
Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

Assemble All Ye IP 
Using Simulink for DSP Design 

There are two levels of DSP design. First, there’s the conceptual 
level, where hard-core algorithm development rules the day. Your 
big concern here is the numerical correctness of your algorithm, 
but there’s no timing information or data typing to fret about. 
This is the comfort zone for the traditional DSP designer. You’re 
dealing with a problem from a purely mathematical point of view, 
using a procedural language like “M” in the MathWorks’ MAT-
LAB, which is suited for un-timed algorithms with mathematically 
friendly data types to fine-tune your formula. 

Then there’s the implementation level, where you take that shiny 
new algorithm and implement it in either software or (queue 
ominous music) hardware. Hailing from the software side of town, 
most DSP designers have no trouble creating an application to run 
on a traditional DSP processor. They might need to consult with a 
specialist for a tweak or two, but it’s all still software. Trouble is, 
that trusty-old DSP processor may not have the horsepower to 
handle your high-performance design requirements any more, at 
least not on its own. 

This is a place where FPGAs have been taking hold in a big way, becoming the 
platform of choice for high-performance DSP implementation, either replacing 
several DSP processors or augmenting one for the heavy lifting. FPGAs offer 
serious benefits for cost, performance, and power consumption because of their 
ability to do complex computations in parallel rather than sequentially like a 
DSP processor. The key to exploiting the performance benefit, however, is be-
ing able to access this capability without resorting to complex VHDL- or Verilog-
based custom hardware design. If you’re working in C, you could try to take 
your code and retarget it running on a DSP for an FPGA, but you would need to 
do C-to-hardware synthesis using an advanced tool to get anywhere. It’s not a 
straightforward process because C code that was targeted to run on a proces-
sor was almost certainly optimized for a sequential processing machine, and 
would probably need significant modification in order to take advantage of the 
parallelism available in an FPGA architecture. Getting to where you need to go 
is possible, but it may take more time, money, and complex tool expertise than 



Page 2

Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

you have to spare. 

So, what’s a DSP designer to do? How can you accelerate your design into hard-
ware if you’re not a hardware expert? 

The path to hardware implementation doesn’t have to be fraught with peril (or 
bleeding-edge, super-expensive tools). In fact, you can leverage a MathWorks 
Simulink environment that may already be familiar to you to complete your en-
tire design using an IP assembly approach. Simulink costs quite a bit more than 
its modestly priced MATLAB counterpart, but the two environments are fully in-
tegrated, so you still have full access to the algorithm development tools you’re 
used to using for data visualization and analysis. A big difference between the 
two tools is that MATLAB has no inherent notion of time. Simulink does. It pro-
vides you with a bridge to the next step in your implementation process. 

Think of Simulink as a hub for your DSP implementation. You can use it to 
graphically capture your design based on IP blocks, and then simulate, ana-
lyze, implement, and test your system. You can also create an IP-based design 
flow within Simulink by adding third-party tools and IP from FPGA vendors like 
Altera, Lattice, and Xilinx, or from EDA vendors like Synplicity. More on that in 
a bit. You can model your system using a selection of more than 1,000 blocks 
that implement common functions. You can choose from algorithmic blocks, like 
sum, product, or LUT; structural blocks such as mux or switch; or continuous 
and discrete dynamic blocks such as unit delay. In addition to the basic blocks, 
Simulink has features that allow you to customize the blocks or create your 
own, and includes additional blocksets for specific applications. 

This is an important point to note. Simulink is a multi-domain environment. 
It’s used not only for DSP design, but also for things like control system design 
and general system modeling. Therefore, it’s critical to understand how to use 
Simulink in “DSP mode.” For example, as we were just discussing, you’ll need 
to choose the Simulink signal processing blockset to give you the correct IP 
and sufficient signal processing capability for your design. You’ll need to employ 
frame-based processing as opposed to sample-by-sample processing, which 
would be more appropriate for control applications. If you think of the applica-
tion possibilities as a continuum, at one end you have low-data-rate, determin-
istic control applications where you care about absolute determinism and low 
latency. At the other end, you need high throughput, but may be more flexible 
on latency and real-time determinism. Simulink can handle both extremes, but 
you really need to know how to set it up to operate efficiently for your applica-
tion. In other words: A little bit of time spent learning the system up front will 
save lots of time later on. 



Page 3

Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

You may be thinking, “Sure, this sounds fine for some people, but my algorithm 
is extraordinarily complicated, chock full of linear algebraic functions, and I 
don’t see how I could easily recreate it using pre-defined blocks.” In this case, 
you may consider bypassing Simulink and going with a DSP synthesis solution 
from a company like AccelChip. AccelChip specializes in taking challenging algo-
rithmic IP straight from MATLAB to RTL, essentially skipping these steps in the 
Simulink flow. AccelChip’s DSP synthesis tool automates your floating- to fixed-
point conversion, enables design exploration, and generates your HDL. The 
cool thing if you’re targeting FPGAs, though, is that AccelChip also has a down-
stream connection back into the Simulink flow through Xilinx. 

Assuming for the sake of this discussion that you don’t have the world’s tough-
est algorithm and that you are, in fact, using an IP assembly approach for your 
DSP implementation, your next step is to do a floating- to fixed-point conver-
sion, or quantization. Quantization allows you to represent your input sig-
nal with a finite number of values, helping you to limit the bandwidth of your 
transmitted signal. Using fixed-point data reduces the memory requirements 
and increases the speed of code generated from your model. In software (as 
in a DSP processor) your registers and datapaths are already built, and have 
a fixed width. When you move your algorithm to hardware, however, you can 
usually trim off bunches of bits, saving huge amounts of hardware, and improv-
ing performance at the same time. In MATLAB, you would access the fixed-
point toolbox to convert basic math and logical operations to fixed point. Once 
you declare the variable, the algorithm doesn’t have to change. In Simulink, 
you would be working with a tool called Simulink Fixed Point to accomplish the 
same task. 

Now it’s time to decide what type of device you want to target, and what Simu-
link subflow would be best for you. You might choose an FPGA-vendor specific 
flow from Xilinx, Altera, or Lattice if you’re sure you want to use one of their FP-
GAs. If you’re not sure, or if you’re using your FPGAs for ASIC prototyping, you 
might go the route of using a vendor-neutral flow with a tool like Synplicity’s 
Synplify DSP. That’s not to say, by the way, that you couldn’t choose an FPGA 
vendor flow for that scenario, too, but you’d have an extra step to deal with. 
When you got ready to move from FPGA to ASIC, you would have to go back to 
your original reference model and hand code the HDL for the ASIC. There’s no 
free lunch, or in this case, automatic retargeting. 

If you have decided to go with an Altera flow, you will be working with a tool 
called DSP Builder, which sits on top of Simulink and provides you with Altera li-
braries that have hardware-optimized models behind them. As of last week, you 



Page 4

Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

can also add in your own libraries. Altera has just announced this enhancement, 
included in Version 5.1 of DSP Builder. This new functionality expands your ca-
pabilities because you’re not just relying on the IP from Altera. You may have 
an optimized algorithm that was written in VHDL or Verilog, and now you can 
import that and simulate it with the rest of the DSP Builder library and Simulink 
functions. They also offer a hardware-in-the-loop feature to accelerate system-
level co-simulation and debugging. 

The Xilinx path to Simulink is through their System Generator for DSP. System 
Generator gives you the ability to incorporate different languages in the design 
up front. This could come in handy if your team has a bunch of legacy HDL that 
they want to add, and they don’t want to bolt it in at the end. You can insert 
your HDL at the front end of the process, during the system-level modeling, 
and verify your whole design as part of the system. Xilinx also has hardware-
in-the-loop functionality for their flow, and, as mentioned earlier, they also offer 
integration with AccelChip. Remember that MATLAB algorithm that bypassed 
Simulink and went through AccelChip’s DSP synthesis tool? Well, you can export 
the fruits of your labor in AccelChip directly into the Xilinx System Generator 
for DSP as a new block. What this means is that from Simulink, you can press 
a button and generate the HDL for the whole system (including MATLAB blocks, 
HDL blocks, and Simulink primitives), as well as the bit stream for your FPGA. 

Xilinx also recently announced the availability of system development kits to 
provide application-specific help and IP to speed you through your process. 

Lattice Semiconductor is taking more of a “bring it to the masses” approach 
by providing a Simulink blockset as a standard part of their FPGA design tools. 
Their DSP generator tool is available as a standard part of the Lattice toolset. 
As more of a fringe player in this potentially huge market, their goal is to in-
crease the adoption rate of FPGAs for DSP by making it easy to check out their 
tool and use it with Simulink. 

What if you’re looking for technology independence in your Simulink subflow? 
You’ve looked at the vendor-specific offerings, but perhaps you have a plan to 
use your Simulink source in multiple FPGA architectures. Synplicity’s Synplify 
DSP automates the implementation of RTL directly from a Simulink specifica-
tion, and lets you target any FPGA hardware from a single Simulink model. 
Using Synplify DSP, you can optimize your Simulink design at the system level, 
prior to RTL, to maximize your results for timing and area. You can also take 
advantage of automatic testbench generation for HDL simulators. 



Page 5

Copyright © 2005 Techfocus Media, Inc. All rights reserved.
FPGA and Structured ASIC Journal

You may find yourself in a situation where you have DSP engineers creating 
models in Simulink, and FPGA engineers writing RTL, and you need to make 
sure that the RTL matches what you intend to build. The MathWorks has a bi-
directional co-simulation interface to Mentor Graphics’ ModelSim HDL simulator 
that integrates MATLAB and Simulink into the HDL flow so you can verify and 
co-simulate ModelSim RTL-level models from inside your Simulink environment. 
The “bidirectional” part of the interface is important if you happen to be the 
FPGA engineer on the team, because you can take MATLAB or Simulink models 
and run them as a component in ModelSim. Maybe you have a testbench that 
was written in Simulink. You don’t have to rewrite that in RTL. You can just im-
port the test stimulus and the test harness from the MATLAB code or the Simu-
link model and run it directly in ModelSim. 

Based on all of these assertions about “automatic generation of HDL” being 
bandied about, you may be wondering if it’s possible to actually make it all the 
way through the Simulink flow and into an FPGA without writing any HDL. The 
short answer is yes, it can be done. You can hop on The MathWorks site and 
check out success stories on the topic. But before you start doing a jig in cele-
bration, remember that you’re still going to be best served by having the ability 
to exploit all levels of your design, and if you have a spare hardware guy hang-
ing around to lend some expertise, all the better. 

Amy Malagamba , FPGA and Structured ASIC Journal 

November 15, 2005


