
Tutorial 7
Using the Spartan-3E Starter Board LCD Display with

a Counter (with ISE 10.1)

Introduction
The LCD (Liquid Crystal Display) in question is included with the Spartan-3E Starter Board Kit
sold by both Digilent. LCD’s in general offer a cheap and convenient way to deliver information
from electronic devices. Indeed, it is that very convenience that has led to the LCD’s near
ubiquity in today’s electronic world.

Information relevant to the LCD’s operation is in the previous tutorial, where the LCD was used
to display “FPGA”. Other than the alteration of the main state machine, this lab is a near
duplicate of the previous.

Writing numbers on the LCD is surprisingly simple. The chart in the previous lab or manual
specifies that for the numbers 0-9 the upper data nibble is always 3. Furthermore, the lower data
nibble corresponds exactly to the number. Thus, the number 8, is “0011” concatenated with
“1000”, or 0x38.

Objective

To use the S3E Starter Board’s LCD display to display the consecutive numbers of a counter up
to 9, and learn more about digital logic design in the process.

Process

1. Implement hardware to control the LCD.
2. Verify the hardware in software (MODELSIM).
3. Program the S3E Starter Kit Board.

Implementation

Again, this project requires 3 state machines. One for the power on initialization sequence, one to
transmit commands and data to the LCD and lastly, one to start the power on initialization
sequence, then configure and write to the LCD. In this case, the main state machine that controls
the others will never end. Instead it will loop forever, setting the DD-RAM address to 0x00, and
then writing the character that corresponds to the number of a counter.
Here, the main state machine initializes the display as detailed previously, but then deviates by
continuously setting the address to 0x00 and writing a character updated by a counter
implemented as a separate process. See figure 1.

Figure 2 is a 30ms simulation of properly working LCD-Counter hardware. Notice how although
the number being displayed doesn’t change, the main state machine continues to loop and set the
address to 0x00 and rewrite the character.

Figure 2: 30 ms Simulation

NOTE: ISE Simulator may cause a memory error due to lack of recources

Figure 3 shows an actual change in the number being displayed.

Figure 3: Actual Change

--Wri t t e n by Rahul Vor a
--for the University of New Mexico
--rhlvora@gmail.com

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.
--library UNISIM;
--use UNISIM.VComps1nts.all;

entity lcd is
port(
clk, reset : in std_logic;
SF_D : out std_logic_vector(3 downto 0);
LCD_E, LCD_RS, LCD_RW, SF_CE0 : out std_logic;
LED : out std_logic_vector(7 downto 0)

);
end lcd;

architecture behavior of lcd is

type display_state is (init, function_set, s1, entry_set, s2, set_display, s3, clr_display, s4, pause, set_addr, s5,
update, s6, done);
signal cur_state : display_state := init;

signal SF_D0, SF_D1 : std_logic_vector(3 downto 0);
signal LCD_E0, LCD_E1 : std_logic;
signal mux : std_logic;

type tx_sequence is (high_setup, high_hold, oneus, low_setup, low_hold, fortyus, done);
signal tx_state : tx_sequence := done;
signal tx_byte : std_logic_vector(7 downto 0);
signal tx_init : std_logic := '0';
signal tx_rdy : std_logic := '0';

type init_sequence is (idle, fifteenms, s1, s2, s3, s4, s5, s6, s7, s8, done);
signal init_state : init_sequence := idle;
signal init_init, init_done : std_logic := '0';

signal i : integer range 0 to 750000 := 0;
signal i2 : integer range 0 to 2000 := 0;
signal i3 : integer range 0 to 82000 := 0;
signal i4 : integer range 0 to 50000000 := 0;

signal num : std_logic_vector(3 downto 0);

begin
LED <= tx_byte; --for diagnostic purposes

SF_CE0 <= '1'; --disable intel strataflash
LCD_RW <= '0'; --write only

--when to transmit a command/data and when not to
with cur_state select

tx_init <= '1' when function_set | entry_set | set_display | clr_display | set_addr | update,
'0' when others;

--control the bus
with cur_state select

mux <= '1' when init,
'0' when others;

--control the initialization sequence
with cur_state select

init_init <= '1' when init,
'0' when others;

--register select
with cur_state select

LCD_RS <= '0' when s1|s2|s3|s4|s5,
'1' when others;

with cur_state select
tx_byte <= "00101000" when s1,

"00000110" when s2,
"00001100" when s3,
"00000001" when s4,
"10000000" when s5,
"0011"&num when s6,
"00000000" when others;

counter: process(clk, reset)
begin

if(reset = '1') then
i4 <= 0;
num <= "0000";

elsif(clk='1' and clk'event) then
if(i4 = 50000000) then

i4 <= 0;
if(num = "1001") then

num <= "0000";
else

num <= num + '1';
end if;

else
i4 <= i4 + 1;

end if;
end if;

end process counter;

--main state machine
display: process(clk, reset)
begin

if(reset='1') then
cur_state <= init;

elsif(clk='1' and clk'event) then
case cur_state is

when init =>
if(init_done = '1') then

cur_state <= function_set;
else

cur_state <= init;
end if;

when function_set =>
cur_state <= s1;

when s1 =>
if(tx_rdy = '1') then

cur_state <= entry_set;
else

cur_state <= s1;
end if;

when entry_set =>
cur_state <= s2;

when s2 =>
if(tx_rdy = '1') then

cur_state <= set_display;
else

cur_state <= s2;
end if;

when set_display =>
cur_state <= s3;

when s3 =>
if(tx_rdy = '1') then

cur_state <= clr_display;
else

cur_state <= s3;
end if;

when clr_display =>
cur_state <= s4;

when s4 =>
i3 <= 0;
if(tx_rdy = '1') then

cur_state <= pause;
else

cur_state <= s4;
end if;

when pause =>
if(i3 = 82000) then

cur_state <= set_addr;
i3 <= 0;

else
cur_state <= pause;
i3 <= i3 + 1;

end if;

when set_addr =>
cur_state <= s5;

when s5 =>
if(tx_rdy = '1') then

cur_state <= update;
else

cur_state <= s5;
end if;

when update =>
cur_state <= s6;

when s6 =>
if(tx_rdy = '1') then

cur_state <= set_addr;
else

cur_state <= s6;
end if;

when done =>
cur_state <= done;

end case;
end if;

end process display;

with mux select
SF_D <= SF_D0 when '0', --transmit

SF_D1 when others; --initialize
with mux select

LCD_E <= LCD_E0 when '0', --transmit
LCD_E1 when others; --initialize

with tx_state select
tx_rdy <= '1' when done,

'0' when others;

with tx_state select
LCD_E0 <= '0' when high_setup | oneus | low_setup | fortyus | done,

'1' when high_hold | low_hold;

with tx_state select
SF_D0 <= tx_byte(7 downto 4) when high_setup | high_hold | oneus,

tx_byte(3 downto 0) when low_setup | low_hold | fortyus | done;

--specified by datasheet
transmit : process(clk, reset, tx_init)
begin

if(reset='1') then
tx_state <= done;

elsif(clk='1' and clk'event) then
case tx_state is

when high_setup => --40ns
if(i2 = 2) then

tx_state <= high_hold;
i2 <= 0;

else
tx_state <= high_setup;
i2 <= i2 + 1;

end if;

when high_hold => --230ns
if(i2 = 12) then

tx_state <= oneus;
i2 <= 0;

else
tx_state <= high_hold;
i2 <= i2 + 1;

end if;

when oneus =>
if(i2 = 50) then

tx_state <= low_setup;
i2 <= 0;

else
tx_state <= oneus;
i2 <= i2 + 1;

end if;

when low_setup =>
if(i2 = 2) then

tx_state <= low_hold;
i2 <= 0;

else
tx_state <= low_setup;
i2 <= i2 + 1;

end if;

when low_hold =>
if(i2 = 12) then

tx_state <= fortyus;
i2 <= 0;

else
tx_state <= low_hold;
i2 <= i2 + 1;

end if;

when fortyus =>
if(i2 = 2000) then

tx_state <= done;
i2 <= 0;

else
tx_state <= fortyus;
i2 <= i2 + 1;

end if;

when done =>
if(tx_init = '1') then

tx_state <= high_setup;
i2 <= 0;

else
tx_state <= done;
i2 <= 0;

end if;

end case;
end if;

end process transmit;

with init_state select
init_done <= '1' when done,

'0' when others;

with init_state select
SF_D1 <= "0011" when s1 | s2 | s3 | s4 | s5 | s6,

"0010" when others;

with init_state select
LCD_E1 <= '1' when s1 | s3 | s5 | s7,

'0' when others;

--specified by datasheet
power_on_initialize: process(clk, reset, init_init) --power on initialization sequence
begin

if(reset='1') then
init_state <= idle;

elsif(clk='1' and clk'event) then
case init_state is

when idle =>
if(init_init = '1') then

init_state <= fifteenms;
i <= 0;

else
init_state <= idle;
i <= i + 1;

end if;

when fifteenms =>
if(i = 750000) then

init_state <= s1;
i <= 0;

else
init_state <= fifteenms;
i <= i + 1;

end if;

when s1 =>
if(i = 11) then

init_state<=s2;
i <= 0;

else
init_state<=s1;
i <= i + 1;

end if;

when s2 =>
if(i = 205000) then

init_state<=s3;
i <= 0;

else
init_state<=s2;
i <= i + 1;

end if;

when s3 =>
if(i = 11) then

init_state<=s4;
i <= 0;

else
init_state<=s3;
i <= i + 1;

end if;
when s4 =>

if(i = 5000) then
init_state<=s5;
i <= 0;

else
init_state<=s4;
i <= i + 1;

end if;
when s5 =>

if(i = 11) then
init_state<=s6;
i <= 0;

else
init_state<=s5;
i <= i + 1;

end if;
when s6 =>

if(i = 2000) then
init_state<=s7;
i <= 0;

else
init_state<=s6;
i <= i + 1;

end if;
when s7 =>

if(i = 11) then
init_state<=s8;
i <= 0;

else
init_state<=s7;
i <= i + 1;

end if;
when s8 =>

if(i = 2000) then
init_state<=done;
i <= 0;

else
init_state<=s8;
i <= i + 1;

end if;
when done =>

init_state <= done;
end case;

end if;
end process power_on_initialize;

end behavior;

This tutorial was written by Rahul Vora. Rahul is an engineering student in the department of
Electrical and Computer Engineering at the University of New Mexico. He can be reached at
rvora@unm.edu.

This tutorial was revised by Brian Zufelt. Brian is an engineering student in the department of
Electrical and Computer Engineering at the University of New Mexico.

mailto:rvora@unm.edu

