Timing Simulation”), and
configure and download to the Spartan-3 demo board (Chapter 7, “iMPACT Tutorial.”)

For an example of how to design with CPLDs, see the ISE™ Software Interactive Tutorial for
Xilinx CPLDs http://www.xilinx.com/support/techsup/tutorials/index.htm.

http://www.xilinx.com
http://www.xilinx.com/support/techsup/tutorials/index.htm

24 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Getting Started
The following sections describe the basic requirements for running the tutorial.

Required Software
To perform this tutorial, you must have the following software and software components
installed:

• Xilinx Series ISE 7.x

• Spartan-3 libraries and device files

Note: For detailed software installation instructions, refer to the ISE Installation Guide and Release
Notes.

This tutorial assumes that the software is installed in the default location c:\xilinx. If you
have installed the software in a different location, substitute c:\xilinx for your installation
path.

Optional Software Requirements
The following third-party synthesis tools are incorporated into this tutorial, and may be
used in place of the Xilinx Synthesis Tool (XST):

• Synplify/Synplify PRO 8.0 (or above)

• LeonardoSpectrum 2004.b (or above)

• Precision Synthesis 2004.c (or above)

The following third-party simulation tool is optional for this tutorial, and may be used in
place of the ISE Simulator:

• ModelSim

VHDL or Verilog?
This tutorial supports both VHDL and Verilog designs, and applies to both designs
simultaneously, noting differences where applicable. You will need to decide which HDL
language you would like to work through for the tutorial, and download the appropriate
files accordingly. Starting with the 6.1i release, XST can now synthesize a mixed-language
design. However, this tutorial does not go over the mixed language feature.

Installing the Tutorial Project Files
The Stopwatch tutorial projects can be downloaded from
http://www.xilinx.com/support/techsup/tutorials/tutorials7.htm. Download either the
VHDL or the Verilog design flow project files.

After you have downloaded the tutorial project files from the web, unzip the tutorial
projects in the c:\xilinx directory, and replace any existing files.

After you unzip the tutorial project files in c:\xilinx, the directory wtut_vhd (for a VHDL
design flow) or wtut_ver (for a Verilog design flow) is created within c:\xilinx\ISEexamples,
and the tutorial files are copied into the directories.

http://www.xilinx.com
http://www.xilinx.com/support/techsup/tutorials/tutorials7.htm

ISE 7 In-Depth Tutorial www.xilinx.com 25
1-800-255-7778

Getting Started
R

The following table lists the locations of both the complete and incomplete projects.

Note: Do not overwrite any files in the solution directories.

The solution projects contain the design files for the completed tutorials, including HDL
files. To conserve disk space, some intermediate files are not provided.

Unzip the tutorial projects in any directory with read-write permissions. The HDL tutorial
files are copied into the directories when you unzip the project files. This tutorial assumes
that the files are unarchived under c:\xilinx\ISEexamples. If you restore the files to a
different location, substitute c:\xilinx\ISEexamples with the project path.

Starting the ISE Software
To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop or select Start →
Programs → Xilinx ISE → Project Navigator.

Table 2-1: Tutorial Project Directories

Directory Description

wtut_vhd Incomplete Watch Tutorial - VHDL

wtut_ver Incomplete Watch Tutorial - Verilog

wtut_vhd\wtut_vhd_completed Solution for Watch - VHDL

wtut_ver\wtut_ver_completed Solution for Watch - Verilog

Figure 2-1: Project Navigator Desktop Icon

http://www.xilinx.com

26 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

2. From Project Navigator, select File → Open Project. The Open Project dialog box
appears.

3. Browse to c:\xilinx\ISEexamples\wtut_vhd or c:\xilinx\ISEexamples\wtut_ver.

4. Double-click wtut_vhd.ise (VHDL design entry) or wtut_ver.ise (Verilog design entry).

Stopping the Tutorial
You may stop the tutorial at any time and save your work by selecting File → Save All.

Design Description
The design used in this tutorial is a hierarchical, HDL-based design, which means that the
top-level design file is an HDL file that references several other lower-level macros. The
lower-level macros are either HDL modules or IP modules.

The design begins as an unfinished design. Throughout the tutorial, you will complete the
design by generating some of the modules from scratch and by completing others from
existing files. When the design is complete, simulate it to verify the design’s functionality.

In the runner’s stopwatch design, there are three external inputs and three external output
buses. The system clock is an externally generated signal. The following list summarizes
the input lines and output buses.

Figure 2-2: Open Project Dialog Box

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 27
1-800-255-7778

Design Description
R

Inputs
The following are input signals for the tutorial stopwatch design.

• STRTSTOP

Starts and stops the stopwatch. This is an active low signal which acts like the
start/stop button on a runner’s stopwatch.

• RESET

Resets the stopwatch to 00.0 after it has been stopped.

• CLK

Externally generated system clock.

Outputs
The following are outputs signals for the design.

• SEG_A, SEG_B, SEG_C, SEG_D, SEG_F, SEG_G, SEG_DP

These outputs drive the individual segments and the decimal point for all four digits
of the stopwatch design. The digits of the stopwatch are displayed on 7-segment LED
displays.

• AN[3:0]

This is a one-hot vector signal which drives the anodes of the four 7-segment LED
displays to determine which display will be lighted.

Functional Blocks
The completed design consists of the following functional blocks.

• CLK_DIV_262k

Macro which divides a clock frequency by 262,144.

• DCM1

Clocking Wizard macro with internal feedback, frequency controlled output and duty-
cycle correction. The CLKFX_OUT output converts the 50 MHz clock of the Spartan-3
demo board to 26.2144 MHz.

• DEBOUNCE

Schematic module implementing a simplistic debounce circuit for the STRTSTOP
input signal.

• HEX2LED

HDL-based macro. This macro decodes the ones and tens digit values from
hexadecimal to 7-segment display format.

• LED_CONTROL

Module controlling the data multiplexing to the four 7-segment LED displays.

• STATMACH

State Machine module defined and implemented in StateCAD.

http://www.xilinx.com

28 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

• TEN_CNT

CORE Generator™ 4-bit binary encoded counter. This macro outputs a 4-bit code
which is decoded to represent the tenths and hundredths digit of the watch value as a
10-bit one-hot encoded value.

• TIME_CNT

Module which counts from 0:0 to 9:59 decimal. This macro has three 4-bit outputs,
which represent the minutes and seconds digits of the decimal point.

Design Entry
For this hierarchical design, you will examine HDL files, correct syntax errors, create an
HDL macro, and add a CORE Generator module, and you will create and use each type of
design macro. All procedures used in the tutorial can be used later for your own designs.

With the wtut_vhd.ise or wtut_ver.ise project open in Project Navigator, the Sources in
Project window displays all of the source files currently added to the project, with the
associated entity or module names (see Figure 2-3). In the current project, time_cnt and
hex2led are instantiated, but the associated entity or module is not defined in the project.
Instantiated components with no entity or module declaration are displayed with a red
question-mark.

Adding Source Files
HDL files must be added to the project before they can be synthesized. Four HDL files have
already been added to this project. An additional file must be added.

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project window.

Upon selecting the HDL file, the process window displays all processes available for
this file.

2. Select Project → Add Source.

3. Select time_cnt.vhd or time_cnt.v from the project directory.

4. In the Choose Source Type dialog box, select Verilog/VHDL Design File.

5. Click OK.

Figure 2-3: Sources in Project Window

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 29
1-800-255-7778

Design Entry
R

The red question-mark (?) for time_cnt should change to a V.

Checking the Syntax
To check the syntax of source files:

1. Select stopwatch.vhd or stopwatch.v in the Sources in Project window.

Upon selecting the HDL file, the Processes for Source window displays all processes
available for this file.

2. Click the + next to Synthesize to expand the process hierarchy.

3. Double-click Check Syntax in the Synthesize hierarchy.

Note: Check Syntax is not available when Synplify is selected as the synthesis tool.

Correcting HDL errors
The time_cnt module contains a syntax error that must be corrected. The red “x” beside the
Check Syntax process indicates an error was found during the analysis. Project Navigator
reports errors in red and warnings in yellow in the Transcript window.

To display the error in the source file:

1. Double-click the error message in the Transcript window. The source code will come
up in the main display window.

2. Correct any errors in the HDL source file. The comments next to the error explain this
simple fix.

3. Select File → Save to save the file.

4. Re-analyze the file by selecting the HDL file and double-clicking Check Syntax.

Creating an HDL-Based Module
Next, create a module from HDL code. With ISE, you can easily create modules from HDL
code using the ISE Text Editor. The HDL code is then connected to your top-level HDL
design through instantiation and is compiled with the rest of the design.

Now, you will author a new HDL module. This macro serves to convert the 4-bit outputs of
the time_cnt and ten_cnt modules into a 7-segment LED display format.

Figure 2-4: time_cnt.vhd file in Source in Project window

http://www.xilinx.com

30 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Using the New Source Wizard and ISE Text Editor

Create a file using the New Source wizard specifying the name and ports of the
component. The resulting HDL file is then modified in the ISE Text Editor.

To create the source file:

1. Select Project → New Source.

A dialog box opens in which you specify the type of source you want to create.

2. Select VHDL Module or Verilog Module.

3. In the File Name field, type hex2led.

4. Click Next.

The hex2led component has a 4-bit input port named hex and a 7-bit output port named led.
To enter these ports:

1. Click in the Port Name field and type HEX.

2. Click in the Direction field and set the direction to in.

3. In the MSB field enter 3, and in the LSB field enter 0. Refer to Figure 2-5.

4. Repeat the previous steps for the LED[6:0] output bus. Be sure that the direction is set
to out, MSB is set to 6 and LSB is set to 0.

5. Click Next to complete the Wizard session.

A description of the module displays.

6. Click Finish to open the empty HDL file in ISE Text Editor.

Figure 2-5: New Source Wizard for VHDL

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 31
1-800-255-7778

Design Entry
R

The VHDL file is displayed in Figure 2-6. The Verilog HDL file is displayed in Figure 2-7.

In the ISE Text Editor, the ports are already declared in the HDL file, and some of the basic
file structure is already in place. Keywords are displayed in blue, comments in green, and
values are black. The file is color-coded to enhance readability and recognition of
typographical errors.

Using the Language Templates

The ISE Language Templates include HDL constructs and synthesis templates which
represent commonly used logic components, such as counters, D flip-flops, multiplexers,
and primitives. You will use the HEX2LED Converter template for this exercise. This
template provides source code to convert a 4-bit value to 7-segment LED display format.

Note: You can add your own templates to the Language Templates for components or constructs
that you use often.

To invoke the Language Templates and select the template for this tutorial:

1. From Project Navigator, select Edit → Language Templates.

Figure 2-6: VHDL File in ISE Text Editor

Figure 2-7: Verilog File in ISE Text Editor

http://www.xilinx.com

32 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Each HDL language in the Language Templates is divided into five sections: Common
Constructs, Device Primitive Instantiation, Simulation Constructs, Synthesis
Constructs and User Templates. To expand the view of any of these sections, click the
+ next to the topic. Click any of the listed templates to view the template contents in
the right pane.

2. Under either the VHDL or Verilog hierarchy, expand the Synthesis Constructs
hierarchy, expand the Coding Examples hierarchy, expand the Misc hierarchy, and
select the template called 7-Segment Display Hex Conversion. Use the appropriate
template for the language you are using.

3. To preview the template, click the template in the hierarchy. The contents display in
the right pane.

Figure 2-8: Language Templates

Adding a Language Template to Your File

You will now use the drag and drop method for adding templates to your HDL file. A copy
and paste function is also available from the Language Templates Edit Menu and the right-
click menu.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 33
1-800-255-7778

Design Entry
R

To add the template to your HDL file using the drag and drop method:

1. In the Language Templates, click and drag the 7-Segment Display Hex Conversion
name into the hex2led.vhd file under the architecture statement, or into the hex2led.v file
under the module declaration.

2. Close the Language Templates window.

3. (Verilog only) After the input and output statements and before the HEX2LED
converter that you just added, add the following line of code to the HDL file to allow
an assignment:

reg [6:0] LED;

You now have complete and functional HDL code.

4. Save the file by selecting File → Save.

5. Select hex2led in the Sources in Project window.

6. In the Processes for Source window, double-click Check Syntax.

7. Close the ISE Text Editor.

Creating a CORE Generator Module
CORE Generator is a graphical interactive design tool used to create high-level modules
such as counters, shift registers, RAM and multiplexers. You can customize and pre-
optimize the modules to take advantage of the inherent architectural features of the Xilinx
FPGA architectures, such as Fast Carry Logic for arithmetic functions and on-chip RAM
for dual-port and synchronous RAM.

In this section, you will create a CORE Generator module called ten_cnt which is a 4-bit
binary encoded counter. The 4-bit number is decoded to count the tenths digit of the
stopwatch’s time value.

Creating the CORE Generator Module

Create the CORE Generator module using the New Source Wizard in Project Navigator.
This invokes CORE Generator in which you can select and define the type of module you
want.

To create the module:

1. In Project Navigator, select Project → New Source.

2. Select IP (CoreGen & Architecture Wizard) as the source type.

3. Enter ten_cnt in the File Name field.

4. Click Basic Elements → Counters → Binary Counters.

5. Click Next and then Finish.

The Binary Counter dialog box opens.

http://www.xilinx.com

34 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

6. Fill in the Binary Counter dialog box with the following settings:

♦ Component Name: ten_cnt

Defines the name of the module.

♦ Output Width: 4

Defines the width of the output bus.

♦ Operation: Up

Defines how the counter will operate. This field is dependent on the type of
module you select.

♦ Count Style: Count by Constant

Allows counting by a constant or a user supplied variable.

♦ Count Restrictions: Restrict Count

♦ Count Restrictions: Count To Value 9

This dictates the maximum count value.

7. Select the Next button.

8. Continue to fill in the Binary Counter dialog with the following settings:

♦ Threshold Options: Threshold 0 set to 9

Signal goes high when the value specified has been reached.

♦ Threshold Options: Registered

9. Click the Register Options button to open the Register Options dialog box.

Figure 2-9: CORE Generator Module Selector

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 35
1-800-255-7778

Design Entry
R

10. In the Register Options dialog box, enter the following settings:

♦ Clock Enable: Selected

♦ Asynchronous Settings: Init with a value of 0

♦ Synchronous Settings: None

11. Click OK.

12. Check that only the following pins are used (used pins will be highlighted on the
model symbol to the left side of the CORE Generator window):

♦ AINIT

♦ CE

♦ Q

♦ Q_THRESH0

♦ CLK

13. Click Generate.

The module is created and automatically added to the project library.

A number of other files are added to the project directory. These files are:

♦ ten_cnt.sym

This is a schematic symbol file.

♦ ten_cnt.edn

This file is the netlist that is used during the Translate phase of implementation.

♦ ten_cnt.vho or ten_cnt.veo

This is the instantiation template that is used to incorporate the CORE Generator
module in your source HDL.

♦ ten_cnt.vhd or ten_cnt.v

These are simulation-only files.

♦ ten_cnt.xco

This file stores the configuration information for the Tenths module and is used as
a project source.

♦ stopwatch.cgp

This file stores the CORE Generator configuration for the project.

Instantiating the CORE Generator Module in the HDL Code

Next, instantiate the CORE Generator module in the HDL code using either a VHDL flow
or a Verilog flow.

VHDL Flow

To instantiate the CORE Generator module using a VHDL flow:

1. In Project Navigator, double-click stopwatch.vhd to open the file in ISE Text Editor.

2. Place your cursor after the line that states:

“-- Insert Coregen Counter Component Declaration”

3. Select Edit → Insert File and select ten_cnt.vho.

http://www.xilinx.com

36 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

The VHDL template file for the CORE Generator instantiation is inserted.

4. Highlight the inserted code from

“-- Begin Cut here for INSTANTIATION Template”

to

“AINIT=>AINIT);”

5. Select Edit → Cut.

6. Place the cursor after the line that states:

“--Insert Coregen Counter Instantiation”

7. Select Edit → Paste two times because two CORE Generator counters are needed.

8. Change the instance names from “your_instance_name” to “TENCNT_1” and
“TENCNT_2”.

Figure 2-10: VHDL Component Declaration of CORE Generator Module

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 37
1-800-255-7778

Design Entry
R

9. Edit this instantiated code to connect the signals in the Stopwatch design to the ports
of the CORE Generator module as shown in Figure 2-11.

10. Save the design using File → Save, and close the ISE Text Editor.

Verilog Flow

To instantiate the CORE Generator module using a Verilog flow:

1. In Project Navigator, double-click stopwatch.v to open the file in the ISE Text Editor.

2. Select File → Open and open the ten_cnt.veo file.

3. Changes the Files of Type to All Files.

4. Select ten_cnt.veo.

5. Highlight the inserted code in ten_cnt.veo from

“//----------- Begin cut here for INSTANTIATION TEMPLATE ---//”

to

“// INST_TAG_END ------ End INSTANTIATION Template”

6. Select Edit → Copy.

7. Place the cursor after the line in stopwatch.v that states:

“// Place the Coregen module instantiation for ten_cnt here.”

8. Select Edit → Paste two times because two CORE Generator counters are needed.

9. Change the instance names from “YourInstanceName” to “TENCNT_1” and
“TENCNT_2”.

Figure 2-11: VHDL Component Instantiation of CORE Generator Module

http://www.xilinx.com

38 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

10. Edit this code to connect the signals in the Stopwatch design to the ports of the CORE
Generator module as shown in Figure 2-12.

11. Save the design using File → Save and close stopwatch.v in the ISE Text Editor.

Creating a DCM Module
The Clocking Wizard, one part of the Xilinx Architecture Wizard, enables you to
graphically select Digital Clock Manager (DCM) features that you wish to use. In this
section, create a basic DCM module with CLK0 feedback and duty-cycle correction.

Using DCM Wizard

To create the DCM1 module:

1. In Project Navigator, select Project → New Source.

2. In the New Source dialog box, select IP (CoreGen & Architecture Wizard) source and
type DCM1 for the file name.

3. Click Next.

4. In the Select Core Type window, select Clocking → Single DCM.

Figure 2-12: Verilog Component Instantiation of the CORE Generator Module

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 39
1-800-255-7778

Design Entry
R

Figure 2-13: Selecting Single DCM Core Type

5. Click Next, then Finish. The Clocking Wizard is launched.

6. Verify that RST, CLK0 and LOCKED are selected.

7. Select CLKFX.

8. Type 50 and select MHz for the Input Clock Frequency.

9. Verify the following settings:

♦ CLKIN Source: External, Single

♦ Feedback Source: Internal

♦ Feedback Value: 1X

♦ Phase Shift: None

♦ Duty Cycle Correction: selected

10. Select the Advanced button.

11. Select the Wait for DCM lock before DONE Signal goes high option.

12. Click OK.

An informational message about the LCK_cycle and the STARTUP_WAIT BitGen
option appears.

13. Click OK, click Next, click Next.

14. In the Clock Frequency Synthesizer window, type 26.144 MHz in the Use output
frequency box.

15. Click Next and then Finish.

The dcm1.xaw file is added to the list of project source files in the Sources in Project
window.

26.2144Mhz() 2
18⁄ 100Hz=

http://www.xilinx.com

40 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Instantiating the DCM1 Macro - VHDL Design

Next, instantiate the DCM1 macro for your VHDL or Verilog design. To instantiate the
DCM1 macro for the VHDL design:

1. In Project Navigator, in the Sources in the Project window, select dcm1.xaw.

2. In the Processes for Source window, click the + next to Design Utilities to expand the
process hierarchy.

3. Double-click View HDL Instantiation Template.

4. Select the component declaration template in the newly opened HDL Instantiation
Template.

5. Select Edit → Copy.

6. Place the cursor in the stopwatch.vhd file in a section labeled

-- Insert DCM1 component declaration here.

7. Select Edit → Paste to paste the component declaration.

8. Select the instantiation template in the newly opened HDL Instantiation Template.

9. Select Edit → Copy.

Figure 2-14: VHDL DCM Component Declaration

Figure 2-15: VHDL DCM Component Instantiation

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 41
1-800-255-7778

Design Entry
R

10. Place the cursor in the stopwatch.vhd file in a section labeled

-- Insert DCM1 instantiation here.

11. Select Edit → Paste to paste the instantiation template.

12. Make the necessary changes as shown in the figure below.

Figure 2-16: VHDL Instantiation for dcm1

Instantiating the DCM1 Macro - Verilog

To instantiate the DCM1 macro for your Verilog design:

1. In Project Navigator, in the Sources in the Project window, select dcm1.xaw.

2. Double-click View HDL Instantiation Template in the Processes for Source window.

3. From the newly opened HDL Instantiation Template, copy the instantiation template:

4. Paste the instantiation template into the section in stopwatch.v labeled
//Insert DCM1 instantiation here.

Figure 2-17: DCM1 Macro and Instantiation Templates

http://www.xilinx.com

42 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

5. Make the necessary changes as shown in the figure below.

Figure 2-18: Verilog Instantiation for dcm1

Synthesizing the Design
So far you have been using XST for syntax checking. Next, you will synthesize the design
using either XST, Synplify/Synplify Pro, LeonardoSpectrum or Precision. The synthesis
tool uses the design’s HDL code and generates a supported netlist type (EDIF or NGC for
the Xilinx implementation tools). The synthesis tool performs three general steps
(although all synthesis tools further break down these general steps) to create the netlist:

• Analyze / Check Syntax

Checks the syntax of the source code.

• Compile

Translates and optimizes the HDL code into a set of components that the synthesis tool
can recognize.

• Map

Translates the components from the compile stage into the target technology’s
primitive components.

The synthesis tool can be changed at any time during the design flow. To change the
synthesis tool:

1. Select the targeted part in the Sources in Project window.

2. Select Source → Properties.

3. In the Project Properties dialog box, click the Synthesis Tool value and use the pull-
down arrow to select the desired synthesis tool from the list.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 43
1-800-255-7778

Synthesizing the Design
R

Note: If you do not see the synthesis tool among the options in the list, you may not have the
software installed or may not have it configured in ISE. The Synthesis tools are configured in the
Preferences dialog box (Edit → Preferences, expand ISE General, click Integrated Tools).

Changing the design flow results in the deletion of implementation data. You have not yet
created any implementation data in this tutorial. For projects that contain implementation
data, Xilinx recommends that you take a snapshot of the project before changing the
synthesis tool to preserve this data. For more information about taking a snapshot, see
“Creating a Snapshot.”

A summary of available synthesis tools is available in “Overview of Synthesis Tools.”

Read the section for your synthesis tool:

• “Synthesizing the Design using XST”

• “Synthesizing the Design using Synplify/Synplify Pro”

• “Synthesizing the Design using LeonardoSpectrum”

• “Synthesizing the Design Using Precision Synthesis”

Synthesizing the Design using XST
Now that you have created and analyzed the design, the next step is to synthesize the
design. During synthesis, the HDL files are translated into gates and optimized to the
target architecture.

Processes available for synthesis using XST are as follows:

• View Synthesis Report

Gives a synthesis mapping and timing summary as well as optimizations that took
place.

• View RTL Schematic

Generates a schematic view of your RTL netlist.

• View Technology Schematic

Generates a schematic view of your Technology netlist.

Figure 2-19: Specifying Synthesis Tool

http://www.xilinx.com

44 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

• Check Syntax

Verifies that the HDL code is entered properly.

• Generate Post-Synthesis Simulation Model

Creates HDL simulation models based on the synthesis netlist.

Entering Constraints

XST supports a User Constraint File (UCF) style syntax to define synthesis and timing
constraints. This format is called the Xilinx Constraint File (XCF), and the file has an .xcf
file extension. XST uses the .xcf extension to determine if the file is a constraints file.

To create a new Xilinx Constraint File:

1. Select Project → New Source.

2. In the New Source dialog box, select User Document as the source type, and enter the
file name stopwatch.xcf.

3. Select Next, and Finish.

The new XCF file launches in ISE Text Editor.

4. In stopwatch.xcf, type in the following:

NET “CLK” TNM_NET = “CLK_GROUP”;

TIMESPEC “TS_CLK”=PERIOD “CLK” 20 ns;

BEGIN MODEL stopwatch

NET "CLK" TNM_NET = "CLK";

NET "CLK" LOC = "T9";

NET "AN<0>" LOC = "d14";

NET "AN<1>" LOC = "g14";

NET "AN<2>" LOC = "f14";

NET "AN<3>" LOC = "e13";

NET "RESET" LOC = "L13";

NET "SEG_A" LOC = "e14";

NET "SEG_B" LOC = "g13";

NET "SEG_C" LOC = "n15";

NET "SEG_D" LOC = "p15";

NET "SEG_E" LOC = "r16";

NET "SEG_F" LOC = "f13";

NET "SEG_G" LOC = "n16";

NET "SEG_DP" LOC = "P16";

NET "STRTSTOP" LOC = "M13";

END;

5. Select File → Save

Note: For more constraint options in the implementation tools, see “Using the Constraints Editor”
and “Using the Pin-out Area Constraints Editor (PACE)” in Chapter 5, “Design Implementation.”

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 45
1-800-255-7778

Synthesizing the Design
R

Entering Synthesis Options

Synthesis options enable you to modify the behavior of the synthesis tool to make
optimizations according to the needs of the design. One commonly used option is to
control synthesis to make optimizations based on area or speed. Other options include
controlling the maximum fanout of a signal from a flip-flop or setting the desired
frequency of the design.

To enter synthesis options:

1. Select stopwatch.vhd (or stopwatch.v) in the Sources in Project window.

2. Right-click on the Synthesize process and select Properties.

3. Under the Synthesis Options tab, click in the Synthesis Constraints File property
field and select stopwatch.xcf.

4. Check the Write Timing Constraints box.

5. Click OK.

Synthesizing the Design

Now, you are ready to synthesize your design. To take the HDL code and generate a
compatible netlist:

1. Select stopwatch.vhd (or stopwatch.v).

2. Double-click the Synthesize process in the Processes for Source window.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes for Current Source window, and selecting Process → Run.

The RTL / Technology Viewer

XST can generate a schematic representation of the HDL code that you have entered. A
schematic view of the code is helpful for analyzing your design to see a graphical
connection between the various components that XST has inferred. There are two forms of
the schematic representation:

• RTL View - Pre-optimization of the HDL code.

• Technology View - Post-synthesis view of the HDL design mapped to the target
technology.

To view a schematic representation of your HDL code:

1. In the Processes for Source window, click + next to Synthesize to expand the process
hierarchy.

2. Double-click View RTL Schematic or View Technology Schematic.

http://www.xilinx.com

46 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

The RTL Viewer displays the schematic. Right-click on the schematic to view various
options for the schematic viewer.

You have completed XST synthesis. An NGC file now exists for the Stopwatch design. To
continue with the HDL Flow, go toChapter 4, “Behavioral Simulation” to perform a pre-
synthesis simulation of this design, or proceed to Chapter 5, “Design Implementation” to
place and route the design.

Note: For more information about XST constraints, options, reports, or running XST from the
command line, see the XST User Guide. This Guide is available with the collection of software
manuals and is accessible from ISE by selecting Help → Online Documentation, or from the web at
http://www.xilinx.com/support/sw_manuals/xilinx7/.

Synthesizing the Design using Synplify/Synplify Pro
Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture. To access Synplify’s RTL viewer and constraints editor you must run Synplify
outside of ISE.

To synthesize the design, set the global synthesis options:

1. Select stopwatch.vhd (or stopwatch.v).

2. Right-click Synthesize in the Processes for Source window.

3. From the menu, select Properties.

4. Set the Default Frequency to 50 (units are in MHz), and check the Write Vendor
Constraint File box.

5. Click OK to accept these values.

6. Select stopwatch.vhd (or stopwatch.v) and double-click the Synthesize process to run
synthesis.

Note: This step can also be done by selecting stopwatch.vhd (or stopwatch.v), clicking
Synthesize in the Processes for Source window, and selecting Process → Run.

Figure 2-20: RTL Viewer

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 47
1-800-255-7778

Synthesizing the Design
R

Processes available in Synplify and Synplify Pro synthesis include:

• View Synthesis Report

Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.

• View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify
Pro with a schematic view of your HDL code

• View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays Synplify or Synplify
Pro with a schematic view of your HDL code mapped to the primitives associated with
the target technology.

Examining Synthesis Results

To view overall synthesis results, double-click View Synthesis Report under the
Synthesize process. The report consists of the following four sections:

• “Compiler Report”

• “Mapper Report”

• “Timing Report”

• “Resource Utilization”

Compiler Report

The compiler report lists each HDL file that was compiled, names which file is the top level
and displays the syntax checking result of each file that was compiled. The report also lists
FSM extractions, inferred memory, warnings on latches, unused ports and removal of
redundant logic.

Note: Black boxes (modules not read into a design environment) are always noted as unbound in
the Synplify reports. As long as the underlying netlist (.ngo, .ngc or .edn) for a black box exists in the
project directory, the implementation tools merge the netlist into the design during the Translate
phase. Since the tenths module was built using CORE Generator called from the project, the tenths
EDN file is found.

Mapper Report

The mapper report lists the constraint files used, the target technology and attributes set in
the design. The report lists the mapping results of flattened instances, extracted counters,
optimized flip-flops, clock and buffered nets that were created and how FSMs were coded.

Timing Report

The timing report section provides detailed information on the constraints that you
entered and on delays on parts of the design that had no constraints. The delay values are
based on wireload models and are considered preliminary. Consult the post-place and

http://www.xilinx.com

48 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

route timing reports discussed in Chapter 5, “Design Implementation,” for the most
accurate delay information.

Resource Utilization

This section of the log file lists all of the resources that Synplify uses for the given target
technology.

You have now completed Synplify synthesis. At this point, an netlist EDN file exists for the
Stopwatch design.

• To perform a pre-synthesis simulation of this design, see Chapter 4, “Behavioral
Simulation.”

• To place and route the design, see Chapter 5, “Design Implementation.”

Synthesizing the Design using LeonardoSpectrum
Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available in LeonardoSpectrum synthesis include:

• Check Syntax

Checks the syntax of the HDL code.

• Modify Constraints

Launches the LeonardoSpectrum tool to enable you to enter constraints.

• View Synthesis Report

Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.

• View Synthesis Summary

Gives a detailed map and timing report with no information on the synthesis
optimizations.

• View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic view of your HDL code

Figure 2-21: Synplify’s Estimated Timing Data

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 49
1-800-255-7778

Synthesizing the Design
R

• View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic view of your HDL code mapped to the primitives associated with the
target technology.

• View Critical Path Schematic

Accessible from the Launch Tools hierarchy, this process displays LeonardoSpectrum
with a schematic view of the critical path of your HDL code mapped to the primitives
associated with the target technology.

Modifying Constraints

LeonardoSpectrum enables you to enter constraints to control optimization options and
pass timing specifications to the implementation tools. All timing specifications are stored
in the netlist constraints file (NCF) which is used by the implementation tools. Some of the
timing constraints are used by the synthesis engine to produce better synthesis results for
the place and route tools.

To modify constraints:

1. Click + next to Synthesize to expand the process hierarchy.

2. Double-click the Modify Constraints process.

LeonardoSpectrum displays. For first time users, the LeonardoSpectrum tool launches
in Quick Setup mode.

3. Click the Advanced Flow icon.

4. Click the Constraints tab.

The constraints sub-tabs are as follows.

• Global

Enables you to enter constraints that affect the entire design: PERIOD, OFFSETs and
pad-to-pad type constraints. The constraints entered here modify the run script only. A
constraints file is not generated.

• Clock

Enables you to enter a more detailed clock constraint accounting for pulse width and
duty cycle as well as the period. The constraints entered here modify the run script
only. A constraints file is not generated.

Figure 2-22: LeonardoSpectrum Advanced Flow Icon

Figure 2-23: LeonardoSpectrum Constraints Tab

http://www.xilinx.com

50 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

• Input

Enables you to enter constraints that affect the input ports such as arrival time, fanout,
pin location, and pad type.

• Output

Enables you to enter constraints that affect the output ports such as required time, pin
location, and pad type.

• Signal

Enables you to enter individual signal constraints such as preserve signal, a low skew
constraint and a max fanout constraint.

• Module

Enables you to instruct the synthesis tool to synthesize a module differently then the
rest of the design.

• Path

Enables you to create false and multicycle paths.

• Report

Enables you to generate a report of constraints that have been entered.

In the Constraints tab, enter the following constraints:

1. Select the Input sub-tab.

2. Select the Reset input pad.

3. In the Pin Location field, enter A5.

4. Click Apply.

5. Select the Report sub-tab, and check that the constraints were applied.

6. In order to get LeonardoSpectrum to write out a constraints file (.ctr), select any tab
(the Technology tab, for example).

7. Save the constraints file to the default name stopwatch.ctr.

8. Exit LeonardoSpectrum.

Note: For more constraint options in the implementation tools, see “Using the Constraints Editor”
and “Using the Pin-out Area Constraints Editor (PACE)” in Chapter 5, “Design Implementation.”

Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to optimize
according to the needs of the design. One option is to control synthesis by optimizing
based on area or speed. Other options include controlling the maximum fanout of a signal
from a flip-flop or setting the desired frequency of the design.

Figure 2-24: LeonardoSpectrum Technology Tab

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 51
1-800-255-7778

Synthesizing the Design
R

For this tutorial, set the global synthesis options:

1. Select stopwatch.vhd (or stopwatch.v).

2. Right-click the Synthesize process.

3. From the menu, select Properties.

4. Click the Synthesis Options tab, and set the Default Frequency to 50MHz.

5. Click the Netlist Options tab, and ensure that the Do Not Write NCF box is unchecked.

6. Click the Constraint File Options tab, and select the stopwatch.ctr file created in
LeonardoSpectrum in the “Modifying Constraints” section above.

7. Click OK to accept these values.

8. Select stopwatch.vhd (or stopwatch.v) and double-click the Synthesize process in the
Processes for Source window.

The RTL/Technology Viewer

LeonardoSpectrum can generate a schematic representation of the HDL code that you have
entered. A schematic view of the code is helpful for analyzing your design to see a
graphical connection between the various components that LeonardoSpectrum has
inferred. To launch the design in LeonardoSpectrum’s RTL Viewer, double-click the View
RTL Schematic process. The following figure displays the design in an RTL view.

Figure 2-25: LeonardoSpectrum Synthesis Processes

http://www.xilinx.com

52 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

LeonardoSpectrum also has the capability of generating a technology-specific view of the
design after synthesis in the Technology Viewer. This schematic representation is useful for
verifying the connections of the inferred elements.

To launch the design in LeonardoSpectrum’s Technology Schematic viewer, double-click
the View Technology Schematic process.

Note: Viewing the technology schematic will most likely result in a multi-sheet schematic. To view a
different sheet, right-click inside the schematic and select the appropriate option from the menu.

To view the path with the worst timing delay (the critical path) of the design, launch
LeonardoSpectrum’s Technology Viewer by double-clicking View Critical Path
Schematic. Click the View Trace icon in LeonardoSpectrum to display the critical path of
the design.

Double-click View Synthesis Report and View Synthesis Summary to see the details of
the synthesis. The Synthesis Report summarizes the compilation, mapping and timing of
the design. The Synthesis Summary provides more detail on the mapping and timing of
the design.

Figure 2-26: Stopwatch Design in LeonardoSpectrum RTL Viewer

Figure 2-27: LeonardoSpectrum View Trace Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 53
1-800-255-7778

Synthesizing the Design
R

You have now completed the design synthesis. At this point, an netlist EDN file exists for
the Stopwatch design.

• To perform a pre-synthesis simulation of this design, see Chapter 4, “Behavioral
Simulation”.

• To place and route the design, see Chapter 5, “Design Implementation,”.

Synthesizing the Design Using Precision Synthesis
Now that you have entered and analyzed the design, the next step is to synthesize the
design. In this step, the HDL files are translated into gates and optimized to the target
architecture.

Processes available for Precision Synthesis include:

• Check Syntax

Checks the syntax of the HDL code.

• View Log File

Lists the synthesis optimizations that were performed on the design and gives a brief
timing and mapping report.

• View Area Report

Summarizes the resources that have been used for the target technology.

• View Timing Report

Gives a detailed map and timing report with no information on the synthesis
optimizations.

• View RTL Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of your HDL code

• View Technology Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of your HDL code mapped to the primitives associated with the
target technology.

• View Critical Path Schematic

Accessible from the Launch Tools hierarchy, this process displays Precision with a
schematic-like view of the critical path of your HDL code mapped to the primitives
associated with the target technology.

• Open Standalone Precision Project

Accessible from the Launch Tools hierarchy, this process enables you to open the
Precision Synthesis project as it is currently setup from Project Navigator. This process
enables you to use the debug features available from Precision Synthesis that are not
available from within Project Navigator.

http://www.xilinx.com

54 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 2: HDL-Based Design
R

Entering Synthesis Options through ISE

Synthesis options enable you to modify the behavior of the synthesis tool to optimize
according to the needs of the design. For the tutorial, the default property settings will be
used.

Select stopwatch.vhd (or stopwatch.v) and double-click the Synthesize process in the
Processes for Source window.

The RTL/Technology Viewer

Precision Synthesis can generate a schematic representation of the HDL code that you have
entered. A schematic view of the code is helpful for analyzing your design to see a
graphical connection between the various components that Precision has inferred. To
launch the design in the RTL viewer, double-click the View RTL Schematic process. The
following figure displays the design in an RTL view.

You have now completed the design synthesis. At this point, an netlist EDN file exists for
the Stopwatch design.

• To perform a pre-synthesis simulation of this design, see Chapter 4, “Behavioral
Simulation”.

• To place and route the design, see Chapter 5, “Design Implementation,”.

Figure 2-28: Stopwatch Design in Precision Synthesis RTL Viewer

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 55
1-800-255-7778

R

Chapter 3

Schematic-Based Design

This chapter includes the following sections.

• “Overview of Schematic-based Design”

• “Getting Started”

• “Design Description”

• “Design Entry”

Overview of Schematic-based Design
This chapter guides you through a typical FPGA schematic-based design procedure using
the design of a runner’s stopwatch. The design example used in this tutorial demonstrates
many device features, software features, and design flow practices that you can apply to
your own designs. The stopwatch design targets a Spartan™-3 device; however, all of the
principles and flows taught are applicable to any Xilinx® device family, unless otherwise
noted.

For an example of how to design with CPLDs, see the ISE™ Software Interactive Tutorial for
Xilinx CPLDs http://www.xilinx.com/support/techsup/tutorials/index.htm.

This chapter is the first in the “Schematic Design Flow.” In the first part of the tutorial, you
will use the ISE design entry tools to complete the design. The design is composed of
schematic elements, a state machine, a CORE Generator™ component, and HDL macros.
After the design is successfully entered in the Schematic Editor, you will perform
behavioral simulation (Chapter 4, “Behavioral Simulation”), run implementation with the
Xilinx Implementation Tools (Chapter 5, “Design Implementation”), perform timing
simulation (Chapter 6, “Timing Simulation”), and configure and download to the Spartan-
3 demo board (Chapter 7, “iMPACT Tutorial.”)

Getting Started
The following sections describe the basic requirements for running the tutorial.

Required Software
You must have Xilinx ISE 7.x to perform this tutorial. For this design you must install the
Spartan-3 libraries and device files.

A schematic design flow is supported on Windows, Solaris and Linux platforms.

http://www.xilinx.com
http://support.xilinx.com/support/techsup/tutorials/index.htm

56 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

This tutorial assumes that the software is installed in the default location, c:\xilinx. If you
have installed the software in a different location, substitute c:\xilinx for your installation
path.

Note: For detailed instructions about installing the software, refer to the ISE 7.1i Installation Guide
and Release Notes.

Note: The free Webpack software tool available on the Xilinx Web site does not contain Core
Generator software. Files and instructions are included to allow WebPack users to complete the
tutorial without Core Generator.

Installing the Tutorial Project Files
The tutorial project files can be downloaded to your local machine from
http://www.xilinx.com/support/techsup/tutorials/tutorials7.htm.

Download the Watch Schematic Design Files (wtut_sch.zip). The download contains two
projects:

• wtut_sc
(incomplete schematic tutorial)

• wtut_sc\wtut_sc_completed
(complete schematic tutorial)

Unzip the tutorial projects in any directory with read-write permissions. The schematic
tutorial files are copied into the directories when you unzip the project files. This tutorial
assumes that the files are unarchived under c:\xilinx\ISEexamples. If you restore the files to
a different location, substitute c:\xilinx\ISEexamples with the project path.

wtut_sc project

The wtut_sc project contains an incomplete copy of the tutorial design. You will create the
remaining files when you perform the tutorial.

wtut_sc_completed solution project

The wtut_sc_completed solution project contains the design files for the completed tutorial,
including schematics and the bitstream file. To conserve disk space, some intermediate
files are not provided. Do not overwrite any files in the solutions directories.

Starting the ISE Software
To launch the ISE software package:

1. Double-click the ISE Project Navigator icon on your desktop, or select Start →
Programs → Xilinx ISE → Project Navigator.

Figure 3-1: Project Navigator Desktop Icon

http://www.xilinx.com/support/techsup/tutorials/tutorials7.htm
http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 57
1-800-255-7778

Design Description
R

2. From Project Navigator, select File → Open Project.

3. Browse to the directory c:\xilinx\ISEexamples\wtut_sc.

4. Double-click the project file, wtut_sc.ise.

Stopping the Tutorial
If you need to stop the tutorial at any time, save your work by selecting File → Save.

Design Description
The design used in this tutorial is a hierarchical, schematic-based design, which means that
the top-level design file is a schematic sheet that refers to several other lower-level macros.
The lower-level macros are a variety of different types of modules, including a schematic-
based modules, a CORE Generator module, a state machine module, an Architecture
Wizard module, and HDL modules.

The runner’s stopwatch design begins as an unfinished design. Throughout the tutorial,
you will complete the design by creating some of the modules and by completing others
from existing files. A schematic of the completed Watch design is shown in the following
figure. Through the course of this chapter, you will create these modules, instantiate and
connect them.

Figure 3-2: Open Project Dialog Box

http://www.xilinx.com

58 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

After the design is complete, you will simulate the design to verify its functionality. For
more information about simulating your design, see Chapter 4, “Behavioral Simulation.”

There are three external inputs and twelve external outputs in the completed design. The
following sections summarizes the inputs and outputs, and their respective functions.

Figure 3-3: Completed Watch Schematic

DCM1

clk_div_262k

debounce

hex2led

hex2led

stmach_v

hex2led

hex2led

hex2led

time_cnt

LED_control

Four-Digit, Seven-Segment LED Display

AN3 AN2 AN1 AN0

AND2

AND2

locked

clk_lnl

clk_26214k

reset

clk

clk_en_int hundredthout[6:0]

strtstop_debounced

CE
CLK

RST_IN LOCKED_OUT

CLKFX_OUT

CLKO_OUTCLKIN_IN

CE
CLK

AINIT

Q[3:0]

Q_THRESH0

clk

sig_in

clk_in div_262144

sig_out

clk

seven_seg[7:0]

clken

rst

an[3:0]
an[3:0]

seg-g,seg_f,seg_e,seg_d,
 seg_c,seg_b,seg_a,seg_dp

minutes[7:0]

tens[7:0]

ones[7:0]

tenths[7:0]

hundredths[7:0]

clk HEX[3:0] LED[6:0]

LED[6:0]

LED[6:0]

HEX[3:0] LED[6:0]

HEX[3:0] LED[6:0]

HEX[3:0]

HEX[3:0]

sec_lsb[3:0]

ce sec_msb[3:0]

clr minutes[3:0]

AINIT

Q_THRESH0

Q[3:0]
clk_100

clk_100

clk_100

clk_100

clk_100

clk_100

clk_int

seg_a

seg_b

seg_c

seg_d

seg_e

seg_f

seg_g

seg_dp
an[3:0]

LOC = e13,f14,g14,d14

clk_en_int

rst_int

CLK

DCM_lock

reset

strtstop

locked

reset

rst_int

rst_int

rst_int

onesout [6:0]

minutesout[6:0],decimal_pt

tensout[6:0],no_decimal_pt

onesout[6:0],decimal_pt

tenthsout[6:0],no_decimal_pt

hundredthout[6:0],no_decimal_pt

lensout [6:0]

tenthsout[6:0]

minutesout [6:0]

strtstop

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

VCC

GND

no_decimal_pt

decimal_pt

clk_en_int

X10259

CLKIN_IBUFG_OUT

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 59
1-800-255-7778

Design Description
R

Inputs
The following are input signals for the runner’s stopwatch design:

• STRTSTOP

Starts and stops the stopwatch. This is an active-low signal that acts like the start/stop
button on a runner’s stopwatch.

• RESET

Resets the stopwatch to 00.00.

• CLK

System clock for the stopwatch design.

Outputs
The following are output signals for the design:

• seg_a, seg_b, seg_c, seg_d, seg_e, seg_f, seg_g, seg_dp

These outputs drive the individual segments and the decimal point for all four digits
of the stopwatch design. The digits of the stopwatch are displayed on 7-segment LED
displays.

• an(3:0)

This is a one-hot vector signal, which drives the anodes of the four 7-segment LED
displays to determine which display will be lighted.

Functional Blocks
The completed design consists of the following functional blocks. Most of these blocks do
not appear on the schematic sheet in the project until after you create and add them to the
schematic in this tutorial.

• CLK_DIV_262k

Schematic-based macro that divides a clock frequency by 262,144.

• DCM1

Clocking Wizard macro with internal feedback, frequency controlled output and duty-
cycle correction. The CLKFX_OUT output converts the 50Mhz clock of the Spartan-3
demo board to 26.2144Mhz.

• DEBOUNCE

Schematic module that implements a simplistic debounce circuit for the strtstop input
signal.

• HEX2LED

HDL-based macro that decodes each of the digit values from binary to 7-segment
display format.

• LED_control

Schematic module that controls the data multiplexing to the four 7-segment LED
displays.

• STMACH_V

State Machine macro that is defined and implemented in StateCAD.

http://www.xilinx.com

60 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

• TEN_CNT

CORE Generator 4-bit, binary encoded counter. This macro outputs a 4-bit code, which
is decoded to represent the tenths and hundredths digits of the stopwatch.

• TIME_CNT

Schematic-based module that counts from 0:0 to 9:59 decimal. This macro has three 4-
bit outputs, which represent the minutes and seconds digits of the decimal value.

Note: The tutorial allows you to select either VHDL or Verilog for creating some of the functional
blocks. Be consistent with your HDL language choice for functional blocks in a project. Because
neither ModelSim Xilinx Edition (MXE) nor the ISE Simulator support mixed language simulation, one
HDL choice is required in order to simulate the design in Chapter 4, “Behavioral Simulation.” The
example project is set up for VHDL simulation.

In order to select Verilog simulation, right-click on the device line (xc3s200-4ft256) and select
Properties. In the properties window, change the Generated Simulation Language from VHDL to
Verilog. Click OK.

Design Entry
In this hierarchical design, you will create various types of macros, including schematic-
based macros, HDL-based macros, state machine macros, and CORE Generator macros.
You will learn the process for creating each of these types of macros, and you will connect
the macros together to create the completed Watch design. All procedures used in the
tutorial can be used later for your own designs.

Opening the Schematic File in the Xilinx Schematic Editor
The Watch schematic available in the wtut_sc project is incomplete. In this tutorial, you will
update the schematic in the Schematic Editor. After you have opened the project in ISE,
you can now open the stopwatch.sch file for editing. To open the schematic file, double-click
stopwatch.sch in the Sources in Project window.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 61
1-800-255-7778

Design Entry
R

The Watch schematic diagram opens in the Project Navigator Workspace. You will see the
unfinished design as shown in the figure below.

Manipulating the Window View
The View menu commands enable you to manipulate how the schematic is displayed.
Select View → Zoom → In until you can comfortably view the schematic.

The schematic window can be undocked from the Project Navigator framework by
selecting the undock icon above the top right corner of the schematic.

After being undocked, the schematic window can be redocked by selecting the redock
icon above the top right corner of the schematic.

Creating a Schematic-Based Macro
A schematic-based macro consists of a symbol and an underlying schematic. You can
create either the underlying schematic or the symbol first. The corresponding symbol or
schematic file can then be generated automatically.

Figure 3-4: Incomplete Watch Schematic

LED_control

Four-Digit, Seven-Segment LED Display

AN3 AN2 AN1 AN0

clk

seven_seg[7:0]

an[3:0]
an[3:0]

seg-g,seg_f,seg_e,seg_d,
 seg_c,seg_b,seg_a,seg_dp

minutes[7:0]

tens[7:0]

ones[7:0]

tenths[7:0]

hundredths[7:0]

clk_int

seg_a

seg_b

seg_c

seg_d

seg_e

seg_f

seg_g

seg_dp
an[3:0]

minutesout[6:0],decimal_pt

tensout[6:0],no_decimal_pt

onesout[6:0],decimal_pt

tenthsout[6:0],no_decimal_pt

hundredthout[6:0],no_decimal_pt

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

VCC

GND

no_decimal_pt

decimal_pt

X10260

http://www.xilinx.com

62 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

In the following steps, you will create a schematic-based macro by using the New Source
Wizard in Project Navigator. An empty schematic file is then created, and you can define
the appropriate logic. The created macro is then automatically added to the project’s
library.

The macro you will create is called time_cnt. This macro is a binary counter with three 4-bit
outputs, which represent the minutes and seconds values of the stopwatch.

To create a schematic-based macro:

1. In Project Navigator, select Project → New Source. The New Source dialog box
opens.

The New Source dialog provides a list of all available source types.

2. Select Schematic as the source type.

3. Enter time_cnt as the file name.

4. Click Next and click Finish.

A new schematic called time_cnt is created, added to the project, and opened for editing.

Defining the time_cnt Schematic
You have now created an empty schematic for time_cnt. The next step is to add the
components that make up the time_cnt macro. You can then reference this macro symbol by
placing it on a schematic sheet.

Adding I/O Markers

I/O markers are used to determine the ports on a macro or the top level schematic. The
name of each pin on the symbol must have a corresponding connector in the underlying
schematic. Add I/O markers to the time_cnt schematic to determine the macro ports.

Figure 3-5: New Source Dialog Box

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 63
1-800-255-7778

Design Entry
R

To add the I/O markers:

1. Select Tools → Create I/O Markers.

The Create I/O Markers Options window opens.

2. In the Inputs box, enter ce,clk,clr.

3. In the Outputs box, enter sec_lsb(3:0),sec_msb(3:0),minutes(3:0).

4. Click OK. The six I/O markers are added to the schematic sheet.

Note: The Create I/O Marker function is available only for an empty schematic sheet. However, I/O
markers may be added to nets at any time by selecting Add → I/O Marker and selecting the desired
net.

Adding Components to time_cnt

Components from the device and project libraries for the given project are available from
the Symbol Browser, and the component symbol can be placed on the schematic. The
available components listed in the Symbol Browser are arranged alphabetically within
each library.

1. From the menu bar, select Add → Symbol or click the Add Symbol icon from the Tools
toolbar.

Figure 3-6: Creating I/O Markers

Figure 3-7: Add Symbol Icon

http://www.xilinx.com

64 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

This opens the Symbol Browser to the left of the schematic editor, which displays the
libraries and their corresponding components.

Note: To expand the Symbol Browser to see all contents, click the Expand icon at the top right
corner of the Symbol tab.

The first component you will place is a CD4RE, a 4-bit BCD counter with clock enable,
and synchronous clear.

2. Select the CD4RE component using one of two ways:

♦ Highlight the Counter category from the Symbol Browser dialog box and select
the component CD4RE from the symbols list.

or

♦ Select All Symbols and type CD4RE in the Symbol Name Filter at the bottom of
the Symbol Browser window.

3. Move the mouse back into the schematic window.

You will notice that the cursor has changed to represent the CD4RE symbol.

4. Move the symbol outline to the location shown in Figure 3-10 and click the left mouse
button to place the object.

Figure 3-8: Symbol Browser

Figure 3-9: Symbol Tab Expand Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 65
1-800-255-7778

Design Entry
R

Note: You can rotate new components being added to a schematic by selecting CTRL+R. You
can rotate existing components by selecting the component, and then selecting CTRL+R.

5. Place the second CD4CE symbol on the schematic by moving the cursor with attached
symbol outline to the desired location, and clicking the left mouse button. See
Figure 3-10.

Placing the Remaining Components

Follow the steps above in “Adding Components to time_cnt” to place the following
components on the schematic sheet:

• OR2

• CB4RE

• AND2

• AND5b2

Refer to Figure 3-10 for placement locations.

To exit the Symbols Mode, press the Esc key on the keyboard.

Figure 3-10: Partially Completed time_cnt Schematic

http://www.xilinx.com

66 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

For a detailed description of the functionality of each of these components, right-click on
the component and select Object Properties. In the Object Properties window, select
Symbol Information. Symbol information is also available in the Libraries Guides,
accessible from the collection of software manuals on the web at
http://www.xilinx.com/support/sw_manuals/xilinx7/.

Correcting Mistakes

If you make a mistake when placing a component, you can easily move or delete the
component.

To move the component, click the component and drag the mouse around the window.

Delete a placed component in one of two ways:

• Click the component and press the Delete key on your keyboard.

or

• Right-click the component and select Delete.

Drawing Wires

Use the Add Wire icon in the Tools toolbar to draw wires (also called nets) to connect the
components placed in the schematic.

Perform the following steps to draw a net between the AND2 and CB4RE components on
the time_cnt schematic.

1. Select Add → Wire or click the Add Wires icon in the Tools toolbar.

2. Click the output pin of the AND2 and then click the destination pin CE on the CB4RE
component. The Schematic Editor draws a net between the two pins.

Draw the nets to connect the remaining components as shown in the Figure 3-10. To
specify the shape of the net:

1. Move the mouse in the direction you want to draw the net.

2. Click the mouse to create a 90-degree bend in the wire.

To draw a net between an already existing net and a pin, click once on the component pin
and once on the existing net. A junction point is drawn on the existing net.

Adding Buses

In the Schematic Editor, a bus is simply a wire which has been given a multi-bit name. To
add a bus, use the methodology for adding wires and then add a multi-bit name. Once a
bus has been created, you have the option of “tapping” this bus off to use each signal
individually.

The next step is to create three buses called sec_lsb(3:0), sec_msb(3:0) and minute(3:0), each
consisting of the 4 output bits of each counter, in the time_cnt schematic. The results can be
found in the completed schematic.

Figure 3-11: Add Wires Icon

http://support.xilinx.com/support/sw_manuals/xilinx7/
http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 67
1-800-255-7778

Design Entry
R

To add the buses sec_lsb(3:0),sec_msb(3:0) and minute(3:0) to the schematic, perform the
following steps:

1. Select Add → Wire or click the Add Wires icon in the Tools toolbar.

2. Click in the open space just above and to the right of the top CD4RE and then click
again on pin of the sec_lsb(3:0) I/O marker. The wire should automatically be drawn
as a bus with the name matching that of the I/O marker.

3. To verify this, zoom in. The bus is represented visually by a thicker wire.

4. Repeat Steps 1 through 3 for the sec_msb(3:0) and minute(3:0) busses.

5. After adding the three buses, press Esc or right-click at the end of the bus to exit the
Add Wire mode.

Adding Bus Taps

Next, add nets to attach the appropriate pins from the CB4RE and CD4RE counters to the
buses. Use Bus Taps to tap off a single bit of a bus and connect it to another component.

Note: Zooming in on the schematic will enable greater precision when drawing the nets.

To tap off a single bit of each bus:

1. Select Add → Bus Tap or click the Add Bus Tap icon in the Tools toolbar.

The cursor changes, indicating that you are now in Draw Bus Tap mode.

2. From the Options tab to the left of the schematic, choose the correct orientation for the
bus tap.

3. Place the tap on one of the three busses so that the wire side of the bus tap is pointing
to an unconnected pin.

4. Repeat steps 1 to 3 to tapped off four bits from each of the three busses.

To connect each of the tap off bits:

1. Select Add → Wire or click the Add Wire icon in the Tools toolbar.

2. Draw a wire from each bus tap pin to the adjacent component pin.

Figure 3-12: Adding a Bus

Figure 3-13: Add Bus Tap Icon

http://www.xilinx.com

68 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

3. Select Add → Net Name or click the Add Net Name icon in the Tools toolbar.

4. Type sec_lsb(0) in the Name field of the options toolbar.

The net name is now at the end of your cursor.

5. Select Increment the Name in the Add Net Names Options dialog box.

6. With the Increment Name option selected, start at the top net and continue clicking
down until you have named the fourth and final net sec_lsb(3).

Note: The Schematic Editor names the bus taps incrementally as they are drawn. Alternatively,
name the first net sec_lsb(3) and select Decrement the Name in the Add Net Names Options dialog
box, and nets are named from the bottom up.

7. Repeat Steps 4 through 6 for the sec_msb(3:0) bus and minute(3:0).

8. Press Esc to exit the Add Net Name mode.

9. Compare your time_cnt schematic with Figure 3-15 to ensure that all connections are
made properly.

Note: It is the name of the wire that makes the electrical conection between the bus and the wire(e.g
sec_msb(2) connects to the third bit of sec(3:0)). The bus tap figure is for visual purposes only. The
following section shows additional electrical connections by name association.

Adding Net Names

First, add a hanging wire to each of the five inputs of the AND5b2 component.

Next, add net names to the wires. To add the net names:

1. Select Add → Net Name or click the Add Net Name icon in the Tools toolbar.

2. Type minute_en in the Name box of the Add Net Name options dialog box.

The net name minute_en is now attached to the cursor.

3. Click the net attached to the output of the AND5b2 component.

The name is then attached to the net. The net name will appear above the net if the
name is placed on any point of the net other than an end point.

4. Type msb_en in the Name box of the Add Net Name options dialog box.

The net name msb_en is now attached to the cursor.

5. Click the net attached to the output of the AND2 component.

6. With the net name msb_en still attached to the cursor, click on the net attached to the
top input pin of the AND5b2 component.

Note: The two wires named msb_en are now electrically connected. In this case, the nets do not
need to be physically connected on the schematic to make the logical connection.

Finally, connect the remaining AND5b2 inputs through net name association.

1. Select Add → Net Name or click the Add Net Name icon in the Tools toolbar.

2. Type sec_msb(0) in the Name box of the Add Net Name options dialog box.

Note: The Options window changes depending on which tool you have selected in the Tools toolbar.

Figure 3-14: Add Net Name Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 69
1-800-255-7778

Design Entry
R

3. Select Increment the Name in the Add Net Names options dialog box.

The net name sec_msb(0) is now attached to the cursor.

4. Click on one of the AND5b2 input nets which does not have an inversion bubble.

5. Click on the remaining three AND5b2 input nets of the so that the wires named
sec_msb(1) and sec_msb(3) are attached to the inputs with inversion bubbles. Refer to
Figure 3-15.

Note: If the nets appear disconnected, select View → Refresh to refresh the screen.

Figure 3-15: Completed time_cnt Schematic

Saving the Schematic

The time_cnt schematic is now complete.

1. Save the schematic by selecting File → Save or by clicking the Save icon in the toolbar.

When you save a macro, the Schematic Editor checks the I/O markers against the
corresponding symbol. If there is a discrepancy, you can let the software update the symbol
automatically, or you can modify the symbol manually. You should use I/O markers to
connect signals between levels of hierarchy and to specify the ports on top-level schematic
sheets.

2. Close the time_cnt schematic.

Figure 3-16: Save Icon

http://www.xilinx.com

70 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Creating and Placing the time_cnt Symbol
The next step is to create a “symbol” that represents the time_cnt macro. The symbol is an
instantiation of the macro. After you create a symbol for time_cnt, you will add the symbol
to a top-level schematic of the Watch design. In the top-level schematic, the symbol of the
time_cnt macro will be connected to other components in a later section in this chapter.

Creating the time_cnt symbol

You can create a symbol using either a Project Navigator process or a Tools menu
command. For this tutorial, you can follow either method.

To create a symbol that represents the time_cnt schematic using a Project Navigator
process:

1. In the Sources in Project window, select time_cnt.sch.

2. In the Processes for Source window, click the + beside Design Utilities to expand the
hierarchy.

3. Double-click Create Schematic Symbol.

To create a symbol that represents the time_cnt schematic using a Tools menu command:

1. Select Tools → Symbol Wizard.

2. In the Symbol wizard, select Using Schematic and select TIME_CNT in the schematic
value field.

3. Click Next, then Next, then Next, and then Finish to use the wizard defaults.

4. View and then close the time_cnt symbol.

Placing the time_cnt symbol

Next, place the symbol that represents the macro on the top-level schematic
(stopwatch.sch).

1. In the Sources in Project window, double-click stopwatch.sch to open the schematic.

2. Select the Add Symbol icon.

3. In the Symbol Browser, select the local symbols library
(c:\xilinx\ISEexamples\wtut_sc), and then select the newly created time_cnt symbol.

4. Place the time_cnt symbol in the schematic at approximately grid position [900,2100].
Grid position is shown at the bottom right corner of the Project Navigator window and
is updated as the cursor is moved around the schematic.

Note: Do not worry about connecting nets to the pins of the time_cnt symbol. You will do this after
adding other components to the Watch schematic.

5. Save the changes and close stopwatch.sch.

Figure 3-17: Add Symbol Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 71
1-800-255-7778

Design Entry
R

Creating a CORE Generator Module
CORE Generator is a graphical interactive design tool that enables you to create high-level
modules such as counters, shift registers, RAM and multiplexers. You can customize and
pre-optimize the modules to take advantage of the inherent architectural features of the
Xilinx FPGA architectures, such as Fast Carry Logic, SRL16s, and distributed and block
RAM.

In this section, you will create a CORE Generator module called ten_cnt. Ten_cnt is a 4-bit
binary encoded counter. Two instances of ten_cnt will be used to produce the tenths and
hundredths digits of the stopwatch’s time value.

Note: WebPack users can not follow this part of the tutorial because the Core Generator tool is not
delivered with the WebPack software. If you are using WebPack, please do the following:

• Copy the files from the wtut_sc\ten_cnt files directoty to the wtut_sc directory.

• Select Project → Add Source, select ten_cnt.vhd from the wtut_sc directory and click
Open.

• Skip to “Creating a State Machine Module” section of the tutorial.

Creating a CORE Generator Module

To create a CORE Generator module:

1. In Project Navigator, select Project → New Source.

2. Select IP(Coregen & Architecture Wizard).

3. Type ten_cnt in the File Name field.

4. Click Next.

5. Double-click Basic Elements - Counters.

6. Select Binary Counter, click Next and click Finish to open the Binary Counter dialog
box. This dialog box enables you to customize the counter to the design specifications.

7. Fill in the Binary Counter dialog box with the following settings:

♦ Component Name: ten_cnt

Defines the name of the module.

♦ Output Width: 4

Defines the width of the output bus.

♦ Operation: Up

Defines how the counter will operate. This field is dependent on the type of
module you select.

♦ Count Style: Count by Constant

Allows counting by a constant or a user-supplied variable.

♦ Count Restrictions:

- Count by value: 1

- Select Restrict Count

- Count to value: 9

http://www.xilinx.com

72 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

This dictates the maximum count value.

8. Click Next.

♦ Threshold Options: Enable Threshold 0 and set to 9

Signal goes high when the value specified has been reached.

♦ Select Registered.

♦ Click the Register Options button to open the Register Options dialog box.

9. Enter the following settings and then click OK.

♦ Clock Enable: Selected

♦ Asynchronous Settings: Init with a value of 0

♦ Synchronous Settings: None

10. Check that only the following pins are used (used pins will be highlighted on the
symbol on the left side of the CORE Generator window):

♦ AINIT

♦ CE

♦ CLK

Figure 3-18: CORE Generator Module Selector

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 73
1-800-255-7778

Design Entry
R

♦ Q

♦ Q_Thresh0

11. Click Generate.

The module is created and automatically added to the project library.

Note: A number of files are added to the project directory. Some of these files are:

♦ ten_cnt.sym

This file is a schematic symbol file.

♦ ten_cnt.edn

This file is the netlist that is used during the Translate phase of implementation.

♦ ten_cnt.vhd and ten_cnt.v

This file is the instantiation template that is used to incorporate the CORE
Generator module into your source HDL.

♦ ten_cnt.xco

This file stores the configuration information for the Tenths module and is used as
a project source.

12. Click Dismiss to exit CORE Generator.

Creating a State Machine Module
With StateCAD, you can graphically create finite state machines, which include states,
inputs/outputs, and state transition conditions. Transition conditions and state actions are
typed into the diagram using language independent syntax. The State Editor then exports
the diagram to either VHDL, Verilog or ABEL code. The resulting HDL file is finally
synthesized to create a netlist and/or macro for you to place on a schematic sheet.

For this tutorial, a partially complete state machine diagram is provided. In the next
section, you will complete the diagram, synthesize the module into a macro and place it on
the Watch schematic. A completed VHDL State Machine diagram has been provided for
you in the wtut_sc\wtut_sc_completed directory.

Opening StateCAD

To open the partially complete diagram, first add the stmach_v.dia file to the project by
selecting Project → Add Source. Then, double-click stmach_v.dia in the Sources in Project
window. The state machine file is launched in StateCAD.

Note: You may see an error about using 8.3 file format. If so, click OK and select File → Open to
open the stmach_v.dia file in StateCAD.

In the incomplete state machine diagram below:

• The circles represent the various states.

• The black expressions are the transition conditions, defining how you move between
states.

• The output expressions for each state are found in the circles representing the states.

• The transition conditions and the state actions are written in language independent
syntax and are then exported to Verilog, VHDL, or ABEL.

http://www.xilinx.com

74 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

In the following section, add the remaining states, transitions, actions, and a reset
condition to complete the state machine.

Adding New States

Complete the state machine by adding a new state called clear. To do so:

1. Click the Add State icon in the vertical toolbar.

The state bubble is now attached to the cursor.

2. Place the new state on the left-hand side of the diagram as shown in Figure 3-21. Click
the mouse to place the state bubble.

Figure 3-19: Incomplete State Machine Diagram

Figure 3-20: Add State Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 75
1-800-255-7778

Design Entry
R

The state is given the default name, STATE0.

3. Double-click STATE0 in the state bubble, and change the name of the state to clear.

Note: The name of the state is for your use only and does not affect synthesis. Any name is
fine.

4. Click OK.

To change the shape of the state bubble, click the bubble and drag it in the direction you
wish to stretch the bubble.

Adding a Transition

A transition defines the movement between states of the state machine. Transitions are
represented by arrows in the editor. You will add a transition from the clear state to the zero
state in the following steps. Because this transition is unconditional, there is no transition
condition associated with it.

1. Click the Add Transitions icon in the vertical toolbar.

2. Double-click the clear state (one click to select it, and one click to start the transition.)

3. Click the zero state to complete the transition arrow.

Figure 3-21: Adding the CLEAR State

Figure 3-22: Add Transitions Icon

http://www.xilinx.com

76 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

4. To manipulate the arrow’s shape, click and drag it in any directory.

5. Click the Select Objects icon in the vertical toolbar to exit the Add Transition mode.

Adding a State Action

A state action dictates how the outputs should behave in a given state. You will add two
state actions to the clear state: one to drive the clken output to 0 and one to drive the RST
output to 1.

To add a state action:

1. Double-click the clear state.

Figure 3-23: Adding State Transition

Figure 3-24: Select Objects Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 77
1-800-255-7778

Design Entry
R

The Edit State dialog box opens and you can begin to create the desired outputs.

2. Select the Output Wizard button.

3. In the Output Wizard, select the following values:

DOUT = rst, CONSTANT = ‘1’;

DOUT = clken, CONSTANT = ‘0’;

4. Click OK to enter each individual value.

5. Click OK to exit the Edit State dialog box. The outputs are now added to the state.

Figure 3-25: Edit State Dialog Box

Figure 3-26: Adding State Outputs

http://www.xilinx.com

78 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Adding a State Machine Reset Condition

Using the State Machine Reset feature, specify a reset condition for the state machine. The
state machine initializes to this specified state and enters the specified state whenever the
reset condition is met. In this design, add a reset condition that sends the state machine to
the clear state whenever either the reset signal is asserted high or the DCM_lock signal is
de-asserted low.

1. Click the Add Reset icon in the vertical toolbar.

2. Click the diagram near the clear state, as shown in the diagram below.

3. The cursor is automatically attached to the transition arrow for this reset. Move the
cursor to the clear state, and click the state bubble.

4. A question is then asked, “Should this reset be asynchronous(Yes) or
synchronous(No)?” Answer Yes.

5. Double-click the newly created RESET condition and edit the condition field to read:
state_reset=’1’. Then click OK.

6. Save your changes by selecting File → Save.

Figure 3-27: Add Reset Icon

Figure 3-28: Adding a Reset Condition

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 79
1-800-255-7778

Design Entry
R

Creating the State Machine Symbol
In this section, you will create the HDL code used to create a macro symbol that you can
place on the Watch schematic. The macro symbol is added to the project library. When you
create the macro, StateCAD creates HDL code representing the macro from the state
machine diagram.

1. Select Options → Compile (Generate HDL).

StateCAD verifies the state machine and displays the results.

2. Review the results and exit the dialog box.

StateCAD will then create the HDL code and open a browser displaying the code.

3. Exit the browser when you have finished examining the code.

4. Exit StateCAD.

5. In Project Navigator, select Project → Add Source.

6. Select stmach_v.vhd, which is the VHDL file generated by StateCAD.

7. Click Open.

8. Select VHDL Design File as the source type.

9. Click OK.

The file stmach_v.vhd is added to the project in Project Navigator.

10. In the Sources in Project window, select stmach_v.vhd.

11. In the Processes for Source window, click the + beside Design Utilities to expand the
hierarchy.

12. Double-click Create Schematic Symbol.

Note: To output a Verilog file in StateCAD, select Options → Configuration and change the
Language selection to Verilog. In the instructions, STMACH_V.v replaces STMACH_V.vhd.

Creating a DCM Module
The Clocking Wizard, a Xilinx Architecture Wizard, enables you to graphically select
Digital Clock Manager (DCM) features that you wish to use. In this section, you will create
a basic DCM module with CLK0 feedback and duty-cycle correction.

Using the Clocking Wizard

Create the DCM1 module as follows.

1. Select Project → New Source.

2. In the New Source dialog box, select the IP (Coregen & Architecture Wizard) source
type, and type the filename DCM1.

3. Click Next.

http://www.xilinx.com

80 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

4. Select Single DCM in the Clocking hierarchy.

5. Click Next and click Finish.

6. Verify that RST, CLK0 and Locked are selected.

7. Select the CLKFX.

8. Type 50 and select Mhz for the Input Clock Frequency.

9. Verify the following settings:

♦ Clkin Source: External, Single

♦ Feedback Source: Internal

♦ Feedback Value: 1X

♦ Phase Shift: None

♦ Duty Cycle Correction: selected

Figure 3-29: Selecting Single DCM Core Type

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 81
1-800-255-7778

Design Entry
R

10. Click the Advanced button.

11. Select the Wait for DCM Lock before DONE Signal goes high option.

12. Click OK.

An informational message about the LCK_cycle and the STARTUP_WAIT Bitgen
options appears.

13. Click OK, click Next, click Next.

14. In the Clock Frequency Synthesizer window, type 26.2144 and select Mhz in the Use
output frequency box.

15. Click Next and then Finish.

DCM1.xaw is added to the project.

Figure 3-30: Xilinx Clocking Wizard - General Setup

26.2144Mhz() 2
18⁄ 100Hz=

http://www.xilinx.com

82 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Creating the DCM1 Symbol
Next, create a symbol representing the DCM1 macro. This symbol will be added to the top-
level schematic (stopwatch.sch) a little later.

1. In Project Navigator, in the Sources in Project window, select DCM1.xaw.

2. In the Processes for Source window, click the + beside Design Utilities to expand the
hierarchy.

3. Double-click Create Schematic Symbol.

Creating an HDL-Based Module
With ISE, you can easily create modules from HDL code. The HDL code is connected to
your top-level schematic design through instantiation and compiled with the rest of the
design.

Next you will create a new HDL module. This macro serves to convert the 4-bit binary
outputs of the ten_cnt and time_cnt modules into a 7-segment LED display format.

Using the New Source Wizard and ISE Text Editor

Enter the name and ports of the component in the New Source Wizard, and the wizard
creates an HDL file that you can complete with the remainder of your code.

1. In Project Navigator, select Project → New Source.

The New Source dialog box opens.

2. Select the source type VHDL Module or Verilog Module, depending on your coding
preference.

3. In the File Name field, type hex2led.

4. Click Next.

The hex2led component has a 4-bit input port named HEX and a 7-bit output port
named LED. First enter the port named HEX as follows:

5. Click in the Port Name field and type HEX.

6. Click in the Direction field and set the direction to in.

7. In the MSB field, enter 3, and in the LSB field, enter 0.

8. Repeat the previous steps for the LED(6:0) output bus. Be sure that the direction is set
to out, MSB is set to 6 and LSB is set to 0.

The dialog box entries are displayed in Figure 3-31.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 83
1-800-255-7778

Design Entry
R

9. Select Next to complete the Wizard session.

A description of the module displays.

10. Select Finish.

The HDL file opens in the ISE Text Editor.

Figure 3-31: New Source Wizard

http://www.xilinx.com

84 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

.

In the HDL file, the ports are already declared and some of the basic file structure is already
in place. Keywords are displayed in blue, data types in red, comments in green, and values
are black. This color-coding enhances readability and recognition of typographical errors.

Using the Language Templates

The ISE Language Templates are HDL constructs and synthesis templates that represent
commonly used logic components, such as counters, D flip-flops, multiplexers, and
primitives.

Note: You can add your own templates to the Language Templates for components or constructs
that you use often.

To invoke the Language Templates window and select a template for this tutorial:

1. In Project Navigator, select Edit → Language Templates.

Each HDL language in the Language Template is divided into various sections
according to the type of construct. To expand the view of any of these sections, click the
+ next to the topic. Click any of the listed templates to view the template contents in the
right pane.

Figure 3-32: VHDL File

Figure 3-33: Verilog File

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 85
1-800-255-7778

Design Entry
R

2. Click the + next to VHDL or Verilog to expland the template category for the HDL
language you are using in this tutorial.

3. Click the + next to Synthesis Constructs to expand the category.

4. Click the + next to Coding Examples to expand the category.

5. Click the + next to Misc to expand the Miscellaneous category.

6. Click the template 7-Segment Display Hex Conversion to preview the template
contents in the right-hand pane.

This template provides source code to convert a 4-bit value to 7-segment LED display
format.

Adding the Language Template to Your File

Next, using the drag and drop method, add a template to your HDL file. A copy and paste
function is also available from the Edit menu and right-click menu.

To add the HEX2LED language template to your file:

1. In the Language Templates, click and drag the 7-Segment Display Hex Conversion
template into

♦ the hex2led.vhd file under the architecture begin statement.

or

♦ the hex2led.v file under the module declaration.

2. Close the Language Templates window.

Figure 3-34: Language Templates

http://www.xilinx.com

86 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

3. (Verilog only) After the input and output statements and before the hex2led converter
that you just added, add the following line of code to the HDL file to allow an
assignment.

reg [6:0] LED;

4. (Verilog only) In the code, replace <4-bit_hex_input> with HEX, and replace
<7-seg_output> with LED.

You now have complete and functional HDL code.

5. Save the file by selecting File → Save.

6. Select hex2led.vhd or hex2led.v in the Sources in Project window.

7. In the Processes for Source window, click the + next to the Synthesize process to
expand the hierarchy.

8. Double-click Check Syntax located in the Synthesize hierarchy.
This launches the ISE Text Editor.

9. Close hex2led.vhd or hex2led.v and the Language Templates.

Creating the hex2led Symbol
Next, create the schematic symbol representing the HEX2LED HDL in Project Navigator.

1. In the Sources in Project window, select hex2led.vhd or hex2led.v.

2. In the Processes for Source window, click the + beside Design Utilities to expand the
hierarchy.

3. Double-click Create Schematic Symbol.

You are now ready to place the hex2led symbol on the Watch schematic.

Placing the stmach, ten_cnt, clk_div_262k, DCM1, debounce, and
hex2led Symbols

You can now place the stmach, ten_cnt, clk_div_262k, DCM1, debounce, and hex2led
symbols on the Watch schematic (stopwatch.sch). If the schematic is already open in the
Schematic Editor, ignore step 1.

1. In Project Navigator, double-click stopwatch.sch. The schematic file opens in the
Workspace.

2. Select Add → Symbol or click the Add Symbol icon from the Tools toolbar.

This opens the Symbol Browser to the left of the Schematic Editor, which displays the
libraries and their corresponding components to view the list of available library
components.

3. View the list of available library components in the Symbol Browser.

4. Locate the project macros by selecting the project name in the Categories window.

5. Select the appropriate symbol, and add it to the Watch schematic in the approximate
location as shown in Figure 3-36.

Figure 3-35: Add Symbol Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 87
1-800-255-7778

Design Entry
R

Note: Do not worry about drawing the wires to connect this symbol. You will connect components in
the schematic later in the tutorial.

6. Save the schematic.

Hierarchy Push/Pop
First, perform a hierarchy “push down” which enables you to focus in on a lower-level of
the schematic hierarchy to view the underlying file. Push down into the clk_div_262k
macro, which is a schematic-based user-created macro, and examine its components.

Figure 3-36: Placing Design Macros

DCM1

clk_div_262k

debounce

hex2led

hex2led

stmach_v

hex2led

hex2led

hex2led

time_cnt

LED_control

Four-Digit, Seven-Segment LED Display

AN3 AN2 AN1 AN0

CE
CLK

RST_IN LOCKED_OUT

CLKFX_OUT

CLKIN_IBUFG_OUT

CLKO_OUTCLKIN_IN

CE
CLK

AINIT

Q[3:0]

Q_THRESH0

clk

sig_in

clk_in div_262144

sig_out

clk

seven_seg[7:0]

clken

rst

an[3:0]
an[3:0]

seg-g,seg_f,seg_e,seg_d,
 seg_c,seg_b,seg_a,seg_dp

minutes[7:0]

tens[7:0]

ones[7:0]

tenths[7:0]

hundredths[7:0]

clk HEX[3:0] LED[6:0]

LED[6:0]

LED[6:0]

HEX[3:0] LED[6:0]

HEX[3:0] LED[6:0]

HEX[3:0]

HEX[3:0]

sec_lsb[3:0]

ce sec_msb[3:0]

clr minutes[3:0]

AINIT

Q_THRESH0

Q[3:0]

clk_int

seg_a

seg_b

seg_c

seg_d

seg_e

seg_f

seg_g

seg_dp
an[3:0]

CLK

DCM_lock

reset

strtstop

minutesout[6:0],decimal_pt

tensout[6:0],no_decimal_pt

onesout[6:0],decimal_pt

tenthsout[6:0],no_decimal_pt

hundredthout[6:0],no_decimal_pt

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

VCC

GND

no_decimal_pt

decimal_pt

X10261

http://www.xilinx.com

88 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

To push down into clk_div_262k from the top level stopwatch schematic:

1. Click clk_div_262k symbol in the schematic and select the Hierarchy Push icon. You
can also right-click the macro and select Push into Symbol.

In the clk_div_262k schematic, you see a series of shift registers (SRL16). This macro
illustrates how SRL16s can be used to create a clock divider of any power of 2 without
using an excess number of flip-flops.

2. After examining the macro, return to the top level schematic by selecting View → Pop
to Calling Schematic or select the Hierarchy Pop icon when nothing in the schematic
is selected. You can also right-click in an open space of the schematic and select Pop to
Calling Schematic.

Specifying Device Inputs/Outputs
Use the I/O marker to specify device I/O on a schematic sheet. All of the Schematic Editor
schematics are netlisted to VHDL or Verilog and then synthesized by the synthesis tool of
choice. When the synthesis tool synthesizes the top-level HDL, the I/O markers are
replaced with the appropriate pads and buffers.

Figure 3-37: Hierarchy Push Icon

Figure 3-38: clk_div_262k Schematic

Figure 3-39: Hierarchy Pop Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 89
1-800-255-7778

Design Entry
R

Adding Input Pins

Next, add three input pins to the stopwatch schematic: CLK, RESET and STRTSTOP.

To add these components:

1. Draw a hanging wire to the two inputs of DCM1.

2. Draw a hanging wire to the sig_in input of the debounce symbol.

Refer to the “Drawing Wires” for detailed instructions.

Adding I/O Markers and Net Names
It is important to label nets and buses for several reasons:

• It aids in debugging and simulation, as you can more easily trace nets back to your
original design.

• Any nets that remain unnamed in the design will be given generated names that will
mean nothing to you later in the implementation process.

• Naming nets also enhances readability and aids in documenting your design.

Label the three input nets you just drew. Refer to the completed schematic below. To label
the RESET net:

1. Select Add → Net Name.

2. Type reset into the Name box.

The net name is now attached to the cursor.

3. Place the name on the leftmost end of the net as illustrated in Figure 3-40.

4. Repeat Steps 1 through 3 for the STRTSTOP and CLK pins.

Once all of the nets have been labeled, add the I/O marker.

5. Select Add → I/O Marker.

6. In the Add I/O Marker Options dialog box, select Add an input Marker for an input
signal direction.

7. Click and drag a box around the three labeled nets to place an input signal around each
net name.

Figure 3-40: Labeled Nets with I/O Markers

http://www.xilinx.com

90 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

Assigning Pin Locations
Xilinx recommends that you let the automatic placement and routing (PAR) program
define the pinout of your design. Pre-assigning locations to the pins can sometimes
degrade the performance of the place-and-route tools. However, it may be necessary at
some point to lock the pinout of a design so that it can be integrated into a Printed Circuit
Board (PCB).

For this tutorial, the inputs and outputs will be locked to specific pins in order to place and
download the design to the Spartan-3 demo board. Because the tutorial Watch design is
simple and timing is not critical, the example pin assignments will not adversely affect the
ability of PAR to place and route the design.

Assign a LOC parameter to the output nets on the stopwatch schematic as follows:

1. Right-click on the an(3:0) net, and select Object Properties from the right-click menu.

2. Click the New button under Instance Attributes to add a new property.

3. Enter LOC for the Attribute Name and e13,f14,g14,d14 for the Attribute Value.

4. Click OK to return to the Object Properties dialog box.

5. To make the LOC attribute visible, select the Add button in the Attribute window.

6. In the Net Attribute Visibility window, select Add and then OK.

This will display the LOC attribute on the schematic above the an(3:0) bus.

The above procedure constrains an(3) to pin e13, an(2) to pin f14 and so forth. The
remaining pin location constraints will be added in “Using the Constraints Editor” and
“Using the Pin-out Area Constraints Editor (PACE)” of Chapter 5, “Design Implementation”

Note: To turn off the Location constraint without deleting it, select the loc attribute, click Edit Traits.
Select VHDL or Verilog and deselect Write this attribute.

Figure 3-41: Assigning Pin Locations

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 91
1-800-255-7778

Design Entry
R

Completing the Schematic
Complete the schematic by wiring the components you have created and placed, adding
any additional necessary logic, and labeling nets appropriately. The following steps guide
you through the process of completing the schematic. You may also want to use the
completed schematic shown below to complete the schematic. Each of the actions referred
to in this section has been discussed in detail in earlier sections of the tutorial. Please see
the earlier sections for detailed instructions.

To complete the schematic diagram:

1. Draw a wire between the CLKFX_OUT pin of DCM1 and the clk_in pin of the
clk_div_262k macro (see “Drawing Wires.”). Label the wire clk_clk_26214k (see
“Adding Net Names”).

Figure 3-42: Completed Watch Schematic

DCM1

clk_div_262k

debounce

hex2led

hex2led

stmach_v

hex2led

hex2led

hex2led

time_cnt

LED_control

Four-Digit, Seven-Segment LED Display

AN3 AN2 AN1 AN0

AND2

AND2

locked

clk_lnl

clk_26214k

reset

clk

clk_en_int hundredthout[6:0]

strtstop_debounced

CE
CLK

RST_IN LOCKED_OUT

CLKFX_OUT

CLKO_OUTCLKIN_IN

CE
CLK

AINIT

Q[3:0]

Q_THRESH0

clk

sig_in

clk_in div_262144

sig_out

clk

seven_seg[7:0]

clken

rst

an[3:0]
an[3:0]

seg-g,seg_f,seg_e,seg_d,
 seg_c,seg_b,seg_a,seg_dp

minutes[7:0]

tens[7:0]

ones[7:0]

tenths[7:0]

hundredths[7:0]

clk HEX[3:0] LED[6:0]

LED[6:0]

LED[6:0]

HEX[3:0] LED[6:0]

HEX[3:0] LED[6:0]

HEX[3:0]

HEX[3:0]

sec_lsb[3:0]

ce sec_msb[3:0]

clr minutes[3:0]

AINIT

Q_THRESH0

Q[3:0]
clk_100

clk_100

clk_100

clk_100

clk_100

clk_100

clk_int

seg_a

seg_b

seg_c

seg_d

seg_e

seg_f

seg_g

seg_dp
an[3:0]

LOC = e13,f14,g14,d14

clk_en_int

rst_int

CLK

DCM_lock

reset

strtstop

locked

reset

rst_int

rst_int

rst_int

onesout [6:0]

minutesout[6:0],decimal_pt

tensout[6:0],no_decimal_pt

onesout[6:0],decimal_pt

tenthsout[6:0],no_decimal_pt

hundredthout[6:0],no_decimal_pt

lensout [6:0]

tenthsout[6:0]

minutesout [6:0]

strtstop

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

a

g

d

bf

ce

dp

VCC

GND

no_decimal_pt

decimal_pt

clk_en_int

X10259

CLKIN_IBUFG_OUT

http://www.xilinx.com

92 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 3: Schematic-Based Design
R

2. Draw a hanging wire to the LOCKED_OUT and clk_out pins of DCM1 and name the
wires locked and clk_int respectively. To terminate a hanging wire, double-click it. See
“Drawing Wires” and “Adding Net Names”.

3. Draw a hanging wire to the clk input of both the debounce and stmach_v macros wires
(see “Drawing Wires”) and name both wires clk_100 (see “Adding Net Names”).

Note: Remember that nets are logically connected if their names are the same, even if the net is not
physically drawn as a connection in the schematic. This method is used to make the logical
connection of clk_int and several other signals.

4. Draw wires between the sig_out pin of the debounce component and the strtstop pin
of the STMACH_v macro (see “Drawing Wires”). Label the net strtstop_debounced.

5. Add hanging wires to the DCM_lock pin and the reset pin of the stmach_v macro.
Name them locked and reset, respectively.

6. Place an AND2 component to the left of the lower ten_cnt macro. See “Adding
Components to time_cnt.”

7. Draw a wire to connect the output of the AND2 with the CE pin of the TEN_CNT
macro. See “Drawing Wires.”

8. Draw a wire to connect the Q_THRES0 pin of the upper TEN_CNT macro to one of the
inputs to the AND2. See “Drawing Wires.”

9. Draw a hanging wire to the clken output of the stmach_v component. Label the wire
clk_en_int.

10. Draw a hanging wire to the ce pin of the upper TEN_CNT macro and another to the
remaining input of the AND2 component. Name both wires clk_en_int.

11. Place a second AND2 component to the left of the TIME_CNT macro. See “Adding
Components to time_cnt.”

12. Draw a wire to connect the output of the AND2 with the CE pin of the TIME_CNT
macro. See “Drawing Wires.”

13. Draw a wire to connect the Q_THRES0 pin of the lower TEN_CNT macro to one of the
inputs to the second AND2 component. See “Drawing Wires.”

14. Draw a wire from the other input of the second AND2 component to the wire
connected to the output of the first AND2 component.

15. Draw a hanging wire from the output of the clk_div_262k component and label this
net clk_100.

16. Draw a hanging wire from the clk pin of the time_cnt macro and the clk pins of the two
ten_cnt macros. See “Drawing Wires.” Name the three newly added nets clk_100.

17. Draw hanging wires from the RST output pin of the STMACH macro, to the AINIT
pins of the ten_cnt macros and the clr pin of the time_cnt macro. See “Drawing Wires.”
Label all four wires RST_INT.

18. Draw wires from the bus outputs of the ten_cnt and time_cnt macros to the inputs of
the adjacent hex2led macros. See “Drawing Wires.” Notice how the wire is
automatically converted to a bus.

19. Draw hanging buses from each of the hex2led macro outputs.

20. Name the hex2led outputs nets as follows from top to bottom; hundredthsout(6:0),
thenthsout(6:0), onesout(6:0), tensout(6:0), minutesout(6:0).

The schematic is now complete.

Save the design by selecting File → Save.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 93
1-800-255-7778

R

Chapter 4

Behavioral Simulation

This chapter contains the following sections.

• “Overview of Behavioral Simulation Flow”

• “ModelSim Setup”

• “ISE Simulator Setup”

• “Getting Started”

• “Adding an HDL Test Bench”

• “Behavioral Simulation Using ModelSim”

• “Behavioral Simulation Using ISE Simulator”

Overview of Behavioral Simulation Flow
Xilinx® ISE™ provides an integrated flow with the ModelTech ModelSim simulator and
the Xilinx ISE Simulator that allows simulations to be run from the Xilinx Project Navigator
graphical user interface (GUI). The examples in this tutorial demonstrates how to use the
integrated flow. Whether you use the ModelSim simulator or the ISE Simulator with this
tutorial, the end result is the same.

For additional information about simulation and for a list of the other supported
simulators, refer to Chapter 6 of the Synthesis and Verification Guide. This Guide is available
with the collection of software manuals and is accessible from ISE by selecting Help →
Online Documentation, or from the web at
http://www.xilinx.com/support/sw_manuals/xilinx7/.

ModelSim Setup
In order to follow this tutorial, you need to install ModelSim on your machine. The next
sections discuss requirements and setup for ModelSim PE, ModelSim SE and
ModelSim XE.

ModelSim PE and SE
ModelSim PE and ModelSim SE are the full versions of the ModelSim product that can be
purchased directly from ModelTech. In order to simulate with the ISE 7 libraries, use
ModelSim 5.8 or later. Older versions may work but are not supported.

Note: For more information about purchasing ModelSim PE or SE version 5.8 or later, contact
ModelTech.

http://www.xilinx.com

94 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

ModelSim Xilinx Edition
ModelSim Xilinx® Edition III (MXE III) is the Xilinx version of ModelSim which is based on
ModelSim PE. Two versions exists: a starter version that is free, and a full version that can
be purchased from Xilinx.

MXE III 6.0a must be used with the ISE 7.1i software, as this is the only version for which
the latest 7.1i libraries have been compiled.

For information on how to obtain MXE III, go to the Getting Started section of the
MXE III Tech Tips page:

http://www.xilinx.com/xlnx/xil_tt_product.jsp?sProduct=MXE+III

For general information about MXE III, go to the FAQ section of the MXE III Tech Tips
page:

http://www.xilinx.com/xlnx/xil_tt_product.jsp?sProduct=MXE+III

ISE Simulator Setup
ISE Simulator is automatically installed and setup with the ISE 7.1i installer.

Note: The ISE Simulator is available on Windows platforms only.

Getting Started
The following sections outline the requirements for performing behavioral simulation in
this tutorial.

Required Files
The behavioral simulation flow requires design files, a test bench file and Xilinx simulation
libraries.

• Design Files (VHDL, Verilog, or Schematic)

This chapter assumes that you have completed the tutorial design entry by following
Chapter 2, “HDL-Based Design,” or Chapter 3, “Schematic-Based Design.” After you
have completed one of these chapters, your design includes the required design files
and is ready for simulation.

• Test Bench File

In order to simulate the design, a test bench is required to provide stimulus to the
design. VHDL and Verilog test bench files are available with the tutorial files.
Alternatively, you may choose to create your own test bench from scratch, for which
instructions are found in “Creating a Test Bench Waveform Using the Waveform
Editor” in this chapter.

Note: The ISE Simulator’s Waveform Editor is available on Windows platforms only.

• Xilinx Simulation Libraries

Xilinx simulation libraries are required when any Xilinx primitive is instantiated in the
design. The design in this tutorial requires the use of simulation libraries because it
contains instantiations of a digital clock manager (DCM) and a CORE Generator™
component. Information on simulation libraries and how to compile them is provided
in the next section.

http://www.xilinx.com
http://www.xilinx.com/xlnx/xil_tt_product.jsp?sProduct=MXE+III
http://www.xilinx.com/xlnx/xil_tt_product.jsp?sProduct=MXE+III

ISE 7 In-Depth Tutorial www.xilinx.com 95
1-800-255-7778

Getting Started
R

Xilinx Simulation Libraries
To simulate designs that contain instantiated Xilinx primitives or CORE Generator
components, you need to use the Xilinx simulation libraries. These libraries contain
models for each component. These models reflect the functions of each component, and
provide the simulator with the information required to perform simulation.

Note: For a detailed description of each library, refer to Chapter 6 of the Synthesis and Verification
Design Guide. This Guide is available with the collection of software manuals and is accessible from
ISE by selecting Help → Online Documentation, or from the web at
http://www.xilinx.com/support/sw_manuals/xilinx7/.

Updating the Xilinx Simulation Libraries

The Xilinx simulation libraries contain models that are updated on a regular basis. Model
updates occur as follows:

• The XilinxCoreLib models are updated each time an IP Update is installed.

• All other models are updated each time a service pack is installed.

When the models are updated, your libraries need to be re-compiled. The compiled Xilinx
simulation libraries are then available during the simulation of any design.

ModelSim PE or SE

If you are using ModelSim PE or SE, you will need to compile the simulation libraries with
the updated models. Refer to Chapter 6 of the Synthesis and Verification Design Guide. This
Guide is available with the collection of software manuals and is accessible from ISE by
selecting Help → Online Documentation, or from the web at
http://www.xilinx.com/support/sw_manuals/xilinx7/.

ModelSim Xilinx Edition III

If you are using ModelSim Xilinx Edition III (MXE III), the updated models are
precompiled and available on the Xilinx Support Website for download. To get the latest
precompiled models for MXE III, go to
http://www.xilinx.com/support/mxelibs/index.htm.

Xilinx ISE Simulator

If you are using ISE Simulator, all the simulation libraries are precompiled and setup
automatically. Each time a new ISE service pack is installed, the ISE Simulator will get
automatically updated with the latest version of the libraries.

Mapping Simulation Libraries in the Modelsim.ini File

ModelSim uses the modelsim.ini file to determine the location of the compiled libraries. For
instance, if you compiled the UNISIM library to c:\lib\UNISIM, the following mapping
should appear in the modelsim.ini file:

UNISIM = c:\lib\UNISIM

Note: The modelsim.ini is not applicable to the ISE Simulator.

ModelSim searches for a modelsim.ini file in the following locations until one is found:

• The modelsim.ini file pointed to by the MODELSIM environment variable.

• The modelsim.ini file in the current working directory.

• The modelsim.ini file in the directory where ModelSim or MXE is installed.

http://www.xilinx.com
http://www.xilinx.com/support/mxelibs/index.htm

96 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

If the MODELSIM environment variable is not set and the modelsim.ini file has not been
copied to the working directory, the modelsim.ini file in the installation directory will be
used.

For this tutorial, verify the mapping for your edition of ModelSim:

ModelSim PE or SE

If you are using ModelSim PE or SE, you should have gone through the Synthesis and
Verification Design Guide and used COMPXLIB to compile the libraries. During that
process, COMPXLIB also updates the modelsim.ini file with the correct mapping. Open the
modelsim.ini file and make sure that the library mappings are correct.

Note: In future, you can copy the modelsim.ini file to the working directory and make changes that
are specific to that project or you could use the MODELSIM environment variable to point to the
desired modelsim.ini file.

ModelSim Xilinx Edition III

If you are using ModelSim Xilinx Edition III (MXE III), open the modelsim.ini file in the
directory where MXE III was installed. You will see that all of the Xilinx simulation
libraries are already mapped to the proper location.

ISE Simulator

The modelsim.ini is not applicable to the ISE Simulator.

Adding an HDL Test Bench
In order to add an HDL test bench to your design project, you have the option of either
adding a tutorial test bench file provided with this tutorial, or creating your own test bench
file and adding it to your project.

Adding Tutorial Test Bench File
This section demonstrates how to add pre-existing test bench file to the project. A VHDL
test bench and Verilog test fixture have been provided with this tutorial.

VHDL Design

After downloading the file to your project directory, add the tutorial VHDL test bench to
the project in Project Navigator as follows:

1. Select Project → Add Source.

2. Select the test bench file stopwatch_tb.vhd.

3. Click Open.

The Choose Source Type dialog box opens.

4. Select VHDL Test Bench File.

5. Click OK.

ISE recognizes the top-level design file associated with the test bench, and adds the test
bench in the correct order.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 97
1-800-255-7778

Behavioral Simulation Using ModelSim
R

Verilog Design

After downloading the file to your project directory, add the tutorial Verilog test fixture to
the project as following:

1. Select Project → Add Source.

2. Select the file stopwatch_tb.v.

3. Click Open.

The Choose Source Type dialog box opens.

4. Select Verilog Test Fixture File.

5. Click OK.

ISE recognizes the top-level design file associated with the test fixture, and adds the test
fixture in the correct order.

Behavioral Simulation Using ModelSim
Now that you have a test bench in your project, you can perform behavioral simulation on
the design using the ModelSim simulator. ISE has full integration with the ModelSim
Simulator. ISE enables ModelSim to create the work directory, compile the source files,
load the design, and perform simulation based on simulation properties.

Note: To simulate with the ISE Simulator, skip to “Behavioral Simulation Using ISE Simulator”.
Whether you choose to use the ModelSim simulator or the ISE Simulator for this tutorial, the end
result is the same.

Locating the Simulation Processes
The simulation processes in ISE enable you to run simulation on the design using
ModelSim. To locate the ModelSim simulator processes:

1. In the Sources in Project window, select the test bench file (stopwatch_tb).

2. In the Processes for Source window, click the + beside ModelSim Simulator to expand
the process hierarchy.

Note: If the ModelSim Simulator processes do not appear, it means that either ModelSim is not
selected as the Simulator in the Project Properties dialog box, or Project Navigator cannot find
modelsim.exe.

If ModelSim is installed but the processes are not available, the Project Navigator
preferences may not to set correctly. To set the ModelSim location, select Edit →
Preferences , click the + next to ISE General to expand the ISE preferences, and click
Integrated Tools in the left pane. In the right pane, under Model Tech Simulator, browse to
the location of modelsim.exe file. For example,

c:\modeltech_xe\win32xoem\modelsim.exe.

http://www.xilinx.com

98 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

The following simulation processes are available:

• Simulate Behavioral Model

This process will start the design simulation.

• Generate Expected Simulation Results

This process is available only if you have a testbench waveform file from the ISE
Simulator’s Test Bench Waveform Editor. If you double-click this process, ModelSim
will run in the background to generate expected results and display them in the ISE
Simulator’s Test Bench Waveform Editor. See “Creating a Test Bench Waveform Using
the Waveform Editor.”

• Simulate Post-Translate VHDL (or Verilog) Model

Simulates the netlist after the Translate (NGDBuild) implementation stage.

• Simulate Post-Map VHDL (or Verilog) Model

Simulates the netlist after the Map implementation stage.

• Simulate Post-Place & Route VHDL (or Verilog) Model

Simulates the back-annotated netlist after Place & Route, which contains the detailed
timing information as well.

Specifying Simulation Properties
You will perform a behavioral simulation on the stopwatch design after you have set some
process properties for simulation.

ISE allows you to set several ModelSim Simulator properties in addition to the simulation
netlist properties. To see the behavioral simulation properties and to modify the properties
for this tutorial:

1. In the Sources in Project window, select the test bench file (stopwatch_tb).

2. Click the + sign next to ModelSim Simulator to expand the hierarchy in the Processes
For Source window.

3. Right-click the Simulate Behavioral Model process.

4. Select Properties.

The Process Properties dialog box (Figure 4-1) displays.

5. In the Process Properties dialog box, set the Property display level to Advanced. This
setting is right above the Help button.

This global setting enables you to now see all available properties.

6. Change the Simulation Run Time to 2000 ns.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 99
1-800-255-7778

Behavioral Simulation Using ModelSim
R

.

7. Click OK to continue.

Note: For a detailed description of each property available in the Process Properties dialog box,
click the Help button.

Performing Simulation
Once the process properties have been set, you are ready to run ModelSim. To start the
behavioral simulation, double-click Simulate Behavioral Model. ModelSim creates the
work directory, compiles the source files, loads the design, and performs simulation for the
time specified.

Note: The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. This is why the counter will seem like it is not working in a short simulation. For the purpose
of this tutorial, only the DCM signals will be monitored to verify that they work correctly.

Adding Signals
To view signals during the simulation, you must add them to the Wave window. ISE
automatically adds all the top-level ports to the Wave window. Additional signals are
displayed in the Signal window based on the selected structure in the Structure window.

There are two basic methods for adding signals to the Simulator Wave window.

• Drag and drop from the Signal/Object window.

• Highlight signals in the Signal/Object window, and in the Signal/Object window,
select Add → Wave → Selected Signals.

The following procedure explains how to add additional signals in the design hierarchy. In
this tutorial, you will be adding the DCM signals to the waveform.

Figure 4-1: Behavioral Simulation Process Properties

http://www.xilinx.com

100 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

Note: If you are using ModelSim version 6.0 or higher, all the windows are docked by default. All
windows can be undocked by clicking the Undock icon.

1. In the Structure/Instance window, click the + next to uut to expand the hierarchy.

Figure 4-3 shows the Structure/Instance window for the Verilog flow. The graphics
and the layout of the Structure/Instance window for a schematic or VHDL flow may
be different.

2. Select DCM1 in the Structure/Instance window.

Notice that the signals listed in the Signal/Object window are updated.

3. Click and drag CLKIN_IN from the Signal/Object window to the Wave window.

4. In the Signal/Object window, select the following signals:

♦ RST_IN

♦ CLKFX_OUT

♦ CLK0_OUT

♦ LOCKED_OUT

Note: Multiple signals can be selected by holding down the Ctrl key.

5. Right-click in the Signal/Object window and select Add to Wave → Selected
Signals.

Figure 4-2: Undock icon

Figure 4-3: Structure/Instance Window - Verilog flow

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 101
1-800-255-7778

Behavioral Simulation Using ModelSim
R

Adding Dividers

In ModelSim, you can add dividers in the Wave window to make it easier to differentiate
the signals. To add a divider called "DCM Signals":

1. Click anywhere in the Wave window.

2. If necessary, undock the window and then maximize the window for a larger view of
the waveform.

3. Select Insert → Divider.

4. Enter "DCM Signals" in the Divider Name box.

5. Click and drag the newly created divider to above the CLKIN_IN signal.

After adding the DCM Signals divider, the waveform should look like Figure 4-4.

Notice that the waveforms have not been drawn for any of the newly added signals. This
is because ModelSim did not record the data for these signals. By default, ModelSim will
only record data for the signals that have been added to the Wave window while the
simulation is running. Therefore, after new signals are added to the Wave window, you
need to rerun the simulation for the desired amount of time.

Rerunning Simulation

To rerun simulation in ModelSim:

1. Click the Restart Simulation icon.

Figure 4-4: Waveform After Adding DCM Signals Divider

Figure 4-5: Restart Simulation Icon

http://www.xilinx.com

102 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

The Restart dialog box opens.

2. Click Restart.

3. At the ModelSim command prompt, enter run 2000 ns and click Enter.

The simulation will run for 2000 ns. The waveforms for the DCM should now be visible in
the Wave window.

Analyzing the Signals

The DCM signals can be analyzed to verify that they work as expected. The CLK0_OUT
needs to be 50 Mhz and the CLKFX_OUT should be 26 Mhz. The DCM outputs are valid
only after the LOCKED_OUT signal is high; therefore, the DCM signals will be analyzed
only after the LOCKED_OUT signal has gone high.

ModelSim enables you to add cursors to measure the distance between signals. To measure
the CLK0_OUT:

1. Select Insert → Cursor.

2. Click and drag this cursor to the first rising edge transition on the CLK0_OUT signal
after the LOCKED_OUT signal has gone high.

3. Click the Find Next Transition icon twice to move the cursor to the next rising edge on
the CLK0_OUT signal.

4. Look at the bottom of the waveform for the distance between the two cursors.

The measurement should read 20000 ps. This converts to 50 Mhz, which is the input
frequency from the testbench, which in turn should be the DCM CLK0 output.

Figure 4-6: Restart Dialog Box

Figure 4-7: Entering the Run Command

Figure 4-8: Find Next Transition Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 103
1-800-255-7778

Behavioral Simulation Using ISE Simulator
R

5. Measure CLKFX_OUT using the same steps as above. The measurement should read
38462 ps. This comes out to approximately 26 Mhz.

Saving the Simulation
The ModelSim simulator enables you to save the signals list in the Wave window after new
signals or stimuli are added, and after simulation is rerun. The saved signals list can easily
be opened each time the simulation is started.

In the Wave window, select File → Save Format.

1. In the Save Format dialog box, rename the filename from the default wave.do to
dcm_signal.do.

2. Click Save.

After restarting the simulation, you can select File → Load in the Wave window to load
this file.

Your behavioral simulation is complete and you are ready to implement the design by
following Chapter 5, “Design Implementation.”

Behavioral Simulation Using ISE Simulator
Follow this section of the tutorial if you have skipped the previous section, “Behavioral
Simulation Using ModelSim.”

Now that you have a test bench in your project, you can perform behavioral simulation on
the design using the ISE Simulator. ISE has full integration with the ISE Simulator. ISE
enables ISE Simulator to create the work directory, compile the source files, load the
design, and perform simulation based on simulation properties.

To select ISE Simulator as your project simulator, in the Sources in Project window, right-
click on the device line (xc3s200-4ft256) and select Properties. In the Project Properties
dialog box, select ISE Simulator in the Simulator field.

Figure 4-9: Save Format Dialog Box

http://www.xilinx.com

104 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

Locating the Simulation Processes
The simulation processes in ISE enable you to run simulation on the design using ISE
Simulator. To locate the ISE Simulator processes:

1. In the Sources in Project window, select the test bench file (stopwatch_tb).

2. Click the + beside Xilinx ISE Simulator to expand the process hierarchy.

The following simulation processes are available:

• Check Syntax

This process with check for syntax errors in the testbench.

• Simulate Behavioral Model

This process will start the design simulation.

• Generate Expected Simulation Results

This process is available only if you have a testbench waveform file from ISE
Simulator’s Test Bench Waveform Editor . If you run this process, the ISE Simulator
will run in the background to generate expected results and display them in the
Waveform Editor. See “Creating a Test Bench Waveform Using the Waveform Editor.”

• Simulate Post-Place & Route VHDL (or Verilog) Model

Simulates the back-annotated netlist after Place & Route, which contains the detailed
timing information as well.

Specifying Simulation Properties
You will perform a behavioral simulation on the stopwatch design after you set some
process properties for simulation.

ISE allows you to set several ISE Simulator properties in addition to the simulation netlist
properties. To see the behavioral simulation properties and to modify the properties for
this tutorial:

1. In the Sources in Project window, select the test bench file (stopwatch_tb).

2. Click the + sign next to ISE Simulator to expand the hierarchy in the Processes for
Source window.

3. Right-click the Simulate Behavioral Model process.

4. Select Properties.

The Process Properties dialog box (Figure 4-10) displays.

5. In the Process Properties dialog box, set the Property display level to Advanced. This
setting is right above the Help button.

This global setting enables you to now see all available properties.

6. Change the Simulation Run Time to 2000 ns.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 105
1-800-255-7778

Behavioral Simulation Using ISE Simulator
R

7. Click OK to continue.

Note: For a detailed description of each property available in the Process Property dialog box, click
the Help button.

Performing Simulation
Once the process properties have been set, you are ready to run the ISE Simulator. To start
the behavioral simulation, double-click Simulate Behavioral Model. ISE Simulator
creates the work directory, compiles the source files, loads the design, and performs
simulation for the time specified.

Note: The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. This is why the counter will seem like it is not working in a short simulation. For the purpose
of this tutorial, only the DCM signals will be monitored to verify that they work correctly.

Adding Signals
To view signals during the simulation, you must add them to the Waveform window. ISE
automatically adds all the top-level ports to the Waveform window. Additional signals are
displayed in the Sim Hierarchy window.

The following procedure explains how to add additional signals in the design hierarchy.
For the purpose of this tutorial, add the DCM signals to the waveform.

1. In the Sim Hierarchy window, click the + next to stopwatch_tb stopwatch_tb to expand
the hierarchy.

2. Click the + next to uut stopwatch to expand the hierarchy.

Figure 4-10: Behavioral Simulation Process Properties

http://www.xilinx.com

106 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

Figure 4-11 shows the Sim hierarchy window for the Verilog flow. The graphics and the
layout of the window for a schematic or VHDL flow may be different.

3. Click the + next to DCM1 in the Sim Hierarchy window.

4. Click and drag CLKIN_IN from the Sim Hierarchy window to the Waveform window.

5. Select the following signals:

♦ RST_IN

♦ CLKFX_OUT

♦ CLK0_OUT

♦ LOCKED_OUT

Note: Multiple signals can be selected by holding down the Ctrl key.

6. Drag all the selected signals to the waveform.

Notice that the waveforms have not been drawn for the newly added signals. This is
because ISE Simulator did not record the data for these signals. By default, ISE Simulator
will only record data for the signals that have been added to the waveform window while
the simulation is running. Therefore, when new signals are added to the waveform
window, you need to rerun the simulation for the desired amount of time.

Rerunning Simulation
To rerun the simulation in ISE Simulation:

1. Click the Restart Simulation icon.

2. At the ISE Simulator command prompt, enter run 2000 ns and click Enter.

Figure 4-11: Sim Hierarchy Window - Verilog flow

Figure 4-12: ISE Simulator Restart Simulation Icon

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 107
1-800-255-7778

Behavioral Simulation Using ISE Simulator
R

The simulation will run for 2000 ns. The waveforms for the DCM should now be visible in
the Waveform window.

Analyzing the Signals

Now the DCM signals can be analyzed to verify that they work as expected. The
CLK0_OUT should be 50 Mhz and the CLKFX_OUT should be 26 Mhz. The DCM outputs
are valid only after the LOCKED_OUT signal is high; therefore, the DCM signals will be
analyzed only after the LOCKED_OUT signal has gone high.

ISE Simulator has the capability to add markers to measure the distance between signals.
To measure the CLK0_OUT:

1. If necessary, zoom in on the waveform.

2. Click the Measure Marker icon.

3. Place the marker on the first rising edge transition on the CLK0_OUT signal after the
LOCKED_OUT signal has gone high.

4. Click and drag the other end of the marker to the next rising edge.

5. Look at the top of the waveform for the distance between the marker. The
measurement should read 20.0 ns. This converts to 50 Mhz, which is the input
frequency from the testbench, which in turn is the DCM CLK0 output.

6. Measure CLKFX_OUT using the same steps as above. The measurement should read
38.5 ns. This equals approximately 26 Mhz.

Your behavioral simulation is complete and you are ready to implement the design by
following Chapter 5, “Design Implementation.”

Creating a Test Bench Waveform Using the Waveform Editor
This section demonstrates how to use the Waveform Editor, which is a test bench creation
tool in ISE 7. You can use the Waveform Editor to graphically enter stimuli and to generate
a VHDL test bench or Verilog test fixture. It is not necessary to follow this section if you
have added the tutorial test bench to the project already.

Note: The ISE Simulator Waveform Editor is available on Windows platforms only.

Creating a Test Bench Waveform Source

In this tutorial, create the testbench waveform for a sub-module only. The Waveform
Editor can be used to generate stimuli for top-level designs as well.

To create a test bench with the ISE Simulator Waveform Editor:

1. Select time_cnt in the Sources in Project window.

2. Select Project → New Source.

3. In the New dialog box, select Test Bench Waveform as the source type.

4. Type the name time_cnt_tb.

5. Click Next.

Figure 4-13: Measure Marker Icon

http://www.xilinx.com

108 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

Note: In the Select dialog box, the time_cnt file is the default source file because it is selected in the
Sources in Project window (step 1).

6. Click Next.

7. Click Finish.

The Waveform Editor opens in ISE. The Initialize Timing dialog box displays and enables
you to specify the timing parameters used during simulation. The Clock Time High and
Clock Time Low fields together define the clock period for which the design must operate.
The Input Setup Time field defines when inputs must be valid. The Output Valid Delay
field defines the time after active clock edge when the outputs must be valid.

1. In the Initialize Timing dialog box, fill in the fields as follows:

♦ Clock Time High: 10

♦ Clock Time Low: 10

♦ Input Setup Time: 5

♦ Output Valid Delay: 5

2. Select the GSR (FPGA) from the Global Signals section.

3. Change the Initial Length of Test Bench to 3000.

4. Click OK.

Figure 4-14: Waveform Editor - Initialize Timing Dialog Box

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 109
1-800-255-7778

Behavioral Simulation Using ISE Simulator
R

The ISE Simulator’s Waveform Editor window opens in ISE.

Applying Stimulus

In the Waveform Editor, in the blue cell, you can apply a transition (high/low). The width
of this cell is determined by the Input setup delay and the Output valid delay respectively.

Enter the following input stimuli:

1. Click the CE cell at time 110 ns to set it high (CE is active high).

2. Click the CLR cell at time 150 ns to set it high.

3. Click the CLR cell at time 230 ns to set it low.

4. Click the Save icon in the toolbar.

The new test bench waveform source (time_cnt_tb.tbw) is automatically added to the
project.

5. Double-click the Generate Expected Simulation Results process.

This runs the selected simulator in the background and displays the expected output
values in the Waveform Editor.

Figure 4-15: Applying Stimulus in the Waveform Editor Window

http://www.xilinx.com

110 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 4: Behavioral Simulation
R

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 111
1-800-255-7778

R

Chapter 5

Design Implementation

This chapter contains the following sections.

• “Overview of Design Implementation”

• “Getting Started”

• “Specifying Options”

• “Translating the Design”

• “Using the Constraints Editor”

• “Using the Pin-out Area Constraints Editor (PACE)”

• “Mapping the Design”

• “Using Timing Analysis to Evaluate Block Delays After Mapping”

• “Placing and Routing the Design”

• “Using FPGA Editor to Verify the Place and Route”

• “Evaluating Post-Layout Timing”

• “Creating Configuration Data”

• “Creating a PROM File with iMPACT”

• “Command Line Implementation”

Overview of Design Implementation
Design Implementation is the process of translating, mapping, placing, routing, and
generating a BIT file for your design. The Design Implementation tools are embedded into
ISE for easy access and project management.

This chapter is the first in the “Implementation-only Flow” and is an important chapter for
the “HDL Design Flow” and the “Schematic Design Flow”.

This chapter demonstrates the ISE Implementation flow. The front-end design has already
been compiled in an EDA interface tool. For details about compiling the design, see
Chapter 2, “HDL-Based Design” or Chapter 3, “Schematic-Based Design.” In this chapter,
you will be passing an input netlist (EDN, NGC) from the front-end tool to the back-end
Design Implementation tools, and you will be incorporating placement constraints
through a User Constraints File (UCF). You will add timing constraints later through the
Constraints Editor and Pin-out Area Constraints Editor (PACE).

http://www.xilinx.com

112 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

Getting Started
The tutorial design emulates a runner’s stopwatch. There are three inputs to the system:
CLK, RESET and SRTSTP. This system generates three seven-bit outputs for output to three
seven-segment LED displays.

Continuing from Design Entry
If you have followed the tutorial using either the HDL Design flow or the Schematic
Design flow, you have created a project, design entry source files and an EDIF netlist file.
You may not have a User Constraint File (UCF) to which you will add design constraints in
this chapter.

If you do not have a stopwatch.ucf file in your project, create one as follows:

1. Select the top-level source file stopwatch.

2. Select Project → New Source.

3. Select Implementation Constraints File.

4. Type stopwatch.ucf as the file name.

5. Click Next.

6. Select stopwatch from the list.

7. Click Next.

8. Click Finish.

With a UCF in the project, you are now ready to begin this chapter. Skip to the “Specifying
Options” section.

Starting from Design Implementation
If you are beginning the tutorial from this chapter, you will need to download the pre-
synthesized design files provided on the Xilinx® website, create a project in ISE™ and then
add the downloaded source files to the project.

1. Create an empty working directory named Watch.

2. Go to http://www.xilinx.com/support/techsup/tutorials/tutorials7.htm, and copy
the pre-synthesized tutorial files (see Table 5-1) to your newly created working
directory.

Table 5-1: Required Tutorial Files

File Name Description

stopwatch.edn,
stopwatch.edf or
stopwatch.ngc

Input netlist file (EDIF)

ten_cnt.edn Counter netlist file (EDIF)

stopwatch.ucf User Constraints File

http://www.xilinx.com
http://www.xilinx.com/support/techsup/tutorials/tutorials7.htm

ISE 7 In-Depth Tutorial www.xilinx.com 113
1-800-255-7778

Specifying Options
R

3. Open ISE.

a. On a workstation, enter ise &

b. On a PC, select Start → Programs → Xilinx ISE 7 → Project Navigator.

4. Create a new project and add the EDIF netlist as follows:

a. Select File → New Project.

b. Type EDIF Flow for the Project Name.

c. Select EDIF for the top_level Module Type.

d. Click Next.

e. Select stopwatch.edn for the Input Design file

f. Select stopwatch.ucf for the Constraints file.

g. Click Next.

h. Select the following:

- Spartan3 for the Device Family

- xc3s200 for the Device

- -4 for the Speed Grade, ft256 for the Package

i. Click Next.

j. Click Finish.

In the Sources in Project window, select the top-level module, stopwatch.edf or
stopwatch.edn. This enables the design to be implemented.

Specifying Options
This section describes how to set some properties for design implementation. The
implementation properties control how the software maps, places, routes and optimizes a
design.

To set the implementation property options for this tutorial:

1. In the Sources in the Project window, select the stopwatch top-level file.

2. In the Processes for Source window, right-click the Implement Design process.

3. Select Properties from the right-click menu.

http://www.xilinx.com

114 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

The Process Properties dialog box provides access to the Translate, Map, Place and
Route, Simulation, and Timing Report properties. You will notice a series of tabs, each
contains properties for a different aspect of design implementation.

4. Ensure that you have set the Property display level to Advanced. This setting is right
above the Help button.

This global setting enables you to now see all available properties.

5. Click the Post-Map Static Timing Report Properties tab.

6. Change Report Type to Verbose Report.

This report will be generated after the Map process is completed.

7. Click the Post-Place & Route Static Timing Report Properties tab.

8. Change Report Type to Verbose Report.

This report will be generated after Place and Route is completed.

9. Click the Place & Route Properties tab.

10. Change the Place & Route Effort Level (overall) to High.

Figure 5-1: Post-Place & Route Static Timing Report Properties

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 115
1-800-255-7778

Specifying Options
R

This option increases the overall effort level of Place and Route during
implementation.

11. Click OK to exit the Process Properties dialog box.

The User Constraints File (UCF) provides a mechanism for constraining a logical design
without returning to the design entry tools. However, without the design entry tools, you
must understand the exact syntax needed to define constraints. The Constraints Editor and
Pinout Area Constraints Editor (PACE) are graphical tools that enables you to enter timing
and pin location constraints.

To launch the Constraints Editor:

1. Expand the User Constraints hierarchy.

2. Double-click Create Timing Constraints.

Figure 5-2: Place & Route Properties

http://www.xilinx.com

116 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

This automatically runs the Translate step, which is discussed in the following section.

Translating the Design
ISE manages the files created during implementation. The ISE tools use the settings that
you specified in the Process Properties dialog box. This gives you complete control over
how a design is processed. Typically, you set your options first. You then run through the
entire flow by double-clicking Implement Design. This tutorial illustrates the
implementation one step at a time.

During translation, the program NGDBuild performs the following functions:

• Converts input design netlists and writes results to a single merged NGD netlist. The
merged netlist describes the logic in the design as well as any location and timing
constraints.

• Performs timing specification and logical design rule checks.

• Adds the User Constraints File (UCF) to the merged netlist.

Using the Constraints Editor
When you run the Create Timing Constraints process, Translate is run and ISE launches the
Constraints Editor.

The Constraints Editor enables you to:

• Edit constraints previously defined in a UCF file.

• Add new constraints to your design.

Input files to the Constraints Editor are:

• NGD (Native Generic Database) File

The NGD file serves as input to the mapper, which then outputs the physical design
database, an NCD (Native Circuit Description) file.

• Corresponding UCF (User Constraint File)

By default, when the NGD file is opened, an existing UCF file with the same base name
as the NGD file is used. Alternatively, you can specify the name of the UCF file.

Figure 5-3: Edit Implementation Constraints

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 117
1-800-255-7778

Using the Constraints Editor
R

The Constraints Editor generates a valid UCF file. The Translate step (NGDBuild) uses the
UCF file, along with design source netlists, to produce a newer NGD file, which
incorporates the changes made. The Map program (the next section in the design flow)
then reads the NGD. In this design, the stopwatch.ngd file and stopwatch.ucf files are
automatically read into the Constraints Editor.

The Global tab appears in the foreground of the Constraints Editor window. This window
automatically displays all the clock nets in your design, and enables you to define the
associated period, pad to setup, and clock to pad values. Note that many of the internal
names will vary depending on the design flow and synthesis tool used.

In this section, a PERIOD and TIMEGRP OFFSET IN constraint are going to be written in
the UCF and used during implementation.

In the Constraints Editor, edit the constraints as follows:

1. Double-click the Period cell on the row associated with the clock net CLK. The Clock
Period dialog box opens.

2. For the Clock Signal Definition, verify that Specific Time is selected.

It enables you to define an explicit period for the clock.

3. Enter a value of 20.0 in the Time text box.

4. Verify that ns is selected from the Units pull-down list.

Figure 5-4: Constraints Editor - Global Tab

Figure 5-5: PERIOD Constraint Values

http://www.xilinx.com

118 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

5. For the Input Jitter section, enter a value of 60 in the Time text box.

6. Verify that ps is selected from the Units pull-down list.

7. Click OK.

The period cell is updated with the global clock period constraint that you just defined
(with a default 50% duty cycle).

Note: When you double-click in a cell, a dialog box opens and enables you to specify a constraint.

8. Select the Ports tab from the Constraints Editor window.

The left hand side displays a listing of all the current ports.

9. Select seg_a in the Port Name Column.

10. Hold the Shift key and select seg_g.

This selects the elements for creating a grouped offset.

11. In the Group Name text box, type display_grp, and click Create Group to create the
group.

12. In the Select Group pull-down list, select the group you just created.

13. Click Clock to Pad.

Figure 5-6: INPUT JITTER Constraint Value

Figure 5-7: Selected Elements of a Grouped OFFSET

Figure 5-8: Selecting the Group that was created to use in an OFFSET

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 119
1-800-255-7778

Using the Pin-out Area Constraints Editor (PACE)
R

The Clock to Pad dialog box opens.

14. Enter 5.0 ns for the Timing Requirement.

15. Select clk in the Relative to Clock Pad Net field.

16. Click OK

17. Select File → Save.

The changes made by Constraints Editor are now saved in the stopwatch.ucf file in your
current revision directory.

18. Select File → Exit.

Using the Pin-out Area Constraints Editor (PACE)
Use the Pin-Out Area Constraints Editor (PACE) to add and edit the pin locations and area
group constraints defined in the NGD file. PACE generates a valid UCF file. The Translate
step uses this UCF file, along with the design source netlists, to produce a newer NGD file.
The NGD file incorporates the changes made in the design and the UCF file from the
previous section. PACE also places Global Logic at the Slice level with Block Ram, Digital
Clock Managers (DCMs), Gigabit Transceivers (GTs), and BUFGs.

Figure 5-9: Clock to Pad Dialog

http://www.xilinx.com

120 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

This section describes the creation of IOB assignments for several signals. PACE edits the
UCF file by adding the newly created placement constraints.

1. In the Processes for Source window, click the + next to Implement Design to expand
the process hierarchy.

2. Click the + next to Translate to expand the process hierarchy.

3. Double-click Assign Package Pins Post-Translate, located under the Translate
process.

Note: For an EDIF project, double-click Assign Package Pins, located under the User
Constraints process.

This process launches PACE.

4. In PACE, select the Package View Tab to open the Package Pins window.

This window shows the graphical representation of the device package.

Figure 5-10: Edit Package Pin Placement

Figure 5-11: Pin-Out Area Constraints Editor (PACE) When Launched

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 121
1-800-255-7778

Using the Pin-out Area Constraints Editor (PACE)
R

5. Select the Design Object List window.

This window displays all the IOs in the Design.

6. In the Design Object List window, scroll down to the “seg _*”nets.

7. To enter the pin locations, click the Pin Location text box associated with each of the
following signals:

♦ seg_a → E14

♦ seg_b → G13

♦ seg_c → N15

♦ seg_d → P15

♦ seg_dp → P16

♦ seg_e → R16

♦ seg_f → F13

♦ seg_g → N16

To place some IOs in the Package Pin window using the drag and drop method:

Figure 5-12: Pin Locations Typed in PACE

http://www.xilinx.com

122 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

8. In the Design Object List window, click and drag the following signals to the specific
location in the Package Pin window:

♦ clk → T9

♦ reset → L13

♦ strtstop → M13

9. If using a third-party synthesis tool, change LOC values for AN<0>, AN<1>, AN<2>
and AN<3> to d14, g14, f14, and e13, respectively.

10. Once the pins are locked down, select File → Save. The changes made in PACE are
saved in the stopwatch.ucf file in your current working directory.

11. For Verilog/VHDL designs only: In the Save dialog box, select the XST Defaults for the
Bus Delimiter Dialog.

12. To exit PACE, select File → Exit.

Mapping the Design
Now that all implementation strategies have been defined (properties and constraints),
continue with the implementation of the design.

1. In the Processes for Source window, right-click on Map.

2. Select Run from the menu.

Note: This can also be accomplished by double-clicking Map.

Figure 5-13: Drag and Drop IOs in the Package Pins Window

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 123
1-800-255-7778

Mapping the Design
R

3. Expand the Implement Design hierarchy to see the progress through implementation.

The design is mapped into CLBs and IOBs. Map performs the following functions:

• Allocates CLB and IOB resources for all basic logic elements in the design.

• Processes all location and timing constraints, performs target device optimizations,
and runs a design rule check on the resulting mapped netlist.

Each step generates its own report as shown in the following table.

To view a report:

1. Expand the Translate or Map hierarchy.

2. Double-click a report, such as Translation Report or Map Report.

Figure 5-14: Mapping the Design

Table 5-2: Reports Generated Through Map

Translation Report
Includes warning and error messages from the translation
process.

Map Report

Includes information on how the target device resources are
allocated, references to trimmed logic, and device
utilization. For detailed information on the Map report, refer
to the Development System Reference Guide. This Guide is
available with the collection of software manuals and is
accessible from ISE by selecting Help → Online
Documentation, or from the web at
http://www.xilinx.com/support/sw_manuals/xilinx7/.

http://www.xilinx.com

124 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

3. Review the report for Warnings, Errors, and Information (INFO).

Using Timing Analysis to Evaluate Block Delays After Mapping
After the design is mapped, use the Logic Level Timing Report to evaluate the logical paths
in the design. Because the design is not yet placed and routed, actual routing delay
information is not available. The timing report describes the logical block delays and
estimated routing delays. The net delays provided are based on an optimal distance
between blocks (also referred to as unplaced floors).

Estimating Timing Goals with the 50/50 Rule
For a preliminary indication of how realistic your timing goals are, evaluate the design
after the map stage. A rough guideline (known as the 50/50 rule) specifies that the block
delays in any single path make up approximately 50% of the total path delay after the
design is routed. For example, a path with 10 ns of block delay should meet a 20-ns timing
constraint after it is placed and routed.

If your design is extremely dense, the Post-Map Static Timing Report provides a summary
analysis of your timing constraints based on block delays and estimates of route delays.
This analysis can help to determine if your timing constraints are going to be met. This
report is produced after Map and prior to Place and Route (PAR).

Report Paths in Timing Constraints Option
Use the Post-Map Static Timing Report to determine timing violations that may occur prior
to running PAR. Since you defined timing constraints for the tutorial design, the timing
report will display the path for each of the timing constraints.

To view the Post-Map Static Timing Report and review the PERIOD Constraints that were
entered earlier:

1. In the Processes for Source window, click the + next to Map to expand the process
hierarchy.

2. Double-click Generate Post-Map Static Timing.

Figure 5-15: Translation Report and Map Report

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 125
1-800-255-7778

Placing and Routing the Design
R

3. To open the Post-Map Static Timing Report, double-click Post-Map Static Timing
Report. Timing Analyzer automatically launches and displays the report.

At the top of this report, you will find the period timing constraint and the minimum
period obtained by the tools after mapping. The report contains only three paths per
timing constraint, and as a result, you can see a breakdown of the first three paths
which contains the component and routing delays. Notice at the end of each path, the
percentage of logic verse the percentage of routing is reported. The unplaced floors
listed are estimates (indicated by the letter “e” next to the net delay) based on optimal
placement of blocks.

4. To exit Timing Analyzer, select File → Exit.

Even if you do not generate a Logical Level Timing Report, PAR still processes a design
based on the relationship between the block delays, floors, and timing specifications for
the design. For example, if a PERIOD constraint of 8 ns is specified for a path, and there are
block delays of 7 ns and unplaced floor net delays of 3 ns, PAR stops and generates an error
message. In this example, PAR fails because it determines that the total delay (10 ns) is
greater than the constraint placed on the design (8 ns). The Post-Map Static Timing Report
will list any pre-PAR timing violations.

Placing and Routing the Design
The design can be placed and routed after the mapped design is evaluated. Evaluation
verifies that block delays are reasonable given the design specifications.

One of two place and route algorithms is performed during the Place & Route (PAR)
process:

• Timing Driven PAR

PAR is run with the timing constraints specified in the input netlist and/or in the
constraints file.

• Non-Timing Driven PAR

PAR is run, ignoring all timing constraints.

Since you have defined timing constraints earlier in this chapter, the Place & Route (PAR)
process performs timing driven placement and routing.

Figure 5-16: Post-Map Static Timing Report

http://www.xilinx.com

126 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

To run PAR, in the Processes for Source window, double-click Place & Route.

To review the reports that are generated after the Place & Route process is completed:

1. Click the + next to Place & Route to expand the process hierarchy.

2. Double-click Place & Route Report.

You can also display and examine the Pad Report and Asynchronous Delay Report.

Using FPGA Editor to Verify the Place and Route
Use the FPGA Editor to display and configure Field Programmable Gate Arrays (FPGAs).

The FPGA Editor reads and writes Native Circuit Description (NCD) files, Macro files
(NMC) and Physical Constraints Files (PCF).

Use FPGA Editor to:

• Place and route critical components before running the automatic place-and-route
tools.

• Finish placement and routing if the routing program does not completely route your
design.

• Add probes to your design to examine the signal states of the targeted device. Probes
are used to route the value of internal nets to an IOB (Input/Output Block) for
analysis during debugging of a device.

• Run the BitGen program and download the resulting bitstream file to the targeted
device.

• View and change the nets connected to the capture units of an Integrated Logic
Analyzer (ILA) core in your design.

Table 5-3: Reports Generated by PAR

Report Description

Place & Route Report
Provides a device utilization and delay summary.
Use this report to verify that the design successfully
routed and that all timing constraints were met.

Pad Report
Contains a report of the location of the device pins.
Use this report to verify that pins locked down
were placed in the correct location.

Asynchronous Delay Report
Lists all nets in the design and the delays of all
loads on the net.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 127
1-800-255-7778

Using FPGA Editor to Verify the Place and Route
R

To view the actual design layout of the FPGA using FPGA Editor:

1. Launch FPGA Editor in the expanded Place & Route hierarchy by double-clicking
View/Edit Routed Design (FPGA Editor).

2. In FPGA Editor, change the List Window from All Components to All Nets. This
enables you to view all of the possible nets in the design.

Figure 5-17: View/Edit Routed Design (FPGA Editor) Process

Figure 5-18: List Window in FPGA Editor

http://www.xilinx.com

128 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

3. Select the clk_int (Clock) net to see the fanout of the clock net.

4. To exit FPGA Editor, select File → Exit.

Evaluating Post-Layout Timing
After the design is placed and routed, a Post Layout Timing Report is generated by default
to verify that the design meets your specified timing goals. This report evaluates the logical
block delays and the routing delays. The net delays are now reported as actual routing
delays after the Place and Route process. To display this report:

1. Expand the Generate Post-Place & Route Timing hierarchy.

2. Double-click Post-Place & Route Static Timing Report to open the report in Timing
Analyzer.

Figure 5-19: Clock Net

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 129
1-800-255-7778

Creating Configuration Data
R

The following is a summary of the Post-Place & Route Static Timing Report.

♦ The minimum period value increased due to the actual routing delays.

♦ After the Map step, logic delay contributed to about 80% of the minimum period
attained. The post-layout report indicates that the logical delay value decreased
somewhat. The total unplaced floors estimate changed as well. Routing delay
after PAR now equals about 31% of the period.

♦ The post-layout result does not necessarily follow the 50/50 rule previously
described because the worst case path primarily includes component delays.
After the design is mapped, block delays constitute about 80% of the period.

After place and route, the worst case path is mainly made up of logic delay. Since total
routing delay makes up only a small percentage of the total path delay spread out
across two or three nets, expecting this to be reduced any further is unrealistic. In
general, you can reduce excessive block delays and improve design performance by
decreasing the number of logic levels in the design.

3. To exit Timing Analyzer, select File → Exit.

Creating Configuration Data
After analyzing the design through timing constraints in Timing Analyzer, you need to
create configuration data. A configuration bitstream is created for downloading to a target
device, or for formatting into a PROM programming file.

In this tutorial, you will be creating configuration data for a Xilinx Serial PROM. To create
a bitstream for the target device, set the properties and run configuration as follows:

1. Right-click the Generate Programming File process.

Figure 5-20: Post-Place & Route Static Timing Report

http://www.xilinx.com

130 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

2. Select Properties. The Process Properties dialog box opens.

3. Click the Startup Options tab.

4. Change the FGPA Start-Up Clock property from CCLK to JTAG Clock.

Note: You can use CCLK if you are configuring Select Map or Serial Slave.

5. Click the Readback Options tab.

6. Change the Security property to Enable Readback and Reconfiguring.

7. Leave the remaining options in the default setting.

8. Click OK to apply the new properties.

9. Double-click Generate Programming File to create a bitstream of this design.

Figure 5-21: Process Properties Startup Options Tab

Figure 5-22: Process Properties Readback Options Tab

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 131
1-800-255-7778

Creating a PROM File with iMPACT
R

The BitGen program creates the design_name.bit bitstream file (in this tutorial, the
stopwatch.bit file). The bitstream file which contains the actual configuration data.

10. Click the + next to Generate Programming File to expand the process hierarchy.

11. To review the Programming File Generation Report, double-click Programming File
Generation Report. Verify that the specified options were used when creating the
configuration data.

Creating a PROM File with iMPACT
To program a single device using iMPACT, all you need is a bitstream file. To program
several devices in a daisy chain configuration, or to program your devices using a PROM,
you must use iMPACT to create a PROM file. iMPACT accepts any number of bitstreams
and creates one or more PROM files containing one or more daisy chain configurations.

In iMPACT, a wizard enables you to create a PROM file and to:

• Add additional bitstreams to the daisy chain.

• Create additional daisy chains.

• Remove the current bitstream and start over, or immediately save the current PROM
file configuration.

For this tutorial, create a PROM file in iMPACT as follows:

1. Launch iMPACT from Project Navigator by double-clicking Generate PROM, ACE,
JTAG File, located under the Generated Programming File process.

A wizard opens.

2. In the Prepare Configuration Files dialog box, under “I want to create a:”, select PROM
File.

3. Click Next.

Figure 5-23: Programming File Generation Report

Figure 5-24: Prepare Configuration Files Dialog

http://www.xilinx.com

132 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

4. In the Prepare PROM Files dialog box:

a. Under “I want to target a:”, select Xilinx Serial PROM.

a. Under PROM File Format, select MCS.

b. For PROM file name, type stopwatch1.

5. Click Next.

6. In the Specify Xilinx Serial PROM Device dialog box, check the box associated with
Auto Select PROM.

7. Click Next.

Note: If you have more data than space available in the PROM, you must split the data into
several individual PROMs with the Split PROM option. In this case, only a single PROM is
needed.

Figure 5-25: Prepare PROM Files Dialog

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 133
1-800-255-7778

Creating a PROM File with iMPACT
R

8. In the File Generation Summary dialog box, click Next.

9. In the Add Device File dialog box, click Add File and select the stopwatch.bit file.

Note: You will receive a warning that the startup clock is being changed from jtag to CCLK.

10. Click No when you are asked if you would like to add another design file to the
datastream.

11. Click Finish.

12. When asked to generate a file now, click Yes.

iMPACT displays the PROM associated with your bit file.

13. To close iMPACT, select File → Exit.

This completes this chapter of the tutorial. For more information on this design flow and
implementation methodologies, see the iMPACT Help, available from the iMPACT
application by selecting Help → Help Topics.

Figure 5-26: Specify Xilinx Serial PROM Device Dialog Box

Figure 5-27: Add Device File Dialog Box

http://www.xilinx.com

134 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 5: Design Implementation
R

With the resulting stopwatch.bit, stopwatch1.mcs and a MSK file generated along
with the BIT file, you are ready for programming your device using iMPACT.

Command Line Implementation
ISE allows a user to easily view and extract the command line arguments for the various
steps of the implementation process. This allows a user to verify the options being used or
to create a command batch file to replicate the design flow.

At any stage of the design flow you can look at the command line arguments for completed
processes by double-clicking View Command Line Log File from the Design Entry
Utilities hierarchy in the Processes for Source window. This process opens a file named
<source_name>.cmd_log in read-only mode.

To create an editable batch file, select File → Save As and enter the desired file name.

Sections of the Command Line Log File may also be copied from <source_name>.cmd_log
using either a copy-and-paste method or the drag-and-drop method into a text file.

For a complete listing of command line options for most Xilinx executables, refer to the
Development System Reference Guide. Command line options are organized according to
implementation tools. This Guide is available with the collection of software manuals and
is accessible from ISE by selecting Help → Online Documentation, or from the web at
http://www.xilinx.com/support/sw_manuals/xilinx7/. Command line options may also
be obtained by typing the executable name followed by the -h option at a command
prompt.

Another useful tool for automating design implementation is XFLOW. XFLOW is a Xilinx
command line tool that automates the Xilinx implementation and simulation flows.
XFLOW reads a design file as input, flow and option files. For more information on
XFLOW, refer to the “XFLOW” section in the Development System Reference Guide.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 135
1-800-255-7778

R

Chapter 6

Timing Simulation

This chapter includes the following sections.

• “Overview of Timing Simulation Flow”

• “Getting Started”

• “Timing Simulation Using ModelSim”

Overview of Timing Simulation Flow
Timing simulation uses the block and routing delay information from a routed design to
give a more accurate assessment of the behavior of the circuit under worst-case conditions.
For this reason, timing simulation is performed after the design has been placed and
routed.

Timing (post-place and route) simulation is a highly recommended part of the HDL design
flow for Xilinx® devices. Timing simulation uses the detailed timing and design layout
information that is available after place and route. This enables simulation of the design,
which closely matches the actual device operation. Performing a timing simulation in
addition to a static timing analysis will help to uncover issues that cannot be found in a
static timing analysis alone. To fully verify the design, the design should be analyzed both
statically and dynamically.

In this chapter, you will perform a timing simulation using the ModelSim simulator.

Note: You can use ISE Simulator for timing simulation; however, this chapter does not cover timing
simulation using the ISE Simulator. A signal search capability is required for this tutorial, but is not
available in the ISE Simulator.

Getting Started
The following sections outline the requirements to perform this part of the tutorial flow.

Required Software
In addition to Xilinx ISE™ 7, you must have a ModelSim simulator installed. Refer to
Chapter 4, “Behavioral Simulation” for information on installing and setting up
ModelSim.

http://www.xilinx.com

136 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 6: Timing Simulation
R

Required Files
The timing simulation flow requires the following files:

• Design Files (VHDL or Verilog)

This chapter assumes that you have completed Chapter 5, “Design Implementation,”
and thus, have a placed and routed design. A tool called NetGen will be used in this
chapter to create a simulation netlist from the placed and routed design which will be
used to represent the design during the Timing Simulation.

• Test Bench File (VHDL or Verilog)

In order to simulate the design, a test bench is needed to provide stimulus to the
design. You should use the same test bench that was used to perform the behavioral
simulation. Please refer to the “Adding an HDL Test Bench” in Chapter 4 if you do not
already have a test bench in your project.

• Xilinx Simulation Libraries

For timing simulation, the SIMPRIM library is needed to simulate the design.

To perform timing simulation of Xilinx designs in any HDL simulator, the SIMPRIM
library must be set up correctly. The timing simulation netlist created by Xilinx is
composed entirely of instantiated primitives, which are modeled in the SIMPRIM library.

If you completed Chapter 4, “Behavioral Simulation”, the SIMPRIM library should already
be compiled. For more information on compiling and setting up the Xilinx simulation
libraries, see to “Xilinx Simulation Libraries” in Chapter 4.

Timing Simulation Using ModelSim
Xilinx ISE provides an integrated flow with the ModelTech ModelSim simulator. ISE
enables you to create work directories, compile source files, initialize simulation, and
control simulation properties for ModelSim.

ISE also runs NetGen to generate a simulation netlist from the placed and routed design.

Specifying Simulation Process Properties
To set the simulation process properties:

1. In the Sources in Project window, select the test bench file.

2. In the Processes for Source window, click the + next to ModelSim Simulator to expand
the process hierarchy.

Note: If the ModelSim Simulator processes do not appear, it means that either ModelSim is not
selected as the Simulator in the Project Properties dialog box, or Project Navigator cannot find
modelsim.exe.

If ModelSim is installed but the processes are not available, the Project Navigator
preferences may not to set correctly. To set the ModelSim location, select Edit →
Preferences , click the + next to ISE General to expand the ISE preferences, and click
Integrated Tools in the left pane. In the right pane, under Model Tech Simulator, browse to
the location of modelsim.exe file. For example,

c:\modeltech_xe\win32xoem\modelsim.exe.

Click Apply and OK to set the Preferences.

3. Right-click Simulate Post-Place & Route VHDL (Verilog) Model.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 137
1-800-255-7778

Timing Simulation Using ModelSim
R

4. Select Properties.

The Process Properties dialog box displays.

5. Click the Simulation Model Properties tab.

The properties should appear as shown in Figure 6-1. These properties set the options
that NetGen uses when generating the simulation netlist. For a description of each
property, click the Help button.

6. Ensure that you have set the Property display level to Advanced. This setting is right
above the Help button.

This global setting enables you to now see all available properties.

For this tutorial, the default Simulation Model Properties are used.

7. Click the Display Properties tab.

This tab gives you control over the MTI (ModelSim) simulation windows. By default,
three windows open when timing simulation is launched from ISE. They are the Signal
window, the Structure window, and the Wave window. For more details on ModelSim
Simulator windows, refer to the ModelSim User Manual.

8. Click the Simulation Properties tab.

The properties should appear as shown in Figure 6-2. These properties set the options
that ModelSim uses to run the timing simulation. For a description of each property,
click the Help button.

Figure 6-1: Simulation Model Properties

http://www.xilinx.com

138 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 6: Timing Simulation
R

9. In the Simulation Properties tab, set the Simulation Run Time property to 2000 ns.

10. Click OK to close the Process Properties dialog box.

Performing Simulation
To start the timing simulation, double-click Simulate Post-Place and Route VHDL Model
or Simulate Post-Place and Route Verilog Model in the Processes for Source window.

ISE will run NetGen to create the timing simulation model. ISE will then call ModelSim
and create the working directory, compile the source files, load the design, and run the
simulation for the time specified.

Note: The majority of this design runs at 100 Hz and would take a significant amount of time to
simulate. This is why the counter will seem like it is not working in a short simulation. For the purpose
of this tutorial, only the DCM signals will be monitored to verify that they work correctly.

Adding Signals

To view signals during the simulation, you must add them to the Wave window. ISE
automatically adds all the top-level ports to the Wave window. Additional signals are
displayed in the Signal window based on the selected structure in the Structure window.

There are two basic methods for adding signals to the Simulator Wave window.

• Drag and drop from the Signal/Object window.

• Highlight signals in the Signal/Object window and then select Add → Wave →
Selected Signals.

The following procedure explains how to add additional signals in the design hierarchy. In
this tutorial, you will be adding the DCM signals to the waveform.

Figure 6-2: Simulation Properties

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 139
1-800-255-7778

Timing Simulation Using ModelSim
R

Note: If you are using ModelSim version 6.0 or higher, all the windows are docked by default. All
windows can be undocked by clicking the Undock icon.

1. In the Structure/Instance window, click the + next to uut to expand the hierarchy.

Figure 6-4 shows the Structure/Instance window for the Verilog flow. The graphics and
the layout of the Structure/Instance window for a schematic or VHDL flow may appear
different.

2. Click the Structure/Instance window and select Edit → Find.

3. Type in X_DCM in the search box and select "entity/module" in the Field section.

4. Once ModelSim locates X_DCM, select X_DCM and click on the signals/objects
window. All the signal names for the DCM will be listed.

5. Select the Signal/Object window and select Edit → Find.

6. Type in CLKIN in the search box and select the Exact checkbox.

7. Click and drag CLKIN from the Signal/Object window to the Wave window.

Figure 6-3: Undock icon

Figure 6-4: Structure/Instance Window - Verilog Flow

http://www.xilinx.com

140 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 6: Timing Simulation
R

8. Click and drag the following signals from the Signal/Object window to the Wave
window:

♦ RST

♦ CLKFX

♦ CLK0

♦ LOCKED

Note: Multiple signals can be selected by holding down the Ctrl key.

9. Right-click and select Add to Wave → Selected Signals.

Adding Dividers

Modelsim also has the capability to add dividers in the Wave window to make it easier to
differentiate the signals. To add a divider called DCM Signals:

1. Click anywhere in the Wave window.

2. If necessary, undock the window and then maximize the window for a larger view of
the waveform.

3. Select Insert → Divider.

4. Enter DCM Signals in the Divider Name box.

5. Click and drag the newly created divider to above the CLKIN signal.

Note: Stretch the first column in the waveform to see the signals clearly. The hierarchy in the signal
name can also be turned off. To do so, select Tools → Preferences. In the Display Signal Path box,
enter 2 and click OK.

The waveform should look as shown in Figure 6-5.

Figure 6-5: The Resulting Waveform

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 141
1-800-255-7778

Timing Simulation Using ModelSim
R

Notice that the waveforms have not been drawn for the newly added signals. This is
because ModelSim did not record the data for these signals. By default, ModelSim will
only record data for the signals that have been added to the Wave window while the
simulation is running. Therefore, after new signals are added to the Wave window, you
need to rerun the simulation for the desired amount of time.

Rerunning Simulation

To restart and re-run the simulation:

1. Click the Restart Simulation icon.

The Restart dialog box opens.

2. Click Restart.

3. At the ModelSim command prompt, enter run 2000 ns and hit the Enter key.

The simulation will run for 2000 ns. The waveforms for the DCM should now be visible in
the Wave window.

Analyzing the Signals

Now the DCM signals can be analyzed to verify that it does work as expected. The CLK0
needs to be 50 Mhz and the CLKFX should be 26 Mhz. The DCM signals should only be
analyzed after the LOCKED signal has gone high. Until the LOCKED signal is high the
DCM outputs are not valid.

Modelsim has the capability to add cursors to carefully measure the distance between
signals.

Figure 6-6: Restart Simulation Icon

Figure 6-7: Restart Dialog Box

Figure 6-8: Entering the run command at the ModelSim command prompt

http://www.xilinx.com

142 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 6: Timing Simulation
R

To measure the CLK0:

1. Select Insert → Cursor.

2. Click and drag the cursor to the rising edge transition on the CLK0 signal after the
LOCKED signal has gone high.

3. Click the Find Next Transition icon twice to move the cursor to the next rising edge on
the CLK0 signal.

Look at the bottom of the waveform the see the distance between the two cursors. The
measurement should read 20000 ps. This converts to 50 Mhz, which is the input frequency
from the testbench, which in turn should be the DCM CLK0 output.

Measure CLKFX using the same steps as above. The measurement should read 38462 ps.
This equals approximately 26 Mhz.

Saving the Simulation

The ModelSim Simulator provides the capability of saving the signals list in the Wave
window. Save the signals list after new signals or stimuli are added, and after simulation is
rerun. The saved signals list can easily be loaded each time the simulation is started.

1. In the Wave window, select File → Save Format.

2. In the Save Format dialog box, rename the filename from the default wave.do to
dcm_signal_tim.do.

3. Click Save.

After restarting the simulation, you can select File → Load in the Wave window to reload
this file.

Your timing simulation is complete and you are ready to program your device by
following Chapter 7, “iMPACT Tutorial.”

Figure 6-9: Find Next Transition Icon

Figure 6-10: Save Format Dialog Box

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 143
1-800-255-7778

R

Chapter 7

iMPACT Tutorial

This chapter takes you on a tour of iMPACT, a file generation and device programming
tool. iMPACT enables you to program through several parallel cables, including the
Platform USB cable. iMPACT can create bit files, System ACE files, PROM files, and
SVF/XSVF files. The SVF/XSVF files can be played backed without having to recreate the
chain.

This tutorial contains the following sections:

• “Device Support”

• “Download Cable Support”

• “Configuration Mode Support”

• “Getting Started”

• “Using Boundary Scan Configuration Mode”

• “Troubleshooting Boundary Scan Configuration”

• “Creating an SVF File”

• “Other Configuration Modes”

Device Support
The following devices are supported.

• Virtex™/-E/-II/-II PRO/4

• Spartan™/-II/-IIE/XL/3/3E

• XC4000™/E/L/EX/XL/XLA/XV

• CoolRunner™XPLA3/-II

• XC9500™/XL/XV

• XC18V00P

• XCF00S

• XCF00P

http://www.xilinx.com

144 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 7: iMPACT Tutorial
R

Download Cable Support

Parallel Cable III & IV
The Parallel Cable connects to the parallel port and can be used to facilitate Slave Serial and
Boundary Scan functionality. For more information, go to
http://www.xilinx.com/support, select Documentation → Data Sheets →
Configuration Hardware → Xilinx Parallel Cable IV.

USB Platform Cable
The USB Platform cable connects to the USB port and can be used to facilitate Slave Serial,
and Boundary Scan functionality. For more information, go to
http://www.xilinx.com/support , select Documentation → Data Sheets →
Configuration Hardware → Platform Cable USB.

MultiPro Cable
The MultiPro cable connects to the parallel port and can be used to facilitate Desktop
Configuration Mode functionality. For more information, go to
http://www.xilinx.com/support , select Documentation → Data Sheets →
Configuration Hardware → MultiPRO Desktop Tool.

Configuration Mode Support
Impact currently supports the following configuration modes:

• Boundary Scan —FPGAs, CPLDs, and PROMs(18V00,XCFS,XCFP)

• Slave Serial—FPGAs (Virtex™/-II/-II PRO/-E/4 and Spartan™/-II/-IIE/3/3E)

• Select Map—FPGAs (Virtex™/-II/-II PRO/-E/4 and Spartan™/-II/-IIE/3/3E)

• Desktop —FPGAs (Virtex™/-II/-II PRO/-E/4 and Spartan™/-II/-IIE/3/3E)

Getting Started

Generating the Configuration Files
In order to follow this chapter, you must have the following files for the stopwatch design:

• a BIT file—a binary file that contains proprietary header information as well as
configuration data.

• a MCS file—an ASCII file that contains PROM configuration information.

• a MSK file—a binary file that contains the same configuration commands as a BIT file,
but that has mask data in place of configuration data. This data is not used to
configure the device, but is used for verification. If a mask bit is 0, the bit should be
verified against the bit stream data. If a mask bit is 1, the bit should not be verified.
This file generated along with the BIT file.

http://www.xilinx.com/support
http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support

ISE 7 In-Depth Tutorial www.xilinx.com 145
1-800-255-7778

Getting Started
R

These files are generated in Chapter 5, “Design Implementation.”

• The Stopwatch tutorial projects can be downloaded from
http://www.xilinx.com/support/techsup/tutorials/tutorials7.htm. Download the
project files for either the VHDL, Verilog or Schematic design flow.

Connecting the Cable
Prior to launching iMPACT, connect the parallel side of the cable to your computer’s
parallel port, and connect the cable to the Spartan-3 Starter Kit demo board. Ensure that the
board is powered.

Starting the Software
This section describes how to start the iMPACT software from ISE™ and how to run it
stand-alone.

Opening iMPACT from Project Navigator

To start iMPACT from ISE, double-click Configure Device (iMPACT) in the Processes for
Source window (see Figure 7-1).

Figure 7-1: Opening iMPACT from ISE

http://www.xilinx.com
http://www.xilinx.com/support/techsup/tutorials/tutorials7.htm

146 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 7: iMPACT Tutorial
R

Opening iMPACT stand-alone

To open iMPACT without going through an ISE project, use one of the following methods.

• PC — Click Start → Xilinx ISE 7 → Accessories → iMPACT.

• PC, UNIX, or Linux — Type impact at a command prompt.

Creating a iMPACT New Project File
When iMPACT is initially opened, the iMPACT Project dialog box displays. This dialog
box enables you to load a recent project or to create a new project.

To create a new project for this tutorial:

1. In the iMPACT Project dialog box, select create a new project (.ipf).

2. Click the Browse button.

3. Enter a new project filename in the appropriate directory. For this tutorial, enter any
name for the project

4. Click OK.

5. Click OK.

This creates a new project file in iMPACT. You are prompted to define the project, as
described in the next section.

Using Boundary Scan Configuration Mode
For this tutorial, you will be using the Boundary Scan Configuration Mode. Boundary Scan
Configuration Mode allows you to perform Boundary Scan Operations on any chain
comprising JTAG compliant devices. The chain can consist of both Xilinx® and non-Xilinx
devices; however, limited operations will be available for non-Xilinx devices. To perform
operations, the cable must be connected and the JTAG pins, TDI, TCK, TMS, and TDO need
to be connected from the cable to the board.

Specifying Boundary Scan Configuration Mode
After opening iMPACT, you are prompted to specify the configuration mode and which
device you would like to program.

Figure 7-2: Creating an iMPACT Project

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 147
1-800-255-7778

Using Boundary Scan Configuration Mode
R

To select Boundary Scan Mode:

1. For iMPACT stand-alone only: Select Configuration Mode in the initial dialog box.

2. Select Configure Devices in the Operation Mode Selection dialog box.

3. Click Next.

4. Select Boundary Scan Mode in the Configure Devices dialog box.

5. Click Next.

Figure 7-3: Initial Window When Opening iMPACT

http://www.xilinx.com

148 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 7: iMPACT Tutorial
R

6. Select Automatically connect to cable and identify Boundary-Scan chain in the
Boundary Scan Mode Selection dialog box.

7. Click Finish.

iMPACT will pass data through the devices and automatically identify the size and
composition of the boundary scan chain. Any supported Xilinx device will be recognized
and labeled in iMPACT. Any other device will be labeled as unknown. The software will
then highlight each device in the chain and prompt you to assign a configuration file or
BSDL file.

Note: If you were not prompted to select a configuration mode or automatic boundary scan mode,
right-click in the iMPACT window and select Initialize Chain. The software will identify the chain if the
connections to the board are working. Go to “Troubleshooting Boundary Scan Configuration” if you
are having problems.

Note: In Figure 7-4, you will notice the option to Enter a Boundary Scan Chain, which enables you
to then manually add devices to create chain. This option enables you to generate an SVF/XSVF
programming file, and is discussed in a later section in this chapter. Automatically detecting and
initializing the chain should be performed whenever possible.

Figure 7-4: Selecting automatic boundary scan from Wizard

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 149
1-800-255-7778

Using Boundary Scan Configuration Mode
R

Assigning Configuration Files
After initializing a chain, the software prompts you for a configuration file (see Figure 7-5).
The configuration file is used to program the device. There are several types of
configuration files.

• A Bitstream file (*.bit, *.rbt, *.isc) is used to configure an FPGA.

• A JEDEC file (*.jed,*.isc) is used to configure a CPLD.

• A PROM file (*.mcs, .exo, .hex, or .tek) is used to configure a PROM.

When the software prompts you to select a configuration file for the first device (XC3S200):

1. Select the BIT file from your project working directory.

2. Click Open.

You should receive a warning stating that the startup clock has been changed to JtagClk.

3. Click OK.

Note: If a configuration file is not available, a Boundary Scan Description File (BSDL or BSD) file
can be applied instead. The BSDL file provides the software with necessary Boundary Scan
information that allows a subset of the Boundary Scan Operations to be available for that device. To
have ISE automatically select a BSDL file (for both Xilinx and non-Xilinx devices), select Bypass in
the Assign New Configuration File dialog box.

Figure 7-5: Selecting a Configuration File

http://www.xilinx.com

150 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 7: iMPACT Tutorial
R

When the software prompts you to select a configuration file for the second device
(XCF02S):

4. Select the MCS file from your project working directory.

5. Click Open.

Saving the Project File
Once the chain has been fully described and configuration files are assigned, you should
save your iMPACT Project File (IPF) for later use. To do this, select
File → Save Project As. The Save As dialog box appears and you can browse and save
your project file accordingly. To restore the chain when reopening iMPACT, select
File → Open Project and browse to the IPF.

Note: Previous versions of ISE use Configuration Data Files (CDF). These files can still be opened
and used in iMPACT. iMPACT Project Files can also be exported to a CDF.

Editing Preferences
To edit the preferences for the Boundary Scan Configuration, select Edit → Preferences.
This selection opens the window shown in Figure 7-6. Click Help for a description of the
Preferences.

In this tutorial, keep the default values and click OK.

Figure 7-6: Edit Preferences

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 151
1-800-255-7778

Using Boundary Scan Configuration Mode
R

Performing Boundary Scan Operations
You can perform Boundary Scan operations on one device at a time. The available
Boundary Scan operations vary based on the device and the configuration file that was
applied to the device. To see a list of the available options, right-click on any device in the
chain. This brings up a window with all of the available options.

When you select a device and perform an operation on that device, all other devices in the
chain are automatically placed in BYPASS or HIGHZ, depending on your iMPACT
Preferences setting. (For more information about Preferences, see “Editing Preferences.”)

To perform an operation, right-click on a device and select one of the options. In this
section, you will retrieve the device ID and run the programming option to verify the first
device.

1. Right-click on the XC3S200 device.

2. Select Get Device ID from the right-click menu.

The software accesses the IDCODE for this Spartan-3 device. The result is displayed in the
log window (see Figure 7-8).

3. Right-click on the XC3S200 device

4. Select Program from the right-click menu.

Figure 7-7: Available Boundary Scan Operations for an XC3S200 Device

Figure 7-8: Log Window Showing Result of Get Device ID

http://www.xilinx.com

152 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 7: iMPACT Tutorial
R

The Program Option window appears (see Figure 7-9).

5. Select the Verify option.

The Verify option enables the device to be readback and compared to the BIT file using
the MSK file that was created earlier.

6. Click OK to begin programming.

Note: The options available in the Program Options dialog box vary based on the device you have
selected.

After clicking OK, the Program operation begins and an operation status window displays.
At the same time, the log window reports all of the operations being performed.

Figure 7-9: Program Options for XC3S200 Device

Figure 7-10: Operation Status

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 153
1-800-255-7778

Using Boundary Scan Configuration Mode
R

When the Program operation completes, a large blue message appears showing that
programming was successful (see Figure 7-11). This message disappears after a couple of
seconds.

Figure 7-11: Programming Succeeded

http://www.xilinx.com

154 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 7: iMPACT Tutorial
R

The log window also shows that the programming completed successfully and shows all
of the operations that were performed (see Figure 7-12).

Your design has been programmed and has been verified. The board should now be
working and should allow you to start, stop and reset the runner’s stopwatch.

Troubleshooting Boundary Scan Configuration

Verifying Cable Connection
When an error occurs during a Boundary Scan operation, first verify first that the cable
connection is established and that the software autodetect function is working. If after
plugging in the cable into the board and into your machine a connection is still not
established, right-click in a blank portion of the iMPACT window and select either Cable
Auto Connect or Cable Setup. Cable Auto Connect will force the software to search
every port for a connection. Cable Setup allows you to select the cable and the port to
which the cable is connected.

When a connection is found, the bottom of the iMPACT window will display the type of
cable connected, the port attached to the cable, and the cable speed (see Figure 7-13).

Figure 7-13: Cable Connection Successful

Figure 7-12: Log Window Showing Successful Configuration of the FPGA

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 155
1-800-255-7778

Troubleshooting Boundary Scan Configuration
R

If a cable is connected to the system and the cable autodetection fails, refer to Xilinx
Answer Record #15742. Go to http://www.xilinx.com/support and search for “15742”.

Verifying Chain Setup
When an error occurs during a Boundary Scan operation, verify that the chain is set up
correctly and verify that the software can communicate with the devices. The easiest way
to do this is to initialize the chain. To do so, right-click in the iMPACT window and select
Initialize Chain. The software will identify the chain if the connections to the board are
working.

If the chain cannot be initialized, it is likely that the hardware is not set up correctly or the
cable is not properly connected. If the chain can be initialized, try performing simple
operations. For instance, try getting the Device ID of every device in the chain. If this can
be done, then the hardware is set up correctly and the cable is properly connected.

The debug chain can also be used to manually enter JTAG commands (see Figure 7-14).
This can be used for testing commands and verifying that the chain is set up correctly. To
use this feature, select Debug → Start Debug Chain in iMPACT.

For help, use the iMPACT Help (accessible from Help → Help Topics), or file a Web case
at http://www.xilinx.com/support.

Figure 7-14: Debug Chain

http://www.xilinx.com
http://www.xilinx.com/support
http://www.xilinx.com/support

156 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 7: iMPACT Tutorial
R

Creating an SVF File
This section is optional and assumes that you have followed the “Using Boundary Scan
Configuration Mode” section and have successfully programmed to a board.

iMPACT supports the creation of device programming files in three formats, SVF, XSVF,
and STAPL. If you are using third-party programming solutions, you may need to set up
your Boundary Scan chain manually and then create a device programming file. These
programming files contain both programming instructions and configuration data, and
they are used by ATE machines and embedded controllers to perform Boundary Scan
operations. A cable normally does not need to be connected because no operations are
being performed on devices.

In this section, all of the configuration information is written to the SVF file.

Setting up Boundary Scan Chain
This section assumes that you are continuing from the previous sections of this chapter and
already have the chain detected. If not, skip to “Manual JTAG chain setup for SVF
generation” to define the chain manually.

JTAG chain setup for SVF generation

1. Select Mode → File Mode to indicate that you are creating a programming file.

2. Select the SVF-STAPL-XSVF tab.

3. Since you’ve already defined the chain in the BSCAN tab, a dialog box will appear to
allow the chain to be copied to the SVF-STAPL-XSVF tab.

4. Click Yes.

5. Another dialog box now appears. Click Ok to create a SVF file.

6. A new window will pop up requesting a file name for the SVF file.

7. Enter getid for the file name.

8. Click Save.

Manual JTAG chain setup for SVF generation

For this tutorial, you do not need to setup a chain manually because a daisy chain is setup
and saved in“Using Boundary Scan Configuration Mode.”

The chain can be manually created or modified as well. To do this,

1. Ensure that you are in Configuration Mode (Mode → Configuration Mode).

2. Ensure that you are in Boundary Scan Mode (click the Boundary-Scan tab).

You can now add one device at a time.

3. Right-click on an empty space in the iMPACT window and select Add Xilinx Device
or Add Non-Xilinx device.

The device is added where the large cursor is positioned.

To add a device between existing devices just click on the line between them and then add
the new device.

Note: The boundary scan chain that you manually create in the software must match the chain on
the board, even if you intend to program only some of the devices. All devices must be represented
in the iMPACT window.

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 157
1-800-255-7778

Creating an SVF File
R

Writing to the SVF File
The process of writing to an SVF file is identical to performing Boundary Scan operations
with a cable. You simply right-click on a device and select an operation. Any number of
operations can be written to an SVF file.

In this section, you will be writing the device ID to the programming file for the first
device, and performing further instructions for the second device.

To write the device ID:

1. Right-click the first device (XC3S200).

2. Select Get Device ID from the right-click menu.

The instructions that are necessary to perform a Get Device ID operation are then
written to the file.

Figure 7-15: Selecting a Boundary Scan Operation

http://www.xilinx.com

158 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 7: iMPACT Tutorial
R

3. To see the results, you must open the SVF in a text editor outside of the iMPACT
software. Figure 7-16 shows what the SVF file looks like after the Get Device ID
operation is performed.

To write further instructions to the SVF for the second device:

1. Right-click the second device (XCF02S).

Figure 7-16: SVF File that Gets a Device ID from the First Device in the Chain

http://www.xilinx.com

ISE 7 In-Depth Tutorial www.xilinx.com 159
1-800-255-7778

Creating an SVF File
R

2. Select Program from the right-click menu.

The instructions and configuration data needed to Program the second device are added to
the file.

Stop Writing to the SVF
After all the desired operations have been performed, you must add an instruction to close
the file from further instructions. To stop writing to the programming file:

Select Output → SVF File → Stop Writing to SVF File.

The file is closed and no more information can be written to it.

To add other operations in the future, you can select Output → SVF File → Append to
SVF File, select the SVF file and click Save.

Playing back the SVF or XSVF file
To play back the SVF file that you created to verify the instructions, you will

• Manually create the chain, adding only Xilinx devices.

• Assign the SVF file to the chain.

• Right-click and select Execute.

Figure 7-17: Available Boundary Scan Operations for a XCF00S Device

http://www.xilinx.com

160 www.xilinx.com ISE 7 In-Depth Tutorial
1-800-255-7778

Chapter 7: iMPACT Tutorial
R

Other Configuration Modes

Slave Serial Configuration Mode
Slave Serial Configuration mode allows you to program a single Xilinx device or a serial
chain of Xilinx devices. To use the Slave Serial Configuration Mode, click the Slave Serial
Tab at the top of the iMPACT window.

SelectMAP Configuration Mode
With iMPACT, Select MAP Configuration mode allows you to program up to three Xilinx
devices. The devices are programmed one at a time and are selected by the assertion of the
correct CS pin. To use the Select MAP Configuration Mode, click the Select MAP tab at the
top of the iMPACT window. Only the MultiPRO cable can be used for Select MAP
Configuration.

Note: These modes cannot be used with the Spartan-3 Starter Kit.

http://www.xilinx.com

Software Manuals and Help - support.xilinx.com

| Troubleshoot | Hardware | Software | Download | Documentation | Design | Services |

 Xilinx : Support : Documentation : Xilinx ISE 7 Software Manuals and Help

 Advanced

Answer Browser

 MySupport

 Software Manuals

 Tech Tips

 Forums

 TechXclusives

 Problem Solvers

 WebCase

 Site Map

 Xilinx ISE 7 Software Manuals and Help

Click one of the following links to view the documents:

 PDF Collection View and print the collection with Adobe Acrobat Reader
within your Web browser.

 Compressed PDF Download a PDF file, then view the downloaded file with

Adobe Acrobat Reader locally.

 HTML Collection View and search the collection within your Web browser.

 ISE Help is reorganized and includes the following updates:

● Project Navigator basics added to the Getting Started section, such as the new "Project
Navigator Overview" and "Source File Types" topics

● Overview and strategic information added to the FPGA Design and CPLD Design sections
● Quick links to additional resources added to the Software Reference Information and Device

Reference Information sections, including links to individual tools Help, user guides, and device
reference information

● Top 10 customer questions included in the new Troubleshooting section
● Common search and index for all Help in the collection

 The following architecture-specific Libraries Guides are now available, in both HDL and
schematic versions:

● Virtex™-4 Libraries Guide for HDL Designs
● Virtex-4 Libraries Guide for Schematic Designs
● Spartan™-3E Libraries Guide for HDL Designs
● Spartan-3E Libraries Guide for Schematic Designs

Note The original version of the Libraries Guide is available for information on other architectures.
Future Libraries Guides will be published in the architecture-specific format.

For best results, use Netscape® Communicator 7 and higher or Microsoft® Internet Explorer 6 and
higher to view these files. To view manuals from previous releases, go to support.xilinx.com
Documentation.

Send your Software Manuals feedback to isedocs@xilinx.com

 to correctly view the PDF files.

http://www.xilinx.com/support/sw_manuals/xilinx7/ (1 of 2) [3/16/2005 4:32:16 PM]

http://www.xilinx.com/index.shtml
http://www.xilinx.com/support/support.htm
http://www.xilinx.com/index.shtml
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?sGlobalNavPick=PRODUCTS
http://www.xilinx.com/esp/index.htm
http://www.xilinx.com/support/support.htm
http://www.xilinx.com/support/education-home.htm
http://www.xilinx.com/xlnx/xebiz/onlinestore.jsp?sGlobalNavPick=PURCHASE
http://www.xilinx.com/company/contact.htm
http://www.xilinx.com/support/troubleshoot.htm
http://www.xilinx.com/support/hardware.htm
http://www.xilinx.com/support/software.htm
http://www.xilinx.com/support/download.htm
http://www.xilinx.com/support/library.htm
http://www.xilinx.com/support/design.htm
http://www.xilinx.com/support/services.htm
http://www.xilinx.com/index.shtml
http://www.xilinx.com/support/support.htm
http://www.xilinx.com/support/library.htm
http://www.xilinx.com/company/search.htm
http://www.xilinx.com/xlnx/xil_ans_browser.jsp
http://www.xilinx.com/mysupport/
http://www.xilinx.com/support/software_manuals.htm
http://www.xilinx.com/xlnx/xil_tt_home.jsp
http://toolbox.xilinx.com/cgi-bin/forum
http://www.xilinx.com/xlnx/xweb/xil_tx_home.jsp
http://www.xilinx.com/support/troubleshoot/psolvers.htm
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/support/sitemap.htm
http://toolbox.xilinx.com/docsan/xilinx7/books/manuals.pdf
http://www.xilinx.com/support/sw_manuals/xilinx7/download/
http://toolbox.xilinx.com/docsan/xilinx7/books/manuals.htm
http://www.xilinx.com/support/software_manuals.htm
mailto:isedocs@xilinx.com?subject=Documentation Feedback
http://www.adobe.com/products/acrobat/readstep.html

Software Manuals and Help - support.xilinx.com

 Legal Information
 Privacy Policy

| Troubleshoot | Download | Documentation |
| Home | Products & Services | End Markets | Support | Education | Online Store | Contact |

(C) Copyright 1994-2004 Xilinx, Inc. All Rights Reserved

http://www.xilinx.com/support/sw_manuals/xilinx7/ (2 of 2) [3/16/2005 4:32:16 PM]

http://support.xilinx.co.jp/
http://www.xilinx.com/xlnx/xil_reg_profile.jsp
http://www.xilinx.com/support/asksxc.htm
http://www.xilinx-china.com/support/support.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm#privacy
http://www.xilinx.com/support/troubleshoot.htm
http://www.xilinx.com/support/download.htm
http://www.xilinx.com/support/library.htm
http://www.xilinx.com/index.shtml
http://www.xilinx.com/xlnx/xil_prodcat_landingpage.jsp?sGlobalNavPick=PRODUCTS
http://www.xilinx.com/esp/
http://www.xilinx.com/support/support.htm
http://www.xilinx.com/support/education-home.htm
http://www.xilinx.com/xlnx/xebiz/onlinestore.jsp
http://www.xilinx.com/company/contact.htm

	ISE 7 In-Depth Tutorial
	About This Tutorial
	About the In-Depth Tutorial
	Additional Resources
	Tutorial Contents
	Tutorial Flows
	HDL Design Flow
	Schematic Design Flow
	Implementation-only Flow
	Device Configuration-only Flow

	Table of Contents
	1 Overview of ISE and Synthesis Tools
	Overview of ISE
	Project Navigator Interface
	Sources in Project Window
	Processes for Source Window
	Transcript Window
	Workspace
	Using Snapshots
	Using Project Archives

	Overview of Synthesis Tools
	LeonardoSpectrum
	Precision Synthesis
	Synplify/Synplify Pro
	Xilinx Synthesis Technology (XST)

	2 HDL-Based Design
	Overview of HDL-Based Design
	Getting Started
	Required Software
	Optional Software Requirements
	VHDL or Verilog?
	Installing the Tutorial Project Files
	Starting the ISE Software
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Adding Source Files
	Checking the Syntax
	Correcting HDL errors
	Creating an HDL-Based Module
	Creating a CORE Generator Module
	Creating a DCM Module

	Synthesizing the Design
	Synthesizing the Design using XST
	Synthesizing the Design using Synplify/Synplify Pro
	Synthesizing the Design using LeonardoSpectrum
	Synthesizing the Design Using Precision Synthesis

	3 Schematic-Based Design
	Overview of Schematic-based Design
	Getting Started
	Required Software
	Installing the Tutorial Project Files
	Starting the ISE Software
	Stopping the Tutorial

	Design Description
	Inputs
	Outputs
	Functional Blocks

	Design Entry
	Opening the Schematic File in the Xilinx Schematic Editor
	Manipulating the Window View
	Creating a Schematic-Based Macro
	Defining the time_cnt Schematic
	Creating and Placing the time_cnt Symbol
	Creating a CORE Generator Module
	Creating a State Machine Module
	Creating the State Machine Symbol
	Creating a DCM Module
	Creating the DCM1 Symbol
	Creating an HDL-Based Module
	Creating the hex2led Symbol
	Placing the stmach, ten_cnt, clk_div_262k, DCM1, debounce, and hex2led Symbols
	Hierarchy Push/Pop
	Specifying Device Inputs/Outputs
	Adding I/O Markers and Net Names
	Assigning Pin Locations
	Completing the Schematic

	4 Behavioral Simulation
	Overview of Behavioral Simulation Flow
	ModelSim Setup
	ModelSim PE and SE
	ModelSim Xilinx Edition

	ISE Simulator Setup
	Getting Started
	Required Files
	Xilinx Simulation Libraries

	Adding an HDL Test Bench
	Adding Tutorial Test Bench File

	Behavioral Simulation Using ModelSim
	Locating the Simulation Processes
	Specifying Simulation Properties
	Performing Simulation
	Adding Signals
	Saving the Simulation

	Behavioral Simulation Using ISE Simulator
	Locating the Simulation Processes
	Specifying Simulation Properties
	Performing Simulation
	Adding Signals
	Rerunning Simulation
	Creating a Test Bench Waveform Using the Waveform Editor

	5 Design Implementation
	Overview of Design Implementation
	Getting Started
	Continuing from Design Entry
	Starting from Design Implementation

	Specifying Options
	Translating the Design
	Using the Constraints Editor
	Using the Pin-out Area Constraints Editor (PACE)
	Mapping the Design
	Using Timing Analysis to Evaluate Block Delays After Mapping
	Estimating Timing Goals with the 50/50 Rule
	Report Paths in Timing Constraints Option

	Placing and Routing the Design
	Using FPGA Editor to Verify the Place and Route
	Evaluating Post-Layout Timing
	Creating Configuration Data
	Creating a PROM File with iMPACT
	Command Line Implementation

	6 Timing Simulation
	Overview of Timing Simulation Flow
	Getting Started
	Required Software
	Required Files

	Timing Simulation Using ModelSim
	Specifying Simulation Process Properties
	Performing Simulation

	7 iMPACT Tutorial
	Device Support
	Download Cable Support
	Parallel Cable III & IV
	USB Platform Cable
	MultiPro Cable

	Configuration Mode Support
	Getting Started
	Generating the Configuration Files
	Connecting the Cable
	Starting the Software

	Creating a iMPACT New Project File
	Using Boundary Scan Configuration Mode
	Specifying Boundary Scan Configuration Mode
	Assigning Configuration Files
	Saving the Project File
	Editing Preferences
	Performing Boundary Scan Operations

	Troubleshooting Boundary Scan Configuration
	Verifying Cable Connection
	Verifying Chain Setup

	Creating an SVF File
	Setting up Boundary Scan Chain
	Writing to the SVF File
	Stop Writing to the SVF
	Playing back the SVF or XSVF file

	Other Configuration Modes
	Slave Serial Configuration Mode
	SelectMAP Configuration Mode

	PJHHMGJGHHPKBHNKLLGOEHHIECJPLBCL:
	form1:
	x:
	f1: /company/search.htm
	f2: xilinx
	f3: answersdb
	f4: manual
	f5: ipcenter
	f6: 500
	f7: 50
	f8: [_answersdatabase]
	f9:

	f10:

