Building an Embedded Processor System
on a Xilinx Zync FPGA (Profiling): A Tutorial
Embedded Processor Hardware Design
October 6th 2017.

Table of Contents
Requirements	3
Part 1: Building a Zynq-7000 Processor Hardware	4
Introduction	4
Step 1: Start the Vivado IDE and Create a Project	4
Step 2: Create an IP Integrator Design	6
Customize Instantiated IP	10
Use Block Designer Assistance	11
Step 3: Generate HDL Design Files	15
Step 4: Implement Design and Generate Bitstream	16
Step 5: Export Hardware to SDK	18
Export to SDK	18
Part 2: Build Zynq-7000 Processor Software	19
Step 1: Start SDK and Create a Software Application	19
Step 2: Run the Software Application	22
Add a Breakpoint	26
Step 3: Executing the Software	27
Part 3: Profiling the Software	29
Step 1: Start SDK and Create a Software Application	29
Step 2: Profile the Software Application	30
Producing the GMON Executable	31
Step 3: Generating statistics

[bookmark: _Toc240469726]Introduction
This tutorial will guide you through the process of using Vivado and IP Integrator to create a complete Zynq ARM Cortex-A9 based processor system targeting the ZedBoard Zynq development board. You will use the Block Design feature of IP Integrator to configure the Zynq PS and add IP to create the hardware system, and SDK to create an application to verify the design functionality. It will also guide you through the process of profiling an application and analyzing the output.

Objectives
After completing this tutorial, you will be able to:
Create an embedded system design using Vivado and SDK flow
Configure the Processing System (PS)
Add Xilinx standard IP in the Programmable Logic (PL) section
Use and route the GPIO signal of the PS into the PL using EMIO
Use SDK to build a software project and verify the functionality in hardware.
Set up the board support package (BSP) for profiling an application
Set the necessary compiler directive on an application to enable profiling
Setup the profiling parameters

Procedure
This lab is separated into steps that consist of general overview statements that provide information on the detailed instructions that follow. Follow these detailed instructions to progress through the tutorial.
This tutorial comprises three stages (each consisting of steps): You will create a top-level project using Vivado, create the processor system using the IP Integrator, add two instances of the GPIO IP, validate the design, generate the bitstream, export to the SDK, create an application in the SDK, and, test the design in hardware. You will then be able to profile the application and produce statistics that will help you understand the main bottlenecks of your application.
Requirements
The following is needed in order to follow this tutorial:
· Vivado w/ Xilinx SDK (tested, version 2013.2/version 2014.4). Version 2016.3 could work but with some hiccups.
· Zedboard (tested, version D)
[bookmark: _Toc240469727]Part 1: Building a Zynq-7000 Processor Hardware
[bookmark: _Toc240469728]Introduction
In this part of the tutorial you create a Zynq-7000 processor based design and instantiate IP in the processing logic fabric (PL) to complete your design. Then you take the design through implementation, generate a bitstream, and export the hardware to SDK.
If you are not familiar with the Vivado Integrated Development Environment Vivado (IDE), see the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).
[bookmark: _Toc240469729]Step 1: Start the Vivado IDE and Create a Project
1. Start the Vivado IDE (FIGURE 1) by clicking the Vivado desktop icon or by typing vivado at a terminal command line.

[image:]Figure 1: Getting Started Page

2. From the Getting Started page, select Create New Project. The New Project wizard opens (FIGURE 2).
3. Click Next

[image:]Figure 2: Create New Project Wizard

4. In the Project Name dialog box, type the project name and location. Ensure that Create project subdirectory is checked, and then click Next.
5. In the Project Type dialog box, select RTL Project, then click Next.
6. In the Add Sources dialog box, ensure that the Target language is set to VHDL, then click Next.
7. In the Add Existing IP dialog box, click Next.
8. In the Add Constraints dialog box, click Next.
9. In the Default Part dialog box select Boards and choose “ZedBoard Zynq Evaluation and Development Kit”. Make sure that you have selected the proper Board Version to match your hardware because multiple versions of hardware are supported in the Vivado IDE. Click Next.
10. Review the project summary in the New Project Summary dialog box before clicking Finish to create the project.

[bookmark: _Toc240469730]Step 2: Create an IP Integrator Design
1. In the Flow Navigator, select Create Block Design (Fig 3).

[image:]Figure 3: Create Block Design from Flow Navigator

2. In the Create Block Design popup menu, specify a name for your IP subsystem design (Figure 4)

[image:]
Figure 4: Create Block Design Dialog Box

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

[image:]
Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

[image:]
Figure 6: Add IP Link in IP Integrator Canvas
The IP Catalog opens.

5. In the search field, type zynq to find the ZYNQ7 Processing System IP, and then press Enter on the keyboard (Fig 7).

[image:]
Figure 7: The IP Integrator IP Catalog

Because you selected the ZedBoard when you created the project, the Vivado IP integrator configures the design appropriately.

In the Tcl Console, you see the following message:

create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.2 processing_system7_1
INFO: [PS7-6] Configuring Board Preset zed. Please wait
There is a corresponding Tcl command for all actions performed in the IP integrator block diagram. Those commands are not shown in this document. See the Tcl Console for information on those commands.
6. In the IP integrator diagram header, click Run Block Automation.

[image:]
Figure 8: Run Block Automation on Zync
The Run Block Automation dialog box opens, stating that the FIXED_IO and DDR interfaces will be created for the Zynq core.

7. Click OK (Fig 9).

[image:]
Figure 9: Zync7 Run Block Automation Dialog Box

After running block automation on the Zynq processor, the IP integrator diagram should look as follows (Fig 10):
[image:]
Figure 10: Zynq Processing System after Running Block Automation
8. Now you can add peripherals to the processing logic (PL). To do this, right-click in the IP integrator diagram, and select Add IP.

9. In the search field, type gpi to find the AXI GPIO IP, and then press Enter to add the AXI GPIO IP to the design.

10. Repeat the action, typing axi bram to find and add AXI BRAM Controller, and typing block to find and add Block Memory Generator.  

The Block Design window matches FIGURE 11. The relative positions of the IP will vary.
[image:]
Figure 11: Block Design after Instantiating IP

[bookmark: _Toc240469731]Customize Instantiated IP
1. Double-click the Block Memory Generator IP, or right-click and select Customize Block (FIGURE 12).
[image:]
Figure 12: Customize Block Option
The Re-customize IP dialog box opens. 2.

2. On the Basic tab of the dialog box, set:
· Mode to BRAM Controller
· Memory Type to True Dual Port RAM
Click OK (Fig 13)
[image:]
Figure 13: Set Mode and Memory Type
The AXI BRAM Controller provides an AXI memory map interface to the Block Memory Generator.
3.
Connect the Block Memory Generator to the AXI4 BRAM Controller by clicking the connection point and dragging a line between the IP.

[image:]
Figure 14: Connected AXI BRAM Controller and Block Memory Generator
The AXI BRAM Controller provides an AXI memory map interface to the Block Memory Generator.
[bookmark: _Toc240469732]Use Block Designer Assistance
Block Designer Assistance helps connect the AXI GPIO and AXI BRAM Controller to the Zynq-7000 PS.
1. Click Run Connection Automation and then select /axi_gpio_1/s_axi to connect the BRAM controller and GPIO IP to the Zynq PS and to the external pins on the ZedBoard (FIGURE 15).

[image:]
Figure 15: Run Connection Automation
The Run Connection Automation dialog box opens and states that it will connect the master AXI interface to a slave interface.

In this case, the master is the Zynq Processing System IP (FIGURE 16).

[image:]
Figure 16: Run Connection Automation Message

Click OK.

This action instantiates an AXI Interconnect IP as well as a Proc Sys Reset IP and makes the interconnection between the AXI interface of the GPIO and the Zynq-7000 PS.

2. Select Run Connection Automation again, and the /axi_gpio_1/gpio shown in FIGURE 17.

[image:]
Figure 17: axi_gpio Selection
The Run Connection Automation dialog box includes options to hook up to the GPIO port. 4.

3. Select leds_8bits (FIGURE 18).

[image:]
Figure 18: Select Board Interface Options

4. Click OK. This step also configures the IP so that during netlist generation, the IP creates the necessary Xilinx Design Constraints (XDC).
5. Click Run Connection Automation again, and select the remaining option /axi_bram_ctrl_1/S_AXI (FIGURE 19).
[image:]
Figure 19: axi_bram_ctrl Selection
This completes the connection between the Zynq7 Processing System and the AXI BRAM Controller.

The IP integrator subsystem looks like FIGURE 20. Again, the relative positions of the IP can differ slightly.
[image:]
Figure 20: Zynq Processor System
6. Click the Address Editor tab to show the memory map of all the IP in the design.

In this case, there are two IP: the AXI GPIO and the AXI BRAM Controller. The IP integrator assigns the memory maps for these IP automatically. You can change them if necessary.

7. Change the range of the AXI BRAM Controller to 64K, as shown in FIGURE 21.

[image:]
Figure 21: axi_bram_ctrl to 64k Range
8. Save your design by pressing Ctrl-S, or select File > Save Block Design.

9. Click the Address Editor tab to make sure that the memory mappings for the GPIO and BRAM controller have been auto populated.

10. From the toolbar, run Design-Rules-Check (DRC) by clicking the Validate Design button (FIGURE 22). Alternatively, you can do the same from the menu by:
· Selecting Tools > Validate Design from the menu.
· Right-clicking in the Diagram window and selecting Validate Design.
[image:]
Figure 22: Validate Design Button
The Validate Design Successful dialog box opens (FIGURE 23).
[image:]
Figure 23: Validate Design Message
11. Click OK.
[bookmark: _Toc240469733]Step 3: Generate HDL Design Files
You now generate the HDL files for the design.

1. In the Source window, right-click the top-level subsystem design and select Generate Output Products (FIGURE 24). This generates the source files for the IP used in the block diagram and the relevant constraints file.

[image:]
Figure 24: Generate Output Products Option

2. The Manage Output Products dialog box opens. Click OK.

[image:]

3. In the Sources window, select the top-level subsystem source, and select Create HDL Wrapper to create an example top-level HDL file (FIGURE 25).

4. Click OK when the Create HDL Wrapper dialog box opens.

[image:]
Figure 25: Create HDL Wrapper
[bookmark: _Toc240469734]Step 4: Implement Design and Generate Bitstream
1. In Flow Navigator, click Generate Bitstream to implement the design and generate a BIT file.

Note: If the system requests to re-synthesize the design before implementing, click No. The previous step of saving the constraints caused the flow to mark synthesis out-of-date. Ordinarily, you might want to re-synthesize the design if you manually changed the constraints, but for this tutorial, it is safe to ignore this condition (FIGURE 26).

[image:]
Figure 26: Generate Bitstream

You might see a dialog box stating no implementation results are available.

2. Click Yes (Fig 27).

[image:]
Figure 27: No Implementation Results Available Dialog Box

3. After the design implementation, click Open Implemented Design, (FIGURE 28).
[image:]
Figure 28: Bitstream Generation Completed
4. You might get a warning that the implementation is out of date. Click Yes.

[image:]
Figure 29: Implementation Is Out-of-Date Dialog Box

[bookmark: _Toc240469735]Step 5: Export Hardware to SDK
In this step, you export the hardware description to SDK. You use this in Part 2.
The IP integrator block diagram, and the Implemented design, must be open to export the design to SDK.

IMPORTANT: For the Digilent driver to install, you must power on and connect the board to the host PC before launching SDK.

[bookmark: _Toc240469736]Export to SDK
1. In the Flow Navigator, click Open Block to invoke the IP integrator design (FIGURE 30).

[image:]
Figure 30: IP Integrator - Open Block Design
Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE 31).
[image:]
Figure 31: Export Hardware for SDK
The Export Hardware for SDK dialog box opens, ensure that Export Hardware, Include Bitstream, and Launch SDK are checked (FIGURE 32).

[image:]
Figure 32: Export Hardware for SDK

[bookmark: _Toc240469737]Part 2: Build Zynq-7000 Processor Software
In this portion of the tutorial you will build an embedded software project that prints “Hello World” to the serial port. Connect two micro USB cables to the Zedboard (see Appendix A for more details).

[bookmark: _Toc240469738]Step 1: Start SDK and Create a Software Application
1. If you are doing this lab as a continuation of Part 1 then SDK should have launched in a separate window (if you checked the Launch SDK option while exporting hardware). You can also start SDK from the Windows Start menu by clicking on Start > All Programs > Xilinx Design Tools > Vivado 2013.2 > SDK > Xilinx SDK 2013.2. When starting SDK in this manner you need to ensure that you in the correct workspace.

2. You can do that by clicking on File > Switch Workspace > Other in SDK. In the Workspace Launcher dialog box in the Workspace field, point to the SDK_Export folder where you had exported your hardware. Usually, this is located at ..\project_name\project_name.sdk\SDK\SDK_Export.

Now you can create a hello world application.

3. Select File > New > Application Project (FIGURE 33).
[image:]
Figure 33: File->New->Application Project
New Project dialog box opens

4. In the Project Name field, type Zync_Design, and click Next (FIGURE 34).

[image:]
Figure 34: SDK Application Project

5. From the Available Templates, select Hello World (FIGURE 35) and click Finish.

[image:]
Figure 35: SDK New Project Template
When the program finish compiling, you will see the following (FIGURE 36).

[image:]
Figure 36: SDK Message

[bookmark: _Toc240469739]Step 2: Run the Software Application
Now, you must run the hello world application on the ZedBoard. Make sure that your hardware is powered on and a USB Cable is connected to the host PC. Also, ensure that you have a USB cable connected to the UART port of the ZedBoard. Please check Appendix A, and Appendix B for more guidelines

1. Download the bitstream into the FPGA by selecting Xilinx Tools > Program FPGA (FIGURE 37).
[image:]
Figure 37: Program FPGA
This opens the Program FPGA dialog box.

2. Ensure that the path to the bitstream that you created in this tutorial is correct and then click Program.

Note: The DONE LED on the board turns blue if the programming is successful.

3. [bookmark: _GoBack]Select and right-click the Zynq_Design application.

4. Select Debug As and Debug Configurations (FIGURE 38).
[image:]
Figure 38: Launch on Hardware

5. In the Debug Configurations dialog box, right-click Xilinx C/C++ Application (GDB) and select New.
[image:]
Figure 39: Debug Configuration Dialog Box
6. In the Debug Configurations dialog box, click Debug.
[image:]
Figure 40: Run Debug Configurations
7. The Confirm Perspective Switch dialog box opens. Click Yes.
[image:]
Figure 41: Confirm Perspective Switch Dialog Box
8. Set the terminal by selecting the Terminal 1 tab and clicking the Settings button (FIGURE 42).
[image:]
Figure 42: Settings Button
9. Use the following settings for the ZedBoard (FIGURE 43). Click OK.
[image:]The Port should be the port for the Cypress USB-to-Serial.

Figure 43: Terminal Settings

10. Verify the Terminal connection by checking the status at the top of the tab (FIGURE 44).
[image:]
Figure 44: Terminal Connection Verification

11. In the Debug tab, expand the tree, and select the processor core on which the program is to be run (FIGURE 45.
[image:]
Figure 45: Processor Core to Debug
12. If it is not already open, select ../src/helloworld.c, line 41, and double click that line to open the source file.
[bookmark: _Toc240469740]Add a Breakpoint
You add a breakpoint on line 43.
1. Select Navigate > Go To Line (FIGURE 46).
[image:]
Figure 46: Go to Line

2. In the Go To Line dialog box, type 43.

3. Double click on the left pane of line 43, which adds a breakpoint on that line of source  code (Figure 47).
[image:]
Figure 47: Add a Breakpoint

[bookmark: _Toc240469741]Step 3: Executing the Software
This step will take you through executing the code up to and past the break point.

1. Click the Resume button or press F8

2. Click the Step Over button or press F6

3. You should see “Hello World” in the terminal if everything worked correctly (FIGURE 48).

[image: Hard Drive:Users:gmrosier:Desktop:Parallels Picture.png]
Figure 48: Terminal Output

Part 3: Profiling an Application

Export the Design to the SDK	Step 1
Export the design to the SDK, create the software BSP using the standalone operating system; Enable the profiling options.
Export the hardware configuration by clicking File > Export > Export Hardware
Tick the box to Include Bitstream, and click OK
Launch SDK by clicking File > Launch SDK and click OK
In SDK, select File > New > Board Support Package.
Notice Standalone_bsp_0 in the Project name field and click Finish with default settings.
A Board Support Package Settings window will appear.
Select the Overview > standalone entry in the left pane, click on the drop-down arrow of the enable_sw_intrusive_profiling Value field and select true.
[image:]
 Figure 3.1 Enable profiling in the board support package
Select the Overview > drivers > cpu_cortexa9 and add –pg in addition to the –g in the extra_compiler_flags Value field.
[image:]
 Figure 3.2 Adding profiling switch
Click OK to accept the settings and create the BSP.
Create the Application	Step 2
Create the tutorial application.
Select File > New > Application Project.
Enter tutorial-profile as the project name, select the Use existing standalone_bsp_0 option, and click Next.
Select Hello World in the Available Templates pane and click Finish.
Replace the Hello World C program with the intended application you have.
A snippet of the source code is shown in the following figure.

 [image:]
 Figure 3.3 Adding profiling switch

Save the program and it should compile successfully and generate the tutorial-profile.elf file.
Run the Application and Profile	Step 3
Place the board into the JTAG boot up mode. Program the PL section and run the application.
Place the board in the JTAG boot up mode. Check Appendix A for Zedboard connection.
Power ON the board. (Check Appendix B for some information).
Select Xilinx Tools > Program FPGA and click on Program.
Right click on the tutorial-profile directory, and select C/C++ Build Settings.
Under the ARM gcc compiler group, select the Profiling sub-group, then check the Enable Profiling box, and click OK.
[image:]
 Figure 3.4 Compiler setting for enabling profiling
From the menu bar, Select Run > Run Configurations… and double click on Xilinx C/C++ application to create a new configuration.
Click on the newly created tutorial-profile Debug configuration, and select the Profile Options tab.
Click on the Enable Profiling check box, enter 100000 (100 kHz) in the Sampling Frequency field, enter 0x10000000 in the scratch memory address field, and click Apply.
[image:]
 Figure 3.5 Profiling options
Click the Run button to download the application and execute it.
The program will run, and when execution has completed, a message will be displayed indicating that the profiling results are being saved in gmon.out file at the tutorial-profile\Debug directory.
Click OK.
Invoke gprof and analyze the results.
Expand the Debug folder under the tutorial-profile project in the Project Explorer view, and double click on the gmon.out entry.
[image:]
 Figure 3.6 Invoking gprof on gmon.out
The Gmon File Viewer dialog box will appear showing tutorial-profile.elf as the corresponding binary file. Click OK.
Click on the Sort samples per function button ([image:]).
Click in the %Time column to sort in the descending order (See Figure 3.7).
[image:]
 Figure 3.7 Sorting results
Go back to the Run Configuration, and change the sampling frequency to 1000000 (1 MHz) and profile the application again.
Invoke gprof, select the Sorts samples per function output, and sort the %Time column.
Notice that the output has better resolution and reports more functions and more samples per function calls.
Close the SDK and Vivado programs by selecting File > Exit in each program.
Turn OFF the power on the board.
Conclusion
This Tutorial led you through enabling the software BSP and the application settings for the profiling.

APPENDIX A (Zedboard Connection)

As seen in the Figure below, connect the Zedboard with two micro USB cables.
1. The first cable to the JTAG micro USB port
2. The second cable to the UART port.
Also make sure that Jumpers 7,8,9,10,11,12 are connected to GND.

[image:]

APPENDIX B
Also, when starting SDK make sure that the processor can be reset by including the ps_init file as shown in the Figure below.

[image:]
	32
	VIVADO TUTORIAL

	VIVADO TUTORIAL
	33

image3.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 13
UG940 (v 2013.2) June 19, 2013

Step 2: Create an IP Integrator Design
1. In the Flow Navigator, select Create Block Design.

Figure 3: Create Block Design from Flow Navigator

2. In the Create Block Design popup menu, specify a name for your IP subsystem design.

Figure 4: Create Block Design Dialog Box

http://www.xilinx.com/

image4.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 13
UG940 (v 2013.2) June 19, 2013

Step 2: Create an IP Integrator Design
1. In the Flow Navigator, select Create Block Design.

Figure 3: Create Block Design from Flow Navigator

2. In the Create Block Design popup menu, specify a name for your IP subsystem design.

Figure 4: Create Block Design Dialog Box

http://www.xilinx.com/

image5.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 14
UG940 (v 2013.2) June 19, 2013

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

Figure 6: Add IP Link in IP Integrator Canvas

The IP Catalog opens.

5. In the search field, type zynq to find the ZYNQ7 Processing System IP, and then press Enter
on the keyboard.

Figure 7: The IP Integrator IP Catalog

Because you selected the ZC702 board when you created the project, the Vivado IP
integrator configures the design appropriately.

http://www.xilinx.com/

image6.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 14
UG940 (v 2013.2) June 19, 2013

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

Figure 6: Add IP Link in IP Integrator Canvas

The IP Catalog opens.

5. In the search field, type zynq to find the ZYNQ7 Processing System IP, and then press Enter
on the keyboard.

Figure 7: The IP Integrator IP Catalog

Because you selected the ZC702 board when you created the project, the Vivado IP
integrator configures the design appropriately.

http://www.xilinx.com/

image7.png
(2 matches)

Search: | Q- zynq
=T <5

Name Version AXH Status. License Vendor

4 ZNQ7 Processing System 52 AXi4-Stream, AXI4 Production Included Xlimx, Inc.

& ZYNQ7 Processing System BFM 10 A4 Pre-prod... Purchase Xilin, Inc.

< [s

Select and press ENTER or drag and drop, ESC to cancel

image8.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 15
UG940 (v 2013.2) June 19, 2013

In the Tcl Console, you see the following message:
create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.2
processing_system7_1

INFO: [PS7-6] Configuring Board Preset zc702. Please wait

There is a corresponding Tcl command for all actions performed in the IP integrator block
diagram. Those commands are not shown in this document. See the Tcl Console for
information on those commands.

6. In the IP integrator diagram header, click Run Block Automation.

Figure 8: Run Block Automation on Zynq

The Run Block Automation dialog box opens, stating that the FIXED_IO and DDR interfaces
will be created for the Zynq core.

7. Click OK.

Figure 9: Zynq7 Run Block Automation Dialog Box

http://www.xilinx.com/

image9.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 15
UG940 (v 2013.2) June 19, 2013

In the Tcl Console, you see the following message:
create_bd_cell -type ip -vlnv xilinx.com:ip:processing_system7:5.2
processing_system7_1

INFO: [PS7-6] Configuring Board Preset zc702. Please wait

There is a corresponding Tcl command for all actions performed in the IP integrator block
diagram. Those commands are not shown in this document. See the Tcl Console for
information on those commands.

6. In the IP integrator diagram header, click Run Block Automation.

Figure 8: Run Block Automation on Zynq

The Run Block Automation dialog box opens, stating that the FIXED_IO and DDR interfaces
will be created for the Zynq core.

7. Click OK.

Figure 9: Zynq7 Run Block Automation Dialog Box

http://www.xilinx.com/

image10.png
DR
XED_IO

VNG7 Processing System

image11.emf

 Step 2: Create an IP Integrator Design

Embedded Processor Hardware Design www.xilinx.com 16
UG940 (v 2013.2) June 19, 2013

After running block automation on the Zynq processor, the IP integrator diagram should
look as follows:

Figure 10: Zynq Processing System after Running Block Automation

8. Now you can add peripherals to the processing logic (PL). To do this, right-click in the IP
integrator diagram, and select Add IP.

9. In the search field, type gpi to find the AXI GPIO IP, and then press Enter to add the AXI
GPIO IP to the design.

10. Repeat the action, typing axi bram to find and add AXI BRAM Controller, and typing block
to find and add Block Memory Generator.

The Block Design window matches FIGURE 11. The relative positions of the IP will vary.

Figure 11: Block Design after Instantiating IP

http://www.xilinx.com/

image12.png
rblk mem_gen, ﬁ
II|+WM_§"*)
'@ Block Properties... Ctrl+E

BI&! Memory

i apid X Delete Delete

o Copy Ctri+C

B Ctrl+V

& Select All Ctrl+A

£ AddIP.. Ctrl+I
%

Orientation »

image13.png
Block Memory Generator (8.0)

 Documentation 25 1P Location

Symbol | Power Estimation

how disabled ports

Component Name [zynq_design_1_blk_mem_gen_1_0

Basic | Port A QpiasssRastd Options | Other Options | Summary |

BRAM Controller v

True Dual POrt RAM .

Generate address interface with 32 bits.
¢/ | Common Clock

ECC Options
ECC Type

No ECC -

[| Error Injection Pins | Single Bit Error Injection

image14.png
axi_bram_ctrl_1

image15.png
%= Diagram X | & Address Editor X

3 | %, zynq_design_1

Q¢| @ Designer Assistance available. Run Connection Automation

o
@& /ax _1/gpio

&
g.‘ @ /axi_bram_ctrl_1/S_AXI

image16.png
Run Connection Automation

Connect a master interface to slave interface:
' Jaxi_gpio_1/s axi

Master: /processing_system?_1/M_AXI_GPO

image17.png
Z= Diagram X | & Address Editor X
"D‘&zydeesagn,l »

o

Q| @ Designer Assistance available. Run Connection Automation

Eh /axi_gpio_1/gpio
@ /axi_bram_ctrl_1/S_AXI

image18.png
4 Run Connection Automation S5

Connect Board Interface to IP inerface: /axi_gpio_1/gpio

image19.png
| 2= Diagram | & Address Editor X |

b zynq_design_1 »

(@ Designer Assistance available. Run Connection Automation

ZER R

[® /pibemarysaa |

image20.png
.2ynq_design_1 »

VAW NG EDTPL RN

processing systeny_L_axi periph

R XN S
oo oo ee])

T s st o) Erep—
Jomen semers s i o
—{ma_detug_sys st aasete(0:0]) I U
Jiea o)

o Inerconneet

o
s ZYNQ™ waieos,
e

image21.png
3= Dagrom_ [ddress G)

R BHAL

Instance

(=HF /processing_system7_1
18 Data

o /axi_gpi Re
e S—

Base Name

Offset Address Range

0x41200000
0x40000000

64K
[ak_]

High Address

0x4120FFFF

0x40000FFF

image22.png
zynq_debug_design -

File Edit Flow Tools Window Layout View Help
LA B D XS K| X (@ 23 efault Layout MR

Flow Navigator Validate Design

= B Validate and display errors and critical warnings in this design

image23.png
Validate Design =]

Validation successful. There are no errors o critical warnings in this design.

image24.emf

 Step 4: Generate HDL Design Files

Embedded Processor Hardware Design www.xilinx.com 25
UG940 (v 2013.2) June 19, 2013

Figure 29: Generate Output Products Option

2. The Manage Output Products dialog box opens. Click OK.

Figure 30: Manage Output Products Dialog Box

3. In the Sources window, select the top-level subsystem source, and select Create HDL
Wrapper to create an example top level HDL file (FIGURE 31).

4. Click OK when the Create HDL Wrapper dialog box opens.

http://www.xilinx.com/

image25.emf

 Step 4: Generate HDL Design Files

Embedded Processor Hardware Design www.xilinx.com 25
UG940 (v 2013.2) June 19, 2013

Figure 29: Generate Output Products Option

2. The Manage Output Products dialog box opens. Click OK.

Figure 30: Manage Output Products Dialog Box

3. In the Sources window, select the top-level subsystem source, and select Create HDL
Wrapper to create an example top level HDL file (FIGURE 31).

4. Click OK when the Create HDL Wrapper dialog box opens.

http://www.xilinx.com/

image26.emf

 Step 5: Assign Signals to Debug

Embedded Processor Hardware Design www.xilinx.com 26
UG940 (v 2013.2) June 19, 2013

Figure 31: Create HDL Wrapper

Step 5: Assign Signals to Debug
Now assign the signals to debug in the hardware.

1. After generating the IP Integrator design, from the Flow Navigator click Run Synthesis
(FIGURE 32).

Figure 32: Run Synthesis Option

Note: Running synthesis could take several minutes.

2. After synthesis completes, in the Synthesis Completed dialog box, check the Open
Synthesized Design option, and click OK.

3. In the Debug window, you see a list of nets in the Unassigned Debug Nets folder.

http://www.xilinx.com/

 Step 5: Assign Sig n a l s t o D e b u g

E m b e d d e d P r ocessor Hardware Design www.xilinx.com 2 6

U G 9 4 0 (v 2 0 1 3.2) June 19, 2013

Figure 31: Create HDL Wrapper

S t e p 5 : Assign Signals to Debug

N o w a s s i g n the signals to debug in the hardware.

1 .

A f t e r g e nerating the IP Integrator design, from the Flow Navigator click Run Syn t h e s i s

(F

I G U R E

3

2

).

Figure 32: Run Synthesis Option

N o t e : R unning synthesis could take several minutes.

2 .

A f t e r s y nthesis completes, in the Synthesis Completed dialog box, check the Ope n

S y n t h e s ized Design option, and click OK.

3 .

I n t h e D ebug window, you see a list of nets in the

Unassigned Debug Nets

 fol d e r .

image27.emf

 Step 7: Implement Design and Generate Bitstream

Embedded Processor Hardware Design www.xilinx.com 31
UG940 (v 2013.2) June 19, 2013

7. In the main Vivado toolbar, click the Save Constraints button to save the design after you
insert the debug cores, (FIGURE 39).

Figure 39: Save Constraints Option

Step 7: Implement Design and Generate Bitstream
1. In Flow Navigator, click Generate Bitstream to implement the design and generate a BIT

file.

Note: If the system requests to re-synthesize the design before implementing, click No.

The previous step of saving the constraints caused the flow to mark synthesis
out-of-date.

Ordinarily, you might want to re-synthesize the design if you manually changed the
constraints, but for this tutorial, it is safe to ignore this condition (FIGURE 40).

Figure 40: Generate Bitstream

You might see a dialog box stating no implementation results are available.

2. Click Yes.

Figure 41: No Implementation Results Available Dialog Box

http://www.xilinx.com/

image28.png
No Implementation Results Available

image29.emf

 Step 7: Implement Design and Generate Bitstream

Embedded Processor Hardware Design www.xilinx.com 32
UG940 (v 2013.2) June 19, 2013

During implementation flow, messages in the Log window show the implementation of the
debug cores .

This step is required to synthesize the debug core modules so that they can replace the
debug core black boxes that you added to the design previously (FIGURE 42).

Figure 42: Messages

After the debug cores are implemented, the rest of the implementation flow (commands
such as opt_design, place_design, and route_design) follow as usual.

3. After the design implementation, click Open Implemented Design, (FIGURE 43).

Figure 43: Bitstream Generation Completed

4. You can keep the synthesized design open if you want to debug more signals; otherwise
close the synthesized design to save memory (FIGURE 44).

http://www.xilinx.com/

image30.emf

 Step 8: Export Hardware to SDK

Embedded Processor Hardware Design www.xilinx.com 33
UG940 (v 2013.2) June 19, 2013

Figure 44: Close Synthesized Design Dialog Box

5. You might get a warning that the implementation is out of date. Click Yes.

Figure 45: Implementation Is Out-of_date Dialog Box

6. In the implemented design, go to the Netlist window to see the inserted ILA and Debug
Hub (dbg_hub) cores in the design (FIGURE 46).

Figure 46: Implemented Design

Step 8: Export Hardware to SDK
In this step, you export the hardware description to SDK. You use this in Lab 2.

The IP integrator block diagram, and the Implemented design, must be open to export the
design to SDK.

IMPORTANT: For the Digilent driver to install, you must power on and connect the board to the

host PC before launching SDK.

http://www.xilinx.com/

image31.emf

 Conclusion

Embedded Processor Hardware Design www.xilinx.com 34
UG940 (v 2013.2) June 19, 2013

Export to SDK

1. In the Flow Navigator, click Open Block to invoke the IP integrator design (FIGURE 47).

Figure 47: IP Integrator: Open Block Design

Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE 48).

Figure 48: Export Hardware for SDK

The Export Hardware for SDK dialog box opens.

If you want to go on to Lab 2 then ensure that Export Hardware, Include Bitstream, and
Launch SDK are checked (FIGURE 49). Otherwise, you can leave the Launch SDK option
unchecked.

Figure 49: Export Hardware for SDK

Conclusion
In this lab you have:

http://www.xilinx.com/

 C o n c l u s i o n

E m b e d d e d P r o c e s s o r H a r d w a re Design www.xilinx.com 3 4

U G 9 4 0 (v 2 0 1 3 . 2) J u n e 1 9 , 2 0 13

E x p o r t t o S D K 1 . I n t h e F l o w N a v i g a t o r, click Open Block to invoke the IP integrato r d e s i g n (F I G U R E 4 7) .

Figure 47: IP Integrator: Open Block Design

N o w y o u a r e r e a d y t o export your design to SDK.

2 .

F r o m t h e m a i n V i v a d o File menu, select Export Hardware for SDK (F

I G U R E

4 8) .

Figure 48: Export Hardware for SDK

T h e E x p o r t H a r d w a r e for SDK dialog box opens.

I f y o u w a n t t o g o o n t

o

 Lab 2 then ensure that Export Hardware, Inc l u d e B i t s t r e a m , a n d

L a u n c h S D K a r e c h e c k

e

d (F

IGURE

49). Otherwise, you can leave the

L a u n c h S D K o p t i o n

u n c h e c k e d .

Figure 49: Export Hardware for SDK

C o n c l u s i o n

I n t h i s l a b y o u h a v e :

image32.emf

 Conclusion

Embedded Processor Hardware Design www.xilinx.com 34
UG940 (v 2013.2) June 19, 2013

Export to SDK

1. In the Flow Navigator, click Open Block to invoke the IP integrator design (FIGURE 47).

Figure 47: IP Integrator: Open Block Design

Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE 48).

Figure 48: Export Hardware for SDK

The Export Hardware for SDK dialog box opens.

If you want to go on to Lab 2 then ensure that Export Hardware, Include Bitstream, and
Launch SDK are checked (FIGURE 49). Otherwise, you can leave the Launch SDK option
unchecked.

Figure 49: Export Hardware for SDK

Conclusion
In this lab you have:

http://www.xilinx.com/

 C o n c l u s i o n

E m b e d d e d P r o cessor Hardware Design www.xilinx.com 3 4

U G 9 4 0 (v 2 0 1 3 . 2) June 19, 2013

E x p o r t t o SDK 1 . I n t h e F l o w Navigator, click Open Block to invoke the IP integrator design (FIGURE 4 7) . Figure 47: IP Integrator: Open Block Design N o w y o u are ready to export your design to SDK. 2 . F r o m t h e main Vivado File menu, select Export Hardware for SDK (FIGURE 48).

Figure 48: Export Hardware for SDK

T h e E x p o rt Hardware for SDK dialog box opens.

I f y o u w a nt to go on to Lab 2 then ensure that Export Hardware, Include Bitstream , a n d

L a u n c h S DK are checked (F

IGURE

49). Otherwise, you can leave the Launch SDK o p t i o n

u n c h e c k e d.

Figure 49: Export Hardware for SDK

C o n c l u sion

I n t h i s l a b y o u have:

image33.emf

 Conclusion

Embedded Processor Hardware Design www.xilinx.com 34
UG940 (v 2013.2) June 19, 2013

Export to SDK

1. In the Flow Navigator, click Open Block to invoke the IP integrator design (FIGURE 47).

Figure 47: IP Integrator: Open Block Design

Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE 48).

Figure 48: Export Hardware for SDK

The Export Hardware for SDK dialog box opens.

If you want to go on to Lab 2 then ensure that Export Hardware, Include Bitstream, and
Launch SDK are checked (FIGURE 49). Otherwise, you can leave the Launch SDK option
unchecked.

Figure 49: Export Hardware for SDK

Conclusion
In this lab you have:

http://www.xilinx.com/

 C o n c l u s i o n

E m b e d d e d P r o c e s s o r H a r d w a r e D e s ign www.xilinx.com 3 4

U G 9 4 0 (v 2 0 1 3 . 2) J u n e 1 9 , 2 0 1 3

E x p o r t t o S D K 1 . I n t h e F l o w N a v i g a t o r , c l i c k Open Block to invoke the IP integr a t o r d e s i g n (F I G U R E 4 7) . F i gure 47: IP Integrator: Open Block Desi g n N o w y o u a r e r e a d y t o e x p ort your design to SDK. 2 . F r o m t h e m a i n V i v a d o F i l e menu, select Export Hardware for SD K (F I G U R E 4 8) . Figure 48: Export Hardware for SDK T h e E x p o r t H a r d w a r e f o r S DK dialog box opens. I f y o u w a n t t o g o o n t o L a b 2 then ensure that Export Hardware , I n c l u d e B i t s t r e a m , a n d L a u n c h S D K a r e c h e c k e d (F IGURE 49). Otherwise, you can leav e t h e L a u n c h S D K o p t i o n u n c h e c k e d .

Figure 49: Export Hardware for SDK

C o n c l u s i o n

I n t h i s l a b y o u h a v e :

image34.emf

Embedded Processor Hardware Design www.xilinx.com 36
UG940 (v 2013.2) June 19, 2013

Chapter 3

Lab 2: Using SDK and the Vivado IDE
Logic Analyzer

Introduction
You can run this lab after Lab 1. Make sure that you followed all the steps in Lab 1 before
proceeding.

Step 1: Start SDK and Create a Software Application
1. If you are doing this lab as a continuation of Lab 1 then SDK should have launched in a

separate window (if you checked the Launch SDK option while exporting hardware). You can
also start SDK from the Windows Start menu by clicking on Start > All Programs > Xilinx
Design Tools > Vivado 2013.2 > SDK > Xilinx SDK 2013.2.

When starting SDK in this manner you need to ensure that you in the correct workspace.

2. You can do that by clicking on File > Switch Workspace > Other in SDK. In the Workspace
Launcher dialog box in the Workspace field, point to the SDK_Export folder where you had
exported your hardware from lab 1. Usually, this is located at
..\project_name\project_name.sdk\SDK\SDK_Export.

Now you can create a peripheral test application.

3. Select File > New > Application Project (FIGURE 50).

Figure 50: File >New > Application Project

http://www.xilinx.com/

Embedded Processor Hardware Design www.xilinx.com 36

UG940 (v 2013.2) June 19, 2013

Chapter 3 Lab 2: Using SDK and the Vivado IDE Logic Analyzer Introduction You can run this lab after Lab 1. Make sure that you followed all the steps in Lab 1 before proceeding. Step 1: Start SDK and Create a Software Application 1. If you are doing this lab as a continuation of Lab 1 then SDK should have launched in a separate window (if you checked the Launch SDK option while exporting hardware). You can also start SDK from the Windows Start menu by clicking on Start > All Programs > Xilinx Design Tools > Vivado 2013.2 > SDK > Xilinx SDK 2013.2. When starting SDK in this manner you need to ensure that you in the correct workspace. 2. You can do that by clicking on File > Switch Workspace > Other in SDK. In the Workspace Launcher dialog box in the Workspace field, point to the SDK_Export folder where you had exported your hardware from lab 1. Usually, this is located at ..\project_name\project_name.sdk\SDK\SDK_Export. Now you can create a peripheral test application. 3. Select File > New > Application Project (FIGURE 50).

Figure 50: File >New > Application Project

image35.emf

 Step 1: Start SDK and Create a Software Application

Embedded Processor Hardware Design www.xilinx.com 37
UG940 (v 2013.2) June 19, 2013

The New Project dialog box opens.

4. In the Project Name field, type Zynq_Design, and click Next (FIGURE 51).

Figure 51: SDK Application Project

http://www.xilinx.com/

image36.png
Create one of the available templates to generate a fully-functioning
application project.

Available Templates:

Dhrystone.

Emﬁ AEEI'

wiP Echo Server
Memory Tests
Peripheral Tests
Zynq FSBL

Let's say ‘Hello World'in C.

image37.emf

 Step 1: Start SDK and Create a Software Application

Embedded Processor Hardware Design www.xilinx.com 38
UG940 (v 2013.2) June 19, 2013

5. From the Available Templates, select Peripheral Test (FIGURE 52) and click Finish.

Figure 52: SDK New Project Template

When the program finishes compiling, you see the following (FIGURE 53).

Figure 53: SDK Message

http://www.xilinx.com/

 Step 1: Start SDK and Create a Soft w a r e A p p l i c a t i o n

E m b e d d e d P r o c

e

ssor Hardware Design www.xilinx.com 3 8

U G 9 4 0 (v 2 0 1 3 . 2) June 19, 2013

5 . F r o m t h e Available Templates, select Peripheral Test (FIGURE 52) and click Finish . Figure 52: SDK New Project Template W h e n t h e program finishes compiling, you see the following (FIGURE 53).

Figure 53: SDK Message

image38.png
Xilinx Tools | Window Help
Generate linker script

Board Support Package Settings
Repositories

Program FPGA
Program Flash

XMD Console

Launch Shell

Configure JTAG Settings

System Generator Co-Debug Settings
Create Zynq Boot Image

EXx#dK 9% ©52

image39.emf

 Step 2: Run the Software Application

Embedded Processor Hardware Design www.xilinx.com 42
UG940 (v 2013.2) June 19, 2013

Figure 57: Launch on Hardware

7. In the Debug Configurations dialog box, right-click Xilinx C/C++ Application (GDB) and
select New.

http://www.xilinx.com/

image40.png
Create, manage, and run configurations

IEE R Configure launch settings from this dialog:

[type filter text - Press the 'New' button to c..uration of the selected type.

[£] C/C++ Application - Press the ‘Duplicate’ butto..y the selected configuration.
[E] C/C++ Attach to Application
[E] C/C++ Postmortem Debugger

[E] C/C++ Remote Application o - Press the 'Filter' button to configure filtering options.

- Press the ‘Delete’ button t..e the selected configuration.

Launch Group - Edit or view an existing configuration by selecting it.
$. Remote ARM Linux Application
[Target Communication Framework . 5

G Configure launch perspective settings from the
5, Xlink C/C-+ application (GO ‘Perspectives’ preference page.
o Xilinx C/Co+ appic [T New = =

Duplicate

®_ Delete

Filter matched 9 of 9 items.

@

image41.png
@ Debug Configurations

=]

Create, manage, and run configurations ﬁ\

e
type filter text Main [Source [#% Device Initialization (% STDIO Connection ([Remote Debug , [& Debugger Options| = Common|

[E] C/C++ Application

5] C/C+ + Attach to Application [Z] Connect to gdbserver on a different machine.

[£] ¢/C++ Postmortem Debugger Remote GDB Server

(€1 C/C++ Remote Application To open a gdbserver, launch XMD on the remote machine, and connect to the processor.

& Launch Group XMD will then report the port at which the gdbserver is open.

$. Remote ARM Linux Application IP Address: | localhost

8 Target Communication Framework
4 £ Xilinx C/C++ application (GDB)

& Zynq_Design Debug
£ Xilinx C/C++ application (System Debugger)

Name: Zyng_Design Debug

Port: | 1234

Filter matched 10 of 10 items

@

image42.png
@ Confirm Perspective Switch =]
This kind of launch is associated with the Debug perspective.

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

Do you want to open this perspective now?

[Remember my decision

image43.emf

 Step 2: Run the Software Application

Embedded Processor Hardware Design www.xilinx.com 44
UG940 (v 2013.2) June 19, 2013

Figure 59: Run Debug Configurations

9. The Confirm Perspective Switch dialog box opens. Click Yes.

Figure 60: Confirm Perspective Switch Dialog Box

10. Set the terminal by selecting the Terminal 1 tab and clicking the Settings button
(FIGURE 61).

Figure 61: Settings Button

11. Use the following settings for the ZC702 board (FIGURE 62). Click OK.

http://www.xilinx.com/

image44.emf

 Step 2: Run the Software Application

Embedded Processor Hardware Design www.xilinx.com 45
UG940 (v 2013.2) June 19, 2013

Figure 62: Terminal Settings for ZC702 Board

12. Verify the Terminal connection by checking the status at the top of the tab
(FIGURE 63).

Figure 63: Terminal Connection Verification

http://www.xilinx.com/

image45.emf

 Step 2: Run the Software Application

Embedded Processor Hardware Design www.xilinx.com 45
UG940 (v 2013.2) June 19, 2013

Figure 62: Terminal Settings for ZC702 Board

12. Verify the Terminal connection by checking the status at the top of the tab
(FIGURE 63).

Figure 63: Terminal Connection Verification

http://www.xilinx.com/

image46.png
55 Debug ©2 %ot |i» 720
£, 2ynq_Design Debug [4in C/C+-+ spplcation (GDB)]

S 82 100 Torge Debug Agent (3/10/13 5143 Y (Suspendec)
5o Thread [1] (Suspended: Breskpaint hit.)

o4 arm-xini-eabi-gdb (9/10/13 9:43)
541 2:1Dropbox|School|2013-2014|FalNECES22|HelloWorldizyna_heloworldizyng_helloworld.sdk|SDKISDK_Exportizyng_DesigniDebug|2yna_Design.ef (3/10/13 9

image47.png
Navigate | Search Run Project Xilinx Tools Window
Go Into
Go To 4
Open Declaration F3
Open Type Hierarchy F4
Open Call Hierarchy Ctrl+Alt+H
Open Include Browser Ctrl+Alt+1
Toggle Source/Header Ctrl+Tab

(% Open Element... Ctrl+Shift+T
Open Type in Hierarchy... Ctrl+Shift+H
Open Element in Call Hierarchy...
Open Resource... Ctrl+Shift+R
Show In Alt+Shift+W »
Quick Outline Ctrl+O
Next Annotation Ctrl+.
Previous Annotation Ctrl+,
Last Edit Location ctrl+Q
Go to Line; Ctrl+L

image48.png
[systemoml {3 system.mss
+ uercnssso 9600 a

* uarclite Configurable only in HU design
* ps7uart 115200 (configured by hogtrem/bsp)
o

#include <stdio.h>
#include "platform.h”

void print (char *str];

< int main()

| prins("Hello voridime”

return 0;

image49.png
5] Console | V2] Tasks | & Terminal 1 58 Problems |) Exectables | 0 Memory |

Seria: (COMe, 115200, 8, 1, None, None - CONNECTED) - Encoding: (150-6859-1)

Hello World

image50.png
& Board Support Package Settings

Board Support Package Settings *
Control various settings of your Board Support Package.

Overview
Configuration for OS: standalone
standalone
drivers Name Value Default Type Description
cpu_cortexad stdin ps7_uart 1 none peripheral st peripheral
stdout ps7_uart 1 none peripheral stdout peripheral
> enable_swintrusive_profil[true false boolean Enable S/W Intrusive Profi

> microblaze_exceptions false false boolean Enable MicroBlaze Except

image51.png
& Board Support Package Settings

Board Support Package Settings

Control various settings of your Board Support Package,

4 Overview
| standalone Configuration for driv cpu_cortexad

4 drivers Name Value Default Type

cpu_cortexad compiler armxiling-.. arm-ilin.. string

archiver armxiling-.. arm-lin.. string

compiler_flags 02 02 sting

extra_compiler_flags - string

image52.jpg
void CallFunBig(void);
void CallFunsmall(void);
void CallFuntiedium(void);
void print(char *str);

“void CallFunBig()

€
int 1,5
303
print("Hello Fun Big\n\r");
for (i=0;5<-300000; i++)

+i;
printf(*=KA\nr",3);

¥

“ void CallFuntedium()
g int i,j;
305 o
print("Hello Fun Small\n\~");
for (i=0; i<=400000; 1++)
+3;
printf("j=¥d\n",)5
¥
“ void CallFunsmall()
€
i
< int main()

i init_platform();
print("Hello from main\n\r");
CallFungig();
CallFuntedium();
Callfunsmall();
Cleanup_platforn();
return 0

[

image53.png
% Tool Settings | # Build Steps | % Build Artifact | & Binary Parsers | @ Error Parsers

® ARM gec assembler
(2 General
® ARM gec compiler
& Symbols
(2 Warnings
(2 Optimization
(2 Debugging
(2 Directories
2 Miscellaneous

Enable Profiling (-pg)

image54.png
©

i

L IEE R Name: lab6 Debug
type filter text

Main % Device Initializatio | % STDIO Connection| k; Profile Options | 5 Debugger Options|
[E] C/C++ Application
[€] C/C++ Remote Application Enauleliioiing|
& Launch Group Profiling Options

$7 Remote ARM Linux Application
8 Target Communication Framework
Xilinx C/C++ application (GDB)

Tt Scratch memory address to collect profile data:

Sampling Frequency (Hz2):

Histogram Bin Size (words): 4

image55.jpg
- hw_platform_0
@ ps7_nitc
ps7_rith
@ ps7_rithimi
(5] 7t 1
Systembit
gy

e
35 project1_profile.elf - [arm/ie]

® gmon.out
[makefle
[objects.mk.
project1_profie.elf.size:
(b sources.mk
&
& standalone_bsp_0
i B5P Doumentation
& ps7_cortexd 0
] ibgenlog
) tbgen.options.
b Makefle
fih systemmss

image56.png
o2 | @

image57.jpg
[E] soxLog | @ gprof 22 |

‘amon il D:1a0-PersonalFies-D\0-FPGA_Projects ENG3050-xinxprojects\Vivado20 14ZyncProfiproject_t\project_t sdkiproject1_profe|Debug\gmon.out

BT RS

program fle D:/a0-PersonalFies-D/z0-FPGA_Projects/ENG050-dlmprojects ivado20 14ZyncProf project_tjproject 1. sdkjproject! profie/Debugforsjectt.profie.elf

16 bytes per bucke, each sample counts a5 1.000ms

fope fiter text

Name (location) * [Samples [cals. [rime/call [% Time.

5 Summary. 19 d
CalFursig ©) 10.000ms s263%
CalFunttedum 6 f 6.000ms Buse
CalFunsmal 2 f 2.000ms .53
RQinterrupt o) 00%
¥SauGic_Devicelnitalze o 1 ons. 00%
¥SaGic Devieelntermuptriandr o 1 ons 00%
XSauGic_Regitertiandier o 1 ons 00%
Miartps_SencByte 3 B2 ons 00%
Xi_L2CacheFiush i Bs%
wite o o 00%
deanup platform o 1 ons 00%
cortexas it o o 00%
dsable_caches. o 1 ons. 00%
enabe_caches o 1 ons. 00%
int_platform o 1 ons 00%
int uart o 1 ons. 00%
main o o 00%
print 3 3 00%

image58.jpg

image59.emf

image1.png
VIVADO AR

Getting Started Documentation

Create New Project ==~ Documentation and Tutorials
New project Wizard wil guide you through the process: I
e R || [
2new project.
Open Projec User Guide
Open one of the most recently used projects or More detailed info on Vivado commands, dialogs,
any previously created project. and buttons.
Open Example Project ® Quick Take Videos

AU view 2 seres of short videos on various topics from
AR design flows overview to recommended methodology.
Manage IP Release Notes Guide

SEW
Com dhe FiCataton sl ey avad e = Information about instalation and new IDS features.

Create and customize IP to e used n 2 new project
or open previously customized IPto make changes.

in tis release.

3 Td Console.

image2.png
& New Project =]

Create a New Vivado Project
“This wizard will guide you through the creation of a new project
To create a Vivado project you will need to provide a name and a location for your project

files. Next, you will specify the type of flow you'l be working with. Finally, you will specify
Your project sources and choose a default part.

To continue, click Next.

< Back

=

