Vivado Design Suite
Tutorial

High-Level Synthesis

UG871 (v2012.2) August 20, 2012

& XILINX.

& XILINX
®
Notice of Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct
any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce,
modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions
of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application
requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.

[© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision
8/20/12 1.0 Initial Xilinx release of the Vivado Design Suite Tutorial: High-Level Synthesis.
High-Level Synthesis www.xilinx.com 2

UG871 (v2012.2) August 20, 2012

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
http://www.xilinx.com

& XILINX

Table of Contents

Chapter 1: Vivado HLS: Introduction Tutorial

4T o T LT 4 o T 4
Licensingand Installationttt it iiiitiententnteneannsnnanens 4
OV VW, + ot ittt ittt te e teneaasassoesnssnssnsosssssnsonsosssssasensssnssssansass 5
Starting YoUr Projectttt i ettt i ettt e ettt a et e e 6
O Y] T - 4 ' o TP 13
Synthesizing and Analyzingthe Designcciiit ittt rienerennernnesannns 20
Bit-Accurate Design oottt ittt i et ittt sttt s ettt a e e 32
Design Optimizationci ittt ittt ie it tnnerenesenassnnnsnns 40
RTL Verification and EXport.ttt ittt ittt ittt eeneneeeennenneaasaneaannnnnns 52
The Shell and SCripts oottt i i it et it teneenransnneneansansansnnnnnns 57

Chapter 2: Vivado HLS: Integrating EDK

3T 0T LT 4 o T 60
Reference DesSigN . ..o v ittt ittt e iieteenatansonsessasantonsonsassnsassannanss 61

Chapter 3: Vivado HLS: Integrating System Generator

Yo o 11 o 4T o 93
Software Applicationfor Vivado HLS ittt it ittt tneenennnnennanns 93
Create a Project in Vivado HLS for the FIR Application............. ... i, 96
Create an RTL deSigN ... oot ii ittt ittt ittt ieteneentansosensansansonsossnannsas 103
Import the Design into System Generator.ciiiiiiiiiineiinetiinerennrennnnns 108

Appendix A: Additional Resources

XiliNX RESOUICES . . ittt i ittt it teteeeeeenenaeeeeeeeesesesesssesssseseseseeneennnns 113

Koo 11 1 oY s T 00=1 1] =] S 113

=Y L= =] ol =5 113
High-Level Synthesis www.xilinx.com

UG902 (2012.2) August 20, 2012

http://www.xilinx.com

& XILINX.
Chapter 1

Vivado HLS: Introduction Tutorial

Introduction

This guide provides an introduction to the Xilinx® Vivado High-Level Synthesis (HLS) tool
for transforming a C, C++, or SystemC design specification into a Register Transfer Level
(RTL) implementation, which can be synthesized into a Xilinx FPGA.

This document is designed to be used with the FIR design example included with this
tutorial.

This tutorial explains how to perform the following tasks using the Vivado HLS tool:

« Create an Vivado HLS project

« Validate the C design

« Perform synthesis and design analysis

« Create and synthesize a bit-accurate design

» Perform design optimization

¢ Understand how to perform RTL verification and export

» Review using the Vivado HLS tool with Tcl scripts

Licensing and Installation

The first steps in using the Vivado HLS tool are to install the software, obtain a license and
configure it. See the Xilinx Design Tools: Installation and Licensing Guide (UG978).

Contact your local Xilinx representative to obtain a license for the Vivado HLS tool.

High-Level Synthesis www.xilinx.com 4
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Overview

Overview

This document uses a FIR design example to explain how the Vivado HLS tool is used to
synthesize a C design to RTL that meets specific hardware design goals.

Design Goals
The hardware design goals for this FIR design project are to:

« Create a version of the design with the smallest area

« Create a version of this design with the highest throughput

The final design should be able to process 8-bit data supplied with an input valid signal and
produce 8-bit output data accompanied by an output valid signal. The filter coefficients are
to be stored externally to the FIR design, in a single port RAM.

Tutorial Setup
Begin by copying the £ir directory to a local work area.

Note: PC users: The path name to the local work area should not contain any spaces. For example,
C:\Documents and Settings\My Name\Examples\fir is notavalid work area because of the
spaces in the path name.

Table 1-1: Lab 1 File Summary

Filename Description

fir.c C code to be synthesized into RTL.

fir test.c C test bench for the FIR design. It is used to validate that the C algorithm
is functioning correctly and is reused by the Vivado HLS tool to verify the
RTL.

fir.h Header file for the filter and test bench.

in.dat Input data file used by the test bench.

out.gold.dat Data that is expected from the FIR function after normal operation.

out.gold.8.dat

High-Level Synthesis www.xilinx.com 5
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Starting Your Project

Learning Goals
This design example describes how to:

« Use the Vivado HLS Graphical User Interface (GUI) to create an Vivado HLS design
project.

+ Validate the C code within the Vivado HLS tool.

« Analyze the results of synthesis, understand the Vivado HLS reports, and be able to use
the Design Viewer analysis capability.

« Apply optimizations to improve the design.

« Verify that the functionality of the RTL implementation matches that of the original C
design.

+ Export the design as an IP block to other Xilinx tools.

Optionally execute logic synthesis during the RTL Export process to evaluate the timing and
area results after logic synthesis.

Starting Your Project

The Vivado HLS Graphical User Interface (GUI) is used to perform all operations in this
design tutorial. The Tcl based interactive and batch modes are discussed at the end of the
tutorial.

Opening the Vivado HLS GUI
To open the GUI, double-click on the Vivado HLS GUI desktop icon.

Note: You can also open the GUI using the Windows menu by selecting Start > All Programs >
Vivado <version> > Vivado HLS GUI. The Vivado HLS group is shown in Figure 3-1.

Vivado 2012.2

gL Vivado (32-bit)

gL Vivado (64-bit)

[/"] vivado HLS Command Prompt
", | vivado HLS

gL Vivado

Figure 1-1: Launching the Vivado HLS GUI

High-Level Synthesis www.xilinx.com 6
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Starting Your Project

Vivado HLS opens. The Welcome Page shows the primary starting points for Vivado HLS.

+ |Vivado HLS oo]

File Edit Project Solution Window Help
+ | Vivado HLS Welcome Page &3 oo =8

XILINX

VIVADO™

HLS

Getting Started Documentation

yi ;-\ Create New Project ==, Tutorials
4\
= \ Mew Project Wizard will guide you through the process of Invaluable for firsttime users orto try new features.
\. % selecting design sources and a target device for a new ~
project.

User Guide

More detailed info on Vivado HLS commands, dialogs and
buttons.

Open Project

Open any previously created project.

paral
7~
i QOpen Recent Project
\ Open one ofthe most recently used projects

Release Notes Guide

Information about installation and new features in this
release.

Browse Examples

Browse example projects

Figure 1-2: Vivado HLS Welcome Page
The Getting Started options are:

« Create New Project: Launches the project setup wizard.
« Open Project: Opens a window for you to navigate to an existing project.

« Open Recent Project: Gives you a list of recent projects, from which you can select one
to open.

« Browse Examples: Open Vivado HLS examples. These can also be found in the
examples directory in the Vivado HLS installation area.

The Documentation options are:

+ Release Notes Guide: Opens the Release Notes for this version of software.
« User Guide: Opens the Vivado HLS User Guide.
* Vivado HLS Tutorial: Opens the Vivado HLS Tutorials.

High-Level Synthesis www.xilinx.com 7
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Starting Your Project

Creating a New Project

1. In the Welcome Page, select Create New Project to open the Project Wizard, shown in
Figure 3-3.

'+ | New Vivado HLS Project = B X

Project Configuration LE
Create Vivado HLS project of selected type 4

Project name: fir.prj

Location: C\Vivado_HLS\Examples\fir Browse...

Top Level
@ C/C++
(7) SystemC

| Next > | Finish | Cancel

Figure 1-3: Project Specification

Type the project name, fir.prj.
Click Browse to navigate to the location of the £ir directory.

Select the £ir directory and click OK.

v ok wN

Specify the top-level as C/C+ +.

Note: A SystemC project is only required when the top-level is a SystemC SC_MODULE.
6. Click Next.

The next window prompts you for information on the design files (see Figure 3-4).

High-Level Synthesis www.xilinx.com 8
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Starting Your Project

+ | New Vivado HLS Project

Add/Remove Files

Add/remove C-based source files (design specification)

Top Function: fir
Design Files

Mame CFLAGS
=l fir.c

< Back “ Mext = Finish

Add Files...

Edit CFLAGS...

Remove

Cancel

Figure 1-4: Project Design Files

7. Specify the top-level function (fir) to be synthesized.
8. Click Add Files.

9. Specify the C design files. In this case there is only one file, fir.c.

10. Click Next.

Figure 3-5 shows the window for specifying the test bench files. The test bench and all files
used by the test bench, except header files, must be included. You can add files one at a
time, or select multiple files to add using the ctrl and shift keys.

High-Level Synthesis

www.xilinx.com

UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Starting Your Project

+ | New Vivado HLS Project o [-&
Add/Remove Files '*‘Ey
Add/remove C-based testbench files (design test)

TestBench Files
Name CFLAGS | AddFiles.. |
=l fir_test.c |4N Fil
ew File..
|= out.gold.dat
Add Folder...

Remove

< Back ” Next > | Finish | Cancel

Figure 1-5: Test Bench Files

11. Use the Add Files button to include both test bench files: fir test.c and
out.gold.dat.

12. Click Next.

If you do not include all the files used by the test bench (for example, data files which are
read by the test bench, such as out.gold.dat), RTL simulation might fail after synthesis
due to an inability to find the data files.

The Solution Configuration window (shown in Figure 3-6) allows the technical
specifications of the solution to be defined. A project can have multiple solutions, each
using a different target technology, package, constraints, and/or synthesis directives.

High-Level Synthesis www.xilinx.com 10
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Starting Your Project

+ New Vivado HLS Project =0 o

Solution Configuration

Create AutoESL solution for selected technology

Solution Name:; solutionl

Clock

Period: 10 Uncertainty:
Part Selection

Part XcTk160tfbg4s4-2 | .|

< Back Finish | ‘ Cancel

Figure 1-6: FIR Solution

13. Accept the default solution name (solutionl), clock period (10ns) and clock
uncertainty (defaults to 12.5% of the clock period, when left blank/undefined).

14. Click the part selection button \I_J to open the part selection window and make the
following selections in the drop-down filters:

o

o

Product Category: General Purpose
Family: Kintex®-7

Sub-Family: Kintex-7

Package: fbg484

Speed Grade: -2

Temp Grade: Any

15. Select Device xc7k160tfbg484-2 from the list of available devices.

16. Click OK to see the selection made, as shown in Figure 3-6.

High-Level Synthesis www.xilinx.com 11
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Starting Your Project

The Vivado HLS GUI opens with the project information included, as shown in Figure 3-7.

+ Vivado HLS - firprj (C\Vivado_HLS\Examples\fir\fir.prj)
File Edit Project Solution Window Help

3| x| Bl 8% LR B0 b

5 Debug 6’? Analysis
9 Explorer &3 . & — O
412 firprj
[k Includes
= Source
fim Test Bench
4/{= solution1
4 % constraints
W directives.tcl
& script.cl

El Console 2 @] Errors| & Warnings
CDT Build Consale [fir.prj]

4 I L4

1 item selected

=

E

= O|/gEoutl ® . Dire] =8

An outline is not available.

LB EEX#Brr=0

r

Figure 1-7: Project GUI

Note: You can see the project name on the top line of the Project Explorer pane.

An Vivado HLS project arranges data in a hierarchical form.

» The project holds information on the design source, test bench, and solutions.

« The solution holds information on the target technology, design directives, and

constraints.

» There can be multiple solutions within a project and each solution is an implementation

of the same source code.

Note: It is always possible to access and change project or solution settings by clicking on the
corresponding button in the toolbar, as shown Figure 3-8 and Figure 3-9.

1
| gk

| Project Settings... i

AR~~~ |~

Figure 1-8: Project Settings

High-Level Synthesis

www.xilinx.com

UG902 (v2012.2) August 20, 2012

12

http://www.xilinx.com

& XILINX. C Validation

|'-".§,3. ﬁvﬁﬁ:v@vl@v

| Solution Settings... [

Figure 1-9: Solution Settings

Summary

* You can use the Project wizard to set up an Vivado HLS project.
« Each project is based on the same source code and test bench.

« A project can contain multiple solutions and each solution can use a different clock
rate, target technology, package, speed grade, and more typically, different
optimization directives.

C Validation

You must validate the C design prior to synthesis to ensure that it is performing correctly.
You can perform this validation using the Vivado HLS tool.

Test Bench

The test bench file, fir test.c, contains the top-level C function main (), which in turn
calls the function to be synthesized (£ir). A useful characteristic of this test bench is that it
is self-checking and returns a value of 0 (zero) to confirm that the results are correct. Some
other characteristics of this test bench are:

« The test bench saves the output from function £ir into output file out .dat.
« The output file is compared with the golden results, stored in file out .gold.dat.

« If the output matches the golden data, a message confirms that the results are correct
and the return value of the test bench main () function is set to 0.

« If the output is different from the golden results, a message indicates this and the
return value of main () is set to 1 (one).

The Vivado HLS tool can reuse the C test bench to perform verification of the RTL. It
confirms the successful verification of the RTL if the test bench returns a value of 0. If any
other value is returned by main (), including no return value, it indicates that the RTL
verification failed.

If the test bench has the self-checking characteristics mentioned above, the RTL results are
automatically checked against the golden data. There is no requirement to create RTL in a
test bench. This provides a robust and productive verification methodology.

High-Level Synthesis www.xilinx.com 13
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. C Validation

Types of C Compilation
The Vivado HLS tool provides two types of C compilation: Debug and Release.

+ Code compiled for Debug can be used in the Vivado HLS debug environment.

« Code compiled for Release executes faster, because it has no debug information.
However, it cannot be used in the debug environment.

This tutorial demonstrates both types of C compilation.

C Validation

You can perform C simulation to validate the C algorithm by compiling the C
function/design and executing it. This first example also opens the compiled C code in the
Vivado HLS debug environment.

Figure 3-10 shows the Build button on the toolbar and the tool pop-up shows that the
current default build type is for a debug configuration.

J—
| "5k

%vﬁv@v|5}v |

| Build 'Debug’ for project ‘fir.prj’ l

Figure 1-10: Build (Debug) Toolbar Button

1. Click the Build button, shown in Figure 3-10, to compile the design.

The output of the build process is shown in the Console Pane at the bottom of the GUI,
as shown in Figure 3-11.

El Console & . 9] Errors| & Warnings L oE) EEE #Byrivy=0
CDT Build Console [fir.prj]
. [testbench/fir _test.o ./source/fir.o -

Finished building target: a.exe

*¥%% Build Finished *¥%*

4 [m

Figure 1-11: Build: Console Output
You can now execute the build to validate the C function before synthesis.

2. Click the drop-down arrow next to the Debug button (shown in Figure 3-10) and select
Debug Configurations.

This opens the Run Configuration dialog box shown in Figure 3-12.

High-Level Synthesis www.xilinx.com 14
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. C Validation

| Debug Configurations

Create, manage, and run configurations ,

= “‘ S Name: fir.Debug
type filter text = Main . ®= Arguments 8 Environment| %+ Debugger | i Source = Common
4 [c] C/C++ Application R
[firDebug /C++ Application:
[c] firRelease Debug/a.exe Search Project... H Browse..]

Project:

fir Browse...

Build (if required) before launching

Build configuration: IDebug ']

[T] Select configuration using ‘C/C++ Application’

() Enable auto build () Disable auto build
(@) Use workspace settings Configure Workspace Settings...
Filter matched 3 of 7 items Using GDB (DSF) Create Process Launcher - Select other... Apply Revert
[Debug I [Close

Figure 1-12: Run Configuration: Debug

3. Expand C/C++ Application and select the fir.prj.Debug configuration (see
Figure 3-12).

4. Click Debug.
The build executes and you are prompted to move to the debug environment.
5. Select Yes.

The debugger opens (see Figure 3-14).

High-Level Synthesis www.xilinx.com 15
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. C Validation

, [’] Confirm Perspective Switch ﬁ

This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

Do you want to open this perspective now?

[] Remember my decision

[Yes l l No

Figure 1-13: Debug Environment

|+ |Vivado HLS - fir (C\Vivado_HLS\Examples\fir\fir) = o
File Edit Project Solution Window Help Run
| \ ER B0~ ©
ff | Synthesis &+ Analysis
%5 Debug £3 . 5 Explorer = O |x- Variables 2 % Breakpoi | i Registers| Bk Modules| — O
T | i o | éa ¥ o B @ ; e~
[€] fir.Debug [C/C++ Application] Mame Type Value
2 C:\Vivado_HLS\Examples\fir\fir\Debug\a.exe [6648] 9= SAMPLES const int 1968135108 ri\
o Thread [1] O (Suspended : Breakpoint) » fp FILE * 0x754a1162
= main() at fir_test.c6 0x4013d1 bd= ginnal data t 4201574
#i gdb < I Ty
< »
[g fir_test.c 2 = 0|8 Qutline 2 BR s o 0

const int SAMPLES=600; - = stdio.h
FILE *fp; = 4 mathh
o firh

data_t signal, output; o main:int
coef_t taps[N] = {@,-10,-9,23,56,63,56,23,-9,-10,0,}; '
4 »

B Console 5 . ¥ Tasks| [Zi Problems| @ Executables| @ Memory
fir.Debug [C/C++ Application] a.exe

BEEE #B~-ri>=0

Figure 1-14: Debugger Window
The following steps describe using the debugger.

6. Step through the code by clicking the Step Into toolbar button, as shown in Figure 3-15.

> mae 5 B G

Step Into (F5) |

Figure 1-15: Step Into Button

High-Level Synthesis www.xilinx.com 16
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. C Validation

7. Continue stepping through the code until the debugger moves into the FIR code by
clicking Step Into approximately nine times.

The code window looks like Figure 3-16.

£ fir_test.c d fire &
acc_t acc; -
int i;

1 acc=0;
Shift_Accum_Loop: for (i=N-1;i>=@;i--} {
if (i==8) {
acce=x*c[8];
shift_reg[@]=x;
} else {
shift_reg[1])=shift_reg[i-1];
acc+=shift repli]®c[il; X

Figure 1-16: Debug in the FIR Design

8. To add a breakpoint, in the left-hand margin of the fir.c tab, double-click on line 13. A
breakpoint indication mark appears to the left of the line number, as shown in

Figure 3-17.
¥ Debug = Explorer i e B2 o e b " T 1| [+ Yariables % Breakpoints £1 . M Register:
] fir.pri.Debug [C/C++ Application]
A% CAAUOESL\examplesifirfinprm Debughaexe [8328] v . firg [line: 13]

i#® Thread [1] 0 (Suspended : Step)
= fin() at fir.c13 Oed015§2
= main() at fir_test.c24 oued01451

»i gdb

& fir_test.c i firg
acc_t acc; -
int i}

By acc=8;
A Shift_Accum_Loop: for (i=N-1;i>=8;i--) {
if (i==0) {
acce=x*c[B]; 1
shift_reg[@]=x;
} else {
shift_reg[i)=shift_reg[i-1];
acc+=shift reg[il*clil; -

Figure 1-17: Adding a Breakpoint

9. To confirm the breakpoint has been added, open the Breakpoints tab, shown in
Figure 3-17.

10. Open the Variables tab, shown in Figure 3-18.

High-Level Synthesis www.xilinx.com 17
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

©Debug i el
= [i] fir puj.Detuag [C/C+ + Application] ——
= ¥ CAAuboESLexamplesiirir.pef\ Debug'aene [E128]
+ o Treead [1] D (Suspended ; Breakpoint]
= firg] at fircl3 Oed01562
e} a1 fir_teenedd Dnd01451

g mli

wl pd

=1 Explorer it (i [L = = Tt

O |l Variabiles ©

C Validation

s Breaipoints| 1! Regisiers| mk Modules

g
:

Figure 1-18:

High-Level Synthesis

www.xilinx.com

UG902 (v2012.2) August 20, 2012

Review the Operation of the C Code

18

http://www.xilinx.com

& XILINX. C Validation

11.

12.

13.
14.

15.

16.

Click the Resume button to execute the code until the next breakpoint.
The debugger stops each time it reaches line 13.

Adjust the Variables window to view the shift reg variable. This updates the shift
register.

Click the Resume button multiple times.
Click the Terminate button, shown in Figure 3-19, to end the debug session.
I B 2D LR i
| Terminate (Ctri+F2)
Figure 1-19: Terminate Button

Click Synthesis to return to the Synthesis perspective as shown in Figure 3-20.

File Edit Project Solution Window Help Run
| FRNE 2 Ra
%5 Debug |l# | Synthesis & Analysis

o3 Debug Synthesis perspective L

7 |

Figure 1-20: Synthesis Perspective

Click the Run button, shown in Figure 3-21, to run the design and verify the results.

@& LR 0~] B~ s ®

‘ Run C/C++ Project l

Figure 1-21: Run C/C++ Project Button

The results are shown in the console window (see Figure 3-22), indicating that the fir
function is producing good data and operating correctly. This example assumes that the
golden data in the out .gold.dat file has already been verified as correct.

High-Level Synthesis www.xilinx.com 19
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Synthesizing and Analyzing the Design

El Console 2 @] Errors| & Warnings R | GEEE| =B~
<terminated> fir.Debug [C/C++ Application] C\Vivado_HLS\Examples\fir\fir\Debug\a.exe

K R R R R R R R R R R R O R R R R R R R R R R R R R R

PASS: The output matches the golden output!

K R R R R R R R R R R R O R R R R R R R R R R R R R R

Figure 1-22: C Validation Results

Summary

« Validate the C code before high-level synthesis to ensure that it has the correct
operation.

« You can enhance overall productivity using a test bench, which can self-check the
results.

* You can use the C development environment in the Vivado HLS tool to validate and
debug the C design prior to synthesis.

Synthesizing and Analyzing the Design

After C validation, there are three major steps in the Vivado HLS design flow:

« Synthesis: Create an RTL implementation from the C source code.
« Co-simulation: Verify the RTL through co-simulation with the C test bench.
« Export RTL: Export the RTL as an IP block for use with other Xilinx tools.

You can execute each of these steps from the toolbar as shown in Figure 3-23. Because
Synthesis is the first step in this process, the Synthesis button is located on the left side.

gICIEI%R:: 3

Figure 1-23: Design Steps

The Simulation and Implementation buttons are located to the right of the Synthesis
button. Both simulation and implementation require that synthesis completes before they
can be performed and so are currently grayed out in Figure 3-23.

High-Level Synthesis www.xilinx.com 20
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Synthesizing and Analyzing the Design

Synthesis

Your design is now ready for synthesis. Click the Synthesis button, as shown in Figure 3-23.

When synthesis completes, the GUI updates with the results, as shown in Figure 3-24.

+ | Vivado HLS - fir (C\Vivado_HLS\Examples\fir\fir) o B =
File Edit Project Solution Window Help Run
g &, | @ @ e {ReB~0~-(p-VaA-B|@
35 Debug E\f Analysis
[Explorer &2 $* ~ O|\pfirpt 3 =03 outl %\ @Dire] -0
B f[) Synthesis Report---fir =1/ Report Version
i Binaries | General Information
[n Includes Report Version = i User Assignments
£ Source iz| Performance Estimates
i Test Bench /] Tool: Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC % Summary of timing &

% Summary of overall |

@

El Summary of loop lat
i Area Estimates

£ Summary

7 Details

1 Hierarchical Multiple

T Version: 20122
%0 Build date: Sun Jul 15 23:22:03 PM 2012

4 = solution1
constraints

&= syn .
General Information

fir
“-| Solution: solutionl
Y Date: Tue Jul 31 18:43:16 2012

= Project:

User Assignments

s Product Family: kintex7

[Part: XcTK160tfbg484-2 © Interfaces
4 Top Model name: fir > |l « 1 »
B Console = €] Errors| & Warnings 2z B9~ =08

Vivado HLS Console

-

1 [

Figure 1-24: GUI Overview

Now all the window panes in the GUI are populated with data. The panes are:

High-Level Synthesis

Project Explorer: This pane now shows a syn container inside solutionl, indicating
that the project has synthesis results. Expand the syn container to view containers
report, systemc, verilog and vhdl.

The structure in the solutionl container is reflected in the directory structure inside
the project directory. Directory fir.prj now contains directory syn, which in turn
contains directories report, systemc, verilog and vhdl.

Console: This pane shows the messages produced during synthesis. Errors and
warnings are shown in tabs in the Console pane.

Information: A report on the results automatically opens in the Information pane when
synthesis completes. The Information pane also shows the contents of any files opened
from the Project Explorer pane.

www.xilinx.com 21

UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Synthesizing and Analyzing the Design

« Auxiliary: This pane is cross-linked with the Information pane. Because the information
pane currently shows the synthesis report, the Auxiliary pane shows an outline of this

report.

TIP: Click on the items in the Report Outline in the Auxiliary pane to automatically scroll the
Information pane to that point of the report.

Table 1-2:

Synthesis Report Categories

Category

Sub-Category

Description

Report Version

Details on the version of the Vivado HLS tool used to create the
results.

General
Information

Project name, solution name, and when the solution was executed.

User
Assignments

Details on the technology, target device attributes, and the target
clock period.

Performance
Estimates

Summary of
timing analysis

The estimate of the fastest achievable clock frequency. This is an
estimate because logic synthesis and place and route are still to be
performed.

Summary of
overall latency

The latency of the design is the number of clock cycles from the start
of execution until the final output is written. If the latency of loops
can vary, the best, average, and worse case latencies is different. If
the design is pipelined, this section shows the throughput. Without
pipelining the throughput is the same as the latency; the next input
is read when the final output is written.

Summary of
loop latency

This shows the latency of individual loops in the design. The trip
count is the number of iterations of the loop. The latency in this
“loop latency” section is the latency to complete all iterations of the
loop.

www.xilinx.com 22

High-Level Synthesis
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Table 1-2:

Synthesizing and Analyzing the Design

Synthesis Report Categories (Cont’d)

Category

Sub-Category

Description

Area Estimates

Summary This shows the resources (such as LUTS, Flip-Flops, and DSP48s)
used to implement the design.
The sub-categories are explained in the Details section of this table.

Details: The resources specified here are used by the components

Component (sub-blocks) within the top-level design. Components are created by
sub-functions in the design. Unless inclined, each function becomes
it's own level of hierarchy. In this example there are no sub-blocks,
the design has one level of hierarchy.

Details: This category shows the area used by any expressions such as

Expression multipliers, adders, and comparators at the current level of
hierarchy.

Details: FIFO The resources listed here are those used in the implementation of

FIFOs at this level of the hierarchy.

Details: Memory

The resources listed here are those used in the implementation of
memories at this level of the hierarchy.

Details:
Multiplexors

All the resources used to implement multiplexors at this level of
hierarchy are shown here.

Details: This category shows the register resources used at this level of
Registers hierarchy.
Hierarchical A summary of the multiplexors throughput the hierarchy.
Multiplexor
Count
Power Summary The expected power used by the device. At this level of abstraction
Estimate the power is an estimate and should be used for comparing the
efficiently of different solutions.
Hierarchical The estimated power used by resisters throughput the design
Register Count | hierarchy.
Interface Interface This section shows the details on type of interfaces used for the
Summary function and the ports, such as port names, directions, and

bit-widths.

A section of the report is shown in Figure 3-25.

High-Level Synthesis
UG902 (v2012.2) August 20, 2012

www.xilinx.com 23

http://www.xilinx.com

& XILINX. Synthesizing and Analyzing the Design

=1l fir.rpt &3 =5
Performance Estimates i
- Summary of timing analysis
Estimated clock period (ns): 821
= Summary of overall latency (clock cycles)

o Best-case latency: 79
< Average-case latency: 79
m Worst-case latency: 79

n

- Summary of loop latency (clock cycles)

+ Shift_Accum_Loop

Area Estimates

- Summary
BRAM_18K DSP48E FF LUT SLICE
Component 5 8 a0 42 #
Expression - - 0 50 -
FIFO 3 5 B - -
Memory 1 A 1] 0 &
Multiplexer “ & “ 120 “
Register - - 7 - -
Total 1 8 167 212 0

Figure 1-25: solutionl Performance and Area Summary
This report shows the initial solution to be:

« Meeting the clock frequency of 10ns
« Taking 79 clock cycles to output data
+ Using eight DSP48 blocks

« Using one BRAM memory block.

High-Level Synthesis www.xilinx.com 24
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Synthesizing and Analyzing the Design

To view details of the interface, select Interface Summary from the Report Outline in the
Auxiliary pane, or scroll down the report in the Information pane. See Figure 3-26.

el firrpt 3 =B

Interface Summary

- Interfaces

Object Type Scope IO Protocol IO Config Dir Bits
ap_clk fir return value - ap_ctrl_hs - in 1
ap_rst - - - - - in 1
ap_start - - - - - in 1
ap_done - - - - - out 1
ap_idle - - - - - out 1
y y pointer - ap_vid - out 32
y_ap_vid - - - - - out 1
c_address0 C array - ap_memory - out 4
c_celd - - - - - out 1 =
c_ql - - - - - in 32
X X scalar - ap_none - in 32

Figure 1-26: solutionl 10 Summary
Note the following:

* A clock and reset port were added to the design.
« Block-level handshake ports were added.

- By default, block-level handshakes are enabled. These are specified by IO mode
ap_ctrl hs and ensure that the RTL design can be automatically verified by the
autosim feature.

o This IO protocol ensures that the design does not start operation until input port
ap_start is asserted (high), it indicates completion and its idle state by asserting
ap_done and ap_idle, respectively.

« Asingle-port RAM interface is used for coefficient port, c.

- If no RAM resource is specified for arrays, Vivado HLS determines the most
appropriate RAM interface (if a dual-port improves performance, it is used).

- In this example, a single port interface is required; therefore, it should be explicitly
specified.

« The data output port, vy, is by default using an output valid signal (y_ap v1d). This
satisfies the requirements on the output port.

« Data input port, x, has no associated handshake signal and requires a valid input.

High-Level Synthesis www.xilinx.com 25
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Design Analysis: The Design Viewer

When synthesis has completed, you can use the Design Viewer to examine the design

Synthesizing and Analyzing the Design

implementation in detail. You can invoke the Design Viewer can be invoked from the Vivado

HLS toolbar (or from the Solutions menu).

To open the Design Viewer, click on the Design Viewer button, shown in Figure 3-27.

le~r2 @ A-E®

| Open Design Viewer

Figure 1-27: Design Viewer Button

The Design Viewer opens, as shown in Figure 3-28.

+ | Vivado HLS - fir (C\Vivado_HLS\Examples\fir\fir)
File Edit Project Solution Window Help Run

v‘ =)
%5 Debug Gﬂ"AnaIysis
E9Ex [[E Res & “ Ol firrpt |E Schedule: fir
0 1
@ fir
b entry
581 I/0 Ports (2)
s Modules (2) T
= Memaories (5) _C b el
@ Expressions (9) [
4 Registers (10) »x bep oy
—i
1 i
¥ bp2 |
i
i
I
> bbl
i
1
i
i
i
b bb

«

El Console &3 . @] Errors| & Warnings
Vivado HLS Console

@I [HLS-10] Finished generating all RTL models.
@I [HLS-112] Total elapsed time: 12.48 seconds; memory usage: 18 MB.
@I [LIC-101] Checked in feature [VIVADO HLS]

Figure 1-28:

The Design Viewer comprises three panes:

Il

S

Design Viewer

= ER @B L8 -0~ Pr-HEA-E|® cOUAA

“Ol8=0 [Di[EC

Entry

—
1
i

—_.
Shift_Ac.

—
1
i

—
Retun

=8

Wbl =B ~rj~-=0

4 [m

« Control Flow Graph: This pane is the closest to the software view and is the best place

to begin analysis.

* Schedule Viewer: This pane shows how the operations are scheduled in internal
control steps. These are mapped to clock cycles, and this view might not correlate

exactly to clock cycles in all cases.

High-Level Synthesis

www.xilinx.com

UG902 (v2012.2) August 20, 2012

26

http://www.xilinx.com

& XILINX. Synthesizing and Analyzing the Design

* Resource Viewer: This view shows how the operations in the Schedule Viewer are
mapped to specific hardware resources.

In the Control Flow Graph pane, double-click the Shift_Accum_Loop block and navigate
down into the details of the loop, as shown in Figure 3-29.

When the shift Accum Loop is selected, the corresponding items in the Schedule
Viewer are also selected.

el fir.rpt = Schedule: fir i = B[gz Outline | Directive | @ Control Flow Graph i =8
0 1 2 3 4 5 6 7 -
b entry
T
b bb4 —
______ S
n S =" £
S bp | bb2 bb1
| I ——
i f
i ¥
b bp2 1
1 === T
T 7Tr——— | T 1
1 -"‘-n.:lt
3
bpl e bb3
----- = bb3

P bb5

Figure 1-29: Cross-Probing the CFG and Schedule Viewer

Because the Control Flow Graph is closest to the software, this view shows how the
design is operating. The flow is as follows:

a. The shift Accum Loop loop starts in basic block bb.
b. The loop proceeds to either block bb2 or block bb1.
c. Both blocks (bb2 and bb1) return control to block bb3.

d. The loop ends in block bb4, which returns to block bb.
The following shows how you can use the Design Viewer to analyze the design:

1. In the Schedule Viewer, expand the first block, bb, by clicking on the arrow in the
top-left corner (beside the name bb); see Figure 3-29.

2. Select the icmp operator and right-click to see the pop-up menu (see Figure 3-30).

High-Level Synthesis www.xilinx.com 27
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Synthesizing and Analyzing the Design

Expilover | 7 Resource | fierpt @ Schedwle: fir i Outline | £ Directive | 5 Control Flow Gr
o B] 1 [

i
sb
5 icma
Espression (0
add '] .
cmy ke 42 bt
- adl > b
tmp_fha_153 | |
phi 3w —
ud be | ! Show Verilog]
e — wf Show VHDL
h P bb2

© Conscle 9 Emors. & Wamings| (£ C Source

Files ChwtoESL sxamplest firyfir.c
15 Wf=al}|
16 wec + mxte 0]
ahilt_reg[0] s
18 jelse|
shify_regi] =sheft_reg|i-1]
2 scce =shift_reglifelil

Figure 1-30: Cross-Probing to the Source Code

3. Select Show Source from the menu to view the source of this comparison operation in
the C source code.

The source code opens, highlighting the comparison operation implemented by this
comparator. This indicates that the highlighted comparator (and block bb) implements
the if-condition at the start of the loop.

The flow is explained here in more detail, using the other blocks in the design (bb1-4)
to give a more detailed understanding of how the code in the design is implemented,
allowing the initial understanding of the code to be further developed:

a. The loop starts in block bb.

This is the if-condition at the start of the loop. Because it is a non-conditional
for-loop, the loop must be started. The exit condition is checked at the end of the
loop.

b. The loop proceeds to either block bb2 or block bb1.

Block bb2 is the else-branch inside the for-loop and performs two memory read
(load) operations, a memory write (store) operation, and a multiplication (mul).

- Aload/read operation takes two cycles: one to generate the address and the
other to read the data.

- A complete list of operators is available in the Vivado Design Suite User Guide:
High-Level Synthesis (UG902) > High-Level Synthesis Operator and Core Guide
chapter.

High-Level Synthesis www.xilinx.com 28
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Synthesizing and Analyzing the Design

Block bb1 is the if-branch inside the for-loop and performs a single memory read,
write and multiplication. Both blocks (bb2 and bb1) return control to block bb3.

This block performs the accumulation common to both branches of the if-else
statement.

c. The loop ends in block bb4, which returns to block bb.

Block bb4 is the loop-header, which checks the exit condition and increases the loop
iteration count.

The Resource Viewer shows more details on the implementation and lists the hardware
resources in the design using the following top-level categories:

Ports
Modules
Memories
Expressions

Registers

The items under each category represent specific instances of this resource type in the

des

ign; for example, a RAM, multiplier, or adder.

The items under each resource instance show the number of unique operations in the C
code implemented using this hardware resource. If multiple operations are shown on the
same resource, the resource is being shared for multiple operations.

Figure 3-31 shows a more detailed view of how the Resource Viewer shows sharing (or lack
of it, in this case).

High-Level Synthesis www.xilinx.com 29
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

5 Explorer | Resourc £3

Individual

multiplier
instances in
the design

—>+ ¢ grp_fu_178

tmp_1

& Memories (5)
@ Expressions (9)
i Registers (10)

=0 dfirrpt

-
LE |
-
———

Unique multiplication
operations implemented
on each multiplier

Figure 1-31:

& Schedule: fir 2

Synthesizing and Analyzing the Design

]

(]

AT 2 Bl 5 KR 7 ,
br
© bb2
loadi
SIOF@?
____________ load
T mul
br]
.. [bol
g |
i LY
mul
store
b

View Sharing in the Design Viewer

All the multipliers in this design are listed under mul in the Modules category. Each item in
the mul category represents a physical multiplier in the design (the name given is the
instance name of the multiplier in the RTL design).

In this example, there are two multipliers (grp_fu_*) in the design. You can do the

following actions:

« Select a multiplier in the Schedule Viewer to highlight which multiplier instance is used
to implement it. If a register is also highlighted, it indicates the output is registered.

» Expand each multiplier in the Resource Viewer to show how many unique multiplication
operations in the code (shown as blue squares) are mapped onto each hardware

resource.

« Click on the operations (blue squares) to show that the mul operation in block bb1 is
implemented on one multiplier and the mul operation in block bb2 is implemented on
a different multiplier.

In this example, both multiplier resources are being used to implement a single
multiplication (mul) operation and there is no sharing of the multipliers.

High-Level Synthesis

UG902 (v2012.2) August 20, 2012

www.xilinx.com

30

http://www.xilinx.com

& XILINX. Synthesizing and Analyzing the Design

By contrast, examining the memory operations (1oad and store) in the Schedule Viewer
shows that multiple read (Load) and write (store) operations are implemented on the
same memory resource. This also shows that array shift reg has been implemented as a
memory.

Design Analysis Summary

Selecting the operations in the Schedule Viewer and correlating them with the associated
elements in the Resource Viewer to show this design and the required optimizations/
changes can be summarized as follows:

» The implementation, like the C code, is iterating around loop shift Accum_ Loop and
using the same hardware resources for each iteration.

- The main operation is six clock cycles through blocks bb, bb1/b2, bb3, etc.
repeated 11 times.

o This keeps the resource count low, because the same resources are used in every
iteration of the loop, but it costs cycles because the iterations are executed one
after the other.

- To produce a design with less latency, this loop should be unrolled. Unrolling a loop
allows the operations in the loop to occur in parallel, if timing and sequential
dependencies (read and writes to registers and memories) allow.

« In this design, the shift reg array is being implemented in an internal RAM.

o Even if the loop is unrolled, each iteration of the loop requires a read and write
operation to this RAM.

- By default, arrays are implemented as RAMs. The shift reg array can, however,
be partitioned into individual elements. Each element is implemented by a register,
allowing a shift register to be used for the implementation.

- Once the loop is unrolled, the Vivado HLS tool can perform this step automatically
because it is a small RAM. All optimizations performed on the design are reported
in the Console. However, because this is required, it is always better to explicitly
specify it.

« The coefficient port c is using a single-port RAM interface.

- This is correct; however, because this is required, it is always better to explicitly
specify it.

« Input port x is required to have an input valid signal associated with it.
- This port requires an IO protocol, which uses an input valid signal.

« There are two multipliers being used, but in the C code they are both in mutually
exclusive branches.

o The Vivado HLS tool might not share components if the cost of the multiplexors
could mean violating timing.

High-Level Synthesis www.xilinx.com 31
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Bit-Accurate Design

o The timing is close in this example: 10ns minus 1.25ns, the default clock uncertainty.
However, the only real way to be sure if they could be shared is to view the results
after place and route.

o For this example, sharing is forced. This demonstrates a useful technique for
minimizing area.

« Most importantly, The multipliers are taking four cycles each to complete! Additionally,
only two multipliers are shown in the Resource Viewer, but the earlier report
(Figure 3-25) gave an estimate that six DSP48s are required.

The multiplication operations are using standard C integer types (32-bit) and it requires
three DSP48s to implement a 32-bit multiplication. However, this design is only required
to accept 8-bit input data.

ﬁ IMPORTANT: Ensure that the C code is using the correct bit-accurate types before
proceeding to synthesis or it can result in larger and slower hardware.

Before performing any optimizations on this design, you must modify the source code to
the required 8-bit data types.

Summary

« When synthesis completes a report on the design, it automatically opens.

¢ More detailed and in-depth analysis of the implementation can be performed using the
Design Viewer.

» In the Design Viewer, start with the Control Flow Graph and work towards the Resource
Viewer for a complete understanding of how the C was implemented. The Schedule
Viewer allows operations to be correlated with the C source and output HDL code.

Bit-Accurate Design

The first step in bit-accurate design is to introduce the bit-accurate types (also called
arbitrary precision types), into the source code.

When arbitrary precision types are added to a C function, it is important to validate the
design and ensure that it does what it is supposed to do (rounding and truncation are of
critical importance) and validates the results at the C level.

The information to make the source code bit-accurate is already included in the example
files.

High-Level Synthesis www.xilinx.com 32
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Bit-Accurate Design

Update the C Code

Creating a New Solution

To preserve the existing results so they can be compared against the new results, create a
new solution.

1. In the Vivado HLS GUI, select the New Solution button, shown in Figure 3-32.

@ %" | £ Q>0 |

Figure 1-32: New Solution Toolbar Button
The New Solution dialog box opens.

2. Leave the default solution name as solution2. Do not change any of the technology
or clock settings.

3. Click Finish.
The new solution, solution2, is created and opened.

4. Confirm that solutionz2 is highlighted in bold in the Project Explorer, indicating that it
is the current active solution.

Note: Open files use up memory. If they are required, keep them open; otherwise it is good
practice to close them.

5. Close any existing tabs from previous solutions. In the Project menu, select Close
Inactive Solution Tabs.

Bit-Accurate Types, Simulation, and Validation

The source already contains the code to use bit-accurate types. The header file fir.h
contains the following:

#ifdef BIT ACCURATE
#include "ap cint.h"
typedef int8coef t;
typedef int8data t;
typedef int8acc_t;
#else

typedef intcoef t;
typedef intdata t;
typedef intacc_t;
#endif

High-Level Synthesis www.xilinx.com 33
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Bit-Accurate Design

This code ensures that if the macro BIT_ACCURATE is defined during compile or synthesis,
the Vivado HLS header file (ap_cint.h), which defines bit-accurate C types, is included
and 8-bit integer types (int8) are used instead of the standard 32-bit integer types.

In addition, new 8-bit data types result in different output data from the £ir function. The
test bench (fir test.c) is also written to ensure that the output data can be easily
compared with a different set of golden results, which is done if the macro BIT_ACCURATE
is defined.

#ifdef BIT ACCURATE

printf ("Comparing against bit-accurate data \n");

if (system("diff -w out.dat out.gold.8.dat")) {
#else

printf ("Comparing against output data \n");

if (system("diff -w out.dat out.gold.dat")) {
#endif

ﬁ IMPORTANT: In general, changing the project setting is not a good idea as the project
settings affect every solution in the design. If solutionl is re-executed, it uses these new
project settings and gives different results. This technique is shown here for two reasons: to
show it is a possible way to compare solutions, and to highlight that the results for
solutionl changes if it is re-executed and the project settings have been changed.

To ensure that the macro BIT_ACCURATE is defined for the C simulation and synthesis, the
project setting must be updated.

1. Select the Project Settings toolbar button, shown in Figure 3-33.

it @% | LR B0~

lysis | Project Settings...]

Figure 1-33: Project Settings Button
The next few steps describe updating the settings for the C simulation.

2. Define the macro BIT_ACCURATE by doing the following:
a. In the Simulation section of the Project Settings, select fir test.c.
b. Click the Edit CFLAGS button.
c. Add -DBIT ACCURATE to define the macro.
d. Click OK.
The CFLAGS section is used to define any options required to compile the C

program. This example uses the compiler option -D; however, all gcc options are
supported in the CFLAGS section (-I<include path> etc.).

High-Level Synthesis www.xilinx.com 34
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Bit-Accurate Design

Note: There is no need to include any Vivado HLS header files, such as ap_cint.h, using
the include flag. The Vivado HLS include directory is automatically searched.

3. Update the data file used by the test bench by doing the following:

g.

r: éWarning

In the Simulation section, select the out.gold.dat file.

Click the Remove button to remove the file from the project.

If macro BIT_ACCURATE is defined, this file is no longer used by the test bench and
is not required in the project.

Click the Add Files button.
Add the out.gold.8.dat file to the project.

Select the Use AutoCC Compiler check box.

The warning dialog box opens, as shown in Figure 3-34.

[)) Debug info to original source code is not available with 'apcc’ compiler.
= Debug action will be disabled.

Do you want to make the change?

Yes ‘ | No

Figure 1-34: Warning Dialog Box

Note: Designs compiled with AutocCc simulate with bit-accurate behavior but cannot be
analyzed in the debug environment.

Click Yes to accept this warning.
The updated Simulation section is shown in Figure 3-35.

Click OK.

The types used to define bit-accurate behavior in a C function require special handling
and must be compiled using the Vivado HLS C compiler AutocCc. This is not required for
bit-accurate C++ and SystemC types, only bit-accurate C types.

High-Level Synthesis www.xilinx.com 35
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Bit-Accurate Design

+ | Project Settings (fir)

B General
¥| Simulation
B Synthesis

Simulation Settings

TestBench Files
Mame CFLAGS

€l fir_test.c -DBIT_ACCURATE
=l out.gold.8.dat

Add Files...

Add Folder...

Edit CFLAGS...

Remove
Use APCC for Compiling C Files
Active Configuration: Debug
Linker Flags
Input Arguments
[OK] l Cancel
Figure 1-35: Project Simulation Settings

4. Ensure that the new C data types are correctly compiled by doing the following:

a. In the Synthesis section of the Project Simulation Settings dialog box, select source

file fir.ec.

b. Click the EDIT CFLAGS button.

c. Add -DBIT ACCURATE into the CFLAGS dialog box.

d. Click OK.

Figure 3-36 shows the settings for the CFLAGS to synthesize the design using

bit-accurate types.

High-Level Synthesis
UG902 (v2012.2) August 20, 2012

www.xilinx.com

36

http://www.xilinx.com

& XILINX

Bit-Accurate Design

‘ iProject Settings (fir) |__S@j|
E=Genet] Synthesis Settings
¥ Simulation
B Synthesi
e Top Function: fir
Synthesis C/C++ Source Files
Mame CHAGS Add Files..
[@ fir.c
Mew File...
Edit CFLAGS... |
| Remove |
| Edit CFLAGS Dialog
CFLAGS Value
-DBIT_ACCURATE
[OK | | Cancel

Figure 1-36: CFLAGS Settings Dialog Box
The next step is to confirm that C function is validated with the new project settings.

Click the Build toolbar button to recompile the function.

Click the Run toolbar button to re-execute the C simulation.
The output displays in the console window. See Figure 3-37.

The console now shows the message “Comparing against bit-accurate data” as specified
in the test bench when the BIT_ACCURATE macro is defined.

E Console 2 @] Errors| & Warnings X% GbEE

<terminated > fir.Debug [C/C++ Application] C\Vivado_HLS\Examples\fir\fir\Debug'\a.exe
R R R R e R e R e R e R e R e R e R e R e R e R e ke e R e ke e ke ek

PASS: The output matches the golden output!
Rk R R R R R s R R R R R i R R sk e e R R i R R R e R R e g

Figure 1-37: C Simulation Output

High-Level Synthesis www.xilinx.com 37

UG902 (v20

12.2) August 20, 2012

http://www.xilinx.com

& XILINX. Bit-Accurate Design

Synthesis and Comparison
Click the Synthesis toolbar button to re-synthesize the design.

When synthesis is re-executed for solution2, the results are as shown in Figure 3-38,
where only two DSP48s are used and the estimated clock frequency is now faster.

= fir.rpt 52 =
Performance Estimates
= Summary of timing analysis
i Estimated clock period (ns): 873
= Summary of overall latency (clock cycles)

@ Best-case latency: 24
< Average-case latency: 24

= Worst-case latency: 24

m

= Summary of loop latency (clock cycles)
= Shift_Accum_Loop
Trip count: 11
s Latency: 22

Area Estimates

= Summary
BRAM DSP48E FF LuT SLICE

Component g - = . g

Expression - 2 0 26 -

FIFO 2 5 = g g

Memory 1 = 0 0 G

Multiplexer 2 5 = 38 2

Register 5 2 51 - 5

Total 1 2 51 64 0 !

Figure 1-38: Synthesis Results Re-done

The effect of changing to bit-accurate types can be seen by comparing solutionl and
solution2. To easily compare the two solutions, use the Compare Reports toolbar button
(see Figure 3-39).

BB LR~ 0|

[Compare Reports... I

Figure 1-39: Compare Reports Button

High-Level Synthesis www.xilinx.com 38
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Bit-Accurate Design

1. Add solutionl and THEN solution2 to the comparison.

2. Click OK.

Figure 3-40 shows the comparison of the reports for solutionl and solution2.

=1 fir.rpt EF fir.compare 3 =8
solution] : xc7k160tfbg484-2 -
solution? : xc7k160tfbg484-2
Performance Comparison
= Timing analysis:
solutionl solution2
Estimated clock period (ns): 821 8.43
=I Overall performance (clock cycles):
solutionl solution2

Throughput(Il) 79 24
Latency 79 24

m

Resource Usage Comparison

= Estimates:
BRAM_18K DSP48E FF LUT
solutionl solution2 solutionl solution2 solutionl solution2 solutionl solution2 ¢

Component = = 8 = a0 = 42 =
Expression = = = 2 0] 50 26
FIFO = = = = = = = =
Memoaory 1 1 = = 0 o] o
Multiplexer - - - - - - 120 38
Register = = = = 77 51 = =

Total 1 1 8 2 167 51 212 64

4 1 3

Figure 1-40: solutionl vs. solution2
Using bit-accurate data types has resulted in a faster and smaller design. Specifically:

« The number of DSP48s has been reduced to only two.

« Because a single DSP48 is being used for each multiplication instead of four, each
multiplication can be performed in one clock cycle and the latency of the design has
been reduced.

« There has also been a reduction in the number of registers and LUTs, which is to be
expected with a smaller data type.

It is worth noting the following subtlety in the reporting:

 Insolutioni, the multiplications were implemented as pipelined multipliers. These
are implemented as sub-blocks (or components) in the RTL and so the DSP were all
reported in the components section of the report.

High-Level Synthesis www.xilinx.com 39
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Design Optimization

* In solution2, the multiplications are single cycle and implemented in the RTL with a
multiplication operator (“*") and are therefore listed as expressions; operations at this
level of the hierarchy.

Summary

The act of rewriting the design to be bit-accurate was deliberately introduced into this
tutorial to show the steps for performing it. They are:

1. Update the code to use bit-accurate types.
2. Include the appropriate header file to define the types.

o For Cdesigns, ap_cint.h

Be aware bit-accurate types in C must have the AutoCC option enabled and cannot
be analyzed in the debug environment (C++ and SystemC types can).

o For C++ design, ap_int.h
o For SystemC designs, systemc.h

3. Simulate the design and validate the results before synthesis.

Design Optimization
The following optimizations, discussed earlier, can now be implemented:

* Unroll the Shift Accum_ Loop loop to reduce latency.

« Partition the array shift reg to prevent a BRAM being used, and allow a shift register
to be used.

« Specify the input array c as a single-port RAM in order to guarantee a single-port RAM
interface.

« Ensure that the input port x uses a valid handshake.

« Force sharing of the multipliers.

The first sets of optimizations to perform are those which must be performed: those
associated with the interface. No matter what other optimizations are performed, the RTL
interface must match the requirements.

Optimization: 10 Interface

The following optimizations must be performed in solution3:

High-Level Synthesis www.xilinx.com 40
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Design Optimization

Specify the input array c as a single-port RAM in order to create a single-port RAM
interface.

Ensure that the input port x uses a valid handshake.

Step 1: Creating a New Solution

To preserve the existing results, create a new solution, solution3, by doing the following.

1.
2.

Click the New Solution button to create a new solution.

Leave the default solution name as solution3. Do not change any of the technology
or clock settings.

Click Finish.
solution3 is created and automatically opens.

When solution3 opens, confirm that solution3 is highlighted in bold in the Project
Explorer pane, indicating that it is the current active solution.

Note: Open files use up memory. If they are required, keep them open; otherwise it is good
practice to close them.

Close any existing tabs from previous solutions. In the Project menu, select Close
Inactive Solution Tabs.

Step 2: Adding Optimization Directives

To add optimization directives to define the desired IO interfaces to the solution, perform

the following steps.
1. In the Project Explorer, expand the source container in solution3 (see Figure 3-41).
High-Level Synthesis www.xilinx.com 41

UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Design Optimization

+ Vivado HLS - fir (C\Vivado_HLS\Examples\finfir) oG e
File Edit Project Solution Window Help Run
ARER|HED SB|8GF|ILKF~0v (b U AvE|©
4 Debug [Syntnesis | & Analysis
[Explorer 2 § = O] fire & = O| 8 Outline | Directive 23 =0
& fir | #include "fir.h"
¥ Binaries ‘ i
&) Includes 3void fir (-Vle‘-N ¢
- data_t *, Directives
£ Source Open t (N, 9 x
ke firc Source 7t x Ale
fim Test Bench +[1 shift_reg
(3 solutionl i Shift_Accum_Loop
£3 solution2 static data_t shift_reg[N];
t- solution3 10 acc_t acc;
constraints Hodnt 3 |
”J. dirg(t\'ves.tcl 13 acc=0;
W scripticl 14 Shift_Accum_Loop: for (i=N-1;i>=0;i--) {
15 if (i==0) {
16 acc+=x*c[0];
17 shift reg[8]=x;
18 } else {
19 shift_reg[i]=shift_reg[i-1];
20 acc+=shift_reg[i]*c[i];
21 }
2)
23 *y=acc;
2} -
{ [}
B Console & . @] Errors| & Warnings x| #B~r9+°0
Vivado HLS Console
4] 3
Figure 1-41: Adding Optimization Directives

2. Double-click £ir.c to open the file in the Information pane.

3. Click the Directive Tab (see Figure 3-41).

You can now apply the optimization directives to the design.

4. In the Directive tab, select the ¢ argument/port (green dot) or the array c.

5. Right-click and select Insert Directives.

6. Implement the array by doing the following:

a. Select RESOURCE from the Directive drop-down menu.

b. Click the core box.

High-Level Synthesis

www.xilinx.com

UG902 (v2012.2) August 20, 2012

42

http://www.xilinx.com

& XILINX

C.

Select RAM_1P_BRAM, as shown in Figure 3-42.

Design Optimization

This ensures that the array is implemented using a single port BRAM.

7. To apply the directive, click OK.

+ | Vivado HLS - fir (C\Vivado_HLS\Examples\fir\fir) =N ol B
File Edit Project Solution Window Help Run
< | x| = E Cifn| @B | QB >0~ |~ |2 |®
%5 Debug ﬁfAnalysis
[Explorer 2 o = O|[I firc =2 = O/ & Outline [C% Directive &3 =08
& fir 1#include "fir.h" - @ fir
% Binaries 2 ay
! Includes 3void fir (@
= ¢ 4 data_t *y, ¢
= >ource SO oef t c[N]R 4 %
@ firc 6 data_t x 1 ¢
= Test Bench 7 A4 A1l shift reg
C Tage .
-] Vivado HLS Directive Editor + |Vivado HLS core selectio.. | = |- [[m3a| UM LooP
v Type
“ o Mul4s [functional_unit] -
Directive- | (RESOLEEHE e MUuI5S [functional_unit]
Destination Mul6S [functional_unit]
@) Source File MulnS [functional_unit]
(@ Directive File NPI54M [adapter]
i PLB46M [adapter]
SPEs—— PLB46S [adapter] .
variable (required): ¢ RAM_1P [storagel
core (optional): :] RAM_1P_BRAM [storage]
RAM_1P_LUTRAM [storage]
port map (optional): RAM_2P [storage]
metadata (optional): RAM_2P_15 [storage] i
| # B ~riv=08
Help I [Cancel] l oK OK] [Cancel I
-
4 " 3
Figure 1-42: Adding a Resource Directive

This directive informs the Vivado HLS tool that array ¢ is implemented as a single-port
RAM. Because the array is on the function interface, this is equivalent to the RAM being
“off-chip.” In this case, the Vivado HLS tool creates the appropriate interface ports to access

it.

The interface ports created (the number of address ports) are determined by pins on the
RAM_1P_BRAM core. A complete description of the cores in the Vivado HLS library is
provided in the Vivado Design Suite User Guide: High-Level Synthesis (UG902) > High-Level

Synthesis Operator and Core Guide chapter.

High-Level Synthesis
UG902 (v2012.2) August 20, 2012

Next, specify port x to have an associated valid signal/port.

1. In the Directive tab, select input port x (green dot).
2. Right-click and select Insert Directives.

3. Select Interface from the Directive drop-down menu.

www.xilinx.com

43

http://www.xilinx.com

& XILINX. Design Optimization

4. Select ap_v1d for the mode.
5. Click OK to apply the directive.

When complete, the Directive pane looks like Figure 3-43. Select any incorrect directive
and use the mouse right-click to modify it.

&= Qutline |24 Directive

@ fir
sy
@ C
% HLS RESOURCE variable=c core=RAM_1P_BRAM
@ x
% HLS INTERFACE ap_vld port=x
=1 ¢
=[1 shift_reg

"

%" Shift_Accum_Loop

Figure 1-43: Directive Tab solution3

Step 3: Synthesis

Now that the optimization directives have been applied, run synthesis on solution3. Click
the Synthesis toolbar button to synthesize the design.

When synthesis completes, the synthesis report automatically opens. Scroll down, or use
the outline pane to jump to the interface section. Figure 3-44 shows the interfaces are now

correctly defined.

High-Level Synthesis www.xilinx.com 44
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

[firc |20 fierpt 53

Interface Summary

- Interfaces

ap_clk
ap_rst
ap_start
ap_done
ap_idle
y
y_ap_vid
c_address0
c_cel
c_q0

X
¥_ap_vid

Export the report(.html) using the Export Wizard
Open the corresponding Design Viewer

Figure 1-44:

Port x is now an 8-bit data port with an associated input valid. The coefficient port c is
configured to access a single port RAM and output y has an associated output valid.

Object Type
fir return value

y pointer
C array
X scalar

solution3 Results: Correct 10 Interface

Optimization: Small Area

Scope

10 Protocol
ap_ctrl_hs

ap_vld

ap_memaory

ap_vld

IO Config

Bi

[R - - B SO SR "

Design Optimization

111

The design in solution3 represents the starting point for further optimizations. Begin by
creating a new solution, as shown in Figure 3-45.

Step 1: Creating a New Solution

1. Click the New Solution button to create a new solution.

2. Name the solution solution4 area. The solution names default to solutionl, 2, 3,

and so on, but can be named anything.

3. Select the Copy existing directives from solution check box and select solution3

from the menu.

The IO directives specified in solution3 copy into solution4 area.

4. Inthe Project menu, select Close Inactive Solution Tabs to close any existing tabs from

previous solutions.

When solution4 area opens, confirm that it is highlighted in bold in the Project

Explorer pane, indicating that it is the current active solution.

High-Level Synthesis
UG902 (v2012.2) August 20, 2012

www.xilinx.com

45

http://www.xilinx.com

& XILINX. Design Optimization

’ ESDIu‘tiDn Wizard = @

Solution Configuration

Create AutoESL solution for selected technology

Solution Name: solutiond_area

Clock
Period: 10 Uncertainty:

Part Selection

Part: xc7k160tfbgd84-2 |_]

Options
v | Copy existing directives from solution: solutiond -

Copy existing custom constraints from solution: | solution? -

Finish l ‘ Cancel

Figure 1-45: Create solution4_area

Step 2: Sharing of Multipliers

To force sharing of the multipliers, use a configuration setting as follows.

1. Open the solution settings by selecting Solution > Solution Settings.

2. Select General on the left-hand side menu.

3. Click Add to open the list of configurations.

4. Select config bind from the drop-down menu.

5. Specify mul in the min_op (minimize operator) field, as shown in Figure 1-46.

6. Click OK to set the configuration.

7. Click OK again to close the Solution Settings window.
The config bind command controls the binding phase, where operators inferred
from the code are bound to cores from the library. The min_op option tells Vivado HLS

High-Level Synthesis www.xilinx.com 46

UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Design Optimization

to minimize the number of the specified operators (mul operations, in this case) and
overrides any mux delay estimation.

;- iSDIution Settings (solutiond_area) | 22 |

i General
B Synthesis

W Cosimulatinn Cormmmande

]

Command: Remove

Configuration Settings

Add...

config_bind -

Parameters

effort ‘medium o

min_op mul|

OK J ‘ Cancel | Cancel

Figure 1-46: Adding Custom Constraints

Step 3: Synthesis
Click the Synthesis button to synthesize the design.

When synthesis completes, the synthesis report opens showing that the configuration
command was successful and only a single multiplier is now used in the design. See
Figure 3-47.

High-Level Synthesis www.xilinx.com 47
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Design Optimization

i fir.rpt =0 firrpt 53 = B8
Performance Estimates
- Summary of timing analysis
#3 Estimated clock period (ns): 843
= Summary of overall latency (clock cycles)
@ Best-case latency: 24

< Average-case latency: 24
m Worst-case latency: 24

m

- Summary of loop latency (clock cycles)
=1 Shift_Accum_Loop
Trip count: 11
v Latency: 22

Area Estimates

= Summary
BRAM_18K DSP48E FF LUT SLICE

Component - - - - -

Expression - 1 (4] 26 -

FIFO - - - - -

Memory 1 - (4] (o] -

Multiplexer - - - 46 -

Reagister - - 60 - -

Total 1 1 60 72 o -

Figure 1-47: Solution4 Results

This design uses the same hardware resources to implement every iteration of the loop. This
is the smallest number of resources that this FIR filter can be implemented with: a single
DSP, a single BRAM, some flip-flops and LUTs.

Optimization: Highest Throughput

To add the optimizations to create a design with the highest throughput, unroll the loop
and partition the memory. The solution solution3, with the correct IO interface, is used as
the starting point.

Step 1: Creating a New Solution

Begin by creating a new solution.

1. Click the New Solution button to create a new solution.
2. Name the solution solution5 throughput.
3. Select the Copy existing directives from solution check box.
4. Select solution3 from the drop-down menu.
The IO directives specified in solution3 copy into solution5 throughput.
High-Level Synthesis www.xilinx.com 48

UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Design Optimization

5. Inthe Project menu, select Close Inactive Solution Tabs to close any existing tabs from
previous solutions.

Step 2: Unrolling the Loop

The following steps, summarized in Figure 3-48, explain how to unroll the loop.

[firc 2 = O || gz Outline [Directive 2 =8
":#include “fir.h" - ® fir
?
Jvoid fir (5 Y
data_t *y, ¢ }
coef_t c[N] % HLS RESOURCE variable=c core
data_t x 4 X
% HLS INTERFACE ap_vid port=x
«[1 ¢
Vivado HLS Directive Editor 1 shift_reg
g % Shift_Accum_Loop
ype
Directive: |UNROLL A
Destination
(7 Source File

(@) Directive File

Options
skip exit check: 0

factor (optional):

region:]

l Help l l Cancel l [OK l

p - Kl 1l ' »

Figure 1-48: Unrolling FOR Loop

1. In the Directive tab, select loop shift Accum Loop.
Note: Open the source code to see the Directive tab.

2. Right-click and select Insert Directives.

3. From the Directive drop-down menu, select Unroll.

4. Select OK to apply the directive.

Leave the other options in the Directives window unchecked and blank to ensure that
the loop is fully unrolled.

Apply the directive to partition the array into individual elements, which are then
arranged as a shift-register.

High-Level Synthesis www.xilinx.com 49
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Design Optimization

In the Directive tab, select array shift reg.
Right-click and select Insert Directives.
Select partition from the Directive drop-down menu.

Specify the type as complete.

W o N o w

Select OK to apply the directive.

With the two directives imported from solution3 and the two new directives just
added, the directive pane for solution5 throughput is now as shown in
Figure 3-49.

o= Outline [Directive &3 - g

@ fir

4y

@ c

% HLS RESOURCE variable=c core=RAM_1P_BRAM

@ x

% HLS INTERFACE ap_vld port=x

=1 ¢

=[1 shift_reg

% HLS ARRAY_PARTITION variable=shift_reg complete dim=1
4 %' Shift_Accum_Loop

% HLS UNMROLL

Figure 1-49: solution5_throughout Directives

Step 3: Synthesis
1. Click the Synthesis button to synthesize the design.
When synthesis completes, the synthesis report automatically opens.

2. To compare solution4 area with solution5 throughput, click the Compare
Reports button.
3. Add solution4 area and solution5 throughput to the comparison.

4. Click OK.

Figure 3-50 shows the comparison of the reports from solution4 area and
solutions (the LUTS are not shown in Figure 3-50 due to the wide nature of the
report).

High-Level Synthesis www.xilinx.com 50
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Design Optimization

i firc [Zlfirept &7 fircompare 2 =
-
Performance Comparison

= Timing analysis:

solutiond_area solution5_throughput
Estimated clock period (ns): 843 6.70
=1 Overall performance (clock cycles):

solutiond_area solution5_throughput
Throughput(Il) 24 14
Latency 24 14

1

Resource Usage Comparison

= Estimates:
BRAM_18K DSP4SE FF

solutiond_area solution5_throughput solutiond_area solution5_throughput solution4_area solution5_throughput
Component
Expression = = 1 11 0 0
FIFO
Memory 1 = = = 0
Multiplexer
Register - - - - 60 221
Total 1 0 1 11 60 20 e

Figure 1-50: solution4_area vs. solution5_throughput

Both designs operate within the 10ns clock period. The small design is using a BRAM but
only one DSP48 and about 60 registers. The small design takes 24 clock cycles to complete.

The high throughput design processes the samples at the highest possible rate. It requires
one clock cycle to read each of the 11 coefficients from the RAM plus one cycle overhead to
generate the first address. However, it is using 11 DSP48s and more than twice the number
of flip-flops as the small design.

Scroll down the report window to view the estimates for power consumption. At this level
of abstraction, the power consumption data should only be used to compare different
solutions. In this case, it is clear that solution4 area uses much less power than
solution5 throughput and that the increase is caused by both additional registers and
expressions (logic).

Summary

* You can add optimization directives to the design using the Directive tab. The source
code must be open in the Information Pane in order to view the Directive tab.

High-Level Synthesis www.xilinx.com 51
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. RTL Verification and Export

« Creating different solutions for each new set of directives allows for the solutions to be
easily compared inside the GUL

RTL Verification and Export

The Vivado HLS tool allows both RTL verification and RTL export to be performed from the
GUL The RTL verification and RTL export menus in the GUI are also supported at the Tcl
command level (discussed later).

Details on the various options are not discussed in this tutorial but can be found by
reviewing the associated Tcl command, available from the GUI help menu. The Tcl
commands for RTL verification and RTL export are cosim_design and export design,
respectively.

RTL Verification

The generated RTL can now be verified with the original C test bench. A new RTL test bench
is NOT required with the Vivado HLS tool.

For RTL simulation, the Vivado HLS tool supports industry standard VHDL and Verilog RTL
simulators and includes a SystemC simulation kernel allowing the SystemC RTL output to be
verified.

The RTL can always be verified using the SystemC kernel and no 3rd party RTL simulator
license is required for this.

To use the other supported simulators, a license for the simulator is required, and the
simulator executable should be available in the search path.

In this example, the SystemC RTL will be verified. Start with the solution5 throughput
solution. Make sure solution5 throughput is highlighted in bold in the Project
Explorer, indicating it is the currently active solution.

1. Click the Simulation button in the toolbar, as shown in Figure 3-51.

e~ A~&E®

| Cosimulation I

Figure 1-51: Simulation Toolbar Button

The co-simulation dialog opens, as shown in Figure 3-52.

High-Level Synthesis www.xilinx.com 52
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

; éCo—simuIation Dialog

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

ModelSim -

RTL Selection
v | System(C Verilog VHDL

Options
Setup Only
Dump Trace

Optimizing Compile

Active Configuration: Debug
Input Arguments

Do not show this dialog box again.

OK] | Cancel

Figure 1-52: RTL Verification Menu

RTL Verification and Export

2. For VHDL and Verilog, leave the drop-down menus set to Skip, and select SystemC from
the corresponding SystemC drop-down menu.

3. Click OK.

Simulation starts.

When the simulation ends it automatically opens the simulation report in the Information
pane (see Figure 3-53). For every simulation ran, there is an indication of “pass/fail” and the
measured minimum/maximum latency.

The results of the simulation can be seen in the Console pane. The simulation ends with the
same confirmation message as the original C simulation (since it's the same test bench),
confirming the RTL results. The message confirms the bit-accurate behavior of the test

bench.

High-Level Synthesis

www.xilinx.com

UG902 (v2012.2) August 20, 2012

53

http://www.xilinx.com

& XILINX. RTL Verification and Export

[Ffirc [E)fierpt [D firrpt 2 = B/ g Outline | Directive &3 =8

- - An outline is not available
Cosimulation Report

Result
Status Latency I
VHDL NA NA NA
Verilog MNA MNA MNA

SystemC Pass 14/14 14714

H oA_

Bl Console 2 “_@] Errors| & Warnings ® @A
Vivado HLS Console

S R R S R S R Ok -

PASS: The output matches the golden output!
R R
@I [SIM-1ee8] *** C/RTL co-simulation finished: PASS *#**
@I [LIC-181] Checked in feature [VIVADO HLS]

= E - = =0

4 [m

Figure 1-53: Simulation Report

RTL Export

The final step in the Vivado HLS flow is to export the RTL design as an IP block for use with
other Xilinx tools.

Optionally, RTL logic synthesis can be performed: these logic synthesis results are only to
evaluate the RTL and confirm the actual timing and area after logic synthesis is similar to
the estimated timing and area predicted by Vivado HLS. These RTL results are not part of
the exported IP: the IP includes only the RTL which will be synthesized with the remainder
of the design.

To use RTL logic synthesis tools, the executable should be available in the search path. For
7-Series devices the path to executable vivado must be in the search path. For other
devices, the ISE executable xtclsh must be in the search path.

1. Click the Export RTL button in the toolbar, as shown in Figure 3-54.

High-Level Synthesis www.xilinx.com 54
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. RTL Verification and Export

U@ ayreE @

Export RTL i

Figure 1-54: Export RTL Toolbar Button

The Export RTL dialog opens, as shown in Figure 3-55.

+ |Export RTL Dialog [l

Export RTL

Format Selection

IP-XACT ~ | | 1gentification

Options

| Evaluate |Verilog "

Do not show this dialog box again.

OK] | Cancel

Figure 1-55: Export RTL Menu

2. In this example, the design will be exported to IP-XACT format. Refer to the Vivado
Design Suite User Guide: High-Level Synthesis (UG902) for an explanation of all export
formats and how to import them into the appropriate Xilinx design tool.

3. In this example RTL synthesis will be performed: select the evaluate option. For VHDL or
Verilog, select from the drop-down menu. In this example, Verilog is used, as shown in
Figure 3-55.

4. Click OK.
Implementation starts.
The output files are written to fir.prj/solution5_throughput/impl.

« The IP-XACT IP is available in directory ip.

« The result of Verilog synthesis are in directory verilog.

High-Level Synthesis www.xilinx.com 55
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. RTL Verification and Export

When RTL synthesis completes, the RTL synthesis report automatically opens (see
Figure 3-56).

Final Timing
VHDL Verilog
CP reguired - 10.000
CP achieved - 3725
Verilog: Tin

Figure 1-56: solution5_throughput Report

The report shows that the design is meeting timing. In some cases, logic synthesis might
implement some logic operations, increasing the number of DSP48s and reducing the
number of LUTs. Logic synthesis can also be able to decompose and reduce the number of
multiplications, thereby reducing the number of DSP48s.

The Vivado HLS tool produces an RTL estimate of the resource. This evaluation step ensures
the effects of logic synthesis can be checked while still inside the Vivado HLS tool.

Additionally, the results can be seen in the Console, as shown in Figure 3-57.

H 4=

El Console i3 . 9] Errors| & Warnings @
Vivado HLS Console

#=== Final timing ===

CP required: 10.000

CP achieved: 3.725

Timing met|

INFO: [Common 17-2086] Exiting Vivado...

@I [LIC-101] Checked in feature [VIVADO_HLS]

=!5‘Evl=jv=ﬁ

1 [m

Figure 1-57: Implementation Summary
5. Exit the Vivado HLS tool using the menu. Select File > Exit.
When the project is reopened, all the results will still be present.

The other solutions can be verified and implemented in an identical manner. First select the
solution in the Project Explorer and make it the active solution.

High-Level Synthesis www.xilinx.com 56
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. The Shell and Scripts

Summary

« The path to verification and implementation tool executables must be in the search
path prior to execution from within the Vivado HLS tool. See the Xilinx Design Tools:
Installation and Licensing Guide (UG978) for details.

o This is not required for RTL SystemC verification.
« RTL verification does not require an RTL test bench be created.
« The RTL can be verified from within the Vivado HLS tool using the existing C test bench.

« The design can be can be exported as IP and the implementation evaluated using logic
synthesis tools from within the Vivado HLS tool.

The Shell and Scripts

Everything which can be performed using the Vivado HLS GUI can also be implemented
using Tcl scripts at the command prompt. This section gives an overview of using the Vivado
HLS tool at the command prompt and how the GUI generated scripts can be copied and
used.

Vivado HLS at the Shell
You can be invoked at the Linux or DOS shell prompt.

1. Invoke a DOS shell from the menu by selecting Start > All Programs > Xilinx Design
Tool > Vivado 2012.2 > Vivado HLS Command Prompt.

This ensures that the search paths for the Vivado HLS tool are already defined in the
shell.

2. Type s vivado_hls to invoke the GUL

It can also be invoked in interactive mode, and the exit command can be used to
return to the shell.

$ vivado_hls -i
Vivado Hls> exit

$

The Vivado HLS tool can be run in batch mode using a Tcl script. When the script completes
the Vivado HLS tool will remain in interactive mode and if the script has an exit command,
it will exit and return to the shell.

$ vivado hls -f fir.tcl

High-Level Synthesis www.xilinx.com 57
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. The Shell and Scripts

Additionally, once a project has been created it can be opened directly from the command
line. In this example, project fir.prj is opened in the GUL

$ vivado hls -p fir.prj

This final option allows scripts to be run in batch mode and then the analysis to be
performed using the GUL

Creating a Script

When a project is created in the GUI, all the commands to re-create the project are provided
in the scripts.tcl file in the solution directory.

To use the script.tcl file, copy it to a new location outside the project directory.
Example script.tcl file:

HHAHHHAFHH S H A R R R R
This file is generated automatically by vivado hls.

Please DO NOT edit it.

Copyright (C) 2012 Xilinx Inc. All rights reserved.
HHAHHHAFHHAFH A HH A HH A RS R R S A A R
open_project fir.prj

set_top fir

add_file fir.c -cflags "-DBIT ACCURATE"

add _file -tb out.gold.8.dat

add _file -tb fir test.c -cflags " -DBIT ACCURATE"
open_solution "solution5 throughput"

set part {xc6vlx240tffl1156-2}

create clock -period 10

source "./fir.prj/solution5 throughput/directives.tcl"
elaborate
autosyn

If any directives where used in the solution, copy the directives.tcl file to a location
outside the project directory and update the script.tcl file as shown, to use the local
copy of directives.tcl.

HHAHHH S H I H A R R R R
This file is generated automatically by vivado hls.

Please DO NOT edit it.

Copyright (C) 2012 Xilinx Inc. All rights reserved.
HHAFHHAFHH S H A R R R R
open_project fir.prj

set _top fir

add_file fir.c -cflags "-DBIT ACCURATE"

add _file -tb out.gold.8.dat

add file -tb fir test.c -cflags " -DBIT ACCURATE"
open_solution "solution5 throughput"

set part {xc6vlx240tffl1156-2}

create clock -period 10

source "./directives.tcl"
elaborate

High-Level Synthesis www.xilinx.com 58
UG902 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

autosyn

Example Scripts Directory

The Shell and Scripts

The FIR directory contains a scripts directory that has five scripts, used to create each of the

five solutions in this tutorial.

Table 1-3: Summary of Scripts

Filename Solution Description
runl hls.tcl solutionl Creates the first solution, using standard
implementation types.
run2 hls.tcl solution2 Sets the macro to use Vivado HLS bit-accurate
types.
run3 hls.tcl solution3 The IO interfaces are defined.

run4 hls.tcl solution4 area

Uses the directives from solution3 plus the
config bind command to force sharing of the
multipliers.

run5_hls.tcl

solution5_ throughput

Optimizations are applied to create a
high-throughput version.

You can run these scripts to reproduce all the solutions in this tutorial. You can then open
and analyze the project and solutions in the GUL

High-Level Synthesis

www.xilinx.com

UG902 (v2012.2) August 20, 2012

59

http://www.xilinx.com

& XILINX.
Chapter 2

Vivado HLS: Integrating EDK

Introduction

This document describes how to create an Embedded Developer Kit (EDK) Pcore with an
AXI-LITE interface from the Vivado HLS high-level synthesis tool. It describes the necessary
steps for integrating the generated Pcore with the MicroBlaze™ processor using the Xilinx®
Platform Studio (XPS) Tool Suite.

The reference design has been verified on the Avnet Spartan®-6 LX9 MicroBoard, shown in
Figure 3-1.

Figure 2-1: Avnet Spartan-6 LX9 MicroBoard

Software Requirements

The following software is required to test this reference design:

+ Xilinx ISE® WebPACK with the EDK add-on, or ISE version 14.1 Embedded or System
Edition

« Installed Silicon Labs CP210x USB-to-UART Bridge Driver (see Silicon Labs CP210x
USB-to-UART Setup Guide, listed at http://em.avnet.com/s6émicroboard)

« Vivado™ Design Suite High-Level Synthesis (HLS) version 2011.4.2

High-Level Synthesis www.xilinx.com 60
UG871 (v2012.2) August 20, 2012

http://em.avnet.com/s6microboard
http://em.avnet.com/s6microboard
http://www.xilinx.com

& XILINX. Reference Design

Reference Design

The reference design consists of an EDK MicroBlaze processor with a custom Pcore
generated from the Vivado HLS tool.

You can copy the reference design, AXI_Lite_Interface, from the examples/tutorial
directory in the Vivado HLS installation area.

The MicroBlaze processor based design was created using the XPS Base System Builder
(BSB). Figure 3-2, page 61 shows the final design created and provided with this document.

For information about using the XPS Base System Builder, refer to http://www.xilinx.com/
support/documentation/sw_manuals/xilinx14 2/platform _studio/ps_c_bsb using bsb.htm.

The reference design with the MicroBlaze processor runs the standalone board support
package software with a simple C application that prompts you to enter values for each
input variable and outputs the result.

Vivado HLS Pcore Functionality

The Vivado HLS Pcore functionality is an 8 bit adder. The focus of this document is the
interface of the pcore to the MicroBlaze processor through the AXI-Lite interface, not the
functionality of the pcore.

The Vivado HLS module has three variables: A, B and c. Of these, A and B are input
variables, and C is an output variable. These three variables are mapped to three registers in
the generated Pcore.

A Vivado HLS module has at least three control signals: AP START, AP_IDLE, and
AP DONE. These signals are mapped to register in the generated Pcore.

The AP_START register is used to control the start of the Pcore and AP _DONE indicates
when the module operation is done. A signal diagram (waveform of all three involved
control signals) should be used to explain the handshaking mechanism.

Additional registers are present in the Pcore to support interrupts.

High-Level Synthesis www.xilinx.com 61
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/platform_studio/hh_goto.htm#ps_c_bsb_using_bsb.htm
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/platform_studio/hh_goto.htm#ps_c_bsb_using_bsb.htm
http://www.xilinx.com

& XILINX. Reference Design

Block Diagram

| BRAM(16K)

AXI4-Lite

2
3
7
3
>
<

Void basic(char a, char b, char "c)

Figure 2-2: Block Diagram

The complete architecture consists of:

* MicroBlaze processor

« 16K of Block RAM to run code for the MicroBlaze processor

« Custom Pcore created using the Vivado HLS tool

« UART used for communication with the MicroBlaze processor

« Two AXI-Interconnects

In addition, it includes the following, which are part of the design but are not used in this
demo:

« Interrupt controller

« LPDDR
« AXI-Timer
« SPI-Flash

+ Ethernet-Lite

High-Level Synthesis www.xilinx.com 62
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

Creating EDK Pcore with AXI-LITE

Opening the Vivado HLS Project File

To create the AXI-Lite interface Pcore, the first step is to open the Vivado HLS Project
basic.prj.

1. Start Vivado HLS.

2. Select Open Project.

3. Selectbasic.prj.

Refer to Chapter 3, Vivado HLS: Introduction Tutorial for details about how to create an
Vivado HLS project.

Note: Figure 3-3, page 63 shows the C code with explanation.

Generating Pcores Using Vivado HLS

To generate Pcores using Vivado HLS, the header file ap_interfaces.h must be
included. This header file is a convenient way to define macros that apply standard Vivado
HLS directives as pragmas.

The example makes use of the AP INTERFACE_REG_AXI4 LITE and the
AP_CONTROL_BUS_AXI macros.

The AP _INTERFACE REG AXI4 LITE macro defines that the three function arguments
(a, b, and c) be implemented as registers that are accessed through an AXI4-Lite interface.

« Each port is specified as being in group BUS_A. This means they are all grouped into
the same AXI4 Lite interface called BUS_A.

« The RTL interface is set to type ap_none. This means that the RTL implementation only
has data ports; there are no associated acknowledge or valid signals with each data
port and therefore no associated register in the interface.

The AP_CONTROL BUS AXI macro adds the block level IO protocol signals to an AXI4-Lite
interface.

« The control signals AP_START, AP_DONE, and AP_IDLE are created by default when
Vivado HLS synthesizes the top-level function. The default function interface is
ap_ctrl hs.

« Specifying the name BUS_A ensures that these signals are grouped into the same AXI4
Lite interface as the other ports.

Table 3-1, page 66 describes all the registers created by Vivado HLS for the generated
Pcore.

High-Level Synthesis www.xilinx.com 63
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

Creating EDK Pcores
The steps to create the EDK Pcore with the AXI-Lite interface are:

1. Open the Vivado HLS project basic.prj.

The project code is shown in Figure 3-3. Refer to Vivado HLS Tutorial: Introduction

(UG871), located in the /doc directory where the Vivado HLS tool is installed.

#include <stdio.h> Header File with{macrofor bus definitions
18 #include "ap int.h" -
(9 #include "ap_interfaces.h”

AXI-LITE bus Name

AP interface type

o

E(a Bus_A)\ap_ncne);
AP_INTERFACE_REG_AXI4_LATE(bJ/BUS_Alap_none);
AP_INTERFACE_REG_AXTAMEITE[EJBUS A ap_none);

Tl44 void

p—

AP_CONTROL_BUS_AXI(BUS_3); Variables accessed by AXI-
- LITE bus

Figure 2-3: C Code

2. Click the Synthesis button, shown in Figure 3-4.

—

(SRS R BN B

x = | Synthesis

~basic Click Synthesis design

Figure 2-4: Synthesis Button
3. Click the Export RTL button, shown in Figure 3-5.
BB b-0R) 0B

= l'ﬁ""P"L [mplementation
erpi [L)
r

--basic Click Implementation

Figure 2-5: Export RTL Button

High-Level Synthesis www.xilinx.com
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

The RTL Implementation dialog box opens, shown in Figure 3-6.

[l] RTL Implementation Dialog

RTL Implementation

[] Setup only

RTL/Tool Selection

RTL Tool

VHDL |Skip A

Verilog IISE V] lSettings...]

IP Generation Settings

Generate pcore
[] Invoke Xilinx CORE Generator (Memories, FIFOs, etc.)

[Do not show this dialog box again.

[OK l l Cancel]

s |

Figure 2-6: RTL Implementation Dialog Box

4. Select the Generate pcore check box.

Reference Design

In addition to creating the Pcore, these settings execute ISE for RTL synthesis. The ISE
executable must be in the Windows search path for ISE to launch; refer to the Xilinx
Design Tools: Installation and Licensing Guide (UG978).

|+ | Export RTL Dialog

Export RTL

Format Selection

chore for EDK V] lldentification

Options

[Do not show this dialog box again.

[OK] l Cancel

5=)

High-Level Synthesis
UG871 (v2012.2) August 20, 2012

Figure 2-7: Export RTL Dialog Box

www.xilinx.com

65

http://www.xilinx.com

& XILINX. Reference Design

The generated Pcore is located in the /imp1 directory of the selected solution, as shown
in Figure 3-8.

4 | AXI Lite_Interface
4 | Dbasic.prj
> b .apc
| .settings
> L. Debug
4 | solutionl

> | .autopilot Generated
| tcls PCORE

4 | impl
4 | pcores
fA) basic_top_vl_(}oh

| data
| doc Directory with C header
| include file which contains
register addresses

| netlist
> L. simhdl

\ I synhdl)

b). rtl_synthesis

| verilog
I, vhdl
> b syn
Figure 2-8: Generated Pcore Location

High-Level Synthesis www.xilinx.com 66
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Pcore Register List

Reference Design

As stated in Vivado HLS Pcore Functionality, the Pcore has seven registers. Three registers
represent the passed-in arguments (2, B, and C) of the C code. The other four registers

represent the control register for AP control signals AP_ START, AP_ DONE, and AP_IDLE,
and three interrupt control registers.

Table 2-1: Pcore Registers
. . Default Address _—
Register Name | Width R/W Value offset Description
Control 3 R/W 0 0x00 Bit 0 - ap_start (Read/Write/SC)
Bit 1 - ap_done (Read/COR)
Bit 2 - ap_idle (Read)
SC = Self Clear, COR = Clear on Read
GlobalInterrupt |1 R/W 0 0x04 Bit O - Enable all interrupts.
Control
Interruptenable | 1 R/W 0 0x08 Bit 0 - ap_done signal.
Register
Interrupt Status |1 R/W 0 0x0c Bit 0 - ap_done signal (Read/TOW)
Register
TOW = Toggle on Write
A 8 R/W 0 0x14 Variable A.
8 R/W 0 Ox1c Variable B.
C 8 R/W 0 0x24 Variable C.

High-Level Synthesis
UG871 (v2012.2) August 20, 2012

www.xilinx.com

67

http://www.xilinx.com

& XILINX. Reference Design

Integrating Generated Pcores
To integrate the generated Pcore with the MicroBlaze Processor using XPS:

1. Copy the generated Pcore from Vivado HLS directory structure to XPS directory
structure, as shown in Figure 3-9.

4 AXI_Lite_Interface 4 AXI_Lite_Interface
4 EDK apc
_Xps settings

b data Launch

etc 4 solutionl

| implementation .autopilot

microblaze_0 Acls

4 pcores 4 impl
basic_top_vl_00_a

_v1_00_ 4 pcares
revup R 4 | basic_top.vl 00.a
| synthesis 0 o
r Copy from basic.prj cera
= d
to EDK directory °

include

netlist
simhdl
synhdl
rtl_synthesis
I verilog
vhdl

L. sim

syn

Figure 2-9: XPS and Vivado HLS Directory Structures

2. In XPS, add the generated Pcore from the IP catalog by clicking Pcore. The new Pcore
appears under the Project Local PCores directory, as shown in Figure 3-10,
page 68.

3. When the connection dialog box opens, accept the option to connect to instance
microblaze O.

High-Level Synthesis www.xilinx.com 68
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

Diescriptican
= E EDK Instail
i Analog
i1 Bus and Bridge
41 Clock, Reset and Internupt
i Communication Hegh-Speed
. + Communication Low-5peed
i DA and Timer
& Debug
i - FPGA Recanfiguration
= General Purpose [0
i 10 Madules —
& Interprocessor Communicatio | —
& Memary and Memary Contre
& PCl

t - Periphesal Controller .
+ Processor Hews [P showing in Local Poore

;. Utility Catalog
o VarFah \(,f/
= Project Local PCores .

= USER]
'Q_. basic_top 4

«._L__ =
—— I

i sabas chClea o

Figure 2-10: Add Generated Pcore

4. If Pcore is not listed under the Project Local PCores directory, then you must
direct XPS to rescan the user repository.

Select Project > Rescan User Repositories.

5. Change the default Reset Polarity of the generated pcore from Active Low by doing the
following:

a. Double-click the Pcore to customize it, as shown in Figure 3-11.

P = 1 | B MCEYLADDA L axi_s6_ddre
,—L(—; i debug module +r mdm
] 3 mmicrobloze () infe P & inte
e | Ethernet_MAC Y ®x_ethernetlite
| @ LEDs 4Bit ¥ ai_gpio
*— y ' ST‘H Double Click on peore to i ni':” -

4 .,.-;"ESE_EFE_ = _4"-"/’ customize E ::u:;rte

l [\ [basc top 0 T) basic_top

. S |, S T axilite 0
clack_generaior O ¢ clock_generatar
proc_sys_resel 0 4 proc_sys_reset

Figure 2-11: Customize Pcore

b. Deselect the RESET_ACTIVE_LOW signal check box, as shown in Figure 3-12.

High-Level Synthesis www.xilinx.com 69
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

002 fa
Al | Interconnect Setengs for BUSF o [F] &)

C_5_AXI_BUS_a_ADDED AN PARAMS TRUE
C_5_AxI_PUS_A_ADCR WIDTH 7]
C_5_ANI_BUS_A_AXI_VER L8
C_5_AXI_BUS_A_BASEADDR OxTdal0000

C_5_Ax_BUS_A_DATA_WIDTH 2
€_5_AxI_BUS_A_HIGHADDR QxTdalEEEE

€ PROTOCOL ANIALITE

SRt Deselect Active Low - 3

1
4 J

Figure 2-12: Active Low Signal Check Box

6. Set the Pcore base address.

You can set the base address from different locations. One location is in the Pcore
customization window, shown in Figure 3-12.

The other location is the Addresses tab in the Assembly window, shown in Figure 3-13.
This option allows you to view the full memory map for the MicroBlaze processor, which
prevents memory overlap errors.

Note: You can also automatically generate addresses in the Assembly window.

LSBT SE = GRSl . T T T T e |
k TR B g
| %) o[Businterfaces | Porty| Addesses) (|5
i " e _——

| Instance “Base Name Base Address High Address Sue BusInteface(s) Bus Mame Lock

= |microblaze 0's ﬁd:d[us Map |
microblaze 0 d beam ctrl C_BASEADDR Ox00000000 CooDOOD3FFF 16K [=] SLME microblaze 0 dl... [~
1] microblaze 0 bram_ctl C_BASEADDR Ox000G000 (I0003FFF 16K [SLME microblaze 0 iL..
cfd LEDs 4B4ts C_BASEADDR (40000000 CeS000FFFF BK [S.AM aodlite 0
e | USE_Uart C_BASEADOR 40600000 Ox4OBOFEFE 64K (5500 andite 0
gt SM_FLASH C_BASEADDR Ox40A00000 Dwq0AOFFFF B4K [«]5.M0 millite 0 I
Etherret MAC C_BASEADDR (n40E00000 CedOEDFFFF BAK lw/520 adlite 0 1
microblaze 0_intc C_BASEADDR (x41200000 o4 1 20FFFF BAK =580 oHlite)
ai_tirmer 0 C_BASEADDR (x41C00000 ed1 COFFFF B4k [5AM aidlite
debug_module C_BASEADDR _ATEBOUO00 DRT4SOFRE. ,Hﬁ_ﬂl andiite 0
basic_tep 0 CS AN BUS A BASEADDR - (u7DAOOOOD On7DADREEF' ' 4K (18 A0 BUS A allite 0
W MCB3_LPDDR _50_AX] BASEADDR 'Euﬁmw—‘ﬁﬁﬁg T Tp9.AM wid)
Update base address manually Select range of addresses needed for PCORE

or
Click button in comer to auto-generate

Figure 2-13: Set Pcore Base Address

7. Connect the Pcore to AXI Interconnect in the Bus Interfaces tab, as shown in Figure 3-14.

High-Level Synthesis www.xilinx.com 70
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX.

BRIl El®

ﬂgé,fﬂﬂ”:,}f‘:‘:...]. fdcmes |
s

Figure 2-14:

| M
df P — micreblaze_0_iimb

axid 0
axidiite 0
microbloze 0 dimb

#1- microblase 0

(3 microblaze_0 bram block
41 microblare 0 o bram_ctd
1 microblaze_ 0 bram otd
- || G- MCB3 LPODR

|| [debug module

{|| B Ethernet MAC
& LEDs 48its

& SPLFLASH Ehennd
[aua_fimer, -
Abosic top 0

. SAKLBUS A Hiite 0
w
proc_sys_reset.

Bus Mame

Reference Design

EIR “aw aa BB

1P Type

Y &xi_interconnect
Y axi_interconnect
¥ Imb_10

¥r Imb_v10

+¥r microblaze

+r bram_block

+r Imb_bram_if_cntlr
+r Imb_bram_if_cntlr
o axi_sh_ddm

+r mdm

'ﬁ' axi_inte

1r axi_ethernetlite
¥r axi_gpio

Yr i spi

1 ai_timer

T axi_uartiite

4, basic_top

¥ clock_generator
Yo proc_sys_reset

Connect PCORE 1o AXlInterconnect

8. Connect clocks and rest signals.

Connect Pcore to AXl-Interconnect

9. Change to the Ports tab to see the other ports that needs connections (see Figure 3-15).

«+0a X|@| Bus Interfaces | Ports | Addresses |

|]P Catalog
Name
Description IP Version IP Type - External Ports
= £ EDK Install - axid 0
- Analog - axidlite 0
- Bus and Bridge - microblaze 0_dlmb
#- Clock, Reset a... & microblaze 0 ilmb
B Communicati... - microblaze 0
- Communicati... - microblaze 0_bram_block
- DMA and Timer ®- microblaze 0 d_bram_ctrl
#- Debug - microblaze_0_i_bram_ctrl
(- FPGA Reconfi... #- MCB3_LPDDR
- General Purpo... - debug_module
10 Modules B microblaze 0 intc
- Interprocessor.. ~INTR
- Memory and ... Processor_clk
- PCI Processor_rst
(- Peripheral Co... (BUS_IF) S_AXI
- Processor B (BUS_IF) INTERRUPT
- USER (- Ethernet MAC
- Utility & LEDs_4Bits
- Verification - SPI_FLASH
= Project Local PCo... B axi_timer_ 0
= USER - USB_Uart
" @ basic_top 1.00.a basic_top = basic_top 0
SYS_CLK
SYS_RESET
interrupt
- (BUS_IF) S_AXI_BUS_A
- clock_generator_ 0
B proc_sys_reset 0

High-Level Synthesis
UG871 (v2012.2) August 20, 2012

Figure 2-15:

www.Xilinx.com

Connected Port Diire
L to H: USB_Uart_Interrupt & axi_timer.. |I

21

z
Connected to BUS axidlite_0 =]
Not connected to BUS or External P.. E
clock_generator_0:CLKOUTZ2 21
proc_sys_reset_0:Peripheral_Reset 21
microblaze_0_intc:Intr 0
Connected to BUS axidlite_0 =

Connect Clocks and Rest Signals

71

http://www.xilinx.com

& XILINX

Reference Design

10. As shown in Figure 3-15, on instance, basic_top_0:
a. Connect port SYS CLK to clock generator 0: CLKOUT2.
b. Connect port SYS RST to proc_sys reset 0: Peripheral Reset.
c. Add portinterrupt basic_top_ 0 to the list of connected interrupts.

d. Confirm that port (BUS_IF) is connected to BUS axi4lite 0.

Generating the FPGA Bitstream

A software application image is needed to initialize the BRAM. The MicroBlaze processor
runs the software application after reset.

1. Refer to Creating Application Software for steps on creating an ELF file. In this example,
the application software has already been compiled into the hello world 0.elf file.

Figure 3-16 shows how to select the ELF file to initialize the BRAM.

@
ag Biiva BRE ORI 2R &da] E
Project 08 % 1 Bus Interfaces | Ports ‘ Addresses
Platform Name Connected Port
= Project Fi_Ies - axidlite 0
MHS File: EDK.mhs = microblaze 0_dlmb
UCF File: data\EDK.ucf - microblaze 0 ilmb
iMPACT Command File: etc/download.cmd =

= microblaze 0

Implementation Options File: etc/fast_runtime.opt microblaze_0_bram_...

Bitgen Options File: etc/bitgen.ut + microblaze 0 d bra.
= EIf Files

) #- microblaze (_i_bra...
= microblaze_0

= MCB3_LPDDR
Imp Executable: C:/AutoESL/Examples/AX]_Lite_Interface/SDK/hello_world_0/Debug/hello_world_0.elf - debug_module
Sim Executable: "

mirrnbloze 1 inte

Figure 2-16: Select ELF File

2. Select Device Configuration > Update Bitstream to generate the bitstream.

This performs two steps in serial:

a. Generates the FPGA bitstream <project name>.bit in the implementation
directory.

b. Initializes the BRAM with the ELF file selected and generates a download.bit filein
the /implementation directory.

High-Level Synthesis www.xilinx.com 72
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

Controlling the Generated Pcore

The generated Pcore has six registers accessible by the MicroBlaze processor through the
AXI-Lite interface. C code is needed to read and write with these registers, as shown in
Figure 3-17.

1€l helloworld.c &2 =g
& Write to variable a
XBasic_SetA(&Basic,a);

XBasic_SetB(&Basic,b); & Writeto variableb

¥Basic_Start(&Basic); g Send a start signal

while (!interrupt_asserted):; £&—— Wait until the block is done
interrupt asserted = 0;

result = XBasic GetC(&Basic); «&—— Read variablec

xil printf ("\n\r ==> RESULT: %03d + %03d = %03d ", a , b, result);

Figure 2-17: C Code to Read and Write with Registers

The Vivado HLS pcore provides C functions that allows the ports to be accessed. In this
example, these functions are in xbasic.c and header file xbasic.h. Header file
xbasic BUS_ A.h creates some useful macros.

Creating Application Software

The Xilinx Software Development Kit (SDK) is a software development environment to
create and debug software applications. Features include project management, multiple
build configurations, a feature rich C/C++ code editor, error navigation, a debugging and
profiling environment, and source code version control. For more SDK information, refer to
http://www.xilinx.com/tools/sdk.htm.

The steps for creating application software using SDK are:
1. Select Project > Export Hardware Design to SDK.

Exporting the hardware description of the system from XPS to SDK enables it to create
software application images for that system.

2. From the Export to SDK window, click Export & Launch SDK.
Note: This can take several minutes to complete.

3. In the Workspace Launcher dialog box, use the Browse button to select a directory
location for your workspace and click OK, as shown in Figure 3-18.

High-Level Synthesis www.xilinx.com 73
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com/tools/sdk.htm
http://www.xilinx.com

& XILINX. Reference Design

CAUTION! Make sure that the path name does not contain spaces.

€» Workspace Launcher

Select a workspace

KXilinx SDK stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

LT o1l C:\ Xilinx, 201 2.1\ Auto ESL\examples\AXI_Lite_Interface\SDK]

["] Use this as the default and do not ask again

[OK] l Cancel

Figure 2-18: Workspace Launcher Dialog Box
4. To create a new C project, select File > New > Xilinx C Project.

5. Select the Hello World application as a starting point from the project templates, as
shown in Figure 3-19.

6. Click Next.
New Projec - - 8
Mirer ¥aline G Prajat g E

Creste o mansped rake spplcston project. Choose from one of the pempls -
sppleabong. |
Preqeciname Bedn_wodd)
< U et kocaban

Target Masdware

Hirdveaie Platfarim: 4

Piocenan Sarleet Helle Woakd and thon

ellek NEXT
Diésinplan

._ Lty sry il ‘World in C

[t

Mmooy Tests

Perpharal Ty

SREC Bootioader

Naltiiviae POYSDY Thegiti Dimita -

2 N) s

Figure 2-19: Hello World Template
High-Level Synthesis www.xilinx.com

UG871 (v2012.2) August 20, 2012

74

http://www.xilinx.com

& XILINX. Reference Design

7. Click Finish.
The application automatically starts building and creating an ELF file.

The ELF file is the compiled application and is created in the /Debug directory (see
Figure 3-20), with the application name and the . elf extension. In this example, the file
ishello world 0.elf.

=10 SDK

+ . .metadata

i | EDK_hw_platform
- | hello_world 0
L C— _E_.ebu_g___-_ﬁ

SIC

+ - . hello_world_bsp_0

Figure 2-20: ELF File Location

8. Edit the Helloworld.c file and add code to test the generated Pcore.

Include the C files from the Vivado HLS pcore sub-directory include
(basic_top vl 00 al\include), as shown in figure Figure 3-21.

I Project Explorer & =0

- 3 EDK_hw_platform
4 3% hello_world_0
- ¥ Binaries
> w Includes
+ = Debug
4 5= src
> 1€ helloworld.c
- [1 platform_config.h
+ lel platform.c
- [8 platform.h
- |1 xbasic_ BUS_Ah
+ |l xbasic.c
+ | [0 xbasic.h
B Iscript.id
- [hello_world_bsp_0
- 1= peripheral_tests_0
- [peripheral_tests_bsp_0

Figure 2-21: C Files in hello_world_0/src Directory

9. Open the helloworld.c for editing by double clicking on helloworld.c after
expanding the hello world 0 application and the /src directory.

High-Level Synthesis www.xilinx.com 75
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

10. In the editor, change the code in helloworld.c to match the code below. Refer to the
C code SDK\hello_world_0\src\helloword.c in the tutorial directory.

#include <stdio.h>

#include "platform.h"

#include "xparameters.h"
#include "xil_io.h"

#include "xstatus.h"

#include "xbasic.h" // DM added
#include "xintc.h"

#include "xil exception.h"
#include "xuartlite_1.h"

#define pritnf xil printf
void print (char *str);

// BASIC Pcore SETUP
XBasic Basic;
XBasic_Config Basic_Config =
0 ’
XPAR BASIC TOP 0 S AXI BUS A BASEADDR

}i

int SetupBasic (void)

{

return XBasic Initialize(&Basic, &Basic Config) ;

[/ - Setup Interrupt control -----------------—~——-~-~—~—~—~—~—~—-
//
#define INTC DEVICE ID XPAR INTC 0 DEVICE ID

#define XBASIC INTERRUPT ID XPAR MICROBLAZE 0 INTC BASIC TOP 0 INTERRUPT INTR
XIntc InterruptController; /* The instance of the Interrupt Controller */

int interrupt count = 0; // just for statiscs
int interrupt asserted = 0;

void XBasic InterruptHandler (void *InstancePtr)

{

interrupt count++;

// clear the interrupt

XBasic InterruptClear (&Basic, 1);
// poor man semaphore

interrupt asserted = 1;

int SetupInterrupt (void)

{

int Status;

// Initialize the interrupt controller driver so that it is ready to use.

High-Level Synthesis www.xilinx.com 76
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Reference Design

Status = XIntc_Initialize(&InterruptController, INTC_DEVICE_ID) ;
if (Status != XST SUCCESS)

{
}

return XST FAILURE;

// Connect a device driver handler that is called when an interrupt
// for the device occurs, the device driver handler performs the specific
// interrupt processing for the device
Status = XIntc_Connect
(&InterruptController, XBASIC INTERRUPT_ ID,
(XInterruptHandler)XBasic InterruptHandler,
NULL
)
if (Status != XST_SUCCESS)

return XST FAILURE;

// Start the interrupt controller such that interrupts are enabled for
// all devices that cause interrupts, specific real mode so that

// the timer counter can cause interrupts thru the interrupt controller.
//

Status = XIntc_Start (&InterruptController, XIN_REAL_MODE) ;

if (Status != XST SUCCESS) { return XST FAILURE; }

// Enable the interrupt for the AESL BASIC CORE
XIntc Enable (&InterruptController, XBASIC INTERRUPT ID) ;

Initialize the exception table.
Xil ExceptionInit () ;

// Register the interrupt controller handler with the exception table.
Xil_ ExceptionRegisterHandler (
XIL EXCEPTION ID INT,
(Xil ExceptionHandler) XIntc InterruptHandler,
&InterruptController

)i

// Enable non-critical exceptions.
Xil_ExceptionEnable() ;

XBasic InterruptEnable (&Basic, 1);
XBasic InterruptGlobalEnable (&Basic) ;

return XST SUCCESS;

void print core regs(void)

{

xil printf ("\n\r A reg [0x%08x] ", XBasic_GetA(&Basic));

xil printf ("\n\r B reg [0x%08x] ", XBasic GetB(&Basic));

xil printf ("\n\r C reg [0x%08x] ", XBasic_GetC(&Basic));

xil printf ("\n\r DONE reg [0x%08x] ", XBasic_IsDone (&Basic));
High-Level Synthesis www.xilinx.com 77

UGS871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

xil printf ("\n\r IDLE reg [0x%08x] ", XBasic IsIdle(&Basic));
xil printf ("\n\r INT STATS [%d] ", interrupt count);

}

int ReadInt (int size)
int value=0;
char ¢ ='0"';
int i;
for (i=0; 1 <size; i++)

{
c=inbyte () ;
if (c==' ')
{
c='0";
outbyte (c) ;
}
else if (c=='\n')
{
break;
return value;
}
else if (c=='\r'")
{
break;
return value;

}

else

outbyte (c) ;
value=value*10+c-'0";

}
}

return value;

}

int main{()

{

//init_platform() ;
int a = 1000;
int b = 1000;
u32 result;

// initialize AESL Pcore

int status;
status = XBasic Initialize(&Basic, &Basic_ Config);

if (status != XST SUCCESS) {
xil printf ("\n\r ==> Basic failed.\n\r");
} else {

xil printf ("\n\r ==> Basic succeeded.\n\r");

}

High-Level Synthesis www.xilinx.com 78
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Reference Design

// Initialize the interrupts (local then global)

status = SetupInterrupt () ;
if (status != XST SUCCESS) {

xil printf ("\n\r ==> SetupInterrupt failed.\n\r\n\r");
} else {

xil printf ("\n\r ==> SetupInterrupt succeeded.\n\r\n\r");

// Get and setup the data
while (1)

{

print ("\n\r START OF AESL BASIC CORE TEST
print("\n\r z=============== RESULT = A + B ==================\n\r") ;

while (a > 255)

{
print ("\n\r --> Please enter number between (0-255) for variable A : ");
a = ReadInt(3);

}

while (b > 255)

{
print ("\n\r --> Please enter number between (0-255) for variable B : ");
b = ReadInt(3);

}

XBasic_SetA(&Basic,a);
XBasic_SetB(&Basic,b) ;

// Start
XBasic_Start (&Basic) ;

// Wait for idle

//while (!XBasic_ IsIdle(&Basic));

// wait for flag from interrupt handler
while (!interrupt asserted) ;

interrupt asserted = 0;

result = XBasic GetC(&Basic) ;

xil printf ("\n\r ==> RESULT: %$03d + %03d = %03d ", a , b, result);
print core regs() ;

print ("\n\r ===
print ("\n\r ===
// reset variable to value bigger then 255 to prompt user for new input
a =1000;

b =1000;

}

//cleanup _platform() ;

return 0O;

High-Level Synthesis www.xilinx.com 79
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

Running the Demo on the Avnet MicroBoard

Setup Requirements
For this demo, you must have the following:

 Avnet MicroBoard

« Two USB cables connected to UART and JTAG ports of the Avnet MicroBoard and to the
PC, as shown in Figure 3-22

Figure 2-22: Cable Connections

* Hyperterminal (Tera Term) with the serial port setup shown in Figure 3-23

-
Tera Term: Serial port setup

It
Part: o Ky

Baud rate: 115200 =

Diata: & bit - Cancel I
Parity: lmne_g
Stop: bt v Help I
Flow control: Im—L|

Transmit delay

[0 msec/char Iﬂ_rrw::.ﬁt

Figure 2-23: Serial Port Set Up

* Download.bit file provided with the reference design

High-Level Synthesis www.xilinx.com 80
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

Finding Serial Port Number on Windows 7 PC

1. Click the Windows Start button.
2. In the Search programs and files box, type devmgmt .msc.
Windows lists devmgmt . msc in the search results window.

3. Select devmgmt.msc and when Windows asks for permission, click Yes.

4. When the Device Manager window appears, expand Ports (COM & LPT) to find the USB
to UART COM port number, as shown in Figure 3-24.

=& =
File Action View Help
| m Hml e
5 Modems -

K Monitors
&¥ Metwork adapters
[l Other devices USB to UART com port Number

E] PCMCIA adapters
S Ports (COM & LPT)
'Y Communications Part (COMIL)
' ECP Printer Port (LPT1) - 3

TY Silicon Labs CP210x USE to UART Bridg'el {CONA) ‘.
D Processors o
W1 SD host adapters

o

Figure 2-24: USB to UART COM Port Number

Running the Demo

1. Open hyperterminal (Tera Term) with the settings shown in Figure 3-23.

2. Download the bit file from XPS by selecting Device Configuration > Download
Bitstream.

3. After the FPGA is configured, you are prompted to provide values for A and B.
Figure 3-25 shows an example output of the application.

........... START OF AESL BASIC CORE TEST =====s=s==s======
................ RESULT = & + B R ————

--» Pleasa enter number beatwean (0-255) for wvariable A : 5
==% Please enter number between (0-255) for wariable B : 10
==3 RESULT: 005 + 010 = 015

A rey [0x00000005)
B reg [0x0000000A]
C reg [0x0000000F]

START rey [0x00000000]
DONE reg [0z00000000]
IDLE reg [0x00000001]

Figure 2-25: Application Output

High-Level Synthesis www.xilinx.com 81
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Running Bus Functional Model Simulation

Reference Design

Runing bus functional model simulation on a generated Pcore requires the following steps:

Adding Pcores to an XPS Project
Adding CLOCK and RESET Connections

Generating the Simulation Model

> W

Running the Simulation

Adding Pcores to an XPS Project

82

1. Start XPS.
2. In the Welcome Window, select Create New Blank Project.
3. Change the target device to match the FPGA on your board.
4. Unselect both check boxes under Auto Instantiate Clock/Reset, AXI Clock Generator
and AXI Reset Module.
5. Click OK.
The Spartan-6 LX9 part is selected in the following example.
r& Create New XPS P?d-je_d— =
New praject 1. Set DE‘SE’ Path For Prm& -
13:'3}._:1—&; ?';;-;w'wmd'&&jﬂcnwdJ.ﬂ'E'E)ﬁ_FM'-,s',“;Dtm.m w1} __&_u?_if) |
W e —
Tt e 2. Select Target Device =
Architeturs——— Device Size Package SpedGrade——
partant [7] xcsetes [=] csga2e EE: =D
PE——— =———
Impaort Design File (.mhs) from existing Project
Set Project Peripheral Repository Search Path
Sat Custom Make Fle{instead of XPS generated MakaFis)
Auto Instantiate ClodReset - Uncheck Auto In;!anLia_:q;C_loﬁIR_e;el
1 A otk Generator A ResetModde
- T 4-ClickOK
e
T Help
Figure 2-26: Create New XPS Project Dialog Box
High-Level Synthesis www.xilinx.com

UGS871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Reference Design

6. Copy the generated Pcore from Vivado HLS directory structure to XPS directory

structure.

XPS& Directory Structure

EDK_BFM
_pe
dats
[1s
hdl
irmphermentaticn
PR

ynEhesis

Copy AESL|generated

PCORE g

basic_top_vi_D0_a "(_———._:_r::_”" prosnes
'_____—‘ | "

AutoESL Directory Structur

BESL
basic
AP
reference
settings
solutionl
Bt Cpdot
KPS Dir <
il
Basiz_top vl 00 a
l_gyrithéL
wirilog
whdl

nm

Figure 2-27: Vivado HLS Directory Structure

7. Inthe IP catalog, double-click each of the following pcores to add it into the blank XPS

project:
o AXI Interconnect
- Basic_top

o AXI4 Lite Master BFM

o Pcore generated from Vivado HLS

o Pcore used to simulate an AXI LITE Master (for example, processor)

Note: If Pcore is not listed under the Project Local Pcores, select Project > Rescan User

Repository to have XPS rescan the user repository.

8. Double-click AXI Interconnect and click YES when prompted to add the Pcore to your

design.

9. When prompted to customize the Pcore, click OK in the XPS Core Config dialog box to

accept the default settings.

High-Level Synthesis
UG871 (v2012.2) August 20, 2012

www.xilinx.com

83

http://www.xilinx.com

& XILINX. Reference Design

View Project Hardware Device Configuration Debug Simulation Window Help

X®loo BB SRt TN Na

3 ||IP Catalog oO@ x|, |f ousintefaces | ports | Add
@] () e (@] () bx] ol DR £ || Name
_ Description IP Versi * | axi_interconnect 0
1r AHB-Lite to AX] bridge 1.00.a
¢ A to AX Connector 1.00.a
: 1r AXM to AHB-Lite bridge 1.00.2
- +r ANM-Lite to APB Bridge 1.00.a
AX] Interconnect. 104.a
m H AX] to PLBwS Bridge 201.a
4o Fast Simplex Link (F5L) Bus 211.e
1 Local Memory Bus (LME) 1.0 2.00.b
3o Proceszor Local Bus (PLE) 4.5 1.05.a
T PLEW4G to AX] Bridge 200.a
R +r PLBV46 to PLBVAG Bridge 104.2
i Clack Recet and Interning

Figure 2-28: Pcore Added to IP Catalog
10. Double-click the AXI LIte Master BFM to add it.
11. Click YES when prompted to add the Pcore.

12. When prompted to customize the Pcore, rename the component instance name to
bfm processor.

13. Click OK.

3 XPS Core Config - cdn_aid_lite_master_bfm_wrap 0 - cdn_axid lite_master_bfm_wrap_v2 01 _a ﬂ
:':u'\'mml Instance Name- bvfm _processor| -’ - 1- Rename stance o bim_processor |
|

I = Al | Interconnect Settings for BUSIF o [F) @)

|

| C_DEVICE Ealxd

|

|

C_M_AXI_LITE_ADCED_AXI_PARAMS

C_M_AXI_LITE_ADOR WEOTH 32

af

C_M_AXI_LITE_AXI_VER

| =
=
&

I_I .

C_M_AXI_LITE_DATA_WIDTH a2 -
: C_M_AXI_LITE_NAME MASTER O
C_M_aXI_LITE_PROTOCOL axidlite 3
C_PACKAGE caga2d
M C_SPEEDGRADE -2
[
: Show All Ports
| 2- Click OK to accept the remaining default options
| D" |
([_J[) coel][rew |
Figure 2-29: XPS Core Config
High-Level Synthesis www.xilinx.com 84

UGS871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Reference Design

14. Connect bfm_processor to the AXI interconnect, as shown in Figure 3-30.

3 :Ezf_u.m-tyuscw_m-m.mn_u%srwf- [sm Asuw

Propect Herdware Device Configuration Debig Simulstion Window Help

: «® |0 o (i Bron ERce[2mow BLd aa BB
P Catalog »O&x|[, |5 bBuimerfies | Poris | Addesses
} (@) () 5 () (30 6] G X | Hame P Version Bus Name IP Type
Description [t ax_intercannect 0 1040 +r ai_interconnect
£ EDK Install b processor 013
& Analog [M_8d_LITE Mo Connecton =
Bus and Bndge " .| Mo Cennection
+r AHB-Lite to AX] bridge e Mew Connection
T AXIto AX] Connector Pulidown and s

ci axi_interconnect_0 il
or clck on sguare .

T AXH to AHE-Lite bridge
¥ AXM-Lite to APE Bridge

Figure 2-30: bfm_processor Connection
15. Double-click the basic_ top Pcore to add it.

16. Click YES when prompted to add the Pcore.

o cdn_smod lite_master_bfm_wrap

17. When prompted to customize the Pcore, change C_S AXI BUS A BASEADDR to

0x00000000 and C_S_AXI BUS_to 0x00000FFF.
18. Click OK.

& XPS Core Config - basic_top 0 - basic_top vl 00 a
Component Instance Name | basc_fop 0

|
Al Interconnect Settings for BUSIF

C_S _AXI_BUS _A_ADDED_AXT_PARAMS
€_5_AXI_BUS_A_ADCR_WIDTH
C_5_AXI_BUS_A_AXI_VER

(| nxo0O0DOOOD
A,

C_S_AXI_BUS_A_BASEADOR

C_5_AXI_BUS_&_DATA_WIDTH
P

P

C_5_AXI_BUS_A_HIGHADOR, -~ - O=000006¢f

C_S_AXI_BUS_A_PROTOCOL
~

RESET_ACTIVEAOW
-~

-
2. Change Base Addr to BxDODODFFF

1- Change Base Addr 1o 0x00000D00

Show Al Ports

3- Chck OK

Figure 2-31: XPS Core Config Dialog Box

High-Level Synthesis www.xilinx.com

UGS871 (v2012.2) August 20, 2012

85

http://www.xilinx.com

& XILINX. Reference Design

19. Connect basic_top_ 0 to the AXI interconnect as shown in Figure 3-32.

et Device Config Debueg Simulstion Window Help

(Dhx® ook RHOE £8[rc 2aoR Vas ae BE

‘stsiog wOex| A @ B .m | kkkusu

|;I |Lﬂ G] ﬁ X || Hame IP '.'usmﬂ. Bu-; Marme IP Type

icription ouf_interconnect 0 1.0d.a I & _interconnect

EOK Install = basic_top_0 100.2 & basic_top

Analog 5 AT BUS A Mo Connection

Bus and Bridge bfm_processor 2. Y cdn_axd_fite_master_bfm_wrap
2 AHEB-Lite to &3] bridge \ M_Axd_LITE wo_nterconnect 0 [«

',’L: Al to AM Connector
1; MH mMB -Lite beidge:

snn A

Click circle to connect Basic_top_0 to Axi_interconnect_0

Figure 2-32: AXI Interconnect

Adding CLOCK and RESET Connections

The next step is to add the CLOCK and RESET connections for Pcores. To do this, you must
manually edit the Microprocessor Hardware Specification (MHS) file.

1. Double-click the system.mhs file.

It opens in the text editor in the XPS main window.

T e Taae T Eeln et Sie " NN $2THEN 420 OTEEE 202TEE 02—
¥oject Hardware Device Configuration Debug Simulation Window Help
O x® ool BeesE 48 v R0 bed ae BE
Srogect “~0&x 3 1
Platform S 2 FARRMETER VERSION = 2.1.0
| 5 a
¥ S File system.mbs -t 4 Z- Double Chck bo Open MHS file
TUCF File dataystentuc 1 %
IMPACT Command File etc/dosnload.cmd + BEGIN
:hyl:modmnm;::nomhﬁu—.tmhn_ium.m_ 2 . LT S qu,ﬂ}_,! = axi_invezconnect_o
E':?_'I:‘ pasons e elc/bagen ot 9 PARRMETER MW _VER = 1.04.a
" 1 EHD
Project =

Options
Device xobsb@csgI-2
Metlist: Toplevel
Implernentation: KPS (Xflow)

12 EEGIN odn_awid_lice mascer hfm wrap
PARAMETER INSTANCE = bfm procesass
id FARAMETER MW _VER = 2.01.a

COIFdEI
o
"}

HOL: Veribog z
1% PARRMETER C_DEVICE = Salxd

Sim Modek: BEHINIORAL 16 TER C_PACKRGE = cagdas

Bl Bty 17 {TERFACE M_AXI_LITE = axi_interconnect_0

18 M_AXI_LITE_ACLE = bfm processo:_M_AXI_LITE_ACLE_O
19
20
21 DBEGIN basic_top

77 FARRMETER INSTANCE = basic_top O
23 PARAMETER HW VER = 1.00.a

24 FARAMETER C_35_AXI_BUS_A BASEADDR = Ox00000000

25 FPREAMETER C_S_ANT_BUS_A_HIGHADDR = 0x000D0FLE

- P 26 PARAMETER C_INTERCONNECT S_ANI_BUS_A MASTERS = bfm_processor.H AXI_LITE
| 27 BUS_INTERFACE S_AXI_BUS A = axi_interconnect_O

.'I 28 PORT =¥3 _CLE = hn:;t cop_0_3¥3 C»—?’

| 39 FORT SYS_RESET = basic_top 0_STS5_RESET

30 FORT a_axi BUS A ACLE = basic vep 0 s axi BUS R ACLE

31 EnD
{ a3 - FHE Filr open
/ 33 =
a . - wl & e
| -
& moen "is 1P Catalog &R S (= Deson Summary o

Figure 2-33: Opening the MHS File

2. Add the sys clk and sys_reset external port declarations at the beginning of the
MHS file.

PARAMETER VERSION = 2.1.0

PORT sys_clk = sys_clk, DIR = I, S5IGIS = CLK, CL¥_FREQ = 100000000
PORT svs_reset = ays_reset, DIR = I, SIGIS = RST

Figure 2-34: External Port Declarations in MHS File

High-Level Synthesis www.xilinx.com 86
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

3. Connect sys _clk and sys_reset to axi_interconnect in the MHS file.

&8

9 BEGIN axi_interconnect Add port connections
i0 PARAMETER INSTANCE = axi interconnect 0

11 PARAMETER HW VER = 1.04.a

12 FARAMETER C INTERCOMNECT-CONMECTIVITY MO o

13 PORT INTERCONNECT_ARESETN = sys reset —4
14 “BORT INTERCONNECT ACLK = sys_clk -~

15 END —_

Figure 2-35: Port Connections in MHS File

4. Connect sys clk to bfm processor Pcore in MHS file.

.

wy

BEGIN cdn_axi4_lite master bfm wrap
PARAMETER INSTANCE = bfm processor
PARAMETER HW_VER = 2.0l1.a
PARAMETER C_DEVICE = E31x9 Add SYE_C”‘. connection
PARRMETER C_PACKAGE = csg324
BUS INTERFACE M AMT LITE = axi terconnect 0
<CFORT M AXI LITE ACLK = sys clf —

END

L e

Figure 2-36: sys_clk Connection in MHS File

5. Connect the sys_clk and sys_rest to the Vivado HLS generated Pcore in the MHS
file.

BEGIN basic top

PARAMETER INSTANCE = basic top 0
PARAMETER HW VER = 1.00.a
PARAMETER C S AXI BUS A BASEADDR
PARAMETER C S AXI BUS A HIGHADDR
PARAMETER RESET ACTIVE LOW = 1
BUS_INTERFACE S_AXT BUS—A-= axi_interconnect_0

fﬁﬁ SYS_CLK = sys_clk "“‘mﬁ________-'
FORT SYS_RESET = sys_reset) Add the following connections
PEORT s_axi_BUS_A ACLE = ays_clk—"

0x00000000
Ox00000FFF

END T—— e

Figure 2-37: Additional Connections in the MHS File

High-Level Synthesis www.xilinx.com 87
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

Generating the Simulation Model

The next step is to generate the Simulation model.

1. Select Project > Project Options to set the Simulation Project option. In this example,
Verilog and behavioral are selected.

@ Project Options - =5

. =1 Select Design FLow Tab
General { | Design Pl] g
Default effort level to run FRGA mplementation tocls is: xflow (single iteration)

xplorer scripts (multiple iberations for best result) has been removed.
Pleass use smartxplorer in 1SE

o] Treat timing dosure fadure a2 an errer 2. Select Verilog
HOL §
VHDL L@ Verieg ./

Serulation Test Bandh
{ ¥ G test hench template

e (__.ad. Select Behavioral Model
| @ Behavioral /) Struchral Teving

3. Select Generate test bench template

Extennal Mamory Smulation

5- Click OK

Figure 2-38: Project Options Dialog Box
2. In the Project Options dialog box, select the following options:
- Design Flow
- Verilog
o Generate Test Bench Template
- Behavioral model

3. Select Simulation > Generate Simulation HDL Files to generate the simulation file.

High-Level Synthesis www.xilinx.com 88
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Reference Design

XPS creates the simulation directory structure to the XPS project.

EDK_BFM

% systeni_thy
1S L9 5},',Egm_v W
data /
che X cdn_sod_master_bfm_wrap_0_wrapperyv W
implermentation "r basic_top_0_wrapper:
peares i ~ ﬂ1.|_|n:ﬂs:onn:(l_&_'.\.'mqpﬂ.\.‘ W
simulation I hﬂ]S_E Design Suite 32 Bit Command Prompt Ink
behavioral | & systern_wave.do do
|| % system_setup.do | dao
ﬁ & gystern_fist.do da
X systern.do | do
Automatically Generated files I. & cdn_aod_master_bfm_wrap_0_wave.do do
under the behavioral | %] cdn_sxd_master_ bfm_wiap 0 list.do do
directroy €| basic_top 0_wavedo do
l- basic_top 0_list.de do
&) axi_interconnect 0 wéve.do do
& #i_interconnact 0 fist.do do

) litil sesim. il il

Figure 2-39: Simulation Directory Structure

4. Edit the system_tb.v file and add code to read/write the Pcore generated by Vivado

HLS.

The system tb.v file is a template to which you must add code to read/write the
Pcore registers.

The BFM for the AXI4-Lite Master has predefined API for TASK to initiate transactions on

the AXI4 interface. For detailed information on API, refer to AX/ Bus Functional Model
(DS824).

Two main tasks were added to the testbench to facilitate the reading/writing if the

registers. These two tasks used a combination of the API defined in AXI Bus Functional

Model (DS824).

High-Level Synthesis www.xilinx.com
UG871 (v2012.2) August 20, 2012

89

http://www.xilinx.com

& XILINX

The write task is displayed in Figure 3-40.

task automatic SINGLE WRITE:

input [“ADDR BUS WIDTH-1 : 0] address;
input [C_SLV _DWIDTH-1 : 0] data;
input [*PROT_BUS WIDTH-1 @ 0] prot:
input [3:0] suzobe:
output [RESF_BUS_WIDTH-1 : 0] reaponss;
bagin
Gdiaplay (" ==> ANI WRITE : came[%t] Addresa(Oxt08x] reg (%2] Daca [Ox%0Sx]" , ftime, address ,REQ HAME (address), data):
fork

dut.bfm processor.bfm processor.cdn axi4 lite_master bfm inst.SEMD WRITE ADDRESS (address,prot):
dut . b I!n:_'p:c cemanr.b !u:_p:c:t:: OF - cd::_ax1 ‘1_1 ite_maste :_hl!n:_'_:u . S!!ID_'H'RI‘I‘!_N‘IA [scrobe, dataj);
dut. hl!n:_'prc cemanr. b Eu:_p:c:e:: O . cd::_a)u.‘!_l ice _maste :_hl!n:_:.:u . MM_H'BL'['I'E_RBSMN'SE {response) ;
join
CHECE_RESPOHSE OFAY (responss):
and
endtask

Figure 2-40: Write Task Code

The read task is displayed in Figure 3-41.

task automatic SINGLE RERD;
input ["ADDR_BUS WIDTE-1 : 0] address:
ontpat [C_SLV_DWIDTE-1 : 0] dara;

input ["PROT_BUS WIDIN-1 : 0] pmot:
outpat| RESE_BUS_WIDTH-1 : 0] response;
begin

dut.bfm processor.bim processor.cdn axid 1t
dut.bfe processor.bim processor.cdn axi
Sdisplay (= ==» ANI READ Tima [4T)
CHECK, RESPOMSE OFAY (zesponas);
and

endtask

ce_mascer bfm inat.SEND READ ADDRESS(address,prot);
te_master bi “:t-mm_m_mfﬁiéuw,:c:rc::::l-:l

Figure 2-41: Read Task Code

[%3] Data [Ox%0Ex][%d]" , §time, address ,REG HAME(address), daca,data };

Reference Design

Testing for the Pcore is written using the above tasks. The example code is displayed in

Figure 3-42.

TEST AESL PCORE B

// write op code and make sure only 8 bit are writable

Sdisplay("---~

SINGLE_WRITE ('VAR_A ADDR,S5,mtestProtection,4'bllll, response); #20;
SINGLE READ('VAR A ADDR,rd data,mtestProtection,response); #20;
SINGLE WRITE(VAR _B ADDR,10,mtestProtection,4'bllll, response); $20;
SINGLE READ (VAR B ADDR,rd data,mtestProtection,response); £50;
§display ("----> Enable AP START --—----—-—- "y

SINGLE WRITE(AP_START_ADDR, 1 mtestFrotection,4'bllll, response); £5 :-;I
SINGLE READ ('AP IDLE ADDR,rd daca,mtescProtection,response);: §20;
SINGLE READ ('VAR C ADDR,rd data,mtestProtection,response); #20;

Figure 2-42: Pcore Testing Example Code

Refer to the system_tb.v file in the /simulation directory for the complete code.

High-Level Synthesis www.xilinx.com
UG871 (v2012.2) August 20, 2012

90

http://www.xilinx.com

& XILINX. Reference Design

Running the Simulation

The final step is to run the simulation.

1. Download the Cadence AXI BFM PLI library and copy it to the /behavioral directory.

The library files are available online at: https://secure.xilinx.com/webreg/
clickthrough.do?filename=axi_bfm_ug _examples.tar.qz

Refer to AXI Bus Functional Model (D5824) for full details about the libraries. The
windows library name is 1ibxil vsim.dll.

Note: The xil vsim.dll library is compiled for 32 bit systems. Therefore you must start the
ModelSim simulator from a 32-bit command shell window.

The recommended 32-bit windows shell is the one provided under the ISE 32 bit
command prompt. To open this shell, select Windows Start > Programs > Xilinx ISE
Design Suite 14.1 > Accessories > ISE Design Suite 32 Bit Command Prompt.

2. In the shell window, do the following:
a. Change directories to the /behavioral directory.
b. Run ModelSim in GUI mode and run system_ setup.do by typingvsim -gui -do
system setup.do.
ModelSim starts and runs the system setup.do TCL script.
BN ISE Design Swite 32 Bit Command Prompt - vsim -gui -do system_setup.do [E=RE5] |l_—"-'§
c:wred Coscustomersautoss INEPE _STICKSAXI _LITEXEDE_BFHszimuilationsbehavioral
Ciscustomersautoes 158P6_STICKWAKI _LITESEDK_BFHssimulation“behavioralusim —gui -do system_setup.do
Figure 2-43: system_setup.do TCL Script
3. Override the template system tb.v fileinthe /behavioral directory with the onein
the /simulation directory.
4. In the ModelSim transcript window, type the following:
° Cc
This compiles the design files.
° S
This loads the design for simulation.
° w
This opens a wave window.
o run -all
This runs the test bench.
High-Level Synthesis www.xilinx.com 91

UGS871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX.

Figure 3-44 shows the output results on the transcript window.

High-Level Synthesis
UG871 (v2012.2) August 20, 2012

ns] Rddress[0x00000000) zeg [VAR_A_ADDR
nz] Address[Ox00000000] reg [VRAR_A_ADDR
ns] Rddreas[0x00000004] reg [VAR_E_ADDR
ns] Rddreas[0x00000004) zeg [VAR_E ADDR

ns] Addreas[0x0000000c] req [AP_START_ADDR
ns] Address[0x00000014] zeg [AP_IDLE_ADDR
| Address{0x00000008] reg [VAR_C_ADDR

[350] : MASIER 0 : *INFQ : Eeset Checks Complete
#

== ANI WRITE : time[£30.00
==> RXI READ : time[750.00
==y RXI WRITE : ctime[770.00
== ANI READ : time[£290.00
====> Enable AF_STAR] ===========
==y AI WRITE : ctime[940.00
==> AXI READ : time[l070.00
—r Time[1150.00
#

L]

-

Daca
Data
Daca
Data

Darca
Data
Data

Figure 2-44: Transcript Window

www.Xilinx.com

[0x00000005]
[Ox00000005] [
[ox0000000a]
[0x00000008] [

[Ox00000001]
[0x00000000] [
[Oxa000000£] {

Reference Design

5]

10]

Q]
15]

92

http://www.xilinx.com

& XILINX.
Chapter 3

Vivado HLS: Integrating System
Generator

Introduction

One of the features in Vivado HLS 2012.2 is the ability to export RTL designs targeted to
7-series devices into Xilinx System Generator environment. This tutorial describes the steps
in taking a design from Vivado HLS into System Generator.

Software Application for Vivado HLS

A Vivado HLS design project is made of 2 software components: a testbench and the code
which will be transformed into hardware by the tool. The software directory included with
this tutorial contains the software files for the example:

« Test bench file fir test.cpp
« Design File fir.cpp

« A header file £ir.h used with the test bench and the design files.
The header file filter.h is shown in Example 1.1.

#include <stdio.h>

#include <stdlib.h>

#include <hls_ stream.h>

#define TAPS 21
#define RUN_LENGTH 100

int fir hw(hls::stream<int> &input val, hls::stream<int> &output val) ;

Example 1.1 FIR Header File

The testbench file fir test.cpp is shown in Example 1.2. This file follows the
recommended Vivado HLS approach of separating the testbench code from the code

High-Level Synthesis www.xilinx.com 93
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Software Application for Vivado HLS

targeted for hardware implementation. This allows a simple way of exercising the same
hardware function with different testbenches and code reuse in other hardware projects.

The testbench file is self-checking file. Vivado HLS requires the testbench to issue a return
value of 0 if the functionality is correct and any non-zero value if there is an error. In this test
bench, a version of the filter called £ir swis executed in the test bench and it's results
compared to those of function £ir hw. Function fir hw will be synthesized to RTL: the
test bench will confirm both functions produce the same results before and after synthesis.

By checking the output of the software implementation against the hardware
implementation of function FIR, you can be certain that the generated hardware is correct.
Another approach to generating self-checking testbenches is to have known good data files
containing the expected result of the hardware function.

#include “fir.h”

int fir sw(hls::stream<int> &input val, hls::stream<int> &output val)
{
int I;
static short shift reg[TAPS] = {0};
const short coeff [TAPS] = {6,0,—4,—3,5,6,—6,—13,7,44,64,44,7,—13,
-6,6,5,-3,-4,0,6};

for(i=0; i < RUN_LENGTH; i++) {
int sample;
sample = input val.read();

//Shift Register
for (int j=0; j < TAPS-1; j++){
shift regl[j] = shift regl[j+1];

}

shift reg[TAPS-1] = sample;

//Filter Operation
int acc = 0;
for (int k=0; k < TAPS; k++){
acc += shift regl[k] * coeff [k];
}
output_val.write (acc) ;
!
}

int main{()
hls::stream<int> input sw;
hls::stream<int> input hw;
hls::stream<int> output hw;
hls::stream<int> output sw;

//Write the input values

for(int i = 0; i < RUN LENGTH; i++) {
input sw.write (i) ;
input hw.write (i) ;

}

High-Level Synthesis www.xilinx.com 94
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Software Application for Vivado HLS

//Call to software model of FIR
fir sw(input sw, output sw);
//Call to hardware model of FIR
fir hw(input hw, output hw) ;

for (int k=0; k < RUN LENGTH; k++) {
int sw, hw;
sw = output sw.read() ;
hw = output_hw.read() ;

if (sw != hw)
printf (*ERROR: k = %d sw = %d hw = %d\n”, k,sw, hw) ;
return 1;
}
}
printf (“Success! both SW and HW models match.\n”) ;
return 0;

}
Example 1.2 FIR Testbench Code

The version of the FIR function, fir hw, which will be exported to a System Generator
design, is shown in Example 1.3. This code is the same code as the software version of FIR.
This design uses the hls::stream class to implement a streaming data type. See the Vivado
Design Suite User Guide: High-Level Synthesis (UG902) for more details on using steaming
interfaces.

An optimization directive for the £ir hw function is embedded into the source code as a
pragma: HLS PIPELINE II=1 rewind. This optimization will ensure that in the RTL
implementation, each iteration of the for-loop will be implemented to operate in a
pipelined manner with 1 clock cycle (II=1) between iterations: iteration 1 will start, and one
clock cycle later iteration 2 will start (even though iteration 1 has not finished). The rewind
option ensures this iteration rate can be performed by the entire function.

#include “fir.h”

int fir hw(hls::stream<int> &input val, hls::stream<int> &output_val)
int I;
static short shift reg[TAPS] = {0};
const short coeff [TAPS] = {6,0,—4,—3,5,6,—6,—13,7,44,64,44,7,—13,
-6,6,5,-3,-4,0,6};

for(i=0; i < RUN_LENGTH; i++) {
#pragma HLS PIPELINE II=1 rewind

int sample;
sample = input val.read();

//Shift Register
for(int j=0; j < TAPS-1; j++){
shift regl[j] = shift regl[j+1];

}

shift reg[TAPS-1] = sample;

//Filter Operation

High-Level Synthesis www.xilinx.com 95
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Create a Project in Vivado HLS for the FIR Application

int acc = 0;
for (int k=0; k < TAPS; k++){
acc += shift regl[k] * coeff [k];
}
output_val.write(acc);
1
}

Example 1.3 FIR Code for Hardware Generation

Create a Project in Vivado HLS for the FIR
Application

The following steps will demonstrate how to run Vivado HLS and create the FIR application
as a hardware block for a System Generator based design.

To invoke Vivado HLS, through the Windows menu: Start > All Programs > Xilinx Design
Tools > Vivado > Vivado HLS.

High-Level Synthesis www.xilinx.com 96
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Create a Project in Vivado HLS for the FIR Application

© Vivado HLS o & s

File Edit Project Solution Window Help
'+ |Vivado HLS Welcome Page & coos

XILINX

VIVADC

Getting Started Documentation
I""'q'\ Create New Project == Tutorials
\ -_' \ New Project Wizard will guide you through the process of mm Invaluable for first time users orto try new features.
I‘t % selecting design sources and a target device for a new ‘
L project.

/‘ . OpenProject fe)y=p, User Guide
\ =\ Open any previously created project y More detailed info on Vivado HLS commands, dialogs and
\ x buttons

e Open Recent Project aei3l Release Notes Guide
\,‘ Open one ofthe most recently used projects. _'7‘ Information about installation and new features in this
\ release.

Browse Examples

Browse example projects

Figure 3-1: Vivado HLS Welcome Screen

1. Click the Create New Project button on the GUI toolbar.
2. Set the project name to £ir prj (Figure 3-2)

3. Click Next to set the location for the project (Figure 3-2)

High-Level Synthesis www.xilinx.com 97
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX.

Project Configuration
Create Vivado HLS project of selected type

Create a Project in Vivado HLS for the FIR Application

Project name: | fir_prj

Location: C:\data\vivado_hls_example

Top Level
@ C/C++

() SystemC

| o

Fimish

Figure 3-2:

4. Click Next to set the top function to

High-Level Synthesis

www.Xilinx.com

Project Configuration

fir hwand add the fir.cpp (Figure 3-3).

98

UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX.

Create a Project in Vivado HLS for the FIR Application

Add/Remove Files

Add/fremove C-based source files (design specification)

Top Function: fir_bw
Design Files

| MName

1] fir.cpp

CFLAGS Add Files...
|

Edit CFLAGS..

Remove

[< Back JI Next > I Finish Cancel

Figure 3-3:

Add Files for Hardware Synthesis

5. Click Next to add the file fir test.cpp (Figure 3-4).

High-Level Synthesis
UG871 (v2012.2) August 20, 2012

www.Xilinx.com 99

http://www.xilinx.com

& XILINX.

Add/Remove Files
Add/remove C-based testbench files (design test)

TestBench Files

Name CFLAGS
|| fir_test.cpp

| < Back ” MNext > l Finish

Add Folder...
Edit CFLAGS...

Remove

Figure 3-4: Add Testbench Files

6. Set the clock period to 10 (Figure 3-5).

7. Click on Part Selection to set the FPGA target (Figure 3-6).

High-Level Synthesis www.xilinx.com
UG871 (v2012.2) August 20, 2012

Create a Project in Vivado HLS for the FIR Application

100

http://www.xilinx.com

& XILINX. Create a Project in Vivado HLS for the FIR Application

. New Vivado HLS Projec L B S

Solution Configuration
Create AutcESL solution for selected technology

Bl
T

Solution Name: solutionl

Clock
Period: 10 Uncertainty:

| Part Selection
.' Part: [Please select part] [E ‘

Figure 3-5: Solution Configuration

8. Set the part to xc7k420t££g1156-1 and click OK(Figure 3-7).

High-Level Synthesis www.xilinx.com 101
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX.

4 | Part Selection Dialog X
Filter
Product Category: Any = | Package: ffgl156] -
Family: kintex] ~ | Speed Grade: | -1 *
Sub-Family: Any ~ | Temp Grade: | Any -
Search: =
Device Family Package Speed
%<7 kd20tffgl156-1 kintex? ffgllss -1

)| | x<Tk4B0tFfgl156-1 kintex7 ffgllse -1

|

|

0K Cancel
Figure 3-6: Part Selection

9. Click Finish, the Vivado HLS GUI should look like Figure 3-11

High-Level Synthesis
UG871 (v2012.2) August 20, 2012

www.xilinx.com

Create a Project in Vivado HLS for the FIR Application

102

http://www.xilinx.com

& XILINX

|+ | Vivada HLS - fir_pej (Chdats wivado_hls_example\fir_prj)

Create an RTL design

File Edit Project Selution Window Help Run
$| < ® B8 | L K- H-0-|p-E@
1 Debug ._iinhuia
L1 Explorer 2
PREA T
wil Includes
= Source
iy Test Bench
a4 1= soluton]
4§ constraints
of directives.tcl
o scripticl

ml ~ = ‘Q

& =0

B Console 51 @) Erors| @ Wamings
COT Build Conzole [fir_prj]

1 item selected

=0} owti %~ #Direc|] = O

An outline i not available.

M EBrie=0

Figure 3-7: Vivado HLS after Project Creation

Create an RTL design

The first step in generating a hardware block with Vivado HLS is to check the correctness of
the C code. This can be done within Vivado HLS using the software build and run

commands.
The steps to verify C code works correctly are as follows:

1. Click the software Build icon on the GUI toolbar (Figure 3-8)

0

Figure 3-8: Build Icon

High-Level Synthesis
UG871 (v2012.2) August 20, 2012

www.xilinx.com

103

http://www.xilinx.com

& XILINX. Create an RTL design

2. Click the software Run icon on the GUI toolbar (Figure 3-9)

Figure 3-9: Run Icon

3. Select fir_prj.Debug and click ok. Console should look like Figure 3-10.

&l Console &3 Q] Errors| & Warnings

<terminated> adders_prj.Debug [C/C++ Application]
Success both SW and HW models match
|
Figure 3-10: Expected Console Output

Once the C code is known to be correct, it is time to generate the module for System
Generator. The following steps describe how to accomplish this task.

Note: All designs exported to the System Generator environment must have a global clock-enable
signal. If the design does not have this implemented in the RTL, the Export RTL will process with halt
with an error.

4. Click Solution > Solution Settings (Figure 3-11).

High-Level Synthesis www.xilinx.com 104
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Create an RTL design

|Solution| Window Help Run
& Solution Settings...

Synthesis »
Cosimulation
Export RTL

i & &

Open Design Viewer

Open Report »

Figure 3-11: Solution Settings

5. Select General and then click Add (Figure 3-12).

rid Solution Sel‘l"mgs [W'uﬁmn“I: - ey --._ : - . |
[|
5 General Configuration Settings
B Synthesis
[+ Cosimulation Commands
H Export |
5 Design Viewer Command Passmeters Add
[
L]
|
[
[oK] | Cancel

Figure 3-12: Configuration Settings

High-Level Synthesis www.xilinx.com 105
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Create an RTL design

6. Set config interface as the command (Figure 3-13).

7. Click Clock Enable (Figure 3-13) and then click OK.

g - -]
Command:
config_interface -
Parameters

clock_enable (¥
expose_global

[ok [concel

Figure 3-13: Command Configuration
The next step is to synthesize the C code into an RTL design.

8. Click the Synthesis icon on the GUI toolbar (Figure 3-14).

kB

Figure 3-14: Synthesis Icon

Once synthesis complete, the report file will open automatically. The report can be review
to ensure the design meets the desired area and performance. If the desired performance
has been achieved, the design can be exported to the System Generator environment.

9. Click the RTL Export icon on the GUI toolbar (Figure 3-15)

High-Level Synthesis www.xilinx.com 106
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Create an RTL design

tH

Figure 3-15: RTL Export Icon
10. When the Export RTL menu opens, select System Generator for DSP from the
drop-down menu (Figure 3-16).

11. Click OK.
At this step, logic synthesis can be executed to evaluate if the timing and area estimates
reported by Vivado HLS will be met after RTL synthesis. To perform this step, the path to the

RTL synthesis executable must be in the system search path. This step is not performed in
this example.

| Export RTL Dialog

| Export RTL

| Format Selection

[System Generator for DSP A

Options

| |Evaluate |Verilog .

|| Do not show this dialog box again.

| [QK] [Cancel

Figure 3-16: RTL Export Dialog

12. Check the console for successful execution (Figure 3-17).

High-Level Synthesis www.xilinx.com 107
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Import the Design into System Generator

@I EINPL-Sj Exporting RTL as an IP for System‘Gen;rato;* for DSP.
@I [LIC-101] Checked in feature [HLS]

Figure 3-17: Successful Execution of RTL Export

The package for System Generator will be available in the solution/impl directory. A
sysgen directory containing simulation and implementation models of the synthesized
C/C++ function will be created in this location.

Note: If RTL synthesis was execute to evaluate the design, the results of RTL synthesis are not
included in the export package. They are only provided as an evaluation check, not part of the IP, and
hence they are stored in the solution/impl/<HDL> directory (verilog or VHDL, depending on the
selection made in Figure 3-16). The RTL IP should be re-synthesized with the complete design to
obtain the final results (after the entire design is placed and routed).

Import the Design into System Generator

Open the file fir sysgen.mdl file in MatLab. This shows the design shown in
Figure 3-18.

High-Level Synthesis www.xilinx.com 108
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Import the Design into System Generator

File Edit View Simulation Format Tools Help

O S Bl =R Tl ER 2 [100 |N0rma| LJ BE nEE®

&

System
Generator

I S
. ye— ap_rst

s =

ap_idle
o ----- 3
_—
Pulse Generator apistar ap_resdy
ap_ready
HEH
. s out} e
Fulse Generstgr] MPUlval_V_dout input_val_V_resd
; e o
"""" sutput_val_V_din
et input_val_V_smpy_n
i m output_val_V_write
s
Constant2 output usl 4l o Frmn m output_val_V_hwr .
output_val__lwr
Scope
Ready 100% loded5

Figure 3-18: Initial fir_sysgen Design
The RTL IP created by Vivado HLS can now be imported into this initial design.

1. Right-click and select the option XilinxBlockAdd to instantiate new Vivado HLS block.

2. Scroll down the list in dialog box and select Vivado HLS or partially type the name
Vivado HLS, as shown in Figure 3-19.

3. Select Vivado HLS to insatiate the initial block.

High-Level Synthesis www.xilinx.com 109
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Import the Design into System Generator

File Edit View Simulation Format Tools Help
DEH&| st B2RB|E 42> 500 [Nomal B Bes nEES®
F
System
‘Generator
Qut
z L | ap done =
[n }---e- 5 Add block Viv Fone
Constant Pt -
Lt Vivado HLS Out |———
S ap_idle i
T e (R S
Out
Pulse Generator sp_start 3p_r=ady
ip_ready
] I i S ow] -
5] L[nput_val ¥ read
Pulse Generator! input_val_V_dout { val_V_read
Out
g " | owtput_val V_din
1 _ """" * ocutput_val_W_din
Constanti input_val_V_empy_n
i L - output_val WV _write
output_val_V_write I
------- > s
Constantz CwtPut_val V_full_n o [out] output_val V_jar
output_val_V_lwr
Scope
Ready [100% | | lodeds A
— — .

Figure 3-19: Instantiating an Vivado HLS Block

The next step is to import the RTL IP from the Vivado HLS project solution directory.

4. Double-click on the newly instantiated Vivado HLS block to open the Block Parameters
dialog box.

Browse to the solution directory where the Vivado HLS block was exported (Figure 3-20).

High-Level Synthesis www.xilinx.com 110
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX. Import the Design into System Generator

- B fir_sysgen * - W

File Edit View Simulation Format Tools Help

DEHS $RB (e 2(22]> 20 [Noma] BeEBSw WEES®

3¢ Vivado HLS (Xilin High Le.., i (5 oS

St This block allows including C,C++ and SystemC source
3 files in System Generator for DSP designs.

Solution s_example/fir_prj/solution1/'
------- >

Constant

HHH
: [S

Fulse Generator

I:‘ Display signal types

....... ; Lok [concel J[e J[aon |
Pulse Generatorl input-val V- dott —
ke

....... 3 " Vivado HLS output_val_V_din

Constant! input_val_V_empy_n
Aranan » - output_val_V_write

output_val_V_write

| [> —
output_val_V_full_n e m GUtput_val_V_far

Constant2
output_val_V_lwr

Scope

Ready [100% | | lode4s A

Figure 3-20: Importing Vivado HLS IP

Connect the ports on the IP to the design ports to obtain the results shown in Figure 3-21.

High-Level Synthesis www.xilinx.com 111

UG871 (v2012.2) August 20, 2012

http://www.xilinx.com

& XILINX

Import the Design into System Generator

e — f -
|8 isysoen

File Edit View Simulation Form

at Tools Help

Fulse Generator input_val_V_dout

" [n |
i o input_val_V_empy_n

-

cutput_val_V_full_n

Constant2

Ready

cutput_val_V_din
input_val_W_empty_n

output_val_V_write

output_val_V_full_n
cutput_val_V_ap_hwr

input_val V_r=ad
input_val_W_read

—s outl o

cutput_val_V_din

— owl e

cutput_val_V_write

—e ouwl oo

cutput_val_V_lwr

Vivado HLS

100%

= ;
D= S ar) &= | m fi0o |Norma| ~ | & & =] = s
i‘
System
Generstor
' e N
=r_den=
| [e
= =rdk
Ty ap_idle
i Foe G
sp_ready Out
Pulse Generator B bt =p_resty
sp_ready
e
S =] input val V_dout fir_hw input wal V_read Out

oded5

Scope

G e ——— o — =

High-Level Synthesis
UG871 (v2012.2) August 20, 2012

Figure 3-21:

www.xilinx.com

Final Design

112

http://www.xilinx.com

& XILINX.
Appendix A

Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the
Xilinx Support website at:

www.xilinx.com/support.

For a glossary of technical terms used in Xilinx documentation, see:

www.xilinx.com/company/terms.htm.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

References

* Vivado Design Suite 2012.2 Documentation
(http://www.xilinx.com/support/documentation/dt vivado vivado2012-2.htm)

High-Level Synthesis www.xilinx.com 113
UG871 (v2012.2) August 20, 2012

http://www.xilinx.com/support
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2012.2;t=vivado+docs
http://www.xilinx.com

	Vivado Design Suite Tutorial: High Level Synthesis
	Revision History
	Table of Contents
	Vivado HLS: Introduction Tutorial
	Introduction
	Licensing and Installation
	Overview
	Design Goals
	Tutorial Setup
	Learning Goals

	Starting Your Project
	Opening the Vivado HLS GUI
	Creating a New Project
	Summary

	C Validation
	Test Bench
	Types of C Compilation
	C Validation
	Summary

	Synthesizing and Analyzing the Design
	Synthesis
	Design Analysis: The Design Viewer
	Design Analysis Summary
	Summary

	Bit-Accurate Design
	Update the C Code
	Summary

	Design Optimization
	Optimization: IO Interface
	Optimization: Small Area
	Optimization: Highest Throughput
	Summary

	RTL Verification and Export
	RTL Verification
	RTL Export
	Summary

	The Shell and Scripts
	Vivado HLS at the Shell
	Creating a Script
	Example Scripts Directory

	Vivado HLS: Integrating EDK
	Introduction
	Software Requirements

	Reference Design
	Vivado HLS Pcore Functionality
	Block Diagram
	Creating EDK Pcore with AXI-LITE
	Creating EDK Pcores
	Pcore Register List
	Integrating Generated Pcores
	Generating the FPGA Bitstream
	Controlling the Generated Pcore
	Creating Application Software
	Running the Demo on the Avnet MicroBoard
	Running Bus Functional Model Simulation

	Vivado HLS: Integrating System Generator
	Introduction
	Software Application for Vivado HLS
	Create a Project in Vivado HLS for the FIR Application
	Create an RTL design
	Import the Design into System Generator

	Additional Resources
	Xilinx Resources
	Solution Centers
	References

