Vivado Design Suite
Tutorial

High-Level Synthesis

UG871 (v 2013.3) November 8,2013

& XILINX.

& XILINX.

The information disclosed to you hereunder (the “Materials”) isprovided solely forthe selection and use of Xilinx products. To the
maximum extentpermitted by applicable law: (1) Materialsare made available “AS I1S” and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx
shall not be liable (whetherin contract ortort, including negligence, orunder any other theory of liability) forany lossor damage of
any kind or nature relatedto, arising under, orin connection with, the Materials (including your use of the Materials), including for
any direct, indirect, special, incidental, or consequential lossor damage (includinglossof data, profits, goodwill, or any type of loss
or damage suffered asa result of any action brought by a third party) even ifsuch damageorlosswas reasonably foreseeable or
Xilinx hadbeenadvised of the possibility of the same. Xilinx assumesno obligationto correct any errorscontained inthe Materials
or to notify you of updatesto the Materialsorto product specifications. You may not reproduce, modify, distribute, or publicly display
the Materialswithout prior written consent. Certain productsare subject to the termsand conditionsof the Limited Warrantieswhich
can be viewed at http://www.xilinx.com/warranty.htm; IP coresmay be subject to warranty and support termscontained ina license
issued to you by Xilinx. Xilinx productsare notdesigned orintended to be fail-safe orforuse in any application requiring fail-safe
performance; you assume sole risk and liability for use of Xilinx productsin Critical Applications
http://www.xilinx.com/warranty.htm#critapps.

Notice of Disclaimer

©Copyright 2013 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands
includedherein are trademarksof Xilinxinthe United Statesand other countries. All other trademarksare the property of their
respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision
11/08/2013 2013.3 New Lab content detailsand editorial updates.
06/20/2013 2013.2 New Lab 2 added to Using HLS IP in a Zynq Processor Design.

04/03/2013 2013.2 New Release for Vivado Design Suite 2013.2.

http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm%23critapps

& XILINX.

Table of Contents

ReVISION HISTOIYcciiiiiiiiiiiiiccnniin s ss s s s s s s s s s e s s e s e s s e s e s s s snssssses 2
Chapter1 Tutorial Description.........ccccoiiiiiiiiiiiiiiiiiieneeeneeeeererreee e 6
OVEIVIEW ..ottt e e s s a s s s e e e e e e e e e e s s s s s s aaaaab e e e e e eees 6
Software ReQUIr@MENTS..........cooiiiiiicrrrreee e senrre s e e e s e s s e s s s s sssmnnn s s e e e e esee s 7
Hardware ReqUIrEMENTSeuiiiiiiiiiiiiiiiiiiiicicnecerrrceeeeeeassssessssssssssssessesssesssnsssnnnnnnes 7
Obtaining the Tutorial Designs............cccuiviiiiiiiiiiiniini s 8
Preparing the Tutorial Design Files..............coooiiiiimiiiiiiiiiiiiiicreercc e 8
Chapter 2 High-Level Synthesis Introductory Tutorial........................... 9
L0 =T T 9
Tutorial Design Description...........ccooiiiiiiiiiiinieeiiiiciirerere e 9
HLS Lab 1: Creating a High-Level Synthesis Project............ccoccueeiiiiinniciiiiiinneecnnniinnneen, 10
HLS: Lab 2 Using the Tcl Command Interface...........cccccvviiiiiiiiiiiiiiiiiirrrrrreee e 24
HLS: Lab 3: Using Solutions for Design Optimization............cccccceeviiiinieciiiiiineeecinniinneeee, 29
Chapter3 CValidation...........cceuuuiiiiiiiiiiiiiiiiiiiiirrccsnnnnee e eeeeeeeeeee 41
OVEIVIEW ...ccoiiiiiiiiiiiiiitirtrrtr e s s s s s b bbb s e e e e e e e s e sessssssnssssssnsnnne 41
Tutorial Design Description..........ccooiiiiiiiiiiiiieiiiiirrrree e 41
Lab 1: C Validation and Debug.............cccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiicnnssnsssnns s sseeseeeees 42
Lab 2: C Validation with ANSI C Arbitrary Precision Types...........cccovvvmmmmrrrerieciiiinniniinnn. 50
Lab 3: C Validation with C+ + Arbitrary Precision Types..........cccccceviinureeiiiiinneeecinniinnnen. 55
Chapter4 Interface Synthesis.........cccccooveiiimrriiiiiiiiiiiirree e, 60
Tutorial Design Description............cuuuuuuuiiiiiiiiiiiiiiiiiiiirrrrrrrrrsreses s s ssssssseeees 60
Interface Synthesis Lab 1: Block-Level I/O protocols............ccccocvuuriiiiiiiuneeciiiiiinecccininnnne 62
Interface Synthesis Lab 2: Port I/O protocols...........ccccoemirriiiiiiiiiiiicccceeeeeeneeeeenn 71
Interface Synthesis Lab 3: Implementing Arrays as RTL Interfaces..........cccccoevvureeriiinnns 77
Interface Synthesis Lab 4: Implementing AXI Interfaces.........ccccccceeiiiiiiiiiiiiiiinnennneceennnnn, 92
Chapter 5 Arbitrary Precision Types..........cccoovivviinnnnnnnnnennnnennnennennn. 102
OVEIVIEWcoiiiiiiiiiiiieeettte s e s e s s s s asas e s e e e e e s e s s se s s s s s snnsnnnnnns 102
High-Level Synthesis www.xilinx.com 3

UG871 (v 2013.3) November 8,2013

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=3

Arbitrary Precision: Lab L. 103

Arbitray Precision: Lab 2............ccoiiiiiiiiiiiiiinrsnnss s 108
Chapter 6 Design Analysis..........ccccoeviiiiiiiiiiiiiiiiiiiiiniceeeeeeeeeeee 114
OVEIVIEWcoiiiiiiiiiiiieerttee et e e e s s s s s as s s s b e e e e e s s s e sessss s ssnsnnnnnns 114
Tutorial Design Description..........ccoocvuiiiiiiiiiiiiiiiii e 114
Lab 1: Design Optimization............ccccceiiiiiiiiiiiiiiiiiiiiieieccccnn s 115
Chapter7 Design Optimization............ccooeiiiiiiiiiiiiiiiiiiiiinneenneeeees 147
L0 =T T 147
Tutorial Design Description...........cooviiiiiiiiiiiniieiicii e 148
Lab 1: Optimizing a Matrix Multiplier.............ccovvviiiiiiiiiiiini e 148
Lab 2: C Code Optimized for I/O ACCESSES..........ccccemrrrrieiiiiiiiiiiennnnerereeeeessssssssessnsnns 167
(0o 1T [T o 170
Chapter 8 RTL Verification............ccceovviiiiiiiiiiiiiicicccccccceeneenneeene 171
L0 Y= P 171
Tutorial Design Description...........cooiiiiiiiiiiiiieiiiiii e 171
Lab 1: RTL Verification and the C test bench............ccccccviiiiiiiiiiiiiiiiiieecs 172
Lab 2: Viewing Trace Files in Vivado............cccoovmmmmiiiiiiiiiiiiiieeeeeccccnne 179
Lab 3: Viewing Trace Files in ModelSim...........cccccceiiiiiiiiiiiiiniiiiiiciiieccnecccnaee 183
CONCIUSION......cueiiiiiiiiiecc s 187
Chapter9 Using HLSIP in IP Integrator............cceevvvvvvveneeniciiciiiinnnnnn, 188
L0 =T T 188
Tutorial Design Description..........cccuiiiiiiiiiuiiiiiiiiiniii s 188
Lab 1: Integrate HLS IP with a Xilinx IP Block.............ccooouueiiiiiiniiiiiiiiiiieeiiniieecccnns 189
L0007 o] (1T T o 213
Chapter 10 Using HLSIP in a Zynq Processor Design..........ccccccceeu.... 214
OVEIVIEWcoiiiiiiiiiieeerete et s s s e s s asas s s e e e e e e s e s s sessss s snnsnnnnnns 214
Tutorial Design Description..........cccoiiiiiiiieiiiiiiiniiiiii s 214
Lab 1: Implement Vivado HLS IP on a Zynq Device........cccccccceviiiiiiiiinnnnneneeeeceennnnnnnn. 215
Lab 2: Streaming data between the Zynq CPU and HLS Accelerator Blocks................... 239
(0o 1T LT o 262
Chapter11 Using HLS IP in System Generatorfor DSP....................... 263

High-Level Synthesis www.xilinx.com [Send Feedback] 4
UG871 (v 2013.3) November 8,2013

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=4

L0 R =Y VAT - N 263

Tutorial Design Description..........ccccviiiiiiuiiiiiiiiniiiiii s 263
Lab 1: Package HLS IP for System Generator............ccccceeeiiiiiiiiiiiiiiiiininnneneeeneccceennnee 264
(oY 4T [T o 268

High-Level Synthesis www.xilinx.com [Send Feedback] 5
UG871 (v 2013.3) November 8,2013

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=5

& XILINX.

Chapter 1 Tutorial Description

Overview

This Vivado® tutorial is a collection of smaller tutorials that explain and demonstrate all steps in
the process of transforming C, C++ and SystemC code to an RTL implementation using High-
Level Synthesis.

High-Level Synthesis Introduction

This tutorial introduces Vivado High-Level Synthesis (HLS). You can learn the primary tasks for
performing High-Level Synthesis using both the Graphical User Interface (GUI) and Tcl
environments.

The tutorial shows how you create an initial RTL implementation and then you transform it into
both a low-area and high-throughput implementation by using optimization directives without
changing the C code.

C Validation

This tutorial reviews the aspects of a good C test bench and demonstrates the basic operations
of the Vivado High-Level Synthesis C debug environment. The tutorial also shows how to debug
arbitrary precision data types.

Interface Synthesis

The interface synthesis tutorial reviews all aspect of creating ports for the RTL design. You can
learn how to control block-level 1/O port protocols and port 1/O protocols, how arrays in the C
function can be implemented as multiple ports and types of interface protocol (RAM, FIFO, AXIA
Stream), and how AXI4 bus interfaces are implemented.

The tutorial completes with a design example in which the I/O accesses and the logic are
optimized together to create an optimal implementation of the design.

Arbitrary Precision Types

The lab exercises in this tutorial contrast a C design written in native C types with the same

design written with Vivado High-Level Synthesis arbitrary precision types, showing how the
latter improves the quality of the hardware results without sacrificing accuracy.

Design Analysis

This tutorial uses a DCT function to explain the features of the interactive design analysis
features in Vivado High-Level Synthesis. The initial design takes you through a number of
analysis and optimization stages that highlight all the features of the analysis perspective and
provide the basis for a design optimization methodology.

High-Level Synthesis www.xilinx.com 6

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=6

& XILINX. Tutorial Description

Design Optimization

Using a matrix multiplier example, this tutorial reviews two-design optimization techniques. The
first lab explains how a design can be pipelined, contrasting the approach of pipelining the
loops versus pipelining the functions.

The tutorial shows you how to use the insights learned from analyzing to update the initial C
code and create a more optimal implementation of the design.

RTL Verification

This tutorial shows how you can use the RTL cosimulation feature to verify automatically the RTL
created by synthesis. The tutorial demonstrates the importance of the C test bench and shows
you how to use the output from RTL verification to view the waveform diagrams in the Vivado
and Mentor Graphics ModelSim simulators.

Using HLS IP in IP Integrator

This tutorial shows how RTL designs created by High-Level Synthesis are packaged as IP, added
to the Vivado IP Catalog, and used inside the Vivado Design Suite.

Using HLS IP in a Zynq Processor Design

In addition to using an HLS IP block in a Zyng®-7000 SoC design, this tutorial shows how the C
driver files created by High-Level Synthesis are incorporated into the software on the Zynq
Processing System (PS).

Using HLS IP in System Generator for DSP

This tutorial shows how RTL designs created by High-Level Synthesis can be packaged as IP and
used inside System Generator for DSP.

Software Requirements

This tutorial requires that the Vivado Design Suite 2013.3 release or later is installed.

Hardware Requirements

Xilinx recommends a minimum of 2 GB of RAM when using the Vivado tools.

High-Level Synthesis www.xilinx.com 7

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=7

& XILINX. Tutorial Description

Obtaining the Tutorial Designs

As shown in Figure 1, designs for the tutorial exercises are available as a zipped archive on the
Xilinx Website, tutorial documentation page.

IMPORTANT: All the tutorial examples for Vivado High-Level Synthesis are available for

download at http://www.xilinx.com/cgi-
bin/docs/rdoc?v=20133;t=vivado+tutorials.

(EER TR 1 i 5

‘..i: nttp://www.xilinx.com/support/documentatior p ~- R)(. $£. Vivado Design Suit...

2/18/2012 Vivado Design Suite Tut Programming and Debugging

n

as this document helpful? Yes | No

Figure 1: High-Level Synthesis Tutorial Design Files

Preparing the Tutorial Design Files

Extract the zip file contents into any write-accessible location.

This tutorial assumes that you have placed the unzipped design files in the location
C:\Vivado HLS Tutorial.

IMPORTANT: If the Vivado_HLS Tutorial directory is unzipped to a different
location, or if it resides on Linux, adjust the pathnames to the location at which you have
placed the Vivado_HLS_Tutorial directory.

High-Level Synthesis www.xilinx.com

UG871 (v2013.3) November 8,2013 l Send Feedback I

8

http://www.xilinx.com/
http://www.xilinx.com/cgi-bin/docs/rdoc?v=20133;t=vivado+tutorials
http://www.xilinx.com/cgi-bin/docs/rdoc?v=20133;t=vivado+tutorials
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=8

& XILINX.

Chapter 2 High-Level Synthesis Introductory Tutorial

Overview

This tutorial introduces Vivado® High-Level Synthesis (HLS). You can learn the primary tasks for
performing High-Level Synthesis using both the Graphical User Interface (GUI) and Tcl
environments.

The tutorial shows how use of optimization directives transforms an initial RTL implementation
into both a low-area and high-throughput implementation.

Lab 1

Explains how to:

e Set up a High-Level Synthesis (HLS) project

e Perform all major steps in the HLS design flow:
o Validate the C code
o0 Create and synthesize a solution

o Verify the RTL and package theIP.

Lab 2

Demonstrates how to use the Tcl interface.

Lab 3

Shows you how to optimize the design using optimization directives. This lab creates multiple
versions of the RTL implementation and compares the different solutions.

Tutorial Design Description

To obtain the tutorial design file, refer to the section

High-Level Synthesis www.xilinx.com 9

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=9

& XILINX. High-Level Synthesis Introductory Tutorial

Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS Tutorial\Introduction.

The sample design used in this tutorial is a FIR filter. The hardware goals for this FIR design
project are:

e Create a version of this design with the highest throughput

The final design must process data supplied with an input valid signal and produce output data
accompanied by an output valid signal. The filter coefficients are to be stored externally to the
FIR design, in a single port RAM.

HLS Lab 1: Creating a High-Level Synthesis Project

Introduction

This lab shows how to create a High-Level Synthesis project, validate the C code, synthesize the
design to RTL, and verify the RTL.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS Tutorial files are unzipped and placed in the location
C:\Vivado HLS Tutorial.

Step 1: Creating a New Project
1. Open the Vivado® HLS Graphical User Interface (GUI):

0 On Windows systems, open Vivado HLS by double-clicking the Vivado HLS 2013.3
desktop icon.

0 On Linuxsystems, type vivado_hls at the command prompt.

I Wieade™ HLS .
&

Vivado HLS
2013.3

Figure 2: The Vivado HLS Desktop Icon

TIP: You can also open Vivado HLS using the Windows menu Start > All Programs >
Xilinx Design Tools > Vivado 2013.3 > Vivado HLS > Vivado HLS 2013.3.

High-Level Synthesis www.xilinx.com 10

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=10

& XILINX. High-Level Synthesis Introductory Tutorial

Vivado HLS opens with the Welcome Screen as shown in Figure 3.

+ | Vivado HLS F=% Eol ~<
File Edit | Project| Solution Window Help
+ | Vivado HLS Welcome Page i G TR

N

VIVADO " s

High-Level Synthesis

Getting Started Documentation
/‘ \ Create New Project ===, Tutorials
19\
{ \ New Project Wizard will guide you through Invaluable for first ime users of 10 try new
\x the process of selecting design sources = features.
and a target device for a new project.

Open Project) User Guide
Open one of the most recently used \ﬂ More detailed info on Vivado HLS
projects, or open any previously created E \ commands, dialogs and buttons.
project
Open Example Project Release Notes Guide
> Browse example projects

Information about installation and new
features in this release

Figure 3: The Vivado Welcome Page

2. Inthe Welcome Page, select Create New Project to open the Project wizard.
3. Asshown in Figure 4:

a. Enterthe project name fir_prj.

b. Click Browse to navigate to the location of the labl directory.

c. Select the labl directory and click OK.

d. Click Next.

+ | New Vivado HLS Project [o 2|
Project Configuration & ﬁ
Create Vivado HLS project of selected type

Project name: fir_prj|

Location: C\Vivado_HLS_Tutorial\Introduction\labl

Figure 4: Project Configuration

High-Level Synthesis www.xilinx.com 11

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=11

& XILINX.

High-Level Synthesis Introductory Tutorial

This information defines the name and location of the Vivado HLS project directory. In this case,
the project directory is Fir_prj and it resides in the 1abl folder.

4. Enter the following information to specify the C design files:

Specify Fir as the top-level function.

a.
b. Click Add Files.

c. Select Fir.c andclick Open.

d. Click Next.

Top Function: fir
Design Files

MName

=l fir.c

Add/Remove Files

+ New Vivado HLS Project

Add/remove C-based source files (design specification)

CFLAGS

< Back

[et

High-Level Synthesis

Figure 5: Project Design Files

www.Xilinx.com

UG871 (v2013.3) November 8,2013

Cancel

l Send Feedback I

12

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=12

& XILINX. High-Level Synthesis Introductory Tutorial

IMPORTANT: In this lab there is only one C design file. When there are multiple C files to
be synthesized, you must add all of them to the project at this stage.

i} Any header files that exist in the local directory 1abl are automatically included in the
project. If the header resides in a different location, use the Edit CFLAGS button to add the
standard gcc/g+ + search path information (for example, -
I<path_to_header_file_dir>)

Figure 6 shows the input window for specifying the test bench files. The test bench and all files
used by the test bench (except header files) must be included. You can add files one at a time,
or select multiple files to add using the Ctrl and Shift keys.

+ |New Vivado HLS Project =N Eoh <™
Add/Remove Files ‘:I}"E;ﬁ
Add/remove C-based testbench files (design test)

TestBench Files

Name CFLAGS Add Files...
fir_test.c ;
Mew File...
outgold.dat —_—
Add Folder...

Edit CFLAGS...

Remove

< Back “ Mext = Finish Cancel

Figure 6: Test Bench Files

5. Click the Add Files button to include both test bench files: Fir_test.c and
out.gold.dat.

6. Click Next.

High-Level Synthesis www.xilinx.com 13

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=13

& XILINX. High-Level Synthesis Introductory Tutorial

Both C simulation (and RTL cosimulation) execute in sub-directories of the solution.

If you do not include all the files used by the test bench (for example, data files read by the test
bench, such as out.gold.dat), Cand RTL simulation might fail after synthesis due to an
inability to find the data files.

The Solution Configuration window (shown in Figure 7) specifies the technical specifications of
the first solution.

A project can have multiple solutions, each using a different target technology, package,
constraints, and/or synthesis directives.

+ | New Vivado HLS Project o [-E- s

Solution Configuration

Create Vivado HLS solution for selected technology

Solution Name: solutionl

Clock
Period: 10 Uncertainty:

Part Selection

Part: [Please select part] D

Figure 7: Solution Configuration

7. Accept the default solution name (solutionl), clock period (10 ns) and clock uncertainty
(defaults to 12.5% of the clock period, when left blank/undefined).

8. Click the part selection button u to open the part selection window.

9. Select Device xc7k160tfbg484-2 from the list of available devices. Select the following from
the dropdown filters to help refine the parts list:

High-Level Synthesis www.xilinx.com 14

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=14

& XILINX.

a. Product Category: General Purpose
b. Family: Kintex®-7
c. Sub-Family: Kintex-7
d. Package: fbg484
e. Speed Grade: -2
f. Temp Grade: Any
10. Click OK.

High-Level Synthesis Introductory Tutorial

In the Solution Configuration dialog box (shown in Figure 7, above), the selected part name
now appears under the Part Selection heading.

11. Click Finish to open the Vivado HLS project, as shown in Figure 8.

i fVivado HLS - fir_prj (C\Vivado_HLS Tutorial\Introduction\lab1\fir_prj}

File Edit Project Solution Window Help
| of % | R8s e~ | A~ || ®
=2 Debug &!‘Analysis
[Explorer W =0
4 1 fir_prj
> i Includes

» = Source
- 0= Test Bench
a {= solution1
4 4 constraints

o directives.tcl
o scripttcl

Bl Console 2 9] Errors| & Warnings| ¥ Man Page
CDT Build Console [fir_prj]

1 item selected

[E=H Eol =

= 0OJ[8z Outli B~ @Dire| =0
An outline is not available.

L EEETT

e The project name appears on the top line of the Explorer window.

e A Vivado HLS project arranges data in a hierarchical form.

Figure 8: Vivado HLS Project

e The project holds information on the design source, test bench, and solutions.

e The solution holds information on the target technology, design directives, and results.

High-Level Synthesis www.xilinx.com
UG871 (v2013.3) November 8,2013

15

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=15

& XILINX. High-Level Synthesis Introductory Tutorial

e There can be multiple solutions within a project, and each solution is an implementation of
the same source code.

TIP: At any time, you can change project or solution settings using the corresponding
Project Settings and/or Solution Settings buttons in the toolbar.

Understanding the Graphical User Interface (GUI)

Before proceeding, review the regions in the Graphical User Interface (GUI) and their functions.
Figure 9 shows an overview of the regions, and each is described below.

4 Vivado HLS - fir_prj (C:\Vivado_HLS_Tutorial\Introduction\lab1\fir_prj) = o |
File Edit Project Solution Window Help Toolbar
5 X 2 R E@bR B erH
[] Synthesis | & Analysis - Buttons
BT Perspectives = O[5z Outli %\ @Dire| = O
&5 fir_prj) . An outline is m;t available.
! Includes

B~ |e|®

Debug

£ Source
fi= Test Bench
4 1= solution1
4 # constraints
o directives.tcl

W script.tcl
Explorer Information Auxiliary
Pane Pane Pane

B Console 2 @] Errors| & Warnings|& Man Page o4 J B0

Console
Pane

CDT Build Console [fir_prj]

1 item selected

Figure 9: Vivado HLS Graphical User Interface

Explorer Pane

Shows the project hierarchy. As you proceed through the validation, synthesis, verification,
and IP packaging steps, sub-folders with the results of each step are created automatically
inside the solution directory (named csim, syn, sim, and impl respectively).

When you create new solutions, they appear inside the project hierarchy alongside
solutionl.

High-Level Synthesis www.xilinx.com 16

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=16

& XILINX. High-Level Synthesis Introductory Tutorial

Information Pane

Shows the contents of any files opened from the Explorer pane. When operations complete,
the report file opens automatically in this pane.

Auxiliary Pane

Cross-links with the Information pane. The information shown in this pane dynamically
adjusts, depending on the file open in the Information pane.

Console Pane

Shows the messages produced when Vivado HLS runs. Errors and warnings appear in
Console pane tabs.

Toolbar Buttons
You can perform the most common operations using the Toolbar buttons.

When you hold the cursor over the button, a popup dialog box opens, explaining the
function. Each button also has an associated menu item available from the pulldown menus.

Perspectives
The perspectives provide convenient ways to adjust the windows within the Vivado HLS GUI.
Synthesis Perspective

The default perspective allows you to synthesize designs, run simulations, and package the
IP.

Debug Perspective

Includes panes associated with debugging the C code. You can open the Debug Perspective

after the C code compiles (unless you use the Optimizing Compile mode as this disable
debug information).

Analysis Perspective

Windows in this perspective are configured to support analysis of synthesis results. You can
use the Analysis Perspective only after synthesis completes.

Step 2: Validate the C Source Code

The first step in an HLS project is to confirm that the C code is correct. This process is called C
Validation or C Simulation.

In this project, the test bench compares the output data from the Fir function with known
good values.

1. Expand the Test Bench folder in the Explorer pane.
2. Double-click the file Fir_test.c to view it in the Information pane.

3. Inthe Auxiliary pane, select main() in the Outline tab to jump directly to the main()
function.

High-Level Synthesis www.xilinx.com 17

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=17

& XILINX. High-Level Synthesis Introductory Tutorial

Figure 10 shows the result of these actions

+ | Vivado HLS - fir_prj (CA\Vivado_HLS Tutorial\Introduction\lab1\fir_prj) o -@ e
File Edit Project Solution Window Help
il | 5Bl B o E aale - |~ & e | @
%5 Debug 6-? Analysis
[25 Explorer &2 W =08 fir_test.c & = O |(B= Qutline £3 . ¥ Directive =0
& fir_prj soint I () { - BN o %7
& Includes 1 const int SAMPLES=608; o stdioh
= Source FILE *fp; 1 math.h
= Test Bench data_t signal, output; H firh
el fir_test.c coef t taps[N] = {@,-18,-9,23,56,63,56,23,-9,-10,0,}; © mainQ:int
out.gold.dat
= solutiont int i, ramp_up;
constraints signal = @;
W directives.tcl ramp_up = 1;
o scripttcl

fp=fopen("out.dat","w");
for (i=0;i<=SAMPLES;i++) {
if (ramp_up == 1)
signal = signal + 1;
else
signal = signal - 1;

1

o
~

o

// Execute the function with latest input
fir(&output,taps,signal);

[~IRYeI)

el O

if ((ramp_up == 1) && (signal >= 75))

namn n — O-
< m 3

Figure 10: Reviewing the Test Bench Code

The test bench file, Fir_test.c, contains the top-level C function main(), which in turn calls
the function to be synthesized (Fir). A useful characteristic of this test bench is that it is self-
checking:

e The test bench saves the output from the Fir function into the output file, out.dat.
e The output file is compared with the golden results, stored in file out.gold.dat.

e If the output matches the golden data, a message confirms that the results are correct, and
the return value of the test bench main() functionis set to O.

o If the output is different from the golden results, a message indicates this, and the return
value of main() is set to 1.

The Vivado HLS tool can reuse the C test bench to perform verification of the RTL.

HLS confirms the successful verification of the RTL if the test bench returns a value of 0. If any
other value is returned by main(), including no return value, it indicates that the RTL
verification failed.

If the test bench has the previously described self-checking characteristics, the RTL results are
automatically checked during RTL verification. There is no requirement to create an RTL test
bench. This provides a robust and productive verification methodology.

4. Click the Run C Simulation button, or use menu Project > Run C Simulation, to compile
and execute the C design.

5. Inthe CSimulation dialog box, click OK.

High-Level Synthesis www.xilinx.com 18

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=18

& XILINX. High-Level Synthesis Introductory Tutorial

The Console pane (Figure 11) confirms the simulation executed successfully.

El Console 9] Errors| & Warnings | %= Man Page % BE ‘=
Vivado HLS Console

Generating csim.exe
Comparing against output data

PASS: The output matches the golden output!

@I [SIM-1] CSim done with @ errors.
@I [LIC-101] Checked in feature [VIVADO HLS]

1 [m

Figure 11: Results of C Simulation

TIP: If the C simulation failed, select the Debug option in the C Simulation dialog box,
compile the design, and automatically switch to the Debug perspective. There you can use a
C debugger to fix any problems

The C Validation tutorial module provides more details on using the Debug environment.

The design is now ready for synthesis.

Step 3: High-Level Synthesis
In this step, you synthesize the C design into an RTL design and review the synthesis report

1. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis.

When synthesis completes, the report file opens automatically. Because the synthesis report is
open in the Information pane, the Outline tab in the Auxiliary pane automatically updates to
reflect the report information.

2. Click Performance Estimate in the Outline tab (Figure 12).

3. Inthe Details section of the Performance Estimates, expand the Loop view.

High-Level Synthesis www.xilinx.com 19

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=19

& XILINX. High-Level Synthesis Introductory Tutorial

= fir_esynth.rpt i2 =5
Performance Estimates i

-l Timing (ns)

=1 Summary

Clock Target Estimated Uncertainty
default 10.00 713 1.25

m

- Latency (clock cycles)
=1 Summary
Latency Interval

min max min max Type
89 89 90 90 none

= Detail
Instance
=l Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- Shift_Accum_Loop 88 88 8 - - 11 no

Figure 12: Performance Estimates

In the Performance Estimates pane, shown in Figure 12, you can see that the clock period is set
to 10 ns. The estimated clock period (worst-case delay) is 8.43 ns. This includes an uncertainty of
1.25 ns. Therefore, the worst-case delay is roughly 8.43 —1.25 =7.18 ns.

The clock uncertainty ensures there is some timing margin available for the (at this stage)
unknown net delays due to place and routing.

In the Summary section, you can see:
e The design has a latency of 89-clock cycles: it takes 89 clocks to output the results.

e The intervalis 90 clock cycles: the next set of inputs is read after 89 clocks. This is one cycle
after the final output is written. This indicates the design is not pipelined. The next execution
of this function (or next transaction) can only start when the current transaction completes.

e The message “design is not pipelined” is also included under the pipelined type: no
pipelining is performed.
The Details section shows:

e There are no sub-blocks in this design. Expanding the Instance section shows no sub-
modules in the hierarchy.

e All the delay is due to the RTL logic synthesized from the loop named
Shift_Accum_Loop. This logic executes 11 times (Trip Count). Each execution requires 8
clock cycles (Iteration Latency), for a total of 88 clock cycles, to execute all iterations of the
logic synthesized from this loop (Latency).

High-Level Synthesis www.xilinx.com 20

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=20

& XILINX. High-Level Synthesis Introductory Tutorial

e The total latency is one clock cycle greater than the loop latency. It requires one clock cycle
to enter and exit the loop (in this case, the design finishes when the loop finishes, so there s
no exit cycle).

4. Inthe Outline tab, click Utilization Estimate (Figure 13).

=l fir_csynth.rpt 2 =g

Utilization Estimates

- Summary
Name BRAM_18K DSP438E FF LUT
Expression - - 0 44
FIFO - -
Instance - 4 45 21
Memory 1 - 0 a
Multiplexer - - - 105
Register - - 111
ShiftMemory - - E
Total 1 4 156 170
Available 650 600 202800 101400
Utilization (%) ~0 ~0 ~0 ~0
= Detail
=l Instance
Instance Module BRAM_18K DSPA8E FF LUT
fir_mul_32s_32s_32_6_ U0 fir_mul_32s_325_32_6 0 4 45 21
Total 1 0 4 45 21

Figure 13: Utilization Estimates

5. Inthe Details section of the Utilization Estimates, expand the Instance view.

The design uses a single block RAM, 4 DSP48s, and approximately 150 flip-flops and LUTs. At
this stage, the area numbers are estimates.

e RTL synthesis might be able to perform additional optimizations, and these figures might
change after RTL synthesis.

e The number of DSP48s seems larger than expected for a FIR filter.

e The multiplier instance shown in the Instance view accounts for all the DSP48s.

e Because this multiplier appear in the Instance section and not the Expressions section, it
must have been implemented as a pipelined multiplier. Standard combinational multipliers
appear in the expressions section.

In HLS: Lab 3: Using Solutions for Design Optimization, you analyze these results further.

6. Inthe Outline tab, click Interface (Figure 14).

High-Level Synthesis www.xilinx.com 21

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=21

& XILINX. High-Level Synthesis Introductory Tutorial

[¢ fir_testc |Z) fir_csynth.rpt = O]/gz outl &~ @ Dire] — O
= General Information
Interface) | Performance Estimates
= Summary B Timing (ns)

Dir Bits Protocol Source Object C Type 8 Latency (clock cycle:
ap_clk in 1 ap_ctrl_hs fir return value = Etilization Estimates
ap_rst in 1 ap_ctrl_hs fir return value E SDZT;:aw
ap_start in 1 ap_ctrl_hs fir return value = Interface
ap_done out 1 ap_ctrl_hs fir return value = Summary
ap_idle out 1 ap_ctrl_hs fir return value
ap_ready out 1 ap_ctrl_hs fir return value
y out 32 ap_vid y pointer
y_ap_vid out 1 ap_vid Vi pointer
c_address0 out 4 ap_memory c array
c_cel out 1 ap_memory c array E
c_q0 in 32 ap_memory c array
X in 32 ap_none X scalar

< [T 3 < [3

Figure 14: Interface Report

The Interface section shows the ports and 1/O protocols created by interface synthesis:

e The design has a clock and reset port (ap_clk and ap_reset). These are associated with
the Source Object Fir: the design itself.

e There are additional ports associated with the design as Source Object. Synthesis has

automatically added some block level control ports: ap_start, ap_done, ap_idle
and ap_ready.

e The Interface Synthesis tutorial provides more information about these ports.

e The function outputy is now a 32-bit data port with an associated output valid signal
indicator y_ap_vld.

e Function input argument c (an array) has been implemented as a block RAM interface with a
4-bit output address port, an output CE port and a 32-bit input data port.

e Finally, input argument X is simply implemented as a data port with no I/O protocol
(ap_none).

Later in this tutorial, HLS: Lab 3: Using Solutions for Design Optimization explains how to
optimize the I/O protocol for port x.

Step 4: RTL Verification

High-Level Synthesis can re-use the C test bench to verify the RTL using simulation.

1. Click the Run C/RTL Cosimulation toolbar button or use the menu Solution > Run C/RTL
Cosimulation.

2. Click OKin the Co-simulation dialog box to execute the RTL simulation.

The default option for RTL Co-simulation is to perform the simulation using the SystemC
RTL. This allows the simulation to run using the built-in C compiler. To perform the
verification using Verilog and/or VHDL, select the HDL and choose the simulator from the
drop-down menu. When RTL co-simulation completes, the report opens automatically in the

High-Level Synthesis www.xilinx.com 22

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=22

& XILINX. High-Level Synthesis Introductory Tutorial

Information pane, and the Console displays the message shown in Figure 15. This is the

same message produced at the end of C simulation.
0 The Ctest bench generates input vectors for the RTL design.
0 The RTL design is simulated.

0 The output vectors from the RTL are applied back into the C test bench and the
results-checking in the test bench verify whether or not the results are correct.

El Console 3 . 9] Errors| @ Warnings|® Man Page % b =

Vivado HLS Console

@T [SIM-316] Starting C post checking ...
Comparing against output data

PASS: The output matches the golden outputl‘

@I [SIM-1@00] *** C/RTL co-simulation finished: PASS ***
@I [LIC-181] Checked in feature [VIVADO HLS]

Figure 15: RTL Verification Results

The RTL Verification tutorial (page 171) provides additional information.

Step 5: IP Creation

The final step in the High-Level Synthesis flow is to package the design as an IP block for use

with other tools in the Xilinx Design Suite.
1. Click the Export RTL toolbar button or use the menu Solution > Export RTL.
2. Ensure the Format Selection dropdown menu shows IP Catalog.

3. Click OK.

1 [m

The IP packager creates a package for the Vivado IP Catalog. (Other options available from

the drop-down menu allow you to create IP packages for System Generator for DSP or a

pcore for Xilinx Platform Studio.)
4. Expand Solutionl in the Explorer.
5. Expand the impl folder created by the Export RTL command.

6. Expand the ip folder and find the IP packaged as a zip file, ready for adding to the Vivado IP

Catalog (Figure 16).

High-Level Synthesis www.xilinx.com

UG871 (v2013.3) November 8,2013 l Send Feedback I

23

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=23

& XILINX. High-Level Synthesis Introductory Tutorial

(o Explorer & W= 0
4 (= impl o
4 (=ip
|5 autoimpl.log

1= auxiliary.xml
|5 componentxml
packbat
W run_ippack.tcl
vivadojou
|2 vivado.log
xilinx_com_hls_fir_1_0.zip
& bd
- & constraints
- = doc
: = example
- = hdl
s = misc
= subcore
» = xgui
4 (= verilog
W extraction.tcl
wilt fir_mul_32s_32s_32_3.v
wit fir_mul_32s_32s_32_6v
fir_shift_reg_ram.dat
wi fir_shift_reg.v
wiil firv

m

firxdc
impl.bat
projectxpr
4 run_vivado.tcl
W settings.tcl
» = project.data
- = vhdl

= sim

-

Figure 16: RTL Verification Results

Also note, in Figure 16, that if you expand the Verilog or VHDL folders inside the impl folder,
there is a Vivado project ready for opening in the Vivado Design Suite.

RECOMMENDED: In this Vivado project, the HLS design is the top-level This project

O provides an additional means of analyzing the design. The recommended approach is to
add the IP package to the Vivado IP catalog, and add it as IP to the design that uses the
HLS design.

Note: There is no project file created for devices synthesized by ISE (6 series or earlier devices).

At this stage, leave the Vivado HLS GUI open. You will return to this in the next lab exercise.

HLS: Lab 2: Using the Tcl Command Interface

Introduction

This lab exercise shows how to create a Tcl command file based on an existing Vivado HLS
project and use the Tcl interface.

High-Level Synthesis www.xilinx.com 24

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=24

& XILINX. High-Level Synthesis Introductory Tutorial

Step 1: Create a Tl file
1. Open the Vivado HLS Command Prompt.

2. On Windows, use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 > Vivado
HLS > Vivado HLS 2013.3 Command Prompt (Figure 17).

3. On Linux, open a new shell.

Em Vivado HLS 2013.2 Command Prompt

ivado HLS Command Prompt
ailable commands:
vado_hls,apcc,gcc, g++ make

Microsoft Windows [Uersion 6.1.7600]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Xilinx\Vivado_HLS\2013.2>

Figure 17: The Vivado HLS Command Prompt

When you create a Vivado HLS project, Tcl files are automatically saved in the project hierarchy.
In the GUI still open from Lab 1, a review of the project shows two Tcl files in the project
hierarchy (Figure 18).

4. Inthe GUI, stillopen from Lab 1, expand the Constraints folder in solutionl and double-click
the file script.tcl to viewit in the Information pane.

High-Level Synthesis www.xilinx.com 25

UG871 (v2013.3) November 8,2013 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=25

& XILINX. High-Level Synthesis Introductory Tutorial

(25 Explorer 2 & = 0|4 script.tel &2 =8
& fir_prj 1 bR e R R R R P
" 2 ## This file is generated automatically by Vivado HLS.
&Y Includes 3 ## Please DO NOT edit it.
= Source 4 ## Copyright (C) 2013 Xilinx Inc. All rights reserved.

= Test Bench
= solution1

w

open_project fir_prj

6

& constraints 7 set_top fir

4 directives.tcl 8 addif%les fir.c.

saiptic 9 add_files -tb fir_test.c

i 10 add_files -tb out.gold.dat =

Eb_mm 11 open_solution "solutionl”
& impl 12 set_part {xc7kl60tfbg484-2}
= sim 13 create_clock -period 1@ -name default
= syn 14 source "./fir_prj/solutionl/directives.tcl”

15 csim_design

6 csynth_design

7 cosim_design -trace_level none

18 export_design -format ip_catalog -description "An IP generated by Vivado HLS"
[*]

4 {LLJ L4

Figure 18: The Vivado HLS Project Tcl Files

e Thefile script.tcl contains the Tcl commands to create a project with the files specified
during the project setup and run synthesis.

e Thefile directives.tcl contains any optimizations applied to the design. No
optimization directives were used in Lab 1 so this file is empty.

In this lab exercise, you use the script.tcl from Lab 1 to create a Tcl file for the Lab 2 project.
5. Close the Vivado HLS GUI from Lab 1. This is project no longer needed.

6. Inthe Vivado HLS Command Prompt, use the following commands (also shown in Figure 19)
to create a new Tdl file for Lab 2.

a. Change directory to the Introduction tutorial directory
C:\Vivado_HLS Tutorial\Introduction.

b. Usethe command cp labl\fir_prj\solutionl\script.tcl
lab2\run_hls.tcl to copy the existing Tcl file to Lab 2. (The Windows command

prompt supports auto-completion using the Tab key: press the tab key repeatedly to see
new selections).

¢. Usethe commandcd lab2 tochange into the lab2 directory.

High-Level Synthesis www.xilinx.com 26

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=26

& XILINX. High-Level Synthesis Introductory Tutorial

[Vivado HLS 2013.2 Command Prompt =R

C:\Vivado_HLS_Tutorial\Introduction>cp labl\fir_prj\solutioni\script.tcl lab2\ru
n_hls.tcl

C:\VUivado_HLS_Tutorial\Introduction>cd lab2

C:\Uivado_HLS_Tutorial\Introduction\lab2>

Figure 19: Copying the Lab 1 Tcl file to Lab 2

d. Using any text editor, perform the following edits to the file run_hls.tcl in the lab2
directory. The final edits are shown in Figure 20.

i. Add a —reset option to the open_project command. Because you typically

run Tcl files repeatedly on the same project, it is best to overwrite any existing
project information.

i. Adda-reset option tothe open_solution command. This removes any
existing solution information when the Tl file is re-run on the same solution.

ii. Delete the source command. If a previous project contains any directives you
wish to re-use, you can copy the directives.tcl file from that project to a
local path, or you can copy the directives directly into this file.

iv. Add the exit command.

v. Save thefile.

High-Level Synthesis www.xilinx.com 27

UG871 (v2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=27

& XILINX. High-Level Synthesis Introductory Tutorial

run_hls.tcl m
mllll'llI]'IDIIII'IIIzD 30 40 a0 B0 70 a0

T T e N T T Y e N T T Y e Y N T T e T T P e N T T Y N
1 h‘-###
z ¥% This file i= generated automatically by Vivado HLS.
3 #% Please DO NOT edit it.
4+ ¥% Copyright (C) 2013 ¥ilinx Inc. A1l rights reserved.

S HEEEEEEEERERE MR REE MMM R AR AR IR R R R I IS

Reset the project with the -reset option
= open_project -reset fir prj

5 set_top fir

10 add files fir.c

11 add files -tk fir test.c

12 add files -tb out.gold.dat

14 ¥ Reset the solution with the -reset option
15 open solution -reset "solutionl”
1e set_part {xcTklé0tfbg484-2}

17 create_clock —period 10

13 # Remove the link to any existing directives
20 #source "./fir prj/solutionl/directives.tcl”

zz # If directives exist or are required, copv them into this file
24 csim design

25 csynth_design

ze cosim design -trace lewvel none

27 export_design -format ip catalog —description "An IF generated by Vivado HLS" -ven

z3 # Exit Vivado HLS
20 exit

Figure 20: Updated run_hls.tdl file for Lab 2

You can run the Vivado HLS in batch mode using this Tcl file.
e. Inthe Vivado HLS Command Prompt window, type vivado_hls —F run_hls._tcl.

Vivado HLS executes all the steps covered in labl. When finished, the results are available inside
the project directory fir_prj.

e The synthesis report is available in Fir_prj\solutionl\syn\report.

e The simulation results are available in Fir_prj\solution\sim\report.

e The output package is available in fir_prj\solutionl\impl\ip.

e The final output RTL is available in Fir_prj\solutionl\impl and then Verilog or VHDL.

CAUTION! When copying the RTL results from a Vivado HLS project, you must use the
RTL from the impl directory.

& For designs using floating-point operators or AXI4 interfaces, the RTL files in the syn
directory are only the output from synthesis. Additional processing is performed by Vivado
HLS during export_design before you can use this RTL in other design tools.

High-Level Synthesis www.xilinx.com 28

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=28

& XILINX. High-Level Synthesis Introductory Tutorial

HLS: Lab 3: Using Solutions for Design Optimization

Introduction

This lab exercise uses the design from Lab 1 and optimizes it.

Step 1: Creating a New Project
1. Open the Vivado HLS Command Prompt.

a. On Windows, use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt

b. On Linux, open a new shell.
2. Changeto the Lab 3 directory: cd C:\Vivado_HLS_Tutorial\lntroduction\lab3.
3. Inthe command prompt window, type: vivado_hls —f run_hls.tcl
This sets up the project.

4. Inthe command prompt window, type vivado_hls —p Fir_prj to open the project in
the Vivado HLS GUL

Vivado HLS opens, as shown in Figure 21, with the synthesis for solutionl already complete.

+ | Vivaso HLS - fie_pe (CAVIvaa_HLS, Tutonahltrodectiontlabd\fe_pi) R |
File Ect Project Solution Window Help
x v FEB EF [B S 1 R ' &
4 Debug [| Symhesis |5 Anstysis
Exploser . 1) 25 Ountl & Dire

Figure 21: Introduction Lab 3 Initial Solution

As stated earlier, the design goals for this design are:
e Create a version of this design with the highest throughput
e The final design should be able to process data supplied with an input valid signal.

e Produce output data accompanied by an output valid signal.

High-Level Synthesis www.xilinx.com 29

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=29

& XILINX. High-Level Synthesis Introductory Tutorial

e The filter coefficients are to be stored externally to the FIR design, in a single port RAM.

Step 2: Optimize the I/0 Interfaces

Because the design specification includes I/O protocols, the first optimization you perform
creates the correct 1/O protocol and ports. The type of 1/O protocol you select might affect what
design optimizations are possible. If there is an I/O protocol requirement, you should set the I/O
protocol as early as possible in the design cycle.

You reviewed the 1/O protocol for this design in Lab 1 (Figure 14), and you can review the
synthesis report again by navigating to the report folder inside the solutionl\syn folder. The
[/O requirements are:

e Port C must have a single port RAM access.
e Port X must have an input data valid signal.
e PortY must have an output data valid signal.

Port C already is a single-port RAM access. However, if you do not explicitly specify the RAM
access type, High-Level Synthesis might use a dual-port interface. HLS takes this action if the
resulting design has higher throughput. Therefore, you should explicitly add to the design the
I/O protocol requirement to use a single-port RAM.

Input port X is by default a simple 32-bit data port. You can implement it as an input data port
with an associated data valid signal by specifying the I/O protocol ap_vid.

Output port Y already has an associated output valid signal. This is the default for pointer
arguments. You do not have to specify an explicit port protocol for this port, since the default
implementation is what is required

To preserve the existing results, create a new solution, solution2.
1. Click the New Solution toolbar button to create a new solution.

2. Leave the default solution name as solution2. Do not change any of the technology or
clock settings.

3. Click Finish.

This creates solution2 and set it as the default solution - confirm that solution2 is
highlighted in bold in the Explorer pane, indicating that it is the current active solution.

To add optimization directives to define the desired I/O interfaces to the solution, perform
the following steps.

4. Inthe Explorer pane, expand the Source container in solution2 (as shown in Figure 22).
5. Double-click fir.c to open thefile in the Information pane.

6. Activate the Directives tab in the Auxiliary pane and select the top-level function fir to
jump to the top of the Fir function in the source code view (Figure 22).

High-Level Synthesis www.xilinx.com 30

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=30

& XILINX. High-Level Synthesis Introductory Tutorial

+ | Vivado HLS - fir_prj (C\Vivado_HLS_Tutorial\Introduction\lab3\fir_prj) = EER <"
File Edit Project Solution Window Help
MESEREE. JEE=) R c@w% adale - |~ & e | ®
¥ Debug W Analysis
[25 Explorer & § = 0|2 fine &3 = 0O|(g Outl [Dire =2 =0
& fir_pt 43ALL TIMES. - o fir
lﬂ: Includes j:=<g=ﬂ=<=<=<g=ﬂ=ﬂ=<=<g=<=ﬂ=<=<gg=ﬂ=<=<=<g=ﬂ=<=<=<g=ﬂ=ﬂ=<=<gg=ﬂ=<=<=<g=ﬂ=<=<=<g=ﬂ=ﬂ=<=<g=<=ﬂ=<=<gg=ﬂ=<=<=<g=ﬂ=<=<=< =l shif‘t_r’eg
= S;l::ce j?#include "Fip b : 3c’

#= Test Bench

void [(? x

£ solutionl data_t *y, ' shift_Accum_Loop
= solution2 coef_t c[N],
constraints data_t x
o directives.tcl) A

¥ scriptic static data_t shift_reg[N];

acc_t acc;
int i;

m

acc=0;
Shift Accum_Loop: for (i=N-1;i»=0;i--) { =
T 3

Figure 22: Opening the Directives Tab

The Directives tab, shown on the right side of Figure 22, lists all of the objects in the design that
can be optimized. In the Directives tab, you can add optimization directives to the design. You
can view the Directives tab only when the source code is open in the Information pane.

Apply the optimization directives to the design.
7. Inthe Directive tab, select the c argument/port (green dot).
8. Right-click and select Insert Directives.
9. Implement the single-port RAM interface by performing the following:
a. Select RESOURCE from the Directive drop-down menu.
b. Click the core box.
c. Select RAM_1P_BRAM, as shown in Figure 23.
d. Click OK.

The steps above specify that array ¢ be implemented using a single-port block RAM resource.
Because array c is in the function argument list, and hence is outside the function., a set of data

ports are automatically created to access a single-port block RAM outside the RTL
implementation.

Because 1/O protocols are unlikely to change, you can add these optimization directives to the
source code as pragmas to ensure that the correct I/O protocols are embedded in the design.

10. In the Destination section of the Directives Editor, select Source File.

11. To apply the directive, click OK.

High-Level Synthesis www.xilinx.com 31

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=31

& XILINX. High-Level Synthesis Introductory Tutorial

£ Debug [+ | Synthesis | Anatysis
Explorer 1 E¢ Outline |24 Dirsctive
& fir_pr)
& Includes
Source
4 firs
s Test Bench

¢

H o vivade HLS core sebectio.. > |-ih- sk
{1 shaft_reg
Type Shift_Accum_Loop

Directive: | RESOURCE)

Mub% [functional_unit]

core (required RAM_1P_BRAM

port

Help Cancel oK oK Cancel

B comsale T 2 Ervges| & Warnings
COT Build Console [fir_pr]

Figure 23: Adding a Resource Directive

12. Next, specify port x to have an associated valid signal/port.
a. Inthe Directive tab, select input port x (green dot).
b. Right-click and select Insert Directives.
c. Select Interface from the Directive Editor drop-down menu.
d. Select Source File from the Destination section of the dialog box
e. Select ap_vld as the mode.
f. Click OK to apply the directive.
13. Finally, explicitly specify porty to have an associated valid signal/port.

a. Inthe Directive tab, select input port y (green dot).

b. Right-click and select Insert Directives.

c. Select Source File from the Destination section of the dialog box
d. Select Interface from the Directive drop-down menu.

e. Select ap_vld for the mode.
f. Click OKto apply the directive

When complete, verify that the source code and the Directive are as shown in Figure 24 . Right-
click any incorrect directive to modify it.

High-Level Synthesis www.xilinx.com 32

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=32

& XILINX.

[c] #firc 23

46 #include "fir.h"

7

Svoid fir (

9 data_t *y,

© coef_t c[N],
data_t x

2) {

6

7

8 acc_t acc;
9 int i;

L%}

acc=0;

3 #pragma HLS INTERFACE ap_vld port=y
A#pragma HLS INTERFACE ap_vld port=x
S5 #pragma HLS RESOURCE variable=c core=RAM 1P BRAM

static data t shift reg[N];

2 _Shift_Accum_Loop: for (i=N-1;i»=8;i--) {

4 1

High-Level Synthesis Introductory Tutorial

= B[2= Qutline |4 Directive

i o fir
=[1 shift_reg
4y

@ C

& X

HLS INTERFACE ap_vid port=y
HLS RESOURCE variable=c core=RAM_1P_BRAM

HLS INTERFACE ap_vid port=x
&' Shift_Accum_Loop

Figure 24: 1/0 Directives for solution2

14. Click the Run C Synthesis toolbar button to synthesize the design.

15. When prompted, click Yes to save the contents of the C source file. Adding the directives as
pragmas modified the source code.

When synthesis completes, the report file opens automatically.

16. Click the Outline tab to view the Interface results, or simply scroll down to the bottom of the

report file.

Figure 25 shows the ports now have the correct I/O protocols.

l¢ firc |20 fir_esynth.rpt 2

- Summary

ap_clk
ap_rst
ap_start
ap_daone
ap_idle
ap_ready
¥
y_ap_vid
c_address0
c_cel
c_gl

X

¥_ap_vid

Dir Bits Protocol

in 1 ap_ctrl_hs

in 1 ap_ctrl_hs

in 1 ap_ctrl_hs
out 1 ap_ctrl_hs
out 1 ap_ctrl_hs
out 1 ap_ctrl_hs
out 32 ap_vid
out 1 ap_vid
out 4 ap_memory
out 1 ap_memory

in 32 ap_memory
in 32 ap_vid
in 1 ap_vid

Source Object
fir
fir
fir
fir
fir
fir

¥
¥

High-Level Synthesis

{11

Figure 25: 1/0 Protocols for solution2

www.Xilinx.com

UG871 (v2013.3) November 8,2013

C Type
return value
return value
return value
return value
return value
return value

pointer
pointer
array
array
array
scalar

scalar

1L

33

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=33

& XILINX. High-Level Synthesis Introductory Tutorial

Step 3: Analyze the Results

Before optimizing the design, it is important to understand the current design. It was shown in
Lab 1 how the synthesis report can be used to understand the implementation, however, the
Analysis perspective provides greater detail in an inter-active manner.

While still in solution2, and as shown in Figure 26:

1. Click the Analysis perspective button.

2. Click the Shift_ Accum_Loop in the Performance window to expand it.

e The red-dotted line in Figure 26 is used shortly in an explanation; it is not part of the view.

e The tutorial Design Analysis provides a more complete understanding of the Analysis
perspective, but the following explains what is required to create the smallest and fastest
RTL design from this source code.

e The left column of the Performance pane view shows the operations in this module of the
RTL hierarchy.

e The top row lists the control states in the design. Control states are the internal states High-
Level Synthesis uses to schedule operations into clock cycles. There is a close correlation
between the control states and the final states in the RTL Finite State Machine (FSM), but
there is no one-to-one mapping.

]

i

+ Vivado HLS - fir_prj (C:\Vivado_HLS_Tutorial\Introduction_New\lab3\fir_prj)
File Edit Project Solution Window Help
BidArE R & @
% Debug i Synmemm
+3 Module Hierarchy 5 = Performance - fir 2 =0

BRAM DSP FF LUT Latency Interval Pipeline type
e fir 1 4 189 204 89 90 none

Current Module : fir

[oneration\ContralS..] co | c1 | ¢ | e3a | ca l sl col cz | cal
1 X read(read) = l
2 =shift Accum Loop
tmp 1({icmp) |
tmp 2(+) 1
data (read)
node 33 (write) |
I
I

&7 performance Profile 22 Resource Profile
Pipelined Latency Initiation Interval lteration Latency Trip count
o fir - 89 0

node 36(write)
@ Shift_Accum_Loop no 88 - 8 1

c load(read)

tmp 6(*)

acc 1(+) i
11| i 1(#)

12 node 48 (write) L G e I I !

i
SwoNoOLaw

Performance Resource

Figure 26: Solution2 Analysis Perspective: Performance

The explanation presented here follows the path of the dotted red line in Figure 26. Some of the
objects here correlate directly with the C source code. Right-click the object to cross-reference
with the C code.

e The design starts in the first state with a read operation on port x.

e Inthe next state, it starts to execute the logic created by the for-loop Shift_Accum_Loop.
Loops are shown in yellow, and you can expand or collapse them. Holding the cursor over

High-Level Synthesis www.xilinx.com 34

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=34

& XILINX.

High-Level Synthesis Introductory Tutorial

the yellow loop body in this view shows the loop details: 8 cycles, 11 iterations for a total
latency of 88.

e Inthe first state, the loop iteration counter is checked: addition, comparison, and a potential
loop exit.

e There is a two-cycle memory read operation on the block RAM synthesized from array data
(one cycle to generate the address, one cycle to read the data).

e There are memory reads on the c port.

e A multiplication operations each takes 6 cycles to complete.

e The for-loop is executed 11 times.

e Atthe end of thefinal iteration, the loop exits in state c1 and the write to porty occurs.
You can also use the Analysis perspective to analyze the resources used in the design.

3. Click the Resource view, as shown in Figure 27.

4. Expand all the resource groups (also shown in Figure 27).

& Resource - fir &2 il
Current Module : fir
|Resource\ContralSten| co | c1 | ¢2 | 3 | ca | ¢5 | c6 | cz | c8 |
1 HI/O Ports
2 G
3 X read
4 Y write
5 EiInstances
6 grp fu 184 *
7 FEMemory Ports
8 shift reg write write
9 C read
10 FExpressions
11 tmp 1 fu 149 icmp
12 tmp 2 fu 159 +
13 il fu 178 +
14 acc 1 fu 190 +
Performancg Resource

Figure 27: Solution2 Analysis Perspective: Resource

Figure 27 shows:

e The reads on the ports x and y. Port c is reported in the memory section because this is also
a memory port.

e There are two multipliers being used in this design.
e There is a read and write operation on the memory shift_reg.

¢ None of the other resources are being shared because there is only one instance of each
operation on each row or clock cycle.

35

l Send Feedback I

www.Xilinx.com

High-Level Synthesis
UG871 (v2013.3) November 8,2013

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=35

& XILINX. High-Level Synthesis Introductory Tutorial

With the insight gained through analysis, you can proceed to optimize the design.

Before concluding the analysis, it is worth commenting on the multi-cycle multiplication
operations, which require multiple DSP48s to implement. The source code uses an Int data-

type. This is a 32-bit data-type that results in large multipliers. A DSP48 multiplier is 18-bit and it
requires multiple DSP48s to implement a multiplication for data widths greater than 18-bit.

The tutorial Arbitrary Precision Types shows how you can create designs with more suitable
data types for hardware. Use of arbitrary precision types allows you to define data types of any
arbitrary bit size.(more than the standard C/C++ 8-, 16-, 32- or 64-bit types).

Step 4: Optimize for the Highest Throughput (lowest interval)
The two issues that limit the throughput in this design are:

e The for loop. By default loops are kept rolled: one copy of the loop body is synthesized and
re-used for each iteration. This ensures each iteration of the loop is executed sequentially.
You can unroll the For loop to allow all operations to occur in parallel.

e The block RAM used for shift_reg. Because the variable shift_reg is an array in the C
source code, it is implemented as a block RAM by default. However, this prevents its
implementation as a shift-register. You should therefore partition this block RAM into
individual registers.

Begin by creating a new solution.

1. Click the New Solution button.

2. Leave the solution name as solution3.
3. Click Finish to create the new solution.
4

In the Project menu, select Close Inactive Solution Tabs to close any existing tabs from
previous solutions.

The following steps, summarized in Figure 28 explain how to unroll the loop.

High-Level Synthesis www.xilinx.com 36

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=36

& XILINX. High-Level Synthesis Introductory Tutorial

~J

8.
9.

MNP QWO DWUEWNEOWODOOWSNOWUEWNRE®

firc 52 = O|[g Outline 4 Directive & =
coef_t c[N], - 4 9 fir
data_t x Vivada HLS Directive Editor @y
)1 Type % HLS INTERFACE ap_vid port=y
static data_t Directive: [UNROLL -~ s
acc_t acc; % HLS RESOURCE variable=c core=RAM_1P_BRAM
data_t data; Destination @ x
int i; (7 Source File % HLS INTERFACE ap_vld port=x
@) Directive File «[1 shift_reg
acc=0; ' Shift_Accum_Loop
Shift_Accum_Lod Options . b B

| skip exit check:]
factor (optional):

region:]

[Help l [Cancel] [OK]

< I | 3

Figure 28: Unrolling FOR Loop

In the Directive tab, select loop Shift_ Accum_Loop. (Reminder: the source code must be
open in the Information pane to see any code objects in the Directive tab).

Right-click and select Insert Directives.
From the Directive drop-down menu, select Unroll.
Leave the Destination as the Directive File.

When optimizing a design, you must often perform multiple iterations of optimizations to
determine what the final optimization should be. By adding the optimizations to the
directive file, you can ensure they are not automatically carried forward to the next solution.
Storing the optimizations in the solution directive file allows different solutions to have
different optimizations. Had you added the optimizations as pragmas in the code, they
would be automatically carried forward to new solutions, and you would have to modify the
code to go back and re-run a previous solution.

Leave the other options in the Directives window unchecked and blank to ensure that the
loop is fully unrolled.

Click OK to apply the directive.

Apply the directive to partition the array into individual elements.

a) Inthe Directive tab, select array shift_reg.

b) Right-click and select Insert Directives.

o)

Select Array_Partition from the Directive drop-down menu.

d) Specify the type as complete.

e) Select OKto apply the directive.

High-Level Synthesis www.xilinx.com 37

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=37

& XILINX. High-Level Synthesis Introductory Tutorial

With the directives embedded in the code from solution2 and the two new directives just
added, the directive pane for solution4 appears as shown in Figure 29.

o= Qutline |4 Directive & =0

@ fir
#[1 shift_reg
9% HLS ARRAY_PARTITION variable=shift_reg complete dim=1
4y
HLS INTERFACE ap_vld register port=y
P
HLS RESOURCE variable=c core=RAM_1P_BRAM
P x
HLS INTERFACE ap_vld port=x
%' Shift_Accum_Loop
% HLS UNROLL

Figure 29: Solution4 Directives

In Figure 29, notice the directives applied in solution2 as pragmas have a different annotation
(#HLS) than those just applied and saved to the directive file (%HLS). You can view the newly
added directives in the Tdl file.

10. In the Explorer pane, expand the Constraint folder in Solution4 as shown in Figure 30.

11. Double-click the solution4 directives.tcl file to open it in the Information pane.

[ty Explorer & e T 0| fire |4 directives.tel & =]
& fir_prj 3 -
i Includes 2 ## This file is generated automatically by Vivado HLS.
= Source 3 ## Please DO NOT edit it.
. 4 ## Copyright (C) 2013 Xilinx Inc. All rights reserved.
lg) firc Rl S e
= Test Bench 6 set_directive unroll "fir/Shift_Accum_ Loop”
3 solutionl 7 set_directive array partition -type complete -dim 1 "fir" shift reg
£3 solution2 8
3 solution3

= solutiond
constraints
< directives.tcl
W scripttel

Figure 30: Solution4 Directives.tcl File

12. Click the Synthesis toolbar button to synthesize the design.

When synthesis completes, the synthesis report automatically opens.

High-Level Synthesis www.xilinx.com 38

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=38

& XILINX. High-Level Synthesis Introductory Tutorial

13. Compare the results of the different solutions.
14. Click the Compare Reports toolbar button.
Alternatively, use Project > Compare Reports.
15. Add solutionl, solution2, and solution3 to the comparison.
16. Click OK.

Figure 31 shows the comparison of the reports. solution3 has the smallest initiation interval

and can process data much faster. As the interval is only 18, it starts to process a new set of
inputs every 18 clock cycles.

E£F compare reports =0

Performance Estimates

=l Timing (ns)
Clock solutionl solution2 solution3
default Target 10.00 10.00 10.00
Estimated 7.13 713 843

-1 Latency (clock cycles)

solutionl solution2 solution3

Latency min 89 89 15
max 89 89 15

Interval min 90 90 16 i
max 90 90 16 [

Utilization Estimates

solutionl solution? solution3

BRAM_18K 1 1 0
DSP4SE 4 4 44
FF 156 189 978
LuT 170 204 385

Figure 31: Solution Comparisons

It is possible to perform additional optimizations on this design. For example, you could use

Pipelining to further improve the throughput and lower the interval. The tutorial Design
Optimization provides details on using pipelining to improve the interval.

As mentioned earlier, you could modify the code itself to use arbitrary precision types. For
example, if the data types are not required to be 32-bit int types, you could use bit-accurate
types (for example, 6-bit, 14-bit or 22-bit types), provided that they satisfy the required
accuracy. For more details on using arbitrary precision type see the tutorial Arbitrary Precision
Types.

High-Level Synthesis www.xilinx.com 39

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=39

& XILINX. High-Level Synthesis Introductory Tutorial

Conclusion

In this tutorial, you learned how to:

e Create a Vivado High-Level Synthesis project in the GUI and Tcl environments.
e Execute the major steps in the HLS design flow.

e Createand usea Td file to run Vivado HLS.

e Create new solutions, add optimization directives, and compare the results of different
solutions.

High-Level Synthesis www.xilinx.com 40

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=40

& XILINX.

Chapter 3 C Validation

Overview

Validation of the C algorithm is an important part of the High-Level Synthesis (HLS) process. The
time spent ensuring the C algorithm is performing the correct operation and creating a C test
bench, which confirms the results are correct, reduces the time spent analyzing designs which
are incorrect "by design” and ensures the RTL verification can be performed automatically.

This tutorial consists of three lab exercises.

e Labl:Review the aspects of a good C test bench, the basic operations for C validation and
the C debugger.

e Lab2:Validate and debug a C design using arbitrary precision C types.
e Lab3:Validate and debug a design using arbitrary precision C+ + types.

Tutorial Design Description

You can download the tutorial design file from the Xilinx website. See the information in
Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory Vivado_HLS_Tutorial\C_Validation.

The sample design used in this tutorial is a Hamming Window FIR. There are three versions of
this design:

e Using native C data types.
e Using ANSI C arbitrary precision data types.
e Using C++ arbitrary precision data types.

This tutorial explains the operation and methodology for C validation using High-Level
Synthesis. There are no design goals for this tutorial.

High-Level Synthesis www.xilinx.com 41

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=41

& XILINX. C Validation

Lab 1: C Validation and Debug

Overview

This exercise reviews the aspects of a good C test bench and explains the basic operations of the
High-Level Synthesis C debug environment.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS_Tutorial is unzipped and placed in the location
ﬁ C:\Vivado_HLS Tutorial
If the tutorial data directory is unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt (Figure 32).

b. On Linux, open a new shell.

Bl Vivado 2013.3 Tcl Shell
g Vivado 2013.3
Accessories
SDK
System Generator
Vivado HLS
Bl vivado HLS 2013.3 Command Promp
"] vivado HLS 2013.3

Figure 32: Vivado HLS Command Prompt

2. Using the command prompt window (Figure 33), change the directory to the C Validation
tutorial, labl.

3. Execute the Tcl script to setup the Vivado HLS project, using the command
vivado_hls —f run_hls.tcl as shown in 33Figure 33.

High-Level Synthesis www.xilinx.com 42

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=42

i: X".'NX C Validation

[Vivado HLS 2013.2 Command Prompt o[E]

C:\Uivado_HLS_Tutorial>cd C_Ualidation

C:‘\Uivado_HLS_Tutorial\C_Validation>cd labl

C:\Uivado_HLS_Tutorial:\C_Ualidation\labl>vivado_hls -f run_hls.tcl

Figure 33: Setup the Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls -p hamming_window_prj as shown in Figure 34.

[Vivado HLS 2013.1 Command Prompt =N EcE ™
BRI [APCC-3] Tmp directory is apcc_db
@I [APCC-1] APCC is done.
@I [LIC-101] Checked in feature [UIUADO_HLS]
Generating csim.exe
Running DUT...done.
Testing DUT results

BI [SIM-1] CSim done with @ errors.
@I [LIC-101] Checked in feature [UVIVADO_HLS]

C:\Uivado_HLS_Tutorial:\C_Ualidation\labl>vivado_hls -p hanming_window_prj

Figure 34: Initial Project for C Validation Lab 1

High-Level Synthesis www.xilinx.com 43

UG871 (v 2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=43

& XILINX. C Validation

Step 2: Review Test Bench and Run C Simulation

1. Open the C test bench for review by double-clicking hamming_window.c in the Test Bench
folder (Figure 35).

&5 Explorer &2 w = B[[£) hamming_window_test.c &3 =0
4 & hamming_window_prj 73 // Check the results returned by DUT against expected va *
> w Includes 74 fp=fopen("result.dat","w");
» = Source 75 printf("Testing DUT results");
4 = Test Bench 76 for (i = @; i < WINDOW_LEN; i++) {
- - 77 fprintf(fp, "%d %d \n", hw_result[i],sw _result[i])};
[¢] hamming_window_test.c ' ’ . 4 — . 22— 3
4+ v= solution1 o- - 78 if (hw_result[i] != sw_result[i]) {
i 79 err_cnt++;
“ % c?nstralnts 80 check_dots = @;
o directives.cl 81 printf("\n!!! ERROR at i = %4d - expected: %l@d\tg
& scripticl 82 i, sw_result[i], hw_result[i]);
4 = csim 33 } else { // indicate progress on console
. & build 84 if (check_dots == @)
. & report 85 printf("\n");

86 printf(".");

87 if (++check_dots == 64)
88 check_dots = @;

89 }

9@ }

1 fclose(fp);

printf("\n");

// Print final status message
if (err_cnt) {

printf("!!! TEST FAILED - %d errors detected !!!\n",
} else

printf("*** Test Passed ***\n");

1

MDD WD WD WD WD WD WD WD D
(Y= =T T o R W, R S W]

100 // Only return @ on success

101 return err_cnt;

102 } -
« 1l »

Figure 35: C Test Bench for C Validation Lab 1

A review of the test bench source code shows the following good practices:

The test bench:

o0 Creates a set of expected results that confirm the function is correct.
0 Stores theresultsin array sw_result.

e The Design Under Test (DUT) is called to generate results, which are stored in array
hw_result.. Because the synthesized functions use the hw_result array, it is this array that
holds the RTL-generated results later in the design flow.

e The actual and expected results are compared. If the comparison fails, the value of variable
err_cnt is set to a non-zero value.

e The test bench issues a message to the console if the comparison failed, but more
importantly returns the results of the comparison. If the return value is zero the test bench
validates the results are good.

High-Level Synthesis www.xilinx.com 44

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=44

& XILINX.

C Validation
This process of checking the results and returning a value of zero if they are correct automates
RTL verification.

You can execute the C code and test bench to confirm that the code is working as expected.

2. Click the Run C Simulation toolbar button to open the C Simulation Dialog box, shown in
Figure 36.

-

+ | C Simulation Dialog R

C Simulation

bl

Options
[Debug
[Build Only

[C] Clean Build

[] Optimizing Compile

Input Arguments

0K l l Cancel

Figure 36: Run C Simulation Dialog box

3. Select OKto run the C simulation.

As shown in Figure 37, the following actions occur when C simulation executes:

e The simulation output is shown in the Console window.

e Any print statements in the C code are echoed in the Console window. This example shows
the simulation passed correctly.

High-Level Synthesis www.xilinx.com 45

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=45

& XILINX.

C Validation

The C simulation executes in the solution sub-directory csim. You can find any output from

the C simulation in the build folder, which is the location at which you can see the output file
result._dat written by the fprintf command.

Because the C simulation is not executed in the project directory, you must add any data files to
the project as C test bench files (so they can be copied to the csim/build directory when the
simulation runs). Such files would include, for example, input data read by the test bench.

I Explorer 2 7 8

=% hamming_window_prj 77
@l Includes 78

£ Source 79
20

= Test Bench

[¢ hamming_window_test.c
= solutiont

81

[¢ hamming_window _test.c 2

=]

fprintf(fp, "%d %d \n", hw_result[i],sw result[i]);*
if (hw_result[i] != sw_result[i]) {
err_cnt++;
check_dots = @;
printf("\n!!! ERROR at i = %4d - expected: %1@d\
i, sw result[i], hw_result[i]);
} else { // indicate progress on console

8

& constraints 84 if (check_dots == @)
4 directives.tcl 85 printf("\n");
@ script.cl 86 printf(".");
= csim 87 if (++check_dots == 64)
& build 22 , check_dots = @;
E apcclog % 1}
csim.exe 91 feclose(fp);
csim.mk 92 printf("\n");
= Makefile.rules 93
E result.dat 94 // Print final status message =
] ; a5 if (err_cnt
“ rl-m_5|m.tc| 96 érin?F("f!? TEST FAILED - %d errors detected !!l!\n"
= sim.bat 97 } else
& apcc_db a8 printf("*** Test Passed ***\n"); -
= obj 4| n b
= report

El Console &2

@] Errors| & Warnings

<terminated > hamming_window_prj.Debug [C/C++ Application] C\Vivado_HLS Tutorial\
Testing DUT results

*#** Tegt Passed ***

4

Figure 37:

Step 3: Run the C Debugger

C Simulation Results

A Cdebugger is included as part of High-Level Synthesis.

1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.

2. Select the Debug option as shown in Figure 38.

3. Click OK to run the simulation.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com

| Send Feedback I

46

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=46

& XILINX.

C Validation

¢ C Simulation Dialog @

C Simulation

Options
Debug

[Build Only
] Clean Build

Optimizing Compile

Input Arguments

0K l [Cancel

Figure 38: C Simulation Dialog Box

High-Level Synthesis

www.xilinx.com
UG871 (v2013.3) November 8,2013

47

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=47

& XILINX. C Validation

The Debug option compiles the C code and then opens the Debug environment, as shown in
Figure 39. Before proceeding, note the following:

¢ Highlighted at the top-left in Figure 39, you can see that the perspective has changed from
Synthesis to Debug. Click the perspective buttons to return to the synthesis environment at
any time.

e By default, the code compiles in debug mode. The Debug option automatically opens the
debug perspective at time 0, ready for debug to begin. To compile the code without debug
information, select the Optimizing Compile option in the C Simulation dialog box.

) ;Vivada HLS - hamming_window_prj (C\Vivado_HLS_Tutorial\C_Validation\labl\hamming_window_prj) |_ = h (=]
File Edit Project |Solution| Run Window Help
S ———————— | o | ©)

]#Debua + | Synthesis &4 Analysis

CEDIY Eigaaiac, — #|2 @ « = | o 7 = 0| t=Variables & % Breakpoints| #1 Registers| =4 Modules =8
[€] hamming_window_prj.Debug [C/C++ Application] < B e
i® C:\Vivado_HLS_Tutorial\C_Validation\labl\hamming_window_prj\solutit | Name Type Value -
i Thread [1] 0 (Suspended : Breakpoint) ®)= argc int 1 -
= main() at hamming_window_test.c:54 0x40139d » argv char ** 0x5619a0
»i gdb = test_data in_data_t [256] 0x28fd0c il
4 L]} 3
4 1] 4 }
[& hamming_window_test.c % S O|EEQutine AWM o %~ =0
58 { - U stdioh
51 in_data_t test_data[WINDOW_LEN]; U hamming_window.h
52 gui_gata_t hw_result[WINDOW_LEN], sw_result[WINDOW_LEN]; o main(int, char[])
53 int 1;
54 unsigned err_cnt = @, check_dots = @;
55 EILE *p;
57 for (i = 8; i < WINDOW_LEN; i++) {
58 // Generate a test pattern for input to DUT
test_data[i] = (in_data_t)((32767.0 * (double)((i % 16) - 8) / 8.0) + 0.
60 // Calculate the coefficient value for this index

in_data_t coeff_val = (in_data_t)(WIN_COEFF_SCALE * (®.54 - -
Pl 11} »

El Console i3 . ¥ Tasks| [2. Problems| 3 Executables|] Memory = x i E & =08

hamming_window_prj.Debug [C/C++ Application] csim.exe

Figure 39: The HLS Debug Perspective

You can use the Step Into button (Figure 40) to step through the code line-by-line.

i 51 BN S 2 =[]

Figure 40: The Debug Step Into Button

4. Expand the Variables window to see the sw_results array.

High-Level Synthesis www.xilinx.com 48

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=48

& XILINX. C Validation

5. Expand the sw_results array to the view shown in Figure 41.

6. Click the Step Into button (or key F5) repeatedly until you see the values being updated in
the Variables window.

%5 Debug & . [t5 Explorer O [S | i = O[ed=Variables 2 % Breakpoints| ¥ Registers| =i Modules =
€] hamming_window_prj.Debug [C/C++ Application] =t B | i et ™
1% C\Vivado_HLS_Tutorial\C_Validation\labl\hamming_window_prj\soluti{ Name Type Value -
of? Thread [1] O (Suspended : Step) (# test_data in_data_t [256] 0x28fd0c 3
= main(at hamming_window_test.c:57 0x4014a9 = hw_result out_data_t [256] 0x28f90¢
»d gdb = sw_result out_data_t [256] 0x28f50c
= sw_result[0] out_data_t -42923460
69= sw_result[1] out_data_t -37643710
0= sw_result[2] out_data_t -32413106
)= sw_result[3] out_data_t -27256218
©9= sw_result[4] out_data_t 2684268 .
fe\: cwr raci i HIR1 ot Adata + MNNTRITRIT
4 111 3
] 10 3K)
[hamming_window_test.c &2 = 0|8 Outline &2 R e g~ 70

- o stdioh
for (1 = @; i < WINDOW_LEN; i++) { 1 hamming_window.h
// Generate a test pattern for input to DUT
test data[i] = (in_data t)((32767.8 * (double)((i % 16) - 8) / 8.8) + @.
// Calculate the coefficient value for this index
in data t coeff val = (in data t)(WIN COEFF SCALE * (@.54 -
B A6 * raelT B % M DT % 5/ (dankla’ (WTHMDOW IEM - 1333% -
4 n 3

e mainfint, char*[]} : int

m

Figure 41: Analysis of C Variables

In this manner, you can analyze the C code and debug it if the behavior is incorrect.

For more detailed analysis, to the right of the Step Into button are the Step Over (F6), Step
Return (F7) and the Resume (F8) buttons.

7. Scroll toline 69 in the source code window.
8. Double-click in the left margin to create a breakpoint (blue dot), as shown in Figure 42.

9. Activate the Breakpoints tab, also shown in Figure 42, to confirm there is a breakpoint set at

line 69.

10. Click the Resume button (highlighted in Figure 42) or the F8 key to execute up to the
breakpoint.

High-Level Synthesis www.xilinx.com 49

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=49

& XILINX. C Validation

%% Debug &3 . [Explorer @ | 2@ o 5 [i» ¥ 7 O] Variablesy % Breakpoints &2] i Registers| =\ Modules =B
+ [€] hamming_window_prj.Debug [C/C++ Application] KRR | BESRT
« i® C:\Vivado_HLS_Tutorial\C_Validation\labl\hamming_window_prj\soluti¢| #|.,e hamming window_test.c [line: 69]

4 o Thread [1] 0 (Suspended : Breakpoint)
= main() at hamming_window_test.c:69 0x4014c1
»i gdb

No details to display for the current selection.
4 1 13
[¢ hamming_window_test.c 2 . _[€] _mingw_CRTStartup() at ./mingw/crt1.c:250 0x4010bb = 0|8 Outline 2 B R e ¥ Y=0O

/] er prom S i
// 1nteger promotion 1SSues - 0 stdio.h

; sw_result[i] = (out_data_t)test_data[i] * (out_data_t)coeff_val; B R

® main(int, char*[]) : int
// Call the DUT
printf("Running DUT...");
hamming_window(hw_result, test_data);
printf("done.\n");

|11

// Check the results returned by DUT against expected values
4 fp=Ffopen("result.dat","w");

75 printf("Testing DUT results");

. P S P D .

L L1 b

Figure 42: Using Breakpoints

11. Click the Step Into button (or key F5) multiple times to step into the hamming_window
function.

12. Click the Step Return button (or key F7) to return to the main function.
13. Click the red Terminate button to end the debug session.

The Terminate button becomes the Run C Simulation button. You can restart the debug
session from within the Debug perspective.

14. Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: C Validation with ANSI C Arbitrary Precision
Types

Introduction

This exercise uses a design with arbitrary precision C types. You will review and debug the
design in the GUL

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory, as
shown in Figure 43.

2. To create a new Vivado HLS project, type vivado_hls —F run_hls._tcl.

High-Level Synthesis www.xilinx.com 50

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=50

& XILINX. C Validation

[Vivado HLS 2013.1 Command Prompt =R

for user ‘duncanm’ on host ‘xsjduncanm-w7?’' (Windows NT_intel version
6.1) on Thu Mar 87 14:02:06 -0800 2013

in directory 'C:/Uivado_HLS_Tutorial/C_Ualidation/lab1l’
@I [HLS-18] Bringing up Uivado HLS GUI
C:\Uivado_HLS_Tutorial\C_Ualidation\labl>cd ..

C:\VUivado_HLS_Tutorial\C_Validation>cd lab2

C:\Uivado_HLS_Tutorial:\C_VUalidation\lab2>vivado_hls -f run_hls.tcl

Figure 43: Setup for Interface Synthesis Lab 2

3. To open the Vivado HLS GUI project, type vivado_hls —p hamming_window_prj.

4. Open the Source folder in the explorer pane and double-click hamming_window.c to
open the code, as shown in Figure 44.

[’ Explorer &3 % = O|| [¢ hamming_window.c &2 =0
4 25 hamming_window_prj 45 #include "hamming_window.h" // Provides default WINDOW_LEN if no =
! Includes 46 - o o .
4 B Source 47 // Translation module function prototypes:
n - - 48 static void hamming_rom_init(in_data t rom_array[]);
l¢ hamming_window.c 49
fi= Test Bench 58 // Function definitions:
4 = solution 51void hamming_window(out_data_t outdata[WINDOW_LEN], in_data_t in
4 @ constraints 52{ C
4 directives.tcl 53 static in_data_t window_coeff[WINDOW_LEN]; 1
4 scripticl 54 unsigned i;
- 55
e em 56 // In order to ensure that 'window coeff' is inferred and pro
57 // initialized as a ROM, it is recommended that the arrya ini .

s P ew o=
4 11} P

Figure 44: C Code for C Validation Lab 2

5. Hold down the Ctrl key and click hamming_window.h on line 45 to open this header file.

6. Scroll down to view the type definitions (Figure 45).

High-Level Synthesis www.xilinx.com 51

UG871 (v2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=51

& XILINX. C Validation

[hamming_window.c | hamming_window.h &3 =g

68 // scaled integer, which may be interpreted as a signed fixed po *
69 // with WIN COEFF_FRACBITS bits after the binary point.

78

71/ /typedef intle t in_data_t;

72 f/typedef int32 t out_data_t;

73 #include "ap cint.h"

74 typedef intl6 in_data_ t;

75 typedef int32 out_data_t;

76

77void hamming_window(out data t outdatal[], in_data_t indata[]);

78 B

79 #endif // HAMMING WINDOW H not defined B

80 7
< I P

Figure 45: Type Definitions for C Validation Lab 2

In this lab, the design is the same as Lab 1, however, the types have been updated from the
standard C data types (intl6_t and int32_t) to the arbitrary precision types provided by
Vivado High-Level Synthesis and defined in header file ap_cint.h.

More details for using arbitrary precision types are discussed in the tutorial Arbitrary Precision
Types. An example of using arbitrary precision types would be to change this file to use 12-bit
input data types: standard C types only support data widths on 8-bit boundaries.

This exercise demonstrates how such types can be debugged.

Step 2: Run the C Debugger
1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.
2. Select the Debug option.
3. Click OK to run the simulation.
The warning and error message shown in Figure 46 appears.

You cannot debug the arbitrary precision types used for ANSI C designs in the debug
environment.

IMPORTANT! When working with arbitrary precision types you can use the Vivado HLS

ﬁ debug environment only with C++ or SystemC. When using arbitrary precision types with
ANSI C,the debug environment cannot be used. With ANSI C, you must instead use
printf or fprintf statements for debugging.

High-Level Synthesis www.xilinx.com 52

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=52

& XILINX. C Validation

{-]Message Dialog ® mathh
M_PI
93 Vivado HLS C Simulation could not complete... # WINDOW_LEN =
¥ Please check the error and warning messages: # WIN_COEFF_FF
- There are 2 errors # WIN_COEFF_S(
o ap_cinth
J @ in_data_t:intl] |
T out_data_t:in
4 hammmino weine
| L L | |2 4 I 2
El Console = @Errors} & Warning.ﬂ BegE=°0

Vivado HLS Console

Compiling C:/Vivado HLS Tutorial/C Validation/lab2/hamming window test.c in debug mode «
@E [SIM-34] 'apcc' is required to include the header file. Do not select 'Debug’' in GUI a
@E [SIM-1] CSim file generation failed: compilation error(s).
@I [LIC-101] Checked in feature [VIVADO HLS] T

il

4 I I

Figure 46: C Simulation Dialog Box

4. Expand the Test Bench folder in the Explorer pane.
5. Double-click the file hamming_window_test.c.

6. Scroll toline 78 and remove the comments in front of the printf statement (as shown in
Figure 47).

Expilorer ! & T2 hamming_windowc < “hamming, window_lest i ™ —~0
= hamming window_prj 7d -
& Includes Sl S e i e DUT against expected valu
p=fopen(“result.dat™,"w");

i S0urce) 75 printf{“Testing DUT results®);
i Ramning wndiou.¢] for (i = ©; i ¢ WINDOW LEN; is+) {
= Test Bench T fprintf(fp, "%d %d ", bw result[i],sw result[i]);
& hanmemng_vwindow_testc primtF({"DUT results: Sample=Xd, DUT=Xd, Emeu:tec‘::d"n.r.',
= soluton! 79 if (hw_result{i] != sw_result[i]) {
constraints g8 err_cnies; -
W drectivestd check_dots = 8; . =
¥ scriptid 82 printf{“\nll! ERROR at i = Xad - expected: iad\tpot
; g3 i, sw result[i], hw result[i]);
. 84 } else { indicate progress on console -
. e 4 .

Figure 47: Enable Printing of the Results

7. Save the file.

8. Click the Run C Simulation toolbar button or the menu Project > Run C simulation to
open the C Simulation Dialog box.

9. Click OK to run the simulation.

High-Level Synthesis www.xilinx.com 53

UG871 (v2013.3) November 8,2013 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=53

& XILINX.

The results appear in the console window (Figure 48).

El Console &2 . 9] Errors| & Warnings

C Validation

X EEEET

O

<terminated > hamming_window_prj.Debug [C/C++ Application] CA\Vivado_HLS_Tutorial\C_Validation\lab2\hamming_win

.DUT results: Sample=252, DUT=21807164,
.DUT results: Sample=253, DUT=270118601,
.DUT results: Sample=254, DUT=32266975,
.DUT results: Sample=255, DUT=37559@18@,

¥%% Tect Passed ***

Figure 48: C Validation Lab 2 Results

10. Exit the Vivado HLS GUI and return to the command prompt.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

Expected=21807104
Expected=27011801
Expected=32266975
Expected=37559010

www.Xilinx.com

| Send Feedback I

.

1 [m

54

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=54

& XILINX.

Lab 3: C Validation with C++ Arbitrary Precision Types

Overview

This exercise uses a design with arbitrary precision C++ types. You will review and debug the
design in the GUL

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 2, change to the 1ab3 directory.

2. Create a new Vivado HLS project by typing vivado_hls —F run_hls._tcl.

3. Open the Vivado HLS GUI project by typing vivado_hls —p hamming_window_prj.

4. Open the Source folder in the explorer pane and double-click hamming_window.cpp to

open the code, as shown in Figure 49.

[Explorer 3 @ = B[[& hamming_window.cpp =
4 122 hamming_window_prj 45 #include "hamming_window.h" // Provides default WINDOW_LEM if 1=
> i Includes 46))
4 E Source 47 // Translation module function prototypes:
- - - 48 static void hamming_rom_init(in_data_t rom_array[]);
[hamming_window.cpp 19
= Test E%E”Ch 58 // Function definitions:
4 = solution 51void hamming_window(out data_t outdata[WINDOW_LEM], in_data_t :
4 @ constraints 524 C
4 directives.tcl 53 static in_data_t window_coeff[WINDOW_LEN]; T
W script.tcl 2::' unsigned 1;
> = csim - L
56 // In order to ensure that 'window_coeff' is inferred and pi
57 // initialized as a ROM, it is recommended that the arrya i1 _
cCo Id b down 2w o cedkh Lovennd e aandh Tl Fowndt bt mmiiinna L

4 (LI »

Figure 49: C++ Code for C Validation Lab 3

5. Hold down the Ctrl key down and click hamming_window.h on line 45 to open this header

file.

High-Level Synthesis www.xilinx.com
UG871 (v2013.3) November 8,2013

l Send Feedback I

55

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=55

& XILINX.

6. Scroll down to view the type definitions (Figure 50).

[£) hamming_window.cpp (@ hamming_window.h & =0

78 // This function applies an Hamming window function to the "ini=«
71// returning the windowed data in ‘'outdata'. The coefficients
72 // scaled integer, which may be interpreted as a signed fixed |
73 // with WIN_COEFF_FRACBITS bits after the binary point.

74
75 //typedef intl6_t in_data_t;
76 [/ /typedef int32_t out_data_t;
77 #include “"ap_int.h"
78 typedef ap_int<l6> in_data_t;
79 typedef ap_int<32> out_data_t;
80 I
81void hamming_window(out_data_t outdata[], in_data_t indata[])}; E|
82 g
O M am s S F VI ARMMTEL, 1ITRICWME 1] mmde Am LS~
4 | 1] | P

Figure 50: Type Definitions for C Validation Lab 3

C Validation

Note: In this lab, the design is thesameas in Lab 1 and Lab 2, with one exception. The types have
been updated to use the C++ arbitrary precision types, ap_Int<#N>, provided by Vivado High-
Level Synthesis and defined in header file ap_int_h.

High-Level Synthesis www.xilinx.com
UG871 (v 2013.3) November 8,2013

l Send Feedback l

56

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=56

& XILINX. C Validation

Step 2: Run the C Debugger
1. Click the Run C Simulation toolbar button to open the C Simulation Dialog box.
2. Select the Debug option.
3. Click OK.
The debug environment opens.
4. Select the hamming_window.cpp code tab.
Set a breakpoint at line 61 as shown in Figure 51.

6. Click the Resume button (or key F8) to execute the code up to the breakpoint.

#5 Debug 2 [Explorer Db RER [i% =© ¥ = O|[t4= Variables % Breakpoints 32 “_i} Registers| =i Modules =g
&1 hamming_window_prj.Debug [C/C++ Application] R RPN | BEG T

e CA\Vivado_HLS_Tutorial\C_Validation\lab3\hamming_window_prj\solutit ,,@; hamming_window.cpp [line: 61]
o Thread [1] 0 (Suspended : Breakpoint)
= main() at hamming_window_test.cop:50 0x4013a2
»l gdb

MNo details to display for the current selection.

4 1 S

[2 hamming_window.cpp & . ‘W hamming_window.h = B[5 outline 2 AR e ¥=0
ey ;’,'r J.IIJLJ.C!J.J.%\:‘\J d> d RUTT, fL J.b'\CLUIIHII\:‘HuCu Liiac 'LII\:‘ dar’l’yda J.I'IJ.LJGJ.J.LCILJUII ot .J hammin WIndOWIh
58 // be done in a sub-function with global (wrt this source file) scope. . i 9 -)
59 hamming_rom_init(window_coeff); ++° hamming_rom_init(in_data_t[]) : voic
® hamming_window(out_data_t[], in_c

for (1 = @; i < WINDOW_LEN; i++) { ® £ hamming_rom_init(in_data_t[]) : voic
#pragma AP pipeline

outdata[i] = (out_data_t)window_coeff[i] * (out_data_t)indata[i];

}

[=}
2 @

// This initialization function will be optimized away during high level
// sythesis (HLS), resulting in the underlying memory being inferred as a ROM ~
] I 3] I »

Go = 1 B LU Rk
- e
1

onoh OV Oy O O On Oy O

Figure 51: Debug Environment for C Validation Lab 3

7. Click the Step Into button (or the F5 key) twice to see the view in Figure 52.

The variables in the design are now C+ + arbitrary precision types. These types are defined in
header file ap_int.h. When the debugger encounters these types, it follows the definition
into the header file.

As you continue stepping through the code, you have the opportunity to observe in greater
detail how the results for arbitrary precision types are calculated.

High-Level Synthesis www.xilinx.com 57

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=57

& XILINX. C Validation

[hamming_window.cpp [® hamming_window.h | ap_inth &2 =0
50 INLINE ap_int(const volatile ap int<_AP_W2> &op):Base((const ap private< A =

52 template<int _AP_W2> =
53 INLINE ap_int(const ap_int<_AP_W2> &op):Base((const ap_private<_AP_W2,true

55 template<int _AP_W2>
56 INLINE ap_int(const ap_uint<_AP_W2> &op):Base((const ap_private<_AP_W2,fal
7

58 template<int _AP_W2>
59 INLIMNE ap_int(const volatile ap uint<_AP_W2> &op):Base((const ap private<_

60

61 template<int _AP_W2, bool _AP_52>

62 INLINE ap_int{const ap range ref<_AP_W2, _AP_S52>& ref):Base(ref) {} -
4 | 1 | b

Figure 52: Arbitrary Precision Header File

A more productive methodology is to exit the ap_int_h header file and return to view the
results.

8. Click the Step Return button (or the F7 key) to return to the calling function.
9. Select the Variables tab.

10. Expand the outdata variable, as shown in Figure 53 to see the value of the variable shown
in the VAL parameter.

3 Debug 2 5 Explorer i M| 2 @ @ = | i+ +0 T T O)|e-Variables £3 . ®s Breakpoints| i} Registers| =i Modules =08
hamming_window_prj.Debug [C/C++ Application] <t B § i
% C:\Vivado_HLS_Tutorial\C_Validation\lab3\hamming_window_prj\solutit | Name Type Value =
o* Thread [1] 0 (Suspended : Step) 4 % outdata out_data_t* Ox28f4d8
= hamming_window() at hamming_window.cpp:63 0x4017fa 4 (® ap_private<32, tr ap_private<32, true, true... 1.}
= main() at hamming_window_test.cpp:69 0x401587 - mask const uint64_t =
»d gdb 9= not_mask const uint64_t
3= sign_bit_mask const uint64_t
= VAL ap_private<32, true, true... -42923460
. ®» indata in_data_t * 0x28fcd8 =
L 11l b
< | 1 r]«)
[¢ hamming_window.cpp & - i ap_inth |l ap_privateh [¢ hamming_window_test. |1 = O[5 Outline AW e~ 70

S ANniLldallseu d> d DU, 1L 1S PELUINIENUEU LildL e ar'i'yd Lnlivigiisacivn
// be done in a sub-function with global (wrt this source file) scope.
hamming_rom_init(window_coeff);

- = hamming_window.h
++% hamming_rom_init(in_data_t[]) : voic
e hamming_window(out_data_t[], in_c
for (1 = @; i < WINDOW_LEN; i++) { ® £ hamming_rom_init(in_data_t[]) : voic
#pragma AP pipeline
outdata[i] = (out_data_t)window_coeff[i] * (out_data_t)indata[i];
¥ -

< | 1 » 1 1 »

m

Figure 53: Arbitrary Precision Variables
Arbitrary precision types are a powerful means to create high-performance, bit-accurate
hardware designs. However, in a debug environment, your productivity can be reduced by

High-Level Synthesis www.xilinx.com 58

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=58

& XILINX. C Validation

stepping through the header file definitions. Use breakpoints and the step return feature to skip
over the low-level calculations and view the value of variables in the Variables tab.

Conclusion

In this tutorial, you learned:

e The importance of the C test bench in the simulation process.

e How to use the C debug environment, set breakpoints and step through the code.

e How todebug C and C++ arbitrary precision types.

High-Level Synthesis www.xilinx.com 59

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=59

& XILINX.

Chapter 4 Interface Synthesis

Interface synthesis is the process of adding RTL ports to the C design. In addition to adding the
physical ports to the RTL design, interface synthesis includes an associated I/O protocol,
allowing the data transfer through the port to be automatically and optimally synchronized with
the internal logic.

This tutorial consists of four lab exercises that cover the primary features and capabilities of
interface synthesis.

e Lab1:Review the function return and block-level protocols.
e Lab 2:Understand the default I/O protocol for ports and learn how to select anI/O protocol.
e Lab 3:Review how array ports are implemented and can be partitioned.

e Lab4: Create an optimized implementation of the design and add AXI4 interfaces.

Tutorial Design Description

Download tutorial design file from the Xilinx website. Refer to the information in

High-Level Synthesis www.xilinx.com 60

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=60

& XILINX. Interface Synthesis

Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS Tutorial\Interface_Synthesis.

About the Labs

e The sample design used in the first two labs in this tutorial is a simple one, which helps the
focus to remain on the interfaces.

e The final two lab exercises use a multi-channel accumulator.
e This tutorial explains how to implement I/O ports and protocols using High-Level Synthesis.

e Inlab 4, you create an optimal implementation of the design used in Lab3.

High-Level Synthesis www.xilinx.com 61

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=61

& XILINX. Interface Synthesis

Interface Synthesis Lab 1: Block-Level I/O protocols

Overview

This lab explains what block-level I/O protocols are and to control them.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS_Tutorial is unzipped and placed in the location

ﬁ C:\Vivado_HLS Tutorial
If the tutorial data directory (s unzipped to a different location, or on Linux systems, adjust

the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt (Figure 54).

b. InLinux, open a new shell.

Bl Vivado 2013.3 Tcl Shell
g Vivado 2013.3
Accessories
SDK
System Generator
Vivado HLS
Bl vivado HLS 2013.3 Command Promp
"] vivado HLS 2013.3

Figure 54: Vivado HLS Command Prompt

High-Level Synthesis www.xilinx.com 62

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=62

& XILINX. Interface Synthesis

2. Using the command prompt window (Figure 55), change directory to the Interface Synthesis
tutorial, lab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado_hls —f
run_hls.tcl, as shown in Figure 55.

[Vivado HLS 2013.2 Command Prompt =N EoR

C:\Uivado_HLS_Tutorial>cd Interface_Synthesis

C:\Vivado_HLS_Tutorial\Interface_Synthesis>cd labl

C:\Uivado_HLS_Tutorial\Interface_Synthesis\lab1>vivado_hls -f run_hls.tcl

Figure 55: Setup the Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls -p adders_prj, as shown in Figure 56.

Vivado HLS Command Prompt
BI [HL3-10] Current directory: C:/Mivado_HLS_Tutorial/Interface_sSuynthesis/labl /&8
] lutionl/esim/build)
C-3] Tmp directory is apcc_db
BI [APCC-1] APLC is done
Bl [LIC=-181] Checked in feature [UIURDO_HLS]
Generating csim.exe
10w20%30=6000
LOH30=40= 25000

§

30=40%50= 60000
4OXSO=E0: 120000
SOnG0x70: 210000

P
BI [3IM-1] C51m done With @ errors
BI [LIC-181] Checked in feature [UIUVADOD_HL

C:\Wivado HLS Tutorial\ Interface Synthesis\labl>uivado hls -p a e i -

Figure 56: Initial Project for Interface Synthesis Lab 1

Step 2: Create and Review the Default Block-Level 1/0 Protocol
1. Double-click adder.c in the Source folder to pen the source code for review (Figure 57).

This example uses a simple design to focus on the I/O implementation (and not the logic in
the design). The important points to take from this code are:

o Directives in the form of pragmas have been added to the source code to prevent
any I/O protocol being synthesized for any of the data ports (inA, inB and inC).1/O
port protocols are reviewed in the next lab exercise.

High-Level Synthesis www.xilinx.com 63

UG871 (v2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=63

& XILINX.

Interface Synthesis

0 This function returns a value and this is the only output from the function. As seen in
later exercises, not all functions return a value. The port created for the function
return is discussed in this lab exercise.

(25 Explorer 2 w7 B[[adders.c &3 =0
=5 adders_prj 48 int adders(int inl, int in2, int in3) { -
i Includes 49
= Source o0
- 51// Prevent I0 protocols on all input ports
[¢ adders.c

fi= Test Bench
= solution1
constraints
W directives.tcl
W script.tcl
= ¢sim
& build
= report

52 #pragma HLS INTERFACE ap none port=in3
53 #pragma HLS INTERFACE ap_none port=in2
54 #pragma HLS INTERFACE ap none port=inl

55

56

57 int sum;

58

59 sum = inl + in2 + in3;

60

1 return sum; E
62

63} i
64 -
KB 1 3

Figure 57: C Code for Interface Synthesis Lab 1

2. Execute the Run C Synthesis command using the dedicated toolbar button or the Solution

menu.

When synthesis completes, the synthesis report opens automatically.

3. To review the RTL interfaces scroll to the Interface summary at the end of the synthesis

report.

The Interface summary and Outline tab are shown in Figure 58.

¢ adders.c £ adders_csynth.rpt = = O[5 Qutline # . [Directive @~ —0

- Summary

RTL Ports Dir Bits Protocol Source Object C Type

- = General Information
= Performance Estimates
Timing (ns)
Latency (clock cycles)

ap_clk in 1 ap._ctrl_hs adders return value) Utilization Estimates
ap_rst in 1 ap_ctrl_hs adders return value = Summary
ap_start in 1 ap_ctrl_hs adders return value Detail

ap_done out 1 ap_ctrl_hs adders return value i Interface

ap_idle out 1 ap_ctrl_hs adders return value = Summary
ap_ready out 1 ap_ctrl_hs adders return value

ap_return out 32 ap_ctrl_hs adders return value

inl in 32 ap_none inl scalar L

in2 in 32 ap_none in2 scalar T

in3 in 32 ap_none in3 scalar i

Figure 58: Interface Summary

There are three types of ports to review:

High-Level Synthesis

www.Xilinx.com 64

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=64

& XILINX.

Interface Synthesis

e The design takes more than one clock cycle to complete, so a clock and reset have been
added to the design: ap_clk and ap_rst. Both are single-bit inputs.

e A block-level I/O protocol has been added to control the RTL design: ports ap_start,
ap_done, ap_idle and ap_ready. These ports will be discussed shortly.

e The design has four data ports.

0 Inputports Inl, In2, and In3 are 32-bit inputs and have the I/O protocol ap_none
(as specified by the directives in Figure 58).

0 The design also has a 32-bit output port for the function return, ap_return.

The block-level I/O protocol allows the RTL design to be controlled by via additional ports
independently of the data I/O ports. This I/O protocol is associated with the function itself, not
with any of the data ports. The default block-level I/O protocol is called ap_ctrl_hs. Figure
58 shows this protocol is associated with the design.

Table 1 summarizes the behavior of the signals for block-level I/O protocol ap_ctrl_hs.

Note: The explanation here uses the term “transaction”. In the context of high-levelsynthesis, a

transaction is equivalent to one execution of the C function (or the equivalent operation in the
synthesized RTL design).

Exercise

Description

ap_start

This signal controls the block execution and must be asserted to logic 1 for the
design to begin operation.

It should be held at logic 1 until the associated output handshake ap_readyis
asserted. When ap_ready goes high, the decision can be made on whether to
keep ap_start asserted and perform another transactionor set ap_start to logic 0
and allow the design to halt at the end of the current transaction.

If ap_startis asserted low before ap_readyis high, the design might not have read
all input ports and might stall operation on the next input read.

ap_ready

This output signal indicates when the design is ready for new inputs.

The ap_ready signal is set to logic 1 when the design is readyto accept new
inputs, indicating that all input reads for this transaction have been completed.

If the design has no pipelined operations, new reads are not performed until the
next transaction starts.

This signal is used to make a decision on when to apply new values to the inputs
ports and whether to start a new transactionshould using the ap_startinput
signal.

If the ap_start signalis not asserted high, this signal goes low when the design
completes all operations in the current transaction.

ap_done

This signal indicates when the design has completed all operations in the current
transaction.

High-Level Synthesis

www.Xilinx.com 65

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=65

& XILINX. Interface Synthesis

Exercise Description

A logic 1 on this output indicates the design has completed all operations in this
transaction. Because this is the end of the transaction, a logic 1 on this signal also
indicates the data on theap_return port is valid.

Not all functions have a function return argument and hence not all RTL designs
have an ap_return port.

ap_idle This signal indicates if the design is operating or idle (no operation).

The idle state s indicated by logic 1 on this output port. This signal is asserted low
once the design starts operating.

This signal is asserted high when the design completes operation and no further
operations are performed.

Table 1: Block Level I/O protocol ap_ctrl_hs

You can observe the behavior of these signals by viewing the trace file produced by RTL
cosimulation. This is discussed in the tutorial RTL Verification, but Figure 59 shows the
waveforms for the current synthesis results.

& adders.wcfg* x O x

I % ap_ready
4| % ap_return[31:0]
il 1 ap_idle

Figure 59: RTL Waveforms for Block Protocol Signals

The waveforms in Figure 56 show the behavior of the block-level I/O signals.

High-Level Synthesis www.xilinx.com 66

UG871 (v2013.3) November 8,2013 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=66

& XILINX. Interface Synthesis

e The design does not start operation until ap_start is set to logic 1.
e The design indicates it is no longer idle by setting port ap_idle low.

e Five transactions are shown. The first three input values (10, 20 and 30) are applied to input
ports In1, In2 and In3 respectively.

e Outputsignalap_ready goes high to indicate the design is ready for new inputs on the
next clock.

e Outputsignal ap_done indicates when the design is finished and that the value on output
port ap_return is valid (the first output value, 60, is the sum of all three inputs).

e Because ap_start is held high, the next transaction starts on the next clock cycle.

Note: In RTL Cosimulation, all design and port input control signals are always enabled. For
example, in Figure 59 signal ap_start is always high.

In the 2™ transaction, notice on port ap_return, the first output has the value 70. The result on
this port is not valid until the ap_done signal is asserted high.

Step 3: Modify the Block-Level 1/0 protocol

The default block-level I/O protocol is the ap_ctrl_hs protocol (the Control Handshake
protocol). In this step, you create a new solution and modify this protocol.

1. Select New Solution from the toolbar or Project menu to create a new solution.
2. Leave all settings in the new solution dialog box at their default setting and click OK.

3. Select the C source code tab in the Information pane (or re-open the C source code if it was
closed).

4. Activate the Directives tab and select the top-level function, as shown in Figure 60.

T EO0ETS G | adders_csynthupt | adders_cosim.rpd == Outine | Zf Directive
e
minclude " add 3 inl
. i ¢ & HLS A O ROSE D
int :!1-1‘: inl, imt ind, int Ini) " -
-
Spragaa HLS INTERFACE ap_none port=ind - =L & i -
#pragea HLS INMTERFACE ap none port=imd 4 i
prapsa HLS INTERFACE ap_none port=iml - & - nd
int sum;
i inl & jnd =

return um;

Figure 60: Top-level Function Selected

High-Level Synthesis www.xilinx.com 67

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=67

& XILINX. Interface Synthesis

Because the block-level I/O protocols are associated with the function, you must specify
them by selecting the top-level function.

5. Inthe Directives tab, mouse over the top-level function adders, right-click, and select
Insert Directives.

The Directives Editor dialog box opens.

High-Level Synthesis www.xilinx.com 68

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=68

& XILINX. Interface Synthesis

Figure 61 shows this dialog box with the drop-down menu for the interface mode activated.

Vivado HLS Derective Edior
Type
Derective: | INTERFACE -
Destinatson
o File

@ Lnrective File

Dphons
mode (optonad; .IH'-l cirl_none -
register. BD_CIre_Pid
:l..-p'_\.1' _ns
depth (optonal) 30 ot chain
Help Canced | DK

Figure 61: Directive Dialog box for ap_ctrl_none

The drop-down menu shows there are three options for the block-level interface protocol:
e ap_ctrl_none: No block-level 1/0 control protocol.
e ap_ctrl_hs: The block-level I/O control handshake protocol we have reviewed.

e ap_ctrl_chain: The block-level I/O protocol for control chaining. This I/O protocol is primarily
used for chaining pipelined blocks together.

The block-level 10 protocol ap_ctrl_chain is not covered in this tutorial. This protocol is similar to
ap_ctrl_hs protocol but with an additional input signal, ap_continue, which must be high when
ap_done is asserted for the next transaction to continue. This allows downstream blocks to apply
back-pressure on the system and halt further processing when they are unable to accept new
data.

6. Inthe Destination section of the Directives Editor dialog box, select Source File.

By default, directives are placed in the directives.tcl file. In this example, the directive
is placed in the source file with the the existing I/O directives.

7. From the drop-down menu, select ap_none.

8. Click OK.

High-Level Synthesis www.xilinx.com 69

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=69

& XILINX. Interface Synthesis

The source file now has a new directive, highlighted in both the source code and directives tab
in Figure 62.

The new directive shows the associated function argument/port called return. All interface
directives are attached to a function argument. For block-level I/O protocols, the return
argument is used to specify the block-level interface. This is true even if the function has no
return argument in the source code.

- "Siders.c | adders_csymthurps 1 adders_cosimupt e (Dt | 25 Diinsctive
TIT : T ; ; - ; ; = S ik
#include “adders.h # HLS INTERFACE ap_ctri_nane port=seturmn
int sdders(int inl, imt ind, imt ini) | e 1 DeTERE Al
- TERFALTE &m mcwse Do =inl
Shtprapsa HLS INTERFACE sp ctrl none port=raturn T N N ACR bl
4 md
: L # HLS INTERFACE ap_nome pant=ind
Sprapsa HLS INTERFACE ap_none port=ind 4 i3
Sprapea HLS INTERFACE ap none ports=ind & HLS INTERFACE ap_none port=ind

téprapma HLS INTERFACE ap_nome port=inl

return sum;

Figure 62: Block-Level Interface Directive ap_ctrl_none

9. Click the Run C Synthesis toolbar button or use the menu Solution > Run C Synthesis to
synthesize the design.

Adding the directive to the source file modified the source file. Figure 62 shows the source
file name as *adders.c. The asterisk indicates that the file is modified but not saved.

10. Click Yes to accept the changes to the source file.

When the report opens, the Interface summary appears, as shown in Figure 63.

High-Level Synthesis www.xilinx.com 70

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=70

& XILINX.

Interface Synthesis

=l adders _csynth.rpt i3 =5

-l Summary

RTLPorts Dir Bits Protacol Source Object C Type

ap_clk in 1 ap_ctri_none adders return value

ap_rst in 1 ap_ctrl_none adders return value

ap_return out 32 ap_ctrl_none adders return value

inl in 32 ap_none inl scalar

in2 in 32 ap_none in2 scalar =
in3 in 32 ap_none in3 scalar

Figure 63: Interface summary for ap_ctrl_none

When the interface protocol ap_ctrl_none is used, no block-level I/O protocols are added to
the design. The only ports are those for the clock, reset and the data ports.

Note that without the ap_done signal, the consumer block that accepts data from the
ap_return port now has no indication when the data is valid.

In addition, the RTL cosimulation feature requires a block-level I/O protocol to sequence the test
bench and RTL design for cosimulation automatically. Any attempt to use RTL cosimulation
results in the following error message and RTL cosimulation with halt:
@E [SIM-345] Cosim only supports the following "ap _ctrl _none® designs: (1)
combinational designs; (2) pipelined design with task interval of 1; (3)

designs with array streaming or hls_stream ports.
@E [SIM-4] *** C/RTL co-simulation finished: FAIL ***

Exit the Vivado HLS GUI and return to the command prompt.

Interface Synthesis Lab 2: Port 1/O protocols

Overview

This exercise explains how to specify port1/O protocols..

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the \lab2 directory as
shown in Figure 64.

2. Typevivado_hls —F run_hls_tcl to create a new Vivado HLS project.

www.Xilinx.com 71

l Send Feedback I

High-Level Synthesis
UG871 (v2013.3) November 8,2013

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=71

& XILINX. Interface Synthesis

Vivado HLS Command Prompt - i

)] Bringing up Vivado HLS GUI

‘\Wivado HLS Tutorial\Interface Synthesis\labl>
‘\Wivado_HLS_Tutorial\Interface_Synthesis\labl>cd

$_Tutorial\Interface_Synthesis>cd lab2

\Wivado_HLS_Tutorial‘\Interface_Sunthesis\lab2>vivado_hls -f run_hls.tcl -

Figure 64: Setup for Interface Synthesis Lab 2

3. Type vivado_hls —p adders_io_prj to open the Vivado HLS GUI project.

4. Open the source code as shown in Figure 65.

Explorer ¢, 2OQErs 0.
= Tl (v =

Imciudes #include “adder £ 1 h"

Soufce ; = X E . : o S
void adders_io(int inl, int in2, int *in_outl) {

adders_io.c = -

Test Bench

solutiont *in_outl = inl + in2 + *in_outl;

8 o 3T

Figure 65: C Code for Interface Synthesis Lab 2

The source code for this exercise is similar to the simple code used in Lab 1. For similar reasons,
it helps focus on the interface behavior and not the core logic.

This time, the code does not have a function return, but instead passes the output of the
function through the pointer argument *in_outl. This also provides the opportunity to
explore the interface options for bi-directional (input and output) ports.

The types of I/O protocol that you can add to C function arguments by interface synthesis

depends on the argument type. These options are fully described in the Vivado High-Level
Synthesis User Guide (UG902).

High-Level Synthesis www.xilinx.com 72

UG871 (v2013.3) November 8,2013 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=72

& XILINX. Interface Synthesis

The pointer argument in this example is both an input and output to the function. In the RTL
design, this argument is implemented as separate input and output ports.

High-Level Synthesis www.xilinx.com 73

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=73

& XILINX.

Interface Synthesis

For the code shown in Figure 65, the possible options for each function argument are described

in Table 2.

Function Argument

1/0 protocol Options

Inl and In2

These are pass-by-value argumentsthat can be implemented with the
following 1/O Protocols:

ap_none: No /O protocol. This is the default for inputs.

ap_stable: No I/0 protocol.

ap_ack: Implemented with an associated output acknowledge port.
ap_vld: Implemented with an associated input valid port.

ap_hs: Implemented with both input valid and output acknowledge
ports.

in_outl

This is a pass-by-reference output that can be implemented with the
following 1/0O protocols:

ap_none: No /O protocol. This is the default for inputs.
ap_stable: No I/0 protocol.
ap_ack: Implemented with an associated input acknowledge port.

ap_vld: Implemented with an associated output valid port. This is
the default for outputs.

ap_ovld: Implemented with an associated output valid port (no
valid port for the input part of any inout ports).

ap_hs: Implemented with both input valid port and output
acknowledge ports.

ap_fifo: A FIFO interface with associated output write and input
FIFO full ports.

ap_bus: A Vivado HLS bus interface protocol.

Table 2: Port Level I/O Protocol Options for Lab 2

Note: The port directives applied in Lab 1 were not actually necessary because ap_none is the
default I/0 protocol for these C arguments. The directives were provided to avoid addressing any
1/0 port protocol behavior in that exercise, default behavior or not.

In this exercise, you implement a selection of I/O protocols.

High-Level Synthesis

www.Xilinx.com 74

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=74

& XILINX. Interface Synthesis

Step 2: Specify the I/0 Protocol for Ports

1. Ensurethat you can see the C source code in the Information pane.

2. Activate the Directives tab and select input argumentinl, as shown in Figure 66.

- SCOGETS_0L - E Quptline | I Directive

& adders_io
#inclde "adders 106.R" 3 ind
vaid lﬁdﬂ_infm int in2, imt "In_outl) { P .
B i oul

Figure 66: Adding Port I/O Protocols

3. Right-click and select Insert Directives.
4. When the Directives Editor opens leave the directives drop-down menu as INTERFACE.

a. Leave the destination at the default value. This time, the directives are stored in the
directives.tdl file.

b. Select ap_vld from the mode drop-down menu
c. Click OK.
5. Select argument in2 and add an interface directive to specify the I/O protocol ap_ack.

6. Select argumentin_outl and add an interface directive to specify theI/O protocol ap_hs.

High-Level Synthesis www.xilinx.com 75

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=75

& XILINX.

Interface Synthesis

7. Inthe Explorer pane, expand the Constraints folder and double-click the directives.tcl
file to open it, as shown in Figure 67.

5 Bxplorer I g =

i adders_io_pr)
& Inchudes
= Source
& Test Bench
= solution
& constramnts
o directivestcl
o seriptid
= csim

set_directive_interface -mode ap_ack "adders_io™ in2
set_directive_interface -mode ap _hs “adders_io™ in_owtl

8. Synthesize the design.

9. Review the Interface summary when the report file opens (Figure 68).

Figure 67: Directives for Lab 2

" directives.tcl =) adders_io_csynth.rpt i

[¢ adders_io.c

ap_clk

ap_rst
ap_start
ap_done
ap_idle
ap_ready
inl
inl_ap_vid
in2
in2_ap_ack

in_outl_i

in_outl_o

in_outl_i_ap_vid
in_outl_i_ap_ack

in_outl_o_ap_vid
in_outl_o_ap_ack

Dir Bits Protocol Source Object CType

in 1 ap_ctrl_hs adders_io return value
in 1 ap_ctrl_hs adders_io return value
in 1 ap_ctrl_hs adders_io return value
out 1 ap_ctrl_hs adders_io return value
out 1 ap_ctrl_hs adders_io return value
out 1 ap_ctrl_hs adders_io return value
in 32 ap_vid inl scalar
in 1 ap_vld inl scalar
in 32 ap_ack in2 scalar
out 1 ap_ack in2 scalar
in 32 ap_hs in_outl pointer
in 1 ap_hs in_outl pointer
out 1 ap_hs in_outl pointer
out 32 ap_hs in_outl pointer
out 1 ap_hs in_outl pointer
in 1 ap_hs in_outl pointer

High-Level Synthesis

Figure 68: Interface summary for Lab 2

www.Xilinx.com

UG871 (v 2013.3) November 8,2013

76

l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=76

& XILINX. Interface Synthesis

The design has a clock and reset.

The default block-level I/O protocol signals are present.

Portinl is implemented with a data port and an associated input valid signal.

The data on portinl is only read when port in1_ap_vld is active high.

Port in2 is implemented with a data port and an associated output acknowledge signal.
Port in2_ap_ack will be active high when data port in2 is read.

The inout_i identifies the input part of argument inoutl. This has associated input valid
port inoutl_i_ap_vIld and output acknowledge port inoutl_i_ap_ack.

The output part of argument inoutl is identified as inout_o. This has associated output valid
port inoutl_o_ap_vld and input acknowledge port inoutl_o_ap_ack.

10. Exit the Vivado HLS GUI and return to the command prompt.

Interface Synthesis Lab 3: Implementing Arrays as RTL
Interfaces

Introduction

This exercise shows how array arguments on functions you can implement as a number of
different types of RTL port.

Step 1: Create and Open the Project

1.

From the Vivado HLS command prompt window used in the previous lab, change to the
lab3 directory.

Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl
Open the Vivado HLS GUI project by typing vivado_hls —p arrays_io_prj

High-Level Synthesis www.xilinx.com 77

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=77

& XILINX. Interface Synthesis

4. Open the source code as shown in Figure 69.

This design has an input array and an output array. The comments in the C source explain
how the data in the input array is ordered as channels and how the channels are
accumulated. To understand the design, you can also review the test bench and the input
and output data in file result.golden.dat.

STEY_MCLL
Hnclude ~

vold sreay_lo (it d_olN]. t d 4[M]

int 1, reE

static dacc t acc[CHANNELS];

ofr Loap: fTor bal: {<M:Les
rems L RCHANMELS |
o |".-1| B i El'-lsrl « & 101z

[1] = ace[res];

Figure 69: C Code for Interface Synthesis Lab 3

Step 2: Synthesize Array Function Arguments to RAM ports

In this step, you review how array ports are synthesized to RAM ports.

1. Synthesize the design and review the Interface summary when the report opens (Figure 70).

The interface summary shows how array arguments in the C source are by default
synthesized into RTL RAM ports.

(0]

o O O O

o

The design has a clock, reset and the default block-level I/O protocol ap_ctrl_hs
(noted on the clock in the report).

The d_o argument has been synthesized to a RAM port (I/O protocol ap_memory).
A data port (d_o_d0).

An address port (d_o_addressO0).

Control ports for chip-enable (d_o_ce0) and a write-enable port (do_we0).

The d_i argument has been synthesized to a similar RAM interface, but has an input
data port (d_i_q0) and no write-enable port because this interface only reads data.

High-Level Synthesis www.xilinx.com 78

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=78

& XILINX. Interface Synthesis

In both cases, the data port is the width of the data values in the C source (32-bit integers in
this case) and the width of the address port has been automatically sized match to the
number of addresses that must be accessed (5-bit for 32 addresses).

=l array_io_csynth.rpt &3 =0
- Summary
Dir Bits Protocol Source Object CType
ap_clk in 1 ap_ctrl_hs array_io return value
ap_rst in 1 ap_ctrl_hs array_io return value
ap_start in 1 ap_ctrl_hs array_io return value
ap_done out 1 ap_ctrl_hs array_io return value
ap_idle out 1 ap_ctrl_hs array_io return value
ap_ready out 1 ap_ctrl_hs array_io return value
d_o_address0 out 5 ap_memary do array
d o celd out 1 ap_memaory do array
d_o_wel out 1 ap_memaory do array
d o do out 16 ap_memory do array
d_i_address(out 5 ap_memary d_i array 3
d_i_cel out 1 ap_memaory di array
d_i_qg0 in 16 ap_memory d_i array
4 i 3

Figure 70: Interface Summary for Initial Lab 3 design

Synthesizing array arguments to RAM ports is the default. You can control how these ports are
implemented using a number of other options. The remaining steps in Lab 3 demonstrate these
options:

e Using a single-port or dual-port RAM interface.
e Using FIFO interfaces.

e Partitioning into discrete port.

High-Level Synthesis www.xilinx.com 79

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=79

& XILINX. Interface Synthesis

Step 3: Using Dual-port RAM and FIFO interfaces

High-Level Synthesis lets you specify a RAM interface a single-port or dual-port. If you do not
make such a selection, Vivado HLS automatically analyzes the design and selects the number of
ports to maximize the data rate.

Step 2 used a single-port RAM interface because the for-loop in the source code (Figure 69) is
by default left rolled: each iteration of the loop is executed in turn:

e Read the input port.

e Read the accumulated result from the internal RAM.

e Sum the accumulated and new data and write into the internal RAM.
e Write the result to the output port.

e Repeat for the next iteration of the loop.

This ensures only a single input read and output write is ever required. Even if multiple input and
outputs are made available, the internal logic cannot take advantage of any additional ports.

Note: If you specify a dual-port RAM and Vivado HLS can determine only a single port is required,
(t uses a single-port and over-ride the dual-port specification.

In this design, if you want to implement an array argument using multiple RTL ports, the first
thing you must do is unroll the for-loop and allow all internal operations to happen in parallel,
otherwise there is no benefit in multiple ports: the rolled for-loop ensure only one data sample
can be read (or written) at a time.

1. Select New Solution from the toolbar or Project menu to create a new solution.
2. Accept the defaults, and click OK.

3. Ensure the C source code is visible in the Information pane.

4

In the Directives tab, select the for-loop, For_Loop, and right-click to open the Directives
Editor dialog box.

a. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select UNROLL.

High-Level Synthesis www.xilinx.com 80

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=80

& XILINX. Interface Synthesis

b. With the Directives Editor as shown in Figure 71, click OK.
Vivado HLS Directive Editor
Type
Directive: | UNROLL -

Destination
Source File
@ Directive File

Options
skip exit check

factor (optional): |

region:

Help | Cancet | ok |

Figure 71: Directives Editor to Unroll For_Loop

High-Level Synthesis www.xilinx.com 81

UG871 (v2013.3) November 8,2013 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=81

& XILINX.

Interface Synthesis

Next, specify a dual-port RAM for input reads. The Resource directive indicates the type of RAM
connected to an interface.

5. Inthe Directives tab, select portd_i and right-click to open the Directives Editor dialog box.

a. Inthe Directives Editor activate the Directives drop-down menu at the top and select

RESOURCE.
b. Click the core options box and select RAM_2P_RAM.

c. Verify that the settings in the Directives Editor dialog box are as shown in Figure 72 and

click OK.

High-Level Synthesis

Vivado HLS Directive Editor

Iype
Directive: | RESQURCE

Destination
Source File
@ Directive File

Options
variable {required):. d

-

core (optional): | RaM_2P BRAM
port map (optional):

metadata (optional):

i Help Cancel

OK

www.Xilinx.com

UG871 (v2013.3) November 8,2013

Figure 72: Directives Editor for Specifying a Dual-port RAM

82

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=82

& XILINX. Interface Synthesis

Implement the output port using a FIFO interface.

6. Inthe Directives tab, select port d_o and right-click to open the Directives Editor dialog
box.

a. Inthe Directives Editor, leave the directive as Interface.

b. From the Mode drop-down menu, select ap_fifo.
c. Click OK.

The Directive tab shows the directives now applied to the design (Figure 73).

_ﬂE Outline 22 Directive i3 =5

4 @ armay_10

4 do

0% HLS INTERFACE ap_fifo port=d_o

di

% HLS RESOURCE variable=d_i core=RAM_2P_BRAM

=11 acr

4 =" For Loop
B0 HLS UNROLL

Figure 73: Directives Summary for Lab 2 Solution2

7. Synthesize the design.

High-Level Synthesis www.xilinx.com 83

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=83

& XILINX. Interface Synthesis

When the report opens in the Information pane, the Interface summary is as shown in Figure 74.

e The design has the standard clock, reset and block-level I/O ports.

e Array argument d_o has been implemented as a FIFO interface with a 16-bit data port
(d_o_din) and associated output write (d_o_write) and input FIFO full (d_o_full_n) ports.

e Argument d_i has been implemented as a dual-port RAM interface.

el array_io_csynth.rpt i3

Interface
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctri_hs array_io return value
ap_rst in 1 ap_ctri_hs array_io return value
ap_start in 1 ap_ctri_hs array_io return value
ap_done out 1 ap_ctri_hs array_io return value
ap_idle out 1 ap_ctri_hs array_io return value
ap_ready out 1 ap_ctri_hs array_io return value
d_o_din out 16 ap_fifo do pointer
d_o_full_n in 1 ap_fifo do pointer
d_o_write out 1 ap_fifo do pointer
d_I_address0 out 5 ap_memory di array
d i_cel out 1 ap_memory di array
d_i_qg0 in 16 ap_memory di array
d_I_addressl out 5 ap_memory di array
dicel out 1 ap_memory di array
diql in 16 ap_memory di array

Figure 74: Directives Editor Specifying Block RAM Interface

By using a dual-port RAM interface, this design can accept input data at twice the rate of the

previous design. However, by using a single-port FIFO interface on the output the output data
rate is the same as before.

High-Level Synthesis www.xilinx.com

UG871 (v2013.3) November 8,2013 l Send Feedback I

LA

84

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=84

& XILINX. Interface Synthesis

Step 4: Partitioned RAM and FIFO Array interfaces

In this step, you learn how to partition an array interface into any arbitrary number of ports.
1. Select New Solution from the toolbar or the Project menu and create a new solution.

2. Accept the defaults, and click OK. This includes copying existing directives from solution2.
3. Ensurethe C source code is visible in the Information pane.

4. Inthe directives tab, select d_o and right-click to open the Directives Editor dialog box.

a. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select ARRAY_PARTITION.

b. Activate the type drop-down menu and select block to partition the array into blocks.
¢. Inthe Factor dialog box, enter the value 4.

d. With the Directives Editor as shown in Figure 75, click OK.

Vivado HLS Directive Editor
Type
Directive: | ARRAY_PARTITION »
Destination

Source File
@ Directive File

Options

variable (required): d_o

type (optional bBlock -
factor (optional): 4|

dimension (optionall 1

Help Cancel | OK

Figure 75: Directives Editor for Partitioning Array d_o

Now, partition the input array into two blocks (not four).

5. Inthe Directives tab, select d_i and repeat the previous step, but this time partition the port
with a factor of 2.

High-Level Synthesis www.xilinx.com 85

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=85

& XILINX.

Interface Synthesis

The directives tab shows the directives now applied to the design (Figure 76 76).

&= Qutline | {2 Directive. &3
| <o AfTAY_i0
4 do
% HLS ARRAY_PARTITION vanable=d_o block factor=4 dim=1
% HLS INTERFACE ap_fifo port=d_o
@ da
% HLS ARRAY_PARTITION variable=d_i block factor=2 dim=1
% HLS RESOURCE vanable=d_i core=RAM_2P BRAM
[l ace
4 5 For_Loop
&b HLS UNROLL

Figure 76: Directives Summary for Lab 2 Solution3

6. Synthesize the design.

When the report opens in the Information pane, the Interface summary is as shown in Figure 77.

e The design has the standard clock, reset and block-level I/O ports.

e Array argument d_o has been implemented as a four separate FIFO interfaces.

e Argument d_i has been implemented as a two separate RAM interfaces, each of which uses a

dual-port interface. (If you see 4 separate RAM interfaces, confirm a partition factor for d_i is

2 and not 4).

High-Level Synthesis www.xilinx.com
UG871 (v2013.3) November 8,2013

| Send Feedback l

86

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=86

& XILINX. Interface Synthesis

£l array_io_csynth.rpt i2 =0
Interface i
- Summary
RTL Ports Dir Bits Protocol Source Object C Type

ap_clk in 1 ap_ctrl_hs array_io return value
ap_rst in 1 ap_ctrl_hs array_io return value
ap_start in 1 ap_ctrl_hs array_io return value
ap_done out 1 ap_ctrl_hs array_io return value
ap_idle out 1 ap_ctrl_hs array_io return value
ap_ready out 1 ap_ctrl_hs array_io return value
d_o_0_din out 16 ap_fifo dol pointer
d_o_0_full_n in 1 ap_fifo do0 pointer
d_o_0_write out 1 ap_fifo dol pointer
d_o_1_din out 16 ap_fifo dol pointer
d_o_ 1 full_n in 1 ap_fifo dol pointer
d_o_1_write out 1 ap_fifo dol pointer
d_o_2 din out 16 ap_fifo do?2 pointer
d_o_2_full_n in 1 ap_fifo d_o?2 pointer
d_o_2_write out 1 ap_fifo do?2 pointer
d_o_3_din out 16 ap_fifo do3 pointer
d_o_3_full_n in 1 ap_fifo do3 pointer
d_o_3_write out 1 ap_fifo do3 pointer
d_i_0_address0 out 4 ap_memory d.il array
d_i_0_celd out 1 ap_memory di0 array
d_i_0 g0 in 16 ap_memory d.il array
d_i_0_address1 out 4 ap_memory di0 array

d_i_0_cel out 1 ap_memory dio array =
di0aql in 16 ap_memory di0 array
d_i_1_address0 out 4 ap_memory dil array
d_i_1_cel out 1 ap_memory d_i_l array
d_i_1 g0 in 16 ap_memory dil array
d_i_1_addressl out 4 ap_memory d_i_l array
d.i_l_cel out 1 ap_memory d.il array
dilal in 16 ap_memory d_i_l array

Figure 77: Interface Report for Partitioned Interfaces

If input port d_i was partitioned into four, only a single-port RAM interface would be required
for each port. Because the output port can only output four values at once, there would be no
benefit in reading 8 inputs at once.

The final step in this tutorial on arrays is to partition the arrays completely.

High-Level Synthesis www.xilinx.com 87

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=87

& XILINX. Interface Synthesis

Step 5: Fully Partitioned Array interfaces

This step shows you how to partition an array interface into individual ports.

1. Select New Solution from the toolbar and create a new solution.

Click OK and accept the defaults. This includes copying existing directives from solution3.
Ensure the C source code is visible in the Information pane.

In the Directive tab, select the existing partition directive for d_o as shown in Figure 78.

Right-click and select Modify Directive.

v A wN

57 Qutline |4 Directive i

4 @ aray_io

4 do
G HLS ARRAY_PARTITION variable=d_o block factor=4 dim=1
¢ ¥ Remowve Directive n=d o

& Modify Directive
% HLS ARRAY_PARTITIOM variable=d_i block factor=2 dim=1
% HLS RESOURCE variable=d_i core=RAM_2P_BRAM
A1 ace
4 For_Loop
%% HLS UNROLL

Figure 78: Modifying the Directive for d_o

6. Inthe Directives Editor dialog box:
a. Activate the Type drop-down menu and modify the partitioning style to Complete.

b. Inthe Factor dialog box, the you can remove the value 4 or leave it as-is. The factor is
ignored for this type of partitioning.

High-Level Synthesis www.xilinx.com 88

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=88

& XILINX. Interface Synthesis

¢. With the Directives Editor as shown in Figure 79, click OK.

Vivado HLS Directive Editor
Type
Directive: | ARRAY_PARTITION -
Destination
source File

@ Directive File

Options
variable (required): d.o

type (optional) .cumplete -
factor {optional);

dimension {optional) 1

Help Cancel | OK |

Figure 79: Directives Editor for Partitioning Array d_o

7. Inthe Directives tab, select d_i and repeat the previous step to completely partition the d_i
array.

Optionally, you can delete the directive on d_i specifying the resource.If the array is partitioned
into individual elements, the Resource directive, which specifies a RAM resource, is ignored.

High-Level Synthesis www.xilinx.com 89

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=89

& XILINX. Interface Synthesis

The Directives tab shows the directives now applied to the design (Figure 80).

o= Outline |4 Directive
4 @ amray_io
+ 00
%% HLS ARRAY PARTITION variable=d_o complete dim=1
% HLS INTERFACE ap_fifo port=d_o
4 d_
9 HLS ARRAY _PARTITION variable=d_i complete dim=1
% HLS RESOURCE vanable=d_i core=RAM _2P BRAM
11 acc
+ For_Loop
%% HLS UNROLL

Figure 80: Directives Summary for Lab 2 Solution3

8. Synthesize the design.

9. When the report opens in the Information pane, review the interface summary. Note the
following:

e The design has the standard clock, reset and block-level I/O ports.
e Array argument d_o has been implemented as a 32 separate FIFO interfaces.

e Argument d_i has been implemented as a 32 separate scalar port. Because the default
interface for input scalars in no I/O protocol, they have the I/O protocol ap_none.

Although this tutorial has focused exclusively on the I/O interfaces, at this point it is worth
examining the differences in performance across all four solutions.

10. Select Compare Reports from the toolbar or the Project menu to open a comparison of the
solutions.

High-Level Synthesis www.xilinx.com 90

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=90

& XILINX. Interface Synthesis

11. In the Solution Selection dialog box, add each of the four solutions to the Selected Solutions
pane (Figure 81 81).

12. Click OK.
. Solution Selection Dialog EE
Solution Selection
Please select the solutions you want 1o compane
Available solutions: selected solutions
walutianl
solution?
<<Re solutiond
solutiond
UK Cancel

Figure 81: Compare All Solutions for Lab 3

When the solutions comparison report opens (Figure 82), it shows that solution4, using a unique
port for each array element, is much faster than the previous solutions. The intermallogic can
access the data as soonas it is required. (There is no performance bottleneck due to port accesses.)

£F compare reports &2 =B

S

Performance Estimates

= Timing (ns)
Clock solutionl solution2 solution3 solutiond
default Target 4.00 4.00 4.00 4.00
Estimated 2.39 345 345 3.40

111

-l Latency (clock cycles)

solutionl solution? solution3 solutiond

Latency min 129 33 11 2
max 129 33 11 2
Interval min 130 34 12 3
max 130 34 12 3

Figure 82: Performance Comparisons for All Lab 3 Solutions

High-Level Synthesis www.xilinx.com 91

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=91

& XILINX. Interface Synthesis

Scroll further down the comparison report (Figure 83) and note that solutions with more I/O
ports (solutions 2, 3 and 4), allowing more parallel processing, also use considerably more
resources.

£F compare reports 3 =0
Utilization Estimates

solutionl solution2 solution? solutiond

BRAM_18K 1 0 0 0

DSP48E 0 0 0 0

FF 120 1238 1220 1026 =
LUT 53 1261 1186 1026

Figure 83: Resource Comparisons for All Lab 3 Solutions

In the next exercise, you implement this same design with an optimum balance between the
ports and resources. In addition to this more optimal implementation, the next exercise shows
how to add AXI interfaces to the design.

13. Exit the Vivado HLS GUI and return to the command prompt.

Interface Synthesis Lab 4: Implementing AXI Interfaces

Introduction

This exercise explains how to specify AXI bus interfaces for the1/O ports.

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt window used in the previous lab, change to the lab4
directory.

2. Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl
Open the Vivado HLS GUI project by typing vivado_hls —p axi_interface_prj

4. Open the source code as shown in Figure 84.

High-Level Synthesis www.xilinx.com 92

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=92

& XILINX. Interface Synthesis

E_ s ess

Rinclude ami_inteértaces .k

veld axl_intarfeces (dout ® d ofN|, din ¥ d_L{N])
int §, rem’

static da t acc[CHAMMELS)

Figure 84: Source code for Lab 4

This design uses similar source C code as Lab 3: with the design renamed to axi_interfaces.

Step 2: Create an Optimized Design

In the optimal performance implementation of this design, the data for each channel would be
processed in parallel, with dedicated hardware for each channel.

The key to understanding how best to perform this optimization is to recognize that the
channels in the input and output arrays lend themselves to cyclic partitioning. Cyclic partitioning
is fully explained in the Vivado HLS User Guide (UG902, but basically means each array element
is, in turn, sorted into a different partition.

If the I/O arrays are partitioned into channels, you can use FIFO interfaces to stream the samples
for each channel through the design in parallel.

Finally, if the 1/O ports are configured to supply and consume individual streams of channel
data, partial unrolling of the for-loop can ensure dedicated hardware processes each channel.

First, partition the arrays:

1. Ensurethe C source code is visible in the Information pane.

2. Inthe Directives tab, select d_o and right-click to open the Directives Editor dialog box.
a. Select the Directives drop-down menu at the top and select ARRAY_PARTITION.
b. Click the Type drop-down menu to specify cyclic partitioning.

c. Inthe Factor dialog box, enter the value 8, to create eight separate partitions. (This
results in eight ports.)

High-Level Synthesis www.xilinx.com 93

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=93

& XILINX. Interface Synthesis

High-Level Synthesis www.xilinx.com 94

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=94

& XILINX. Interface Synthesis

d. With the Directives Editor dialog box filled in as shown in Figure 85, click OK.

-

Vivado HLS Directive Editor
Type
Directive: ARRAY _PARTITION -
Destination

@ Directive File

Options
| waniable (required): d.o

type (optional): | cyclic =
| factor {(optional): 8

dimension (optional): 1

Help Cancel Ok

Figure 85: Directives Editor for Cyclic Partitioning

3. Inthe Directives tab, select d_o again and right-click to open the Directives Editor dialog
box.

a. Activate the Directives drop-down menu at the top and select INTERFACE.
b. Click the Mode drop-down menu to specify an ap_fifo interface.
c. Click OK.
4. Inthe Directives tab, select d_i and repeat steps 2 and 3 above.
a. Apply cyclic partitioning with a factor of 8.
b. Apply an ap_fifo interface.
5. Next, partially unroll and pipeline the for-loop:

a. Inthe Directives tab, select For_Loop and right-click to open the Directives Editor
dialog box.

High-Level Synthesis www.xilinx.com 95

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=95

& XILINX. Interface Synthesis

b. Activate the Directives drop-down menu at the top and select UNROLL.

i. Select a factor of 8 to partially unroll the for-loop. This is equivalent to re-writing

the C code to execute eight copies of the loop-body in each iteration of the loop
(where the new loop only executes for four iterations in total, not 32).

ii. Click OK.

c. Inthe Directives tab, select For_Loop again and right-click to open the Directives Editor
dialog box.

i. Activate the Directives drop-down menu at the top and select PIPELINE.

ii. Leavethe Interval blank and let it default to 1.
ii. Select enable loop rewinding.
iv. Click OK.

When the top-level of the design is a loop, you can use the pipeline rewind option. This
informs Vivado HLS that when implemented in RTL, this loop runs continuously (with no end
of function and function re-start cycles).

After performing the above steps, the Directives tab should be as shown in Figure 86. Be

sure to check all options are correctly applied. If not, double-click the directive to re-open
the Directives Editor.

o= Outline | L2 Directive

+ @ axi_interfaces
2 do
Y HLS ARRAY_PARTITION variable=d_o cyclic factor=8 dim=1

% HLS INTERFACE ap_fifo port=d_o

#
% HLS INTERFACE ap_fifo port=d_|
95 HLS ARRAY PARTITION variable=d i cvclic factor=8 dim=1
Ll ace
] For_Loop

¥ HLS UNROLL factor=8
% HLS PIPELIME rewind

Figure 86: Directives tab for Lab 4 Solutionl

6. Synthesize the design.

When the report opens in the information pane, confirm both d_i and d_o are implemented
as eight separate FIFO ports.

High-Level Synthesis www.xilinx.com 96

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=96

& XILINX. Interface Synthesis

7.

In the performance section of the design, confirm that the for-loop processes one sample
every clock cycle (Interval 1) with a latency of 2, and that the design has less area than
solutions 2, 3, or4 in Lab 3 (Figure 83).

Cyclic partitioning of the array interfaces and partial for-loop unrolling has allowed
implementation of this C code as eight separate channels in the hardware.

Step 3: Implementing an AXl4-Lite Interfaces

Adding an AXI4-Lite interface is a two-step process:

First, you specify the interface to have an I/O protocol, using the Interface directive.

Second, you add a Resource directive to the RTL port so that an AX14 interface connects to
the port. (This is similar to the method for specifying RAM interfaces.) The AXI4 interfaces are
added to the design during the IP creation stage.

In this exercise, you specify FIFO interfaces as AXI4 Stream interfaces. You group block-level /O

protocol ports into a single AXI4 Lite interface, which allows these block-level control signals to
be controlled and accessed from a CPU.

1.

2
3.
4

Select New Solution from the toolbar or the Project menu to create and new solution.
Accept the defaults and click OK. This includes copying existing directives from solution3.
Ensure the C source code is visible in the Information pane.

In the Directives tab, select the top-level function axi_interfaces and right-click to open the
Directives Editor dialog box.

a. Activate the Directives drop-down menu at the top and select RESOURCE.

b. Because you selected the axi_interfaces function, the variable field completes
automatically with the function return.

c. Click the Core options box and select AXI4LiteS. This specifies the ports associated with
the function return (the block-level I/O ports) are connected to an AXI4Lite interface.

d. Click OK.

The Directives tab appears, as shown in Figure 87.

High-Level Synthesis www.xilinx.com 97

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=97

& XILINX. Interface Synthesis

5% Qutline [Directive &3 =g

4 9 gxi_interfaces
% HLS RESOURCE variable=return core=AX4LiteS
4 do
9 HLS INTERFACE ap_fifo port=d_o
% HLS ARRAY_PARTITION partition variable=d_o cyclic factor=8 dim=1
@ di
% HLS INTERFACE ap_fifo port=d_i
9 HLS ARRAY_PARTITION partition variable=d_i cyclic factor=8 dim=1
=1 acc
4 5" For_Loop
% HLS UNROLL factor==8
% HLS PIPELINE rewind

Figure 87: Directives for Specifying AXI4 Interfaces

5. Synthesize the design.

When the report opens, only the RTL ports appear in the Interface summary. AXI4 interfaces
are not added to the design until it is packaged as IP.

6. Select Export RTL from the toolbar or the Solution menu, to create an IP package.

7. Leave the Format Selection as IP Catalog and click OK.

High-Level Synthesis www.xilinx.com 98

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=98

& XILINX.

You can see the IP package in the solution2/impl folder (Figure 88)
the Vivado IP Catalog format, the package is in the ip folder.

i Explorer L.
mil Includes -
Source
= Test Bench
2 solutionl
a 7 solution2
constraints
4 = impl
ll |p;
autormpl.log
component.xml
pack.bat
4 run_ippacktc
vivado,jou
vivaao.log
wilime_com_his_axi_interfaces_1_00_a.zip
doc
4 L= hdl
4 = verilog
s axi_interfaces_ap_rst_ify
«n' axi_interfaces_top.v
wd axi_interfacesy
wd AXIALItES_ifv .

Figure 88: IP Package with AXI4 Interfaces

Interface Synthesis

. Because you used

The top-level HDL is in the verilog subfolder, as shown in Figure 88. The extension _top
identifies the top-level file. In this case, the top-level file is axi_interfaces_top.v .

When AX14 interfaces are added, only Verilog HDL is currently created.

8. Double-click the axi_interfaces_top.v file toopen it in the Information pane.

High-Level Synthesis www.xilinx.com
UG871 (v2013.3) November 8,2013

99

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=99

& XILINX. Interface Synthesis

Review the top-level HDL file to view the added AXI4 Slave Lite interface (Figure 89)

el axi_interfaces_top.v il -
_l(/ ————————————— - -
2// File generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC
3// Version: 2013.3
4// Copyright (C) 2013 Xilinx Inc. All rights reserved.
5//

L]

8 timescale 1 ns / 1 ps

9module axi_interfaces_top (
10s_axi AXTA4LiteS AWADDR,
11s_axi AXT4LiteS AWVALID,
125 _axi AXTALiteS AWREADY,
13 s_axi AXT4LiteS WDATA,
14s_axi_ AXI4LiteS_WSTRB,
15s_axi_ AXI4LiteS WVALID,
16's_axi_ AXIALiteS_WREADY,
17 s_axi AXIALiteS BRESP,
18s_axi AXTA4LiteS BVALID,
195 _axi AXT4LiteS BREADY,
20s_axi AXI4LiteS ARADDR,
215 _axi AXT4LiteS ARVALID,
22 5_axi_ AXT4LiteS ARREADY,
23s_axi_ AXI4LiteS_RDATA,
24's_axi_ AXI4LiteS_RRESP,
25s_axi_ AXI4LiteS_RVALID,
26s_axi_ AXI4LiteS_RREADY,
27 interrupt,
28 aresetn,
29 aclk, -

4 [

Figure 89: IP HDL with AXI4 Interfaces

This design was synthesized with an AXI4-Lite interface (for the block-level protocol ports).
When you add an AXI4-Lite interface to the design, the IP packaging process also creates

software driver files to enable an external block, typically a CPU, to control this block (start it,
stop it, set port values, review the interrupt status).

High-Level Synthesis www.xilinx.com 100

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=100

& XILINX.

Interface Synthesis

Figure 90 shows the software drivers created in the impl directory with one of the files open in
the Information pane.

[Explorer 2 = O[5 xaxi_interfaces_hw.h &3 =0
=5 axi_interfaces_prj 1/ -
& Includes 2// File generated by Vivado(TM) HLS - High-Level Synthesis from C, C++ and SystemC
E Source 3// Version: 2813.3
o 4// Copyright (C) 2013 Xilinx Inc. All rights reserved.
[€ axi_interfaces.c 5//
= Test Bench 6//
3 solutionl 7
= solution2 8// AXI4LiteS
constraints 9// @x@ : Control signals
& impl leii I;it 0 - ap_;tar‘t((Reg?,fwr“;te,fCOH)
. 11 it 1 - ap_done (Read/COR
& drivers 1277 bit 2 - ap_idle (Read)
&ip 13// bit 3 - ap_ready (Read)
£l autoimpl log 147/ bit 7 - auto_restart (Read/Write)
5 auxiliaryxml 15// others - reserved
El componentxml 16 // 8x4 : Global Interrupt Enable Register
2 packbat 17},;},; biE @ - Global énter‘r‘upt Enable (Read/Write)
¢ - 18 others - reserve
b rl_Jn_lpp-ackth 19// 8x8 : IP Interrupt Enable Register (Read/Write)
uv!vado.mu 20// bit @ - Channel @ (ap_done)
& vivadollog 21// bit 1 - Channel 1 (ap_ready)
=I xilinx_com_hls_axi_interfaces 1 04| 22 // others - reserved
= bd 23// @xc : IP Interrupt Status Register (Read/TOW)
constraints 247/ bit @ - Channel @ (ap_done)
& doc 257/ bit 1 - Channel 1 (ap_ready)
= drivers 26// others - reserved
. 27// (SC = Self Clear, COR = Clear on Read, TOW = Toggle on Write, COH = Clear on Hand
= axi_interfaces_top_v1 00_a 23
= data 29 #define XAXT INTERFACES AXTALITES ADDR AP CTRL 0x@
& src 30 #define XAXI_INTERFACES_AXT4LITES_ADDR_GIE Qx4
L& Makefile 31 #define XAXI_INTERFACES_AXI4LITES_ADDR_IER 0x8
[@ xaxi_interfaces_hw.h 32 #define XAXI_INTERFACES_AXTALITES_ADDR_ISR axc
[€ xaxi_interfaces_linux.c 33
[€ xaxi_interfaces_sinit.c 34
[¢ xaxi_interfaces.c
[¢ xaxi_interfaces.h
= example
= hdl
= misc -
(= subcore < | 1} »
Figure 90: IP Software Driver Files
.
Conclusion

In this tutorial, you learned:

e What block-level I/O protocols are and how to control them.
e How to specify and apply port-level I/O protocols.

e How to specify array ports as RAM and FIFO interfaces.

e How to partition RAM and FIFO interfaces into sub-ports.

e How to use both I/O directives and optimization directives to create an optimal design with
AX14 interfaces.

www.Xilinx.com 101

| Send Feedback l

High-Level Synthesis
UG871 (v2013.3) November 8,2013

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=101

& XILINX.

Chapter 5 Arbitrary Precision Types

Overview

C/C++ provided data types are fixed to 8-bit boundaries:

e char (8-bit)

e short (16-bit)

e int (32-bit)

e long long (64-bit)

e float (32-bit)

e double (64-bit)

e Exact width integer types such as int16_t (16-bit) and int32_t (32-bit)

When creating hardware, it is often the case that more accurate bit-widths are required.
Consider, for example,a case in which the input to a filter is 12-bit and the accumulation of the
results only requires a maximum range of 27 bits. Using standard C data types for hardware
design results in unnecessary hardware costs. Operations can use more LUTs and registers than
needed for the required accuracy, and delays might even exceed the clock cycle, requiring more
cycles to compute the result.

Vivado High-Level Synthesis (HLS) provides a number of bit-accurate or arbitrary precision data-
types, allowing you to model variables using any (arbitrary) width.

This tutorial consists of a two lab exercises:

e Labl - Synthesize a design using floating-point types and review the results. The design uses
standard C+ + floating-point types.

e Lab2 -Synthesize the same function used in Lab 1 using arbitrary precision fixed-types
highlighting the benefits in accuracy and results. This exercise shows how this same design

can be converted to the Vivado HLS ap_fixed types, retaining the required accuracy but
creating a more optimal hardware implementation

Tutorial Design Description

Download the tutorial design file from the Xilinx website. See the information in

High-Level Synthesis www.xilinx.com 102

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=102

& XILINX. Arbitrary Precision Types

Obtaining the Tutorial Designs. This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\Arbitary_Precision.

Arbitrary Precision: Lab 1

Arbitrary Precision Lab 1: Review a Design using Standard C/C+ + types

In this lab, you synthesize a design using standard C types. You use this design as a reference for
the design using arbitrary precision types, which is the basis for Lab 2.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS_Tutorial is unzipped and placed in the location

i} C:\Vivado_HLS Tutorial
If the tutorial data directory (s unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt (Figure 91).

b. On Linux, open a new shell.

Bl Vivado 2013.3 Tcl Shell
g Vivado 2013.3
Accessories
SDK
System Generator
Vivado HLS
Bl Vivado HLS 2013.3 Command Promp
"] vivado HLS 20133

Figure 91: Vivado HLS Command Prompt

High-Level Synthesis www.xilinx.com 103

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=103

& XILINX.

Arbitrary Precision Types

In the command prompt window (Figure 92), change the directory to the Arbitrary Precision
tutorial, lab1.

Execute the Tcl script to setup the Vivado HLS project, using the command as shown in
Figure 92

vivado _hls —F run _hls.tc

& Vivado HLS 2013.2 Command Prompt

C:\Uivado_HLS_TutorialzArbitrar

C:\Vivado_HLS_Tutorial>cd Arbitrary_Precision

C:\Vivado_HLS_Tutorial\Arbitrary_Precision>cd labil

_Precision\labl>vivado_hls -f run_hls.tcl

Figure 92: Setup the Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls —p window_fn_prj as shown in Figure 93.

Vivado HLS 2013.1 Command Prompt

hWw_result
hw_result
hw_result
hw_result
hw_result
hw_result
hw_result
hw_result
hw_result
hw_result

Test Passed
RI [SIM-1] CSim done with 8 errors.
@I [LIC-101] Checked in feature [UIUADO_HLS]

4y 24587
38.24289
32.00000
25.75711
19. 75413
14.22175
9.37258
5.39297
2.43585
0.61487

C:\Uivado_HLS_Tutorial\Arbitrar

sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result
sW_result

_Precision\labl>vivado_hls -p window_fn_prj

E=REoR %=
4y . 24587
38.24289
32.00000
25.75711
19. 75413
14.22175
9.37258
5.39297
2.43585
0.61487

Figure 93: Initial Project for Arbitrary Precision Lab 1

Step 2: Review Test Bench and Run C Simulation

1. Open the Source folder in the explorer pane and double-click window_fn_top.cpp to
open the code as shown in Figure 94.

High-Level Synthesis

UG871 (v 2013.3) November 8,2013

www.Xilinx.com

104

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=104

& XILINX. Arbitrary Precision Types

[Explorer &2 w7 B [¢ window_fn_top.cpp & =0
4 =% window_fn_prj 45 #include "window_fn_top.h" // Provides typedefs and params i
- ki Includes 46
4 Z Source 47 // Include the entire xhls_window_fn namespace so that scope re
& window_fn_top.cpp 48 // i.e. prepending xhls window fn:: to everything -- is not ne
- 49 using namespace xhls window fn;
- fim Test Bench 50
4 & solutiont 51 //Vivado HLS fequiPes a top-level function definition that wraj
4 & constraints 52// instantiations and method calls to be synthesized as well a:
W directives.tcl 53// the top-level I/0 (function arguments) into/out of the meth:
W scripticl 54void window_fn_top(I
4 = csim 55 win_fn_out_t outdata[WIN_LEN], ‘E
. & build 56 win_fn_in_t indata[WIN_LEN])
- = report A

58 // Instantiate a window_fn object - types and params define:_
rn R [R . r_ . . P s . Jy r _—— -

B . —
< | 1 | 3

Figure 94: C Code for C Validation Lab 3

2. Hold down the Control key and click the window_fn_top.h on line 45 to open this header
file.

3. Scroll down to view the type definitions (Figure 95).

[¢] window_fn_top.cpp T window_fn_top.h i3 =0
S5d// Test parameters pil
51 #define FLOAT_DATA // Used to select error tolerance in test pi
52 #define WIN_TYPE xhls_window_fn::HANN
53 #define WIN_LEN 32
54
55 // Define floating point types for input, output and window cos
56 typedef float win_fn_in_t;

57 typedef float win_fn_out_t;

58 typedef float win_fn_coef t;

59

68 // Top level function prototype - wraps all object, method and
61void window_fn_top{win_fn_out t outdata[WIN_LEN], win_fn_in t | |
62 F‘
63 #endif // WINDOW FN_TOP H_ P
64 o

4 | 1] | P

11

Figure 95: Type Definitions for C Validation Lab 3

This design uses standard C/C+ + floating-point types for all data operations. Vivado High-Level
Synthesis can synthesize floating-point types directly into hardware, provided the operations are
standard arithmetic operations (+, -, *, % etc.).

When using math functions from math.h or cmath.h, refer to the Vivado HLS User Guide (ug902)
for details on which math functions are supported for synthesis.

4. Click the Run C Simulation toolbar button to open the C Simulation Dialog box

5. Accept the default setting (no options selected) and click OK.

High-Level Synthesis www.xilinx.com 105

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=105

& XILINX. Arbitrary Precision Types

The Console pane shows that the design simulates with the expected results.

Step 3: Synthesize the Design and Review Results
1. Click the Run C Synthesize toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens automatically. Figure 96 shows the
synthesis report.

=l window_fn_top_csynth.rpt 2 =g

EPerfnrmance Estimates -
-1 Timing (ns)
= Summary

Clock Target Estimated Uncertainty
default 5.00 3.75 0.63
-1 Latency (clock cycles)

- Summary

Latency Interval

111

min max min max Type
257 257 258 258 none

=l Detail
+ Instance

+ Loop

Utilization Estimates

- Summary
MName BRAM_18K DSP48E FF LUT
Expression - - i} 12
FIFO - - - -
Instance - 3 151 325
Memory 1 - - -
Multiplexer - - - 6
Register - - 118 -
ShiftMemory - - - -

Total 1 3 269 343 -
] 1 P

Figure 96: Synthesis Report for Floating Point Design

Instances in the top-level design account for most of the area used.

2. Scroll down the report and expand the Instances in the Details section of the Area Estimates
(Figure 97).

High-Level Synthesis www.xilinx.com 106

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=106

& XILINX. Arbitrary Precision Types

Detail L
=||| & Instance [
Instance Module BRAM_18K DSP48E FF LuT
window_fn_top_fmul_32ns_32ns_32_5_max_dsp_Ul window_fn_top_fmul_32ns_32ns_32_5_max_dsp 0 3 151 325
Total 1 0 3 151 325
+ Memory B
FIFO

+ Shift register
+ Expression

+ Multiplexer

+ Register

Figure 97: Area Details for Floating Point Design

The details show this is a floating-point multiplier (fmul). Floating-point operations are costly in
terms of area and clock cycles. The Analysis perspective (Figure 98) shows this operator is also
responsible for most of the clock cycles (five of the eight states it takes to execute the logic
created by loop winfn).

More details on using the Analysis perspective are available in the tutorial Design Analysis. For
the purposes of understanding this design, two of the operations in the first state are two-cycle

read-from-memory operations, and the operation in the final state is a write-to-memory
operation.

| Vivado HLS - window_fn_prj (C:\Vivado_HLS_Tutorial\Arbitrary_Precision\labl\window_fn_prj) =N ECE =
File Edit Project Solution Window Help
B d@ve Ble|®
%% Debug s ,Synthesil
¥ Module Hierarchy = 0 [d window_fn_top.cpp @ window_fn_classh | = Performance - window 3 . ™ =0)
BRAM DSP FF LU1
= Current Module : window fn top
© window_fn_top 1 3 269 351
Operation\Control S | co L cl c2 | c3 || c4 | c5 | cé6 | c7 | c8 |
[-]winfn_loop =1
[exitcond (1cmp
< i » i) =
£7 Performance || Resource Pr &2 =8 coeff tab loa
BRAM DSp 4 indata load(r
® window fntop 1 3 = | tmp 1i(fmul)]
48 I/O Ports(2) node 20(write
fs Instances(l) 0 3 b
&8 Memories(1) 1 ¥ | >l
< LLL} 3 _Performance Resource Sharing
Figure 98: Performance Details for Floating Point Design
3. Exit the Vivado HLS GUI and return to the command prompt
High-Level Synthesis www.xilinx.com 107

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=107

£ XILINX. Arbitrary Precision Types

Arbitray Precision: Lab 2

Review a Design using Arbitrary Precision types

Introduction

This lab exercise uses the same design as Lab 1, however, the data types are now arbitrary
precision types. You first review the design and then examine the synthesis results.

Step 1: Create and Simulate the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 99.

2. Create a new Vivado HLS project by typing:

vivado_hls —F run_hls.tcl

[Vivado HLS 2013.1 Command Prompt o[- 3]

for user ‘duncanm’ on host ‘xsjduncanm-w?’' (Windows NT_intel version
6.1) on Fri Mar 08 09:55:44 -0800 2013

in directory 'C:/Uivado_HLS_Tutorial/Arbitrary_Precision/labl’
BRI [HLS-10] Bringing up Uivado HLS GUI ...

C:\Vivado_HLS_Tutorial\Arbitrary_Precision\labi>cd ..
C:\Vivado_HLS_Tutorial\Arbitrary_Precision>cd lab2

C:\Uivado_HLS_Tutorial\Arbitrary_Precision\lab2>vivado_hls -f run_hls.tcl

Figure 99: Setup for Interface Synthesis Lab 2

3. Open the Vivado HLS GUI project by typing vivado_hls —p window_fn_prj.

High-Level Synthesis www.xilinx.com 108

UG871 (v 2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=108

& XILINX. Arbitrary Precision Types

4. Open the Source folder in the explorer pane and double-click window_fn_top.cpp to open
the code as shown in Figure 100.

5 Explorer 52 v = O|[[2 window_fn_top.cpp & =0
bcwindowifniprj 44K<K<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x<x=<x=<K=<2<xxxxxxxxxxxxxxx“““x‘xA
&l Includes 45 #include "window_fn_top.h"™ // Provides typedefs and params
= Source 46
T T e 47 // Include the entire xhls window fn namespace so that scope resolution --
it Test B h7 - 48 // i.e. prepending xhls_window_fn:: to everything -- is not necessary
=l 1S _en(49 using namespace xhls_window_fn;
= solution 5@
@ constraints 51 //Vivado HLS requires a top-level function definition that wraps all obje
o directives.tcl 52 // instantiations and method calls to be synthesized as well as mapping
' scripttcl 53 // the top-level I/0 (function arguments) into/out of the methods/functio
& csim 54veoid window_fn_top(=
& build 55 win_fn_out_t outdata[WIN_LEN],
56 win fn_in t indata[WIN_LEN]) b
= report 574

58 // Instantiate a window_fn object - types and params defined in header -
< | 11 »

Figure 100: C Code for Arbitrary Precision Lab 2

5. Hold the Control key down and click window_fn_top.h on line 45 to open this header file.

6. Scroll down to view the type definitions (Figure 101).

[¢] window_fn_top.cpp T window_fn_top.h &2 =0

54 // Types and top-level function prototype -
55 #include <ap_int.h>

56 // Define widths of fixed point fields

57 #define W_IN 8

58 #define IW_IN &

59 #define W _OUT 24

650 #define IW_OUT 8

1 #define W_COEF 18

#define IW COEF 2

// Define fixed point types for input, output and coefficients

5typedef ap_fixed<W_IN,IW_IN> win_fn_in_t;

typedef ap fixed<W OUT,IW OUT> win_fn_out t;

typedef ap fixed<W COEF,IW COEF>» win_fn_coef t; b

N I R WU

il

B =] o

Lo T T T T R W i

P - .~ - . P a -

L 3

]

o

Figure 101: Type Definitions for Arbitrary Precision Lab 2

This header file, window_fn_top.h, is the only file that is different from Lab 1. The data types
have been changed to ap_fixed point types, which are similar to float and double types in that
they support integer and fractional bit representations. These data types are defined in the
header file ap_Ffixed.h. The definitions in the header file define sizes of the data types:

e The first term defines the total word length.
e The Second term defines the number of integer bits.

e The number of fractional bits is therefore the first term minus the second.

High-Level Synthesis www.xilinx.com 109

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=109

& XILINX. Arbitrary Precision Types

When you revise C code to use arbitrary precision types instead of standard C types,one of the
most common changes you must make is to reduce the size of the data types. In this case, you
change the design to use 8-bit, 24-bit, and 18-bit words instead of 32-bit float types. This results
in smaller operators, reduced area, and faster timing.

Similar optimizations help when you change more common C types such as int, short, and char.

For example, changing a data type that only needs to be 18-bit from int (32-bit) ensures that
only a single DSP48 is required to perform any multiplications.

In both cases, you must confirm that the design still performs the correct operation and that it
does so with the required accuracy. The benefit of the arbitrary precision types provided with
Vivado High-Level Synthesis is that you can simulate the updated C code to confirm its function
and accuracy.

7. Open the Test Bench folder in the Explorer pane and double-click
window_fn_top_test.cpp to open the code.

8. Scroll down to see the view shown in Figure 102.

5 Explorer 2 4 = O [¢ window_fn_top.cpp T window_fn_top.h .¢ window_fn_test.cpp &2 =8

~J

J
~

=% window_fn_prj window_fn_top(hw result, testdata); -

& Includes o :
// Check results

-
co

= Source

=

i 9 cout << "Checking results against a tolerance of " << ABS_ERR_THRESH << endl;
g window_fn_top.cpp 30 cout << fixed << setprecision(5);
f= Test Bench 31 for (unsigned i = @; i < WIN_LEN; i++) {
lel window_fn_test.cpp 82 float abs_err = float(hw_result[i]) - sw_result[i];
= solutioni 23 #if WINDOW_FN_DEBUG
constraints 84 cout << "1 =" << 1 << "\thw_result = " << hw_result[i];
4 directivestcl 85 cout << "\t sw_result = " << sw_result[i] << endl;
@ scripttcl SGftendif
T 87 if (fabs(abs_err) > ABS_ERR_THRESH) {
= csim 38 cout << "Error threshold exceeded: i = " << i;
= build 89 cout << " Expected: " << sw_result[i];
= report 90 cout << " Got: " << hw_result[i];
91 cout << " Delta: " << abs_err << endl; B
92 err_cnt++;
93 }
94}
95

cout << endl; -

Figure 102: Test Bench for Arbitrary Precision Lab 2

The test bench for this design contains code to check the accuracy of the results. The expected
results are still generated using float types. The result checking verifies that the results are within
a specified range of accuracy (in this case, within 0.001 of the expected result).

This allows the updated design to be validated quickly and efficiently in C, with fast compile and
run times.

9. Click the Run C Simulation toolbar button to open the C Simulation Dialog box
10. Accept the default setting (no options selected) and click OK.

The Console pane shows the results of the C simulation. With the updated data types, the results
are no longer identical to the expected results. However, they are within tolerance.

High-Level Synthesis www.xilinx.com 110

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=110

& XILINX.

E Console 2

= 24
= 25
= 26
= 27
28
= 29
= 30
= 31

(ST = R = T = TR = T O T
1}

hw_result = 32 sw_result = 32.00000

hw_result = 25.757
hw_result = 19.754
hw_result = 14.222
hw_result = 9.3721
hw_result = 5.3926
hw_result = 2.4355
hw_result = 8.61426

Test Passed

@] Errors| & Warnings

sw_result

sw_result =

sw_result

sw_result =
sw_result =

sw_result

sw_result =

Arbitrary Precision Ty

pes

REEEE O
<terminated> window_fn_prj.Debug [C/C++ Application] C\Vivado_HLS_Tutorial\Arbitrary_Precision\lab2\window_fn_prj\solution1\csim\build

25.75711
19.75413
14.22175
9.37258
5.39297
2.43585
0.61487

Figure 103: C Simulation Results for Fixed Point Types

Step 2: Synthesize the Design and Review Results
1. Click the Run C Synthesis toolbar button to synthesize the design to RTL.

-~

m

When synthesis completes, the synthesis report opens automatically. Figure 104 shows the
synthesis report.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com

l Send Feedback I

111

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=111

& XILINX. Arbitrary Precision Types

=l window_fn_top_csynth.rpt 2 =5

EPerfnrmance Estimatesé

-1 Timing (ns)
- Summary
Clock Target Estimated Uncertainty
default 5.00 3.49 0.63
- Latency (clock cycles)

- Summary

Latency Interval

m

min max min max Type
193 193 194 194 none

=l Detail
+ Instance

+ Loop

Utilization Estimates

- Summary
MName BRAM_18K DSP48E FF LUT

Expression - - i} 12

FIFO - - - -

Instance - 1 18 5

Memory 1 - - -

Multiplexer - - - 6

Register - - 70 -

ShiftMemory - - - -

Total 1 1 88 23 -

Figure 104: Synthesis Report for Fixed Point Design

Note that through use of arbitrary precision types, you have reduced both the latency and the
area (by 25% and 60% respectively), and the operations in the RTL hardware are no larger than
necessary.

2. Scroll down the report to the Interface summary (Figure 105).

Figure 105 shows the data ports are now 8-bit and 24-bit.

High-Level Synthesis www.xilinx.com 112

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=112

& XILINX. Arbitrary Precision Types

el window _fn_top csynth.rpt &3 =0
Interface ‘
- Summary
RTL Ports Dir Bits Protocol Source Object C Type
ap_clk in 1 ap_ctrl_hs window_fn_top return value
ap_rst in 1 ap_ctrl_hs window_fn_top return value
ap_start in 1 ap_ctrl_hs window_fn_top return value
ap_done out 1 ap_ctrl_hs window_fn_top return value
ap_idle out 1 ap_ctrl_hs window_fn_top return value
ap_ready out 1 ap_ctrl_hs window_fn_top return value
outdata V_address0 out 5 ap_memary outdata V array
outdata_V_cel out 1 ap_memaory outdata_V array
outdata_V_wel out 1 ap_memaory outdata V array
outdata_V_d0 out 24 ap_memory outdata_V array B
indata_V_address0 out 5 ap_memary indata_V array N
indata_V_cel out 1 ap_memaory indata_V array
indata_V_qg0 in 8 ap_memaory indata_V array
e i d ¢

Figure 105: Fixed Point Interface Summary

3. Exit the Vivado HLS GUI and return to the command prompt.

Conclusion
In this tutorial, you learned:

e How to update the existing standard C types to Vivado High-Level Synthesis arbitrary
precision types.

e The advantages in terms of hardware performance and area of using bit-accurate data-
types.

High-Level Synthesis www.xilinx.com 113

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=113

& XILINX.

Chapter 6 Design Analysis

Overview

The general design methodology for creating an RTL implementation from C, C++ or SystemC
includes the following tasks:

e Synthesizing the design.
e Reviewing the results of the initial implementation.
e Applying optimization directives to improve performance.

You can repeat the steps above until the required performance is achieved. Subsequently, you
can revisit the design to improve area.

A key part of this process is the analysis of the results. This tutorial explains how to use the

reports and the GUI Analysis perspective to analyze the design and determine which
optimizations to apply.

This tutorial consists of a single lab exercise that:

e Demonstrates the HLS interactive analysis feature

e Takes you through one design from the initial implementation through six steps and
multiple optimizations to produce the final optimized design

As demonstrated throughout the tutorial, performing these steps in a single project gives you
the ability to compare the different solutions easily.

Lab1l

Synthesize and analyze a DCT design. Use the insights from the design analysis to apply
optimizations and judge the effectiveness of the optimization.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. Refer to the information in
Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\Design_Analysis.

High-Level Synthesis www.xilinx.com 114

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=114

& XILINX. Design Analysis

The sample designs used in the lab exercise is a 2-D DCT function. To highlight the design
analysis feature, your goal is to have this design operate with an interval of 100 or less. The
design should be able to process a new set of input data at least every 100 clock cycles.

Lab 1: Design Optimization

This exercise explains the basic operations of the GUI Analysis perspective and how you can use
it to drive design optimization.

W

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS_Tutorial s unzipped and placed in the location
C:\Vivado HLS Tutorial

If the tutorial data directory is unzipped to a different location, or if it is on a Linux
system, adjust the few pathnames referenced to the location at which you placed the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project

1. Open the Vivado HLS Command Prompt.

a.

On Windows click Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt (Figure 106).

b. On Linux, open a new shell.

Bl Vivado 2013.3 Tcl Shell
g Vivado 2013.3
Accessories
SDK
System Generator
Vivado HLS
Bl Vivado HLS 2013.3 Command Promp
"] vivado HLS 20133

Figure 106: Vivado HLS Command Prompt

2. Using the command prompt window (Figure 107), change the directory to the Design
Analysis tutorial, lab1.

3. Execute the Tcl script to setup the Vivado HLS project, using the command vivado_hls —f
run_hls.tcl, as shown in Figure 107.

High-Level Synthesis www.xilinx.com 115

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=115

& XILINX. Design Analysis

[Vivado HLS 2013.2 Command Prompt o[- S

C:\Vivado_HLS_Tutorial>cd Design_Analysis

C:\Vivado_HLS_Tutorial\Design_Analysis>cd labl

i (1

C:\VUivado_HLS_Tutorial\Design_Analysis\labil>vivado_hls -f run_hls.tcl

Figure 107: Setup the Design Analysis Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls —p dct_prj as shown in Figure 108.

= C\Windows\system32\cmd.exe — [=] @

@I [HLS-10] Adding test bench file 'det_test.cpp’ to the project.

@I [HLS-18] Adding test bench file "in.dat’ to the project.

@I [HLS-18] Adding test bench file ‘out.golden.dat’ to the project.

@I [HLS-10] Opening and resetting solution 'C:/Uivado_HLS_Tutorial/Design_Analys
is/labl/dct_prj/solutionl’.

@I [HLS-18] Cleaning up the solution database.

@I [HLS-18] Setting target device to 'xcTk160tfbgi84-1"

@I [SYN-281] Setting up clock with a period of 8ns.

Compiling C:/VUivado_HLS_Tutorial/Design_Analysis/labl/dct_test.cpp in debug m
ode
Compiling C:/Uivado_HLS_Tutorial/Design_Analysis/labl/dct.cpp in debug mode
Generating csim.exe
Test passed !
RI [SIM-1] CSim done with 0 errors.
@I [LIC-101] Checked in feature [UIUADO_HLS]

C:\VUivado_HLS_Tutorial\Design_Analysis\labl>vivado_hls -

Figure 108: Open Design Analysis Project for Lab 1

Step 2: Review the source Code and Create the Initial Design

1. Double-click the file dct.cpp in the Source folder to open the source code for review. .

This example uses a DCT function. Figure 109 shows an overview of this code.

High-Level Synthesis www.xilinx.com 116

UG871 (v 2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=116

& XILINX.

Design Analysis

Hierarchy Leoops Latatiow

Figure 109: Overview of the DCT design

e The right side of Figure 109 shows the code hierarchy.
0 Top-level function dct has three sub-functions: read_data, dct_2d and write_data.
0 Function dct_2d has a single sub-function dct_1d.

e The center of Figure 109 shows loops inside each of the functions.

e The right side of Figure 109 shows the how the data is processed through the functions and
loops.

0 The read_data function executes, and the data is processed through loop
RD_Loop_Row, which has a sub-loop RD_Loop_Col.

0 After the read_data function complete, function dct_2d executes.

o0 Infunction dct_2d, Row_DCT_Loop processes the data. Row_DCT_Loop has two
nested loops inside it: DCT_output_loop and DCT_inner_loop.

o DCT_inner_loop calls function dct_1d.
And so on, until the function write_data processes the data.

2. Click the Run C Synthesize toolbar button to synthesize the design to RTL.

High-Level Synthesis www.xilinx.com 117

UG871 (v2013.3) November 8,2013 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=117

& XILINX.

Design Analysis

Step 3: Review the performance using the Synthesis Report

When synthesis completes, the synthesis report opens automatically. Figure 110 shows the

performance section of the report.

=l dct_csynth.rpt 3

Performance Estimates

=1 Timing (ns)

- Summary

Clock Target Estimated Uncertainty

default 8.00

-1 Latency (clock cycles)
=l Summary

Latency Interval

579 1.00

min max min max Type
3959 3959 3960 3960 none

= Detail

-l Instance

Latency Interval

Instance Maodule min max min max Type
grp_dct_2d_fu_152 dct_2d 3668 3668 3668 3668 none

= Loop

Latency Initiation Interval

Loop Name min
- RD_Loop_Row 144
+ RD_Loop_Col 16
- WR_Loop_Row 144
+ WR_Loop_Cal 16

max [teration Latency achieved target Trip Count

144 18 - -
16 2 - -
144 18 - -
16 2 - -

Figure 110: Report for initial DCT Design

Figure 110 highlights the following information.

The clock frequency of 8 ns has been met.

8

8
8
8

The top-level design takes 3539 clock cycles to write all the outputs.

You can apply new inputs after 3560 clock cycles. This is one clock cycle after the output

Pipelined
no
no
no

no

1

data has been written. This immediately reveals that the design is not pipelined, but this fact
is also noted in the report.

The top level has a single instance, which has a latency and initiation interval of 3668 and

3669 respectively.

0 This block also has no pipelining and accounts for most of the clock cycles.

Noticethat the functions read_data and write_data are not noted here as instances of the top

level.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com

118

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=118

& XILINX. Design Analysis

0 Figure 111 shows that, during synthesis, these blocks were automatically inlined (the

hierarchy was removed).

0 High-level synthesis might automatically inline small functions to improve the quality
of results (QoR). You can prevent this by adding the Inline directive with the -off
option.

0 Console 2| Erroes Wamings -

YWrvacho HLS Comdal e

B [HL5-18] Checking synthesizability

@1 [HLS-18] Starting code transformations

81 [XFORM-682] Inlining function “read data’' into “dct” (dct.cpp:89) automatically.

Bl [XFORM-502] Inlining function “wreite data’ Into “det” (det.cpp:94) sutomatically.

@I [HLS-111)] Elapsed time: 16.722 seconds; current memory usage: 39.5 M.

FI [HLS-18] Starting hardware synthesis

Bl [HL5-18] Synthesizing "dect” .. -

Figure 111: Automatic Inlining for Functions

e The loops in the read_data and write_data functions are therefore implemented at the top
level and are reported as loops in the top-level function (Figure 110).

e Each loop has a latency of 144 clock cycles. (Because the loops are not pipelined, thereis no
initiation interval.)

e Using RD_Loop_Row as an example, you can see why the loop latency is 144.

(0]

Sub-loop RD_Loop_Col has a latency of 2 cycles for each iteration of the loop

(iteration latency) and a tripcount of 8: 2 x 8 = 16 clock cycles total latency for the
loop.

From RD_Loop_Row, it takes 1 clock to enter loop RD_Loop_Col and 1 clock cycle to

return to RD_Loop_Row. The iteration latency for RD_Loop_Row is therefore (1 + 16
+1) 18 clock cycles.

RD_Loop_Row has a tripcount of 8 so the total loop latency is 8 x 18 = 144 clock
cycles.

e The total latency for the dct block is therefore:

(0]

0}
(0}
0}

144 clocks for RD_Loop_Row.
Plus 3668 clock cycles for dct_2d.
Plus 144 clock cycles for WR_Loop_Row.

Plus a clock cycle to enter each block.

To review the details of the instantiated sub-blocks dct_2d and dct_1d, open their respective
reports from the syn/reports folder under solutionl in the Explorer pane.

You can also use the design analysis perspective to review these details in a more interactive

manner.

High-Level Synthesis www.xilinx.com 119

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=119

& XILINX. Design Analysis

Step 4: Review the Performance using the Analysis Perspective

Invoke the Analysis perspective any time after synthesis completes.

1. Click the Analysis perspective button (Figure 112 112) to begin interactive design analysis.

i é‘v’ivado HLS - dct_prj (CA\Vivado_HLS_Tutorial\Design_An:
File Edit Project Solution Window Help
B oAvE B @

%% Debug [| Synthesis

Figure 112: Opening the Analysis perspective

The Analysis perspective consists of five panes, each of which is highlighted in Figure 113. You
use all of these in the tutorial. The module and loops hierarchies are shown expanded (by
default, they are shown collapsed).

i SViuadc HLS - dct_prj (C:\Vivado_HLS_Tutorial\Design_Analysis\labl\dct_prj) == (=) ‘@
File | Edit Project Solution Window Help

B id~& b | ®
%5 Debug [Synthesis |&~ Analysis
*-| Module Hierarchy | ~ O |& Schedule Viewer - dct i =B

BRAM DSP FF LUT Latency Interval Pipeline type
Y nelige vy Current Module : dect
® dct 6 1 182 334 3959 3960 none
e dct.2d 4 1 128 248 3668 3669 none Operation\Control Sj[€0 [c1 j[€2 [3 |[¢ [<5]
® dctld 1 E 55 104 209 210 none [+]RD_Loop Row =

det_2d(function)
[+]WR Loop Row

lEF' Performance Profile 'I l | Resource Profile ' =8

Pipelined Latency Initiation Interval Iteration Late.. Trip count

® dct - 3959 3960 - -
e RD_Loop Row no 144 - 18 8
 RD_Loop_Col no 16 - 2 8]
e WR_Loop_Row no 144 - 18 8
WR_Loop_Col no 16 - 2 8

Ph|
PerformancefResource Sharini

|

Figure 113: Overview of the Analysis perspective

Use the Module Hierarchy pane to navigate through the hierarchy. The Module Hierarchy pane
shows both the performance and area information for the entire design. The Performance Profile
pane shows the performance details for this level of hierarchy. The information in these two
panes is similar to the information you reviewed earlier in the report (for the top-level dct block).

The Performance view is also shown (on the right side of Figure 113). This view shows how the
operations in this particular block are scheduled into clock cycles.

e The left column lists the resources.

High-Level Synthesis www.xilinx.com 120

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=120

& XILINX. Design Analysis

0 Sub-blocks are green.
0 Operations resulting from loops in the source code are yellow.
o Standard operations are purple.

¢ Notice that the dct has three main resources:

0 A loop called RD_Loop_Row. The plus symbol (+) indicates that the loop has
hierarchy and that you can expand the loop to view it.

0 A sub-block called dct_2d.
0 A loop called WR_Loop_Row.

The top row lists the control states in the design. Control states are the internal states High-
Level Synthesis uses to schedule operations into clock cycles. There is a close correlation
between the control states and the final states in the RTL Finite State Machine (FSM), but there is
no one-to-one mapping.

2. Click loop RD_Loop_Row and sub-loop RD_Loop_Col to fully expand the loop hierarchy
(Figure 114).

= Performance - dect i =0

Current Module : dct

loneration\Control S| co | c1 | 2 | c3 | ca | cs |

ZRD Loop Row
exitcondl i(icmp)
r(+)

-IRD Loop Col
exitcond i (icmp)
c(+)
tmp 5 i(+)
input load (read)
p addrl (+)
node 41 (write)

dct 2d(function)

12-21 +WR Loop Row

CROooNOUAWNR

Performance | Resource

Figure 114: Expanded View of RD_Loop_Row

From this, you can see that in the first state (C1) of the RD_Loop_Row, the loop exit condition
is checked and an add operation performed. This addition is likely the counter for the loop
iterations, and we can confirm this.

3. Select the adder in state C1, right-click and select C source code (Figure 115).

High-Level Synthesis www.xilinx.com 121

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=121

& XILINX.

Design Analysis

This opens the C source code to highlight which operation in the C source created this
adder. From the details on screen (also shown in Figure 115), you can determine it is indeed
the loop counter.It is the only addition on this line, and the variable is named “r".

= Performance - det =2

Current Module : dct

= O [g C Source &2

| oneration\Control 5. | _co_| | c2 | c3 | ca | ec5 |
1 -“RD Loop Row
2 exitcondl i(icmp)

£(+) -

4 FRD Loop Col Goto Source
5 exitcond i (icmp) Goto Verilog
6 c(+) Goto VHDL
7 tmp 5 i(+)
8 input load(read)
o] p addrl (+)
10 node 41 (write)
11 dct 2d(function)

#WR Loop Row

Performance Resource

Figure 115: C Source Code View

=0
File: C\Vivado HLS Tutorial\Design_Analysis\labldct
100 intr, c; -
101

102RD _Loop Row:

103 for (r=0; r < DCT_SIZE; r++) {

104 RD_Loop_Col:

105 for (c =0; ¢ < DCT_SIZE; c++)

106 buf[r][c] = nput[r * DCT_SIZE + c];
107 }

108}

109

110 void write_data(short buf[DCT_SIZE][DC1
1114

112 intr, c;

113

114 WR_Loop_Row

115 for (r =0, r <« DCT_SIZE; r++) { -

< 111 3

In the next state of loop RD_Loop_Row (C2), loop RD_Loop_Col starts to execute..

4. Click operations in the RD_Loop_Col to see the source code highlighting update.

This should help confirm your understanding of how the operations in the C source code are

implemented in the RTL.

0 The loop exit condition is checked.

0 This is an adder for loop count variable “c”.

0 A read from a RAM performed (one cycle to generate the address, one cycle to read

the data).

0 A write operation is performed to a RAM.

Loops in the Performance view mean that the design iterates around these states multiple
times. The number of iterations is noted as the loop tripcount and shown in the Performance

Profile.

To improve performance, these loops should be pipelined. You can review the rest of the
design for other performance optimization opportunities.

5. Click the C Source Code pane to close this window.

6. Inthe Module Hierarchy, click the function dct_2d to navigate into the view for this

function (Figure 116).

High-Level Synthesis

UG871 (v2013.3) November 8,2013

www.Xilinx.com

122

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=122

& XILINX.

+ Wivado HLS - det_prj (CAVivado_HLS_Tutorial\Design_Analysis\labl\det_pri)
File Edit Project Solution Window Heip
B d-File®
% Debug | Synthesis [Gar Analysis |
rl Module Hierarchy
BRAM DSP FF LUT Latency Interval Pipeline type

® dct B 1 183 331 3959 3960 none
& dot 2d 4 1 135 247 3668 3668 none
® det. 1 1 82 107 209 209 none

£7 Performance Prafile Rescurce Profile

Pipelined Latency Initiation Interval Rteration Latency Trip count

® det2d - 3668 3668 4
& Row _DCT_Leop no 1688 211
» Ypose_Row_Outer_Loop no 144 . 18
& Col DCT _Loop no 1688 211
= Xpose_Col_Outer_Loop no 144 - 13

oo Da oo

Design Analysis

| & Performance - det 2d
Current Module : dct > det 2d
|__onemtion\GontrolSten | co | 1 | g2 | ca | ca | ¢5 | ca |
1 Row DCT Loop
2 axitcond? (icmp)
3 id4(+)

4 det 1d(function)
5-14 FXpose Row outer Loop
15 ECol DCT Loop

16 exitcondd (icmp)
17 i 5(+)
18 det 1d{function)

19-28 G¥Xpose Col Cuter Loop

Performance | Resource

Figure 116: DCT_2D Performance View

Again, you can see a number of loops (shown in yellow in Figure 116). Loops ensure the design

will have small area but the design will take multiple iterative states to complete: each iteration
of the loop will complete before the next iteration starts.

You can pipeline the loops to improve the performance. The details in the Performance Profile
show that most of the latency is caused by loops Row_DCT_Loop and Col_DCT_Loop.

7. Click loops Row_DCT_Loop and Col_DCT_Loop in the performance viewer to fully expand

them, as shown in Figure 117.

Expanding these loops in Performance view shows both loops call function dct_1d. Unless
this function itself is pipelined, there is no benefit in pipelining the loop. TheModule
Hierarchy shows the interval for dct_1dis 210 clock cycles, which means it can only accept a

new input every 210 clock cycles.

8. Inthe Module Hierarchy, click function dct_1d to navigate into the view for this

function.

9. Expand the loops in the Performance Profile and Performance view to see the view

shown in Figure 117.

High-Level Synthesis

UG871 (v2013.3) November 8,2013

www.Xilinx.com 123

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=123

& XILINX. Design Analysis

s |Vivado HLS - dct_prj (CA\Vivado_HLS_Tutorial\Design_Analysis\lab1\dct_prj) EI@
File Edit Project Solution Window Help
B A E|e®
%5 Debug [+ | Synthesis
£ Module Hierarchy ~ O |/& Performance - dct_1d 2 -8

BRAM DSP FF LUT Latency Interval Pipeline type current Module : dot > det 2d > det 1d

@ dct 6 1 183 331 3959 3960 none
o dct2d 4 1 135 247 3668 3668 none | Oneration\Control s | co | c1 | 2 | c3 | ca |
o detld 1 1 & 107 209 209 none 1 Eme Al wERlEEa),
2 tmp 1 read(read)
3 EDCT Quter Loop
4 exitcondl (icmp)
5 k 1(+)
6 IDCT Inner Loop
7 exitcond (icmp)
8 n 1(+)
(o] dct coeff tab...
10 dct coeff tab...
11 p addrl(+)
12 src load (read)
13 tmp 8 (*)
£F Performance Profile %3 . |- Resource Profile =8 14 tmp 5(+)
T B X - 15 tmp 2 (+)
; . Pipelined Latency Initiation Interval Iteration Latency Trip count 16 D addr3(+)
4o d[t,ldE - 209 209 - - 17 node 57 (write)
4 o DCT_Outer_Loop no 208 - 26 8
e DCT Inner_Loop no 24 - 3 8

Performance | Resource

Figure 117: DCT_1D Performance View

In Figure 117 you can see a series of nested loops which can be pipelined.
You can choose to do one of the following:

e You can pipeline the function and then pipeline the loop that calls it. (Because the function is
pipelined, the loop can take advantage of using a pipelined part.)

e You can pipeline the loops within this function and simply make this function execute faster.

Pipelining the function unrolls all the loops within it, and thus greatly increases the area. If the
objective is to get the highest possible performance with no regard for area, this may be the
best optimization to perform.

You can find more details on pipelining loops and functions in the tutorial Design Optimization.
For this case, the approach is to optimize the loops and keep the area at a minimum.

10. Click the Synthesis perspective button to return to the main synthesis view.

High-Level Synthesis www.xilinx.com 124

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=124

& XILINX. Design Analysis

i éVivado HLS - dct_prj (C\Vivado_HLS_Tutorial\Design_An
File | Edit Project Solution Window Help
3| of B | R o@las

% Debug & Analysis

Figure 118: Re-Opening the Synthesis Perspective

= 8

Step 5: Apply Loop Pipelining & Review for Loop Optimization

In this step, you create a new solution and add pipelining directives to the loops.

When pipelining nested loops, it is generally best to pipeline the inner-most loop. Typically,
High-Level Synthesis can generally flatten the loop nest automatically (allowing the outer loop

to simply feed the inner loop). For more information on why it is better to perform certain loop
optimizations rather than others, refer to the tutorial “Design Optimization”.

1.

Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution.

Click OK and accept the defaults.

Ensure that you can see the C source code in the Information pane.

In the Directives tab, add a pipeline directive to loop DCT_Inner_Loop in function dct_1d.
a. Right-click DCT_Inner_Loop in the Directives pane and select Insert Directive

b. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select PIPELINE.

c. Click OK and select the default maximum pipeline rate (II=1)
Repeat step 4 for the following loops:

a. Infunction dct_2d loop Xpose_Row_Inner_Loop

b. Infunction dct_2d loop Xpose_Col_Inner_Loop

c¢. Infunction read_data loop RD_Loop_Col

d. Infunction write_data loop WR_Loop_Col

The Directive pane shows the following (highlighted) optimization directives applied.

High-Level Synthesis www.xilinx.com 125

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=125

& XILINX. Design Analysis

o= Outline [Directive & = B8

a4 @ dct 1d 5

=[1 dct_coeff_table

4% DCT Outer Loop
4" DCT_Inner_Loop
% HLS PIPELINE

a4 © dct_2d
=[] row_outbuf
=1 col_outbuf
#[1 col_inbuf
%" Row_DCT_Loop
%" Xpose_Row_Outer_Loop

111

ad Xpose_Row_Inner_Loop
% HLS PIPELINE

%" Col_DCT_Loop

%" Xpose_Col_Outer_Loop

ad Xpose_Col_Inner_Loop
% HLS PIPELINE
a4 @ read_data
4% RD_Loop_Row
4 %" RD_Loop_Col
% HLS PIPELINE
a4 @ write_data
4% WR_Loop_Row
4 %" WR_Loop_Col
% HLS PIPELINE
4 ® dct -

Figure 119: Optimization Directives for DCT Loop Pipelines

6. Click the Run C Synthesize toolbar button to synthesize the design to RTL.

7. When synthesis completes, use the Compare Reports toolbar button or the menu Project >
Compare Reports to compare solutions 1 and 2.

Figure 120 shows the results of comparing solutionl and solution2. Pipelining the loops has
improved the latency of the design with an almost 50% reduction in solution2.

High-Level Synthesis www.xilinx.com 126

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=126

& XILINX. Design Analysis

£7 compare reports i3 =B

Performance Estimates

= Timing (ns)
Clock solutionl solution2
default Target 8.00 8.00
Estimated 5.79 5.80

m

-1 Latency (clock cycles)

solutionl solution?

Latency min 3959 1978
max 3959 1978
Interval min 3960 1979
max 3960 1979

Figure 120: DCT Solutionl and Solution2 Comparison

Next, you once again open the Analysis perspective, analyze the results, and determine whether
or not there are more opportunities to for optimization.

8. Click the Analysis perspective button to begin interactive design analysis.

When the Analysis perspective opens, you can see that the majority of the latency is still due
to block dct_2d. Before proceeding to analyze further, you can review how the loops at this
level have been optimized.

The Performance Profile (Figure 121) shows that the latency of both loops has been reduced
from 144 clock cycles in solutionl to only 65 clock cycles.

£7 Performance Profile & . | Resource Profile =0

Pipelined Latency Initiation Interval Iteration Latency Trip count

a o dct - 1978 1979
® RD_Loop_Row_RD_Loop_Col yes b4 1 2 64
® WR_Loop_Row_WR_Loop_Col yes 64 1 2 64

Figure 121: DCT Solution2 Performance of top-level Loops

Pipelining loops transforms the latency from

Latency = iteration latency * tripcount
to

Latency = iteration latency + tripcount

HLS also made this possible by automatically performing loop flattening (there is no longer any
loop hierarchy). You can see this by reviewing the Console pane, or log file, for solution2. Figure
122 shows the loops that have been automatically optimized.

High-Level Synthesis www.xilinx.com 127

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=127

& XILINX. Design Analysis

|E Console i3 . €] Errors| & Warnings| Sy
Vivado HLS Console
€= P TrTo TT=y SrmmmImg o TTI==TIT =T TIT YTTITSFETIT ST ISEIIIIIIOZC

[XFORM-682] Inlining function 'write data' into 'dct' (dct.cpp:94) automatically.
[XFORM-541] Flattening a loop nest 'RD_Loop Row' (dct.cpp:59) in function ‘'dct’.
[XFORM-541] Flattening a loop nest 'WR Loop Row' (dct.cpp:71) in function

[XFORM-541] Flattening a loop nest 'Xpose Row Quter lLoop® (dct.cpp:37) in function ‘dct 2d°.

[XFORM-541] Flattening a loop nest 'Xpose Col Outer Loop' (dct.cpp:48) in function 'dct 2d'.
[HLS-111] Elapsed time: 12.191 seconds; current memory usage: 30.6 MB.

@I [HLS-1@] Starting hardware synthesis ...
@T THIS<_1A1 Sunthocizing "drt'

[4] I | »

Figure 122: DCT Solution2 Loop Flattening

9. Inthe Module Hierarchy, click function dct_2d to navigate into the view for this
function.

In the Performance Profile you can see that the latency of all the loops has been
substantially reduced (Row_DCT_Loop and Col_DCT_loop have been approximately halved
from the earlier report in Figure 116). However, the majority of the latency is still due to
these two loops, each of which calls the dct_1b block.

10. In the Module Hierarchy, click function dct_1d to navigate into the view for this
function.

The Performance Profile (Figure 123) shows the loop latencies have been reduced, but there
is still a loop hierarchy here. (There is still loop DCT_Outer_Loop, shown in Figure 123, so no
loop flattening occured).

E£° Performance Profile 2 . | . Resource Profile} =0

Pipelined Latency Initiation Interval Iteration Latency Trip count

4 o dct_1d - 105 106 - -
4 o DCT_Outer_Loop no 104 - 13 8
@ DCT_Inner_Loop yes 10 1 3 8

Figure 123: DCT Solution2 Performance of dct_1d Loops

Viewing these loops in Performance view shows why this loop was not optimized further.

11. In the Performance view, click loops DCT_Outer_Loop and DCT_Inner_Loop to view the loop
hierarchy (Figure 124).

12. Select thewrite operation in state C5.

13. Right-click and select Goto Source.

High-Level Synthesis www.xilinx.com 128

UG871 (v2013.3) November 8,2013 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=128

& XILINX. Design Analysis

Figure 124 shows that this loop was not flattened because additional operations outside of
DCT_Inner_Loop, at the level of DCT_Outer_Loop, prevented loop flattening. One of the
operations that prevented loop flattening is highlighted in Figure 124, below.

= Performance - dct_1d =2 = 0| [C Source £3 =0

Current Module : dct > det 2d > det 1d File: C\Vivado HLS Tutorial\Design_Analysis\labl\dct.cpp

55 .

| Oneration\Control S...| co | ¢1 | ¢2 | 3 | ca | | || s6DCT_Outer_Loop:
1 tmp 11 read(read) 57 for (k =0, k < DCT_SIZE, k++) {
2 tmp 1 read(read) 58 DCT_Inner_Loop
3 HDCT Outer Loop 59 for(n = 0, tmp = 0, n < DCT_SIZE; n++) {
4 exitcondl (icmp) 60 int coeff = (int)dct_coeff_table[k][n];
5 k 1(+) 61 tmp += sre[n] * coeff;

6-14 HDCT Inner Loop 62 }
15 tmp 2(+) 53 dst[k] = DESCALE(tmp, CONST_BITS);
16 p addr3 (+) 64}
node 60 (write) s

1

66

67 void dct_2d(dct_data_t in_block[DCT_SIZE][DCT_SIZI

68 det_data_t out_block[DCT_SIZE][DCT_SIZE])

694

70 dct_data_t row_outbuf[DCT_SIZE][DCT_SIZE];

71 dct_data_t col_outbuf[DCT_SIZE][DCT_SIZE], col_ir

72 unsigned |, |;

73

74 // DCT rows

75 Row_DCT_Loop

76 for(i=0; 1< DCT_SIZE; i++) {

77 dct 1d(in_blocklil. row outbufTil): -
4

I
Performance | Resource D

Figure 124: DCT Solution2 dct_1d Performance View

In this case, pipelining the inner-most loop does not provide the biggest benefit. You should
pipeline the outer loop instead. This causes the inner loop to be completely unrolled. An
increase in area results, but you are still far from the throughput goal of 100 and not yet ready
to pipeline the entire function (and see an even greater area increase, as the outer loop is also
completely unrolled).

14. Click the Synthesis perspective button to return to the main synthesis view.

Step 6: Apply Loop Optimization and Review for Bottlenecks

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution.

2. Click OK and accept the defaults to create solution3.
Ensure the C source code is visible in the Information pane.
4. Inthe Directives tab
a. Infunction dct_1d, select the pipeline directive on loop DCT_Inner_Loop.
b. Right-Click and select Remove Directive.
c. Still in function dct_1d, select loop DCT_Outer_Loop.

d. Right-click and select Insert Directive.

High-Level Synthesis www.xilinx.com 129

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=129

& XILINX. Design Analysis

e. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select PIPELINE.

f. Click OK and select the default maximum pipeline rate (II=1).

The Directive pane should show the following (highlighted) optimization directives applied.

2= Outline |24 Directive &3 =8

4 @ dct_1d -
#[1 dct_coeff_table
4 %' DCT_Outer_Loop
% HLS PIPELINE
% DCT_Inner_Loop
4 @ dct 2d
*[1 row_outbuf
#[1 col_outbuf
#[1 col_inbuf
%' Row_DCT Loop
4 %' Xpose_Row_Outer_Loop
ay Xpose_Row_Inner_Loop
% HLS PIPELINE
%' Col_DCT_Loop
4 %' Xpose_Col_Outer_Loop
4 " Xpose_Col_Inner_Loop
% HLS PIPELINE
4 9 read_data
4 ' RD_Loop_Row
4 &' RD_Loop_Col
% HLS PIPELINE
4 @ write_data
%" WR_Loop_Row
4 5" WR_Loop_Col
% HLS PIPELINE
4 9 dct 57

11

h

Figure 125: Updated Optimization Directives for DCT Loop Pipelines

5. Click the Run C Synthesize toolbar button to synthesize the design to RTL.

6. When synthesis completes, click the Compare Reports toolbar button to compare solutions
2 and 3.

Figure 126 shows the results of comparing solution2 and solution3. Pipelining the outer-
loop has in fact resulted in an increase to the performance and the area.

The significant latency benefit is achieved because multiple loops in the design call the
dct_1d function multiple times. Saving latency in this block is multiplied because this
function is used inside many loops.

High-Level Synthesis www.xilinx.com 130

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=130

& XILINX. Design Analysis

£ compare reports 2 =8

Performance Estimates

=l Timing (ns)
Clock solution2 solution3
default Target 8.00 8.00
Estimated 5.80 5.90

-1 Latency (clock cycles)

solution2 solution3

Latency min 1978 890
max 1978 890

Interval min 1979 891 3
max 1979 891

Utilization Estimates

solution? solution3

BRAM_18K 6 13
DSP48E 1 8
FF 241 556
LUT 451 498

Figure 126: DCT Solution2 and Solution3 Comparison

Now that all the loops are pipelined, it is worthwhile to review the design to see if there are
performance-limiting "bottlenecks.” Bottlenecks are limitations in the flow of data that can
prevent the logic blocks from working at their maximum data rate.

Such limitations in the data flow can come from a number of sources, for example, I/O ports and
arrays implemented as block RAM. In both cases, the finite number of ports (on the I/O or block
RAM) limits the rate at which data can be read or written.

Another source of bottlenecks is data dependencies in the original source code. In some cases,
these data dependencies are inherent in how the algorithm operates, as when a calculation
cannot be performed until an earlier calculation has completed. Sometimes, however, the use of
an optimization directive or a minor change to the C code can remove them.

The first task is to identify such issues in the RTL design. There are a number of approaches you
can take:

e Start with the largest latency of interval in the Module Hierarchy report and navigate down
the hierarchy to find the source of any large latency or interval.

e Click the Resource Profile to examine I/O and memory usage.

e Click the power of the graphical viewer and look for patterns in the Performance view which
indicate a limitation in data flow.

High-Level Synthesis www.xilinx.com 131

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=131

& XILINX. Design Analysis

In this case, you will use the latter approach. You can use the Analysis perspective to identify
such places in the design quickly.

7. Click the Analysis perspective button to begin interactive design analysis.
8. Inthe Module Hierarchy, ensure module dct is selected.

9. Inthe Performance view, expand the first loop in the design as shown in Figure 127,
RD_Loop_Row_RD_Loop_Col (these loops were flattened and the name is now a
concatenation of both loops).

This loop is implemented in two states. The red arrow in Figure 127 shows the path from the

start of the loop to the end of the loop: the arrow is almost vertical (everything happens in two
clock cycles) and this loop is well implemented in terms of latency.

= Performance - dct 2 T m
Current Module : dct

| Oneration\Control S (@(0)
-IRD Loop Row RD ...

|

|
exitcond flatt... :
indvar flatten... I
exitcond i (icmp) I
c i mid2(select) |
|

|

|

|

|

|

|

r(+)

r i mid2 (select)

tmp 5 i(+)

input load(read)
10 p addrl (+)
i1 node 47 (write)
12 c(+) e _ —
13 dct 2d(function)

14-25 #WR Loop Row WR ...

OCONOULAWNE

Performance | Resource

Figure 127: Analysis of DCT RD_Loop_Row

10. In the Performance view, expand the WR_Loop_Row and perform similar analysis. It is
similarly well optimized for latency.

11. Double-click function dct_2d and navigate into thedct_2d function.

You can use same analysis process down through the hierarchy. If you perform this analysis
you will discover that all the function blocks and loops have a similar optimal (few cycles)
implementation, until the dct_1d block is examined.

12. In the Performance view, double-click function dct_1d and navigate into the dct_1d
function.

13. Expand the DCT_Outer_Loop to see the view shown in Figure 128.

High-Level Synthesis www.xilinx.com 132

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=132

& XILINX.

Design Analysis

Figure 128 shows a very different view from the earlier loop schedules (which had only a few
cycles of latency). The schedule shows a long drift from input to output (as shown by the red
arrow).

= Performance - dct_1d

Current Module : dct > dct 2d > det 1d

| Oneration\Control S o1 i [o P |] [e Yo |, i ol o] | o] [|
1 tmp 11 read(read)
2 tmp 1 read(read)
| 3 EDCT outer Loop
4 exitcondl (icmp)
| 5 k 1(+)
6 dct coeff tabl...
7 src load(read)
8 tmp B(*)
|l 9 det coeff tabl...
10 src load 1(read)
|11 tmp 8 1(*)
12 dct coeff tabl...
13 src load 2(read)
14 tmp 8 2(*)
15 dct coeff tabl...
16 src load 3(read)
17 tmp 8 3(¥)
18 dct coeff tabl...
19 src load 4 (read)
20 tmp B 4 (%)
|1 21 dct coeff tabl...
i src load 5(read)
23 tmp B 5(*)
| 24 dct coeff tabl...
| 25 src load 6(read)
26 tmp 8 &(%)
|1 27 dct coeff tabl...
28 src load 7 (read)
29 tmp 8 7(*)
| 30 tmp2 (+)
31 tmp3 (+)
132 tmpl (+)
33 tmp5 (+)
34 tmp7 (+)
35 tmpé (+)
36 tmp4 (+)
37 tmp 2(+)
38 p addr (+)
39 node 114 (write)

Performance | Resource

Figure 128: Analysis of dct_1d RD_Loop_Row

There are typically two things that cause this type of schedule: data dependencies in the source
code and limitations due to I/O or block RAM. You will now examine the resources sharing in

this block.

14. In the Performance view, click the Resource Sharing tab at the bottom of the window.

15. Expand the Memory Ports, as shown in Figure 129.

133

| Send Feedback I

High-Level Synthesis www.xilinx.com

UG871 (v2013.3) November 8,2013

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=133

& XILINX.

=' Resource - det_1d @2

Current Module :

dct > det 2d > det 1d

Design Analysis

c6 | c7z | cs8

|Resource\Control Sten| co | c1 | l c3 | ca | cs

1-5 #I1/0 Ports

6-9 HInstances

10 - Memory Ports

11 src read read read read
12 dct coeff table 1 read

13 dct coeff table 0 read

14 src read read read read
15 dct coeff table 5 read

16 dct coeff table 4 read

17 dct coeff table 7 read

18 dct coeff table & read

19 dct coeff table 2 read

20 dct coeff table 3 read

21 dst write
22-38 HEExpressions

Performance | Resource

Figure 129: Resource Sharing of Memory Ports in dct_1d

The Resource Sharing view shows how the resources in the design are used in different control

states.

The rows list the resources in the design. In Figure 129, the memory resources are expanded.

The columns show the control states in which the resource is used. If a resource is active in
multiple states, the resource is being re-used in different clock cycles.

Figure 129 shows the memory accesses on BRAM src are being used to the maximum in every
clock cycle. (At most, a block RAM can be dual-port and both ports are being used). This is a

good indication the design may be bandwidth-limited by the memory resource. To determine if
this really is the case, you can examine further.

16. Select one of the read operations for the src block RAM.

17. Right-click and select Goto Source to see the view shown in Figure 130.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com

l Send Feedback I

134

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=134

& XILINX. Design Analysis

= Resource - dct_1d % = B[lg C Source =g

File: C:\Vivado_HLS_Tutorial\Design_Analysis\labl\dct.cpp
57 for (k= 0; k < DCT_SIZE; k++) { -

Current Module : dct > dct 2d > det 1d

|Resaurce\Control Sten| _co | | 2 | c3 |l ca |l cs | c6 | cz | c8 || s8DCT_inner_Loop
1-5 HI/0 Ports 59 for(n =0, tmp = 0; n < DCT_SIZE; n++) {
6-9 #Instances 60 int coeff = (int)dct_coeff_table[k][n];
10 IMemory Ports 61 tmp += src[n] * coeff,
11 src read read read read 62 }
12 dct coeff table 1 read 63 dst[k] = DESCALE(tmp, CONST_BITS);
13 dct coeff table 0 read 64)
src read read read 65} E
15 dct coeff table 5 read 66
16 dct coeff table 4 read 67 void det_2d(dct_data_t in_block[DCT_SIZE][DCT_SIZI
17 dct coeff table 7 read 68 det_data_t out_block[DCT_SIZE][DCT_SIZE])
18 dct coeff table & read 69 {
19 dct coeff table 2 read 70 dct_data_t row_outbuf[DCT_SIZE][DCT_SIZE];
20 dct coeff table 3 read 71 dct_data_t col_outbuf[DCT_SIZE]J[DCT_SIZE], col_ir
21 dst write 72 unsigned i, j;
22-38 EExpressions 73 -

4 "
Performance Resource D

Figure 130: Memory resource src and Source Code

Figure 130 shows this read on the src variable is from the read operation inside loop
DCT_Inner_Loop. This loop was automatically unrolled when DCT_Outer_Loop was pipelined and
all operations in this loop can occur in parallel (if data dependencies allow).

The eight reads are being forced to occur over multiple cycles because the array src is
implemented as a block RAM in the RTL and a block RAM can only allow two reads (maximum)
in any one clock cycle. In Figure 130, the read operations take 2 clocks cycles: a cycle to
generate the address for the block RAM and a cycle to read the data. Only the launch (address
generation cycle) is shown because it overlaps with the operation in the next clock cycle.

You can optimize the block RAM accesses using optimization directives to partition the block

RAM. The block RAM that function dct_1d accesses is defined as an input argument to the
function and therefore resides outside this block.

e The input array to the first instance of dct_1d is buf_2d_in in function dct.
e The input array to the second instance of dct_1d is col_inbuf in function dct_2d.

In both cases, the arrays are 2-dimensional of size DCT_SIZE by DCT_SIZE (8x8). By default, this
results in a single block RAM with 64 elements. Because the arrays are configured in the code in
the form of Row by Column, we can partition the 2" dimension and create eight separate Block
RAMs: one for each row, allowing the row data to be accessed in parallel.

18. Click the Synthesis perspective button to return to the main synthesis view.

Step 7: Partition Block RAMs and Analyze Concurrency

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution.

2. Click OK and accept the defaults to create solution4.
3. Ensure the C source code is visible in the Information pane.
4. Inthe Directives tab:

a. Infunction dct, select array buf_2d_in.

High-Level Synthesis www.xilinx.com 135

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=135

& XILINX. Design Analysis

e.

f.

Right-click and select Insert Directive.

In the Directives Editor dialog box, activate the Directives drop-down menu at the top
and select ARRAY_PARTITION.

Leave the type as Complete.
Change the dimension setting to 2 to partition the array along the 2" dimension.

Click OK.

5. Repeat this process for array col_inbuf in function dct_2d.

The Directive pane displays optimization directives, as shown in Figure 131 (the two new
directives are highlighted).

2= Outline |4 Directive &2 =08

@ dct_1d
#[1 dct_coeff_table
" DCT_Outer_Loop
% HLS PIPELINE
% DCTInner_Loop
@ dct_2d
#[1 row_outbuf
#[1 col_outbuf
#1 col_inbuf
% HLS ARRAY_PARTITION variable=col_inbuf complete dim=2
% Row_DCT_Loop
%" Xpose_Row_Outer_Loop
A Xpose_Row_Inner_Loop
% HLS PIPELINE
%' Col_DCT_Loop
%" Xpose_Col_Outer Loop
Xpose_Col_Inner_Loop
% HLS PIPELINE
@ read_data
%" RD_Loop_Row
%" RD_Loop_Col
% HLS PIPELINE
@ write_data
%" WR_Loop_Row
% WR_Loop_Col
% HLS PIPELINE
@ dct
11 buf 2d_in
% HLS ARRAY_PARTITION variable=buf_2d_in complete dim=2
#[1 buf_2d_out
@ input
output

Figure 131: Optimization Directives for Array Partitioning

High-Level Synthesis www.xilinx.com 136

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=136

& XILINX. Design Analysis

6. Click the Click the Run C Synthesize toolbar button to synthesize the design to RTL.

7. When synthesis completes, use the Compare Reports toolbar button to compare solutions
3 and 4.

Figure 132 shows the results of comparing solution3 and solution4. Improving access to the

data in the src block RAM in the dct_1d block has improved the overall performance because
the dct_1d block executes frequently.

£ compare reports & =B

Performance Estimates

= Timing (ns)
Clock solution3 solutiond
default Target 8.00 8.00
Estimated 5.90 5.90

m

-l Latency (clock cycles)

solution3 solutiond

Latency min 890 508
max 890 508
Interval min 891 509
max 891 509

Figure 132: DCT Solution3 and Solution4 Comparison

You can review the impact of the partitioning directive on the device resource.

8. Click the Analysis perspective button to begin interactive design analysis.

9. Inthe Module Hierarchy, ensure module dct is selected.

10. Select the Resource Profile in the lower-left by selecting the Resource Profile tab.

11. Expand the Memories and Expressions see the view in Figure 133.

High-Level Synthesis www.xilinx.com 137

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=137

& XILINX.

Module Hierarchy

® dct

BRAM DSP FF LUT Latency Interval

27

® dct_2Zd 18
® read _data 0

£" Performance Profile ||

4 @ dct

- g8 [/O Ports(2)
+ f= Instances(2)
a |8 Memories(9)

4

I O R

4

buf 2d out U
buf_2d_in_6_U
buf_2d_in_1_U
buf_2d_in_0_U
buf_2d_in_3_U
buf_2d_in_4_U
buf_2d_in_2_U
buf_2d_in_7_U
buf_2d_in_3_U

4 Y, Expressions(9)

@

: @

@

+
icmp
Select

- i Registers(11)
FIFO(0)
- @ Multiplexers(13)

8
8
0

5317 591 508 509
457 437 373 373
27 58 66 66

Resource Profile 2

BRAM | DSP FF LUT

27

13

9
1
1
1
1
1
1
1
1
1
0
0
0
0

[= =}

8 517 591
8 484 495

0 0

0 0

o 0

0 0

o 0

0 0

o 0

0 0

o 0

0 0
0 0 47
0 0 29
0 0 10
0 0 8

33

0o 0

0 49

Pipeline type

none
nong
none

Design Analysis

=48

Bits PO Bits P1 Bits P2 Banks/Depth

32

144
16
16
16
16
16
16
16
16
16
42
29
11
2
33
0
49

35
17
13

Figure 133 DCT Resource Profile

[oo T = B e B -+]

T T S -]

The Resource Profile shows the resources being using at the current level of hierarchy (the block
selected in the Module Hierarchy pane). Figure 133 shows:

e This block has two I/O ports.

e Most of the area is due to instances (sub-blocks) within this block.

e There are nine memories, eight of which are the partitioned buf_2d_in block RAM.

e Most of the logic (expressions) at this level of hierarchy is due to adders, with some due to
comparators and selectors.

High-Level Synthesis

UG871 (v2013.3) November 8,2013

www.Xilinx.com

l Send Feedback I

138

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=138

& XILINX. Design Analysis

The important point from the previous optimization is that you can see there are now additional
memories due to the array partitioning optimization.

You still have a goal to ensure that the design can accept a new set of samples every 100 clock
cycles. Figure 132, however, shows that you can only accept new data every 509 clocks. This is
much better than the original, pre-optimized design (approx. 3700 clock cycles), but further
optimization is required.

Up to this point, you have focused on improving the latency and interval of each of the
individual loops and functions in the design. You must now apply the dataflow optimization,
which enables the individual loops and functions to execute in parallel, thus improving the
overall design interval.

12. Click the Synthesis perspective button to return to the main synthesis view.

Step 8: Partition Block RAMs and Apply Dataflow optimization

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution.

2. Click OK and accept the defaults to create solution5.
3. Ensurethe C source code is visible in the Information pane.
4. Inthe Directives tab
Select the top-level function dct.
b. Right-click and select Insert Directive.

c. Inthe Directives Editor dialog box activate the Directives drop-down menu and select
DATAFLOW.

d. Click OK.
5. Repeat this process for array col_inbuf in function dct_2d.

The Directive pane now displays the following optimization directives (the new directive is
highlighted).

High-Level Synthesis www.xilinx.com 139

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=139

& XILINX. Design Analysis

g Outline |4 Directive &3 =0
4 @ dct_1d
#[1 dct_coeff_table
4 %' DCT_Outer_Loop
% HLS PIPELIME
% DCT_Inner_Loop
4 @ dct 2d
«[1 row_outbuf

#[1 col_outbuf

«1 col_inbuf

% HLS ARRAY_PARTITION partition variable=col_inbuf complete dim=2
%" Row_DCT_Loop

%' Xpose Row_Outer_Loop

[

al Xpose_Row_Inner_Loop
% HLS PIPELINE

%" Col_DCT_Loop

%' Xpose_Col_Outer Loop

[

4 ' ¥pose_Col_Inner_Loop
% HLS PIPELINE
read_data
%" RD_Loop_Row
4 %" RD_Loop_Col
% HLS PIPELINE
4 @ write_data
%" WR_Loop_Row
4 %" WR_Loop_Col
% HLS PIPELINE

b
L]

[

[

4 @ dct
% HLS DATAFLOW
*[1 buf_2d_in
% HLS ARRAY_PARTITION partition variable=buf_2d_in complete dim=2
#[1 buf_2d_out
Input
@ output

Figure 134: Dataflow Optimization for the DCT design

6. Click the Click the Run C Synthesize toolbar button to synthesize the design to RTL.

7. When synthesis completes, use the Compare Reports toolbar button or the menu Project >
Compare Reports to compare solutions 4 and 5.

Figure 135 shows the results of comparing solution4 and solution5, and you can see the
interval has improved. The design takes 539 clocks cycles to produce the outputs but can
now accept new inputs every 405 clocks.

High-Level Synthesis www.xilinx.com 140

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=140

& XILINX. Design Analysis

£ compare reports 2 =8

Performance Estimates

= Timing (ns)
Clock solution> solutiond
default Target 8.00 8.00
Estimated 5.90 5.90

m

-1 Latency (clock cycles)

solution> solutiond

Latency min 507 508
max 507 508
Interval min 374 509
max 374 509

Figure 135: DCT Solution4 and Solution5 Comparison

This is still greater than the 100 cycles required, so you must analyze the current performance.
8. Click the Analysis perspective button to begin interactive design analysis.

9. Inthe Module Hierarchy, you can see dct_2d accounts for most of the interval. Ensure
module dct_2d is selected to see the view in Figure 136.

t5 Module Hierarchy =8
BRAM DSP FF LUT Latency Interval Pipeline type
® dct 36 8 528 569 507 374 dataflow
® read_data 0 0 28 60 66 66 none
e dct_2d 18 8 458 439 373 373 none
e dct1d 8 8 386 115 13 13 none
o write_data 0 0 31 68 66 66 none
£5 Performance Profile 52 . | . Resource Profile =8
Pipelined Latency Initiation Interval Iteration Latency Trip count
4ie dct_2d! - 373 373 - -
® Row_DCT_Loop no 120 - 15 8
e Xpose_Row_Outer_Loop_Xpose_Row_Inner_Loop yes 64 1 2 a4
o Col_DCT_Loop no 120 - 15 8
@ Xpose_Col_Outer_Loop_Xpose_Caol_Inner_Loop yes 64 1 2 b4
Figure 136: DCT Analysis View after Dataflow Optimization
Here, you can see two things:
High-Level Synthesis www.xilinx.com 141

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=141

& XILINX. Design Analysis

¢ The interval of the dct block is less than the sum of the individual latencies (for read_data,
dct_2d and write_data). This means the blocks are operating in parallel.

e The interval of dct is the same as the interval for sub-block dct_2d. The dct_2d block is
therefore the limiting factor.

Because the dct_2d block is selected in the Module Hierarchy, the Performance Profile shows the
details for this block. Figure 136 shows the interval is the same as the latency, so none of these
blocks operate in parallel.

One way to have the blocks in dct_2b operate in parallel would be to pipeline the entire
function. This, however, would unroll all the loops, which can sometimes lead to a large area
increase. An alternative is use dataflow optimization on function dcs_2b.

Another alternative is to use a less obvious technique: raise these loops up to the top-level of
hierarchy, where they will be included in the dataflow optimization already applied to the top-
level. This can be achieved by using an optimization directive to remove the dct_2d hierarchy:
inline the dct_2d function.

Before performing this optimization, review the area increase caused by using dataflow
optimization.

10. In the Module Hierarchy, ensure module dct is selected.
11. Activate the Resource Profile view.

12. Expand the memories to see the view in Figure 137.

£F Performance Profile (| . Resource Profile &2 =g
BRAfxﬂ DSP FF LUT BitsPO BitsP1 Bits P2 Banks/Depth

........... . ct 26 . s28| 569

» b8 1[/O Ports(2) 32

- T2 Instances(3) 13 8 517 567

4 w8 Memories(9) 13 0 0 144 18
¢ buf 2d_out U 2 0 0 16 2
4 buf 2d_in6 .U 2 o 0 16 2
¢ buf 2d_in_1. U 2 0 0 16 2
4 buf 2d_in 0U 2 o 0 16 2
¢ buf 2d_in_3_U 2 0 0 16 2
4 buf 2d_in4 U 2 o 0 16 2
¢ buf 2d_in 2 U 2 0 0 16 2
¢ buf 2d_in_7.U 2 o 0 16 2
¢ buf 2d_in 5. U 2 0 0 16 2

- ¥, Expressions(1) 0 0 0o 2 1 1 0

: s Registers(11) 11 11

e FIFO(0) 0 0 0 0 0
i} Multiplexers(0) 0 0 0 0 0
Figure 137: DCT Resource Profile
High-Level Synthesis www.xilinx.com 142

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=142

& XILINX. Design Analysis

As compared with Figure 133, you can see there are now twice as many memories at this level
of hierarchy (18 vs. 9). Each memory has been transformed into a Ping-Pong buffer to support
dataflow. In this case, no “new” memories were added; the existing memories were converted
into dataflow Ping-Pong memory channels. This doubled the number of block RAMs.

13. Click the Synthesis perspective button to return to the main synthesis view.

Step 9: Optimize the Hierarchy for Dataflow

1.

2
3.
4

Select the New Solution toolbar button to create a new solution.
Click OK and accept the defaults to create solution6.
Ensure the C source code is visible in the Information pane.
In the Directives tab:
Select function dct_2d.
b. Right-click and select Insert Directive .

c. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select INLINE.

d. Click OK.
The Directive pane now shows the following optimization directives (the new directive is
highlighted).
High-Level Synthesis www.xilinx.com 143

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=143

& XILINX.

o= Qutline | Directive &3

Design Analysis

1 @ dct_1d

%1 dct_coeff_table

%' DCT_Outer_Loop
% HLS PIPELINE
4" DCT Inner_Loop

dct_2d

% HLS INLINE

*[1 row_outbuf

#[1 col_outbuf
«1 col_inbuf

%" Row_DCT_Loop
%' Xpose Row_Outer_Loop

% HLS PIPELINE
%" Col_DCT_Loop
%' Xpose_Col_Outer Loop

+ ' Xpose_Col_Inner_Loop
% HLS PIPELINE
read_data
%' RD_Loop_Row
%" RD_Loop_Col
% HLS PIPELINE
write_data
%" WR_Loop_Row
+ %" WR_Loop_Col
% HLS PIPELINE

o

dct
% HLS DATAFLOW
=1 buf_2d_in

#[1 buf_2d_out
Input
@ output

% HLS ARRAY_PARTITION partition variable=col_inbuf complete dim=2

R Xpose_Row_Inner_Loop

% HLS ARRAY_PARTITION partition variable=buf_2d_in complete dim=2

Figure 138: Dataflow Optimization for the DCT design

5. Click the Run C Synthesize toolbar button to synthesizes the design to RTL.

6. When synthesis completes, use the Compare Reports toolbar button or the menu Project >
Compare Reports to compare solutions 5 and 6.

Figure 139 shows the results of comparing solution5 and solution6. You can see the interval

has improved substantially.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

144

| Send Feedback I

www.Xilinx.com

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=144

& XILINX. Design Analysis

E£7 compare reports 2 =B

Performance Estimates

= Timing (ns)
Clock solution> solutiond
default Target 8.00 8.00
Estimated 5.90 5.90

111

-l Latency (clock cycles)

solution> solutionf

Latency min 507 407
max 507 407

Interval min 374 70
max 374 70

Figure 139: DCT Solution5 and Solution6 Comparison

The interval is now below the 100 clock target. This design can accept a new set of input data
every 70 clock cycles.

You can also see the details (1) in the synthesis report, which opens automatically after synthesis
completes and (2) in the Analysis perspective, as shown in Figure 140.

¥=| Module Hierarchy =0
BRAM DSP FF LUT Latency Interval Pipeline type
@ dct 54 16 914 580 407 70 dataflow
® read_data 0 0 28 60 66 b6 none
@ dct_Loop_Row_DCT_Loop_proc 8 8 388 158 69 69 none
@ dct_Loop_Xpose_Row_Outer_Loop_proc 0 0 28 62 66 b6 none
@ dct_Loop_Col_DCT_Loop_proc 8 8 388 158 69 69 none
@ dct_Loop_Xpose_Col_Outer_Loop_proc 0 0 29 70 66 b6 none
o write_data 0 0 31 68 66 66 none

Figure 140: DCT Solution6 Module Hierarchy

High-Level Synthesis www.xilinx.com 145

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=145

& XILINX. Design Analysis

Conclusion

In this tutorial, you learned:

e How to analyze a design using the analysis perspective.

e How to cross-link operations in the views with the C code.
e How to apply and judge optimizations.

e A methodology for taking the initial design results and creating an implementation which
satisfies the design goals.

High-Level Synthesis www.xilinx.com 146

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=146

& XILINX.

Chapter 7 Design Optimization

Overview

A crucial part of creating high quality RTL designs using High-Level Synthesis is having the
ability to apply optimizations to the C code. High-Level Synthesis always tries to minimize the
latency of loops and functions.To achieve this, within the loops and functions, it tries to execute

as many operations as possible in parallel. At the level of functions, High-Level Synthesis always
tries to execute functions in parallel.

In addition to these automatic optimizations, directives are used to:

e Execute multiple tasks in parallel, for example, multiple executions of the same function or
multiple iterations of the same loop. This is pipelining.

e Restructure the physical implementation of arrays (block RAMs), functions, loops and ports
to improve the availability of data and help data flow through the design faster.

e Provide information on data dependencies, or lack of them, allowing more optimizations to
be performed.

The final optimization technique is to modify the C source code to remove unintended
dependencies in the code that may limit the performance of the hardware.

This tutorial consists of two lab exercises.. You perform the analysis in these lab exercises using
the Analysis perspective. A prerequisite for this tutorial is completion of the Design Analysis
tutorial.

Labl

Contrast the uses of loop and function pipelining to create a design that can process one
sample per clock. This lab includes examples that give you the opportunity to analyze the two
most common causes for designs failing to meet performance requirements: loop dependencies
and data flow limitations or bottlenecks.

Lab2

This lab shows how modifications to the code from Lab 1 can help overcome some performance
limitations inherent, but unintended, in the code.

High-Level Synthesis www.xilinx.com 147

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=147

& XILINX. Design Optimization

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. Refer to the information in
Obtaining the Tutorial Designs.

For this tutorial you use the designfilesin the tutorial directory
Vivado_HLS Tutorial\Design_Optimization.

The sample design you use in the lab exercise is a matrix multiplier function. The design goal is

to process a new sample every clock period and implement the interfaces as streaming data
interfaces.

Lab 1: Optimizing a Matrix Multiplier

This exercise uses a matrix multiplier design to show how you can fully optimize a design heavily

based on loops. The design goal is to read one sample per clock cycle using a FIFO interface,
while minimizing the area.

The analysis includes a comparison of a methodology that optimizes at the loop level with one
that optimizes at the function level.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS_Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial

If the tutorial data directory (s unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt (Figure 141).

b. On Linux, open a new shell.

Bl Vivado 2013.3 Tcl Shell
g Vivado 2013.3
Accessories
SDK
System Generator
Vivado HLS
Bl vivado HLS 2013.3 Command Promp
"] vivado HLS 2013.3

Figure 141: Vivado HLS Command Prompt

High-Level Synthesis www.xilinx.com 148

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=148

& XILINX. Design Optimization

2. Using the command prompt window (Figure 142), change directory to the RTL Verification
tutorial, lab1.

3. Execute the Tcl script to set up the Vivado HLS project, using the command vivado_hls —f
run_hls.tcl, as shown in Figure 142.

B Vivado HLS 2013.2 Command Prompt =N EcE =%

C:\Vivado_HLS_Tutorial>cd Design_Optimization

C:\Vivado_HLS_Tutorial\Design_Optimizatien>cd labl

4 |1

C:\Uivado_HLS_Tutorial\Design_Optimization\labl>vuivado_hls -f run_hls.tcl

Figure 142: Setup the Design Optimization Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls —p matrixmul_prj, as shown in Figure 143.

[Vivado HLS 2013.1 Command Prompt o[B 3]

@I [HLS-10] Adding design file 'matrixmul.cpp' to the project.
RI [HLS-18] Adding test bench file ‘matrixmul_test.cpp’ to the project.
@I [HLS-18] Opening and resetting solution 'C:/Uivado_HLS_Tutorial/Design_Optimi
zation/labl/matrixmul _prj/solutioni”.
@I [HLS-10] Cleaning up the solution database.
RI [HLS-18] Setting target device to 'xcTk160tfbgi484-1"
BI [SYN-281] Setting up clock with a period of 13.3333ns.
Compiling C:/Uivado_HLS_Tutorial/Design_Optimization/labl/matrixmul_test.cpp
in debug mode
Compiling C:/VUivado_HLS_Tutorial/Design_Optimization/labl/matrixmul.cpp in de
bug mode
Generating csim.exe
Test passes.
RI [SIM-1] CSim done with @ errors.
@I [LIC-181] Checked in feature [UIUADO_HLS]

C:\Uivado_HLS_Tutorial\Design_Optimization\labl>vivado_hls -p matrixmul_prj

Figure 143: Open Design Optimization Project for Lab 1

5. Expand the Sources folder in the Explorer pane and double-click matrixmul.cpp to view the
source code (Figure 144).

Scroll down the file to see that the source code has two input arrays, a and b, and output array
res. Hold the mouse over the macros (as shown in Figure 144) to see that each is three-by-three
for a total of nine elements.

High-Level Synthesis www.xilinx.com 149

UG871 (v 2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=149

& XILINX.

Design Optimization

[ty Explorer & = O|([¢ matrixmulepp &2 =8
=25 matrixmul_prj 46 #include "matrixmul.h" -
w Includes 47
= Source 48 void matrixmul(
= B matrixmul.cpp 49 mat_a_t a[MAT A ROWS][MAT A _COLS],
o Test Bt 50 mat_b_t b[MAT_B_ROWS][j\acro Expansion
=l lest benc 51 result t res[MAT_A_ROW;)
= solutiont 52 {
- Press 'F2' for focus
constraints 53 // Iterate over the rows oT e HTC[I[.[I‘!CLr[IIqX
% directives.tcl 54 Row: for(int 1 = @; 1 < MAT_A ROWS; i++) { i
& scripttcl 55 // Iterate over the columns of the B matrix T
. 56 Col: for(int j = @; j < MAT_B_COLS; j++) {
= csim - Lo
) 57 res[1][]i] = @;
& build 58 // Do the inner nroduct of a row of A and col of R T
= report 1 1 8

Figure 144: Source Code for the Matrix Multiplier

Step 2: Synthesize and Analyze the Design

1. Click the Click the Run C Synthesize toolbar button to synthesize the design to RTL.

When synthesis completes, the synthesis report opens (Figure 145), and the Performance

estimates appears:

e The intervalis 80 clock cycles. Because there are nine elements in each input array, the
design takes approximately nine cycles per input read.

e The intervalis one cycle longer than the latency, so there is no parallelism in the hardware at

this point.

e The latency/interval is due to nested loops.

0 The inner loop called Product:

— Has a latency of 2 clock cycles

— Has 6 clock cycles total for all iterations.

0 The Col loop:

— Itrequires 1 clock to enter loop Product and 1 clock to exit

— It takes 8 clock cycles for each iteration (1+6+1)

— Has 24 cycles for all iterations to complete.

0 The top-level loop has a latency of 26 clock cycles per iteration, for a total of 78 clock
cycles for all iterations of the loop.

High-Level Synthesis

www.Xilinx.com 150

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=150

& XILINX. Design Optimization

2l matrixmul_csynth.rpt 2 =5
Performance Estimates

-1 Timing {(ns)

- Summary

Clock Target Estimated Uncertainty
default 1333 8.18 167

m

-1 Latency (clock cycles)
- Summary
Latency Interval

min max min max Type
79 79 80 80 none

=1 Detail
+ Instance
-l Loop

Latency Initiation Interval

Loop Name min max [Iteration Latency achieved target Trip Count Pipelined

- Row 78 78 26 - - 3 no
+ Col 24 24 8 - - 3 no
++ Product 5] 6 2 - - 3 no

Figure 145: Synthesis Report for the Matrix Multiplier

You can do one of two things to improve the initiation interval: Pipeline the loops or pipeline
the entire function. You begin by pipelining the loops and then compare those results to
pipelining the entire function.

When pipelining loops, the initiation interval of the loops is the important metric to monitor. As
seen in this exercise, even when the design reaches the stage at which the loop can process a
sample every clock cycle, the initiation interval of the function is still reported as the time it takes
for the loops contained within the function to finish processing all data for the function,

Step 3: Pipeline the Product Loop

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution.

2. Click OK and accept the defaults to create solution2.
3. Ensurethe C source code is visible in the Information pane.

When pipelining nested loops, you realize the greatest benefit by pipelining the inner-most
loop, which processes a sample of data. High-Level Synthesis automatically applies loop
flattening, collapsing the nested loops, removing the loop transitions, allowing the outer loops
simply to feed the inner loop with data.

High-Level Synthesis www.xilinx.com 151

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=151

& XILINX. Design Optimization

4. Inthe Directives tab:
a. Select loop Product.
b. Right-click and select Insert Directive.

¢. Inthe Directives Editor dialog box, activate the Directives drop-down menu at the top
and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop iteration
per clock) will be the default.

The Directive pane should show the following optimization directives. (The new directive is
highlighted.)

o= Outline [Directive & =8

4 @ matrixmul

9 a

b

J res

4% Row
4% Col
2 %" Product
% HLS PIPELINE

Figure 146: Initial Pipeline Directive

5. Click the Click the Run C Synthesize toolbar button to synthesize the design to RTL.

During synthesis, the information reported in the Console pane shows loop flattening was
performed on loop Row and that the default initiation internal target of 1 could not be
achieved on loop Product due to a dependency.

@1 [XFORM-541] Flattening a loop nest "Row™ (matrixmul.cpp:54) in function
"matrixmul =.

@1 [SCHED-61] Pipelining loop "“Product-.

@W [SCHED-68] Unable to enforce a carried dependency constraint (Il = 1,
distance = 1) between “store” operation (matrixmul .cpp:60) of variable
"tmp_3" on array “res" and "load" operation ("res load”, matrixmul .cpp:60)
on array °“res".

@1 [SCHED-61] Pipelining result: Target 11: 1, Final 1l: 2, Depth: 3.

High-Level Synthesis www.xilinx.com 152

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=152

& XILINX. Design Optimization

The synthesis report (Figure 147) shows that although the Product loop is pipelined with an
interval of 2, the interval of top-level loop is not pipelined.

=l matrixmul_csynth.rpt =5
Performance Estimates i

-1 Timing (ns)

= Summary

Clock Target Estimated Uncertainty
default 13.33 10.57 167

m

-1 Latency (clock cycles)

- Summary
Latency Interval
min max min max Type
82 82 83 83 none
= Detail

+ Instance

Latency Initiation Interval
Loop Mame min max Iteration Latency achieved target Trip Count Pipelined
- Row_Col 81 81 9 - - 9 no
+ Product 6 6 2 2 1 3 yes

Figure 147: Matrixmul Initial Pipeline Report

The reason the top-level loop is not pipelined is that loop flattening only occurred on loop Row.
There was no loop flattening of loop Col into the Product loop. To understand why loop
flattening was unable to flatten all nested loops, use the Analysis perspective.

6.
7.
8.
9.

Open the Analysis perspective.
In the Performance View, expand loops Row_Col and Product.
Select thewrite operation in state Cl.

Right-click and select Goto Source to see the view in Figure 148.

The write operation in state C1 is due to the code that sets res to zero before the Product loop.
Because res is a top-level function argument, it is a write to a port in the RTL: This operation
must happen before the operations in loop Product are executed. Because it is not an internal
operation but has an impact on the I/O behavior, this operation cannot be moved or optimized.
This prevents the Product loop from being flattened into the Row_Col loop.

High-Level Synthesis www.xilinx.com 153

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=153

& XILINX.

Design Optimization

& Performance - matrixmul 3 = O|[[g € Source &3 =0

Current Module : matrixmul

| Oneration\Control S...| _co | | & | 3
1 ERow Col
2 exitcond flatt...
3 indvar flatten...
a4 exitcondl (icmp)
5 Jj mid2 (select)
6 i s(+)
7 i mid2 (select)
8 p addr7(-)
g p addri (+)

node 35 (write) e

11 EProduct
12 exitcond (icmp)
13 k 1(+)
14 p addrl(+)
15 a load(read)
16 p addr3(-)
17 p addré (+)
18 b load(read)
19 tmp 7 (*)
20 res load(read)
21 tmp 8 (+)
22 node 68 (write)
23 J 1(+)

Performance | Resource

File: C\Vivado_HLS_Tutorial\Design_Optimization\labl\matrixmul.c

40 liability -

41

42 THIS COPYRIGHT NOTICE AND DISCLAIMER MUST E

43 ALL TIMES.

44

45

46 #include "matrixmul h"

47

48 void matrixmul(

49 mat_a_t a[MAT_A_ROWS]IMAT_A_COLS],

50 mat_b_t b[MAT_B_ROWS][MAT_B_COLS],

51 result_t res[MAT_A_ROWS][MAT_B_COLS])

52

53 // lterate over the rows of the A matrix

54 Row: for(int 1 =0; 1 < MAT_A_ROWS; i++) {

55 /I lterate over the columns of the B matrix

56 Col: for(intj = 0;] <« MAT_B_COLS; j++) {

57 res[ili] = 0;

58 // Do the inner product of a row of A and col of B

59 Product: for(int k = 0; k < MAT_B_ROWS; k++) {

60 res[i]i] += al[il[k] * bIK][il;

61 1

62 1}

63 }

64

651}

66

67 %
< 1 »

m

Figure 148: Matrixmul Initial Performance View

More importantly, it is worth addressing why only an II of 2 was possible for the Product loop.

The message SCHED-68 tells you:

@W [SCHED-68] Unablle to enforce a carried dependency constraint (Il = 1,
distance = 1) between “store” operation (matrixmul .cpp:60) of variable
"tmp_3" on array “res" and "load" operation ("res load”, matrixmul .cpp:60)

on array "res".

e Theissue is a carried dependency. This is a dependency between an operation in one

iteration of aloop and an operation in a different iteration of the same loop. For example, an
operation when k=1 and when k=2 (where k is the loop index).

e The first operation is a store (memory read operation) on array res on line 60.

e The second operation is a load (memory write operation) on array res on line 60.

From Figure 148 you can see line 60 is a read from array res (due to the += operator) and a
write to array res. An array is mapped into a block RAM by default and the details in the
Performance View can show why this conflict occurred.

The Performance view shows in which states the operations are scheduled. Figure 149 shows a
number of copies of the schedule for the Product loop to highlight how this issue can be
understood. Start with the basic view shown in the top-right. The operations on the res array, a

two-cycle read and write, are highlighted in red.

High-Level Synthesis www.xilinx.com 154

UG871 (v2013.3) November 8,2013

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=154

& XILINX. Design Optimization

In the successful schedule, the next iteration of the Product loop appears as shown below. In this
schedule, the initiation interval (II)=2 and the loop operations re-start every two cycles. There is
no conflict between any block RAM accesses. (None of the red highlights overlap across
iterations.)

The unsuccessful schedule shows why the loop cannot be pipelined with an II=1.1In this case, the
next iteration would need to start after 1 clock cycle. The write to the block RAM in the first
iteration is still occurring when the second iteration tries to apply an address for a read
operation. These addresses are different. Both cannot be applied to the block RAM at the same
time.

Successful Unsuccessful
Schedule Schedule

. -l Product
First Loop exitcond (icmp)

lteration (k=0) k 1(+)

addrl (+)
load (read)
addr3 (-)
addrd (+)
load (read)
tmp 7(¥)

res load (read) R]

oo 'div o

tmp 8 (+)

node 68 (write) “

A UiGE)

- Product — —
Second Loop exitcond (icmp)

lteration (k=1) x 1(+) [1=2 [1=1
addrl (+)

load (read)

addr3 (-)

addrd (+)

load(read)

tmp 7 (*)

I

1
res load(read) _ —
" _—

oo o g

tmp 8 (+)
node 68 (write)
5 A(F)

Figure 149: Carried Dependency Analysis

You cannot pipeline the Product loop with an initiation interval of 1. The next lab exercise shows
how writing the code can remove this limitation (any technique that does not write back to the
same block RAM). In this lab exercise you optimize the code as it is.

The next step is to pipeline the loop above, the Col loop. This automatically unrolls the Product

loop and creates more operators and hence more hardware resources, but it ensures there is no
dependency between different iterations of the Product loop.

10. Return to the Synthesis perspective.

High-Level Synthesis www.xilinx.com 155

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=155

& XILINX. Design Optimization

Step 4: Pipeline the Col Loop

1.
2.

Select the New Solution toolbar button to create a new solution.

Because solution2 already has a directive added, use the drop-down menu to select
solutionl as the source for existing directives and constraints (solutionl has none).

Click Finish and accept the default solution name, solution3.

Open the C source code matrixmul.cpp to makeit visible in the Information pane.
In the Directives tab:

a. Select loop Col.

b. Right-click and select Insert Directive

c. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select PIPELINE.

d. Click OK. With the default options, an initiation interval (II) of 1 (one new loop iteration
per clock) becomes the default.

The Directive pane, shown below, displays the following optimization directives (the new
directive is highlighted).

o= Qutline | Directive &3 =8

2 matrixmul
@ a
@b
? res
4 % Row
4% Col
% HLS PIPELINE
% Product

Figure 150: Col Pipeline Directive

6. Click the Click the Run C Synthesize toolbar button to synthesize the design to RTL.
During synthesis, the information reported in the Console pane shows that loop Product was
unrolled, loop flattening was performed on loop Row, and the default initiation internal
target of 1 could not be achieved on loop Row_Col due resource limitations on the memory
for array a.
@1 [XFORM-502] Unrolling all sub-loops inside loop "Col*
(matrixmul .cpp:56) in function "matrixmul® for pipelining.
@1 [XFORM-501] Unrolling loop “Product®™ (matrixmul.cpp:59) in function
"matrixmul® completely.
@1 [XFORM-541] Flattening a loop nest "Row" (matrixmul.cpp:54) in function
"matrixmul " .

High-Level Synthesis www.xilinx.com 156

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=156

& XILINX. Design Optimization

@I -[SCHED—61] Pipelining loop "Row_Col*.

@W [SCHED-69] Unable to schedule "load®™ operation ("a load 17,

matrixmul.cpp:60) on array "a" due to limited memory ports.

@1 [SCHED-61] Pipelining result: Target Il: 1, Final 11: 2, Depth: 4.
Reviewing the synthesis report shows, as noted above, that the interval for loop Row_Col is only
two: the target is to process one sample every cycle. Once again, you can use the Analysis
perspective to highlight why the initiation target was not achieved.

7. Open the Analysis perspective.
8. Inthe Performance View, expand the Row_Col loop

The operations on array a (mentioned in the SCHED-69 message above) are highlighted in
Figure 151. There are three read operations on array a. Two operations start in state C1 and a
third read operation starts in state C2.

Arrays are implemented as block RAMs and arrays which are arguments to the function are
implemented as block RAM ports. In both cases a block RAM can only have a maximum of two
ports (for dual-port block RAM). By accessing array a through a single block RAM interface,
there are not enough ports to be able to read all three values in one clock cycle.

High-Level Synthesis www.xilinx.com 157

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=157

& XILINX. Design Optimization

= Performance - matrixmul &3 = B8

Current Module : matrixmul

|Oneratinn\(‘.nntrn| S... co
SIRow Col

exitcond flatt...
indvar flatten...
exitcond (icmp)

] mid2 (select)

5 (+)

mid2 (select)
addr (-)

addr2z (+)

load (read)

load (read)

12 tmp 7 (*)

13 P addri (+)

|
a load 1(read) T

(eRie-RLNRle RV, EFCRI OV SR

ol TR o BT R

15 p addr3(+)
16 b load 1(read)
17 | tmp 7 1(%*)
18 p addrl (+)

a load 2(read)
20 p addr9(+)
21 b load 2 (read)
22 | tmp 7 2(*)
23 tmpl (+)
24 | tmp 8 2(+)
25 node 74 (write)
26 j 1(+)

Performance | Resource

Figure 151: Matrixmul Pipeline Col Performance View

Another way to view this resource limitation is to use to the Resource pane.
9. Click the Resource Sharing tab.
10. Expand the memories to see the view shown in Figure 152.

In Figure 152 the 2-cycle read operations in state C1 overlap with those starting in state C2 and
so only a single cycle is visible: however, it is clear that this resource is used in multiple states.

In looking at this view, it is clear that even when the issue with port a is resolved, the same issue
occurs with port b: it also has to perform 3 reads.

High-Level Synthesis can only report one schedule error or warning at a time, because, as soon

as the first issue occurs, the actions to create an achievable schedule invalidates any other
infeasible schedules.

High-Level Synthesis www.xilinx.com 158

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=158

& XILINX. Design Optimization

=' Resource - matrixmul 2 =0

Current Module : matrixmul

|R99mlrt@\(‘.nnt’ml Stenl CO | C1 | c? | c3 |
1-4 ®I/0O Ports
5 - Memory Ports

6 b read read

7 a read read

8 a read

o} b read

10 res write
11-29 HEXpressions

Performance | Resource

Figure 152: Matrixmul Pipeline Col Resource Sharing View

High-Level Synthesis allows arrays to be partitioned, mapped together and re-shaped. These
techniques allow the access to array to be modified without changing the source code.

11. Return to the Synthesis perspective.

Step 5: Reshape the Arrays

1. Select the New Solution toolbar button or use the menu Project > New Solution to create
a new solution.

2. Click Finish and accept the default solution name solution4.

Because the loop index for the Product loop is k, both arrays should be partitioned along their
respective k dimension: the design needs to access more than two values of k in each clock
cycle.

For array a, this is dimension 2 because its access patternsis a[i][k]; for array b, this is
dimension 1 because its access patternis b[kK][]] -

Partitioning these arrays creates k arrays - in this case, k number ports. Alternatively, we can use
re-shape instead of partition allowing one wide array (port) to be created instead of k ports.

After this transformation, the data in the block RAM outside this block must be reshaped in an
identical manner: if this process is not done by HLS, the data must be arranged as:

e Forarray a: i elements, each of width data_word_size times k.

e Forarray b: j elements, each of width data_word_size times k.

Open the C source code matrixmul .cpp to make it visible in the Information pane.
4. Inthe Directives tab
a. Select variablea.

b. Right-click and select Insert Directive.

High-Level Synthesis www.xilinx.com 159

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=159

& XILINX.

Design Optimization

c. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select ARRAY_RESHAPE.

d. Set the dimension to 2.
e. Click OK.

5. Repeat this process for variable b.

The Directive pane should show the following optimization directives (the new directive is
highlighted).

8% Qutline | 4 Directive &3 =5

2 matrixmul
@ a
% HLS ARRAY_RESHAPE reshape variable=a complete dim=2
@b
% HLS ARRAY_RESHAPE reshape variable=b complete dim=1
@ res
% Row
7 Col
% HLS PIPELINE
% Product

Figure 153: Array Reshape Directive

6. Click the Run C Synthesize toolbar button to synthesize the design to RTL.

The synthesis report shows the top-level loop Row_Col is now processing data at 1 sample per
clock period (Figure 154).

High-Level Synthesis www.xilinx.com 160

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=160

& XILINX.

2 matrixmul_csynth.rpt i3

EPerfnrmance Estimates

- Timing (ns)
= Summary
Clock Target Estimated Uncertainty
default 13.33 1113 1.67
- Latency (clock cycles)
= Summary
Latency Interval
min max min max Type
12 12 13 13 none
- Detail
+ Instance
- Loop
Latency
Loop Mame min max Iteration Latency
- Row_Caol 10 10 3

Initiation Interval
achieved target Trip Count
1 1 9

Figure 154: Optimized Loop Processing report

e The top-level module takes 12 clock cycles to complete.

e The Row_Col loop outputs a sample after 3 cycles (iteration latency).

e Itthenreads 1 sample every cycle (Initiation Interval).

e After 9 iterations/samples (Trip count) it completes all samples.

e 3+9 =12 clock cycles

Design Optimization

m

Pipelined

yes

The function can then complete and return to start to process the next set of data.

Now, change the block RAM interfaces to FIFO interfaces to allow for streaming data.

Step 6: Apply FIFO Interfaces

> W

In the Directives tab

a. Select variablea.

b. Right-click and select Insert Directive.

High-Level Synthesis

Select the New Solution toolbar button to create a new solution.

Click Finish and accept the default solution name, solution5.

www.Xilinx.com

Open the C source code matrixmul .cpp to makeit visible in the Information pane.

161

UG871 (v2013.3) November 8,2013

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=161

& XILINX. Design Optimization

5.

c. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select INTERFACE.

d. Click the mode drop-down menu to select ap_fifo.
e. Click OK.

Repeat this process for variable b and variable res..

The Directive pane displays the following optimization directives. (The new directives are
highlighted).

6.

2= Outline |24 Directive &3 =g

4 @ matrixmul
2 a
9% HLS ARRAY_RESHAPE reshape variable=a complete dim=2
% HLS INTERFACE ap_fifo port=a
@b
% HLS INTERFACE ap_fifo port=b
9% HLS ARRAY_RESHAPE reshape variable=b complete dim=1
@ res
% HLS INTERFACE ap_fifo port=res
4 ¥ Row
% Col

Figure 155: Matrixmul FIFO Directives

Click the Run C Synthesize toolbar button to synthesizes the design to RTL.

Figure 156 shows the Console display after synthesis runs.

El Console i3 . €] Errors| & Warnings =
Vivado HLS Console

@I
@I
@I
@I
@I
@I
@I
@I
@I
@I
@E
@I

o [

[HLS-1@] Opening project 'C:/Vivado HLS Tutorial/Design_Optimization/labl/matrixmul_prj'. -
[HLS-1@] Adding design file 'matrixmul.cpp’ to the project.

[HLS-1@] Adding test bench file 'matrixmul test.cpp’ to the project.

[HLS-1@] Opening solution 'C:/Vivado HLS Tutorial/Design_Optimization/labl/matrixmul prj/solution5’
[SYN-201] Setting up clock with a period of 13.3333ns.

[HLS-1@] Setting target device to 'xc7k16@tfbg484-1'

[HLS-10] Importing test bench file 'matrixmul test.cpp’ ...

[HLS-1@] Analyzing design file ‘matrixmul.cpp’ ...

[HLS-18] Validating synthesis directives ...

[HLS-18] Checking synthesizability ...

[SYNCHK-91] Port 'res' (matrixmul.cpp:51) of function 'matrixmul’ cannot be set to a FIFO as it has _
[SYNCHK-18] 1 error(s), © warning(s).| =

(1L} 4

Figure 156: FIFO Synthesis Warning

From the code shown in Figure 157, array res performs writes in the following sequence
(MAT_B_COLS = MAT_B_ROWS = 3):

High-Level Synthesis www.xilinx.com 162

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=162

& XILINX. Design Optimization

e Write to [0][0] on line57.

e Then awrite to [0][0] on line 60.

e Then awrite to [0][0] on line 60.

e Then awrite to [0][0] on line 60.

e Write to [0][1] on line 57 (after index J increments).
e Then awrite to [0][1] on line 60.

o FEtc

Four consecutive writes to address [0][0] does not constitute a streaming access pattern; this is
random access.

l¢| matrixmul.cpp &2 =8
{ F
// Iterate over the rows of the A matrix
Row: for(int i = @; i < MAT_A ROWS; i++) {
// Iterate over the columns of the B matrix
Col: for(int j = @; j < MAT_B COLS; j++) {
res[i][]] = @;
// Do the inner product of a row of A and col of B
Product: for(int k = 8; k < MAT B ROWS; k++) {
res[1][j] += a[i][k] * b[k][]i];
¥

4 I »

Figure 157: Matrixmul Code

Examining the code in Figure 157 reveals that there are similar issues reading arrays a and b. It is
impossible to use a FIFO interface for data access with the code as written. To use a FIFO
interface, the optimization directives available in Vivado High-Level Synthesis are inadequate

because the code currently enforces a certain order of reads and writes. Further optimization
requires a re-write of the code, which you accomplish in Lab 2.

Before modifying the code, however, it is worth pipelining the function instead of the loops to
contrast the difference in the two approaches.

Step 7: Pipeline the Function

1. Select the New Solution toolbar button to create a new solution.

ﬁ IMPORTANT: In this step, copy the directives from solution4 as this solution does not
have FIFO interfaces specified.

High-Level Synthesis www.xilinx.com 163

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=163

& XILINX. Design Optimization

2. Select solution4 from both the drop down menus in the Options section. The Solution
Wizard appears as shown in Figure 158.

-

+ | Solution Wizard o || = 5]

Solution Configuration

Create Vivado HLS solution for selected technology

Solution Name: solutiong

Clock
Period: 75MHz Uncertainty:

Part Selection

Part: Xc7k160tfbgd84-1 D
Options

Copy existing directives from solution: solutiond -

Copy existing custom constraints from solution: solutiond -

Finish l l Cancel

Figure 158: New Solution Based on Solution4 Directives

3. Click Finish and accept the default solution name, solution®6.
4. Open the Csource code matrixmul .cpp to make it visible in the Information pane.
5. Inthe Directives tab:
a. Select the pipeline directive on loop Col.
b. Right-click and select Remove Directive.
Select the top-level function matrixmul.

d. Right-click and select Insert Directive.

High-Level Synthesis www.xilinx.com 164

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=164

& XILINX. Design Optimization

e. Inthe Directives Editor dialog box activate the Directives drop-down menu at the top
and select PIPELINE.

f. Click OK.
The Directives tab should appear as Figure 159.

B8 Outline [Directive i3 =5

a4 @ matrixmul
% HLS PIPELINE
J a
% HLS ARRAY_RESHAPE reshape variable=a complete dim=2
b
% HLS ARRAY_RESHAPE reshape variable=b complete dim=1
@ res
4% Row
% Col

Figure 159: Directives for Solution6

6. Click the Run C Synthesize toolbar button to synthesize the design to RTL.
7. Click the Compare Reports toolbar button.

a. Add solution4.

b. Add solution6.

c. Click OK.

The comparison of solutions 4 and 6 is shown in Figure 160.

High-Level Synthesis www.xilinx.com 165

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=165

& XILINX. Design Optimization

£7 compare reports i3 =8

Performance Estimates

= Timing (ns)
Clock solution6 | solutiond
default Target 1333 1333
Estimated 11.13 11.13

-1 Latency (clock cycles)

solutiond solutiond

Latency min 6 12
max 6 12

Interval min 5 13 =
max 5 13

Utilization Estimates

solutiond solutiond

BRAM_18K 0O 0
DSP48E 27 3
FF 517 55
LUT 44 37

Figure 160: Loop versus Function Pipelining

The design now completes in fewer clocks and can start a new transaction every 5 clock cycles.

However, the area and resources have increased substantially because all the loops in the design
were unrolled.

@I [XFORM-502] Unrolling all loops for pipelining in function 'matrixmul’
(matrixmul.cpp:51).

@I [XFORM-501] Unrolling loop 'Row' (matrixmul.cpp:54) in function 'matrixmul’
completely.

@I [XFORM-501] Unrolling loop 'Col' (matrixmul.cpp:56) in function 'matrixmul’
completely.

@I [XFORM-501] Unrolling loop 'Product' (matrixmul.cpp:59) in function
'matrixmul’ completely.

Pipelining loops allows the loops to remain rolled, thus providing a good means of controlling
the area. When pipelining a function, all loops contained in the function are unrolled, which is a
requirement for pipelining. The pipelined function design can process a new set of 9 samples
every 5 clock cycles. This exceeds the requirement of 1 sample per second because the default
behavior of High-Level Synthesis is to produce a design with the highest performance.

The pipelined function results in the best performance. However, if it exceeds the required
performance, it might take multiple additional directives to slow the design down. Pipelining
loops gives you an easy way to control resources, with the option of partially unrolling the
design to meet performance.

High-Level Synthesis www.xilinx.com 166

UG871 (v2013.3) November 8,2013 l SendFeedbackI

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=166

& XILINX. Design Optimization

Lab 2: C Code Optimized for 1/O Accesses

In Lab 1, you were unable to use streaming interfaces. The nature of the C code, which specified
multiple accesses to the same addresses, prevented streaming interfaces being applied.

e Ina streaming interface, the values must be accessed in sequential order.

e Inthe code, the accesses were also port accesses, which High-Level Synthesis is unable to
move around and optimize. The C code specified writing the value zero to port res at the
start of every product loop. This may be part of the intended behavior. HLS cannot simply
decide to change the specification of the algorithm.

The code intuitively captured the behavior of a matrix multiplication, but it prevented a required
behavior in the hardware: streaming accesses.

This lab exercise uses an updated version of the C code you worked with in Lab 1. The following
explains how the C code was updated.

Figure 161 shows the 1/O access pattern for the code in Lab 1. Out of necessity the address
values are shown is a small font.

As variables i, j and k iterate from 0 to 3, the lower part of Figure 161 shows the addresses
generated to read a, b and write to res. In addition, at the start of each Product loop, res is set to
the value zero.

Row i

g s [| e —
(O T e g [g e ——m—

Product k mm___mmm_
a l:mm-u.mnnn-_mma-a

: EEemmEE

Figure 161: Lab 1 Matrix Multiplier Address Accesses

To have a hardware design with sequential streaming accesses, the ports accesses can only be
those shown highlighted in red. For the read ports, the data must be cached internally to ensure

the design does not have to re-read the port. For the write port res, the data must be saved into
a temporary variable and only written to the port in the cycles shown in red.

The C code in this lab reflects this behavior.

Step 1: Create and Open the Project

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 162,

2. Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl.

High-Level Synthesis www.xilinx.com 167

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=167

& XILINX. Design Optimization

[N Vivado HLS 2013.1 Command Prompt = EoR =™
@I [HLS-18] Running 'C ilinx/Vivado_HLS/2013.1/Win_x86/bin/vivado_hls_bin.exe’
for user ‘duncanm’ on host ‘xsjduncanm-w7' (Windows NT_intel version
6.1) on Sun Mar 10 12:44:08 -0700 2013
in directory 'C:/Uivado_HLS_Tutorial/Design_Optimization/labl’
@I [HLS$-18] Bringing up Uivado HLS GUI

C:\Vivado_HLS_Tutorial\Design_Optimization\labl>ed ..

C:\Vivado_HLS_Tutorial\Design_Optimization>cd lab2

C:\Wivado_HLS_Tutorial\Design_Optimization\lah2>vivado_hls -f run_hls.tcl

Figure 162: Setup for Interface Synthesis Lab 2

3. Open the Vivado HLS GUI project by typing vivado_hls —p matrixmul_prj.

4. Open the Source folder in the explorer pane and double-click matrixmul.cpp to open the
code as shown in Figure 163.

High-Level Synthesis www.xilinx.com 168

UG871 (v 2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=168

& XILINX. Design Optimization

3 #pragma HLS ARRAY_RESHAPE variable=b complete dim=1
4 #pragma HLS ARRAY RESHAPE variable=a complete dim=2
5 #pragma HLS INTERFACE ap fifo port=a

o #pragma HLS INTERFACE ap_fifo port=b

7 #pragma HLS INTERFACE ap_fifo port=res

8 mat_a t a row[MAT_ A ROWS];

9 mat b t b _copy[MAT B _ROWS][MAT B COLS];

@ int tmp = 9;

2 J/ Iterate over the rowa of the A matrix

3 PRow: for(int i = 8; i < MAT_A ROWS; i++) {

4 // Iterate over the columns of the B matrix

5 Col: for(int j = 8; j < MAT B _COLS; j++) {

o #pragma HLS PIPELINE

7 // Do the inner product of a row of A and col of B

8 tmp=0;

9 J// Cache each row (so it's only read once per function)
e if (j == @)

Cache Row: for(int k = 8; k < MAT_A ROWS; k++)
a row[k] = a[i][k];

m

// Cache all cols (so they are only read once per function)
if (1 == @)
Cache Col: for(int k = 8; k < MAT B _ROWS; k++)
b_copy[k][i] = b[k][3];

Product: for(int k = 8; k < MAT B ROWS; k++) {
tmp += a_row[k] * b_copy[k][j]; 7
1 r

N Y S R S

Y

Figure 163: C Code with updated IO accesses

Review the code and confirm the following:

e The directives from Lab 1, including the FIFO interfaces, are specified in the code as
pragmas.

e For-loops have been added to cache the rol and column reads.

e A temporary variable is used for the accumulation and port res is only written to when the
final result is computed for each value.

e Because the for-loops to cache the row and column would require multiple cycles to
perform the reads, the pipeline directive has been applied to the Col for-loop, ensuring
these cache for-loops are automatically unrolled.

Synthesize the design and verify the RTL using co-simulation.
5. Click the Run C Synthesize toolbar button to synthesize the design to RTL.

6. When synthesis completes, use the Run C/RTL Cosimulation toolbar button to launch the
Cosimulation Dialog box.

High-Level Synthesis www.xilinx.com 169

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=169

& XILINX. Design Optimization

7. Click OK to start RTL verification.

The design has been now been fully synthesized to read one sample every clock cycle using
streaming FIFO interfaces.

Conclusion

In this tutorial, you:

e Learned how to analyze pipelined loops and understand exactly which limitations prevent
optimizations targets from being achieved.

e The advantages and disadvantages of function versus loop pipelining.

e How unintended dependencies in the code can prevent hardware design goals from being
realized and how they can be overcome by modifications to the source code.

High-Level Synthesis www.xilinx.com 170

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=170

& XILINX.

Chapter 8 RTL Verification

Overview

The High Level Synthesis tool automates the process of RTL verification and allows you to use
RTL verification to generate trace files that show the activity of the waveforms in the RTL design.
You can use these waveforms to analyze and understand the RTL output. This tutorial covers all
aspects of the RTL verification process.

To perform RTL verification, you use both the RTL output from High-Level Synthesis (Verilog,
VHDL or SystemC) and the C test bench. RTL verification is often called “cosimulation” or "C/RTL
cosimulation”; because both C and RTL are used in the verification.

This tutorial consists of three lab exercises.
Lab1l

Perform RTL verification steps and understand the importance of the C test bench in verifying
the RTL.

Lab2
Create RTL trace files and analyze them using the Vivado Design Suite.
Lab3

Create RTL trace files and analyze them using a third-party RTL simulator. This lab requires a
license for Mentor Graphics ModelSim simulator. (You can use an alternative, third-party
simulator with minor modifications to the steps).

Tutorial Design Description

You can download the tutorial design file from the Xilinx website. Refer to the information in

High-Level Synthesis www.xilinx.com 171

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=171

& XILINX. RTL Verification

Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\RTL_Verification.

The sample design used in the lab exercise is a DUC (digital up converter) function. The purpose
of this lab is to demonstrate and explain the features of RTL verification. There are no design
goals for these lab exercises.

Lab 1: RTL Verification and the C test bench

This exercise explains the basic operations for RTL verification and highlights the importance of
the C test bench.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial

ﬁ If the tutorial data directory is unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create and Open the Project
1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt (Figure 164).

b. On Linux, open a new shell.

Bl Vivado 2013.3 Tcl Shell
g Vivado 2013.3
Accessories
SDK
System Generator
Vivado HLS
Bl Vivado HLS 2013.3 Command Promp
"] vivado HLS 20133

Figure 164: Vivado HLS Command Prompt

2. Using the command prompt window (Figure 165), change directory to the RTL Verification
tutorial, labl.

3. Execute the Tcl script to setup the Vivado HLS project, using the command
vivado_hls —f run_hls.tcl, as shown in Figure 165.

High-Level Synthesis www.xilinx.com 172

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=172

& XILINX. RTL Verification

@ Vivado HLS 2013.2 Command Prompt = EoR <™

C:\Uivado_HLS_Tutorial>cd RTL_Uerification

C:\Vivado_HLS_Tutorial\RTL_Verification>cd labl

4 |1

C:\Uivado_HLS_Tutorial\RTL_Uerification\labl>vivado_hls -f run_hls.tcl

Figure 165: Setup the RTL Verification Tutorial Project

4. When Vivado HLS completes, open the project in the Vivado HLS GUI using the command
vivado_hls —p dct_prj, as shown in Figure 166.

[Vivado HLS 2013.1 Command Prompt o <

in directory 'C:/Uivado_HLS_Tutorial/RTL_Uerification/labl/duc_prj/sig

olutionl/csim/build”

BRI [APCC-3] Tmp directory is apcc_db

BI [APCC-1] APCC is done.

@I [LIC-101] Checked in feature [UIUADO_HLS]
Generating csim.exe

xx DUC hardware test PASSED ' oox

BRI [SIM-1] CSim done with 8 errors.
@I [LIC-101] Checked in feature [UIUADO_HLS]

C:\Uivado_HLS_Tutorial\RTL_Uerification\labl>vivado_hls - _prij -

Figure 166: Open RTL Verification Project for Lab 1

Step 2: Perform RTL Verification
1. Click the Run C Synthesize toolbar button to synthesize the design to RTL.

2. When synthesis completes, use the Run C/RTL Cosimulation toolbar button (Figure 167) to
launch the Cosimulation Dialog box.

File Edit Project Solution Window Help

x| = 8, S8 % & > v

Figure 167: Run C/RTL Cosimulation Toolbar button

The Cosimulation Dialog box shown in Figure 168 opens.

High-Level Synthesis www.xilinx.com 173

UG871 (v 2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=173

& XILINX.

’ ECo-simuIation Dialog

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

lAuto h I

RTL Selection
SystemC [Verilog

Options
[Setup Only
"] Dump Trace

["] Optimizing Compile

Input Arguments

|| Do not show this dialog box again.

[]vHDL

[OK

|

Cancel

Figure 168: Cosimulation Dialog Box

RTL Verification

The drop-down menu allows you to select the RTL simulator for HDL simulation. For this
exercise, you use the SystemC RTL for cosimulation. No HDL simulator is required; it can be left

in the default state or changed. It makes no difference in this first lab.

The default RTL Selection is SystemC, and, in this exercise, you use the SystemC RTL for
simulation. Because this can be compiled with the built-in C compiler, you do not need an HDL

simulator.

3. Click OK to start RTL verification.

When RTL Verification completes, the simulation report opens automatically (Figure 169). The
report indicates if the simulation passed or failed. In addition, the report indicates the measured

latency and interval.

High-Level Synthesis

www.Xilinx.com

UG871 (v2013.3) November 8,2013

174

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=174

& XILINX. RTL Verification

=l duc_cosim.rpt =8

Cosimulation Report for ‘duc’

Result
Latency Interval =
RTL Status min avg max min avg max
VHDL NA NA NA NA NA NA NA
Verilog NA NA NA NA NA NA NA

SystemC Pass 30 3 38 31 32 39

Figure 169: Cosimulation Report

RTL simulation completes in three steps. To better understand how the RTL verification process

is performed, scroll up in the console window to confirm that the messages described below
were issued.

First, the C test bench is executed to generate input stimuli for the RTL design.
@1 [SIM-14] Instrumenting C test bench ...

< C simulation executes to generate input stimuli >

At the end of this phase, the simulation shows any messages generated by the C test bench. The
output from the C function is not used in the C test bench at this stage, but any messages
output by the test bench can be seen in the console.

@1 [SIM-302] Generating test vectors ...
*** DUC hardware test PASSED 1 ***

An RTL test bench with newly generated input stimuli is created and the RTL simulation is then
performed.

@1 [SIM-333] Generating C post check test bench ...
@1 [SIM-12] Generating RTL test bench ...

@i-[SIM—ll] Starting SystemC simulation ...

Finally, the output from the RTL simulation is re-applied to the C test bench to check the results.
Once again, you can see any message output by the C test bench in the console. Finally, RTL
verification issues message SIM-1000 if the RTL verification passed.

SystemC: simulation stopped by user.
@1 [SIM-316] Starting C post checking ...

*** DUC hardware test PASSED ! ***

@1 [SIM-1000] *** C/RTL co-simulation finished: PASS ***

High-Level Synthesis www.xilinx.com 175

UG871 (v2013.3) November 8,2013 l SendFeedbackI

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=175

& XILINX. RTL Verification

To fully understand why the C test bench should check the results and how message SIM-1000
is generated, you will modify the C test bench.

Step 3: Modify the C test bench
1. Expand the Test Bench folder in the Explorer pane (Figure 170).

2. Double-click dut_test.c toopen the C test bench in the Information pane.

[t5 Explorer &2 e = O[[£) duc test.ec &2 =8
. o f* Check The result */
=d &
.uc_prj 61 dint retl = system("diff --brief duc_i.dat golden/duc_i.d:
P Includes 62 int ret2 = system("diff --brief duc_qg.dat golden/duc_q.d:
£ Source 63
= Test Bench 64 if (retl | ret2) {
[¢ duc_test.c 65 printf("\n *** DUC hardware test FAILED ! *** \n\n").
= golden 66 } else {
= solution1 67 printf("\n *** DUC hardware test PASSED ! *** \n\n"}),
constraints ?2 b
i 69
Bc_srlm 76 return ((retl | ret2) ? 1 : 8); i
= sim 71 //return 1; E‘
= syn 72} -
? w

i P |

1 [P

~

Figure 170: RTL Test bench

3. Scroll to the end of the file to see the code shown in Figure 171.

4. Edit the return statement to match Figure 171 and ensure the test bench always returns the

value 1.
l¢l *duc_test.c 2 =8
k /* Check the result */ .l
int retl = system("diff --brief duc_i.dat golden/duc_i.d:

int ret2 = system("diff --brief duc_g.dat golden/duc_g.d:
if (retl | ret2) {

printf("\n *** DUC hardware test FAILED ! ***% ‘\n\n")
} else {

printf("\n *** DUC hardware test PASSED ! **% \n\n")

}
//return ((retl | ret2) ? 1 : 0); 1
Ll return 1; =
} L
< | 1 | r
Figure 171: Modified RTL Test bench

5. Save thefile.
High-Level Synthesis www.xilinx.com 176

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=176

& XILINX. RTL Verification

6. Click the Run C Synthesize toolbar button to synthesize the design to RTL.

7. Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog box.

8. Leave the Cosimulation options at their default value and click OK to execute the RTL
cosimulation.

When RTL cosimulation completes, the cosimulation report opens and says the verification has
failed (Figure 172).

2l duc_cosim.rpt i3 =HEN" =06

An outline is

Cosimulation Report not available

Result
RTL Status Latency Interval
min avg max min avg max
VHDL MNA MNA NA NA NA NA NA
Verilog NA NA NA NA NA NA NA

SystemC Faill NA NA NA NA NA NA

E Console 2 ~_@] Errors| & Warnings x b =~ O
Vivado HLS Console

T M el e Y i |

Generating cosim.tv.exe
@I [SIM-302] Generating test vectors ...

%% DUC hardware test PASSED | *

@E [SIM-303] C TB simulation failed, nonzero return value '1°.
@E [SIM-320] Generating test vectors failed.

@E [SIM-4] *** C/RTL co-simulation finished: FAIL **#*

@I [SIM-335] Co-sim total time used: 34 seconds.

@I [LIC-101] Checked in feature [VIVADO HLS]

1 [N

Figure 172: Cosimulation Report Failure

In Figure 172, you can see from the message printed to the console (DUC hardware test

PASSED) that the results are correct, however, the verification report says the RTL verification
failed.

If required, you can confirm the results are correct. To do this, compare the output files created
by the RTL simulation with the golden results. The RTL simulation is executed in the simulation

High-Level Synthesis www.xilinx.com 177

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=177

& XILINX. RTL Verification

directory wrapc, which is inside the solution directory. Figure 173 shows the solution directory,
with the output files highlighted.

{5 Explorer &3 v = B
» Y Includes -
> = Source

: U= Test Bench
4 = solution1
4 % constraints
W directives.tcl
W scriptitcl
= csim
4 [= sim
> = autowrap
» = report
=
4 [= wrapc
le] AESL_pka.h
L] apatb_duc.cpp
l¢ apatb_duch
= apcclog
[cosim.tv.exe
cosim.tv.mk
L] dds.c_pre.c.tb.c
duc_ldat
duc_g.dat
L] duc_test.c_pre.ctb.c
duc.autotvin.dat
duc.autotvout.dat
duc.c_pre.ctb.c
L] imfl.c_pre.c.tb.c

m

=2

=2

imf2.c_pre.cib.c

Figure 173: Cosimulation Output Files

RTL Cosimulation only reports a successful verification when the test bench returns a value of 0
(zero). Modifying the test bench to return a non-zero value ensures RTL verification (and C
simulation if it was performed) would always report a failure.

To ensure that the RTL results are automatically verified: the C test bench must always check the
output from the C function to be synthesized and return a O (zero) if the results are correct OR
return any other value if they are not correct.

When RTL Verification is performed, the same testing occurs in the test bench, and the output
from the RTL block is automatically checked. This is why it is important for the C test bench to
check the results and return a zero value only if they are correct (or return a non-zero value if

they are incorrect).

High-Level Synthesis www.xilinx.com 178

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=178

& XILINX. RTL Verification

9. Exit the Vivado HLS GUI and return to the command prompt.

Lab 2: Viewing Trace Files in Vivado

This exercise explains how to generate RTL trace files and how to view them using the Vivado
Design Suite tools.

Step 1: Create an RTL Trace File using Xsim

1. From the Vivado HLS command prompt you used in Lab 1, change to the lab2 directory as
shown in Figure 174.

2. Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl

[Vivado HLS 2013.1 Command Prompt = iR

@I [HLS-10] Running °C:/Xilinx/Uivade_HLS/2013.1/Win_x86/bin/vivado_hls_bin.exe’

for user ‘duncanm’ on host ‘xsjduncanm-w7' (Windows NT_intel version
6.1) on lWed Mar 06 12:12:36 -0800 2013
in directory 'C:/Uivado_HLS_Tutorial/RTL_Verification/labl’

RI [HLS$-18] Bringing up Uivado HLS GUI ...
C:\Uivado_HLS_ Tutorial\RTL_Verification\labil>cd ..

C:\Wivado_HLS_Tutorial\RTL_Uerification>cd lab2

C:\Wivado_HLS_Tutorial\RTL_Uerification\lab2Z>vivado_hls -f run_hls.tcl

Figure 174: Setup for RTL Verification Lab 2

Open the Vivado HLS GUI project by typing vivado_hls —p duc_prj.
4. Click the Run C Synthesize toolbar button to synthesize the design to RTL.
5. Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog box.

This exercise could use SystemC as in Lab 1, however, the trace file produced by a SystemC
simulation is a VCD file. In this case, you produce a trace file you can open using the Vivado
Simulator (Xsim).

6. Inthe Co-simulation Dialog window:
a. Select Xsim from the Verilog/VHDL Simulator Selector (Figure 175).
b. De-select SystemC.
Select Verilog.
d. Select the Dump Trace option, to have the options shown in Figure 175.

e. Click OK to execute RTL cosimulation.

High-Level Synthesis www.xilinx.com 179

UG871 (v2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=179

& XILINX.

RTL Verification

+ | Co-simulation Dialog =

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

| Xsim -

RTL Selection

[systemC [¥] Verilog [C]vHDL
Options

[Setup Only

Dump Trace

[] Optimizing Compile

Input Arguments

["] Do not show this dialog box again.

[OK l [Cancel

Figure 175: Cosimulation Dialog Box For Lab 2

When RTL verification completes, the cosimulation report automatically opens. The report shows
that the Verilog simulation has passed (and the measured latency and interval). In addition,
because the Dump Trace option was used with the Xsim simulator option and because Verilog

was selected, two traces files are now present in the Verilog simulation directory. These are
shown highlighted in Figure 176.

High-Level Synthesis www.xilinx.com 180

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=180

& XILINX.

RTL Verification
+ |Vivado HLS - duc_prj (C:\Vivado HLS Tutorial\RTL Verification\lab2\duc_prj) [T =5
File Edit Project Solution Window Help
3] ==} B Hé% e e g drie|®
%5 Debug -?cf Analysis
[Explorer 22 «* = O/ /2] due_cosim.rpt = O|(gzoutl 2 _MDire|] O
= Test Bench o . - . . -
¥= solution Cosimulation Report for "duc An outline is not available.
constraints Result
= FSim Latency Interval
= ||_'an RTL Status min avg max min avg max
& sim VHDL NA NA NA NA NA NA NA
= autowrap -
Verilog Pass 30 31 38 31 32 39
& report
=ty SystemC NA NA NA NA NA NA MNA
= verilog Export the report(.ntml) using the Export Wizard
4 check_sim.tcl |
duc_c_2_rom.dat 1
il duc_c_2v
duc_c_3_rom.dat
mi duc_c 3w
w duc_mul_17s 185 32 4w
mi duc_mul_18s_17ns_35_4v
s duc_mul_18s_18s_36_4v
wi duc_mul 19s 165 32 3w El Console £3 . @] Errors| & Warnings| % Man Page xRl =~ 0O
duc_shift_reg_p_1_ram.dat Vivado HLS Console B
i duc_shift_reg_p_lw ## save_wave_config duc.wcfg o
duc_shift_reg_p_2_ram.dat #ﬁ.m.m all] . .
wit duc_shift_reg_p_2v if;m?? called at time : 294527265 ps : File "duc.autotb.v" Line 381
qui
i ducautotb.y INFO: [Common 17-206] Exiting xsim at Thu Oct 17 13:32:54 2013...
5 due.performance.result.transac @T [STM-316] Starting C post checking ...
duc.prj
duc.resultlatrb *¥% DUC hardware test PASSED | **x
@ ductcl
it ducy @I [SIM-1888] *** C/RTL co-simulation finished: PASS ***
ducwefg @I [LIC-101] Checked in feature [VIVADO_HLS]
duc.wdb
imf2_c_1_rom.dat
mi imf2_c_1v =
imf2_shift_reg_p_ram.dat R o
4 I 2 a4 1 2
Figure 176: Verilog Xsim Cosimulation Results
The next step is to view the trace files inside the Vivado Design Suite.
7. Exit the Vivado HLS GUI and return to the command prompt.
Step 2: View the RTL Trace File in Vivado
1. Launch the Vivado Design Suite (not Vivado HLS):
a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado 2013.3
b. On Linux, type vivado in the shell.
2. Inthe Vivado Tcl Console, enter the following commands, as shown in Figure 177. This
example assumes the top-level tutorial directory is C:\Vivado_HLS_Tutorial :
a. cd /Vivado_HLS_Tutorial/RTL_Verification/lab2/duc_prj/solutionl/sim/verilog
b. current_fileset
High-Level Synthesis www.xilinx.com 181

UG871 (v2013.3) November 8,2013

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=181

& XILINX.

RTL Verification
c. open_wave_database ducwdb
d. open_wave_config duc.wcfg
Tcl Console - 02 =
= cd /Vivado HLS Tutorial/RIL Verification/lab2/duc prj/scluticnl/sim/wverilcg -~
1_\._ current_fileaet
. sources_1
ﬁ' open_wave_database duc.wdb =
Eﬁ cpen wave_config C:/Users/duncanm/AppData/Roaming/Xilinx/Vivado/duc.wcig
b 2| 15 similation_1
Jopen_wave_config duc.wcig
_::luc:.wc.:'g S
4

b
|

2 Tel Console Messages | 4 Log

Figure 177: Opening the Trace File in Vivado

You can then view the waveforms in the waveform viewer. Figure 178 shows the zoomed

waveforms where the output data ports and their associated I/O protocol signals (output valid
signals) are shown highlighted.

Simulation Result - duc.wdb X
B duc.wcfg* x

& Objects

77, 40

— e I R B B M
o ; hl -*-.—-*--—-*--i-l—-

& op_roncy [T I T I I N IS T S IR 1|

= AESL_clk_counter[31:0] 20406

& Properties

.2, Scope

I ready_delay_la
1 done_delay.
I interface_done

Figure 178: Analyzing the RTL Trace File

3. Exit and close the Vivado GUI.

High-Level Synthesis www.xilinx.com 182

UG871 (v2013.3) November 8,2013 | Send Feedback |

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=182

& XILINX. RTL Verification

4. Type exit to close the Vivado Tcl command prompt.

Lab 3: Viewing Trace Files in ModelSim

This exercise explains how you can generate and view RTL trace files and using the Mentor
Graphics ModelSim RTL simulator. Other third-party simulators are supported, and similar
process can be used if another RTL simulator is selected.

CAUTIONI! This lab exercise requires that the executable for ModelSim is defined in the

& system search path and that the required license to perform HDL simulation is available

on the system.

Step 1: Create an RTL Trace File using ModelSim

AR

From the Vivado HLS command prompt you used in Lab 2, change to the lab3 directory.
Create a new Vivado HLS project by typing vivado_hls —f run_hls.tcl.

Open the Vivado HLS GUI project by typing vivado_hls —p duc_prj.

Click the Run C Synthesize toolbar button to synthesize the design to RTL.

Click the Run C/RTL Cosimulation toolbar button to launch the Cosimulation Dialog box.

This exercise uses the Mentor Graphics ModelSim RTL simulator. The path to the simulator
executable must be set in your system search path.

6. Inthe Co-simulation Dialog window:

a.
b.

C.

Select ModelSim from the Verilog/VHDL Simulator Selector.

Unselect SystemC.

Select VHDL.

Select the Dump Trace option, to have the options shown in Figure 179.

Click OK to execute RTL cosimulation.

High-Level Synthesis www.xilinx.com 183

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=183

& XILINX.

RTL Verification

’ ECo-simuIation Dialog @

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

Modelsim -|

RTL Selection

[SystemC [Verilog [¥] VHDL
Options

[Setup Only

Dump Trace

|| Optimizing Compile

Input Arguments

["] Do not show this dialog box again.

[OK l [Cancel

Figure 179: Cosimulation Dialog Box For Lab 3

When RTL verification completes, the cosimulation report automatically opens, showing the
VHDL simulation has passed (and the measured latency and interval). In addition, because the
Dump Trace option was used with the ModelSim simulator option and because VHDL was

selected, a trace file is now present in the VHDL simulation directory. The trace file is shown
highlighted in Figure 180.

High-Level Synthesis www.xilinx.com 184

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=184

& XILINX. RTL Verification

[Explorer &2 ¥ = B
4 2 duc_prj -
e Includes
= Source

= Test Bench
a4 Y= solution1
& constraints
= csim
4 = sim
= autowrap
= report
= tv
4 = vhdl
st AESL_sim_pkg.vhd
W check_sim.tcl
E compile_modelsim.sh

11

= cosim.modelsim.scr

s duc_c_l.whd

s duc_c.vhd

s duc_mul_175_18s_32 4.vhd

s duc_mul_18s_17ns_35_3.vhd

rrd duc_mul_18s 18s 36 3.vhd

sl duc_mul_19s_16s_32 3.vhd

s duc_shift_reg_p_lvhd

s duc_shift_reg_p.vhd

s duc.autotb.vhd

El duc.performance.result.transaction.xml
=l duc.resultlatrb

s ducvhd

= duc.wlf

sl imf2_c_2.vhd

st iImf2_shift_reg_p_2vhd -

Figure 180: VHDL ModelSim Trace File

The next stepis to view the trace files inside ModelSim.

7. Exit the Vivado HLS GUI and return to the command prompt.

Step 2: View the RTL Trace File in ModelSim
1. Launch the Mentor Graphics ModelSim RTL Simulator.

2. Click the menu File > Open.

3. Select Log Files as the file type (Figure 181).

4

Navigate to the VHDL simulation directory and select duc.wilf.

High-Level Synthesis www.xilinx.com 185

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=185

& XILINX.

RTL Verificati

on

5. Click OK.
4 Open File 5
@O-| « 0SDisk (C) » Vivado_HLS_Tutorial » RTL Verification b lab3 » duc_prj » solutionl » sim » vhdl » [42][Search vhet 2|

Organize ~ New folder
k% Name
I work
' ducwlf
Wl 'y
i
NE
¢
&
F

File name: ducwlf

Date modified Type Size
3/6/2013 4:52 PM File falder
3/6/2013 4:52 PM WLF File 3936 KB

Figure 181: ModelSim Open File WLF

~ [Log Files (1D -

I Open ‘VII Cancel

6. Add the signals to the trace window and adjust to see a view similar to Figure 182.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com

| Send Feedback I

].5

186

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=186

& XILINX. RTL Verification

ap_clk

ap_done
ap_idle

ap_ready
ap_rst
ap_start
¢_1_address0 1h]-10f-9 |a 3 o [0 11 12[]
c_1_cel
¢ 1 load reg 691
c_1_qo
¢_address0
c_cel
¢_load_reg_618
c_qo
ch
ch_1
ch_1_load_reg_...
ch_load_reg_607
cnt
din_i

;4 dout_i

P dout_i_ap_vld

b dout_q_ap_vid
freq
grp_fu_400_ce
grp_fu_400_p0
grp_fu_400_p1
arn fi_ 400 _n?

Cursor 1
q [] «]] JE

ap_cs_fem I N T OO O T T T

| 4 dout_q 552 146 0000 |2

ap_ns_fsm T T T T T T T T O T T T O T T T I T

Figure 182: Viewing the Trace File in ModelSim

7. Exit and close the ModelSim RTL simulator.

Conclusion

In this tutorial, you learned how to:

e Perform RTL verification on a design synthesized from C and the importance of the test

bench in this process.

e Create and open waveform trace files using the Vivado Design Suite.

e Create and open waveform trace files using a third-party HDL simulator (ModelSim) and

view the trace file created by RTL verification.

High-Level Synthesis www.xilinx.com

187

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=187

& XILINX.

Chapter 9 Using HLS IP in IP Integrator

Overview

You can package the RTL from High-Level Synthesis and use it inside IP Integrator. This tutorial
demonstrates how take HLSIP and use it in IP Integrator as part of a larger design.

This tutorial consists of a single lab exercise.
Labl

Complete the steps to generate two HLS blocks for the IP catalog and use them in a design with
Xilinx IP, an FFT. You validate and verify the final design using an RTL test bench.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. Refer to the information in

High-Level Synthesis www.xilinx.com 188

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=188

& XILINX. Using HLS IP in IP Integrator

Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory Vivado_HLS_Tutorial\
Using_IP_with_IPL

The design blocks in this tutorial process the data for a complex FFT.

e The Xilinx FFTIP block only operates on complex data. Although you can perform an FFT of

real data on a complex data set with all imaginary components set to zero, it can be done
more efficiently by pre-processing the data.

e The front-end HLS block in this lab applies a Hamming windowing function to the 1024 (N)
real data samples and sends even/odd pairs to an N/2-point XFFT as though they are
complex data.

e The back-end HLS block takes bit-reverse ordered data, puts it in natural order and applies
an O(N) transformation to FFT output to extract the spectral data for the N-point real data

set. Note, the first output pair packs the 0™ and 512" (purely real) spectral data point into
the real and imaginary parts, respectively.

e The designs are fully-pipelined, streaming designs for high throughput; intended for
continuous processing of data, but with throttling capability (stalls if input stalls).

e AXI4 Streaming interfaces are used to connect all blocks in IP Integrator (IPI).

Lab 1: Integrate HLS IP with a Xilinx IP Block

This lab exercise shows how generated two HLS IP blocks, combined them with a Xilinx IP FFT in
IP Integrator and verify the design in the Vivado Design Suite.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial

ﬁ If the tutorial data directory is unzipped to a different location, or on Linux systems,
adjust the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create Vivado HLS IP Blocks

Create two HLS blocks for the Vivado IP Catalog using the provide Tcl script. The script runs HLS

C-synthesis, RTL co-simulation and package the IP for the two HLS designs (hls_real2xfft and
hls_xfft2real).

1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt (Figure 183).

b. On Linux, open a new shell.

High-Level Synthesis www.xilinx.com 189

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=189

& XILINX. Using HLS IP in IP Integrator

Bl Vivado 2013.3 Tcl Shell
g Vivado 2013.3
Accessories
SDK
System Generator
Vivado HLS
Bl Vivado HLS 2013.3 Command Promp
"] vivado HLS 20133

Figure 183: Vivado HLS Command Prompt

2. Using the command prompt window, change the directory to Vivado_HLS_Tutorial\
3. Using_IP_with_IPI\lab1\hls_designs (Figure 184).
4. Type vivado_hls —f run_hls.tcl to create the HLSIP (Figure 184).

[Vivado HLS 2013.2 Command Prompt = Eol =™

C:\Vivado_HLS_Tutorial>cd Using_IP_with_IPI -

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI>cd labl

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI\labil>cd hls_designs

C:\Vivado_HLS_Tutorial\Using_IP_with_IPI\labl\hls_designs>vivado_hls -f run_hls.
tecl

1 (1M

Figure 184: Create the HLS Design for IPI

When the script completes, there are two Vivado HLS project directories, fe_vhls_prjand
be_vhls_prj, which contain the HLS IP, including the Vivado IP Catalog archives for use in Vivado
designs.

e The “frontend” IP archive is located at fe_vhls_prj/IPXACTExport/impl/ip/

e The "frontend” IP archive is located at be_vhls_prj/IPXACTExport/impl/ip/

The remainder of this tutorial exercise shows how the Vivado HLS IP blocks can be integrated
into a design (in IP Integrator) and verified.

Step 2: Create a Vivado Design Suite Project
1. Launch the Vivado Design Suite (not Vivado HLS):

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado 2013.3

b. On Linux, type vivado in the shell.

2. From the Welcome screen, click Create New Project (Figure 185 185).

High-Level Synthesis www.xilinx.com 190

UG871 (v2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=190

& XILINX. Using HLS IP in IP Integrator

¢ Vivado 20133 E\@

File Flow Tools Window Help Search commands

VIVADO™ XLINX

Getting Started Documentation

— Create New Project - Documentation and Tutorials
\ e

m

/" ¢ New Project Wizard will guide you through the process
% of selecting design sources and a target device for =
N a new project.

Invaluable for first time users or to try new features.

/ Open Project T User Guide

- v
Open one of the most recently used projects or . More detailed info on Vivado commands, dialogs,
any previously created project. : x and buttons.

Open Example Project Quick Take Videos

P
b
) . AN i View a series of short videos on various topics from
Open one of the tutorial projects. B ;
i design flows overview to recommended methodology.

= Tcl Console

Figure 185: Create a Vivado Project

3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to
the tutorial directory (Figure 186).

#.- Choose Project Location =
Recent: | (= C:/Vivado_HLS_Tutorial/Using_IP_with_IP/lab1 vy o=l ANEEXDZS

I HINC :\Vivado_HLS Tutorial\Using_IP_with_IPT\lab1

= | Vivado_HLS_Tutorial

| Arbitrary_Precision
| C_validation

| Design_aAnalysis

| Design_Optimization
| Interface_Synthesis
| Introduction

| RTL_Verification

| System_Generator
| Using_IP_with_IPI

| hils_designs -
[#- | verilog_tb O

»

| m

Figure 186: Path to the Vivado Design Suite Project

High-Level Synthesis www.xilinx.com 191

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=191

& XILINX. Using HLS IP in IP Integrator

5. Click Nextto move to the Project Type page of the wizard.
a. Select RTL Project.
b. Do not specify sources at this time (if not the default).

c. Click Next.

6. On the Default Part page, under Specify, click Boards and select the ZYNQ-7 ZC702
Evaluation Board, as shown in Figure 187.

#. New Project [
Default Part -
Choose a default Xilinx part or board for your project. This can be changed later. ﬁ,

Specify Filter

& Parts Board Vendor | All -
& Boards Library | All -
Mame | All -

Version | Latest

Reset All Filters

Search:

Board Board B.Uard Board Buarpl Part
Vendor Library Name Version

@ MicroZed Board em.avnet.com zyng microzed e %7z u

@ ZedBoard Zynq Evaluation and Development Kit em.avnet.com zyng zed d & %7z —

@ Artix-7 AC701 Evaluation Flatform xilinx.com artix7 ac701 1.0 & ucTe

@ Kintex-7 KC705 Evaluation Platform xilinx.com kintex7 kc705 1.1 @ xc7H =

@ virtex-7 VC707 Evaluation Platform xilinx.com virtex7 vc707 1.1 & X7y

@ virtex-7 VC709 Evaluation Platform xilinx.com virtex7 vc709 1.0 & XAy

¢ 2YNQ-7 ZC702 Evaluation Board plinccom Jzyng fzc702 J1.0 [xc7

] Jl‘YNO-? 7C706 Fualuation Roard wilinx.com Fvnn 7706 1.1 & w73

4] 3

[< Back ” Next = l Finish

Figure 187: Vivado Project Specification

7. Onthe New Project Summary Page, click Finish to complete the new project setup.

The Vivado workspace populates and appears as shown in Figure 188.

High-Level Synthesis www.xilinx.com 192

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=192

& XILINX.

Using HLS IP in IP Integrator

¢ praject_L - [Cuflinsftutorials/HLS IFIntegratar/labl/project_Lpraject_Lxpr] - Vivado 2013.1 ==
File Edit Flow Tools ‘indow Layout View Help Seaveh commands
PRI e DB B KT G S ek Layou X Ready
Flow Navigator « | | Project Manager - project_1 X
[=] Sources —Ow x T Project Summary X O x
o= et BIE = -
4 Project Manager NS ol = =3 {f§ Project Gettings Edt (2] (0 Messages £y
-5 Design Sources = X X
4% Project Settings (515 Constraits (1) Project name: project_1 Summary: Derrars
5 Add Sources £+ Simulation Sources (1) Product family: Zyng-7000 D L ariical warring
ﬂ IP Catalog e sim_L Project part: Z¥NQ-7 7C702 Evaluation Board (xc72020clq464-1) 0 warnings
Top module name: Not Cefined
4 IP Integrator
. Synthesis) Implementation %
& create Block Design ® s b 1mp
i Open Block Desian Status: = Ready Status: = Ready
Part: *e72020d3484-1 Part: %e720200l3484-1
4 simulation)
Strateqy: Yivado Synthests Defaults Strategy: tivado [mplementation Defaults
4 Simulation Settings
Incremental Compile: Hone
(i) Run Simulstion Hierarchy | Libraries | Compile Order
& Sources | Templates Sumemary gEoREE
4 RTL Analysis
» % Onen Elaborated Design Properties —gu=x @ DR violations x Timing 3
PN
4 Synthesis oRe . .
infarmatian is not available because it hasn't been n Timing information s nat awalable because it hasrt been run
5 Synthesis Settings
& Run Synthesis
uti 2 & Power %
> B Open Synthesized Design
4 Implementation Utilization informeation s not awailable because it hasrt been run Power information is not awaiable because it hasrt been run
5 Implementation Settings
[» Run Implementation
> B Open Implemented Design
4 Program and Debug
15 Bitstream Settings Design Runs [myE RS
¥ Generate Bitstream | hame Fart Constraints Strategy Status Frogress Start Eapsed WNS TS WH
Bl Open Hardiars Session Zi| == synth_t xc72020clg484-1 constrs_L Yivado Synthesis Defaults (vivado Synthesis 2013) Mot started 0%
" . = impl_t %e7z020clg484-1 constrs_L vivada Defaults (Vivado 2013) Mot started 0%
B Launch iMPACT =
L]
»
“
%
o
K i =
3 Tcl Console | & Messages | [Log | (2 Reports~ [Design Runs

Step 3: Add HLS IP toan IP

Figure 188: Vivado Project

Repository

1. Inthe Project Manager area of the Flow Navigator pane, click IP Catalog.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com

193

Send Feedback

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=193

& XILINX. Using HLS IP in IP Integrator

| File Edit Flow Tools Window Layout VYiew Help
a2 D e b X (D D Y& K| B @ | Soefaul

Flaws Mavigakar L Project Manager - projeck_1

™ Ol i
L N — Sources

QA= et BIE

4 Project Manager
T Design Sources
[+ Constraints (1)

% Project Setkings
Q"J'ﬂ’ add Sources = Simulation Sources (1)

£|: IP Catalog

4 TP Inteqgraktar
7 Creats Block Design
8 Cpen Block Design

Figure 189: Open the IP Catalog

2. TheIP Catalog appears in the main pane of the workspace. Click the IP Settings icon.

1048 2 | 2[5 55 Defauk Lavout | K| ®

Project Manager - project_1

Sources — O % T Project Summary X | F IP Catalog X
(M A pa 3 13 -
A== Oﬁ = | | search: |
- =
i Design Sources e -1
[H-4=) Canstraints (1) . W5 (BN
B+ Simulation Sources (1) = B[Automative & Industrial
Ll sim_1 & B[AR Infrastruckure
— |5 BaselP
D% 7 Basic Elements
\}, [Communication & MNetwarking
"_ 1 Debug & Yerification
D t-[= Digital Signal Processing
ﬁ ([Embedded Processing
--|.-—.' FPiaA Features and Design
E IP Settings
Settings for IP Catalog, IP Generation, and IP Packager
Hierarchy | Libraries | Compile Order B[Standard Bus Interfaces
o = [video & Image Processing
4% Sources | 7 Templates
Properties N I K
- 3,} N
Details

Figure 190: Open the IP Catalog Settings

3. IntheIP Settings dialog, click Add Repository.
4. Inthe IP Repositories dialog:

High-Level Synthesis www.xilinx.com 194

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=194

& XILINX.

a. Browse to the tutorial files set location.

b. Click the Create New Folder icon.

Enter “vivado_ip_repo” in the resulting dialog (Figure 191).

d. Click OK.

e. Click Selectto close the IP Repository window.

Using HLS IP in IP Integrator

-

¢ TP Repositories

Directory: | C:\Vivado_HLS_Tutorial\Using_IP_with_IPT\labl

Recent: | = C:/Vivado_HLS_Tutorial/Using_IP_with_IPI/lab1/viivado_ip_repo -

10T EemEXDE

3

%]

FTUYTanT FieEs [Xou]
ProgramData

SymCache

Titus

Users

Vivado_HLS
Vivado_HLS_Tutorial
--, Arbitrary_Precision
[| C_validation
Design_Analysis
Design_0Optimization
Interface_Synthesis
Introduction
RTL_Verification
Using_IP_with_IPI
--@Is_designs

-- | project_1

-- | project_2

-- | werilog_tb

--, Using_IP_with_SysGen

mEEFEEEE

Create New Folder

EX5

Enter the name of the new folder:

vivado_ip_repal

OK

H Cancel I

»

11

-

]

Select ” Cancel]

Figure 191: Create a New IP Repository

5. Back in theIP Setting dialog:

a. Click Add IP.

b. Inthe Select IP to Add to Repository dialog box, browse to the location of the HLS IP
labl/hls_designs/fe_vhls_prj/IPXACTExport/impl/ip/.

c. Select thexilinx_com_hls_hls_real2xfft_1 0.zip file (Figure 192).

d. Click OK.

High-Level Synthesis

www.Xilinx.com

UG871 (v2013.3) November 8,2013

195

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=195

& XILINX.

Using HLS IP in IP Integrator

4. Select IP To Add To Repository

Look in: :, ip ': TO= B LADORS B
| bd Recent Directories
R.\.‘;_;; | constraints | C:fVivado_HLS_Tutorial/Using_IP_with_IP/lab1/hls_designs... =
ecent
Ttems | doc File Preview
! I example File: xilinx_com_hls_hls_real?xfft 1 0.zip
L hdl Directory:
Desktop | misc C:/Vivado_HLS_Tutorial/Using_IP_with IPI/labl/hls_designs/fe_vhl
" L. subcore Created: Tuesday 10..-qs..- 1.3 10:03 AM
| B) Accessed: Tuesday 10/08/13 10:03 AM
My Loxgul Modified: Tuesday 10/08/13 10:03 AM

Documents & auxiliary.xmil
% componentxmil

::».-! =) xilinx_com_hls_hls_real2xfft_1_0.zip

Computer
“w

Network

==

Size: 41.2 KB
Type: Archive project file
Owner: XLNX'duncanm

File name: xilinx_com_hls_hls_real2xfft_1_0.zip

Files of type: | 1P Packages (.xml, zip)

r O
5

Figure 192: Add the HLS IP to the Repository

Click OK to exit the dialog box.

High-Level Synthesis

UG871 (v2013.3) November 8,2013

www.Xilinx.com

Follow the same procedure to add the 2nd HLSIP package to the repository:
xilinx_com_hls_hls xfft2real_1 0.zip.

The new HLSIP should now show up in the IP Setting dialog (Figure 193).

| Send Feedback l

196

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=196

& XILINX.

Using HLS IP in IP Integrator

ﬁ-_‘ Project Settings

==

2

Sirnulation

\4

Syrithesis

v

Implementation

4

1
oo

E
=

Bitstream

P

=
-

Repository Manager rGeneration rPackager

@ Add directories to the list of repositories. After hitting Apply wou will be able bo see the IP
within each repositary, You may then add additional 1P, I an IP is disabled then a tool-kip
will alert vou to the reason.

IP Repositaries

ftukorials/HLS_IPIntegratorflabl vivado_ip_repo (P

’ add Repository. ..] [@ Refresh all...

IP in Selected Repository
Hls_realZxfft Celine, comehls:hls_realZ:ff 100,80
Hls_sxfft2real (aline:, cornhls:hls_offtZreal:1.00.a)

’ 1% Add IP...] [@ Refresh Repositary. ..]

[0K][Cancel] Apply

A Vivado HLSIP category now appears in the IP Catalog and, if expanded, the HLSIP displays

(Figure 194).

High-Level Synthesis

UG871 (v 2013.3) November 8,2013

Figure 193: IP Repository with HLS IP

www.Xilinx.com

197

| Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=197

& XILINX. Using HLS IP in IP Integrator

%, Project Summary x| 2F IP Catalog 3
4| search: |
= 1
=2 pame a14 Skakus License
=5]
e -5 Automnobive & Industrial
ﬁ + ' Al Infrastructure
= + ! BaselP
=| [Basic Elements
3 + 1 Communication & Metworking
| B[Debug & Yerification
i + ' Digital Signal Processing
% + 1 Embedded Processing
+- = FPEA Features and Design
EI + ' Math Functions
+ ' Memories & Storage Elements
+ ' Standard Bus Interfaces
+ ' Wideo & Image Processing
= YIvADO HLS IP
ﬂ Hls_realzxfrft AxI4-Stream Pre-production Included
“AF His_xfftzreal AxI4-Stream Pre-production Included

Figure 194: IP Catalog with HLS IP

Step 4: Create a Block Design for RealFFT

1. Click Create Block Diagram under IP Integrator in the Flow Navigator.
a. Inthe resulting dialog box, name the design Real FFT.
b. Click OK.

High-Level Synthesis www.xilinx.com 198

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=198

& XILINX.

Using HLS IP in IP Integrator

g‘“‘_ project_1 - [Co¥ilinx/tutarials/HLS IPIntegratar/lablfproject_1fproject 1xpr] - Vivado 2013.1

O%j Add Sources

File Edit Flow Tools Window Lawout Wiew Help
3w X | & b ¥ # K T G [ESoefak Layout | K| ®
Flow Mavigator ks Project Manager - project_1
a T Sources I m T I Project Summary X | IF IP Catalog X
= =
AT = Wt R O search:
4 Project Manager —
- N) Design Sources o =1
@ Project Settings = Constraints (1) -~ Mame
=

(=14 Simulation Sources (1) 7 Automakive 8 Industrial

el sim_ Sk | B[ART Infrastructure
4F IP Catalog - it
o ! BaselP
-
= |- Basic Elements
< IP Integrator & » Communication & Networking
.ﬁ}" Create Block Design K “[2 Debug & Yerification
3 Cpen Black Design n » Digital Signal Processing
@ “[Embedded Processing
» FPiEA Features and Design
4 Simulati
muaten » Math Functions
@ Simulation Settings » Memories & Storage Elements
@ Run Simulation Hierarchy | Libraries | Compile Qrder “[Standard Bus Interfaces
8) |
o GG 4 SOUFCES . Templates 4. Create Block Design @
. £% Properties ‘
5% Open Elshorated Design Please specify name of block design
«+8
4 Synthesis
15 Synthesis Settings Design name: | RealFFT
@ Run Synthesis
> ¥ Open Synthesized Design
4 Implementation
4% Implementation Settings | |
[

Figure 195: Create Block Diagram

The upper-right pane now has a Diagram tab. Add a Xilinx FFTIP block to the design and

customize it.

2. Inthe Diagram tab cl

a. Inthe Search box

b. Press Enter.

High-Level Synthesis

UG871 (v2013.3) November 8,2013

ick the Add IP link in the “get started” message (Figure 196).

type “fourier™.

www.Xilinx.com

l Send Feedback I

199

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=199

& XILINX. Using HLS IP in IP Integrator

&= Diagram X

*[| & RealFFT

@ () This design is empty. To get started, Add IF from the catalog.
[S

X

]

'a Search: | O~ fourier] (3 matches)

1

IE MName

5 Discrete Fourier Transform

"x

%

g Select and press ENTER or drag and drop, ESC ...
@

&l

Figure 196: Add the Xilinx FFT IP

The Xilinx IP block FFT is now instantiated in the design, as shown in 197Figure 197.

JE—B Diagram X |
*[]| # RealFFT
o
o
&l
i
Cn) .

% '-r Xt 1 ﬁ
: M_AXIS_DATAds (B
N event_frame_started

i Ela s AXIS_DATA event_tlast_unexpected
] 45 AXIS_CONFIG event_tlast_missing
wlaclk event_status_channel_halt
event_data_in_channel_halt
event_data_out_channel_halt|

L Fast Fourier Transform -

Figure 197: Xilinx FFT IP

3. Double-click the new Fast Fourier Transform IP Symbol to open the Re-customize IP
dialog box.

High-Level Synthesis www.xilinx.com 200

UG871 (v2013.3) November 8,2013 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=200

& XILINX.

4. Onthe Configuration tab (Figure 198):
a. Change the Transform Length to 512.
b. Select Pipelined, Streaming I/O Architecture Choice.

Using HLS IP in IP Integrator

ﬁ Re-custormize IP
Fast Fourier Transform (9.0)

ﬁﬂ Documentation |) IP Location

IP Symbol | Implementation Det: 4 » B
[shaw disabled parts

Component Mame |RealFFT_xfft_1_0

Configuration | Implementation | Detailed Implementation

MNumber of Channels | 1 -

Transform Length | 512 -

Architecture Configuration

Target Clock Frequency {MHz) |250
Architecture Choice
) Aukomatically Select
M_A¥IS_DATA . HiE @ Pipelined, Streaming IfO
ewent_data_in_channel_halt Radic-4, Burst [/0
- S _AKIS_COMFI&went_data_out_channel_halt B
= - LS _AKIS DATA ewent_frame_started *) Radix-2, Burst IjO
aclk ewent_status_channel_halt
ewent_tlast_missing ~) Radix-2 Lite, Burst IjO
ewent_tlast_unexpected
Target Data Throughput (MSPS) (50

[Run Time Configurable Transform Length

Range: 1...550

Range: 1...550

Figure 198: Xilinx FFT Configuration

5. Select the Implementation tab (Figure 199):

a. Select ARESETN (active low) in the Control Signals group.
b. Verify that Non Real Time is selected as Throttle Scheme.

c. Click OKto exit the Re-customize IP dialog box.

High-Level Synthesis www.xilinx.com

UG871 (v2013.3) November 8,2013

201

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=201

& XILINX. Using HLS IP in IP Integrator

ﬁ Re-customize IP |E|
Fast Fourier Transform (9.0) ‘:\j

m Documentation |) IP Location

IP Symbol | Implementation Det: 4 ¢ B Component Mame |RealFFT _xffc_1_0
[shaw disabled parts Configuration” Implementation | Detailed Implementation
-
Data Format Fixed Point)
Scaling Options | Scaled -
Rounding Modes | Truncation -

Precision Cptions

Input Data Width | 16 j Phase Factor Width | 16 =

Control Signals

M_ARIS_DATA R[S
ewent_data_in_channel_halt

[ACLKEN ARESETR (active low)

5 _ANIS_COMFIG + dhtes o
= 15_avis paTA event_data_out_channel_hal

ewent_frame_started
ewent_status_channel_halt

ARESETn must be asserted For a minimum of 2 cycles

OQutput Ordering Options

ewent_tlast_missing
ewent_tlast_unexpected

CQutput Ordering | Bit/Digit Reversed Order

Cylic Prefix Insertion

Optional Output Fields Thrattle Scheme

XE_INDER CYFLO
mES O @ Mon Real Time () Real Time

Cancel

Figure 199: Xilinx FFT Implementation

Add one instance of each of the HLS generated blocks to the design.

6. Right-click in any space in the canvas and select Add IP (Figure 200).

2= Diagram X

fal | i, RealFFT

J

1

»

[
D:{
Wy G Ctrl+E
f}h X Delete | xfft_1
= - GikE M_AXIS_DATA (5
& L Ctrl+/ event_frame_started
® L SelectAll Ctrl+d event_tlast_unexpected
& addIp.. Ctrl+1 event_tlast_missing
Create Hierarchy... event_status_channel_halt
event_data_in_channel_halt
Create Comment
event_data_out_channel_halt
Create Port., Ctrl+K
Create Interface Port... Ctrl+L [rier Transform
B Save as PDF File..,
Figure 200: Add IP blocks
High-Level Synthesis www.xilinx.com 202

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=202

& XILINX. Using HLS IP in IP Integrator

7. Type “hls” into the Search text entry box.
a. Highlight both IPs (Click the control key and select both)

b. Press Enter.

The design block now as three IP blocks are shown in Figure 201.

Zo Diagram X Owr x
§|]| % ReaFFT

o -
L_ hls_real2xfft_1

i y y

L_ = qus_axis_din m_axis_dout g =

hls_xfft2real _1

Hls_realZxftt

gps_axis_din m_axis_doutdh =
aclk

ap_start

B Y P g | D

Hls_xft2real

*fft_1

M_AXIS_DATAC: =
event_frame_started
event_tlast_unexpected
event_tlast missing
event_status_channel_halt
event_data_in_channel_halt
event_data_out_channel_halt

=) apS_AXIS_DATA
= apS_AXIS_CONFIG

Fast Founer Transform

Figure 201: RealFFT IP Blocks

The next step is to connect HLS blocks to the FFT block and ports.

8. Hover the cursor over the “m_axis_dout” interface connector of Hls_real2xftt block until
pencil cursor appears.
a. Left-click and hold down the mouse button to start a connection.

b. Drag the connection line to “"S_AXIS_DATA" port connector of FFT block and release
(when green check mark appears next to it).

9. Ina similar fashion, connect the FFT's “M_AXIS_DATA" interface to the “s_axis_din” interface
of the Hls_xfft2real” block.

The two connections are shown in Figure 202,

High-Level Synthesis www.xilinx.com 203

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=203

& XILINX. Using HLS IP in IP Integrator

J = Diagram X OC x
| &, RealFFT |
o "
“q: hls_real2xfft_1
g ar s_axis_din m_mds doutsr
'I:.F dap _ready

ap
Y his_xfft2real_1 p start apid
{F =k s s din m_axis doutds B TE_realo=it
b ap.
i resetn ap
@ p_start ap_idl
His_xfitlreal
xfft_1
M_MXIS_DATA ==
=45 AXIS_DATA irema srated
—1r
= - . event_tlast
Z]45_AXIS_CONFIG tiast_unexpected
] dk event_tlast missing
-
i event_status channel_halt
event_data_in_channel_halt
event_data_out_channel halt
Fast Fourier Transrorm
L] R

Figure 202: Connecting Ports on the IP Blocks

To create I/O ports for the design, make some external connections.

10. Right-click the “s_axis_din" interface connector on Hls_real2xfft block and select Make
External (Figure 203).

hls_real 2xfft_1

3F = axis din m_asis_doutdF =

= & Block Interface Properties.., Ctrl+E
7% Delete Delete
l B Copy Ctrl+C
B Paste Ctrl+y
t Selectall Ctrl+&,
& AddIP.. Ctrl+]
|n'ﬂ Make External Ctrl+T
Start Connection Mode Ctrl+H

Disconnect Pin

Create Hierarchy.., DATA

Create Cornment | conFrG
Create Port... Crl+K
Create Interface Port.. Ctrl+L

B Save as PDF File..,

ast Fi

Figure 203: Make External Connections

High-Level Synthesis www.xilinx.com 204

UG871 (v2013.3) November 8,2013 l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=204

& XILINX.

Give the new interface port a clearly unique name.

a. Click portsymbol to highlight it.

b.

C.

d. Type in "real2xfft_din” and press Enter.

Using HLS IP in IP Integrator

In the External Interface Properties pane (Figure 204).
Double-click in the Name text entry box to highlight “s_axis_din".

i} IMPORTANT: Property changes might not take effect if this re-naming step is not done.

Block Design - RealFFT *

Design Hierarchy

o < |E

T
®

Io Diagram X

bl | 7 RealFFT

& RealFFT

-4 External Interfaces
2Bl -l 2 FE_din
[Inkerface Connections

B-F xfft_1 (Fask Fourier Transform:,0)
El-LF hls_realzxfft_1 (His_realzxfft:1,00.a)
Al rn_axis_dout

-l 5_awis_din

w2 aclk,

B aresetn

-T2 3p_skart

- ap_teady

- ap_done

- ap_idle

[=l-LF hls_xfftereal 1 (Hls_xfftereal:1,00.a)
ol rn_axis_dout

ol s_axis_din

w2 alk

m

2 Y| S0oDom |8 P

&% Sources-. B Design Hierarchy
External Interface Properties
+« %5

I real2xfft_din

-
#

Mame: realzxfft_din
Mode: SLAVE

General | Froperties

11.In a similar manner to the previous step:

|_ hls_xfftZreal 1 |-

ap_ready

Hls_xfftireal

Figure 204: Port Naming

a. Make the "m_axis_dout” interface of Hls_xfft2real block external and rename it

“xfft2real_dout”

b. Right-click aclk connector of Hls_real2xfft block and select Make External.

c. Right-click aresetn connector of Hls_real2xfft block and select Make External.

12. Tie ap_start ports of HLS blocks high

High-Level Synthesis

UG871 (v2013.3) November 8,2013

www.Xilinx.com 205

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=205

& XILINX. Using HLS IP in IP Integrator

Right-click canvas, select Add IP.

ST

Type “const” into Search text entry box.
Select ConstantIP.
d. Press Enter.

e. Double-click ConstantIP Symbol (Figure 205) and verify that the settings for Const
Width and Const Val are both ‘1’ and click OK to close Re-customize IP dialog box.

ﬁ Re-custarmize IP @

Constant (1.0) ':\’

ﬁﬂ Documentation ||) IP Location

[7] Show disabled parts
Caormponent Mame |RealFFT_xlconstant_1_0

Const Width 1 Range: 1...4096

Const Yal 1

const[0:0]

Figure 205: Constant IP Properties

f. Connect ap_start of both HLS blocks to the Constant block (Figure 206).

High-Level Synthesis www.xilinx.com 206

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=206

& XILINX. Using HLS IP in IP Integrator

Eo Diagram X

| i, RealFFT

his_real 2xfft_1

reatz«dft_din [T

ackk [
aresetn [_y— L

I_ his_xfftzreal_1 iI ;
B 1s_sods_dlin m_aodis_daut- 1+ B Hils_real 2t
P

: Tig_anis_ dlin m_axis_daut 1 [

R N admERAR

shoanstant 1

eon]0:0]

Constart

Figure 206: Connect AP_START to Constant 1

13. Make the remaining connections.

a. Click and drag from the aclk connector of FFT and HIs_xfft2real blocks to the aclk

external port (or aclk connector on Hls_real2xfft block or anywhere on “wire” connecting
them).

b. Connect aresetn of FFT and HlIs_xfft2real blocks to aresetn network.

c. The XFFT configuration interface is left unconnected, as this design always operates in
the default mode of the core.

14. Click the Regenerate icon to clean up and reorganize the Block Design.

High-Level Synthesis www.xilinx.com 207

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=207

& XILINX. Using HLS IP in IP Integrator

Io Diagram X O x

3 | J RealFFT |

reallft_din[T

ack[s
aresatn[_

D[RS _AMIS_DATA
|ThS_ARIS_CONFIG

Bl g oom|ERR

xconstant_1

Regenerate
Generate optirized layout

Figure 207: Re-generated Design Diagram

15. Validate the Block Design by clicking the Validate Design icon on the toolbar.

#4_ project_1 - [Cifxilinftutorials/HLS IPIntegratorflablfproject_1/project Lxpr] - Vivado 2013.1
File Edit Flow Tools Window Layout View Help

ii}: = By X || di} $ P Qﬂ ﬁ:’} % E |(___} 95 pefault Lavout

Flaw Nawigatar Yalidate Design
Ci\ E % ‘u‘alidatesand display errors and critical warnings in this design
™ A
4 Project Manager o %‘E:clk 1
ﬁ. Praoject Settings >‘l:: .ar'etn_l

Figure 208: Design Validation

16. Click File > Save Block Design.
17. Close the Block Design.
18. The next step is to generate output products.

a. Inthe Sources tab of Project Manager pane (Figure 209), right-click RealFFT.bd and
select Generate Output Products.

b. Click OKin the resulting dialog to initiate the generation of all output products.

High-Level Synthesis www.xilinx.com 208

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=208

& XILINX.

08 2| R G | 2S Default Lavout

Project Manager - project_1

Sources

7y 9 pa I (=P 3 EI

M ey B

(4]

Using HLS IP in IP Integrator

-5 Design Sources (1)

B

+ | Constraints (1)

—|-{= Simulation Sources (1)
-0 sim_1 (1)

Hierarchy | IP Sources | Lib

Au Sources | 5 Templ

Source Mode Properties
] [

)

&, RealFFT (RealFFT.bd)

Maodule: Fe

19. Create an HDL Wrapper.

%, Project Summary X

=3
e {E} Project Settings

=]

=0 Source Mode Properties..,

* (Open File
Create HDL Wrapper
Wiews Instantiation Ternplate
Generate Output Products..,
Feset Output Products..,
Export Hardware for 30K,
Package Block Design...

H Remowe File from Project...

Disable File

Figure 209: Generating Output Products

- Project name: prajec
Ctrl+E uct Farnily: Zynia-
Alt+0 ek part: THMG-

rodule name: Mok D
Synthesis
rus: o Ready
wrFz020clgds:
wkeqy: Wivado Svnkhe
Alt+I

’ DRC Violations
Delete
Alt+Equals DR.C infarmatian i
Alt+bdinus

a. Inthe Sources tab of the Project Manager pane, right-click RealFFT.bd and select
Create HDL Wrapper. (This is the same procedure and menu as described in the

previous step.)

b. Click OKto clear the resulting notification window.

Step 5: Verify the Design

The next step in creating the final design is to verify design with the HDL test bench provided in
the lab exercise: realfft_rtl_tb.v.

1. Right-click Simulation Sources in Sources tab of Project Manager pane (Figure 210).

2. Select Add Sources.

High-Level Synthesis

www.Xilinx.com

UG871 (v2013.3) November 8,2013

209

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=209

& XILINX. Using HLS IP in IP Integrator

';i V = "ﬂl !{:} ';-"_-:;% ‘L Iu C B duil LayuoL i 1= L '-‘1!.\ =4

Block Design - RealFFT

Sources — O

M
b

E= Diagram x| &8 RealFF
A= e B B | Copilincftutotials/HLS_IF

-5 Design Sources (1) " 1 ‘ti‘Tl?ECﬂlE 1 p:
. [-E8% RealFFT_wrapper (RealFFT_wrapper) (1) | 2// 1ib IF Intes
| Canskrainks |:1:| £ Jmodule Real FFT_
El"i.-_..' Simulation SO tte 3&.:. 4 laclk,
FEh@n sim_1 (17 [B3 Ctrl+E > [aresetn,

Hierarchy Update k :j & real2xffr

. H=) 7 12xfft
@ Refresh Hierarchy rEaaRtiE L
| s realZxfft o
Edit Constraints Sets.., il 9 real2xfft «
Edit Sirmulation Sets... real2xffr ¢
xfftireal
B Add Sources.., At +2 -fE__J 12 :-:fftZreal_t
13 xfftZreal ¢
& 14 xfftZreal ¢
¢ |15 xfftireal ¢

Hierarchy | IP Sources | Libraries | Compile Qrder |E. le input aclk:
A% Sources | B Design Hierarchy —— 17 input areset
el 18 inpur [31:0]
Properties — O ¢ = 4519 dinput [3:0]re
& =» &J [20 input [0:07ke

21 output realz:

Figure 210: Adding Simulation Sources

3. Select Add or Create Simulation Sources in the Add Sources dialog.
4. Click next.
5. Inthe Add Sources dialog box, click the Add Files button highlighted in Figure 212.

High-Level Synthesis www.xilinx.com 210

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=210

& XILINX. Using HLS IP in IP Integrator

g“‘_ Add Sources =]
Add or Create Simulation Sources

Specify simulation specific HOL files, or directories containing HOL files, to add to your project. Create a new source file on disk and add it ko your ‘:‘:’
project.,

Specify simulation set: | & sim_1 -

Id Marme Library Location

Add Files...] [Add Directotiss. .,] [Create File..,

Scan and add RTL includs files into project
Copy sources inko projeck
Add sources fram subdirectories

Include all design sources For simulation

Figure 211: Add Source Dialog Window

6. Browse to the realfft_rtl_tb.v file in the Using_IP_with_IPI\labl\verilog_tb tutorial directory.
7. Select it and click OK.
8. Select the checkbox Copy sources into the project (Figure 212).

High-Level Synthesis www.xilinx.com 211

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=211

& XILINX. Using HLS IP in IP Integrator

4. Add Sources @

Add or Create Simulation Sources

Specify simulation specific HDL files, or directories containing HOL files, to add to your project. Create a new source file on ‘"i_
disk and add it to your project.

Specify simulation set: | & sim_1 -
Index Name Library Location
w1 realfft_rtl_tb.v work C:fVivado_HLS_Tutorial/Using_IP_with_IPI/lab1/verilog_tb
[AddFiles.. | [Add Directories...] ’ Create File...

|:| Scan and add RTL include files into project
Copy sources into project
Add sources from subdirectories

Include all design sources for simulation

MNext > Finish]’ Cancel

Figure 212: Copy Design Sources

Note: When you copy the design source files into the project, edits to the file(s) are not
automatically propagated to the original source file.

9. Click Finish.
10. Click Run Simulation in the Flow Navigator (Figure 213).

High-Level Synthesis www.xilinx.com 212

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=212

& XILINX. Using HLS IP in IP Integrator

L == L w (=]

Flow Mavigator L5o
{ Ol i
Q=
4 Project Manager
&:’} Project Settings
Q""}'.' Add Sources

ﬁ IP Catalog

4 JP Integrator
,x"ﬁ Create Block Design

L 13 Cpen Block Design

4 Simulation
&:’} Simulation Settings
() Fun Simulation

Run Behavioral Simulation

4 RTLA

|

Figure 213: Execute Simulation

11. Once the simulation has started, click the Run All icon to complete simulation.

s
elp
¢ | B Default Layout - \b}\ m E_u fpir) 10 |us = | L= Q| &
ation - Functional - sim_1 - realfft_rtl_th Run All (F3)
— O /" = Run the simulation until there are no more events or until 2 Verilog pp
. = — T inish' or "§stop’,
=[S e RIS ~ T T e |
Design Unit Block Tyvpe | harne Yalue Daka Type ﬂ Mane

Figure 214: Run The Simulation to Conclusion

Conclusion
In this tutorial, you learned:
e How to create Vivado HLS IP using a Tcl script.

e How toimport create a design using IP integrator (IPI) and include both Xilinx IP and the
Vivado IP blocks.

e How to verify the design in IPL

High-Level Synthesis www.xilinx.com 213

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=213

& XILINX.

Chapter 10 Using HLS IP in a Zynq Processor Design

Overview

A common use of High-Level Synthesis design is to create an accelerator for a CPU —to move
code that executes on the CPU into the FPGA programmable logic to improve performance. This

tutorial shows how you can incorporate a design created with High-Level Synthesis into a Zynq
device.

This tutorial consists of two lab exercises.

Lab1l

You create and configure a simple HLS design to work with the CPU on a Zynq device. The HLS
design used in this lab is simple to allow the focus of the tutorial to be on explaining the
connections to the CPU and how to configure the software drivers created by High-Level
Synthesis to control the device and manage interrupts.

Lab2

This lab illustrates a common high performance connection scheme for connecting hardware
accelerator blocks that consume data originating in the CPU memory and/or producing data
destined for it in a streaming manner. The lab highlights the software requirements to avoid

cache coherency issues.

Tutorial Design Description

You can download the tutorial design file can be downloaded from the Xilinx Website. Refer to
the information in

High-Level Synthesis www.xilinx.com 214

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=214

& XILINX. Using HLS IP in a Zynq Processor Design

Obtaining the Tutorial Designs.
This tutorial uses the design files in the tutorial directory Vivado_HLS_Tutorial\
Using_IP_with_Zynq.

The sample design is a simple multiple accumulate block. The focus of this tutorial exercise is
the methodology, connections and integration of the software drivers. (The tutorial does not
focus on the logic in the design itself.)

Lab 1: Implement Vivado HLS IP on a Zynq Device

This lab exercise integrates both the High-Level Synthesis IP and the software drivers created by
HLS to control the IP in a design implemented on a Zynq device.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data directory
Vivado HLS Tutorial is unzipped and placed in the location C:\Vivado_HLS_Tutorial

ﬁ If the tutorial data directory is unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create a Vivado HLS IP Block

Create two HLS blocks for the Vivado IP Catalog using the Tcl script provided. The script runs
HLS C-synthesis, runs RTL co-simulation, and packages the IP for the two HLS designs
(hls_real2xfft and hls_xfft2real).

1. Open the Vivado HLS Command Prompt.

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt (Figure 215).

b. On Linux, open a new shell.

Bl Vivado 2013.3 Tcl Shell
g Vivado 2013.3
Accessories
SDK
System Generator
Vivado HLS
Bl Vivado HLS 2013.3 Command Promp
"] vivado HLS 20133

Figure 215: Vivado HLS Command Prompt

2. Using the command prompt window, change the directory to
Vivado_HLS_Tutorial\Using_IP_with_Zynq\lab1\hls_macc (Figure 216).

3. Type vivado_hls —f run_hls.tcl to create the HLSIP (Figure 216).

High-Level Synthesis www.xilinx.com 215

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=215

& XILINX.

Using HLS IP in a Zynq Processor Design

[Vivado HLS 2013.2 Command Prompt =n Eon <=

C:\Vivado_HLS_Tutorial>cd Using_IP_with_Zyng -

C:\Vivado_HLS_Tutorial\Using_IP_with_Zyng>cd labl

C:\Vivado_HLS_Tutoriali\Using_IP_with_Zyng\labl>cd hls_macc

C:\Vivado_HLS_Tutorial\Using_IP_with_Zyng\labli\hls_macc>vivado_hls -f run_hls.tclE

Figure 216: Create the HLS Design

When the script completes, thereis a Vivado HLS project directory vhls_prj, which contains the
HLSIP, including the Vivado IP Catalog archive for use in Vivado designs.

The remainder of this tutorial exercise shows how the Vivado HLS IP blocks can be integrated
into a Zynq design using IP Integrator.

Step 2: Create a Vivado Zynq Project
1. Launch the Vivado Design Suite (not Vivado HLS):

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado 2013.3.

b. On Linux, type vivado in the shell.

2. From the Welcome screen, click Create New Project (Figure 217).

High-Level Synthesis www.xilinx.com 216

UG871 (v2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=216

& XILINX. Using HLS IP in a Zynq Processor Design

¢ Vivado 20133 E\@

File Flow Tools Window Help Search commands
\/ | VDO XILINX
P MMABLE.
Getting Started Documentation
/1 Create New Project e Documentation and Tutorials =
1 # - " . ; - =
\ - \ L= ProJect Wgard pguceyoulhoudh the process Invaluable for first time users or to try new features.
\\ of selecting design sources and a target device for =
\ \ a new project.

Open Project _ User Guide

- ¥ v
Open one of the most recently used projects or More detailed info on Vivado commands, dialogs,
any previously created project. : \ and buttons.

design flows overview to recommended methodology.

E Open Example Project Quick Take Videos

o
b gl
1)))) :
Open one of the tutorial projects. % View a series of short videos on various topics from

= Tcl Console

Figure 217: Vivado Welcome Screen

3. Inthe New Project wizard:

a. Click Next.

b. Inthe Project Location text entry box, browse to the location of the tutorial file directory
and click Next (Figure 218).

c. Onthe Project Type page, select “Do not specify sources at this time” (if it is not the
default).

d. Click Next.

High-Level Synthesis www.xilinx.com 217

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=217

& XILINX.

Using HLS IP in a Zynq Processor Design

New Project
Project Name

Project name: | project_1

Enter a name for your project and specify a directory where the project data files will be stored

Project location: | C:/Vivado_HLS_Tutorial/Using_IP_with_Zyn q,-'lab1|

Create project subdirectory

Project will be created at: C:/Vivado_HLS_Tutorial/Using_IP_with_Zynq/labl/project_1

’ < Back ” Next >]

=5

[

Finish Cancel

Figure 218: Specify the Vivado Project Directory

4. Onthe Default Part page:

a. Click Boards.

b. Select the ZYNQ-7 ZC702 Evaluation Board (Figure 219).

4 New Project @
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. ':L
Specify Filter
& Parts Board Vendor | All -
@ Boards Library | All -
Name | All M
Version | Latest 7
Reset All Filters
Search:
Board Board Board Board
Boagd Vendor Library Name Version IR
@ MicroZed Board em.avnet.com zynqg microzed e @ xc7z010clge w
@ ZedBoard Zynq Evaluation and Development Kit em.avnet.com zyng zed d i xc7z020clge—
@ Artix-7 AC701 Evaluation Platform xilinx.com artix7 ac701 1.0 @ xc7a200tfhy
@ Kintex-7 KC705 Evaluation Platform xilinx.com kintex7 kc705 1.1 & xc7k325tffg| =
@ Virtex-7 VC707 Evaluation Platform xilinx.com virtex7 ve707 1.1 @ xcTvxa 85t
@ Virtex-7 VC709 Evaluation Platform ilinx.com virtex7 ve709 1.0 G xc7xB90tff|
¢ ZYNQ-7 ZC702 Evaluation Board plinx.com __Jzyng____Jzc702 __[1.0 _____[% xc72020cig 48
E 7vYN0-7 7C706 Fvaluation Roard xilinx.com 7vna 7706 1.1 @ r77045ffad
< | 11 r O

High-Level Synthesis

Figure 219: Specify the Vivado Project Details

www.Xilinx.com

UG871 (v2013.3) November 8,2013

218

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=218

& XILINX.

Using HLS IP in a Zynq Processor Design

c. Click Next.
d. Click Finish on the New Project Summary Page.

The project workspace opens as shown in Figure 220.

2 Pewer

Ut rformmaton 5 . slabl bstacse & haseibowr P rfirmatin el vl ecinste £ hasri beeri

Proress e Baned i NS W

Figure 220: Initial Vivado Zynq Project

Step 3: Add HLS IP to the IP Catalog

1. Inthe Project Manager area of the Flow Navigator pane, click IP Catalog.

File Edit Flow Tools Window Layout Wiew Help

A doRR X P DU EX LG Sofu

Flow Mawigakor <« Project Manager - project_1
L e —] Sources

AzTEma R
o) Design Sources

[0 Constrainks {10

Cﬁﬂ’ rdd Sources [=)-{ Simulation Sources (1)

L sim 1
g: IP Catalog =

4 Project Manager

ﬁ. Project Settings

4 TP Integrator

gﬁ Create Block Design

i COpen Block Design

Figure 221: Open the IP Catalog

The IP Catalog appears in the main pane of the workspace.

2. Click the IP Settings icon (Figure 222).

High-Level Synthesis www.xilinx.com 219

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=219

& XILINX.

Using HLS IP in a Zynq Processor Design

I @ 9| (G S Default Layout - | &
Project Manager - project_1
Sources —Oe x
o = e
AZ=E war R
@ Design Sources
Canstraints (1)
Simulation Sources (1)
g sim_1
Hierarchy | Libraries | Compile Order
& sources | ' Templates
Properties — O =
+ =% &

I Project Summary X | iF IP Catalog X

AxI4

[#-[= Automotive & Industrial

AT Infrastructure

BaselP

Basic Elements
Communication & hNetwarking
Debug & Yerification

Digital Signal Processing
Embedded Processing

[+ FPiah Features and Design

IP Settings

Settings forIP Catalog, IP Generation, and IP Packager

[H-[= Standard Bus Interfaces
[#H-[= ¥ideo & Image Processing

Dietails

Figure 222: Open the IP Catalog Settings

3.
4. Inthe IP Repositories dialog box:
a.
b.
Click OK.

Click Select to close the IP Repository.

0

In the IP Settings dialog, click Add Repository.

Browse to the tutorial directory location and click the Create New Folder icon.

Enter "vivado_ip_repo” in the resulting dialog (Figure 223).

¢ IP Repositories []
Recent: | [C:/Vivado_HLS_Tutorial/Using_IP_with_Zyng/lab1 2O =AM X[z 5
it Og'HIC:\ Vivado_HLS_Tutorial\Using_IP_with_Zyng\lab1]
= pen L =L ey i
[+ | PerfLogs
[+ | Program Files
| Program Files (x86)
[+ | ProgramData |
- | SymCache
[+ | Titus
- | Users Create New Folder @ i
&k, Vivado_HLS .-" ; | Enter the name of the new folder: I
(= | Vivado_HLS_Tutorial & — -
| Arbitrary_Precision wvado_lp_repo|
C_Validation .
N s) ’ oK] ’ Cancel I
| Design_aAnalysis
| Design_Optimization
| Interface_Synthesis
| Introduction
| RTL_Verification
| Using_IP_with_IPI
| Using_IP_with_SysGen
- | Using_IP_with_Zynq N
=5 (]

Figure 223: IP Repository

High-Level Synthesis

www.Xilinx.com

220

UG871 (v2013.3) November 8,2013

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=220

& XILINX. Using HLS IP in a Zynq Processor Design

5. Returning to theIP Setting dialog box:
a. Click AddIP.

b. Inthe Select IP to Add to Repository dialog, browse to the location of the HLSIP:
Using_ IP_with _zZyng/labl/hls_macc/vhls_prj/solutionl/impl/ip/.

c. Select theIP Catalog package Xilinx_com_hls_hls macc_1_00)a.zip file (Figure
224).

d. Click OK.

#.. Select IP To Add To Repository [
Look in: ip ': IO = A DX S E-
bd Recent Directories
R,;,_.; | constraints | C:fVivado_HLS_Tutorial/Using_IP_with_Zynq/lab1/vivado_ip... =
ecent
Tems I doc File Preview
! L. drivers File: xilin_com_hls_hls_macc_1_0.zip
example Directory:
Desktop | hdl C:/Vivado_HLS_Tutorial/Using_IP_with_Zynq/labl/hls_macc/vhls_p
misc Created: Tuesday 10/08/13 10:05 AM
<) Accessed: Tuesday 10/08/13 10:05 AM
My ! SUbFO’E Modified: Tuesday 10/08/13 10:05 AM
Documents | Xgul Size: 21.1KB
2 auxiliary.xml Type: Archive project file
.._! ¢ componentxml Owner: XLNX \duncanm

S = xilinx_com_hls_hls_macc_1_0.zip|

@

Network
< 11l r O
File name: xilinx_com_hls_hls_macc_1_0.zip
Files of type: | 1P Packages (i, zip) A

Figure 224: Add IP to the Repository

6. The new HLSIP should now appear in the IP Settings dialog box.

High-Level Synthesis www.xilinx.com 221

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=221

& XILINX. Using HLS IP in a Zynq Processor Design

J}‘_: Project Settings =]

: | ®
@ Repository Manager | Generation | Packager
General

= @ Add directories ko the lisk of repositories. After hitting Apply you will be able ko see the IP
i within each repositary. You may then add additional IP. IF an IP is disabled then a taol-tip
will alert you ko the reason,
Simulation IP Repositaries

@ C: filinzftutorials/HLS_IPIntegratorflab2fvivado_ip_repo (Project)

H
g
h‘b!

g: Add Repository, .,] [@ Refresh Al

1P in Selected Repository

acci1.00.a)

I IFAddIP...] I & Refresh Repository. ..]

[QK] [Cancel] [Apply

Figure 225: HLS IP in the Repository

7. Click OK to exit the dialog box.

8. There is now a Vivado HLSIP category in the IP Catalog and, if expanded, the Hls_macc IP
diplays (Figure 226).

% Project Summary X | 1F IP Catalog X

'3\ Search:

==

q

Mamez o Axl4 Skatus License
[#- = Aukomotive & Industrial

= ARl Infrastructure

= BaselP

— Basic Elements

= Communication & Metwaorking
— Debug & verification

t-[= Digital Signal Processing

= Embedded Processing

~ FPaA Features and Design

= Math Functions

— Memaories & Storage Elements
= Skandard Bus Inkerfaces

= Video & Image Processing
- [YIVADO HLS TP

----- 1F Hls_macc AXI4 Pre-production Included

|| & | & PR G

Figure 226: HLS IP in the IP Catalog

Step 4: Creating an IP Integrator Block Design of the System

1. IntheIP Integrator area of the Flow Navigator, click Create Block Design and enter
“Zynq_Design” in the dialog box.

High-Level Synthesis www.xilinx.com 222

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=222

& XILINX.

File Edit Flow Tools Window

&0 E|

Flows Mavigator

0 A g
“ iy B

4 Project Manager
Q:’; Project Settings
045’ Add Sources
ﬂ IP Catalog

4 TP Integrator
Iﬁ.”‘ Create Block Design
¥ Open Block Design

4 Simulation
@ Simulation Settings
@ Run Simulation

4 RTL Analysis
> Eﬁ’ Open Elaborated Design

4 Synthesis
@ Synthesis Settings
@ Run Synthesis
> [Open Synthesized Design

4 Implementation

@ Implementation Settings

Layout Wiew Help

Ecd

Using HLS IP in a Zynq Processor Design

=I-{= Simulation Sources (1)

. Project Surmmary % | £F IP Catalog x

D D EH XK X S |EDoefauk Layout | K| ®
Project Manager - project_1
Sources — O 2 =
(o el o%j = L | search:
= Design Sources E
44 | Constraints (1) g

)]

@ || E

7 BaselP

E 8

Hierarchy | Libraries | Compile Order
£ Sources | 7 Templates

Core Folder Properties

« +[El5

= WIVADO HLS TP

a1

= Aukomotive & Industrial
7 AxT Infrastructure

7 Basic Elements

7 Communication & MNetworking
7 Debug & Verification

7 Digital Signal Processing

7 Embedded Processing

7 FPGA Features and Design

7 Math Functions

7 Memoaries & Storage Elements
7 Standard Bus Interfaces

Mame; VIVADO HLS IP

g”_ Create Block Design

,:0:, Flease specify name of block design

Design name: Zynq_Design|

=

Figure 227: Create the Zynq Design

The Block Design view opens in the main pane, with a new Diagram tab, containing a blank

Block Design canvas.

2. Click the Add IP link under the title bar, which pops up an IP search dialog.

a. Type in “proce” into the Search text entry box.

b. Select the ZYNQ7 Processing System item and press Enter.

High-Level Synthesis

www.Xilinx.com

UG871 (v2013.3) November 8,2013

223

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=223

& XILINX.

FeR

Using HLS IP in a Zynq Processor Design

= Diagram x

A

5, Zyng_Design

(i) This design is empty, To get started, Add P From the catalog.

AR

-
=

Search: | - proce

(2 matches)

Mame

{F PYMNQ7 Pracessing Systern BFM

=1

1 e P g | v

Select and press EMTER or drag and drop, ESC to cancel

Figure 228: Add a CPU Processor to the Design

An IP symbol for the ZYNQ7 Processing System appears on the canvas.

3. Double-click the ZYNQ IP symbol to open its Re-customize IP dialog.

a. Click the Presetsicon and select ZC702 (Figure 229).

LF Re-customize IP

ZYNQ7 Processing System (5.3)

ff Documentation 3 Fresets [P Location %5 Import XPS Settings

Page Navigator

Zynq Block Desig
PS-PL Configurati

Peripheral /0 Fir

MIO Configuratiof

Current Preset: None
Default

Microzed

I/ Peripherals

ZC702
ZC706
ZedBoard

Clock Configuration

DDR Configuration

Interrupts

SMC Timing Calculation

15:0)

o
MUX
(MIO)

Bank1

(53:16)

[~ sD1

SRAM/NOR
- —]

SPIO
SPI1
12C0

General
Settings

12C 1
CAN 0
CAN 1

UART 0
UART 1

GPIO

System Level

Application Pr

ARM Cortex A9
cPU

Control Regs

sDO

USB 0
USB 1
ENET 0
ENET 1

Central

—’C

E
Y e
ocM ‘ i

DMAS
hannel
g
c

[e sn
A
1
L]

FLASH Memory
Interfaces

NAND
QUAD SPI

| i

DAP |

PES B

DEVC ‘ Programmable

SMC Timing
Calculation

N E——— 1

Il

DMA [Sync

Logic to Memory
Interconnect

[z
me

Figure 229: Configure the Zynq Processor

4. Click Interrupts in the Page Navigator pane.

High-Level Synthesis

UG871 (v2013.3) November 8,2013

www.Xilinx.com

224

| Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=224

& XILINX. Using HLS IP in a Zynq Processor Design

a. Select Fabric Interrupts and expand its tree view.

b. Select IRQ_F2P[15:0] and click OK to close the Re-customize IP dialog box.

g: Re-customize IP
ZYINQ7 Processing System (5.01)

ﬁj Dacumentation | IP Location {_ﬁ Presets

Fage Mavigator 4 |Interrupts
Zwni Block Design : Search
P3-PL Configuration LZ'J Interrupk Park] Descripkion
=g
)) i | B Fabric Interrupts Enable PL Interrupts ko PS and vi
MIC Configuration = PL-PS Inkterrupk Ports

Enables 16-bit shared interrupt p

- F orel_n nables Fast private interrupk sig
MIO Table View Corel_nFlo 28 Enables Fast private interrupt
Clock Configuration - [Cared_nIRG 31 Enables private interrupt signal Fe
~[] Carel_nFIQ 28 Enables Fast private interrupt sig
DDR. Configuration [[] Corel_nIRg 31 Enables private interrupt signal fo
=l PS-PL Interrupk Ports

SIMC Timing Calculation IR _PZF_DMAC_ABORT Enables shared interrupt abart siy
IRC_PZF_DMACH Enables shared interrupt signal 0
Interrupts IR P2F_DMACL Enables shared interrupt signal 1
IRG_PZF_DMACZ Enables shared interrupt signal 2

Figure 230: Zynq Processor Interrupt Configuration

IPI provides Designer Assistance to automate certain tasks, such as making the correct external
connections to DDR memory and Fixed I/O for the ZYNQ PS7.
5. Click the Run Block Automation link under the title bar (Figure 231).

a. Select /processing_system7_1.

b. Click OKto complete in the resulting dialog box.

High-Level Synthesis www.xilinx.com 225

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=225

& XILINX. Using HLS IP in a Zynq Processor Design

o Diagram X | B Address Edtor X [mERES

31| 4 zvma_pesign

ar (@ Designer Assistance available, Run Block Automstion

3 ‘
e
]
& ! R
= r processing system?7 1 -1
X R]
@ FIXED 104k ||
wM_AXI_GPO_ACLK[0:0] - useinp_o4 |||
wfiRQ_F2P[0:0] ZYNO M_AXI_GPOdk [£
FCLK_CLKO[0:0
FCLK_RESETO_N[0:0
L ZYNQY Processing System -

Figure 231: Run Automation

6. Add HLSIP to the design by right-clicking in an open space of canvas and by selecting Add
IP from the context menu.

a. Type "hls” in the Search text entry box and press Enter to add it to design (Figure 232).

Ge Diagram X | B Address Editor X Owe x

hdl} ‘ #, 2ynq_Design

@y (@ Designer Assistance available. Run Connection Automation

o
S hls_macc_1
= | <FS_AXI_HLS_MACC_PERIPH_BUS
,[:1. aclk interrupt =
d aresetn
&
[Hls_macc
¥ processing_system?7_1
2 DOR4 DR
FIXED 104 IXED_ IO

M_AXI_GPO_ACLK[0:0]

- X
IRQ_F2P[0:0] ZYNO‘ M_AXI_GPO-

FCLK_RESETO_N[0:0]]

YNQ/ Processing System

Figure 232: processor and HLS IP

Designer assistance is also available to automate the interconnection of IP blocks.

7. Click the Run Connection Automation link at the top of the canvas.

8. Select /hls_macc_1/S _AX1_HLS MACC_PERIPH_BUS and click OK in the resulting dialog
box to automatically connect the HLSIP to the M_AXI_GPO interface of the PS7.

High-Level Synthesis www.xilinx.com 226

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=226

& XILINX. Using HLS IP in a Zynq Processor Design

This adds an AXI Interconnect (instance: processing_system7_1_axi_periph), a Proc Sys Reset
block (instance: proc_sys_reset) and makes all necessary AXI related connections to create the
design shown in Figure 233.

uk - y @ \ & Ready

E= Diagram X | B Address Editor X | T4

+|:| | %, Zyng_Design ¥

DE|ER R

hls_mace_1
EL1S_AXI_HLS MACC PERIPH BLE

interrugt)

proc_sys_reset

Ehwest_sync ik miy_resesf= His_mace

sl _in

—pix,_reset_in
—nb_debug sys rst (0:0]
—dean,Jrckedd perighersl_aresem[01]

. ik

Troc Gy Reser

processing_system?_1

DDR: DOR
FIXED_ 10+ FIXED_IO

AXI_GPO_MCLK[0:0] - USBIND 01+
Tnujznu:uj ZYNQ AN GO | et

FOLK_CLK0[0:0] fa
FOLK_AESETO_A0 0] et

T Processing Sysem

Fl T 2

Figure 233: AXH4 Interconnect

The only remaining connection necessary is from the HLS interrupt port to the PS7 IRQ_F2P port.

9. Bring the cursor over the interrupt pin on the hls_macc_1 IP symbol.

a. When the cursor changes to pencil shape, click and drag to the IRQ_F2P[0:0] port of the
PS7 and release, completing the connection

10. Bring the Address Editor tab forward and confirm that the hls_macc_1 peripheral has been
assigned a master address range. If it has not, click the Auto Assign Address icon.

High-Level Synthesis www.xilinx.com 227

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=227

& XILINX.

Using HLS IP in a Zynq Processor Design

ZaDiagram X | B Address Editor X

=
=]
g
(==

[

Cell Base Mame Offset Address Range High Address

—-4F fprocessing_system?_1
=I-E Data

fowm fhls_mace_1 Req 0x43C00000 B4, O 43C0FFFF

Figure 234: Address Editor

The final step in the Block Diagram design entry process is to validate the design.

11. Click the Validate Design icon in the toolbar.

12. Upon successful validation, save (control-s) the Block Design.

Step 5: Implementing the System

Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking on Project Manager in the Flow Navigator.

2. Inthe Sources browser in the main workspace pane, a Block Diagram object named
Zyng_Design is at the top of the Design Sources tree view (Figure 235). Right-click this
object and select Generate Output Products.

3. Intheresulting dialog box, click OK to start the process of generating the necessary source

files.

228

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=228

& XILINX. Using HLS IP in a Zynq Processor Design

g*‘ project_1 - [C/Xilinx/tutorials /HLS IPIntegratorflab2/project_Liproject_Lxpr] - Vivado 2013.1
File Edit Flow Tools Window Layout View Help

Pl] | (P D B H XK L G S oefaul Layou - K|

Flow Navigator « | | Project Manager - project_1
Q= Saurces — O x T Project Summary X |
Q 57 ol 3 =
4 Project Manager S = E :J @ Project Settings
- -7 Design Sources (1) | = .) .
@ Project Settings BN 0 Desian (Zyn_Design. bl {41 Project name: Projec
Oﬂf Add Sources -5 Constraints (1 @ Source Mode Properties... Ctrl+E 2yng-
= Simulation Sources (1
il]: 1P Catalog - w * OpenFile Ale+0 £YNG:
bl sim_L (1)
e Dok O
Create HDL Mrapper
4 [P Integrator
Wiew Instantiation T lats 3
Is}‘ Create BIockDesign 1esns Instantistion | emplate
Gi te Output Products...
% Open Black Design enerate Output Products Ready
Reset Output Products...
eset Qutput Products 020cld
4 Simulati
LT Expart Hardware for DK, lado Svnthe
% Simulation Settings Package Block Design...
,@Q Run Simulation Hierarchy | IP Sources | Libraries | Co
44 Sources | 7 Templates
4 RTL Analysis
> Eﬁ' ©pen Elaborated Design Source Nods Properties AleT tions
= O‘ kg . Remove File from Project... Delete
4 Synthesis #, Zyng_Design {Zynq_Design.bd) Alt+Equals prmation is
@’ SyDthecieSattings | . Disable File Alt+hinus
T, Madule: Zyng Desian

Figure 235: Wrapper Generation

4. Right-click the Zynq_Design object again, select Create HDL Wrapper, and click OK to exit
the resulting dialog box.

The top-level of the Design Sources tree becomes the Zynq_Design_wrapper.v file. The design is
now ready to be synthesized, implemented, and to have an FPGA programming bitstream
generated.

5. Click Generate Bitstream to initiate the remainder of the flow.

6. Inthe dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Developing Software and Running it on the ZYNQ System

You are now ready to export the design to Xilinx SDK. In SDK, youcreate software that runs on a
ZC702 board (if available). A driver for the HLS block was generated during HLS export of the
Vivado IP Catalog package. This driver must be made available in SDK so that the PS7 software
can communicate with the block.

1. From the Vivado File menu select Export > Export Hardware for SDK.
Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado

workspace for this step to complete successfully.

2. Inthe Export Hardware for SDK dialog box (Figure 236), ensure that the Include Bitstream
and Launch SDK options are enabled and click OK.

High-Level Synthesis www.xilinx.com 229

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=229

& XILINX. Using HLS IP in a Zynq Processor Design

é":-'_:. Export Hardware for SDE @

,'0‘, Expart hardware platform Faor SDE,

Options
Source: 5, Zvnig_Design.bd =
Export ko | B0 <Local bo Project = -
Warkspace: | B0 <Local to Project = -

| Export Hardware

| Include bitstream (Mote: an implemented design must be loaded)

QK | | Cancel

Figure 236: Export to SDK Dialog Window

3. SDK opens.If the Welcome page is open, close it.

4. Create a new SDK software repository and add the HLS block drivers to it.
a) From the XilinxTools menu, select Repositories.
b) Inthe Repositories Preferences page click New (upper right).

¢) Inthe Browse For Folder dialog, navigate to the IP repository directotry vivado_ip_repo
directory and select the IP pacjkage xilinx_com_hls_hls_macc_1 0 as shown in Figure
237.

d) Select OKto close the specify the repository.

e) Select OKto close the SDK project Preferences dialog window.

High-Level Synthesis www.xilinx.com 230

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=230

& XILINX.

Using HLS IP in a Zynq Processor Design

-

Preferences

type filter text

» General

» CfC++

> Help

» Install/Update

> Remote Systems

> Run/Debug

> Team

Terminal

4 Xilinx SDK
Boot Image
Flash Programming
Hardware Specifici
Log Information Le
Repositories
XMD Startup

< | 11 »

= [B][]
Add, remove or change the order of SDK's software repositories. Ty
Local Repositories (available to the current workspace)
New.
Remove
p Ip
Browse For Folder | & | Down
Choose a repository directory. A repository directory typically contains the
'drivers', 'bsp' or 'sw_services' sub-directories. SEURE
Glob
> | hls_macc &
; New...
> | project_1
> |, sdk_sw_repo Remove
4 | vivado_ip_repo Up
4 | xilinx_com_hls_hls_macc_1_0
: Down
| constraints
SDK | doc
C\X > . drivers
CAX 3
C.‘-\X > hdl |
| misc
| xgui
Foldear: wilinx_com_hls_hls_macc_1_0
Resqg
= ox] [_con
Mote: Local repository settings take precedence over global repository settings.
Restore Defaults] l Apply]
l OK l l Cancel

Figure 237: SDK Project Properties

5. From the SDK File menu, select New > Application Project.
a) Inthe New Project dialog enter a project name: Zynqg_Design_Test
b) Click Next.
c) Select the Hello World template.
d) Click Finish.
6. Create a Hello World application (also creates BSP):

a) Click File > New > Application Project.

High-Level Synthesis www.xilinx.com

231

UG871 (v2013.3) November 8,2013

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=231

& XILINX. Using HLS IP in a Zynq Processor Design

b) Enter the project name Zyng_Design_Test
c) Click Next.

d) Select Hello World (if not default).

e) Click Finish.

& New Praject o || = =

Application Project p E

Project narme: Zyng_Design_Test
Use default location
Caxilimavutarials\HLS IPIntegratorlab2yproject Thproject 1 Browsse...

default

Hardwvare Platform ’hw_platform_ﬂ ']
Pracessar ’ps?_cortexag_ﬂ v]
Q5 Platform [standalone VI
Language @C O C++

Board Suppaort Package @) Create New Zyng_Design_Test_bsp

Use existing

@ < Back ’ MNext »] [Finish] ’ Cancel

Figure 238: Application Project

7. Power up the ZC702 board and test the Hello World application:

b. Ensure the board has all the connections to allow you to download the bit stream on the
FPGA device. Refer to the documentation that accompanies the ZC702 development
board.

9. Click XilinxTools > Launch Hardware Server (Figure 239).

C.

High-Level Synthesis www.xilinx.com 232

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=232

& XILINX. Using HLS IP in a Zynq Processor Design

nx 0K
Run Project Window Help
AT E Generate linker script %. @ f; [g \J"- -
il EBoard Support Package Settings
(@ Repositories
systern.xml
. 28 Pragram FPGA
mq_Design_ E Prograrn Flash

m B Launch Hardwrare Server

~|[# *MDConsole

wrget Informatio|] Launch Shell

his Board Suppor) @ Configure JTAG Settings L

fardwvare Specific| #€ System Generator Co-Debug Settings ject_Tiyproject_1.sdkiSDKASDK_E:
Target Prac|] Create Zyng Boot Image

serating System

Figure 239: Launch Hardware

10. Click XilinxTools > Program FPGA (or toolbar icon).
Notice that theDone LED (DS3) is now on.
11. Setup a Terminal in the tab at bottom of of workspace:

a) Click the Connecticon (Figure 240).

Peripheral Drivers

Drivers present in the Board Support Package,
hls_racec_1 hls_racec_top
psf_afi_l generic

psf afi 1 generic
Ll i b

Owerviews | Source

[Z Problems | ¥ Tasks | & Console | = Properties | & Terminal 1 &3 &t =] ik ._,El - h =0
Mo Connection Selected

Figure 240: The Connect Icon

b) Select Connection Type > Serial.

c) Select the COM port to which the USB UART cable is connected (generally not COM1
or COM3)On Windows, if you are not sure, open the Device Manager and identify the
port with the Silicon Labs driver under Ports (COM & LPT).

d) Change the Baud Rate to 115200 (Figure 241).
e) Click OKto exit the Terminal Settings dialog box.

High-Level Synthesis www.xilinx.com 233

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=233

& XILINX.

12. Right-click the application project Zynq_Design_Test in the Explorer pane (Figure 242).

a.

- -

&y

L Praject Explarer &1

4 g Frav_platform_{]
|E] psT_init.c
ll5 ps7_inith
@ psi_inithtml
@ psT_inittcl
system.bit
I systernarml
1=5 Zyng_Design_Tes
Pl @ Zyng_Design_Tes
.1 B3P Documet
» (2= psT_cortexald]
_ libgenlog
libgen.option
& Makefile
Hp, system.mss

X

E [

i

B

L Fumn N

Using HLS IP in a Zynq Processor Design

Flowe Cantrol: | Mane -

Timeout {(sech 5

@Terminal Settings @
Wiew Settings:
“iew Title: Terminal 1
Encoding: 150-8450-1 -
Connection Type:
Serial -
Settings:
Port; COMS -
Baud Rate: 115200 -
Data Bits: 8 -
Stop Bits: i -
Parity: Mane -

Figure 241: Terminal Settings

Click Run As > Launch on Hardware.

= I systernsxml
=1 A

Mewy 3

Ga Into

Open in Mew \Window

i systernamss &3

Zynq_Design_Test_bsp Board Support Package

rompiled to run on the following target,

Copy Cirl+C X X
revtutorial \HLS_IPIntegratorilab2\project_Tiproje

Paste Chrl +4/
ortexald_ll

Delete Delete

Source 3

e,

Renarme... F2

Import... a simple, low-lewvel software layer. It provides acce

Export... 1 exceptions as well as the basic features of a hoste
rtand exit.

Build Project 300 a

Clean Project

Refresh F5

Close Praoject iport Package,

Close Unrelated Projects Ftop

Build Canfigurations 3

Make Targets 3

Index 3
sole B2 E Properties | 4 Terrinal 1

Show in Rermote Systerns view

Carwert To..,

Run As 3 i: 1Launch on Harduvare

Debug &5 v | [E] 2Llocal C/C++ Application

Profile &s » | #7 3 Remote ARM Linux Application

T=m ' Run Configurations...

Compare With 3

Retara frovem |aral Hickane

Figure 242: Run the Application Project

13. Switch to the Terminal tab and confirm that "Hello World” was received (Figure 243).

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com 234

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=234

& XILINX. Using HLS IP in a Zynq Processor Design

FEeripneral Urivers

Drivers present in the Board Support Package,

hls_tmacc_1 hls_macc_top
psT_afi_ll generic

bs¥ afi 1 aeneric
Pl fm S

Owerview | Source

H

[Z Problems | ¥ Tasks | B Console | = Properties | & Terminal 1 &3 I = ._,ul - B -
Serial: (COM3E, 115200, 8, 1, Mone, Mone - COMMECTED) - Encoding: (50-8859-1)
Hello Werld

=08

Mone - COMMECTED) - Encoding: (IS0-8859-1)

Figure 243: Console Output

Step 7: Modify software to communicate with HLS block

The completely modified source file is available in the arm_code directory of the tutorial file set.
The modifications are discussed in detail below.

1. Open the helloworld.c source file.

2. Several BSP (and standard C) header files need to be included:

#include <stdlib.h> // Standard C functions, e.g. exit()
#include <stdbool.h> // Provides a Boolean data type for ANSI/1SO-C
#include "xparameters.h™ // Parameter definitions for processor

peripherals
#include "xscugic.h" // Processor interrupt controller device driver
#include "XHIs_macc.h" // Device driver for HLS HW block

3. Define variables for the HLS block and interrupt controller instance data. The variables will
be passed to driver API calls as handles in the respective hardware.

// HLS macc HW instance
XHIs_macc HlsMacc;

//Interrupt Controller Instance
XScuGic ScuGic;

4. Define global variables to interface with the interrupt service routine (ISR).

volatile static Int RunHIsMacc = 0O;
volatile static int ResultAvailHIsMacc = 0O;

5. Define a function to wrap all run-once APl initialization function calls for the HLS block.

int hls_macc_init(XHls_macc *hls_maccPtr)

XHIs_macc_Config *cfgPtr;
int status;

High-Level Synthesis www.xilinx.com 235

UG871 (v2013.3) November 8,2013 l SendFeedbackI

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=235

& XILINX. Using HLS IP in a Zynq Processor Design

cfgPtr = XHIs _macc_LookupConfig(XPAR_XHLS MACC O _DEVICE_ ID);

if (IcfgPtr) {
print(""ERROR: Lookup of accelerator configuration failed.\n\r");
return XST_FAILURE;

}

status = XHIls_macc_Cfglnitialize(hls_maccPtr, cfgPtr);

iT (status !'= XST_SUCCESS) {
print(""ERROR: Could not initialize accelerator . \n\r');
return XST_FAILURE;

}

return status;

}

6. Define a helper function to wrap the HLS block API calls required to enable its interrupt and
start the block.
void hls_macc_start(void *InstancePtr){
XHIs_macc *pAccelerator = (XHIs_macc *)InstancePtr;
XHIs_macc_InterruptEnable(pAccelerator,l);

XHIs_macc_InterruptGlobalEnable(pAccelerator);
XHIs_macc_Start(pAccelerator);

}

An interrupt service routine is required in order for the processor to respond to an interrupt
generated by a peripheral.

Each peripheral with an interrupt attached to the PS must have an ISR defined and registered
with the PS’s interrupt handler.

The ISR is responsible for clearing the peripheral’s interrupt and, in this example, setting a flag
that indicates that a result is available for retrieval from the peripheral. In general, ISRs should be
designed to be lightweight and as fast as possible, essentially doing the minimum necessary to
service the interrupt. Tasks such as retrieving the data should be left to the main application
code.

void hls_macc_isr(void *InstancePtr){
XHIs macc *pAccelerator = (XHIs _macc *)InstancePtr;

//Disable the global interrupt

XHIs_macc_InterruptGlobalDisable(pAccelerator);
//Disable the local interrupt

XHIs_macc_InterruptDisable(pAccelerator, OXFFFFffrfr);

// clear the local interrupt
XHIs_macc_InterruptClear (pAccelerator,1);

ResultAvailHIsMacc = 1;
// restart the core if it should run again

i f(RunHIsMacc){
hls_macc_start(pAccelerator);
}

}

7. Define a routine to setup the PS interrupt handler and register the HLS peripheral’s ISR.

High-Level Synthesis www.xilinx.com 236

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=236

& XILINX. Using HLS IP in a Zynq Processor Design

int setup_interrupt()

//This functions sets up the interrupt on the ARM
int result;
XScuGic_Config *pCfg =
XScuGic_LookupConFig(XPAR_SCUGIC_SINGLE DEVICE_ID);
if (pCfg == NULL){
print("Interrupt Configuration Lookup Failed\n\r'");
return XST_FAILURE;

}
result = XScuGic_Cfglnitialize(&ScuGic,pCfg, pCfg->CpuBaseAddress);
if(result = XST_SUCCESS){

return result;

}
// self-test
result = XScuGic_SelfTest(&ScuGic);
if(result 1= XST_SUCCESS){
return result;

// Initialize the exception handler
Xil_Exceptionlnit();
// Register the exception handler
//print(""Register the exception handler\n\r'");
Xil_ExceptionRegisterHandler (XIL_EXCEPTION_ID_INT,
(Xil_ExceptionHandler)XScuGic_InterruptHandler,&ScuGic) ;
//Enable the exception handler
Xil_ExceptionEnable();
// Connect the Adder ISR to the exception table
//print(*"Connect the Adder ISR to the Exception handler table\n\r'");
result = XScuGic_Connect(&ScuGic,
XPAR_FABRIC_HLS_MACC_O_INTERRUPT_INTR,
(Xil_InterruptHandler)hls_macc_isr,&HIsMacc);
if(result = XST_SUCCESS){
return result;

by
//print("Enable the Adder ISR\n\r');
XScuGic_Enable(&ScuGic,XPAR_FABRIC HLS MACC O INTERRUPT_INTR);

return XST_SUCCESS;

8. Define a software model of the HLS hardware functionality with which you can compare
reference results.

void sw_macc(int a, int b, int *accum, bool accum_clr)

{
static int accum_reg = 0;
if (accum_clr)
accum_reg = 0;
accum_reg += a * b;
*accum = accum_reg;
}

9. Modify main() to use the HLS device driver API and the functions defined above to test the
HLS peripheral hardware.

int minQ

High-Level Synthesis www.xilinx.com 237

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=237

& XILINX. Using HLS IP in a Zynq Processor Design

{

print("'Program to test communication with HLS MACC peripheral in
PL\N\r');

inta=2, b=21;

int res_hw;

int res_sw;

int i;

int status;

//Setup the matrix mult

status = hls_macc_init(&HIsMacc);

if(status 1= XST_SUCCESS){
print(""HLS peripheral setup failed\n\r');
exit(-1);

//Setup the interrupt

status = setup_interrupt();

if(status = XST_SUCCESS){
print(""Interrupt setup failed\n\r");
exit(-1);

//set the input parameters of the HLS block
XHIs_macc_SetA(&HIsMacc, a);
XHIs_macc_SetB(&HIsMacc, b);
XHIs_macc_SetAccum_clr(&HIsMacc, 1);

if (XHIs_macc_IsReady(&HIsMacc))

print(""HLS peripheral is ready. Starting... ™);

else {
print(*'!1! HLS peripheral is not ready! Exiting...\n\r");
exit(-1);

if (0) { 7/ use interrupt
hls_macc_start(&HlsMacc) ;
while('Resul tAvailHIsMacc)
; // spin
res_hw = XHIs _macc_GetAccum(&HlsMacc);
print(*'Interrupt received from HLS HW.\n\r");
} else { 7/ Simple non-interrupt driven test
XHIs_macc_Start(&HIsMacc);
do {
res hw = XHIs_macc_GetAccum(&HIsMacc);
} while (IXHIs_macc_ IsReady(&HIsMacc));
print(‘'Detected HLS peripheral complete. Result received.\n\r");

//call the software version of the function
sw_macc(a, b, &res_sw, Ffalse);

printF(C'Result from HW: %d; Result from SW: %d\n\r', res_hw, res_sw);
if (res hw == res_sw) {

print(**** Results match ***\n\r");

status = O;

}
else {
print("'11t MISMATCH T I\n\r");
High-Level Synthesis www.xilinx.com 238

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=238

& XILINX. Using HLS IP in a Zynq Processor Design

status = -1;

}

cleanup_platformQ);
return status;

}

10. Save (control-s) the modified source file, and SDK automatically attempts to re-build the
application executable. If the build fails, fix any outstanding issues.

Run the new application on the hardware and verify that it works as expected. Ensure that a TCF
hardware server is running, that the FPGA is programmed and a terminal session is connected to
the UART. Then Launch on Hardware, as you did for the previous Hello World application code.

Upon success, the Terminal session looks similar to Figure 244.

[£0 Problems | ¥ Tasks | El Console | =l Praperties | & Terminal 1 &2 I = s ._,El - - =8
Serial (COMS, 115200, 8, 1, Mone, Mone - COMMECTED) - Encoding: (T50-3859-1)
Result from HW: 42; Result from SW: 42 -

W and HW results match!

Program to test communication with HLS MACC bleck in PL

fccelerstor is ready. Starting... Detected HLS block complete. Result received.
Result from HW: 42; Result from =SW: 42

% Sl oand HW results match ***

m

Figure 244: Console Output with Updated C Program

Lab 2: Streaming data between the Zyng CPU and HLS
Accelerator Blocks

This lab illustrates a common high-performance connection scheme for connecting hardware

accelerator blocks that consume data originating in the CPU memory and/or producing data
destined for it, in a streaming manner.

e This tutorial uses the same Vivado HLS and XFFT IP blocks created in Lab 1 of the tutorial
“Using HLS IP in IP Integrator”. In this lab exercise these blocks are connected to the HPO
Slave AXI4 port on a Zynq7 processing system via an AXI DMA P core.

e The hardware accelerator blocks are free-running and do not require drivers; as long as data
is pushed in and pulled out by the CPU (often simply referred to as the Processing System or
PS).

e The lab highlights the software requirements to avoid cache coherency issues.

High-Level Synthesis www.xilinx.com 239

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=239

& XILINX. Using HLS IP in a Zynq Processor Design

Step 1: Generate the HLS IP

1. From the Vivado HLS command prompt used in Lab 1, change to the lab2 directory as
shown in Figure 245.

2. Run Vivado HLS to create two HLSIP blocks by typing vivado_hls —f run_hls.tcl.

[Vivado HLS 2013.2 Command Prompt o[]

C:\Vivado_HLS_Tutorial\Using_IP_with_Zyng\labl>cd .. »

C:\Wivado_HLS_Tutorial\Using_IP_with_Zynq>cd lab2

C:\Vivado_HLS_Tutorial\Using_IP_with_2yng\lab2>cd hls_designs

C:\Wivado_HLS_Tutorial\Using_IP_with_Zyng\lab2\hls_designs>vivado_hls -f run_hls}g
.tel A

Figure 245: Setup for Zynq Lab 2

When the script completes, there are two Vivado HLS project directories, fe_vhls_prjand
be_vhls_prj, which contain the HLS IP, including the Vivado IP Catalog archives for use in Vivado
designs.

e The "front-end”IP archive is located at fe_vhls_prj/IPXACTExport/impl/ip/
e The "back-end” IP archive is located at be_vhls_prj/IPXACTExport/impl/ip/

Step 2: Create a Vivado Design Suite Project
1. Launch the Vivado Design Suite (not Vivado HLS):

a. On Windows use Start > All Programs > Xilinx Design Tools > Vivado 2013.1 >
Vivado 2013.1

b. On Linux, type vivado in the shell.
2. From the Welcome screen, select Create New Project.
3. Click Next on the first page of the Create a New Vivado Project wizard.

4. Click the ellipsis button to the right of the Project location text entry box and browse to the
lab2 tutorial directory.

5. Click Nextto move to the Project Type page of the wizard.
a. Select RTL Projectand click Next.
b. Do not specify sources at this time (if not the default); just click Next.
c. Do not add any Existing IP; just click Next.
d. Do not add any constraints; just click Next.
6. On the Default Part page click Boards under Specify and select the ZYNQ-7 ZC702

Evaluation Board. Click Next.

High-Level Synthesis www.xilinx.com 240

UG871 (v2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=240

& XILINX. Using HLS IP in a Zynq Processor Design

7. Onthe New Project Summary Page, click Finish to complete the new project setup.

Step 3: Add HLS IP to an IP Repository

1. Inthe Project Manager area of the Flow Navigator pane, click IP Catalog.
2. The IP Catalog appears in the main pane of the workspace.
a. Click the IP Settings icon.
3. IntheIP Settings dialog box, click Add Repository.
4. Inthe IP Repositories dialog box:
a. Browse to the Lab 2 tutorial directory lab2.
b. Click the Create New Folder icon.
c. Enter "vivado_ip_repo” in the resulting dialog.
d. Click OK.
e. Click Selectto close the IP Repository window.
5. Onreturning to the IP Setting dialog box:
a. Click AddIP.

b. Inthe Select IP to Add to Repository dialog box, browse to the location of the HLS IP
lab2/hls_designs/fe_vhls_prj/IPXACTExport/impl/ip/ or, if using IP created in previous
tutorial, browse to the corresponding path.

c. Select the xilinx_com_hls_hls_real2xfft_1_00_a.zip file (Figure 192).
d. Click OK.

6. Follow the same procedure to add the2nd HLSIP package, in directory
lab2/hls_designs/be_vhls_prj/IPXACTExport/impl/ip/ , to the repository:
xilinx_com_hls_hls_xfft2real_1_00_a.zip.

7. The new HLSIP now appears in the IP Setting dialog box (Figure 193).

8. Click OKto exit the dialog box.

9. There is now a Vivado HLSIP category in the IP Catalog and, if expanded, the HLS IP
displays.

Step 4: Create a Top-level Block Design

1. Click Create Block Diagram under IP Integrator in the Flow Navigator.
a. Inthe resulting dialog box, name the design Zynq_RealFFT.
b. Click OK.

2. Inthe Diagram tab, click the Add IP link in the “get started” message.

a. Inthe Search box, type “fourier”.

High-Level Synthesis www.xilinx.com 241

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=241

& XILINX. Using HLS IP in a Zynq Processor Design

b. Press Enter.

3. Double-click the new Fast Fourier Transform IP symbol to open the Re-customize IP dialog
box. On the Configuration tab:

¢. Change the Transform Length to 512.
d. Change the Target Clock Frequency to 100 MHz.
e. Inthe Architecture Choice section, select Pipelined, Streaming I/O
4. Select the Implementation tab:
a. Select ARESETN (active low) in the Control Signals group
b. Verify that Bit/Digit Reversed Order is selected under Output Ordering Options
c. Verify that Non Real Time is selected as Throttle Scheme.
d. Click OKto exit Re-customize IP dialog
5. Add one instance of each of the HLS generated blocks to the design
a. Right-click in any space in the canvas and select Add IP.
b. Type “hls” into the Search text entry box.
c. Highlight both IPs (Click the control key and select both)
d. Press Enter.
Because the output AXI4-Stream interface of the his_xfft2real block does not include a TKEEP
signal, it cannot be directly connected to the AXI DMA (which will be added later). For that
reason, you add a Xilinx AXI4-Stream Subset converter: this block configures automatically.
6. Right-click in any space in the canvas and select Add IP.
a. Type "subset” into the Search text entry box.
b. Press Enter..
7. Connect the HLS blocks to the FFT block.

a. Hover the cursor over the “m_axis_dout” interface connector of the Hls_real2xftt block
until a pencil cursor appears.

b. Left-click and hold down the mouse button to start a connection.

c. Dragthe connection line to the "S_AXIS_DATA"input port connector of the FFT block and
release when a green check mark appears next to it.

8. Ina similar fashion:

a. Connect the FFT's "M_AXIS_DATA" interface to the “s_axis_din” input interface of the
Hls_xfft2real” block.

b. Connect the m_axis_dout pin of the hls_xfft2real_1 component to the S_AXIS pint of the
axis_subset_converter_1 component

High-Level Synthesis www.xilinx.com 242

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=242

& XILINX.

Using HLS IP in a Zynq Processor Design

9. Now put the data processing blocks into their own level of hierarchy.

a. Select everything in the current digram by entering Ctrl+A.

b. Right-click the canvas and select Create Hierarchy from the context menu (Figure 246).

A

Rl ddmEZRAR

J:—“ Diagram X l B Address Editor >

i, Zyng_RealFFT

Block Properties..,
Delete

Copy

Paste

Select &l

Ctrl+E
Delete
Ctrl+C
Ctrl+
Ctrl+&

AddIP...
Custornize Block..,
Orientation

Yalidate Design

Ctrl+1

Fé

tark Debug
Unrmark Debug

Create Hierarchy..,

Create Cormrment

Create Port..

Create Interface Port.,

Regenerate Layout

Ctrl+K
Ctrl+L

Sawve as PDF File...

-bS AXIS_DATA

a

Figure 246: Create a Hierarchy Block

¢. Inthe Create Hierarchy dialog box, enter RealFFT as the Cell name.

d. Ensurethat the Move ‘4’ selected blocks to new hierarchy option is checked, as shown
in Figure 247.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com 243

l Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=243

& XILINX. Using HLS IP in a Zynq Processor Design

¢’ Create Hierarchy @

(ﬁ] Please specify name of hierarchical cell to create in
" Zyng_RealFFT. You can also move selected blocks to new
hierarchy.

Cell name: |FEEIE

Move '4' selected blocks to new hierarchy

oK l l Cancel

Figure 247: Name Hierarchy Block

e. Click OK.

The diagram will look as Figure 248.

Io Diagram ¥ | B Address Editor X

+] | &, Zyno_RealFFT »

J

+

J

|

RealFFT

>
=

B Qe P g

Figure 248: New Hierarchy Block

Add pins to the RealFFT hierarchical block so that you can connect it at the top-level

10. Double-click the RealFFT block to open its diagram (Figure 249).

High-Level Synthesis www.xilinx.com 244

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=244

& XILINX.

o Diagram ¢ | B Address Editor % | Z= Diagram - RealFFT X

Using HLS IP in a Zynq Processor Design

'>|]| i, Zyng_RealFFT » [RealFFT

71 L

B QP80

his_realbét_1

his wffiireal_1 s _subset,_converter_1

E|-s s DATA
B3 aas conen

k

T
vttty =

ot

nvart_ta_n_chimndl_fatf=
wand_dati_out_chinmd_fatf=

iy

i o
e -

HLANES_ AT - B o i [ik btk
k
atn [.]

mare_thst_mising
abschand_hatf

Figure 249: RealFFT Diagram

11. Right-click the s_axis_din pin of the hls_real2xfft_1 block and select Create Interface Pin
from the context menu (Figure 250).

his_real2ait_1

[

& Block Interface Properties..,

&
s
E
&
2 |
Jx
&
lie}
R
&
b
&
]
iz_mmzz
@
/RealFF] il
fReal Flar

Copy

Select &l
AddIP..

Make External
Walidate Design

Start Connection Mode

Create Hierarchy,.,
Create Comment
Create Pin..

Create Interface Pin..

Regenerate Layout

Save as FOF File..,

a1
M_AKIS DA TA
event_frame_stated [

Ctrl+E T
event st mising [
Delete event_status channd_hat [

Crl+C
Ctrl+y/
Ctrl+d,
Ctrl+l
Ctrl+T
Fé

Ctrl+H

Ctrl+K
Ctrl+L

event_caty in_channed_hak =
frent_cata cuf chanrel_Falt

s Trafmsfar

I |

Figure 250: Creating an Interface Pin

12. In the Create Interface Pin dialog box, change the Interface name to realfft_s_axis_din as

shown in Figure 251.

a. Accept all other defaults and click OK.

High-Level Synthesis

UG871 (v2013.3) November 8,2013

www.Xilinx.com 245

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=245

& XILINX. Using HLS IP in a Zynq Processor Design

i =

a“' Create Interface Pin @

Interface name:

WLMY: wilinze, comninterFace: axis_rtl: 1.0 -

Maode: SLAVE -

Connect bo selected inkerface s_axis_din

(4] [Cancel

Figure 251: Naming an Interface Pin

13. Right-click the aclk pin of the his_real2xfft_1 block and select Create Pin from the context
menu.

a. Click OKto accept all defaults in the Create Pin dialog.

L
i "
o™ AT oy g,
& Block Pin Properties,., Ctrl +E
g Delete
B Copy Ctrl+C
Chrl +4
B Select Al Ctrl+2
i addIp. Ctrl +]
®K Make External Ctrl+T
[alidate Design Fa
Start Connection Mode el +H

Create Hierarchy...
Create Comment

Create Pin... Crl +E

et _bd_intf pins Create Interface Pin... Ctl+L pd_intf pins RealFl

de Jlawve -wlnw x] & Regenerate Layout Palfft = axiz_din'

™ Save as PDF File...

Figure 252: Create a Clock Pin

High-Level Synthesis www.xilinx.com 246

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=246

& XILINX. Using HLS IP in a Zynq Processor Design

Once you create this clock pin, the RealFFT diagram appears as shown in Figure 253.

his_realixf_1

= iy

TamF

Figure 253: RealFFT Diagram with Interface Pin and clock pin

14. Following the procedures in steps 11 to 13:

a. Create an interface pin called ‘realfft_m_axis_dout’ connected to the M_AXIS pin of the
axis_subset_converter_1 component.

b. Create a pin for aresetn (from any one of the blocks).

After this step, the RealFFT diagram appears as shown in Figure 254.

| Py

Figure 254: RealFFT Diagram with all pins

Finalize RealFFT block internal connections. The ap_start pins for the HLS blocks are tied
HIGH, and the aclk and aresetn pins on all blocks are tied together.

15. Right-click the canvas and select Add IP from the context menu.
a. Type ‘const’ into the search box and press Enter.

b. Double-click the xlconstant_1 component and verify that the Const Val field in the
Customize IP dialog is set to ‘1" (Figure 255).

High-Level Synthesis www.xilinx.com 247

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=247

& XILINX.

Using HLS IP in a Zynq Processor Design

ﬁ Re-customize IP
Constant (1.0)

ﬁﬂ Documentation ||) IP Location

=5

o

[shaw disabled parts

const[0:0]

Component kame | Zyng_RealFFT_xlconstant_1_0
Const Width 1 Range: 1...409

Const val 1

Figure 255: Create A Constant 1 Tie-Off

16. Following techniques covered in Labl of this tutorial:

a. Connect the output pin of xlconstant_1 to the ap_start pin of hls_real2xfft_1.

b. Connect the output pin of xlconstant_1 to the ap_start pin of his_xfft2real_1.

17. Similarly, connect all remaining component aclk and aresetn pins to the RealFFT block
diagram aclk and aresetn pins respectively.

Leave the S_AXIS_CONFIG input interface of xfft_1 unconnected. For this tutorial, the default
operating modes suffice. Also, leave all other output pins of the components unconnected.
The final RealFFT diagram appears with the connections shown in Figure 256.

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com

248

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=248

& XILINX. Using HLS IP in a Zynq Processor Design

Tw
*

E= Diagram X | B Address Editor % | E= Diagram - RealFFT X O

->|]| &, Zynq_RealFFT v [RealFFT

RAWNSGODTERR

Figure 256: Final RealFFT Diagram

18. Close the RealFFT diagram tab and return to the top-level Zyng_RealFFT diagram.

19. Create the Zynq system.

a. Right-click the canvas of the top-level diagram and select Add IP from the context
menu.

b. Type ‘proce’ in the search box, select ZYNQ7 Processing System and press Enter.

c. Double-click the processing_system7_1 component to enter the Re-customize IP wizard
for the ZYNQ?7.

d. Click the Presets button near the top of the wizard screen, select the ZC702
Development Board Template, and click OK.

e. Click PS-PL Configurationin the Page Navigator pane on the left of the wizard.

f. Expand the HP Slave AXIInterface category and check the box for the S AXI HPO
interface, leaving the S AXI HPO DATA WIDTH at 64.

High-Level Synthesis www.xilinx.com 249

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=249

& XILINX. Using HLS IP in a Zynq Processor Design

ﬁ Re-customize IP
ZY¥YNQ7 Processing System (5.2)

ﬂ Documentation |7 IP Location @p Presets

Page Mavigator € |PS-PL Configuration

Zynq Block Design g\ Search;

PS-PL Configuration = | Mame Select Descripkion
=
s | [General

Peripheral [j Pins =1

2)
£ DMA Controller
b GP Master AT Interface
H- GP Slave AXI Interface
(= HP Slave AXI Interface

MIC Configuration

Clock Configuration

I HPO interface ables AXI high performance s
AXTHPODATA WIDTH
AXIHPL intetface
&1 HPZ interface
-5 AL HP3 interface
£ ACP Slave AT Interface

DDR Configuration | llows HPO to be used in 3264 bit data width mode

4

SMIC Timing Calculation Enables AXI high performance slave inkerface 1

Enables %I high performance slave interface 2
Inkerrupks

3G O]

Enables AxI high performance slave interface 3

Figure 257: Configuring Port HPO

g. Select Clock Configuration in the Page Navigator, expand PL Fabric Clocks, and change
the requested frequency to 100 (MHz).

ﬁ Re-customize IP
ZY¥YNQ7 Processing System (5.2)

ﬁ Documentation || IP Location Et Presets

Page Mavigator < |Cluck Configuration
Zynq Black Design g\ Input Frequency {MHz) 33.333333 CPU Clock Ratio) 6:2:1 -
Search:
PS-PL Caonfiguration Z
Petipheral 1jO Pins % Companent Clock, Source Requested Frequen,,, Ackual Frequency(M... Range(MHz)
E|§ [# ProcessorfMemory Clocks
MIO Configuration [10 Feripheral Clocks

Clock Configuration

.IO PLL = _ 0,100000 : 250.000000

DR Configuration

IO PLL s0 S0.000000 0,100000 : 250.000000
SMC Timing Calculation [7] Folk_clkz IOPLL 50 50.000000 0,100000 : 250.000000
- [0 FLK_CK3 IOPLL 50 50.000000 0,100000 : 250.000000
Interrupts :
System Debug Clocks
Tirners

Figure 258: Configuring the Clock

h. Leave all other settings at their defaults; click OK to apply customizations.
20. Note the Designer Assitance Available notification at the top of the screen.

a. Run Block Automation on /processing_system7_1.

b. Click OKin the resulting dialog box.

21. Add AXIDMAIP to allow the PS to stream data to/from the RealFFT block via its HPO Slave
AXI interface

a. Right-click the canvas and select Add IP from the context menu.

High-Level Synthesis www.xilinx.com 250

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=250

& XILINX.

Using HLS IP in a Zynq Processor Design

b. Type ‘direct’ into the search box and select AXI Direct Memory Access from the menu
and press Enter.

22. Double-click the axi_dma_1 component to open its Re-customize IP dialog and make the
following changes (Figure 259):

a. Disable the Scatter Gather Engine (deselect the option).

b. Set the Memory Map Data Width to 64 for both Read and Write channels.
c. Set the Stream Data Width to 16 for the Read channel (MM2S).

d. Leavethe Stream Data Width at 32 for the Write channel (S2MM).

e. Set the Max Burst Size to 128 for both channels.

f. Enable Allow Unaligned Transfers for both channels.

1F Re-customize IP @
AXI Direct Memory Access (7.0) ﬂ/
ﬁ’ﬂ Documentation |3 IP Location
D Show disabled ports Component Name | Zynq_RealFFT_axi_dma_1_0
b Enable Asynchronous Clocks (Auto)
["] Enable Scatter Gather Engine
Enable Multi Channel Support
PM25_privry_reset_ ot n Enable Control / Status Stream
= qRS_AXIS_S2MM 5 3 t7 t7
= SZMm_prmry_reset_out_n Width of Buffer Length Reqister (8-23) | 14 bits
<P ALLITE M_AXIS_MM25 4k (B e
laxi_resetn > y Enable Read Channel Enable Write Channel
. M_AXI_MM25 R |
m_axi_mm2s_aclk 1
) M_AXT_S2MM o b Mumber of Channels 1 Mumber of Channels 1
rn_ai_s2rmm_aclk) !
X M2 _introut| Memaory Map Data Width | 64 - Memory Map Data Width 64 -
=_axi_lite_aclk
S2mm_introut| Stream Data Width 16 Stream Data Width 32 hd
Max Burst Size 128 - Max Burst Size 28 -
Allows Unaligned Transfers Allows Unaligned Transfers
Use Rxlength In Status Stream
4 {11}

Figure 259: Configuring the AXI Direct Memory Access

23. Note that Designer Assistance is again available. Run Connection Automation on
/axi_dma_1/S_AXI_LITE and click OK in the resulting dialog box.

After running Design Assistance, the diagram appears similar to the one shown in Figure 260.

www.Xilinx.com 251

l Send Feedback I

High-Level Synthesis
UG871 (v2013.3) November 8,2013

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=251

& XILINX.

Using HLS IP in a Zynq Processor Design

Za Diagram X | [Address Edibor %

A | # Zynq_ReslFFT »

Q La Designer Assistance avalable, Run Connection Automation

7|18 R

processing_system?_L

processing_system?7_L_axi_periph

B/ QP

DDR.3.
FIXED I0-1-
- USBIND_0. 3

M_AXI_GRD

Jp——{x00R

;_LDFD(ED

FOLK_CLKD
FOLK_RESETO_N :‘»
19 System

\—— stwest_syne_ci m

mi_resat b

proe_sys_roset

et reset i
—[ena_reset in
={mb_debug_sys Rt interconned_amsen[0:0]
={dem_lacked perphersl_aesetn]

bus_skuet_reset{0 0] jm
periaheral_reser0:0]

Froc Sys Resel

M_AIS_MHRS- - |

115 RS STS 1 B
s M_AKIS_CNTRL T £
- mmizs_prmry_reset_oue_n
—m_axi_sg_aclk

MNS,_eriel_resser oot

—{m_asi_mmzs_ack
={rn_ax_g2emen_sck
|_resstn

sDenen_preney_reset_ot_n
s2men_sts_reset ok n

Figure 260: Zynq Diagram with Internal Connections

24. Run Connection Automation on /processing_system7_1/S_AXI_HPO and click OK to accept
the default connection in the dialog box.

Note: the Connection Automation only connects one of the AXI DMA components M_AXI_* ports
through the axi_mem_intercon component.

25. Double-click the axi_mem_intercon component to re-customize it.

a. Change the Number of Slave Interfaces from 1 to 2. (Figure 261).

b. Click OK.

High-Level Synthesis

UG871 (v2013.3) November 8,2013

www.Xilinx.com

252

| Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=252

& XILINX. Using HLS IP in a Zynq Processor Design

i.} Re-customize IP
AXI Interconnect (2.0)
ﬁﬂ Docurnentation 1 IP Location

Component Mame | Zyna_RealFFT _axi_mem_intercon_3

Top Level Settings | Slave Interfaces | Master Interfaces

Number of Slave Interfaces 2 ~
Number of Master Interfaces 1 -
Interconnect Optimization Strategy Custom "

Axl Interconnect 2.0 includes IP Integratar automatic conwerter insertion and configuration.

when the endpoint IPs attached to the interfaces of the A% Interconnect differ

in width, clack or protocal, 5 converter IP will automatically be added inside the interconnect.
If a converter IP is inserted, IP integrator's parameter propagation automatically

configures the converter ko match the design.

To see which conversion IPs have been inserted, use the IP integrator

‘expand hierarchy' buttons to explore inside the AXI Interconnect hierarhey,

MOTE:addressing information for AXI Interconnect is specified in the IP Integrator address editar.

Enable Advanced Configuration Options

28
A
i
Cancel

Figure 261: Customizing the AXI Interconnect

26. Make a connection between the M_AXI_S2MM port on axi_dma_1 component and SO1_AXI

port on the axi_mem_intercon component.

27. Connect the clocks and reset ports.

a. Connect the axi_mem_intercon SO1_ACLK and SO1_ARESETN ports to the appropriate
nets already present in the diagram (processing_system7_1_fclk_clkO and

proc_sys_reset_peripheral_aresetn, respectively).

b. Connect the m_axi_s2mm_aclk port of the axi_dma_1 component to the clock network.

28. Connect the RealFFT block to rest of the sytem.

a. Make a connection between the realfft_s_axis_din input of the RealFFT block and the

M_AXIS_MM2S output of the axi_dma_1 component.

b. Make a connection between the realfft_m_axis_dout output of the RealFFT block and the

S_AXIS_S2MM input of the axi_dma_1 component.

c. Connect the aclk and aresetn pin of the RealFFT block to the existing networks.

29. Finalize the IPI block diagram design.

a. Select the Address Editor tab and click the Auto Assign Address icon (Figure 262).

High-Level Synthesis www.xilinx.com

UG871 (v2013.3) November 8,2013

253

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=253

& XILINX. Using HLS IP in a Zynq Processor Design

Z Bﬁ Iprocessing_system7_1

| E-H Data

=1

E=Diagram X | B Address Editor X

S e Interface Pin Base Mame Offset Address Range Hig

e fai_dma_t 5_AYI_LITE Reg D0x40400000 64K v Dxd

B E| 1F faxi_dma_1

L BB Data SG
Auto Assign Address
Automatically assign offset address and range to all unmapped slaves

Figure 262: Auto Assign System Addresses

30. To view the completed design, run Validate Design by clicking the icon in the toolbar
(Figure 263).

=

T Y

g | 80D

/9%

M
*

Diagram X | [Address Editor X a

3 ‘ i 2yno_RealFFT »

- Validdate Design

[| " . N .
0 Validation successful, There are no errars or critical warnings in this design,

.

Figure 263: Final Validated Design

Step 5: Implementing the System

Before proceeding with the system design, you must generate implementation sources and
create an HDL wrapper as the top-level module for synthesis and implementation.

1. Return to the Project Manager view by clicking Project Manager in the Flow Navigator.

2. Inthe Sources browser in the main workspace pane, a Block Diagram object named Zynq_
RealFFT appears at the top of the Design Sources tree view. Right-click this object and select
Generate Output Products.

3. Inthe resulting dialog box, click OK to start the process of generating the necessary source
files.

High-Level Synthesis www.xilinx.com 254

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=254

& XILINX. Using HLS IP in a Zynq Processor Design

4. Right-click the Zynq_RealFFT object again, select Create HDL Wrapper, and click OK to exit
the resulting dialog box.

The top-level of the Design Sources tree becomes the Zynq_ RealFFT _wrapper.v file. You are
now ready to synthesize, implement, and generate an FPGA programming bitstream for the
design.

5. Click Generate Bitstream to initiate the remainder of the flow.

6. Inthe dialog that appears after bitstream generation has completed, select Open
Implemented Design and click OK.

Step 6: Setup SDK and test the ZYNQ System

You are now ready to export the design to Xilinx SDK. In SDK, you create software to be run on a
ZC702 board (if available). A driver for the HLS block was generated during HLS export of the

Vivado IP Catalog package and must be made available in SDK for the PS7 software to
communicate with the block.

1. From the Vivado File menu select Export > Export Hardware for SDK.

Note: Both the IPI Block Design and the Implemented Design must be open in the Vivado
workspace for this step to complete successfully.

2. Inthe Export Hardware for SDK dialog box, ensure that the Include Bitstream and Launch
SDK options are checked, and click OK.

SDK opens. If the Welcome page is open, close it.
4. Create a Hello World application (also creates BSP).

a. Select File > New > Application Project.

b. Enter the project name Zynqg_RealFFT_Test.

c. Click Next.

d. Select Hello World (if it is not the default).

e. Click Finish.
5. Power up the ZC702 board and program the FPGA.

Ensure the board has all the connections to allow you to download the bit stream on the FPGA
device. Refer to the documentation that accompanies the ZC702 development board.

a. Select XilinxTools > Program FPGA. The Done LED (DS3) goes on.
6. Set up aTerminal in the tab at bottom of workspace:

a. Click the Connecticon.

b. Select Connection Type > Serial.

c. Select the COM port to which the USB UART cable is connected (generally not COM1 or

COM3)On Windows, if you are not sure, open the Device Manager and identify the port
with the Silicon Labs driver under Ports (COM & LPT).

High-Level Synthesis www.xilinx.com 255

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=255

& XILINX. Using HLS IP in a Zynq Processor Design

d. Change the Baud Rate t0 115200.
e. Click OKto exit Terminal Settings dialog box.
f. Check that terminal is connected by message in tab title bar.
7. Right-click application project Zynq_Design_Test in the Explorer pane
a. Select Run As > Launch on Hardware.
8. Switch to the Terminal tab and confirm that “Hello World” was received.
9. This project uses the C math library (libm), so you must adjust the build settings to link to it.

a. Right-click the zynq_realfft_test project in the Project Explorer pane and select C/C+
Build Settings (Figure 264).

» p—

€ C/C++ - 7yng_realf Run A3 -

File Edit Source Debug As ol
— Prafile s 3
Ci-EHE S " X o

g Barm
I _
Cormpare With *

13 Project Explorer & Restore from Local Histon.., I

- ‘;S"‘ Run CfC++ Code Snalysis Sy
a 3 hu_platform_
|2 psi_initc
[5 ps7_inith | Mf, Change Referenced B3P
@ psi_initht E Create BootImage

Generate Linker Script

8] ps?_wnt.t:: C/T++ Build Settings —
systern.bit d i
IF Fystermxrm Properties Alt+Enter | ’
L zynq_realfft_test Fa\
4 = mna. = Target Processor psT_cortexad_(
+ [np! Includes
- = Debug 0 .
perating System
4 = sec
- J£ helloworld.c Board Support Package OF,
- |h| platfarm_config.h Mame: standalone
-l platform.c Wersion: 3.10.a
. |h| platfarm.h Description: Standalone is a simple, |
] Iscript.ld as wvell as the basic featy
a [zynq_realfft_test_bsp Docurnentation: standalone w3 10 a

-

Figure 264: Specify C/C++ Build Settings

b. Add the ARM gcc linker libraries.
i. Inthe Tool Settings tab, select ‘"ARM gcc linker’ > Libraries.
ii. Click the Add icon (see Figure 265).

High-Level Synthesis www.xilinx.com 256

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=256

& XILINX.

Using HLS IP in a Zynq Processor Design

Properties for zyng_realfft_test

type filter text

> Resource
Builders
4 CfC++ Build
Build Variables
Discowvery Options
Environrment
Logging
Settings
Tool Chain Editor
= CFC++ General
Project References
Run/Debug Settings

Settings

% Tool Settings | Build Steps

Build Ar‘tifactl Binary Parsers | [X] ErrorParsers|

4 I8 ARM gcc assembler
(2 General

4 % ARM gee compiler
(8 Symbals
@ “Warnings
22 Optimization
@ Debugging
(# Prafiling
(Z2 Directaries

Libraries (-I)

&

| Add... |

(2 Miscellaneous
4 @ Inferred Options
@ Software Platform
@ Processor Options
4 B ARM g linker
(2 General
(2 Libraries
@ Miscellaneous

Library search path (-L) &

[,},:‘9 Linker Script |

Figure 265: C/C+ + Build Settings

c. Enter'm’in the text box in the Enter Value dialog box and click OK.

’ Enter Walue @
Libraries (-1
ro|

(] l [Cancel

Figure 266: Library Setting
d. Click OKto exit the Properties for zynq_realfft_test dialog box.

Step 7: Modify software to communicate with HLS block

The completely modified source file is available in the arm_code directory of the tutorial file set.
The modifications are discussed in detail below.

1. Open the helloworld.c source file.
2. Several BSP (and standard C) header files must be included:
#include <stdlib.h> // Std C functions, e.g. exit()

#include <math.h> // libm header: sqrt(), cos(), etc

High-Level Synthesis
UG871 (v2013.3) November 8,2013

www.Xilinx.com 257

l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=257

& XILINX. Using HLS IP in a Zynq Processor Design

#include "xparameters.h" // System parameter definitions

#include "xaxidma.h" // Device driver API for AXI DMA

3. Define the (real data) transform length of the FFT:
#define REAL_FFT_LEN 1024
4. Define a custom complex data type with 16-bit real and imaginary members:
typedef struct {
short re;
short im;

} complex16;

5. Declare helper functions before the definition of main(); they will be defined later.

Note: The init_dma() function wraps up all run-once, initialization AXI DMA driver API calls and
checks that hardware initialization is successful before returning or exiting on an error condition.
The generate_waveform() function is fills an array with a simple, periodic waveform to be used as
input stimulus for the RealFFT accelerator.

int init_dma(XAxiDma *axiDma);

void generate_waveform(short *signal buf, int num_samples);

6. Modify main() to generate and send input data to the RealFFT accelerator and receive the

spectral data from it via the AXI DMA engine. Sections of particular importance will be
discussed in detail.

// Program entry point
int main()
{
a. Declare an XAxiDma instance that will be used as a handle to the AXI DMA hardware:
// Declare a XAxiDma object instance

XAxiDma axiDma;

b. Declare variable for local data storage:

// Local variables

int i, j;

int status;

static short realdata[4*REAL_FFT_LEN];

volatile static complex16 realspectrum[REAL_FFT LEN/2];
¢. Run platform and DMA initialization functions:

// Initialize the platform

High-Level Synthesis www.xilinx.com 258

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=258

& XILINX. Using HLS IP in a Zynq Processor Design

init platform();

print("-------------mm e \n\r");
print("- RealFFT PL accelerator test program -\n\r");
print("-------------me e \n\r");

// Initialize the (simple) DMA engine
status = init_dma(&axiDma);
if (status != XST_SUCCESS) {
exit(-1);
}
d. Generate a stimulus waveform:
// Generate a waveform to be input to FFT
for (i =0; 1< 4; i++)
generate waveform(realdata + i * REAL_FFT_LEN, REAL_FFT_LEN);

e. Before making the DMA transfer request, the buffer containing the data must be flushed
from the processor’s data cache. Without this step, the DMA might pull stale data from
the DRAM.

// *IMPORTANT* - flush contents of 'realdata' from data cache to memory
// before DMA. Otherwise DMA is likely to get stale or uninitialized data
Xil_DCacheFlushRange((unsigned)realdata, 4 * REAL_FFT_LEN * sizeof(short));

f. Request DMA transfer from PS to PL. Enough data to fill the front-end block and the FFT
processing pipelines must be sent in order for spectral data to be ready when the PL to

PS transfer is requested. Therefore, four data sets are sent before the first output set is
requested:

// DMA enough data to push out first result data set completely
status = XAxiDma SimpleTransfer(&axiDma, (u32)realdata,
4 * REAL_FFT_LEN * sizeof(short), XAXIDMA DMA_TO DEVICE);

// Do multiple DMA xfers from the RealFFT core's output stream and
// display data for bins with significant energy. After the first frame,
// there should only be energy in bins around the frequencies specified
// in the generate_waveform() function - currently bins 191~193 only
for (i =0; i < 8; i++) {
g. Request DMA transfer of a frame of FFT spectral data from PL to PS then poll for
completion of the transfer before proceeding.
// Setup DMA from PL to PS memory using
// AXI DMA's 'simple' transfer mode

status = XAxiDma_SimpleTransfer(&axiDma, (u32)realspectrum,

High-Level Synthesis www.xilinx.com 259

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=259

& XILINX. Using HLS IP in a Zynq Processor Design

REAL_FFT_LEN / 2 * sizeof(complex16), XAXIDMA DEVICE_TO DMA);
// Poll the AXI DMA core
do {
status = XAxiDma_Busy(&axiDma, XAXIDMA DEVICE_TO DMA);
} while(status);

h. Before attempting to use the spectral data, the processor’s data cache copy of the buffer

must be invalidated to avoid use of stale data.
// Data cache must be invalidated for 'realspectrum' buffer after DMA
Xil_DCacheInvalidateRange((unsigned)realspectrum,
REAL_FFT_LEN / 2 * sizeof(complex16));

Push another set of stimulus data to the PL in order to start the accelerator processing
the next frame:

// DMA another frame of data to PL
if (!XAxiDma_Busy(&axiDma, XAXIDMA_DMA_TO_DEVICE))
status = XAxiDma_SimpleTransfer(&axiDma, (u32)realdata,
REAL_FFT_LEN * sizeof(short), XAXIDMA DMA_TO DEVICE);
printf("\n\rFrame #%d received:\n\r");

Do something to verify that the accelerator is functioning. In this case, the spectral data
is scanned for bins that contain significant energy. The expectation is to detect only
energy in bins around the single tone (192) generated by the generate_waveform()
function.

// Detect energy in spectral data above a set threshold
for (j = 0©; j < REAL_FFT_LEN / 2; j++) {
// Convert the fixed point (s.15) values into floating point

values
float real = (float)realspectrum[j].re / 32767.60f;
float imag = (float)realspectrum[j].im / 32767.60f;
float mag = sqrtf(real * real + imag * imag);
if (mag > 0.00399625f) {
printf("Energy detected in bin %3d - ",j);
printf("{%8.5f, %8.5f}; mag = %8.5f\n\r", real, imag, mag);
}
}
printf("End of frame.\n\r");
}

PPintf("***************\n\p");
printf("* End of test *\n\r");

pr‘intf("***************\n\r.\n\r‘n);

High-Level Synthesis www.xilinx.com

260

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=260

& XILINX. Using HLS IP in a Zynq Processor Design

return ©;

}

7. Define the helper function that generates the waveform data sets. This version simply fills a

buffer with a single tone with 192 cycles per num_samples data window with values in a S.15
fixed point format.

void generate_waveform(short *signal buf, int num_samples)

{
const float cycles per_win = 192.0f;
const float phase = 0.0f;
const float ampl = 0.9f;
int i;
for (i = 9; i < num_samples; i++) {
float sample = ampl *
cosf((i * 2 * M PI * cycles per win / (float)num_samples) + phase);
signal buf[i] = (short)(32767.0f * sample);
}
}

8. Define a routine to set up the and initialize the AXI DMA engine, wrapping all driver API calls
that only need to be run once at startup.

int init_dma(XAxiDma *axiDmaPtr){
XAxiDma_Config *CfgPtr;
int status;
// Get pointer to DMA configuration
CfgPtr = XAxiDma_LookupConfig(XPAR_AXIDMA_© DEVICE_ID);
if(!CfgPtr){
print("Error looking for AXI DMA config\n\r");
return XST_FAILURE;
}
// Initialize the DMA handle
status = XAxiDma_CfgInitialize(axiDmaPtr,CfgPtr);
if(status != XST_SUCCESS){
print("Error initializing DMA\n\r");
return XST_FAILURE;
}
//check for scatter gather mode - this example must have simple mode only
if(XAxiDma_HasSg(axiDmaPtr)){
print("Error DMA configured in SG mode\n\r");

High-Level Synthesis www.xilinx.com 261

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=261

& XILINX. Using HLS IP in a Zynq Processor Design

return XST_FAILURE;
}
//disable the interrupts
XAxiDma_IntrDisable(axiDmaPtr, XAXIDMA_IRQ_ALL_MASK,XAXIDMA DEVICE_TO DMA);
XAxiDma_IntrDisable(axiDmaPtr, XAXIDMA IRQ_ALL_MASK,XAXIDMA DMA TO_DEVICE);

return XST_SUCCESS;

9. Save the modified source file. As soon as you save the file, SDK automatically attempts to re-
build the application executable. If the build fails, fix any outstanding issues.

10. Run the new application on the hardware and verify that it works as expected. Ensure that
the FPGA is programmed and a terminal session is connected to the UART. Then Launch on
Hardware, as done for the previous Hello World application code.

Conclusion

In this tutorial, you learned:

e How to create Vivado HLS IP using a Tcl script.

e How toimport a design into IP integrator (IPI) and connect it to a Zynq PS.

¢ How to create a software program to control the HLS IP and run this on a board.

e How to create a streaming system with HLS IP.

High-Level Synthesis www.xilinx.com 262

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=262

& XILINX.

Chapter 11 Using HLS IP in System Generator for DSP

Overview

The RTL created by High-Level Synthesis can be packaged as IP and used inside System
Generator for DSP (Vivado). This tutorial shows how this process is performed and demonstrates
how the design can be used inside System Generator for DSP.

This tutorial consists of a single lab exercise.
Labl Description

Generate a design using Vivado HLS and package the design for use with System Generator for
DSP. Then include the HLSIP into a System Generator for DSP design and execute an RTL
simulation.

Tutorial Design Description

You can download the tutorial design file from the Xilinx Website. Refer to the information in

High-Level Synthesis www.xilinx.com 263

UG871 (v2013.3) November 8,2013
l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=263

& XILINX. Using HLS IP in System Generator for DSP

Obtaining the Tutorial Designs.

This tutorial uses the design files in the tutorial directory
Vivado_HLS_Tutorial\ Using_IP_with_SysGen.

The sample design is a FIR filter that uses streaming interfaces modeled with the High-Level
Synthesis hls::stream class. The design is fully pipelined at the function level. The optimization
directives are embedded into the C code as pragmas.

Lab 1: Package HLS IP for System Generator

This lab exercise integrates the High-Level Synthesis IP into System Generator for DSP.

IMPORTANT: The figures and commands in this tutorial assume the tutorial data
directory Vivado_HLS_Tutorial is unzipped and placed in the location
ﬁ C:\Vivado_HLS Tutorial
If the tutorial data directory (s unzipped to a different location, or on Linux systems, adjust
the few pathnames referenced, to the location you have chosen to place the
Vivado_HLS_Tutorial directory.

Step 1: Create a Vivado HLS IP Block

Create two HLS blocks for the Vivado IP Catalog using the provided Tcl script. The script runs

HLS C-synthesis, runs RTL co-simulation, and package the IP for the two HLS designs
(hls_real2xfft and hls_xfft2real).

1. Open the Vivado HLS Command Prompt.

a. On Windows, go to Start > All Programs > Xilinx Design Tools > Vivado 2013.3 >
Vivado HLS > Vivado HLS 2013.3 Command Prompt (Figure 267).

b. On Linux, open a new shell.

Bl Vivado 2013.3 Tcl Shell
g Vivado 2013.3
Accessories
SDK
System Generator
Vivado HLS
Bl Vivado HLS 2013.3 Command Promp
"] vivado HLS 20133

Figure 267: Vivado HLS Command Prompt

2. Using the command prompt window, change the directory to
Vivado_HLS_Tutoria\Using_IP_with_SysGen\labl (Figure 268).

3. Type vivado_hls —f run_hls.tcl to create the HLS IP (Figure 268).

High-Level Synthesis www.xilinx.com 264

UG871 (v2013.3) November 8,2013 l Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=264

& XILINX. Using HLS IP in System Generator for DSP

[Vivado HLS 2013.2 Command Prompt =R

C:\Vivado_HLS_Tutorial>cd Using_IP_with_SysGen

C:\Vivado_HLS_Tutorial\Using_IP_with_SysGen>cd labl

4 |

C:\Uivado_HLS_Tutorial\Using_IP_with_SysGen\labl>vivavo_hls -f run_hls.tcl

Figure 268: Create the HLS Design

A key aspect of the Tcl script used to create this IP is the command export_design —-format
sysgen. This command creates an IP package for System Generator. When the script completes
there is a Vivado HLS project directories fir_prj, which contains the HLS IP, including the IP
package for use in a System Generator for DSP design.

The remainder of this tutorial exercise shows how to integrate the Vivado HLSIP block into a
System Generator design.
Step 2: Open the System Generator Project
1. Open System Generator for DSP.
a. On Windows use the desktop icon (Figure 269).

b. On Linux, open a new shell and type sysgen.

System
(Generat...

Figure 269: System Generator 2013.3 Icon

2. When Matlab invokes, click the Open toolbar button (Figure 270).

HOME

= New Variable Analyze Code
L Sr W [Find Fies v g = L
i+ Open Variable + ﬁf Run and Time
New New |Open |1=] Compare Impart Save
Script - Data Workspace (77 Clear Workspace ~ [Clear Comman
i3 Open. Ctrl=Q

Figure 270: Open the System Generator Design

3. Navigate to the tutorial directory Vivado_HLS_Tutorial\Using_IP_with_SysGen\labl and select
the file fir_sysgen.mdl (Figure 271).

High-Level Synthesis www.xilinx.com 265

UG871 (v2013.3) November 8,2013 | SendFeedback|

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=265

& XILINX. Using HLS IP in System Generator for DSP

OSDisk (C) » Vivado_HLS_Tutorial » Using_IP_wit

MNew folder
Mame

L. fir_pr

fir.cpp
firh

"4 fir_sysgen.mdl

fir_test.cpp

Figure 271: Select File fir_sysgen.mdl

When System Generator invokes, all blocks and ports except the HLS IP are already instantiated
in the design.

4. Right-click in the canvas and select Xilinx BlockAdd, as shown in Figure 272.

b,hﬁr_syr:-;gen
File Edit View Display Diagram Simulation Analysis Code Tools Help
R = EH-E GOP 2 ©v m @ -

fir_sysgen

® |*a|fir_sysgen

nes Xilinx BlockAdd
Xilinx BlockConnect

B UL E e

Xilinx Tools ' g
E'—'D ”””” Xilinx View Signals ...
Cors@nt sprst "
Explore ’
i a——
IWI Can't Undo Ctrl+Z g
Pulse Generator -
Can't Redo Ctrl+Y

B S e N »
. o} Paste Ctrl+V 22

Puke Generatort input_val V_dout
Paste Duplicate Inport

.1 ________ LV _din
. D Select All Ctrl+A

input_val_V/_smpy_n

Constant1 »
. - LV _write
,I} N Find Referenced Variables.. X
— . m‘—‘m_m_v_m"_" Most Frequently Used Blocks AT
Remove Highlighting Ctrl+Shift+H =
;?4 Update Diagram Ctrl+D
Figure 272: Adding an new Block
5. Type "hls” in the Add Block field (Figure 273).
6. Select Vivado HLS.
High-Level Synthesis www.xilinx.com 266

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=266

& XILINX. Using HLS IP in System Generator for DSP

Add block | hls

Vivado HLS

Figure 273: Selecting a Vivado HLS IP Block

7. Double-click the Vivado HLS block to open the Vivado HLS dialog box.
8. Navigate to the fir_prj project and select the solutionl folder (Figure 274).

2 IMPORTANT: System Generator for DSP uses the location of the solution folder to
identify the IP.

9. Click OK to load the IP block.

52 Vivado HLS (Xilinx High Level Sy..| = | & [[w3m]

This block allows including C,C++ and SystemC source files in
System Generator for DSP designs.

Solution with_SysGen/lab1/fir_prij/solution1/'

D Use C simulation model if available

|:| Display signal types

Output Sample Times’SimuIink system period vl

ok || cancel || nelp || appy |

Figure 274: Selecting the FIR IP Block

The FIRIP block is instantiated into the design.
10. Connect the design 1/O ports to the ports on the FIRIP block, as shown in 275Figure 275.

High-Level Synthesis www.xilinx.com 267

UG871 (v2013.3) November 8,2013 | Send Feedback l

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=267

& XILINX. Using HLS IP in System Generator for DSP

*ﬁfir_sysgen
File Edit View Display Diagram Simulation Analysis Code Tools Help

fir_sysgen

=R ol =5

%8 & EH-ECOP = ©- w w5 @-

® |[Palfir_sysgen M
(o
R N
=
System
Genersio
Constant ap_rst 3p_fions
ap_idle * Out | i
ap_start ap_idle -
onsEn ap_start
Constntd e > Out 1 =T —
OUTPM—HI—V—:LHTT:;LQI ap_ready
Conz@nt output_val V_full_n output_vsl_V_din ’WI TR »
ouiput_val_V_din
.—’_—’ﬁﬂ _ input_val_V_dout
Pulsealnﬂ input_val_V_dout LA > Ot I output_wal W e
output val W_wrike
| 1 » in input_val_V_empty n input_val_V_read ='WI
Constant1 input_val V_empy._n input_wval V_read nput_wal V_read
Viwade HLS
Soope
»
Ready 94% oded5 .
Figure 275: Design with All Connections
11. Ensure the simulation stop time says 300 (Figure 275).
12. Click the Run button on the toolbar to execute simulation.
13. Double-click the Scope block to view the simulation waveforms.
Conclusion
In this tutorial, you learned:
e How to create Vivado HLS IP using a Tcl script.
e How toimport an HLS design as IP into System Generator for DSP.
High-Level Synthesis www.xilinx.com 268

UG871 (v2013.3) November 8,2013

| Send Feedback I

http://www.xilinx.com/
http://www.xilinx.com/about/feedback.html?docType=Tutorials&docId=ug871&Title=Vivado%20Design%20Suite%20Tutorial%3A%20High-Level%20Synthesis&releaseVersion=2013.3&docPage=268

	Vivado Design Suite Tutorial: High-Level Synthesis
	Revision History
	Table of Contents

	Chapter 1 Tutorial Description

	Overview
	High-Level Synthesis Introduction
	C Validation
	Interface Synthesis
	Arbitrary Precision Types
	Design Analysis
	Design Optimization
	RTL Verification
	Using HLS IP in IP Integrator
	Using HLS IP in a Zynq Processor Design
	Using HLS IP in System Generator for DSP

	Software Requirements
	Hardware Requirements
	Obtaining the Tutorial Designs
	Preparing the Tutorial Design Files

	Chapter 2 High-Level Synthesis Introductory Tutorial

	Overview
	Lab 1
	Lab 2
	Lab 3

	Tutorial Design Description
	HLS Lab 1: Creating a High-Level Synthesis Project
	Introduction
	Step 1: Creating a New Project
	Understanding the Graphical User Interface (GUI)
	Explorer Pane
	Information Pane
	Auxiliary Pane
	Console Pane
	Toolbar Buttons
	Perspectives
	Synthesis Perspective
	Debug Perspective
	Analysis Perspective

	Step 2: Validate the C Source Code
	Step 3: High-Level Synthesis
	Step 4: RTL Verification
	Step 5: IP Creation

	HLS: Lab 2: Using the Tcl Command Interface
	Introduction
	Step 1: Create a Tcl file

	HLS: Lab 3: Using Solutions for Design Optimization
	Introduction
	Step 1: Creating a New Project
	Step 2: Optimize the I/O Interfaces
	Step 3: Analyze the Results
	Step 4: Optimize for the Highest Throughput (lowest interval)
	Conclusion

	Chapter 3 C Validation

	Overview
	Tutorial Design Description
	Lab 1: C Validation and Debug
	Overview
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Run the C Debugger

	Lab 2: C Validation with ANSI C Arbitrary Precision Types
	Introduction
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger

	Lab 3: C Validation with C++ Arbitrary Precision Types
	Overview
	Step 1: Create and Open the Project
	Step 2: Run the C Debugger
	Conclusion

	Chapter 4 Interface Synthesis

	Tutorial Design Description
	About the Labs

	Interface Synthesis Lab 1: Block-Level I/O protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Create and Review the Default Block-Level I/O Protocol
	Step 3: Modify the Block-Level I/O protocol

	Interface Synthesis Lab 2: Port I/O protocols
	Overview
	Step 1: Create and Open the Project
	Step 2: Specify the I/O Protocol for Ports

	Interface Synthesis Lab 3: Implementing Arrays as RTL Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Synthesize Array Function Arguments to RAM ports
	Step 3: Using Dual-port RAM and FIFO interfaces
	Step 4: Partitioned RAM and FIFO Array interfaces
	Step 5: Fully Partitioned Array interfaces

	Interface Synthesis Lab 4: Implementing AXI Interfaces
	Introduction
	Step 1: Create and Open the Project
	Step 2: Create an Optimized Design
	Step 3: Implementing an AXI4-Lite Interfaces
	Conclusion

	Chapter 5 Arbitrary Precision Types

	Overview
	Tutorial Design Description

	Arbitrary Precision: Lab 1
	Step 1: Create and Open the Project
	Step 2: Review Test Bench and Run C Simulation
	Step 3: Synthesize the Design and Review Results

	Arbitray Precision: Lab 2
	Introduction
	Step 1: Create and Simulate the Project
	Step 2: Synthesize the Design and Review Results
	Conclusion

	Chapter 6 Design Analysis

	Overview
	Lab1

	Tutorial Design Description
	Lab 1: Design Optimization
	Step 1: Create and Open the Project
	Step 2: Review the source Code and Create the Initial Design
	Step 3: Review the performance using the Synthesis Report
	Step 4: Review the Performance using the Analysis Perspective
	Step 5: Apply Loop Pipelining & Review for Loop Optimization
	Step 6: Apply Loop Optimization and Review for Bottlenecks
	Step 7: Partition Block RAMs and Analyze Concurrency
	Step 8: Partition Block RAMs and Apply Dataflow optimization
	Step 9: Optimize the Hierarchy for Dataflow
	Conclusion

	Chapter 7 Design Optimization

	Overview
	Tutorial Design Description
	Lab 1: Optimizing a Matrix Multiplier
	Step 1: Create and Open the Project
	Step 2: Synthesize and Analyze the Design
	Step 3: Pipeline the Product Loop
	Step 4: Pipeline the Col Loop
	Step 5: Reshape the Arrays
	Step 6: Apply FIFO Interfaces
	Step 7: Pipeline the Function

	Lab 2: C Code Optimized for I/O Accesses
	Step 1: Create and Open the Project

	Conclusion

	Chapter 8 RTL Verification

	Overview
	Lab1
	Lab2
	Lab3

	Tutorial Design Description
	Lab 1: RTL Verification and the C test bench
	Step 1: Create and Open the Project
	Step 2: Perform RTL Verification
	Step 3: Modify the C test bench

	Lab 2: Viewing Trace Files in Vivado
	Step 1: Create an RTL Trace File using Xsim
	Step 2: View the RTL Trace File in Vivado

	Lab 3: Viewing Trace Files in ModelSim
	Step 1: Create an RTL Trace File using ModelSim
	Step 2: View the RTL Trace File in ModelSim

	Conclusion

	Chapter 9 Using HLS IP in IP Integrator

	Overview
	Lab1

	Tutorial Design Description
	Lab 1: Integrate HLS IP with a Xilinx IP Block
	Step 1: Create Vivado HLS IP Blocks
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Block Design for RealFFT
	Step 5: Verify the Design

	Conclusion

	Chapter 10 Using HLS IP in a Zynq Processor Design

	Overview
	Lab1
	Lab2

	Tutorial Design Description
	Lab 1: Implement Vivado HLS IP on a Zynq Device
	Step 1: Create a Vivado HLS IP Block
	Step 2: Create a Vivado Zynq Project
	Step 3: Add HLS IP to the IP Catalog
	Step 4: Creating an IP Integrator Block Design of the System
	Step 5: Implementing the System
	Step 6: Developing Software and Running it on the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Lab 2: Streaming data between the Zynq CPU and HLS Accelerator Blocks
	Step 1: Generate the HLS IP
	Step 2: Create a Vivado Design Suite Project
	Step 3: Add HLS IP to an IP Repository
	Step 4: Create a Top-level Block Design
	Step 5: Implementing the System
	Step 6: Setup SDK and test the ZYNQ System
	Step 7: Modify software to communicate with HLS block

	Conclusion

	Chapter 11 Using HLS IP in System Generator for DSP

	Overview
	Tutorial Design Description
	Lab 1: Package HLS IP for System Generator
	Step 1: Create a Vivado HLS IP Block
	Step 2: Open the System Generator Project

	Conclusion

