
© Copyright 2013 Xilinx
.

Stephen Neuendorffer and Fernando Martinez-Vallina

FPGA 2013 Tutorial - Feb 11, 2013

Building Zynq Accelerators with Vivado
High Level Synthesis

© Copyright 2013 Xilinx
.

Motivation for Zynq and HLS (5 min)
Zynq Overview (45 min)
HLS training (the condensed version) (1.5 hours)
Zynq Systems with HLS (45 min)

Page 2

Schedule

© Copyright 2013 Xilinx
.

Motivation

ASICs *are* being displaced by programmable platforms
– Packaging, verification costs dominate
– FPGA/ASSP process advantage over commodity ASIC process
– Full-/semi-custom design vs. standard cell ASIC

Lots of competing programmable platforms
–CPU+GPGPU
–CPU+DSP+hard accelerators (e.g. OMAP, Davinci, etc.)
–Multicore
– FPGAs

From FPGAs to “All Programmable Devices”
– ‘Small' devices are very capable with increasing integration
– 'Big‘ devices are getting REALLY big.

Page 3

© Copyright 2013 Xilinx
.

Xilinx Technology Evolution

Page 4

Programmable Logic Devices
Enables Programmable “Logic”

All Programmable Devices
Enables Programmable “Systems Integration”

© Copyright 2013 Xilinx
.

Complete ARM®-based Processing System
– Dual ARM Cortex™-A9 MPCore™, processor centric
– Integrated memory controllers & peripherals
– Fully autonomous to the Programmable Logic

Tightly Integrated Programmable Logic
– Used to extend Processing System
– High performance ARM AXI interfaces
– Scalable density and performance

Flexible Array of I/O
– Wide range of external multi-standard I/O
– High performance integrated serial transceivers
– Analog-to-Digital Converter inputs

Zynq-7000 Family Highlights

7 Series
Programmable

Logic

Common
Peripherals

Custom

Peripherals

Common Accelerators

Custom Accelerators

Common
Peripherals

Processing
System

Memory
Interfaces

ARM®

Dual Cortex-A9
MPCore™ System

Page 5

© Copyright 2013 Xilinx
.

Page 6

Zynq-7000 AP SoC Applications Mapping

10X

© Copyright 2013 Xilinx
.

Zynq-7000 Embedded Processing Platform

Processor core complex
– Two ARM® Cortex™-A9 with NEON™

extensions
– Floating Point support
– Up to 1 GHz operation
– L2 Cache – 512KB Unified
– On-Chip Memory of 256KB
– Integrated Memory Controllers
– Run full Linux

State-of-the-art programmable
logic
– 28K-235K logic cells
– High bandwidth AMBA interconnect
– ACP port - cache coherency for

additional soft processors

Page 7

How to Leverage the Compute Power of the Fabric?

1-2
Gops

10-1000+
Gops

© Copyright 2013 Xilinx
.

Systems in FPGA: 3 independent pieces

Interface IP blocks (HDMI, Memory Controller)
– Everything within 1 or 2 cycles of IO, "glue logic"
– Timing accurate
– Structural RTL + constraints, Spice, IBIS models

Core IP (microblaze, NOC)
–Cycle accurate
– Structural or synthesizable RTL

Application-specific IP
–Differentiation/added value
–High level throughput/latency constraints
– Synthesizable RTL or Algorithmic spec

Page 8

© Copyright 2013 Xilinx
.

High Level Synthesis

Generating Application-Specific IP from Algorithmic C
specification
– Focus on Macro-architecture exploration… leave microarchitecture to tool

A few key problems
– Extracting lots of paralleliism
• Statically scheduled Instruction-level parallelism (in loops)
• Dynamically controlled task-level parallelism (between loops)

– Analyzing pointer aliases
• Most arrays map into BRAM, rather than global address space

–Understanding performance
• Good timing models for FPGA synthesis
• Interval/Latency analysis

 Page 9

© Copyright 2013 Xilinx
.

All Programmable SOC Approach

SW Spec HW Spec

Requirements

Verify Iterate Verify Iterate

Page 10

© Copyright 2013 Xilinx
.

Vivado High-Level Synthesis

SW Spec HW Spec

Requirements

Verify Iterate

Accelerates Algorithmic C to Co-Processing Accelerator Integration

Verify Iterate

Page 11

© Copyright 2013 Xilinx
.

Zynq Overview

Page 12

© Copyright 2013 Xilinx
.

AMBA Open Standard
Interconnect
 High bandwidth interconnect

between Processing System and
Programmable Logic

 ACP port for enhanced hardware
acceleration and cache coherency
for additional soft processors

Page 13

Complete ARM-based Processing System

Integrated Memory Mapped Peripherals
 2x USB 2.0 (OTG) w/DMA
 2x Tri-mode Gigabit Ethernet w/DMA
 2x SD/SDIO w/DMA
 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 32b GPIO

Processor Core Complex
 Dual ARM Cortex-A9 MPCore
with NEON™ extensions

 Single / Double Precision
Floating Point support

 Up to 1 GHz operation

High BW Memory
 Internal
– L1 Cache – 32KB/32KB (per Core)
– L2 Cache – 512KB Unified

 On-Chip Memory of 256KB
 Integrated Memory Controllers

(DDR3, DDR2, LPDDR2, 2xQSPI,
NOR, NAND Flash)

Processing System Ready to Program

© Copyright 2013 Xilinx
.

On-Chip Memory (OCM)
– Dual-ported 256KB
– Low-latency CPU access
– Accessible by DMAs, Programmable

Logic, etc.

Powerful Application Processor at Heart
The Application Processor Unit (APU)

MI
O

NEON™/ FPU Engine

Cortex™-A9 MPCore™
32/32 KB I/D Caches

NEON™/ FPU Engine

Cortex™-A9 MPCore™
32/32 KB I/D Caches

512KB L2 Cache Snoop Control
Unit 256 KB OCM

Interrupt Controller, Timers, DMA, Debug, etc.

Dual ARM Cortex-A9 MPCore with NEON
extensions
– Up to 1 GHz operation (7030 & 7045)
– Multi-issue (up to 4), Out-of-order,

Speculative
– Separate 32KB Instruction and Data Caches

with Parity

Snoop Control Unit
– L1 Cache Snoop Control

• Snoop filtering monitors cache traffic
• Accelerator Coherency Port

Level 2 Cache and Controller
– Shared 512 KB Cache with parity
– Lockable

Page 14

© Copyright 2013 Xilinx
.

DDR controller
– DDR3 @ up to DDR1333
– DDR2 @ up to DDR800
– LPDDR2 @ up to DDR800
– 16 bit or 32 bit wide; ECC on 16 bit
– 73 dedicated DDR pins

Non-volatile memory (processor boot and FPGA configuration)
– NAND flash Controller (8 or 16 bit w/ ECC)
– NOR flash/SRAM Controller (8 bit)
– Quad SPI (QSPI) Controller

Processing System External Memories
Built-in Controllers and dedicated DDR Pins

Page 15

© Copyright 2013 Xilinx
.

Multi-stage boot process
– Stage 0: Runs from ROM
• loads FSBL from boot device to OCM

– Stage 1 (FSBL): Runs from OCM
• loads Uboot from boot device to DDRx memory
• Initiates PS boot and PL configuration

– Stage 2 (e.g. Uboot): runs from DDR
• loads Linux kernel, initial ramdisk, and device tree from any location
• May access FPGA

–OS boot (e.g. Linux): runs from DDR

Supports ‘secure boot’ chain of trust

Page 16

Zynq OS Boot process

© Copyright 2013 Xilinx
.

Typical boot image (contents of BOOT.BIN)

Typical SD card contents

Page 17

Typical Linux Boot from SD card

the_ROM_image:
{
 [bootloader]zynq_fsbl.elf
 system.bit
 u-boot.elf
}

zynq> ls
devicetree.dtb
BOOT.bin
ramdisk8M.image.gz
uImage

© Copyright 2013 Xilinx
.

Two USB 2.0 OTG/Device/Host
Two Tri- Mode GigE (10/100/1000)
Two SD/SDIO interfaces
Two CAN 2.0B, SPI , I2C , UART
Four GPIO 32bit Blocks
Multiplexed Input/Output (MIO)
– Multiplexed output of peripheral and static memories
– Two I/O Banks: each selectable - 1.8V, 2.5V or 3.3V

Extended MIO
– Enables use of Select IO with PS peripherals
– FPGA must be configured before using EMIO

connections
– EMIO connections use FPGA routing

Comprehensive set of Built-in Peripherals
Enabling a wide set of IO functions

2x GigE
with DMA

2x USB
with DMA

2x SD/SDIO
with DMA

I/O
MUX

2x SPI

2x I2C

2x CAN

2x UART

GPIO

Extended MIO

54

Static Memory
Controllers

Page 18

© Copyright 2013 Xilinx
.

Multiplexed I/O (MIO) Pinout

1

-
1
2

© Copyright 2013 Xilinx
.

Clock Generator Block Diagram
1

-
2
0

© Copyright 2013 Xilinx
.

Clocking the PL

1

-
2
3

Other features:
– associated reset (FCLKRSTn)
– software clock counter
– clock pause trigger (FCLKCLKTRIGxN)

© Copyright 2013 Xilinx
.

16 peripheral interrupts from PL to PS
–Used for accelerators and peripherals in PL

4 processor-specific interrupts from PL to PS
28 interrupts from PS peripherals to PL
– PS peripherals can be serviced from Microblaze in fabric

Page 22

Interrupts

© Copyright 2013 Xilinx
.

Interface Features SimilarTo
MemoryMap/Full Traditional address/data burst

(single address,multiple data)
PLBv46,PCI

Streaming Dataonly,burst LocalLink/DSP
interfaces/FIFO/FSL

Lite Traditional address/data—no burst
(single address,multiple data)

PLBv46single
OPB

1

-
5

AXI is Part of AMBA: Advanced Microcontroller
Bus Architecture

© Copyright 2013 Xilinx
.

AXI Interface: Streaming

1

-
1
8

AXI Streams are fully
handshaked
–Data is transferred when source

asserts VALID and destination
asserts READY

‘Information’ includes DATA and
other side channel signals
– STRB
– KEEP
– LAST
– ID
–DEST
–USER

Most of these are optional

Inserting Wait States

Always Ready

Same Cycle Acknowledge

© Copyright 2013 Xilinx
.

AXI Interface: AXI4

AXI4 READ
 AXI4 Write

1

-
2
4

Memory mapped interfaces
consist of 5 streams
– Read Address
– Read Data
– Write Address
– Write Data
– Write Acknowledge

Burst length limited to 256
Data width limited to 256
bits for Xilinx IP
AXI Lite is a subset
– no bursts
– 32 bit data width only

© Copyright 2013 Xilinx
.

AXI Interconnect IP in PS

Uses AXI4 Memory Mapped
Interfaces
– Automatic width conversion
– Automatic AXI3/AXI4 Lite

protocol conversion
– Automatic clock-domain

crossing

Configurable sparse
crossbar or shared bus
Optional buffering fifos
Optional timing isolation
registers

Page 26

© Copyright 2013 Xilinx
.

Centralized arbitration with parallel data
– Arbitration optimized for 3+ data beats per burst

Buffering allows address pipelining
–However, Masters and Slaves have practical limits on pipelining
–Described using Master ISSUING and Slave ACCEPTANCE parameters
– Arbitration uses these parameters to limit head-of-line blocking

Page 27

AXI Interconnect IP Details

© Copyright 2013 Xilinx
.

R
A

D
D

R

R
D

AT
A

W
A

D
D

R

W
D

AT
A

W
R

ES
P

Page 28

AXI based accelerators

HLS accelerators will combine lots of AXI interfaces

AXI4 Master

AXI4 Lite Slave

R
A

D
D

R

R
D

AT
A

W
A

D
D

R

W
D

AT
A

W
R

ES
P

AXI4 Stream AXI4 Stream

© Copyright 2013 Xilinx
.

HP
– 4 x 64 bit Slave interfaces
• Optimized for high bandwidth

access from PL to external memory

GP
– 2 x 32 bit Slave interfaces
• Optimized for access from PL to

PS peripherals

– 2 x 32 bit Master interfaces
• Optimized for access from

processors to PL registers

ACP
– 1 x 64 bit Slave interface
• Optimized for access from PL to

processor caches

Zynq AXI Interfaces

GP

ACP

HP

© Copyright 2013 Xilinx
.

GP ports are designed for maximum flexibility
Allow register access from PS to PL or PL to PS

Good for Synchronization
Prefer ACP or HP port for data transport

Page 30

GP Port Summary

© Copyright 2013 Xilinx
.

HP ports are designed for maximum bandwidth access to
external memory and OCM
When combined can saturate external memory and OCM
bandwidth
–HP Ports : 4 * 64 bits * 150 MHz * 2 = 9.6 GByte/sec
– external DDR: 1 * 32 bits * 1066 MHz * 2 = 4.3 GByte/sec
–OCM : 64 bits * 222 MHz * 2 = 3.5 GByte/sec

Optimized for large burst lengths and many outstanding
transactions
Large data buffers to amortize access latency
Efficient upsizing/downsizing for 32 bit accesses

Page 31

HP Port Summary

© Copyright 2013 Xilinx
.

ACP allows limited support for Hardware Coherency
– Allows a PL accelerator to access cache of the Cortex-A9 processors
– PL has access to through the same path as CPUs
• including caches, OCM, DDR, and peripherals

– Access is low latency (assuming data is in processor cache)
• no switches in path

ACP does not allow full coherency
– PL is not notified of changes in processor caches (different from ACE)
– Use “event bus” or register write of PL register for synchronization

ACP is compromise between bandwidth and latency
–Optimized for cache line length transfers
– Low latency for L1/L2 hits
–Minimal buffering to hide external memory latency
–One shared 64 bit interface, limit of 8 masters

ACP Port Summary

© Copyright 2013 Xilinx
.

Must access complete cache lines (32 bytes)
– LENGTH = 3 (i.e. 4 data beats)
– SIZE = 3 (i.e. transfer 8 bytes per data beat)
– STRB = 0xFF (i.e. all data will be read/written)
– Proper address alignment
• Incremental burst with 32 byte alignment
• Wrapped burst with 8 byte alignment

USER[0] = 1 and CACHE[0] = 1 to hit in cache

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407f/BABCDDIA.html

Page 33

ACP Details

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407f/BABCDDIA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407f/BABCDDIA.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0407f/BABCDDIA.html

© Copyright 2013 Xilinx
.

Programmable
Logic

Common
Peripherals

Zynq
Processing

System

Memory
Interfaces

ARM®

Dual Cortex-A9
MPCore™ System

Accelerator Architecture (With Bus Slave)

AXI4 interconnect

Pro: Simple System Architecture
Con: Limited communication bandwidth

HDMI
Output

Acc. 2
GP0 HP0

Acc. 1

© Copyright 2013 Xilinx
.

Bus Slave Accelerator Communication

Write to Accelerator
– processor writes to uncached

memory location

Read from Accelerator
– processor reads from

uncached memory location

Page 35

© Copyright 2013 Xilinx
.

Programmable
Logic

Common
Peripherals

Zynq
Processing

System

Memory
Interfaces

ARM®

Dual Cortex-A9
MPCore™ System

Architecture (With DMA)

AXI_DMA AXI_DMA

Pro: High Bandwidth Communication
Con: Complicated System Architecture, High Latency

HDMI
Output

GP0 HP0

HP1

Acc. 1 Acc. 2

AXI4 interconnect

AXI4 interconnect

© Copyright 2013 Xilinx
.

AXI DMA-based Accelerator Communication

Write to Accelerator
– processor allocates buffer
– processor allocates scatter-

gather list
– processor initializes scatter-

gather list with physically
continuous segments

– processor writes data into
buffer

– processor flushes cache for
buffer

– processor pushes scatter-
gather list to DMA register

Read from Accelerator
– processor allocates buffer
– processor allocates scatter-

gather list
– processor initializes scatter-

gather list with physically
continuous segments

– processor pushes scatter-
gather list to DMA register

– processor waits for DMA
complete

– processor invalidates cache for
buffer

– processor reads data from
buffer

Page 37

© Copyright 2013 Xilinx
.

Architecture (With Coherent DMA)

Pro: Low latency, high-bandwidth communication
Con: Complicated system architecture, Limited to data that fits in caches

Programmable
Logic

Common
Peripherals

Zynq
Processing

System

Memory
Interfaces

ARM®

Dual Cortex-A9
MPCore™ System

AXI_DMA AXI_DMA

AXI4 interconnect
HDMI
Output

GP0 HP0

ACP

Acc. 1 Acc. 2

AXI4 interconnect

© Copyright 2013 Xilinx
.

Coherent AXI DMA-based Accelerator
Communication

Write to Accelerator
– processor allocates buffer
– processor allocates scatter-

gather list
– processor initializes scatter-

gather list with physically
continuous segments

– processor writes data into
buffer

– processor flushes cache for
buffer

– processor pushes scatter-
gather list to DMA register

Read from Accelerator
– processor allocates buffer
– processor allocates scatter-

gather list
– processor initializes scatter-

gather list with physically
continuous segments

– processor pushes scatter-
gather list to DMA register

– processor waits for DMA
complete

– processor invalidates cache for
buffer

– processor reads data from
buffer

Page 39

© Copyright 2013 Xilinx
.

How Does HLS Work?

Page 40

© Copyright 2013 Xilinx
.

Overview of HLS
HLS Coding and Design Capture
Default Behaviors
Performance Optimization
Area Optimization
Interface Definition

Page 41

How Does HLS Work?

© Copyright 2013 Xilinx
.

Overview of HLS

Page 42

© Copyright 2013 Xilinx
.

Page 43

HLS Premise:
1 C Code – Multiple HW Implementations

© Copyright 2013 Xilinx
.

Functions
– Functions define hierarchy and control regions

Function Parameters:
–Define the RTL I/O Ports

Types:
–Data types define bitwidth requirements
–HLS optimizes bitwidth except for function

parameters

Loops:
–Define iterative execution regions that can share HW

resources

Arrays:
–Main way of defining memory and data storage

Operators:
– Implementations optimized for performance
– Automatically shared where possible to reduce area Page 44

Attributes of a Program for Synthesis

© Copyright 2013 Xilinx
.

Page 45

Control Defined by a Program

© Copyright 2013 Xilinx
.

Page 46

Combining Control and Operations

© Copyright 2013 Xilinx
.

Page 47

Optimizing and Sizing Program Operations

© Copyright 2013 Xilinx
.

Functions are by default converted into RTL modules
Functions define hierarchy in RTL
Functions at the same hierarchical level can be shared like any
operator to reduce resource consumption
– Performance requirements control the level possible sharing

Page 48

Program Functions and RTL Modules

© Copyright 2013 Xilinx
.

Function parameters define data I/O ports and default protocols
– Pointers → AXI4-Master interface
– Scalars → AXI4-Lite interface or raw wires
– Arrays → AXI4-Lite or AXI4 stream interface

Protocol in generated HW are controlled through user directives

Page 49

Completing a Design – I/O Port Creation

© Copyright 2013 Xilinx
.

HLS Coding and Design
Capture

Page 50

© Copyright 2013 Xilinx
.

A complete C validation and verification environment
– Vivado HLS supports complete bit-accurate validation of the C model
– Vivado HLS provides a productive C-RTL co-simulation verification solution

Vivado HLS supports C, C++, and SystemC
– Functions can be written in any version of C
–Wide support for coding constructs in all three variants of C

Modeling with bit accuracy
– Supports arbitrary precision types for all input languages
– Allows the exact bit widths to be modeled and synthesized

Floating-point support
– Support for the use of float and double in the code

Pointers and streaming-based applications

Page 51

Vivado HLS Development Environment

© Copyright 2013 Xilinx
.

Two steps to verifying the design
— Pre-synthesis: C validation

— Post-synthesis: RTL verification

C validation
— Fast and free verification on any

Operating System

— Prove algorithm correctness before
RTL generation

RTL Verification
— RTL Co-Simulation against the

original program testbench

Page 52

Vivado HLS Tiered Verification Flow

© Copyright 2013 Xilinx
.

Data Types
– Forward declared data types
–Recursive type definitions

Pointers
–General casting between user defined data types
– Pointers to dynamically allocated memory regions

System Calls
–Dynamic memory allocation – must be replaced with static allocation
– Standard I/O and file I/O – automatically ignored by the compiler
– System calls
• i.e. time(), sleep()

Recursive functions that are not compile time bounded
STL lib calls
–Not supported due to dynamic memory allocation
–Have compile time unbounded recursion

Page 53

Coding Restrictions

© Copyright 2013 Xilinx
.

C and C++ standard types are supported but limit the hardware
– 8-bit, 16-bit, 32-bit boundaries

Real hardware implementations use a wide range of bitdwidths
– Tailored to reduce hardware resources
–Minimum precision to keep algorithm correctness

HLS provides bit-accurate types in C and C++
– SystemC and HLS types supported to simulate hardware datapaths in

C/C++

Page 54

Arbitrary Precision Types

© Copyright 2013 Xilinx
.

Code using native C types

Code using HLS types
– Software model matches hardware implementation
–C++ types can be compiled with both gcc and Visual Studio

Page 55

Algorithm Modeling with Arbitrary Types

© Copyright 2013 Xilinx
.

Default Behavior

Page 56

© Copyright 2013 Xilinx
.

HLS begins by extracting a functional model of a C expression

Page 57

Datapath Synthesis

+ *
a

x

b +
c

y

int a,b,c,x;

int y = a*x + b + c

© Copyright 2013 Xilinx
.

HLS accounts for target frequency and device characteristics to
determine minimum required pipelining
Circuit will close timing but is not yet the optimal implementation

Page 58

Datapath Synthesis - Pipelining

a

y b

c

x

+ *
+

int a,b,c,x;

int y = a*x + b + c

© Copyright 2013 Xilinx
.

Automatic expression balancing for latency reduction
Automatic restructuring to optimize use of FPGA fabric
resources

Page 59

Datapath Synthesis - Optimization

b

y x

c

+ *

+

int a,b,c,x;

int y = a*x + b + c

a

© Copyright 2013 Xilinx
.

Restructuring from previous stage leads to optimized
implementations using DSP48

Page 60

Datapath Synthesis – Predictable Implementation

b

a

y x

c

+ *

+

DSP48

int a,b,c,x;

int y = a*x + b + c

© Copyright 2013 Xilinx
.

After a datapath is generated, loop control logic is added

Page 61

Datapath and Loops

x y

control logic

start done

b

c

+ *
+

int a,b,c,x,y;

for(int i = 0; i < 20; i++) {

 x = get(); y = a*x + b + c; send(y);

}

© Copyright 2013 Xilinx
.

C arrays can be implemented as BRAMs or LUT-RAMs
Default implementation depends on the depth and bitsize of the
original C array

Page 62

Defining Loop I/O with Arrays

in
BRAM out

BRAM

i i

a
x y

control logic

start done

b

c

+ *
+

int a,b,c,x,y;

for(int i = 0; i < 20; i++) {

 x = in[i]; y = a*x + b + c; out[i] = y;

}

© Copyright 2013 Xilinx
.

Function parameters become system level interfaces after HLS
synthesis

Page 63

Completing the Design – Interface Synthesis

in
BRAM out

BRAM

i i

a
x y

start done

b

c

AXI4-lite adapter logic

control logic

+ *
+

f(int in[20], int out[20]) {

 int a,b,c,x,y;

 for(int i = 0; i < 20; i++) {

 x = in[i]; y = a*x + b + c; out[i] = y;

 }

}

© Copyright 2013 Xilinx
.

Arrays and Pointers

Performance Optimization

Page 64

© Copyright 2013 Xilinx
.

Arrays are the basic construct to express memory to HLS
Default number of memory ports defined by
–Number of usages in the algorithm
– Target throughput

HLS default memory model assumes 2-port BRAMs
Arrays can be reshaped and partitioned to remove bottlenecks
–Changes to array layout do not require changes to the original code

Page 65

Arrays and Memory Bottlenecks

© Copyright 2013 Xilinx
.

Examples: C array and RTL implementation

Page 66

Array Optimization - Dimensions

© Copyright 2013 Xilinx
.

Partitioning splits arrays into independent memory banks in RTL
Arrays can be partitioned on any dimension
–Multi-dimension arrays can be partitioned multiple times
–Dimension 0 applies a partitioning command to all dimensions

Page 67

Array Optimization - Partitioning

© Copyright 2013 Xilinx
.

Reshaping combines
– Array entries into wider bitwidth containers
–Different arrays into a single physical memory

New RTL level memories are automatically generated without
changes to the C algorithm

Page 68

Array Optimization - Reshaping

© Copyright 2013 Xilinx
.

Structs can contain any mix of arrays and scalar values
Structs are automatically partitioned into individual elements
– Each struct variable becomes a separate port or data bus
– Independent control logic for each struct member

Page 69

Array Optimization – Structs

© Copyright 2013 Xilinx
.

Data packing creates a single wide bus for all struct members
Bus Structure
– First element in the struct becomes the LSB
– Last element in the struct becomes the MSB
– Arrays are partitioned completely

Page 70

Array Optimization – Structs and Data Packing

© Copyright 2013 Xilinx
.

Example array initialization

– Implies coeff is initialized at the start of each function call
– Every function call has an overhead in writing the contents of the coeff

BRAM

Using static keyword moves initialization to bitstream
– Values of coeff are part of the FPGA configuration bitstream
–No function initialization overhead

Page 71

Array Optimization - Initialization

© Copyright 2013 Xilinx
.

Standard mode
– Each access results in a bus transaction
–Read and write operations can be mapped into a single transaction

Burst mode
–Uses the C memcpy method
–Requires a local array inside the HLS block
• Stores data for the burst write transaction
• Stores data from the burs read transaction

Page 72

Pointer Optimization – Access Mode

© Copyright 2013 Xilinx
.

Page 73

Pointer Optimization – Multiple Access

© Copyright 2013 Xilinx
.

Loops

Performance Optimization

Page 74

© Copyright 2013 Xilinx
.

Only perfect and semi-perfect loops are automatically optimized
Perfect loops
–Computation expressed only in the inner most loop
–No initializations between loop statements
– Loop bounds are constant

Semi-perfect loops
–Computation expressed only in the inner most loop
–No initializations between loop statements
– Loop bounds can be variable

Other types of loops
–User needs to convert the loop into

perfect or semi-perfect loop

Page 75

Loops - Classification

© Copyright 2013 Xilinx
.

Each loop iteration runs in the same HW state
Each loop iteration runs on the same HW resources

Page 76

Loop Default Behavior

© Copyright 2013 Xilinx
.

Loops enforce a minimum execution latency
Incrementing the loop counter always consumes 1 clock cycle

Regardless of loop body, example will always take at least 4
clock cycles

Page 77

Loops and Latency

© Copyright 2013 Xilinx
.

Page 78

Loops – Unrolling to Reduce Latency

© Copyright 2013 Xilinx
.

HLS can unroll any loop by a
factor
Example shows unrolling by a
factor of 2
– If N is not known, HLS inserts an exit

check to maintain algorithm
correctness

– If N is known and fully divisible by the
unrolling factor
• Exit check is removed

Page 79

Loops – Partial Unrolling

© Copyright 2013 Xilinx
.

Perfect and semi-perfect loops are automatically flattened
– Flattening eliminates state transitions between loop hierarchy levels
– A loop state transition (counter increment) takes 1 clock cycle

Automatic flattening can be turned off

Page 80

Loops - Flattening

© Copyright 2013 Xilinx
.

Loop merging reduces control regions in the generated RTL
Does not require code changes as long as
– All loops have either constant or variable bounds but not both
– Loop body code always generates the same result regardless of how many

times it is run
• i.e A = B is always the same - A = A + 1 depends on the loop iteration count

Page 81

Loops - Merging

© Copyright 2013 Xilinx
.

Loop merging eliminates redundant computation
–Reduces latency
–Reduces resources

Code implemented in RTL by HLS after merging

Page 82

Loops – Merging Example

© Copyright 2013 Xilinx
.

Loops - Pipelining

Loop iterations run
sequentially
Throughput = 3 clock cycles
Latency
– 3 cycles per iteration
– 6 cycles for entire loop

Loop iterations run in
parallel
Throughput = 1 clock cycle
Latency
– 3 cycles per iteration
– 4 cycles for entire loop

Page 83

© Copyright 2013 Xilinx
.

The number of clock cycles between start of new loop body.

II=1: one loop body per clock cycle
– a ‘fully pipelined’ datapath for the loop body

II=2: one loop body every 2 clock cycles
– Allows for resource sharing of operators.

Page 84

Loops - Initiation Interval (II)

© Copyright 2013 Xilinx
.

II is expressed by the PIPELINE directive
–Default value for PIPELINE = 1

Can be applied to any level of a loop hierarchy
– Forces unrolling of any loop below the location of PIPELINE directive
– Increases parallelism and resources in a generated implementation
– Should be applied at a level that matches the input data rate of the design

Page 85

Loops – Hierarchy and II

© Copyright 2013 Xilinx
.

Loop feedback is expressed as a dependence between iteration j
to iteration j+1
Type of dependence can limit pipelining
If a dependence limits pipelining, HLS automatically relaxes the
constraint

User requested II = 1
HLS generates II = 2 design due to dependence

Page 86

Loops – II and Feedback

© Copyright 2013 Xilinx
.

HLS can instantiate all required resources to satisfy an II target
within the boundaries of a generated module
External ports can cause resource contention and are not
automatically replicated
– This type of contention can only be resolved by the user

Memory m is a top level port
–HLS assumes only 1 port is available to function foo
–Multiple read operations push II from 1 to 2

Page 87

Loops – II and Resource Contention

© Copyright 2013 Xilinx
.

HLS pipelines by default stall if the next input is not available
– For a loop, the next iteration doesn’t start if the input data is not ready
– Stall affects all iterations currently being processed

Default stall can be avoided with the flush option
– Flushing the pipeline allows iterations to finish execution regardless of the

state of the next iteration

Page 88

Loops – Pipeline Behavior

© Copyright 2013 Xilinx
.

Dataflow is the parallel execution of multiple loops within a
function
Loops to run in parallel communicate through arrays

Arrays are changed to FIFOs to allow concurrent execution of
Loop_1 and Loop_2

Page 89

Loops - Dataflow

© Copyright 2013 Xilinx
.

Functions

Performance Optimization

Page 90

© Copyright 2013 Xilinx
.

For designs with multiple functions

Default scheduling

Functions can also be dataflowed like in the case of loops

Page 91

Functions

© Copyright 2013 Xilinx
.

Area Optimization

Page 92

© Copyright 2013 Xilinx
.

Page 93

Functions and RTL Hierarchy

© Copyright 2013 Xilinx
.

Page 94

Function Inlining

© Copyright 2013 Xilinx
.

Page 95

Function Inlining and Allocation

© Copyright 2013 Xilinx
.

Combine multiple C arrays into 1 deeper memory
Default is to concatenate arrays one after the other
–User can introduce an offset to account for a system address map if the

combined memories are top level ports

Page 96

Array Mapping - Horizontal

© Copyright 2013 Xilinx
.

Combine multiple C arrays into 1 wider memory
Arrays use the same ordering as structs for packing
– First array represents the LSB bits of the wider memory

Page 97

Array Mapping - Vertical

© Copyright 2013 Xilinx
.

Interface Definition

Page 98

© Copyright 2013 Xilinx
.

Clock
–One clock per C/C++ design
–Multiple clocks possible for SystemC designs

Reset
– Applies to FSM and variables initialized in the C

algorithm

Clock Enable
–Optional port
–One clock enable per design
– Attached to all modules within an HLS generated

design

Page 99

Default Ports

© Copyright 2013 Xilinx
.

Function parameters
–Data ports for RTL I/O

Function return
– 1 per HLS design
– Valid at the end of the C function call

Pointers
–Can be implemented as both input and output
– Transformed into separate ports for each

direction

Page 100

Function Parameters

© Copyright 2013 Xilinx
.

RAM ports
–Default port for an array
– Assumes only 1 port connected to the HLS block
– Automatic generation of address and data ports

FIFO ports
– Example of streaming I/O
– Assumes array is accessed in sequential order

Page 101

Function Parameters - Arrays

© Copyright 2013 Xilinx
.

By default all HLS generated designs have
a master control interface
ap_start
– Starts the RTL module, same as starting a

function call in C

ap_idle
–RTL module is idle

ap_done
–RTL module completed a function call
– The data in the ap_return port is valid

ap_ready (not shown)
–Only generated for designs with top level function

pipelining
– Allows a processor to launch a new function call Page 102

Block-Level Protocol

© Copyright 2013 Xilinx
.

Port I/O protocol
– Selected by the user to integrate the HLS

generated block into a larger design
–Control the sequencing of data on a per

interface basis

Allows mapping to AXI and HLS provided
protocols
– Interface synthesis in C and C++ designs

User can define their own interface
protocol
– SystemC designs natively express all port

interfaces

Page 103

I/O Data Transfer Protocols

© Copyright 2013 Xilinx
.

Page 104

Connecting to Standard Buses

© Copyright 2013 Xilinx
.

Let’s try it out!

Page 105

16x16 Matrix Multiply

© Copyright 2013 Xilinx
.

Pick good places to pipeline.
–#pragma HLS pipeline

Partition memories if needed.
–#pragma HLS ARRAY_PARTITION variable=? complete dim=?

Watch for recurrences
–Might need to rewrite code or pick a different algorithm

Use reduced-bitwidth operations.
–ap_int<>, ap_uint<>, ap_fixed<>

Page 106

Basic AutoESL training in one slide

© Copyright 2013 Xilinx
.

Page 107

Basic Matrix Multiply

void mm(int in_a[A_ROWS][A_COLS],
 int in_b[A_COLS][B_COLS],
 int out_c[A_ROWS][B_COLS])
{
 // matrix multiplication of a A*B matrix
 a_row_loop: for (int i = 0; i < A_ROWS; i++) {
 b_col_loop: for (int j = 0; j < B_COLS; j++) {
 int sum_mult = 0;
 a_col_loop: for (int k = 0; k < A_COLS; k++) {
 sum_mult += in_a[i][k] * in_b[k][j];
 }
 out_c[i][j] = sum_mult;
 }
 }
}

DSP48s: 3
Latency: 25121 clocks

© Copyright 2013 Xilinx
.

Page 108

Pipelined Matrix Multiply

void mm_pipelined(int in_a[A_ROWS][A_COLS],
 int in_b[A_COLS][B_COLS],
 int out_c[A_ROWS][B_COLS])
{
 int sum_mult;

 // matrix multiplication of a A*B matrix
 a_row_loop: for (int i = 0; i < A_ROWS; i++) {
 b_col_loop: for (int j = 0; j < B_COLS; j++) {
 sum_mult = 0;
 a_col_loop: for (int k = 0; k < A_COLS; k++) {
 #pragma HLS pipeline
 sum_mult += in_a[i][k] * in_b[k][j];
 }
 out_c[i][j] = sum_mult;
 }
 }
}

DSP48s: 3
Latency: 6154 clocks
Loop II: 1

© Copyright 2013 Xilinx
.

void mm_parallel_dot_product(int in_a[A_ROWS][A_COLS],
 int in_b[A_COLS][B_COLS],
 int out_c[A_ROWS][B_COLS])
{
#pragma HLS ARRAY_PARTITION DIM=2 VARIABLE=in_a complete
#pragma HLS ARRAY_PARTITION DIM=1 VARIABLE=in_b complete
 int sum_mult;

 // matrix multiplication of a A*B matrix
 a_row_loop: for (int i = 0; i < A_ROWS; i++) {
 b_col_loop: for (int j = 0; j < B_COLS; j++) {
 #pragma HLS pipeline
 sum_mult = 0;
 a_col_loop: for (int k = 0; k < A_COLS; k++) {
 sum_mult += in_a[i][k] * in_b[k][j];
 }
 out_c[i][j] = sum_mult;
 }
 }
}

Page 109

Parallel Dot-Product Matrix Multiply

DSP48s: 48
Latency: 263 clocks
Loop II: 1

© Copyright 2013 Xilinx
.

void mm_pipelined_float(float in_a[A_ROWS][A_COLS],
 float in_b[A_COLS][B_COLS],
 float out_c[A_ROWS][B_COLS])
{
 float sum_mult;

 // matrix multiplication of a A*B matrix
 a_row_loop: for (int i = 0; i < A_ROWS; i++) {
 b_col_loop: for (int j = 0; j < B_COLS; j++) {
 sum_mult = 0.0;
 a_col_loop: for (int k = 0; k < A_COLS; k++) {
 #pragma HLS pipeline
 sum_mult += in_a[i][k] * in_b[k][j];
 }
 out_c[i][j] = sum_mult;
 }
 }
}

Page 110

Pipelined Floating Point Matrix Multiply

DSP48s: 1
Latency: 18453 clocks
Loop II: 4

© Copyright 2013 Xilinx
.

void mm_pipelined_float_interchanged(float in_a[A_ROWS][A_COLS],
 float in_b[A_COLS][B_COLS],
 float out_c[A_ROWS][B_COLS])
{
 float sum_mult[B_COLS];

 // matrix multiplication of a A*B matrix
 a_row_loop: for (int i = 0; i < A_ROWS; i++) {
 a_col_loop: for (int k = 0; k < A_COLS; k++) {
 b_col_loop: for (int j = 0; j < B_COLS; j++) {
 #pragma HLS pipeline
 float last = (k==0) ? 0.0 : sum_mult[j];
 float result = last + in_a[i][k] * in_b[k][j];
 sum_mult[j] = result;
 if(k == (A_COLS-1)) out_c[i][j] = result;
 }
 }
 }
}

Page 111

Pipelined Floating Point Matrix Multiply

DSP48s: 1
BRAM: 1
Latency: 4105 clocks
Loop II: 1

© Copyright 2013 Xilinx
.

#include <ap_int.h>
void mm_18_parallel_dot_product(ap_int<18> in_a[A_ROWS][A_COLS],
 ap_int<18> in_b[A_COLS][B_COLS],
 ap_int<18> out_c[A_ROWS][B_COLS])
{
#pragma HLS ARRAY_PARTITION DIM=2 VARIABLE=in_a complete
#pragma HLS ARRAY_PARTITION DIM=1 VARIABLE=in_b complete
 ap_int<18> sum_mult;

 // matrix multiplication of a A*B matrix
 a_row_loop: for (int i = 0; i < A_ROWS; i++) {
 b_col_loop: for (int j = 0; j < B_COLS; j++) {
 #pragma HLS pipeline
 sum_mult = 0;
 a_col_loop: for (int k = 0; k < A_COLS; k++) {
 sum_mult += in_a[i][k] * in_b[k][j];
 }
 out_c[i][j] = sum_mult;
 }
 }
}

Page 112

18-bit Parallel Dot-Product Matrix Multiply

DSP48s: 16
Latency: 260 clocks
Loop II: 1

© Copyright 2013 Xilinx
.

Zynq Accelerated
Applications

Page 113

© Copyright 2013 Xilinx
.

X-Ray Tomography Scanning

256 x 367

sinoSize = 256*sqrt(2)

256

25
6

sinoNum =
angles =

256

Video

http://www.youtube.com/watch?v=Ng3Rt29BE2g

© Copyright 2013 Xilinx
.

Backprojection Algorithm structure

256 x 367

256 x 184

D1.1 D1.1 D1.1 128x93

D1.1 D1.1 D1.1 128x93

D1.1 D1.1 D1.1 128x93

D1.1 D1.1 D1.1 128x93
Back propagation

(base case)
Partitioning

(recursive case 1)
Angular Downsampling

(recursive case 2)

256 x 184

256 x 184

256 x 184

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

D1.1 D1.1 D1.1 64x47

© Copyright 2013 Xilinx
.

Total dataset will not easily fit in blockram or cache
– 256x367x32bit = 275 KByte
–Recursive case 1 is 2x input size
–Recursive case 2 is same as input size

Downsampling reduces overall operations
– Each downsampling stage reduces operations by factor 2.

Partitioning and Downsampling improves memory locality
–Output data sets are smaller

Partitioning and Downsampling partitions data sets
–Output data sets can be processed in parallel

Application characteristics

© Copyright 2013 Xilinx
.

Open Source Linux-based Application
–Compiles directly on ARM/Zynq
– Single-precision floating point

Lots of things that are not synthesizable
–Memory allocation
– File I/O
–Recursion

Backprojection Application

© Copyright 2013 Xilinx
.

}

Code Structure

bp(sino,size, tau,img)
 if(size < limit) {
 direct(sino, size, tau, img); // Base case
 } else foreach quadrant {
 newSino = allocSino(newSinoSize, newNumSino);
 if(condition) { // With downsampling
 newSinoForNextIter(newSino, sino, newSinoSize);
 } else { // No downsampling
 newSinoForNextIter2(newSino, sino, newSinoSize);
 }
 subImage = getTile(img, quadrant);
 bp(newSino, newSize, tau, subImage); // Recursion
case
 freeSino(newSino);
}

© Copyright 2013 Xilinx
.

Pointers must point to statically allocated structures
Pointers to pointers must be inlined

Code Structure: HLS limitations

typedef struct{
 int size;
 myFloat **pixel; //[size][size]
} image;

typedef struct{
 int num; // number of angles
 int size; // length of each filtered sinograms
 myFloat T;
 myFloat **sino; //[size][size];
 myFloat *sine; //[size];
 myFloat *cosine; //[size];
} sinograms;

© Copyright 2013 Xilinx
.

Two functions with HLS-generated accelerators
– ap_newSinoForNextIter
• Decomposes a sinogram into smaller sinogram tiles, with angular downsampling

– ap_direct
• Computes result for a tile of the output image from a sinogram tile.

Most code runs on ARM
–Memory allocation
– File I/O
– Sinogram Decomposition without angular downsampling

Pipelined Coherent DMA
–Use good tile processing order for data locality

Page 120

Acceleration Approach

© Copyright 2013 Xilinx
.

ap_direct: 1 hour
– Introduce statically allocated buffers to resolve pointers.

ap_newSinoForNextIter: 4 hours
– Introduce statically allocated buffers to resolve pointers.
– Stripe-based processing of large data set (loop refactoring)

Code Transformations

256 x 184 128x93 64x47 128x93

8 stripes of
32 x184

4 stripes of
32 x 93

8 stripes of
16 x 93

4 stripes of
16 x 47

© Copyright 2013 Xilinx
.

Architecture (With Coherent DMA)

Programmable
Logic

Common
Peripherals

Zynq
Processing

System

Memory
Interfaces

ARM®

Dual Cortex-A9
MPCore™ System

AXI_DMA AXI_DMA

AXI4 interconnect
HDMI
Output

GP0 HP0

ACP

Acc. 1 Acc. 2

AXI4 interconnect

© Copyright 2013 Xilinx
.

Board + video

Page 123

 Left side of the screen:
SW running, ~ 1.5 fps

Right side of the screen:
SW+ HW running, ~ 10 fps

HMDI Out

© Copyright 2013 Xilinx
.

Intelligent Vision Applications for FPGAs

Machine
Vision

Office-class
MFP

Video
Conferencing

Driver
Assistance

HD
Surveillance

A&D UAV

Page 124

© Copyright 2013 Xilinx
.

Lane Detection – Algorithm Overview

Lane Detection
– Analyze a video frame to detect road lane markings

Page 125

Lane
Detection

RGB to
Gray Conversion

Image
Histogram

Equalization
Edge

Detection
Hough

Transform

Lane Detection

© Copyright 2013 Xilinx
.

Total dataset will not easily fit in blockram or cache
– 1920x1080x32 bit = ~8 MB

Predictable access patterns and algorithms with high spatial
locality
– line buffers and frame buffers

Applications are heterogeneous
– Pixel processing (good for FPGA)
– Frame-level processing (good for processor)

Application characteristics

© Copyright 2013 Xilinx
.

Pixel processing accelerators with deep dataflow pipelines
– Video Function library corresponding to OpenCV functions
– Extract features from pixels

Frame rate processing runs on ARM
–UI
– Feature matching
–Decision Making

Pipelined High performance DMA for video
Features through general purpose interfaces

Page 127

Acceleration Approach

© Copyright 2013 Xilinx
.

One image input, one image output
– Processed by chain of functions sequentially

OpenCV Code

Image Read
(OpenCV)

OpenCV function
chain

Image Write
(OpenCV)

…
IplImage* src=cvLoadImage("test_1080p.bmp");
IplImage* dst=cvCreateImage(cvGetSize(src),
 src->depth, src->nChannels);

cvSobel(src, dst, 1, 0);
cvSubS(dst, cvScalar(100,100,100), src);
cvScale(src, dst, 2, 0);
cvErode(dst, src);
cvDilate(src, dst);

cvSaveImage("result_1080p.bmp", dst);
cvReleaseImage(&src);
cvReleaseImage(&dst);
…

test_opencv.cpp

Page 128

© Copyright 2013 Xilinx
.

Page 129

Accelerated with Vivado HLS video library
Top level function extracted for HW acceleration

#include “hls_video.h” // header file of HLS video library
#include “hls_opencv.h” // header file of OpenCV I/O

// typedef video library core structures
typedef hls::AXI_Base<32> AXI_PIXEL;
typedef hls::stream<AXI_PIXEL> AXI_STREAM;
typedef hls::Scalar<3, uchar> RGB_PIXEL;
typedef hls::Mat<1080,1920,HLS_8UC3> RGB_IMAGE;

void top(AXI_STREAM& src_axi, AXI_STREAM& dst_axi,
 int rows, int cols);

top.h

Image Read (OpenCV)

OpenCV2AXIvideo

AXIvideo2Mat

HLS video library
function chain

Mat2AXIvideo

AXIvideo2OpenCV

Image Write (OpenCV)

#include “top.h”
…

IplImage* src=cvLoadImage("test_1080p.bmp");
IplImage* dst=cvCreateImage(cvGetSize(src),
 src->depth, src->nChannels);

AXI_STREAM src_axi, dst_axi;
IplImage2AXIvideo(src, src_axi);

top(src_axi, dst_axi, src->height, src->width);

AXIvideo2IplImage(dst_axi, dst);

cvSaveImage("result_1080p.bmp", dst);
cvReleaseImage(&src);
cvReleaseImage(&dst);

test.cpp

© Copyright 2013 Xilinx
.

#include “top.h”
#include “ap_interfaces.h”

void top(AXI_STREAM& src_axi, AXI_STREAM& dst_axi, int rows, int cols){
 //Create AXI streaming interfaces for the core
#pragma HLS RESOURCE core=AXIS variable=src_axi metadata="-bus_bundle INPUT_STREAM"
#pragma HLS RESOURCE core=AXIS variable=dst_axi metadata="-bus_bundle OUTPUT_STREAM"

#pragma HLS RESOURCE core=AXI_SLAVE variable=rows metadata="-bus_bundle CONTROL_BUS"
#pragma HLS RESOURCE core=AXI_SLAVE variable=cols metadata="-bus_bundle CONTROL_BUS"
#pragma HLS RESOURCE core=AXI_SLAVE variable=return metadata="-bus_bundle CONTROL_BUS"

 RGB_IMAGE img[6];
 RGB_PIXEL pix(100,100,100);
#pragma HLS dataflow
 hls::AXIvideo2Mat(src_axi, img[0]);
 hls::Sobel(img[0], img[1], 1, 0);
 hls::SubS(img[1], pix, img[2]);
 hls::Scale(img[2], img[3], 2, 0);
 hls::Erode(img[3], img[4]);
 hls::Dilate(img[4], img[5]);
 hls::Mat2AXIvideo(img[5], dst_axi);
}

test.cpp

Accelerated with Vivado HLS video library

HW Synthesizable Block for FPGA acceleration
– Consists of video library function and interfaces
– Replace OpenCV function with similar function in hls namespace

Image Read (OpenCV)

OpenCV2AXIvideo

AXIvideo2Mat

HLS video library
function chain

Mat2AXIvideo

AXIvideo2OpenCV

Image Write (OpenCV)

Page 130

© Copyright 2013 Xilinx
.

2012.4 Beta: Video Library Function List

OpenCV I/O cvMat2hlsMat
IplImage2hlsMat
CvMat2hlsMat

OpenCV I/O hlsMat2cvMat
hlsMat2IplImage
hlsMat2CvMat

interfaces hls::AXIvideo2Mat
interfaces hls::Mat2AXIvideo
openCV basic function hls::Filter2D
openCV basic function hls::Erode
openCV basic function hls::Dilate
openCV basic function hls::Min
openCV basic function hls::Max
openCV basic function hls::MinS
openCV basic function hls::MaxS
openCV basic function hls::Mul
openCV basic function hls::Zero
openCV basic function hls::Avg

openCV basic function hls::AbsDiff
openCV basic function hls::CmpS
openCV basic function hls::Cmp
openCV basic function hls::And
openCV basic function hls::Not
openCV basic function hls::AddS
openCV basic function hls::AddWeighted
openCV basic function hls::Mean
openCV basic function hls::SubRS
openCV basic function hls::SubS
openCV basic function hls::Sum
openCV basic function hls::Reduce
openCV basic function hls::Scale

For function signatures and descriptions, please refer to:
– Synthesizable functions in hls_video.h
– Interface functions in hls_opencv.h

Page 131

© Copyright 2013 Xilinx
.

Page 132

Accelerator Architecture

Acc

© Copyright 2013 Xilinx
.

Cost and power reduction by integrated solution
Performance increase by exploiting the massive compute power
of multi-core processors and programmable logic

LTE Radio Digital Front End:
Digital Pre-Distortion

Page 133

© Copyright 2013 Xilinx
.

Digital Pre-Distortion Functionality

Page 134

DPD negates PA non-linearity
– PAs consume massive static power

– DPD improves PA efficiency by ~35-40%

Increase number of coefficients (K)
– Better linearization, higher complexity

Estimate pre-distorter coefficients (A):

=
Z A

x
U(y)

(Nx1) (NxK)

(Kx1)

UHZ = UHUA
W = VA

V-1W = A

LS Estimator

SW + Accelerators

HW

Coefficients (A)

VW

Alignment

Cholesky

PA Pre-
Distorter

x z y0

y

© Copyright 2013 Xilinx
.

Application characteristics

Page 135

Complex bare metal program
– Multiple loop nests, with no

obvious bottleneck
– Fixed and floating point
– Complex numbers

Use software profiling
– Focus on VW functionality

Initial Target: K = 64
– Look for speedup with minimal

hardware usage

More Speedup -> increase K

Alignment
VW
Cholesky

97%

3% 0%

x86
2GHz

Zynq
800MHz

Original 0.66s 1.20s

Target Update Time: 300ms
(faster is better)

© Copyright 2013 Xilinx
.

Code Structure

Page 136

for (int i = 0; i < NumCoeffs; ++i)
{
#pragma HLS pipeline II=2

 W[i].real +=
 (INT64)u[i].real*tx.real
 + (INT64)u[i].imag*tx.imag;

 W[i].imag +=
 (INT64)u[i].real*tx.imag
 - (INT64)u[i].imag*tx.real;
}

create_clock –period 5
set_part xc7z020clg484-2

Multipliers: 2
Adders: 2

© Copyright 2013 Xilinx
.

Software Optimization

Page 137

Use the right algorithm!
– Gains here are often easier than throwing hardware at the problem

Use ARM NEON function intrinsics
– Low-level ARM-A9 programming

x86
2GHz

Zynq
800MHz

Original 0.66s 1.20s
Optimized 0.22s 0.54s
With NEON n/a 0.25s

Target Update Time: 300ms
(faster is better)

32 32 32 32

64 64

mul mul

Speed-up: 5x

© Copyright 2013 Xilinx
.

Using NEON Instructions

Page 138

W[i].real += (INT64)uRow[i].real*sample.real
 + (INT64)uRow[i].imag*sample.imag;

// load operands
int32x2_t tr = vdup_n_s32(sample.real);
int32x2_t ti = vdup_n_s32(sample.imag);
int32x2x2_t u = vld2_s32((int32_t *)(uRow+i));
int64x2_t w = vld1q_s64((int64_t *)(W+i));

// do parallel computation
w = vmlal_s32(w,u.val[0],tr);
w = vmlal_s32(w,u.val[1],ti);

// store result
vst1q_s64((int64_t *)(W+i),w);

© Copyright 2013 Xilinx
.

Neon intrinsics are OK, but HLS can
do better
–with minimal code modification

Pick right partitioning between
processor code and accelerator
– Focus on efficient use of generated

hardware
– Tradeoff overall time and resources
• time = sw + communication + hw
• resources = communication + hw

Efficient memory-mapped IO with fifo
–DMA resources not justified

Page 139

Acceleration Approach

Run time

SW
Comm.

HW

SW
Comm.

HW

SW
Comm.

HW

© Copyright 2013 Xilinx
.

Programmable
Logic

Common
Peripherals

Zynq
Processing

System

Memory
Interfaces

ARM®

Dual Cortex-A9
MPCore™ System

AXI FIFO Architecture

VW
Accelerator

GP0
AXI_FIFO

AXI4 interconnect

FF LUT

AXI
Infrastructure ~300 ~300

Accelerator 2552 2605

© Copyright 2013 Xilinx
.

0

250

500

750

1000

1250

Original Optimized NEON PL Accelerator

Cholesky

VW

Alignment

Digital Pre-Distortion on Zynq from C/C++

70x speed-up
for VW

Page 141

U
pd

at
e

Ti
m

e
(m

s)

3% ZC7020

Significant speed-up for existing designs
OR: use speedup to solve bigger problems in same amount of time

© Copyright 2013 Xilinx
.

Design exploration opportunities

Maximize resource sharing

Insert pipelines

Vary number of coefficients

Unroll loops to increase
performance

Page 142

#pragma HLS allocation
\
 instances=mul limit=1 \
 operation

#pragma HLS pipeline II=1

#pragma HLS unroll \
 factor=UNROLL_FACTOR

CINT64 W[MAX_COEFFS];

© Copyright 2013 Xilinx
.

Accelerator Results

212

63 41 32
108 25 19 14

0
50

100
150
200
250

NEON Unroll=1 Unroll=2 Unroll=4

Zynq

Not-Optimized
Algorithm
Optimized
algorithm

(ms)

0 19 19 31 0 16 28 52
0

20

40

60

0

2000

4000

6000

NEON Unroll=1 Unroll=2 Unroll=4

Zynq Zynq

BRAM
DSP
FF
LUT

Zynq & ARM

Zynq & ARM

VW Update Time

VW Accelerator Resources

64 Coefficients

© Copyright 2013 Xilinx
.

Conclusion

Go forth and build!

Many thanks to:
– Jan Langer
– Baris Ozgul
– Juanjo Noguera
– Kees Vissers
– Thomas Li
– Devin Wang
– Vinay Singh
– Duncan Mackay
– Dan Isaacs
– And many others

Page 144

