BEE Design Flow Tutorials

Lesson 1

Flow Basics

Chen Chang Kimmo Kuusilinna Brian Richards

Lesson Goals

- Basic usage of Simulink with Xilinx System Generator
- Single FPGA routing and assigning I/O gateways
- Compiling the design for FPGA
- Downloading the design bit file to BEE system and run hardware emulation
- Basic ASIC flow operations

What do you need to start?

- MS Terminal Service Client software installed on the local PC machine, as well as SSH client and Exceed Xwindows program.
- Use MS Terminal Service Client logon to one of the BWRC terminal servers
 - Intel2650-1.eecs.berkeley.edu through Intel2650-7.eecs.berkeley.edu
- On the terminal server, map T: drive to \hitz.eecs.berkeley.edu\tools
- For ASIC flow you need
 - Access to the BWRC Unix environment
 - E.g., sunV440-1.eecs.berkeley.edu
 - Signed the ST NDA to be granted access to vendor IP

Starting a new project

- SSH to a Unix machine (e.g., sun450-1)
- \$tcsh
- \$ setenv PATH /tools/insecta/current/bin:\$PATH
- \$ setenv DISPLAY your_machine:0.0
 - This may be set automatically if SSH X11 tunneling is enabled.
- \$cd /tools/designs/your_work_dir
 - EG: /tools/designs/BEE/users/login_name
 - Avoid using your home directory space is limited!
- \$mk_insecta_project tut1
 - This creates the tut1 directory with several design subdirectories.
- \$cd tut1
- The same directory can be accessed from the PC side as //hitz/Designs/your_work_dir/tut1
- And then return to the PC side for a little while...

Starting Matlab/Simulink

- First start Matlab, then type
 "simulink" in the command window
- Type "path" in the command window and verify \\hitz\designs\BEE\mlib is included
- Check the "Xilinx Blockset" toolbox is installed in the library browsing window
- Create a new model
 - File -> New -> Model

How is this Tutorial Organized

- Section 1: Creating and Simulating a Model
- Section 2: Tag and Route the Design conforming to BEE architecture
- Section 3: Generating FPGA Bit File Using BEE_ISE Tool
- Section 4: Download and Emulate Design on BEE Hardware
- Section 5: ASIC flow basics

Current Section

- Section 1: Creating and Simulating a Model
- Section 2: Tag and Route the Design conforming to BEE architecture
- Section 3: Generating FPGA Bit File Using BEE ISE Tool
- Section 4: Download and Emulate Design on BEE Hardware
- Section 5: ASIC flow basics

Create a System Generator Model

- Drag a "System Generator" block to the design
- Double click on the block to bring up the property dialog
- Choose VirtexE family, XCV2000E-6-fg680 chip

Configure System Generator Block

- Synthesis tool should always be XST, different synthesis tool choices are offered in the BEE_ISE software during the FPGA generation step.
- Make sure that a network drive is mapped to //hitz/designs (eg: W:)
- Set "Target Directory" to W:/<work_dir>/ tut1/SYSGEN

Configure System Generator Block

- Synthesis Tool: Synplify Pro
- FPGA System Clock Period should be the target design's fastest clock rate
- Check the "Create Testbench" box to enable VHDL testbench generation
- The Clock Pin Location is D21 on the BEE units
- More information on the block can be found by clicking on the "Help" button

Add More Blocks to the Model

- Drag the "constant", "counter", "Register", "Slice" blocks to the design from the Basic Elements library
- Drag the "Inverter",
 "AddSub" block from the
 Math library
- Now save your model as W:/<work_dir >/ tut1/tut1.mdl

Modify Constant Parameters

- Change the "Constant Value" to 128
- Change the "Number of Bits" to 10
- Click on "OK" to close the dialog

Modify Counter Parameters

- Double click on the "Counter" block
- Select the Free Running counter type
- Change the "Number of Bits" to 22
- Use Arithmetic Type of "Unsigned"
- Check "Provide Reset Port", an additional port "rst" appears on the block
- Click on "OK" to close the dialog

Moving and Connecting Blocks

 Move the blocks and connect them up as shown on the right

Adding Xilinx Gateway Blocks

- Add one "Gateway In" and two "Gateway Out" blocks from the Basic Elements library
- Connect them with the rest of the blocks as shown on the right
- These gateways are used to connect to native Simulink blocks and also to identify the hardware design boundary

Modify Gateway In Parameters

- Change the "Output Data Type" to Boolean
- Make sure the "Sample Period" is 1

Adding Native Simulink Blocks

 Add one "Pulse Generator" block from Simulink/Sources library, and two "Scope" blocks from Simulink/Sinks library

- Configure the Pulse Generator parameters:
 - Pulse Type = Sample Based
 - Period = 1000
 - Pulse Width = 500
 - Phase delay = 2
- Place and connect them as shown above

Simulating the Model

- Start the simulation
 - Simulation -> start
- Double click to open the "Scope1" block, right-click on "Autoscale" (binocular icon), and verify that it looks like the figure on the right

Current Section

- Section 1: Creating and Simulating a Model
- Section 2: Tag and Route the Design conforming to BEE architecture
- Section 3: Generating FPGA Bit File Using BEE ISE Tool
- Section 4: Download and Emulate Design on BEE Hardware
- Section 5: ASIC flow basics

Creating Subsystem

- Click and drag on the model to select all Xilinx library blocks, including the System Generator block, ignoring the Pulse Generator and Scope blocks
- Right click and select "create subsystem"
- This creates a subsystem that will be later targeted to a FPGA

Configure BEE Routes Loading

- Open the Model Properties Dialog
 - File -> Model Properties
- Click on the Callbacks tab, and add "load bee_routes.mat;" to Model initialization function
- This loads the BEE routing specific variables to the model at initialization

Tag Subsystem

- Right click on the subsystem and select Block properties
- In the "Tag" field type in "fpga10" to indicate that this subsystem will be implemented on FPGA10 of the BEE board

Tag Gateways

- Similarly tag "Gateway In" as "rst", "Gateway Out" as "led", "Gateway Out1" as "conn00_bus1"
- An error dialog might show up as on shown on the right, just ignore it. This is a minor bug of Simulink R13.
- This indicates the gateways to use "rst", "led", and external conn00_bus1 I/O ports

Invoke BEE Router

In Matlab command window type
 "bee_router('tut1')" to invoke the BEE router

>> bee_router('tut1')

Warning: Xilinx System Generator version not specified, assuming V2.2

Routing tut1/Subsystem

Successfully routed link from tut1/Subsystem/Gateway Out(fpga10) to led Successfully routed link from tut1/Subsystem/Gateway Out1(fpga10) to conn00_bus1 Successfully routed link from rst to tut1/Subsystem/Gateway In(fpga10)

Routing tut1/Subsystem/ System Generator

BEE routing complete.

Current Section

- Section 1: Creating and Simulating a Model
- Section 2: Tag and Route the Design conforming to BEE architecture
- Section 3: Generating FPGA Bit File Using BEE ISE Tool
- Section 4: Download and Emulate Design on BEE Hardware
- Section 5: ASIC flow basics

Invoke System Generator

- Save the Model
- Double click on the System Generator block
- Click on the "Generate" button to invoke System Generator
- This creates the necessary VHDL files and project files
- NEW for returning users (12/2003): The bee_mc_gen command was formerly run at this point, and is no longer needed for XSG 3.1 and newer.

Open BEE ISE GUI

- In the Matlab command window type "bee_ise"
- Check the Design Name is "tut1/Subsystem"

Running BEE ISE

- Select "Complete Build" as the Design flow choice, this will synthesize, implement, and generate the FPGA bit file
- Click on the "Run ISE" button to invoke the tools

VHDL Simulation

- If VHDL simulation is desired, click on one of the three simulation flow choices, then click on Run ISE to invoke ModelSim for VHDL simulation
 - Behavioral VHDL Simulation can be run right after invoking System Generator
 - Post Translate VHDL Simulation require Synthesis and Translate steps to be run first
 - Post PAR VHDL Simulation require Synthesis and Implementation steps to be run first

Current Section

- Section 1: Creating and Simulating a Model
- Section 2: Tag and Route the Design conforming to BEE architecture
- Section 3: Generating FPGA Bit File Using BEE_ISE Tool
- Section 4: Download and Emulate Design on BEE Hardware
- Section 5: ASIC flow basics

Connect to BEE

- Log on to one of the four BEE systems using SSH
 - Bee_unit#.eecs.berkeley.edu (# can be 1,2,3,4)
- Access to BEE systems requires a BEE-specific account.
 - See the BEE system administrator to create an account.

Run BEEConfig

- Type "beeconfig" in the shell prompt
- This is a menu driven interface for configuration and runtime control of the BEE system

Show BEE System Status

- Choose option 3 from the main menu
- Programming status of each FPGA and the clock rate are displayed

```
Dee_unit2 - default - SSH Secure Shell
                                                      File Edit View Window Help
 Quick Connect Profiles
 [3] Show status
    Initialize registers
    Reset the board
    Set clock frequency
[0] Quit
FPGA 10: not programmed
FPGA 14: not programmed
FPGA 15: not programmed
FPGA 19: not programmed
FPGA 22: not programmed FPGA 27: not programmed
FPGA 30: not programmed
FPGA 34: not programmed
FPGA 35: not programmed
FPGA 39: not programmed
FPGA 50: not programmed
FPGA 54: not programmed
FPGA 55: not programmed
FPGA 59: not programmed
FPGA 62: not programmed
FPGA 67: not programmed FPGA 70: not programmed
FPGA 74: not programmed
FPGA 75: not programmed FPGA 79: not programmed
Reset button = 1
Running at: 10.000 MHz.
Clk PDTS is 1.
Clk enable is 3.
Clk enabled in all quadrants.
Please choose one of the following options:
[1] Program FPGA
 [2] Unprogram FPGA
[3] Show status
[4] Initialize registers
    Reset the board
    Set clock frequency
    Quit
Connected to bee_unit2
                                  SSH2 - aes128-cbc - hmac-md5 - none
```

Upload Bit File

- Upload the bit file of the tut1 design to the BEE system through secure FTP
- The Bit file name should be "tut1_subsystem.bit"

Program the FPGA

- Select option 1 from the main menu
- Choose the FPGA to be programmed, "10" in this case
- Enter 1 for one hour till expatriation
- After successful programming, the LED on the BEE system FPGA10 will flash

Change BEE Clock Frequency

- Select option 6 from main menu
- Enter a new clock frequency in MHz
- The LED on BEE system will be flash at different rate now

Current Section

- Section 1: Creating and Simulating a Model
- Section 2: Tag and Route the Design conforming to BEE architecture
- Section 3: Generating FPGA Bit File Using BEE_ISE Tool
- Section 4: Download and Emulate Design on BEE Hardware
- Section 5: ASIC flow basics

Running INSECTA

- Start the Exceed program on the PC side
- Return to your SSH to Unix (sun450-1)
- Confirm that you current directory is still /tools/designs/<work_dir>/tut1
- \$ insecta &
- Click "Browse..." in Insecta GUI and select
 /tools/designs/<where ever you work>/tut1/SYSGEN/tut1_subsystem.vhd
- To get early power, area and speed estimates, highlight the first six entries, from check_paths to export_paths

Running INSECTA (cont'd)

- Press "Advanced Flow".
 - This is a list of usermodifiable variables that control the design flow.
 - Most top level menus set defaults for these values
 - All settings will be saved in "insecta save.tcl" on exit.
- Set clock_speed to the desired period.
 - Yes, it should be 'clock_period'
- Set create_pads to 0 to turn off I/O pad insertion.
- Click "Run INSECTA".
- Enjoy the show or go get a cup of coffee...

Checking your design

- Click on the "Debug" button to bring up the debug window
- Use the "View" options in the Debug interface to execute a variety of CAD tools and log file viewers.
 - Synthesis log: Synopsys dc_shell output
 - Logic Schematics: design_analyzer
 - Gate level Simulation: Modelsim
- For more INSECTA usage info, click "Help"
 - Detailed usage info about INSECTA

Gate-level VHDL Simulation

- Run ModelSim gate-level VHDL simulation by click on the "Gate-level Simulation ..." button
- ModelSim windows will pop up and automatically run the same simulation as in Simulink.
- In the first couple of cycles, the VHDL simulation result will not match Simulink result; this is due to unknown initial value of components, such as registers.
- This mismatch is OK in this case, but more attention is needed if your design contains feedback loops, which require all registers to be reseted properly
- For real designs, you also need to check all the logs

Congratulations

- You have just finished the first BEE Design Flow tutorial lesson
- For more detailed instruction on how to use the tools introduced, please read the user's guide or the manual of the tools from the BEE web site