
Tutorial 6
Using the Spartan-3E Starter Board LCD Display

With ISE 10.1

Introduction
The LCD (Liquid Crystal Display) in question is included with the Spartan-3E Starter Board Kit
sold by both Digilent. LCD’s in general offer a cheap and convenient way to deliver information
from electronic devices. Indeed, it is that very convenience that has led to the LCD’s near
ubiquity in today’s electronic world.

A detailed description of the operation of an LCD is far beyond the scope of this document;
however, it is yet worthwhile to understand the general operation of an LCD device. Essentially,
what a traditional black & white LCD does is to selectively toggle what are termed pixels in the
display to allow or block light from passing. These pixels are abstractly considered to be the
points that compose the display; of course, in our particular case the pixels themselves are clearly
visible and are perfect squares. In any case, to generate something like the letter ‘I’, the LCD
would merely toggle the pixels in a straight vertical line.

This lab will assume the completion or understanding of the material in labs 1, 2, 3 and 5. There
are two fundamental sections for this lab. These consist of:

1. The implementation of hardware to control the onboard LCD.

2. A simulation of the hardware to verify functionality.

The enterprising reader may idly consider the fact that it is easier to simply program the board
than verify the hardware design in software first. Unfortunately, that is only true of very small
projects, as projects become larger, so do the problems with no seeming source or solution.
Repeatedly programming the board in trial and error fashion will only waste time.

LCD Controller: Sitronix ST7066U
Relevant Pins
There are two possible interfaces to the LCD controller, one 8 bits wide and another 4 bits wide.
The designers of the Spartan-3E chose to use the four bit interface and share it with the onboard
Intel StrataFlash storage device to minimize pin count. This will slightly complicate the
procedure of initializing and writing to the display. The following pin definitions will be used in
the “ucf” constraints file (manual pg. 43). LCD_RW will be pulled low, as this application will
not be reading data from the display. Driving LCD_E low causes the LCD to ignore all inputs. A
high LCD_RS specifies a data write operation, whereas a low LCD_RS specifies a command.

NET "LCD_E" LOC = "M18" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "LCD_RS" LOC = "L18" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "LCD_RW" LOC = "L17" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
The LCD four-bit data interface is shared with the StrataFlash.
NET "SF_D<8>" LOC = "R15" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF_D<9>" LOC = "R16" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF_D<10>" LOC = "P17" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;
NET "SF_D<11>" LOC = "M15" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW ;

LCD Memory Management
The LCD device has three internal regions of memory. The Data Display RAM (DD RAM),
which references the data to be displayed on the screen, the Character Generator RAM (CG
RAM), which stores user-defined patterns and the Character Generator ROM (CG ROM), which
includes a number of predefined patterns that correspond to ASCII symbols. In this tutorial only
the DD-RAM and the CG-ROM will be used. To reference a value in the CG-ROM, the value in
the figure 1 needs to be written into the DD-RAM. For example, the character ‘S’ from the CG-
ROM would have the value “01010011” (manual pg. 45). At least one Set DD-RAM Address
command should precede either one or many Data Write operations.

In addition, the following addresses are locations in the DD-RAM that physically correspond to the
locations of characters displayed on the LCD.

LCD Command Format
Each 8 bit command to the LCD controller occurs over a 4 bit interface, thus, each command is
decomposed into two four bit transmissions spaced by 1us. Subsequent commands (each sequential 4 bit
transmission) must be spaced from the next by at least 40us. A detailed description follows (manual pg.
50).

Note that the period of the 50MHz onboard clock is 20ns. The time between corresponding
nibbles is 1us, which is equivalent to 50 clock cycles. The time between successive commands is
40us, which corresponds to 2000 clock cycles. The delay after a Clear Display command is
1.64ms, rather than the usual 40us and corresponds to 82000 clock cycles. Setup time (time for
the outputs to stabilize) is 40ns, which is 2 clock cycles, the hold time (time to assert the LCD_E
pin) is 230ns, which translates to roughly 12 clock cycles, and the fall time (time to allow the
outputs to stabilize) is 10ns, which translates to roughly 1 clock cycle.

The following is the LCD command set.

LCD Initialization, Configuration and Display
There are three main steps in using the display, the first being the initialization of the four bit
interface itself, the second being the commands to set the display options and the third being the
writing of character data (manual pg. 51).

Initialization

1. Wait 15 ms or longer, although the display is generally ready when the FPGA finishes configuration. The
15 ms interval is 750,000 clock cycles at 50 MHz.

2. Write SF_D<11:8> = 0x3, pulse LCD_E High for 12 clock cycles.

3. Wait 4.1 ms or longer, which is 205,000 clock cycles at 50 MHz.

4. Write SF_D<11:8> = 0x3, pulse LCD_E High for 12 clock cycles.

5. Wait 100 μs or longer, which is 5,000 clock cycles at 50 MHz.

6. Write SF_D<11:8> = 0x3, pulse LCD_E High for 12 clock cycles.

7. Wait 40 μs or longer, which is 2,000 clock cycles at 50 MHz.

8. Write SF_D<11:8> = 0x2, pulse LCD_E High for 12 clock cycles.

9. Wait 40 μs or longer, which is 2,000 clock cycles at 50 MHz.

The second step involves the configuration and actual writing to the LCD ram. To configure the
LCD, the following commands will be given (manual pg. 51).

Configuration

1. Issue a Function Set command, 0x28, to configure the display for operation on the
Spartan-3E Starter Kit board.

2. Issue an Entry Mode Set command, 0x06, to set the display to automatically increment
the address pointer.

3. Issue a Display On/Off command, 0x0C, to turn the display on and disables the cursor
and blinking.

4. Finally, issue a Clear Display command. Allow at least 1.64 ms (82,000 clock cycles)
after issuing this command.

The third and last step involves the actual process of writing data to the DD-RAM.

Display

1. Specify the start address with a Set DD-RAM Address command.
2. Display a character with a Write Data command.

Objective

To use the S3E Starter Board’s LCD to display “FPGA”, and learn more about digital logic
design in the process.

Proces s

1. Implement hardware to control the LCD.

2. Verify the hardware in software (MODELSIM).

3. Program the S3E Starter Kit Board.

Implementation

This project requires 3 state machines. One for the power on initialization sequence, one to
transmit commands and data to the LCD and lastly, one to start the power on initialization
sequence, then configure and write to the LCD.

Note that one will have to make sure that the state machines are synchronized properly, that is,
that main state machine remains in the “INIT” state until the initialization state machine is in the
“DONE” state, and that subsequent command states not change until the data is fully transferred
by the transmission state machine.
Figure 4 shows the main state machine that controls the initialization sequence and the
transmission state machines. Note that each and every command implicitly requires the
transmission state machine.

Figure 5 is the initialization sequence state machine. It is only activated when the main state
machine asserts “init”. Make certain that there is a way to notify the main state machine that the
initialization is over and the four bit interface is established.

This is the last state machine, and potentially the most troublesome. The main state machine will
set the values of LCD_RS and the values of the high and low nibbles of an LCD command. This
state machine will simply verify the strict timing constraints given above for an LCD command,
otherwise it would be totally unnecessary. Again, a command will only be transferred once
tx_init is asserted by the main state machine.

Figure 7 shows a simulation of a properly working implementation of LCD controller hardware.
This simulation demonstrates the way the disparate state machines work together. As the
initialization sequence finishes, the command states of the main state machine begin.

Figure 7: Waveform of circuit

NOTE: ISE Simulator may cause a memory error due to lack of recources. The waveforms
shown are from MODELSIM XE

The following simulation waveforms show exactly what happens with all three state machines
when the initialization sequence ends, and the states of the function_set command.

--Written by Rahul Vora
--for the University of New Mexico
--rhlvora@gmail.com

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComponents.all;

entity lcd is
port(
clk, reset : in bit;
SF_D : out bit_vector(3 downto 0);
LCD_E, LCD_RS, LCD_RW, SF_CE0 : out bit;
LED : out bit_vector(7 downto 0));

end lcd;

architecture behavior of lcd is

type tx_sequence is (high_setup, high_hold, oneus, low_setup, low_hold, fortyus, done);
signal tx_state : tx_sequence := done;
signal tx_byte : bit_vector(7 downto 0);
signal tx_init : bit := '0';

type init_sequence is (idle, fifteenms, one, two, three, four, five, six, seven, eight, done);
signal init_state : init_sequence := idle;
signal init_init, init_done : bit := '0';

signal i : integer range 0 to 750000 := 0;
signal i2 : integer range 0 to 2000 := 0;
signal i3 : integer range 0 to 82000 := 0;

signal SF_D0, SF_D1 : bit_vector(3 downto 0);
signal LCD_E0, LCD_E1 : bit;
signal mux : bit;

type display_state is (init, function_set, entry_set, set_display, clr_display, pause, set_addr, char_f, char_p, char_g,
char_a, done);
signal cur_state : display_state := init;

begin
LED <= tx_byte; --for diagnostic purposes

SF_CE0 <= '1'; --disable intel strataflash
LCD_RW <= '0'; --write only

--The following "with" statements simplify the process of adding and removing states.

--when to transmit a command/data and when not to
with cur_state select

tx_init <= '0' when init | pause | done,
'1' when others;

--control the bus
with cur_state select

mux <= '1' when init,
'0' when others;

--control the initialization sequence
with cur_state select

init_init <= '1' when init,
'0' when others;

--register select
with cur_state select

LCD_RS <= '0' when function_set|entry_set|set_display|clr_display|set_addr,
'1' when others;

--what byte to transmit to lcd
--refer to datasheet for an explanation of these values
with cur_state select

tx_byte <= "00101000" when function_set,
"00000110" when entry_set,
"00001100" when set_display,
"00000001" when clr_display,
"10000000" when set_addr,
"01000110" when char_f,
"01010000" when char_p,
"01000111" when char_g,
"01000001" when char_a,
"00000000" when others;

--main state machine
display: process(clk, reset)
begin

if(reset='1') then
cur_state <= function_set;

elsif(clk='1' and clk'event) then
case cur_state is

--refer to intialize state machine below
when init =>

if(init_done = '1') then
cur_state <= function_set;

else
cur_state <= init;

end if;

--every other state but pause uses the transmit state machine
when function_set =>

if(i2 = 2000) then
cur_state <= entry_set;

else
cur_state <= function_set;

end if;

when entry_set =>
if(i2 = 2000) then

cur_state <= set_display;
else

cur_state <= entry_set;
end if;

when set_display =>
if(i2 = 2000) then

cur_state <= clr_display;
else

cur_state <= set_display;
end if;

when clr_display =>
i3 <= 0;
if(i2 = 2000) then

cur_state <= pause;
else

cur_state <= clr_display;
end if;

when pause =>
if(i3 = 82000) then

cur_state <= set_addr;
i3 <= 0;

else
cur_state <= pause;
i3 <= i3 + 1;

end if;

when set_addr =>
if(i2 = 2000) then

cur_state <= char_f;
else

cur_state <= set_addr;
end if;

when char_f =>
if(i2 = 2000) then

cur_state <= char_p;
else

cur_state <= char_f;
end if;

when char_p =>
if(i2 = 2000) then

cur_state <= char_g;
else

cur_state <= char_p;
end if;

when char_g =>
if(i2 = 2000) then

cur_state <= char_a;
else

cur_state <= char_g;
end if;

when char_a =>
if(i2 = 2000) then

cur_state <= done;
else

cur_state <= char_a;
end if;

when done =>
cur_state <= done;

end case;
end if;

end process display;

with mux select
SF_D <= SF_D0 when '0', --transmit

SF_D1 when others; --initialize
with mux select

LCD_E <= LCD_E0 when '0', --transmit
LCD_E1 when others; --initialize

--specified by datasheet
transmit : process(clk, reset, tx_init)
begin

if(reset='1') then
tx_state <= done;

elsif(clk='1' and clk'event) then
case tx_state is

when high_setup => --40ns
LCD_E0 <= '0';
SF_D0 <= tx_byte(7 downto 4);
if(i2 = 2) then

tx_state <= high_hold;
i2 <= 0;

else
tx_state <= high_setup;

i2 <= i2 + 1;
end if;

when high_hold => --230ns
LCD_E0 <= '1';
SF_D0 <= tx_byte(7 downto 4);
if(i2 = 12) then

tx_state <= oneus;
i2 <= 0;

else
tx_state <= high_hold;
i2 <= i2 + 1;

end if;

when oneus =>
LCD_E0 <= '0';
if(i2 = 50) then

tx_state <= low_setup;
i2 <= 0;

else
tx_state <= oneus;
i2 <= i2 + 1;

end if;

when low_setup =>
LCD_E0 <= '0';
SF_D0 <= tx_byte(3 downto 0);
if(i2 = 2) then

tx_state <= low_hold;
i2 <= 0;

else
tx_state <= low_setup;
i2 <= i2 + 1;

end if;

when low_hold =>
LCD_E0 <= '1';
SF_D0 <= tx_byte(3 downto 0);
if(i2 = 12) then

tx_state <= fortyus;
i2 <= 0;

else
tx_state <= low_hold;
i2 <= i2 + 1;

end if;

when fortyus =>
LCD_E0 <= '0';
if(i2 = 2000) then

tx_state <= done;
i2 <= 0;

else
tx_state <= fortyus;
i2 <= i2 + 1;

end if;

when done =>
LCD_E0 <= '0';
if(tx_init = '1') then

tx_state <= high_setup;
i2 <= 0;

else
tx_state <= done;
i2 <= 0;

end if;

end case;
end if;

end process transmit;

--specified by datasheet
power_on_initialize: process(clk, reset, init_init) --power on initialization sequence
begin

if(reset='1') then
init_state <= idle;
init_done <= '0';

elsif(clk='1' and clk'event) then
case init_state is

when idle =>
init_done <= '0';
if(init_init = '1') then

init_state <= fifteenms;
i <= 0;

else
init_state <= idle;
i <= i + 1;

end if;

when fifteenms =>
init_done <= '0';
if(i = 750000) then

init_state <= one;
i <= 0;

else
init_state <= fifteenms;
i <= i + 1;

end if;

when one =>
SF_D1 <= "0011";
LCD_E1 <= '1';
init_done <= '0';
if(i = 11) then

init_state<=two;
i <= 0;

else
init_state<=one;
i <= i + 1;

end if;

when two =>
LCD_E1 <= '0';
init_done <= '0';
if(i = 205000) then

init_state<=three;
i <= 0;

else
init_state<=two;
i <= i + 1;

end if;

when three =>
SF_D1 <= "0011";
LCD_E1 <= '1';
init_done <= '0';
if(i = 11) then

init_state<=four;
i <= 0;

else
init_state<=three;
i <= i + 1;

end if;

when four =>
LCD_E1 <= '0';
init_done <= '0';
if(i = 5000) then

init_state<=five;

i <= 0;
else

init_state<=four;
i <= i + 1;

end if;
when five =>

SF_D1 <= "0011";
LCD_E1 <= '1';
init_done <= '0';
if(i = 11) then

init_state<=six;
i <= 0;

else
init_state<=five;
i <= i + 1;

end if;
when six =>

LCD_E1 <= '0';
init_done <= '0';
if(i = 2000) then

init_state<=seven;
i <= 0;

else
init_state<=six;
i <= i + 1;

end if;
when seven =>

SF_D1 <= "0010";
LCD_E1 <= '1';
init_done <= '0';
if(i = 11) then

init_state<=eight;
i <= 0;

else
init_state<=seven;
i <= i + 1;

end if;
when eight =>

LCD_E1 <= '0';
init_done <= '0';
if(i = 2000) then

init_state<=done;
i <= 0;

else
init_state<=eight;
i <= i + 1;

end if;
when done =>

init_state <= done;
init_done <= '1';

end case;
end if;

end process power_on_initialize;
end behavior;

This tutorial was written by Rahul Vora. Rahul is an engineering student in the department of
Electrical and Computer Engineering at the University of New Mexico. He can be reached at
rvora@unm.edu.

This tutorial was updated and edited by Brian Zufelt. Brian is an engineering student in the
department of Electrical and Computer Engineering at the University of New Mexico.

mailto:rvora@unm.edu

