
Tutorial: Hardware-Software Co-Design using

Xilinx Vivado 2016.3 and the Xilinx SDK

Tutorial for the Nexys A7 FPGA Trainer Board

September 8, 2019

1 Introduction

The objective of this tutorial is to introduce Hardware/Software Co-Design using the Xilinx Vivado
IDE and the Xilinx Software Development Kit (SDK).

In this tutorial you will learn the following topics:

1. How to design a hardware system in the Xilinx Vivado IP Integrator.

2. How to configure that system for the Digilent Nexys A7 Board using the Artix-7 FPGA.

3. How to create a software project for an implemented hardware design.

4. How to load a hardware system onto the Nexys A7 board and execute a software program.

To complete this tutorial, you will need a Nexys A7 board, a micro USB cable, and access to a
computer with the Xilinx Vivado IDE and Xilinx SDK software installed.

2 Preparing the Vivado IDE

In this exercise, we will create a new project in Vivado IDE by moving through the stages of the
Vivado IDE New Project Wizard.

1. Start by launching the Vivado IDE: → Xilinx Design Tools → Vivado 2016.3.

2. When Vivado loads, you will be presented with a splash screen. On the left side are several
options; the right side allows you to choose from previous projects.

3. Select the option to Create New Project and the New Project Wizard will open. Click Next >.

4. Name your project microblaze tutorial and set your project location to H:
engg3050, Ensure that Create Project Subdirectory is selected, then click Next >.

5. At the Project Type dialogue, select RTL Project and select the option Do not specify sources
at this time. Click Next >.

1

6. Next, select the board, using the window shown in figure 1. Select the Boards option at the
top, then choose the Nexys A7-100T, board revision D.0, from the list. You can enter Nexys
in the Search box to narrow your options.

Figure 1: Selecting the Nexys A7-100T board.

After selecting the correct board, click Next >.

7. A summary window will display your choices. If they are all correct, click Finish to create the
project.

Now that we have created the project in Vivado IDE, we can now move on to creating a block
design.

3 Creating a System Design

In this exercise, we will create an embedded microcontroller system and a General Purpose In-
put/Output (GPIO) controller within the general-purpose memory and logic fabric of the Artix-7

2

FPGA. The design uses a MicroBlaze soft microprocessor core and a GPIO controller. The GPIO
controller is connected to the LEDs on the Nexys A7 board. It will also be connected to the
MicroBlaze core via an AXI bus connection, allowing the LEDs to be controlled by a software
application which we will create later in this tutorial.

We will begin by creating a new Block Design in the Vivado IDE.

1. Select the Create Block Design option in the Flow Navigator pane on the left. The Create
Block Design dialog box will open.

2. Name your design microblaze design as shown in Figure 2, and click OK. After a moment,
a canvas will open, showing the diagram of your design.

Figure 2: Create Block Design dialog box.

3. The first IP block that we will add to our design will be the MicroBlaze soft processor. In
the Vivado IP Integrator Diagram canvas, right-click anywhere and select Add IP, as shown
in Figure 3a. Alternatively, select the Add IP button in the toolbar at the left of the canvas,
as shown in Figure 3b.

3

(a) Add IP option.

(b) Add IP from toolbar.

Figure 3: Two ways to add an IP block to your design.

The pop-up IP Catalog Window will open.

4. Enter microblaze into the search field and select the MicroBlaze core, as shown in Figure 4.
Double-click the selection, or press Enter, to select the component.

You should see a similar message to the following in the Tcl Console window to confirm that
the processing system has been added to the design correctly:

create bd cell -type ip -vlnv xilinx.com:ip:microblaze:10.0 microblaaze 0

Messages like this will be displayed in the Tcl Console window for all actions carried out on
IP Integrator blocks.

5. The next step is to connect the interface ports on the MicroBlaze to the top-level interface
ports on the design.

Click the Run Block Automation option from the Designer Assistance message at the top of
the Diagram window, as shown in Figure 5.

The MicroBlaze is a highly-configurable soft processor core, with many options available to
the designer. We will instantiate a simple microprocessor with an AXI port, as our design
will not require interrupts nor see any performance improvements from cache memory, but
will require the use of the AXI bus to interface with peripherals.

4

Figure 4: Add IP selection list.

Figure 5: Run Block Automation option.

Configure your MicroBlaze with the following settings, as shown in Figure 6:

• Local Memory: 32KB

• Local Memory ECC: None

• Cache Configuration: None

• Debut Module: Debug Only

• Peripheral AXI Port: Enabled

• Interrupt Controller: unchecked

• Clock Connection: New Clocking Wizard (100 MHz)

Click OK.

5

Figure 6: Run Block Automation dialog box.

Aside: Caches vs. Block Ram

As you will remember from your computer architecture course, cache is meant to
optimize performance when accessing memory that is not on-chip. However, since
block RAM is on-chip inside the Artix-7, it is as fast as it can be, so there will be
no performance improvement if cache memory is used.

Cache is only necessary if the memory requirements of your design cannot fit entirely
within block RAM. Thus, if off-chip memory is required for your project, you will
see performance improvements to your design when using cache. In this case, as a
general rule, the cache should be sized to hold the data and the inner program loop
of your program.

The Artix-7 is a powerful chip with 4.8 Mb (about 600 KB) of block RAM, imple-
mented as 135 36-kb blocks — well above the minimal requirements of this lab.

The block diagram will be populated with supporting logic requierd for the MicroBlaze to
operate: a MicroBlaze Debug Module to enable JTAG debugging in the software development
process; a Processor System Reset block to interface the on-board reset button with functions
to clear the memory and restart the processor; the local memory module which implements
the RAM; and the Clocking Wizard which uses on-chip PLLs to generate multiple system
clocks with selectable frequency and phase as needed for the design.

6

Note that any IP module can be double-clicked to “look inside” and change settings or see
the details of sub-modules. First, however, we should finish adding the basic elements of our
design by adding the GPIO controller.

6. Click on the Add IP button, and add an AXI GPIO block to the design. Search for GPIO in
the search bar to narrow down your choices, then double-click on AXI GPIO to add the block.

Aside: The AXI Standard

AXI stands for Advanced eXtensible Interface, and the current version is AXI4,
which is part of the ARM AMBA 3.0 open standard. Many devices and IP blocks
produced by third party manufacturers and developers are based on this standard.

AXI buses can be used flexibly, and in the general sense are used to connect the
processor(s) and other IP blocks in an embedded system. In fact there are three
flavours of AXI4, each of which represents a different bus protocol, as summarised
below. The choice of AXI bus protocol for a particular connection depends on the
desired properties of that connection.

• AXI4 — For memory-mapped links, and providing the highest performance:
an address is supplied followed by a data burst transfer of up to 256 data words
(or data beats).

• AXI4-Lite [2] A simplified link supporting only one data transfer per connec-
tion (no bursts). AXI4-Lite is also memory-mapped: in this case an address
and single data word are transferred.

• AXI4-Stream [1] For high-speed streaming data, supporting burst transfers of
unrestricted size. There is no address mechanism; this bus type is best suited
to direct data flow between source and destination (non memory mapped).

The term memory mapped is used in the above descriptions, and it is useful to
briefly confirm its meaning. If a protocol is memory mapped, an address is specified
within the transaction issued by the master (read or write), which corresponds to
an address in the system memory space. In the case of AXI4-Lite, which supports
a single data transfer per transaction, data is then written to, or read from, the
specified address; in the case of AXI4 bursts, the address specified is for the first
data word to be transferred, and the slave must then calculate the addresses for
the data words that follow.

For more details on the AXI interface and interconnects, please consult Chapter 2
of The Zynq Book, www.zynqbook.com.

7. Before you connect everything, there are a few settings that must be adjusted. By default, the
Clocking Wizard expects a differential clock input and an active-high reset switch, but the
Nexys A7 has a single clock crystal signal and an active-low reset.

8. Double-click on the Clocking Wizard to open its settings.

7

Figure 7: The Clocking Wizard settings dialog box.

9. In the Clocking Options tab, under Input Clock Information, set the primary clock to Single-
ended clock capable pin, as shown in Figure 7.

10. In the Output Clocks tab, under Reset Type, select Active Low. This tab is also where addi-
tional clocks are instantiated, if necessary. The designer can select the frequency, phase shift,
and duty cycle for each clock.

Note also that the block representing the Clocking Wizard changes depending on the settings
selected by the designer. It should look like Figure 8. Click OK.

Figure 8: Clocking Wizard block with active-low reset and single-ended clock input.

Now, you can connect the IP blocks to each other and to the external components on the
Nexys A7 board.

11. Select Run Connection Automation in the green bar at the top of the screen. The Run Con-
nection Automation dialog box will open.

8

In this box, you can set the parameters for connections for three components: the GPIO
module, the Clock Wizard, and the Reset module.

12. Under axi gpio 0, select GPIO. As you are interfacing with the 16 on-board LEDs: under
Select Board Part Interface, choose led 16bits (16 LEDs). Note the other options here: the
AXI GPIO block can also be used to drive the switches, pushbuttons, seven-segment displays,
and RGB LEDs.

13. Next, select the All Automation check box to enable automation for all five available signals,
as shown in Figure 9. Click OK.

Figure 9: Run Connection Automation dialog box.

The input ports sys clock and reset, and the output port led 16bits, along with seven IP blocks,
should now be visible on your design. Your design should be similar to Figure 10, but the
positions of ports, nets and blocks may vary slightly.

9

Figure 10: Completed MicroBlaze GPIO design.

IP Integrator will automatically assign a memory map for all IP that is present in the design.
We will not be changing the memory map in this tutorial, but for future reference we will
take a look at the Address Editor.

14. Select the Address Editor tab from the top of the Workspace window, as shown in Figure 11,
and expand the Data group.

Figure 11: Address Editor tab.

You can see that IP Integrator has already assigned a memory map (the mapping of specific
sections of memory to the memory-mapped registers of the IP blocks) to the AXI GPIO
interface, and that it has a range of 64K. A different block of addresses has been assigned to
the instruction and data memory for the MicroBlaze core.

Now that our system is complete, we must first validate the design before generating the HDL
design files.

15. Save your design by selecting File → Save Block Design from the Menu Bar.

16. Validate the design by selecting Tools → Validate Design from the Menu Bar. This will
run a Design Rule Check (DRC). After a moment, Validate Design dialogue should appear
to confirm that validation of the design was successful. Click OK to dismiss the message.

10

With the design successfully validated, we can now move on to generating the HDL design
files for the system.

17. Switch to the Sources tab by selecting Window → Sources from the menu bar.

18. In the Sources window, right-click on the top-level system design, which in this case is mi-
croblaze design, and select Create HDL Wrapper, as shown in Figure 12.

Figure 12: Address Editor tab.

The Create HDL Wrapper dialog will open. Select Let Vivado manage wrapper and auto-update
and click OK. This will generate the top-level HDL wrapper for our system.

All of the source files for the IP blocks that were used in the IP Integrator block diagram,
as well as any relevant constraints files, will be generated during the generation of the HDL
wrapper. As the target language was specified as VHDL, all generated source files are VHDL.

With all HDL design files generated, the next step in Vivado is to implement our design and
generate a bitstream file.

19. In the Flow Navigator pane, select Generate Bitstream from the Program and Debug section.
If a dialog window appears prompting you to save your design, click Save. If Vivado prompts
you to launch synthesis and implementation first, click Yes to accept.

The combination of running synthesis, implementation and bistream generation may take up
to ten minutes. Progress can be monitored using the progress bar in the top right corner of
the Vivado window, and messages will appear in the tabs of the Results Window Area pane
at the bottom of the screen.

20. Once the bitstream has been generated, a dialog window will open to inform you that the
process has been completed successfully, as shown in Figure 13.

21. Select Open Implemented Design and click OK. At this point you will be presented with the
Device view, where you can see the resources utilized by the design. With the default colour
scheme, these are shown in light blue.

With the bitstream generated, the building of the hardware image is complete. It must now
be exported to a software environment where we will build a software application to control
and interact with the custom hardware.

11

Figure 13: Bitstream generation completed.

The final step in Vivado is to export the design to the SDK, where we will create the software
application that will allow the MicroBlaze processor to control the LEDs on the Nexys A7
board.

22. Select File → Export → Export Hardware... from the Menu Bar.

23. The Export Hardware dialog window will open. Ensure that the option to Include Bitstream
is selected, as in Figure 14, then click OK.

Figure 14: Export hardware for SDK.

NOTE: For the option to Include Bitstream to be eneabled, an implemented design must be
active. This is the reason we opened the implemented design after bitstream generation in
Step 20.

24. Launch the SDK in Vivado by selecting File → Launch SDK from the Menu Bar and click
OK.

12

4 Creating a Software Application in the SDK

Next, we will create a simple software application which will control the LEDs on the Nexys A7
board. The software application wlil run on the MicroBlaze processor and communicate with the
AXI GPIO block which is connected to the LEDs. We will take a look at the software drivers that
are created by IP Integrator for each of the IP modules, before building and executing the software
on the development board.

The SDK should have opened after the conclusion of the previous section. If it did not open,

you can open the SDK by navigating to → Xilinx Design Tools → Xilinx SDK 2016.3
When launching the SDK from the start menu, you will need to specify the workspace that was
created when the Vivado IP Integrator design was exported. It should be:

H:\engg3050\microblaze tutorial\microblaze tutorial.sdk

Enter this into the Workspace field of the Workspace Launcher dialog window when the SDK
opens.

With the SDK open, we can begin the creation of our software application. You will already
be able to see the Hardware Platform Project, which will automatically be created and opened. It
is now necessary to add an Application Project and a Board Support Package.

• Select File → New → Application Project from the Menu Bar.

• The New Project dialog window will open. In the Project Name field, enter LED test. Leave
the other options as default, as shown in Figure 15. Click Next >. Do not click Finish.

• At the New Project Templates dialog box, select Empty Application, and click Finish.

The project should open automatically. We can now import some pre-made code for the
application. The source code for this lab is contained in the file LED test microblaze.c and
can be found on the course website, or in the appendix of this lab.

13

Figure 15: Creating a new Application Project in SDK.

• In the Project Explorer panel, expand newly-created project LED test and highlight the src
directory. Right-click and select Import... as shown in Figure 16.

Figure 16: Import source files into project.

14

• The Import window will open. Expand the General option and highlight File System, as in
Figure 17a, and click Next >.

• In the Import File System window, click the Browse... button. Browse to the directory
location where you saved the source code file, and click OK.

• Select the file LED test microblaze.c, as shown in Figure 17b, and click Finish.

(a) Import dialog box.

(b) Import file system dialog.

Figure 17: Importing code from a file within the file system.

The C source file will be imported and the project should automatically build. You should
see a similar message to Figure 18 in the Console window.

• Expanding the src folder and double-click on LED test microblaze.c to open the source
file and explore the code.

Note the function XGpio Initialize(&Gpio, GPIO DEVICE ID) which is a function provided
by the GPIO device driver in the file xgpio.h. It initializes the XGpio instance Gpio, with
the unique ID of the device specified by GPIO DEVICE ID.

At the top of LED test microblaze.c, you will see that GPIO DEVICE ID is defined as
XPAR AXI GPIO 0 DEVICE ID. The value of this constant can be found by right-clicking its
name in the code window, and clicking Open Declaration. This will open the file
xparameters.h, an auto-generated file containing the definitions of all of the hardware pa-
rameters in the system.

15

Figure 18: Building the project.

The function XGpio SetDataDirection(&Gpio, LED CHANNEL, 0x0000) is also provided by
the GPIO device driver, and sets the direction of the specified GPIO port. As we are specifying
LEDs, we want to set this port as an output. Bits set to ‘0’ are outputs, and bits set to ‘1’
are inputs. As there are 16 LEDs on the Nexys A7 board, by setting the direction to a value
of 0x0000, we are setting all 16 LEDs as outputs.

Further information on the peripheral drivers can be found by selecting the system.mss tab.
A list of all peripherals in the system is provided, along with links to available documentation
and examples.

The next step is to program the MicroBlaze with the bitstream file that we generated in
Vivado.

• First, the three board jumpers must be set correctly. Set the power jumper (located beside
the USB port) to USB, as shown in Figure 19.

Figure 19: Settings for the power jumper.

16

• There are two programming jumpers: JP1, located near the VGA port, and JP2, located
approximately one inch (3 cm) below the power switch. Set both JP1 and JP2 to USB, as
shown in Figure 20.

Figure 20: Settings for programming jumpers.

• Connect the PROG UART port of the Nexys A7 board to the PC via the provided USB
cable, and power on the board.

• Download the bitstream by selecting Xilinx Tools → Program FPGA from the Menu Bar in
the SDK. The Program FPGA window will appear. The Bitstream field should already be
populated with the correct bitstream file, as shown in Figure 21.

17

Figure 21: Building the project.

• Click Program. Once the device has been successfully programmed, the DONE LED on the
Nexys A7 board will turn green.

With the bistream programmed, we can now launch our software program on the Nexys A7.

• Select the top-level project LED test in the Project Explorer. Right-click and select Run
As → Launch on Hardware (GDB)

After a few seconds, the LEDs on the Nexys A7 board should begin to flash between two
states as shown in Figure 22.

In summary, a GPIO controller and MicroBlaze processor have been successfully implemented
in the FPGA fabric of the Artix-7 device. The MicroBlaze processor was then programmed to
control the LEDs by means of a standalone software application with the capability to interface
with the GPIO controller in the FPGA fabric.

18

Figure 22: The two possible states of the flashing green LEDs.

5 Acknowledgements

This tutorial has been written and compiled by Matt Saunders. Images are of the Xilinx Vivado
2016.3 FPGA design suite including the Xilinx Software Development Kit. This tutorial is a
derivative of the following work:

L.H. Crockett, R. A. Elliot, M. A. Enderwitz and D. Stewart, The Zynq Book Tutorials for Zybo
and Zedboard, First Edition, Strathclyde Academic Media, 2015.

Text and diagrams contained in this document are used for non-profit academic purposes with
permission of the original authors, and may be reproduced in their entirety and used for non-profit
academic purposes, provided that a clear reference to the original source is made, in the style given
above, in all derivative documents.

19

6 Appendix: LED test microblaze.c

/*

* LED_test_microblaze.c

* Created on: 14 July 2019

* Author: Matt Saunders

*

* Adapted from LED_test.c by Ross Elliot, The Zynq Book Tutorials.

*/

/* Include Files */

#include "xparameters.h"

#include "xgpio.h"

#include "xstatus.h"

#include "xil_printf.h"

/* Definitions */

#define GPIO_DEVICE_ID XPAR_AXI_GPIO_0_DEVICE_ID /* GPIO device */

#define LED 0xC3C3 /* Initial LED value - XX0000XX_XX0000XX */

#define LED_DELAY 10000000 /* Software delay length */

#define LED_CHANNEL 1 /* GPIO port for LEDs */

#define printf xil_printf /* smaller, optimised printf */

XGpio Gpio; /* GPIO Device driver instance */

int LEDOutputExample(void) {

volatile int Delay;

int Status;

int led = LED; /* Hold current LED value. Initialise to LED definition */

/* GPIO driver initialisation */

Status = XGpio_Initialize(&Gpio, GPIO_DEVICE_ID);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*Set the direction for the LEDs to output. */

XGpio_SetDataDirection(&Gpio, LED_CHANNEL, 0x0000);

/* Loop forever blinking the LED. */

while (1) {

/* Write output to the LEDs. */

20

XGpio_DiscreteWrite(&Gpio, LED_CHANNEL, led);

/* Flip LEDs. */

led = ~led;

/* Wait a small amount of time so the LED blinking is visible. */

for (Delay = 0; Delay < LED_DELAY; Delay++);

}

return XST_SUCCESS; /* Should be unreachable */

}

int main(void) {

int Status;

/* Execute the LED output. */

Status = LEDOutputExample();

if (Status != XST_SUCCESS) {

xil_printf("GPIO output to the LEDs failed!\r\n");

}

return 0;

}

21

	Introduction
	Preparing the Vivado IDE
	Creating a System Design
	Creating a Software Application in the SDK
	Acknowledgements
	Appendix: LED_test_microblaze.c

