Tutorial: Building an Embedded Processor System on
a Xylinx Zyng FPGA (Profiling)
Shawki Areibi, Matt Saunders

October 28, 2019

Contents

INEFOQUCTION ...ttt e bt e st e s bt e e bt e e sabe e e sabeesabeesbeeesabee e neeesaseesaneeesareeanns 3
(0] oY [T 4 1YL= PPN 3
PrOCEAUNE ...ttt sttt e b e bt e s b et she e s at e et e e bt e sbeesaeesatesab e e b e e beeameesmeeeneeentean 3
REGUITEBIMENTS ...ttt et ettt e e e e e e s tb et e e e e e e s s be bt e eeeeseasaasbebaeeeesssaassbeaaaeeeessasnsrenaeaeas 3
Part 1: Building a Zynq-7000 Processor HardWarecccceeiiiiiieiiiiiie s eeieee e srieee s esvee e s sveee s s v 4
T (o e [¥Tord o] o H TSROSO UPTO PO PRTRPRRTN 4
Step 1: Start the Vivado IDE and Create @ PrOJECT.......coocciiiee ittt ettt e et e e e e saree e e enraee e 4
Step 2: Create an [P INtEErator DESIZN ...cocuuviiiiiiieiieeiiiteeee ettt sttt e e e e s s s s saabt e e e e e e s s ssssareneeeeesssnnas 5
CUSTOMIZE INSTANTIATEA 1P ...ttt st st e s e e e sabe e s bbeesareesbeeesareenn 9
USE BlOCK DESIGNEI ASSISTANCE.......vviiiieiiieecciiee ettt e e ettt e e eette e e eetee e e e ree e e esbeeeeessbaeeeeenteeaeesnbeeeesenseeeeeansenas 11
(o [T = o T\ 1=Ta o YA 1V - T FO PP 12
Step 3: Generate HDL DESIGN FlESuviiiiiiiieiciiie ettt ettt e e st e e e saaa e e e e saaae e e e asaeeeean 15
Step 4: Implement Design and Generate BitStream........ccc.viiiiciieieeiiiie et e e et e e e aaee e 17
Step 5: EXPOrt HAardWare t0 SDKttt e e e e et e e e e e e s e s anbaaee e e e e e eesnnstaaneeeeeeanns 17
(25 oToT o (o] 1 GOSN 17
Part 2: Build Zyng-7000 Processor SOFEWArE..............oooiieeiiiiiiieeiee ettt eeceeirre e e e e e e e eseiraeeeeeeeeesnannnes 18
Step 1: Start SDK and Create a Software AppPliCatioN.......c..eeieeciiiiieciiie e e 18
Step 2: Run the SOftware ApPPliCatioN.......c.uiii i et e e s e e e e saba e e e e eaeeeeas 22
Add @ Break POINT c..coieiieceeee ettt s s et r e s s e e ne 27
Step 3: EXECULING The SOTTWAIE.....co ittt e et e e et e e e e eatae e e e abaeeeeentbeeeeannaneaean 28
Part 3: Profiling an APPlICation...............c..ooiiiiii ittt e et e e e e are e e e eanes 28
Step 1: EXport the design t0 the SDK ... it e e e rare e e e aaa e e e e sataeeeesaaeeaean 28
Step 2: Create the apPPliCAtioNuiiiieee e e e e e e e e e e e e e e e e e nrreaeeaaeeeenas 30
Step 3: Run the Application and Profile............eeii i e aaee e 30
Step 4: Invoke gprof and analyze the reSUILS.........cooiiii e aaee e 33

(o] 1] 113 1] IR 34

Appendix A: ZedBoard CONNECLIONoiiiiiiiiiiiiiiie et e e st e e s s e e e s ssabee e s ssbeeessnareeas 35

Introduction

This tutorial will guide you through the process of using Vivado and IP Integrator to create a complete
Zyng ARM Cortex-A9 based processor system targeting the ZedBoard Zynq development board. You will
use the Block Design feature of IP Integrator to configure the Zynq PS and add IP to create the hardware
system, and SDK to create an application to verify the design functionality. It will also guide you through
the process of profiling an application and analyzing the output.

Objectives

After completing this tutorial, you will be able to:

¢ Create an embedded system design using Vivado and SDK flow

e Configure the Processing System (PS)

e Add Xilinx standard IP in the Programmable Logic (PL) section

¢ Use and route the GPIO signal of the PS into the PL using EMIO

¢ Use SDK to build a software project and verify the functionality in hardware.
e Set up the board support package (BSP) for profiling an application

¢ Set the necessary compiler directive on an application to enable profiling

e Setup the profiling parameters

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the tutorial.
This tutorial comprises three stages (each consisting of several steps): You will create a top-level project
using Vivado, create the processor system using the IP Integrator, add two instances of the GPIO IP,
validate the design, generate the bitstream, export to the SDK, create an application in the SDK, and, test
the design in hardware. You will then be able to profile the application and produce statistics that will
help you understand the main bottlenecks of your application.

Requirements

The following is needed in order to follow this tutorial:

e Vivado 2016.3 with Xilinx SDK
e ZedBoard, version D.

Part 1: Building a Zyng-7000 Processor Hardware

Introduction

In this part of the tutorial you create a Zyng-7000 processor based design and instantiate IP in the
processing logic fabric (PL) to complete your design. Then you take the design through implementation,
generate a bitstream, and export the hardware to SDK.

If you are not familiar with the Vivado Integrated Development Environment Vivado (IDE), see the
Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Step 1: Start the Vivado IDE and Create a Project

1. Start the Vivado IDE (Figure 1) by opening the program from the Start Menu.
¢ Vivado 2016.3 = (] X

File Flow Tools Window Help

VIVADO/ £ XILINX

HLx Editions ALL PROGRAMMABLE.
Quick Start Recent Projects
Vil £ 1
. i =l -
N udlf
Create New Project Open Project Open Example Project
Tasks
& &
A . 4
= . T—
Manage IP Open Hardware Manager Xilinx Tdl Store

Information Center

o & @
O

Documentation and Tutorials Quick Take Videos Release Notes Guide

5 Td Console

Figure 1: Vivado 2016.3 Getting Started screen.

2. Fromthe Getting Started screen, select Create New Project. The New Project Wizard opens (Figure
2).
3. Click Next.

¢ New Project X

Create a New Vivado Project

\/ | \/ADO' This wizard will guide you through the creation of a new project.

HLx Editions
To create a Vivado project you will need to provide a name and a location for your project files. Next, you will
specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a
default part.

To continue, dick Next.

? Back Finist Cancel

Figure 2: Create New Project Wizard.

4. In the Project Name dialog box, type the project name and location. Ensure that Create Project
Subdirectory is selected, and click Next.

In the Project Type dialog box, select RTL Project, then click Next.

In the Add Sources dialog box, select RTL Project, then click Next.

In the Add Existing IP dialog box, click Next.

In the Add Constraints dialog box, click Next.

In the Default Part dialog box, select Boards and choose the ZedBoard Zynq Evaluation and
Development Kit. Make sure that you have selected the proper Board Version to match your
hardware. Click Next.

L o N

10. Review the project summary in the New Project Summary dialog box before clicking Finish to
create the project.

Step 2: Create an IP Integrator Design

1. In the Flow Navigator, select Create Block Design (Figure 3).

¢ zynq_tutorial - [C:/temp/zynq_tutorial/zynq_tutorial.xpr] - Vivado 2016.3
File Edit Flow Tools Window Layout View Help

2o RlX DD XS X L@ |SoefutLayout
Flow Navigator ? <<i ‘| Project Manager - zyng_tutorial

& Z % Sources

RISl Gl

=) Design Sources

|4 Project Manager
ﬁ Project Settings
¥ Add Sources

ot
{/' Language Templates
1F 1P Catalog
4 Properties
4 = B
‘ Generate Block Design H Select an object to see prt

Figure 3: Create Block Design option in Flow Navigator.

2. In the Create Block Design dialog box, specify a name for your IP subsystem design (Figure 4).

¢ Create Block Design X

Please specify name of block design.

Design name: zyg _Hesign_l }
Directory: | <Local to Project> |
Specify source set: f{j Design Sources v |

B o i

Figure 4: Create Block Design dialog box.

3. Right-click in the Vivado IP Integrator workspace, and select Add IP (Figure 5).

) - = Ctrl+E

X : Delete

= : Ctrl+C

B te Ctrl+V

&, Searc Ctrl+F

I Selectal Ctrl+A ‘

B AddIP.. Ctri+l |
Add Module...

& IP Settings...

& Vvalidate Design F6
Create Hierarchy... ‘

Create Comment
Create Port... Ctrl+K
Create Interface Port... Ctrl+L
@ Regenerate Layout
| B SaveasPDFFile...

Figure 5: Add IP.

4. In the search field, type zynq to find the ZYNQ7 Processing System IP, and then press Enter on the
keyboard (Figure 6).

|
| Search: | 4~ zyng (1 match) |

Figure 6: The IP Integrator IP Catalog.

Because you selected the ZedBoard when you created the project, the Vivado IP Integrator
configures the design appropriately.
In the Tcl Console, you see the following message:

create_bd_cell -type ip -vinv
xilinx.com:ip:processing_system7:5.5 processing_system7_0

There is a corresponding Tcl command for all actions performed in the IP Integrator. Those
commands are not shown in this document; see the Tcl Console for each action for information
those commands.

5. Inthe IP Integrator workspace header, click Run Block Automation (Figure 7).

&= Diagram X | [Address Editor X |

*[] #% zynq_design_1

Q¢ | (@& Designer Assistance available. Run Block Automation

Figure 7: Run Block Automation.

6. The Run Block Automation dialog box opens (Figure 8), allowing you to select the interfaces to
connect to the ZYNQ7 core. Click OK.

¢ Run Block Automation

X

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left
to display its configuration options on the right.

@, E-f] All Automation (1 out of 1 selected)

: Description
B ™ EEdorocessing_system7_0

This option sets the board preset on the Processing System. All
current properties will be overwritten by the board preset. This
action cannot be undone. Zyng7 block automation applies current
board preset and generates external connections for FIXED_IO,
Trigger and DDR interfaces.

& B4

NOTE: Apply Board Preset will discard existing IP configuration -
please uncheck this box, if you wish to retain previous
configuration.

Instance: /processing_system7_0
Options

Make Interface External: FIXED_IO, DDR
Apply Board Preset:

Cross Trigger In: Disable ~

Cross Trigger Out: Disable ~

conce

Figure 8: Block Automation dialog box.

After running block automation on the Zyng processor, the IP Integrator block diagram should look
as follows (Figure 9).

processing_system7_0

M_AXI_GPO_ACLK ZYNQ‘

~

DDR 5F
FIXED_IO<F
USBIND_04F
M_AXI_GPO<F
TTCO_WAVED_OUT
TTCO_WAVE1_OUT
TTCO_WAVE2_OUT
FCLK_CLKO
FCLK_RESETO_N

-

ZYNQ7 Processing System

||~ DDR
|| FIXED_IO
|

Figure 9: Zyng Processing System after running Block Automation.

7. Now you can add peripherals to the processing logic (PL). To do this, right-click the IP Integrator
diagram and select Add IP.

8. In the search field, type gpi to find the AXI GPIO IP, and then press Enter to add the AXI GPIO IP to

the design.

9. Repeat the action, typing axi bram to find the AXI BRAM Controller, and typing block to find and add
the Block Memory Generator. The Block Design window matches Figure 10. The relative positions

of the IP will vary.

axi_bram_ctrl_0 axi_gpio_0 processing_system7_0
i i35 0 s ma 00 fl—{> DOR
BRAM_PORTA .||
||| -+:BRamM_poRTA ‘ , axi_ack . adack GOl FIXED_IO_. ||—DFD(ED 10
J BRAM_PORTB -1 || USBIND 0.
Block Memory Generator . 2x|_aresetr 5_axi_aresetn X -,:
BT R TTT ———— M.AXI_GFO.;.
AXI BRAM Controller AXI GPIO -

~{(M_AXI GPO_ACLK ZYNO TTCO_WAVED_OUT]|
x TTCO_WAVEL_OUT
TTCO_WAVE2_OUT]|
FOLK_CLKD

Customize Instantiated IP

Figure 10: Block Design after instantiating IP.

1. Double-click the Block Memory Generator IP to open the Re-customize IP dialog box.
2. In the Basic tab of the dialog box (Figure 11), set:

¢ Mode to BRAM Controller
¢ Memory Type to True Dual Port RAM.

Click OK.

Q: Re-customize P

Block Memory Generator (8.3)

W Documentation [IP Location

Component Name ‘zynq_design_l_blk_mem _gen_O_O
[[] Show disabled ports Basic | 5

afjons | Other Options | Summary |

| BRAM Controller 3| enerate address interface with 32 bits

e | True Dual PortRAM +
¥ | Common Clock

ECC Options
ECC Type No ECC ™

Error Injection Pins | Single Bit Error Injection v

JhBRAM_PORTA Write Enable
27BRAM_PORTB Byte Write Enable
" Rute Qiza (hite) | R -

Figure 11: Customize Block option.

3. Connect the Block Memory Generator to the AXI4 BRAM Controller by clicking the connection point
and dragging a line between the two IP blocks (Figure 12).

axi_bram_ctrl_0

blk_mem_gen_0

| dRS_AXI
. BRAM_PORTA<: ||| |||4=BRAM_PORTA

s _axi_adk
S ey BRAM_PORTB <= ||_|| 4 BRAM_PORTB

Block Memory Generator

AXI BRAM Controller

Figure 12: Connected AXI BRAM Controller and Block Memory Generator.

The AXI BRAM controller provides an AXI memory map interface to the Block Memory Generator.

10

Use Block Designer Assistance

Block Designer Assistance helps connect the AXI GPIO and AXI BRAM Controller to the Zyng-7000 PS.

1. In the IP Integrator workspace header, Click Run Connection Automation (Figure 13 to open the
Run Connection Automation dialog box.

o Diagram X B Address Editor X

Qt (@ Designer Assistance available. Run Connection Automation

<X

wooow
[
“
*

.

Figure 13: Connected AXI BRAM Controller and Block Memory Generator.

2. In the Run Connection Automation dialog box, under axi bram ctrl #, select S AXI. Ensure
itscheckbox is selected, then for the Clock Connection, select Auto.

3. Click OK. This action instantiates an AXI Interconnect IP as well as a Processor System Reset IP, and
makes the interconnection between the AXl interface of the GPIO and the Zyng-7000 PS.

4. Select Run Connection Automation again. Under axi gpio #, select the check-box beside GPIO.
Under Select Board Interface, select leds 8bits, as in Figure 14.

11

¢ Run Connection Automation

left to display its configuration options on the right.
Q| B [m] All Automation (1 out of 2 selected)
— =+-[m] £F axi_gpio_0

28 :

= ¥ @ 26

=5 14k s_axt

?

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the

Description

Connect Board Part Interface to IP interface.
Interface: /axi_gpio_0/GPIO
Options

Select Board Part Interface: | leds_8bits (LED)

y

Cancel

Figure 14: Select Board Interface options.

5. Click OK. This step also configures the IP so that during netlist generation, the IP will create the
necessary Xilinx Design Constraints (XDC).

6. Select Run Connection Automation one last time, to connect the GPIO to the AXI bus. Again, select
the check-box beside S AXI, and for Clock Connection, select Auto.

Editing the Memory Map

This completes the connections between the Zynq7 Processing System and the peripherals. The IP
Integrator block diagram should look something like Figure 15, though the positions of the IP can vary.

12

{Dleds_8hits
rst_ps7_0_100M axi_mem_intercon
T "
i : vest_sync_dk mb_reset i-4S00_AXE
4_gplo 0 reset_in bus_strudt_reset[0:0] A
|-pS_AX Qaux_reset_in peripheral_reset{0:0] m
s ad adk GPIO-L]| —(mb_debug sys_rst : S pak BBl L —BE]I))(ED &
ad_aresetn ~Jdem_locked st]f 0_ARESETN | I%I Iml_Axl)
» = 0ACK g
AXI GPIO Processor System Reset oy
1ACLK
1_ARESETN
AXI Interconnect

processing_system?7_0

axi_bram_ctrl_0
—_——

ilus aa blk_mem_gen_0
ok ERAMLPORTA s =
BRAM_POR!) M_AXI_GPO_ACLK WA T
24 _aresetn = ||ﬂ—[| _4BRAM_PORTB A ZYNO m wuﬁ zr-
AXI BRAM Controller Block Memory Generator TTCO_WAVE2_OUT =

FOLK_ QKO —
FOLK_RESETO_N

ZYNQ7 Processing System

Figure 15: Zynqg Processor System, connected to peripherals.

1. Click the Address Editor tab to show the memory map of all the IP in the design. In this case, there
are two IP: the AXI GPIO and the AXI BRAM Controller. The IP Integrator assigns the memory maps
for these IP automatically, but you can change them if necessary.

2. Change the range of the AXI BRAM Controller to 64K, as shown in Figure 16.

Q Cell Slave Interface Base Name Offset Address Range High Address
ey El{_k processing_system7_0

g =] ﬂ Data (32 address bits : 0x40000000 [1G])

=

e A) T
] o am_qpto 0 0x4120_0000 8¢ A |0x4120 FFFF

16K

32

128K

256K

512K v |

Figure 16: Setting AXI BRAM Controller to 64K range.

3. Save your design with Ctrl-S or by selecting File — Save Block Design.

13

4. Fromthetoolbar, runDesignRulesCheckbyclickingthe ValidateDesign button(Figurel7).
Alternatively, you can select Tools — Validate Design from the menu, or you can right-click in the
workspace and select Validate Design.

¢ zynq_tutorial - [C:/temp/zynq_tutorial/zynq_tutorial.xpr] - Vivado 2016.3
File Edit Flow Tools Window Layout View Help

RBoeRh X3 D XS X X G [Socw

Flow Navigator ? K I\/alid ate Design (F6) rlq_design_l
A8 Design 2 _ O 12 X | [%aDagr
QA = IE R o

Figure 17: Validating the design.

5. The Validate Design Successful dialog box should appear. Click OK.

14

Step 3: Generate HDL Design Files
Now, you will generate the HDL files for the design.

1. In the Sources window, right-click the top-level subsystem design and select Generate Output

Products (Figure 18). This generates the source files for the IP used in the block diagram and the
relevant constraints file.

‘ Block Design zynq_desigﬁ;r

Sources

) AR S 12—$Diagram
M B9 g - B me | [=
A= el RE & [ca
=] = Design Sources (1) Z =-4F pro
i &fr"’l’mj TR e 1 O < e = g
-5 Constraints | & Source Node Properties... Ctrl+E =]
=-{& Simulation S¢ (* Open File Alt+0 T4

- sim_1(1]

Create HDL Wrapper...

View Instantiation Template
Generate Output Products...
Reset Qutput Products...

Figure 18: Generating output products.

2. The Generate Output Products window opens (Figure 19). Leave the default settings and click OK.
X

¢ Generate Output Products

The following output products will be generated.

Preview

@ | -4 2yng_design_1.bd (0OC per IP)
- Il Synthesis

-l Implementation

5 il Simulation

i

& B

Synthesis Options

() Global

(® Out of context per IP

() Out of context per Block Design
Run Settings

Number of jobs: |2 +

? Apply Cancel

Figure 19: Generating output products.

15

3. In the Sources window, select the top-level subsystem source, and select Create HDL Wrapper to

create an example top-level HDL file (Figure 20)). Select Let Vivado manage wrapper and
autoupdate and click OK.

Block Design - zyng_design_1
|
Sources

A«‘jf. Constraints | (3 Open File Alt+0
=+ Simulation S |
B8 sm_1(Create HDL Wrapper... y‘

— (3=
Q=2 RE Q
E}v-{i:j. Design Sources (1) E
i E}&,D N [2<S]
(e
[

-0 zynd (G Source Node Properties... Ctrl+E |

View Instantiation Template

Figure 20: Creating the HDL wrapper.

16

Step 4: Implement Design and Generate Bitstream

1. In Flow Navigator, click Generate Bitstream to implement the design and generate a BIT file. Note:
If the system requests to re-synthesize the design before implementing, click No. The previous step
of saving the constraints caused the flow to mark synthesis out-of-date. Ordinarily, you might want
to re-synthesize the design if you manually changed the constraints, but for this tutorial, it is safe to
ignore this condition.

You may also see a dialog box stating that no implementation results are available. Click Yes to
proceed with synthesis, implementation and bitstream generation.

2. After the design implementation, the Bitstream Generation Completed window appears (Figure 21).
Select Open Implemented Design and then click OK. You may get a warning that the
implementation is out of date— click Yes.

Bitstream Generation Completed X

"0} Bitstream Generation successfully completed.

Next

(® Dpen Implemented Desigré

() View Reports
O Open Hardware Manager

() Generate Memory Configuration File

[[] Don't show this dialog again

Cancel

Figure 21: Bitstream generation completed.

Step 5: Export Hardware to SDK

In this step, you export the hardware to description to the Xilinx Software Development Kit (SDK) for use
in Part 2. Both the IP Integrator block diagram and the implemented design must be open to export the
design to the SDK.

IMPORTANT: for the Digilent driver to install, you must power on and connect the board to the
host PC before launching SDK.

Export to SDK

1. In the Flow Navigator, click Open Block Design to invoke the IP Integrator design.

17

2. On the Menu Bar, select File — Export — Export Hardware (Figure 22).
Sources™ .] Netlist

@ Add Sources... AlFA [R
Open Source File... Ctrl+N ties
Import > r OJ :
Export ? Export Hardware...
Launch SDK Export Constraints...
Open Log File Export Pblocks...

Figure 22: Export Hardware menu option.

3. The Export Hardware dialog box opens. Ensure that Include bitstream is selected, then click OK.

¢ Export Hardware X

Export hardware platform for software development
tools.

Include bitstream

Export to: | & <Local to Project> N

Figure 23: Export Hardware dialog box.

4. On the Menu Bar, select File = Launch SDK. Click OK in the dialog box to launch SDK.
Part 2: Build Zyng-7000 Processor Software

In this portion of the tutorial you will built an embedded software project that prints “Hello, World” to
the serial port. Connect two micro USB cables and the 12V power adapter to the ZedBoard (see Appendix
A for more details).

Step 1: Start SDK and Create a Software Application

1. If you are doing this lab as a continuation of Part 1 then SDK should have launched in a separate
window. You can also start SDK from the Windows Start Menu by clicking on E - xilinx Design
Tools — Xilinx SDK 2016.3.

2. When launching SDK from the Start Menu, you must select the correct workspace. You can select
the workspace by clicking on File — Switch Workspace — Other in SDK. In the Workspace Launcher
dialog box, in the Workspace field, point to the SDK Export folder where you had exported your

18

hardware. Usually, this is located at ..\ project name\project _name.sdk\SDK\SDK Export. Now you
can create a “hello, world” application.
3. Select File = New — Application Project (Figure 24).
@ C/C++ - zynq_design_1_wrapper_hw_platform_0/system.hdf - Xilinx SDK
File Edit Navigate Search Project Run XilinxTools Window Help

New Alt+Shift+N > (S1 Application Project
Open File... EA SPM Project
Ml Daaed Ciinnn B B

Figure 24: New Application Project.

4. In the Project Name field, type Zynq Design, and click Next (not Finish), as in Figure 25.

19

New Project

Application Project

Create a managed make application project.

Project name: | Zynq_Design

[~ Use default location

Location: | CG\temp\zyng_tutorial\zyng_tutorial.sdk\Zynq_Design Browse...
Choaose file systern; [default
OS Platform: ;standalone V‘
Target Hardware
Hardware Platform: }zynq_design_1_wrapper_hw_platform_O A ‘ \ New... 1
Processor: ‘ ps7_cortexad_0 v[
Target Software
Language: @C OC++
Compiler: 32-bit
Board Support Package: (®) Create New I Zynq_Design_bsp
Use existing
@ < Back Next > ’ I Finish I ‘ Cancel

Figure 25: Setting up the new Application Project.

5. From the available templates, select Hello World (Figure 26), and click Finish.

20

B New Project O X

Templates :
Create one of the available templates to generate a fully-functioning @

application project.

Available Templates:

Dhrystone Let's say 'Hello World' in C.
Empty Application

IwlP Echo Server

Memory Tests

OpenAMP echo-test

OpenAMP matrix multiplication Demo
OpenAMP RPC Demo

Peripheral Tests

RSA Authentication App

Zynq DRAM tests

Zynq FSBL

@ Met» | FEnish || Cancel

Figure 26: Selecting the new project template.

6. The program will begin compiling in the SDK. When it finishes compiling, you will see the console
messages shown in Figure 27.

[*7 Problems lé Task51 &) Console 2 ‘ | Properties! El spk Terminal‘ =
O ¢ B EEE& B0

CDT Build Console [Zynq_Design]

A
'Invoking: ARM v7 Print Size'

arm-none-eabi-size Zyng Design.elf |tee "Zyng Design.elf.size"
text data bss dec hex filename
22336 1148 22568 46052 b3e4 Zyng_Design.elf
'Finished building: Zyng Design.elf.size'

17:45:07 Build Finished (took 4s.288ms)

Figure 27: Compilation messages in the SDK Console.

21

Step 2: Run the Software Application

Now, you must run the “Hello, World” application on the ZedBoard. Make sure that your hardware is
powered on and a USB cable is connected to the PROG port of the ZedBoard. Also ensure you have a USB
cable connected to the UART port of the ZedBoard. Please check Appendix A for more guidelines.

1. Download the bitstream to the FPGA by selecting Xilinx Tools — Program FPGA from the menu
bar (Figure 28).
s - Xilinx SDK

Run Xilinx Tools Window Help

4

15 Ta] Generate linker script v
— i}, Board Support Package Settings

system.hdf Hh
(%% Repositories

' ng_Design_|

>m_(23 Program FPGA A an_
2 Dump/Restore Data File

Nodify this BSP's S¢

Al Program Flash

Figure 28: Program FPGA menu option.

2. Ensure that the path to the bitstream (created in Part 1) is correct, then click Program. The DONE
LED on the board turns blue if the programming is successful.

3. Inthe Project Explorer pane, select and right-click the Zynq Design application.
Select Debug As — Debug Configurations (Figure 29).

22

[Project Explorer &2 = “:@‘ ¥ ¥ = 8 ||45 system.hdf Il'\ system.mss &3 ’

> lear==="" Zynq_Design_bsp Board S
v (3 zp New > ynqg_uesign_bpsp poar ug
€ Go Into N
r | Modify this BSP's Settin s | Re-generate
% Open in New Window ' y 2 E5
€ =] Copy Ctrl+C Target Information
? Paste Ctrl+V This Board Support Package is compiled tc
L# 3 Delete Delete Hardware Specification: C:\temp\zynq_tu
= Source > Target Processor: ps7_cortexa9_0
= Move... o Sk
. & erati stem
> B Zy Rename... F2 . ol
Board Support Package OS.
g Import.. Name: standalone
iy Export. Version: 6.0
] 7 Description: Standalone is a simple, |
Build Project environment, such as st
Clean Project Documentation: standalone v6 0
&1 Refresh F5
Close Project Peripheral Drivers
Close Unrelated Projects Drivers present in the Board Support Packa
— . = axi_bram_ctrl_0 bram C
Build Configurations > Sakiies ;
axi_gpio_0 gpic C
Run As > ps7_afi_0 generic
Debug As 2> .§F 1 Launch on Hardware (System Debugger)
Compare With > BA 2 Start Performance Analysis
Restore from Local History... 1§::F 3 Launch on Hardware (System Debugger on QEMU) C
C/C++ Build Settings Gi‘s 4 Launch on Hardware (GDB) C
fa] Generate Linker Script [€] 5Local C/C++ Application
i, ChangeReferenced BSP Debug Configurations... L
oo e g L
2 Create Boot Image
ps7_dma_s dmaps C
>
feain ps7_ethernet_0 emacps C
Properties Alt+Enter ps7_globaltimer_0 generic
ps7_gpio_0 gpiops C

Figure 29: Debug Configurations menu option.

5. Inthe Debug Configurations dialog box, right-click Xilinx C/C++ application (GDB) and select New
(Figure 30).

23

@ Debug Configurations

Create. manage. and run configurations

B ¢.¢'| B

|

| type filter text

[Performance Analysis

E Target Communication Framework

gD:B Xilinx C/C++ application (GDB)

Tit:F Xilinx C/C++ application (Syster | = New
$a Xilinx C/C++ application (Systel Duplicate

J Delete

Filter matched 5 of 15 items

Configure launch settings from this dialog:
- Press the 'New' button to create a configuration of the selected type,
/| - Press the 'Duplicate’ button to copy the selected configuration.
3 - Press the 'Delete’ button to remove the selected configuration.
=0 - Press the 'Filter' button to configure filtering options.

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the 'Perspectives’ preference
page.

)

Debug Close

Figure 30: Debug Configurations dialog box.

6.

24

In the Debug Configurations dialog box, leave the settings as default, and select Debug.

B Debug Configurations X

Create. manage. and run configurations

Name: | Zynq_Design Debug
| type filter text @ Target Setup O Application | & Sourcely %’ sTDIO Connectionil (3 Debugger Options'\ >
FA Performance Analysis "
E Target Communicatic || | Debug Type: | Standalone Application Debug
v GiD:B Xilinx C/C++ applicat : e e - - T 1 N
- 2 : v
¢ Gin's Zynq Design Deb onnection: Loca | New
§& Xilinx C/C++ applicat ||| peyice: [Auto Detect Select... |
ri:‘r Xilinx C/C++ applicat .
Hardware platform: ‘vzynq_design_1_wrapper_hw_platform_O v
Processor: ‘. ps7_cortexa9_0 v ‘
Bitstream file: [zynq_design_1_wrapper.bit | ?geardr\... : Erowse... .‘
Initialization file: I ps7_init.tcl | Search... VBrowse...
Summary of operations to be performed
'Reset Processor v| Followin§ opérations will be performed before launchingthe A
- |debugger.
Program FPGA |1. Reset processor.
. |2, Run ps7_init. (Only first time after System reset or board
Run ps7_init \power ON) v
< >
: i Revert Apply
Filter matched 6 of 16 items

®

Figure 31: Debug Configurations dialog box.
7. You will be asked to confirm a perspective switch— click Yes. The Debug perspective will open.

8. To connect to the ZedBoard serial port, select the SDK Terminal tab in the console panel, then click
the % to create a new serial connection, as in Figure 32.

25

£ Console 1»('_'_1 Tasks} & SDK Terminal 2 |I.°;_ Problems% Q Executables% @ il

Click on + button to add a port to the terminal,

SEnd . Clear

Figure 32: Creating a new serial connection.

9. Use the settings in Figure 33 to set up the serial port. Check the Windows Device Manager on your
workstation for the USB Serial Port to determine which COM port is connected to the ZedBoard.
Once the settings are correct, click OK.

B Connect to serial port X
Basic Settings
Pot: | COMG v
Baud Rate: | 115200 ~

v Advance Settings

Data Bits: 8 v
Stop Bits: 1 v
Parity: None w
Flow Control: |None v

Timeout (sec): I

Figure 33: Setting up the serial port.

10. Verify the Terminal connection by checking the status at the top of the tab (Figure 34).

26

B Console | & Tasks | Bl SDK Terminal 52 | 1&] Problems | (3 Executables |

Connected to: Serial (COMSG, 115200, 0, 8)
Connected to COMG at 115200

Figure 34: Terminal connection verification.

11. In the Debug tab, expand the tree, and select the processor core on which the program is to be
run (Figure 35).

35 Debug 2 | &7
v & Zynq_Design Debug [Xilinx C/C++ application (GDB)]
v EE{ XMD Target Debug Agent (2019-10-28, 6:04 PM) (Suspended)
v @ Thread [1] (Suspended: Breakpoint hit.)
= 1 main() helloworld.c:55 0x001005ec
p arm-xilinx-eabi-gdb (2019-10-28, 6:04 PM)
g C\temp\zynq_tutorial\zynq_tutorial.sdk\Zynq_Design\Debug\Zynq_Design.elf (2019-10-28, 6:04 PM) [

i v = 0|

Figure 35: Terminal connection verification.

12. If not already open, select ../src/helloworld.c, and double-click to open the source file.
Add a Break Point

Next, you will add a break point at the line which prints “Hello World.”

1. Select Navigate — Go to Line. To go to line 57, type 57.
2. Double-click to the left of Line 57, which adds a break point on that line. (Figure 36)

27

#include <stdio.h>
#include "platform.h"”
#include "xil printf.h"

—int main()
{
init platform():

| print("sello Worldin\r"):

cleanup platform():;
return 0;

Figure 36: Adding a break point.

Step 3: Executing the Software

This step will take you through executing the code up to and past the break point.

1. Click the Resume button, or press F8.
2. Click the Step Over button, or press F6.

3. If everything worked correctly, you should see “Hello World” printed in the terminal. (Figure 37)

"E Console | &) Tasks | &l SDK Terminal 2 |'®/ Problems| {2 Executables

Connected to COMS at 115200
Hello World

Figure 37: Terminal output.

Part 3: Profiling an Application

Step 1: Export the design to the SDK

In this part, you will use the same hardware configuration and bitstream to profile a matrix multiplication
application.

1. Follow Part 1 of the tutorial to create a bitstream and export it to SDK.

28

2. If SDK is still open from the previous step, return to the C/C++ view using the selector in the top
right corner of the program.

3. In SDK, select File = New — Board Support Package.

4. Leave the default settings; notice the new board support package is named standalone bsp _0. Click
Finish.

5. The Board Support Package Settings window will appear. Select Overview — standalone, click on
the drop-down arrow over the enable sw intrusive-profiling Value field, and select true, as in
Figure 38).

@ Board Support Package Settings X
Board Support Package Settings
Control various settings of your Board Support Package.
v Overview
standalone Configuration for OS: standalone
¥ g Name Value Default Type
ps7_cortexad_0 3 i
stdin ps7_uart_1 none peripheral
St ps7_uart_1 none peripheral
v
m oblaze_e t false false boolean
v enable_sw_intrusive_profiling false false boolean
: none peripheral
< >

6.

Figure 38: Board Support Package Settings window.
Select Overview — drivers — ps7 cortexa9 and in the extra compiler _flags field, add -g -pg to the

front of the other flags, as in Figure 39. The complete field should read:
-g -pg -mcpu=cortex-a9 -mfpu=vfpv3 -mfloat-abi=hard -nostartfiles

29

m Board Support Package Settings
Board Support Package Settings
Control various settings of your Board Support Package. "-@»

v Overview

standalone Configuration for OS: ps7_cortexad_0
¥ amen Name Value Default Type
ps7_cortexad_0 : : 5 X
archiver arm-none-eabi-ar arm-none-eabi-ar string
compiler arm-none-eabi-gcc arm-none-eabi-gcc string
compiler_flags - -02-c string
extra_compiler_flags -g -pg -mcpu=cortex-a9 ... -mcpu=cortex-a9 -mfpu... string

1:.’:):)

Figure 39: Adding compiler flags for profiler.

Step 2: Create the application

1. Select File = New — Application Project.

2. Enter tutorial-profile as the project name, select the Use existing standalone bsp 0 option, and click

Next (not Finish).
3. Select Hello World from the Available Templates window, and click Finish.

4. Replace the Hello World C program with the C code (matrixoperations.c) found on the course

website.
5. Save the program and it should compile successfully and generate the tutorial-profile.elf file.

Step 3: Run the Application and Profile

Place the ZedBoard in JTAG boot-up mode. See Appendix A for ZedBoard connection details.
Power on the board.
In SDK, select Xilinx Tools — Program FPGA and click on Program.

vk wnNE

box, and click OK (Figure 40).

30

In the Project Explorer, right-click on the tutorial-profile directory, and select C/C++ Build Settings.
Under the ARM gcc compiler group, select the Profiling subgroup, then check the Enable Profiling

& Tool Settings i Devices #° Build Steps Build Artifact [si Binary Parsers €@ Error Parsers

v &3 ARM v7 gcc assembler [Enable Profiling (-pg)
%3 General

v £ ARM v7 gcc compiler
(23 Symbols
(23 Warnings

(%3 Optimization

(22 Miscellaneous

v (2 Inferred Options
4B Cafhuara Diatfarm

Figure 40: Compiler setting to enable profiling.

6. From the menu bar, select Run — Run Configurations... and double-click on Xilinx C/C++ application
to create a new configuration.
For SDK 2019.1, select Applications - Advanced Options -» Edit..., as in Figure [a].

7. Click on the Enable Profiling check-box. Enter 100000 (100 kHz) in the Sampling Frequency field,
enter 0x10000000 in the scratch memory address field, and click Apply, as in Figure 41 or in Figure
[b].

(L &S X| B~ uamezitutorial-profile Debug I

type filter text ® Target Setup | [7] Application | % STDIO Connection | g? Profile Optionrs'] Common| |

EA] Performance Analysis
[E Target Communication Framework
v & Xilinx C/C++ application (GDB)

GDE
go-s tutorial-profile Debug Sampling Frequency (Hz):
£ Xilinx C/C++ application (System Debugger
TCF i in Si %
Xilinx C/C++ application (System Debugger Shistageam Bin See (woidk D
Scratch memory address to collect profile data:

| /] Enable Profiling

TEF

< >
Revert Apply

Filter matched 6 of 13 items

Figure 41: Profiling options

31

X B - Name: [GDB Debugger using Debug_tutorial-profile.elf on Local
Yp =L @ Target Setup | [7] Application t Debuggel‘ =] Common
5 Suriary

formance Analysis ()

get Communication Framework Download Processor Project Application Details

nx C/C++ Applicatien (GDB) psT_cortexad_0 tutorial-profile Debug/tutorial-profile.elf reset = tr

GDB Debugger using Debug_tut] ps7_cortexad_ reset = tr

GDB Debugger using Debug_Zy

nx C/C++ application (System D

nx C/C++ application (System D
Project Name: | tutorial-profile |
Application: | Debug/tutorial-profile.elf I
Reset processor
O Stop at program entry
Advanced Options: Edit...

v
< >

< >

) . Revert Apply

Filter matched 7 of 10 items

Figure [a] Profiling options in Vivado 2019.1

BB Advanced Options X
Configure advanced options

Configuration s valid.

Profiling Options

Enable Profiling (gprof)

Sampling Frequency (Hz): |l 100000 |

Scratch memory address to collect profile data: | 0x10000000 1

Data Files to download before launch

File Address Add..

Remove

Relative...

Figure [b] Inside the Advance Options

8. Click the Run button to download the application and execute it.
The program will run, and when execution has completed, a message will be displayed indicating
that the profiling results are being saved in the gmon.out file at the tutorial-profile\Debug directory.

32

Step 4: Invoke gprof and analyze the results

1. Expand the Debug folder under the tutorial-profile project in the Project Explorer view, and
doubleclick on the gmon.out entry (Figure 42).
[Project Explorer &2 |
v (i standalone_bsp_0
i BSP Documentation
(= ps7_cortexad_0
@ Makefile
i, system.mss
v (=& tutorial-profile
*.;;p Binaries
[l Includes
v (= Debug
&= src
%5 tutorial-profile.elf - [arm/le]
® gmon.out
@ makefile
@ objects.mk
| ® sources.mk
= tutorial-profile.elf.size

|=] Xilinx.spec

Figure 42: Invoking gprof on gmon.out.

2. The Gmon File Viewer dialog box will appear showing tutorial-profile.elf as the corresponding
binary file. Click OK. The gprof viewer will load in the log panel.

3. Click on the Sort samples per function button (| R] |).

4. Click in the %Time column to sort in the descending order (Figure 43).

33

SDK Log | [@ gprof 22

SR SRR

gmon file: C:\temp\zynq_tuto}iéi\zynq;tﬁ;(ofigl.scrirkr\tir.lrtor'iiarl-prbrfi'ler\rDébuér\gmon.odt
program file: C:/temp/zynq_tutorial/zynq_tutorial.sdk/tutorial-profile/Debug/tutorial-profile.elf
16 bytes per bucket, each sample counts as 10.000us

[W]
{7

=

=

‘It-,r'pe filter text

Name (location) Samples Calls Time/Call % Time

v Summary 1048 100.0%
XScuGic_Devicelnitialize 0 1 Ons 0.0%
XScuGic_RegisterHandler 0 1 Ons 0.0%
XUartPs_SendByte 978 185 52.864us 93.32%

. Xil_L2CacheDisable.part.1 18 1.72%
__do_global_dtors_aux 1 0.1%
cleanup_platform 0 1 Ons 0.0%
cortexad_init 1 0 0.1%
disable_caches 0 1 Ons 0.0%
enable_caches 0 1 Ons 0.0%

. init_candidate_image 1 1 10.000us 0.1%
init_platform 0 1 Ons 0.0%
init_ref_image 0 1 Ons 0.0%
init_uart 0 1 Ons 0.0%
main 0 0 0.0%
matrix_add 1 1 10.000us 0.1%
matrix_multiply 18 1 180.000us 1.72%
mcount 3 0.29%
outnum 0 0 0.0%
print 0 0 0.0%
sad 26 24 10.833us 2.48%
xil_printf 1 0 0.1%

Figure 43: Sorting results.

5. Go back to the Run Configuration, and change the sampling frequency to 1000000 (1 MHz) and
profile the application again.

6. Invoke gprof, select the Sort samples per function output, and sort the %Time column. Notice that
the output has better resolution and reports more functions and more samples per function calls.

7. Close the SDK and Vivado programs by selecting the File — Exit in each program.

8. Turn OFF the power on the board.

Conclusion

This tutorial led you through the process of using SDK and gprof to profile a software application run on a
custom hardware configuration.

34

Appendix A: ZedBoard Connection

The ZedBoard must be connected with two micro USB cables and a power supply, as shown in Figure ??

below. Additionally, the jumpers JP7, JP8, JP9, JP10 and JP11 must be connected to ground as shown in
the figure.

Figure 44: ZedBoard hardware configuration.

35

