Building an Embedded Processor System
on a Xilinx Zync FPGA (Profiling): A Tutorial

Embedded Processor Hardware Design
October 6" 2017.

VIVADO TUTORIAL 1

Table of Contents

(=To LU TT=T 4 0] 4} ARt 3
Part 1: Building a Zyng-7000 Processor Hardware........ccceeeeeeeernerencrencrencrencrensensernnnns 4
INETOAUCTION . eeeeeseeseess sttt sees s s s b bbb bR RS ER R R R 4
Step 1: Start the Vivado IDE and Create a Project......eerneeeeeessssssssessseesssessesssesssessssesans 4
Step 2: Create an IP Integrator DeSIGN ... sssssssssssssssssses 6

Customize Instantiated IP. 10

Use Block Designer Assistance 11
Step 3: Generate HDL DeSign FileSocnerimseesecrsceesssessessssssesssesssesssssssssssesssessssessssssssssessssssanes 15
Step 4: Implement Design and Generate BitStreameeeeessseenesessseesssessesssesssessseesnnes 16
Step 5: EXport Hardware t0 SDKiisnssessees 18

Export to SDK. 18
Part 2: Build Zynq-7000 Processor SOftWarecccceveeereeecrenncerenncernncerenneesnscesensessennes 19
Step 1: Start SDK and Create a Software APPliCAtioN ... eeeereenreemeesseerseeesesseesseesssessessseesseessessnnes 19
Step 2: Run the Software APPliCAtiON. ... e reerseeeserseessees s seessssssesssesssessssssssssseesssessessanes 22

Add a Breakpoint 26
Step 3: EXECULING the SOFtWATE ...ttt ssssss s s sssss s ss s sasas 27
Part 3: Profiling the SOftWarecccciveieieeiiiiiirrcrreeccrreeeereaneereneeeenneerennesrnsesensssnnnes 29
Step 1: Start SDK and Create a Software APPliCAtioN ... eecerreenmeemeesseerseeeseeseesseesssessessseesseeseesnes 29
Step 2: Profile the Software APPliCatiON ... ssseessesssssaes 30

Producing the GMON Executable 31

Step 3: Generating statistics

2 VIVADO TUTORIAL

Introduction

This tutorial will guide you through the process of using Vivado and IP Integrator to
create a complete Zynq ARM Cortex-A9 based processor system targeting the
ZedBoard Zynq development board. You will use the Block Design feature of IP
Integrator to configure the Zynq PS and add IP to create the hardware system, and
SDK to create an application to verify the design functionality. It will also guide you
through the process of profiling an application and analyzing the output.

Objectives

After completing this tutorial, you will be able to:

Create an embedded system design using Vivado and SDK flow

Configure the Processing System (PS)

Add Xilinx standard IP in the Programmable Logic (PL) section

Use and route the GPIO signal of the PS into the PL using EMIO

Use SDK to build a software project and verify the functionality in hardware.
Set up the board support package (BSP) for profiling an application

Set the necessary compiler directive on an application to enable profiling
Setup the profiling parameters

Procedure

This lab is separated into steps that consist of general overview statements that
provide information on the detailed instructions that follow. Follow these detailed
instructions to progress through the tutorial.

This tutorial comprises three stages (each consisting of steps): You will create a
top-level project using Vivado, create the processor system using the IP Integrator,
add two instances of the GPIO IP, validate the design, generate the bitstream, export
to the SDK, create an application in the SDK, and, test the design in hardware. You
will then be able to profile the application and produce statistics that will help you
understand the main bottlenecks of your application.

Requirements
The following is needed in order to follow this tutorial:
e Vivado w/ Xilinx SDK (tested, version 2013.2 /version 2014.4). Version
2016.3 could work but with some hiccups.
e Zedboard (tested, version D)

VIVADO TUTORIAL | 3

Part 1: Building a Zynq-7000 Processor Hardware

Introduction

In this part of the tutorial you create a Zyng-7000 processor based design and
instantiate IP in the processing logic fabric (PL) to complete your design. Then you
take the design through implementation, generate a bitstream, and export the
hardware to SDK.

If you are not familiar with the Vivado Integrated Development Environment Vivado
(IDE), see the Vivado Design Suite User Guide: Using the Vivado IDE (UG893).

Step 1: Start the Vivado IDE and Create a Project

1. Start the Vivado IDE (FIGURE 1) by clicking the Vivado desktop icon or by
typing vivado at a terminal command line.

VIVADO*™ XLINX

Getting Started Documentation
— Create New Project === Documentation and Tutorials

/ A ' d will guide you through th

\i= \ New Pra_!ect Wizard will guide you through the process Invaluable for first time users or to try new features.

\ \ of selecting design sources and a target device for Ll—u_

\ - anew project.

/-- Open Project oo User Guide

i\ Open one of the most recently used projects or ' More detailed info on Vivado commands, dialogs,

\ any previously created project. BN and buttons.
Open Example Project o Quick Take Videos

W
. . . 1)) View a series of shart videos on various topics from

DpenanStorhetn Crial project=S ‘ design flows overview to recommended methodology.
Manage IP . Release Notes Guide

? Open the IP Catalog and view available IP.
Create and customize IP to be used in a new project
or open previously customized IP to make changes.

Information about installation and new IDS features
in this release.

1= Td Console

Figure 1: Getting Started Page

4 | VIVADO TUTORIAL

2. From the Getting Started page, select Create New Project. The New Project
wizard opens (FIGURE 2).
3. Click Next

=

#- New Project

Create a New Vivado Project
This wizard will guide you through the creation of a new project
To create a Vivado project you will need to provide a name and a location for your project

files. MNext, you will specify the type of flow you'll be working with. Finally, you will specify
your project sources and choose a default part.

To continue, click Next.

< Back Finish

Figure 2: Create New Project Wizard

4. In the Project Name dialog box, type the project name and location. Ensure
that Create project subdirectory is checked, and then click Next.

5. Inthe Project Type dialog box, select RTL Project, then click Next.

6. Inthe Add Sources dialog box, ensure that the Target language is set to

VHDL, then click Next.

In the Add Existing IP dialog box, click Next.

In the Add Constraints dialog box, click Next.

9. In the Default Part dialog box select Boards and choose “ZedBoard Zynq
Evaluation and Development Kit”. Make sure that you have selected the
proper Board Version to match your hardware because multiple versions of
hardware are supported in the Vivado IDE. Click Next.

10. Review the project summary in the New Project Summary dialog box before
clicking Finish to create the project.

®© N

VIVADO TUTORIAL | 5

Step 2: Create an IP Integrator Design
1. Inthe Flow Navigator, select Create Block Design (Fig 3).

¢ zyng_tutorial - [C:;/temp/zyng_tutorial/zyng_tutorial xpr] - Vivado 2013.2
File Edit Flow Tools Window Layout View Help

g e BB X P Db Y| H K| X E | S Dpefaul Layout

Flow Mavigator « | Project Manager - zynq_tutorial
E % Sources
el [rjb
|‘ Project Ma = | @ﬁ|i0?|.

. -) - Design Sources
ﬁ P ct Sett : .
roject Setings [+H= Constraints (1)

¥ Add Sources

=+ Simulation Sources (1)
Q: IF Catalog Lo sim_1

4 IP Integrator

#F Create Block Dt-}sigr‘l/\\5
B Open Block Desig
& Generate Block O

Create Block Design

Create and add an [P subsystem to the project.
4 Simulation ‘ ‘ |

Figure 3: Create Block Design from Flow Navigator

2. In the Create Block Design popup menu, specify a name for your IP
subsystem design (Figure 4)

e

¢’ Create Block Design @
@ Please specify name of block design

k- £

Design name: | zynq_design_1

oK || Cancel

Figure 4: Create Block Design Dialog Box

6 VIVADO TUTORIAL

3. Right-click in the Vivado IP integrator diagram window, and select Add IP.

x

& Select All

Add IP...

Validate Design
Create Hierarchy...
Create Comment
Create Port...

Create Interface Port...
Regenerate Layout

Save as PDF File...

Ctri+E
Delete
Ctrl+C
Ctrl+V
Ctrl+A

[} Ctrl+1
F6

Ctri+K
Ctrl+L

Figure 5: Add IP Option

4. Alternatively, you can click the Add IP link in the IP integrator diagram area.

&= Diagram X

"’D| #, design_1

@:| (@ This design is empty. To get started
o

—
Add IF'I from the catalog.

Figure 6: Add IP Link in IP Integrator Canvas

The IP Catalog opens.

5. Inthe search field, type zynq to find the ZYNQ7 Processing System IP, and

then press Enter on the keyboard (Fig 7).

Search: zynq (2 matches)

1 w32
Mame Version AXI4 Status License Vendor
iF ZYNQ7 Processing System 5.2 AXI4-Stream, AXK4 Production Included Xilinx, Inc. %
iF ZYNQ7 Processing System BFM 1.0 AX4 Pre-produ... Purchase Xilinx, Inc. ¥
«| i | r O

Select and press ENTER or drag and drop, ESC to cancel

Figure 7: The IP Integrator IP Catalog

Because you selected the ZedBoard when you created the project, the Vivado
[P integrator configures the design appropriately.

VIVADO TUTORIAL | 7

In the Tcl Console, you see the following message:

create bd cell -type ip -vlnv
xilinx.com:ip:processing system7:5.2 processing system7 1

INFO: [PS7-6] Configuring Board Preset zed. Please wait

There is a corresponding Tcl command for all actions performed in the IP
integrator block diagram. Those commands are not shown in this document.
See the Tcl Console for information on those commands.

6. In the IP integrator diagram header, click Run Block Automation.

I= Diagram X | Address Editor x

| ‘ %, zyng_design_1

Q| (3% Designer Assistance available. Run Block Automation

:: iF /processing_system7_1 M

Figure 8: Run Block Automation on Zync

The Run Block Automation dialog box opens, stating that the FIXED_IO and
DDR interfaces will be created for the Zynq core.

7. Click OK (Fig 9).

-

#- Run Block Automation [53]

Instance: /processing_system7_1

Make Interface External: FIXED_IO, DDR

0K] [Cancel

Figure 9: Zync7 Run Block Automation Dialog Box

8 | VIVADO TUTORIAL

After running block automation on the Zynq processor, the IP integrator

diagram should look as follows (Fig 10):

processing_system7_1

DDR =R
FIXED 10<F
USBIND_0O<F

M_AXI_GPO_ACLK ZYNQ‘

FCLK_CLKO
FCLK_RESETO_NM

M_AXI_GPD-k |

ZYNG7 Processing System

DR
IXED_IO

Figure 10: Zynq Processing System after Running Block Automation

8. Now you can add peripherals to the processing logic (PL). To do this, right-
click in the IP integrator diagram, and select Add IP.
9. In the search field, type gpi to find the AXI GPIO IP, and then press Enter to

add the AXI GPIO IP to the design.

10.

Repeat the action, typing axi bram to find and add AXI BRAM Controller,

and typing block to find and add Block Memory Generator.

The Block Design window matches FIGURE 11. The relative positions of the

[P will vary.

processing_system?_1

blk_mem_gen_1
|I|4=BRAM_PORTA
Block Memory Generator

axi_bram_ctrl_1

M_AXL GPO_ACLK ZYNQ‘

DDR ¢ DR
FIXED 104):RSIXED_[O
USBIND_04 |||
M_AXL_GPO4p {5
FCLK_CLKO
FCLK_RESETO_N

YNQ7 Processing System

Figure 11: Block Design after Instantiating IP

VIVADO TUTORIAL | 9

Customize Instantiated IP

1. Double-click the Block Memory Generator IP, or right-click and select
Customize Block (FIGURE 12).

)

Block Properties... Ctrl+E

Delete Delete

Copy Ctrl+C
Ctrl+V

Select All Ctrl+A

Add IP... Ctrl+I

Customize B[gclc..

Orientation »

Figure 12: Customize Block Option

The Re-customize IP dialog box opens. 2.

2. On the Basic tab of the dialog box, set:
e Mode to BRAM Controller

¢ Memory Type to True Dual Port RAM

Click OK (Fig 13)

LF Re-customize IP
Block Memory Generator (8.0)

i pocumentation () IP Location

[1P Symbol | Power Estimation
Show disabled ports Basic | Port A Qpliana

BRAM Controller

Mode
Memory

ECC Options

ECC Type No ECC

Component Name |zynq_design_1_blk_mem_gen_1_0

Bagt.B Options | Other Options | Summary

pe | True Dual Port RAM ~

Error Injection Pins | Single Bit Error Injection

Generate address interface with 32 bits

Common Clock

Figure 13: Set Mode and Memory Type

The AXI BRAM Controller provides an AXI memory map interface to the

Block Memory Generator.

10 | VIVADO TUTORIAL

3. Connect the Block Memory Generator to the AXI4 BRAM Controller by
clicking the connection point and dragging a line between the IP.

i_b trl_1
ax), orem . blk_mem_gen_1

. BRAM_PORTA<: || ||| 4-BRAM_PORTA
S_AXI_J\CLK BRAM_PORTB+ ‘—il +BRAM_PORTB
S_AXI_ARESETN y a3

Block Memory Generator

BRAM Controller
Figure 14: Connected AXI BRAM Controller and Block Memory Generator

The AXI BRAM Controller provides an AXI memory map interface to the
Block Memory Generator.

Use Block Designer Assistance
Block Designer Assistance helps connect the AXI GPIO and AXI BRAM Controller to

the Zynq-7000 PS.
1. Click Run Connection Automation and then select /axi_gpio_1/s_axi to

connect the BRAM controller and GPIO IP to the Zynq PS and to the external
pins on the ZedBoard (FIGURE 15).

Z= Diagram X & Address Editor X
| | 4, zyng_design_1

Q| @ Designer Assistance available. Run Connection Automation
f\: @ /axi_gpio_1/s_axi
\ @ /axi_gpio_1/gpio
’[; @ /axi_bram_ctrl_1/S_AXI

Figure 15: Run Connection Automation

The Run Connection Automation dialog box opens and states that it will
connect the master AXI interface to a slave interface.

VIVADO TUTORIAL

11

In this case, the master is the Zynq Processing System IP (FIGURE 16).

¢% Run Connection Automation | 3 |
[0] Connect a master interface to slave interface:

= [axi_gpio_1/s_axi

Master: /processing_system7_1/M_AXI_GP0

Figure 16: Run Connection Automation Message

Click OK.

This action instantiates an AXI Interconnect IP as well as a Proc Sys Reset [P
and makes the interconnection between the AXI interface of the GPIO and the

Zyng-7000 PS.

2. Select Run Connection Automation again, and the /axi gpio 1/gpio

shown in FIGURE 17.

&= Diagram x [Address Editor X

il l i, zynq_design_1 »

Q| (@ Designer Assistance available. Run Connection Automation

o
A

{h /axi_gpio_1/gpio
@ /axi_bram_ctrl_1/S_AXI

Figure 17: axi_gpio Selection

The Run Connection Automation dialog box includes options to hook up to

the GPIO port. 4.

3. Select leds_8bits (FIGURE 18).

-
ﬁ:‘_,. Run Connection Automation

[

OK] [Cancel

Figure 18: Select Board Interface Options

12 | VIVADO TUTORIAL

4. Click OK. This step also configures the IP so that during netlist generation,
the [P creates the necessary Xilinx Design Constraints (XDC).

5. Click Run Connection Automation again, and select the remaining option
/axi bram ctrl 1/S AXI (FIGURE 19).

&= Diagram X & Address Editor X

30 ‘ 4, zynq_design_1 »

Q* (@ Designer Assistance available. Run Connection Automation

X a /qi_bram_ctrl_1/S_AXI
Wy

s
n\-\l

MY

Figure 19: axi_bram_ctrl Selection

This completes the connection between the Zynq7 Processing System and the
AXI BRAM Controller.

The IP integrator subsystem looks like FIGURE 20. Again, the relative
positions of the IP can differ slightly.

Diagram — O a *

"D| # zynq_design_1 »

processing_system?_1_axi_periph
+

1 TR R

axi_bram_ctrl_1

blk_mem_gen_1

BRAM_PORTAL:
BRAM_PORTE: -

R A -IEEE

processing_system? 1

DoR-1-
FIED 101
™ usEmD Ol
A (@) M_AKT GP -]

FOLK_CLK0 8

FOLK RESETO M
VNG Processing System

< 11 |r &

Figure 20: Zynq Processor System

6. Click the Address Editor tab to show the memory map of all the IP in the
design.

In this case, there are two IP: the AXI GPIO and the AXI BRAM Controller. The
IP integrator assigns the memory maps for these IP automatically. You can
change them if necessary.

VIVADO TUTORIAL | 13

7. Change the range of the AXI BRAM Controller to 64K, as shown in FIGURE 21.

&= Diagram X |] Address Editor X
A | Istance Base Name Offset Address Range High Address
<=5)
o | £F /processing_system7_1
21| EHE pata
- == faxi_gpio_1 Re 0x41200000 64K 0x4120FFFF
s o biam it om0 oxso000000 |ETE _[0:40000FFF
4K
8K [
16K |~
32K
128K
256K -
512K 7

Figure 21: axi_bram_ctrl to 64k Range

8. Save your design by pressing Ctrl-S, or select File > Save Block Design.

9. Click the Address Editor tab to make sure that the memory mappings for the
GPIO and BRAM controller have been auto populated.

10. From the toolbar, run Design-Rules-Check (DRC) by clicking the Validate
Design button (FIGURE 22). Alternatively, you can do the same from the
menu by:

e Selecting Tools > Validate Design from the menu.

e Right-clicking in the Diagram window and selecting Validate Design.

). zynq_debug_design -

File Edit Flow Tools Window Layout View Help
AP R DO RER XIS D> D XS XX G |23 Default Layout b & B

Flow Navigator <
553 pdg

ool = | Validate and display errors and critical warnings in this design

Validate Design

Figure 22: Validate Design Button

The Validate Design Successful dialog box opens (FIGURE 23).

Validate Design PG

) Validation successful. There are no errors or critical warnings in this design.
y

Figure 23: Validate Design Message

11. Click OK.

14 | VIVADO TUTORIAL

Step 3: Generate HDL Design Files

You now generate the HDL files

1.

for the design.

In the Source window, right-click the top-level subsystem design and select

Generate Output Products (FIGURE 24). This generates the source files for
the IP used in the block diagram and the relevant constraints file.

Block Design - zyng_design_1
Sources — O 12 %X || |E=Diagram x |B& A
azs e 2E Q[cen
=57 Design Sources (1) ‘ = =4 /processing.
=Y ~yng_desian 1 (zvna desion 1.bd} (1} cea| [OER pigg
Constraints (1 (3 Source Node Properties... Ctrl+E /axi_gp
= Simulation Sq Jaxi_br]
& QOpen File Alt+0
Create HDL Wrapper
View Instantiation Template
Generate Output Products... ~
Beset Outnut Products gl

Figure 24: Generate Output Products Option

2. The Manage Output Products dialog box opens. Click OK.

#- Manage Output Products

e
k. ¥

is pressed, all target actions will be taken.

Choose an action for each target. Expand to see more information about the target. When OK

(2]

Output Product Selection

O, | [# Implementation Current State: Out-of-Date Action: Regenerate
= | [Simulation Current State: Qut-of-Date Action: Regenerate
= |l Synthesis Current State: Out-of-Date Action: Regenerate

Qutput product location: C:/temp/zynq_tutorial/zynq_tutorial.srcs/sources_1/bd/zynq_design_1| -

3.

In the Sources window, select the top-level subsystem source, and select

Create HDL Wrapper to create an example top-level HDL file (FIGURE 25).

4. Click OK when the Create HDL Wrapper dialog box opens.

Block Design - zynq_design_1

Sources _ouw |&= Diagram x | & Addre
azs e 2E Q[cel

[Design Sources (1) ‘ |5 & processing_syste
E|_&. zyng_design_1 (zvna_desian 1_hd) (1} pial CLEA poey

! Hhah zynq_ded (@ Source Node Properties... Ctrl+E pxi_gpio_1
[+ Constraints (1) i pxi_bram_
[+ Simulation Sou{ ® Open File Alt+0

| Create HDL Wrapper

View Instantiation Template

Figure 25: Create HDL Wrapper

VIVADO TUTORIAL | 15

Step 4: Implement Design and Generate Bitstream

1. In Flow Navigator, click Generate Bitstream to implement the design and
generate a BIT file.

Note: If the system requests to re-synthesize the design before implementing,
click No. The previous step of saving the constraints caused the flow to mark
synthesis out-of-date. Ordinarily, you might want to re-synthesize the design
if you manually changed the constraints, but for this tutorial, it is safe to
ignore this condition (FIGURE 26).

4 Program and Debug
. . Tcl Console
ﬁ Bitstream Settings s
- i connect_debug_port u_ila 0/F
i =1 — _1lla_
Qﬂ Dﬁgnerate Bilsiream raq| [/3ave constraints -force
= Generate Bitstream Creati
B . - . c Target
» Generate a programming file after implementation. a
=] T
X 4] il |

Figure 26: Generate Bitstream

You might see a dialog box stating no implementation results are available.

2. Click Yes (Fig 27).

o

-
Mo Implementation Results Available ﬁ

|"/_-.\" There are no implementation results available. Okay to launch synthesis and implementation?

"' 'Generate Bitstream' will automatically start when synthesis and implementation completes.

[] Don't show this dialog again

(o= (]

Figure 27: No Implementation Results Available Dialog Box

16 | VIVADO TUTORIAL

3. After the design implementation, click Open Implemented Design, (FIGURE
28).

-

Bitstream Generation Completed @

Iol Bitstream Generation successfully completed.

MNext

(@) Open Implemented Design
'.:_.' View Reports

':_' Open Hardware Session

(7)) Launch iIMPACT

[] pon't show this dialog again

[oK H Cancel l

Figure 28: Bitstream Generation Completed

4. You might get a warning that the implementation is out of date. Click Yes.

-

PN Implementation is Out-of-date E

L You are opening an implemented design that is now out-of-date because
“=— constraints were modified - more_info

Would you like to go ahead and open the out-of-date design?

[Yes ” No]

Figure 29: Implementation Is Out-of-Date Dialog Box

VIVADO TUTORIAL | 17

Step 5: Export Hardware to SDK

In this step, you export the hardware description to SDK. You use this in Part 2.
The IP integrator block diagram, and the Implemented design, must be open to

export the design to SDK.

IMPORTANT: For the Digilent driver to install, you must power on and connect the
board to the host PC before launching SDK.

Export to SDK

1. In the Flow Navigator, click Open Block to invoke the IP integrator design

(FIGURE 30).

4

4

IP Integrator
7% Create Block Design
¥ Open Block tgsign

Simulation IOpen Block Design

Figure 30: IP Integrator - Open Block Design

Now you are ready to export your design to SDK.

2. From the main Vivado File menu, select Export Hardware for SDK (FIGURE

Block Designs| | -

55.5 KB

31).
& Add Sources... Alt+A Type:
Open Source File... Ctrl+N Size:
Export]
Open Log File

Open Journal File

Export Hardware for SDK... %
Export Block Design...
% Export Bitstream File...

53
s/

Figure 31: Export Hardware for SDK

The Export Hardware for SDK dialog box opens, ensure that Export
Hardware, Include Bitstream, and Launch SDK are checked (FIGURE 32).

4 Export Hardware for SDK

_0. Export hardware platform for SDK.

Options
Source: #, zynq_design_1.bd
Exportto: |60 <local to Project>

Workspace: | & <Local to Project>

Export Hardware

Include bitstream (Mote: an implemented design m...

Launch SDK

Figure 32: Export Hardware for SDK

18 | VIVADO TUTORIAL

Part 2: Build Zyng-7000 Processor Software

In this portion of the tutorial you will build an embedded software project that
prints “Hello World” to the serial port. Connect two micro USB cables to the
Zedboard (see Appendix A for more details).

Step 1: Start SDK and Create a Software Application
1. Ifyou are doing this lab as a continuation of Part 1 then SDK should have
launched in a separate window (if you checked the Launch SDK option while
exporting hardware). You can also start SDK from the Windows Start menu
by clicking on Start > All Programs > Xilinx Design Tools > Vivado 2013.2
> SDK > Xilinx SDK 2013.2. When starting SDK in this manner you need to
ensure that you in the correct workspace.

2. You can do that by clicking on File > Switch Workspace > Other in SDK. In
the Workspace Launcher dialog box in the Workspace field, point to the
SDK_Export folder where you had exported your hardware. Usually, this is
located at
..\project name\project name.sdk\SDK\SDK Export.

Now you can create a hello world application.

3. Select File > New > Application Project (FIGURE 33).

@ C/C++ - hw_platform_0/system.xml - Xilinx SDK
File| Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help

New Alt+Shift+N » | &5 Makefile Project with Existing Code
Open File... &5 C++ Project

[€] CProject
& Application [yoject

Figure 33I: FLife->New->Applicati0n Project

Close Ctrl+W

New Project dialog box opens

VIVADO TUTORIAL | 19

4. In the Project Name field, type Zync_Design, and click Next (FIGURE 34).

-

New Project | = \@
Application Project @
Create a managed make application project.

Project name: Zyng_Design

Use default location
Location: | C\tutorials\zyng_debug_design\zyng_debug_design.sdk\SDK\SDK_E Browse...

Choose file system: (default ~

Target Hardware

Hardware Platform [hWJIaﬁorm_O VI
Processor [ps?_co rtexad_0 -]
Target Software

OS Platform lstandalone ']
Language @C @©C++

Board Support Package @) Create New Zyng_Design_bsp

Use existing -

@ < Back Next > l | Finish | [Cancel

Figure 34: SDK Application Project

20 | VIVADO TUTORIAL

Finish.

5. From the Available Templates, select Hello World (FIGURE 35) and click

F
New Project

Templates

Create one of the available templates to generate a fully-functioning
application project.

Available Templates:

Dhrystone
Empty Application

IwIP Echo Server
Memaory Tests

Peripheral Tests
Zyng FSBL

Let's say 'Helle World' in C.

Net> | [Finsh]|

Cancel

——————

Figure 35: SDK New Project Template

When the program finish compiling, you will see the following (FIGURE 36).

Overview| Source

*. Problems | ¥ Tasks & Console 2
ICDT Build Console [Zyng_Design]

Invoking: ARM Print Size
arm-xilinx-eabi-size Zynq_Design.elf

text data bss dec hex filename
74740 2024 33700 110464

Finished building: Zyng_Design.elf.size

16:53:10 Build Finished (took 4s.976ms)

= Properties| & Terminal |

|tee "Zyng_Design.elf.size"

1af80 Zyng_Design.elf

Figure 36: SDK Message

VIVADO TUTORIAL | 21

Step 2: Run the Software Application

Now, you must run the hello world application on the ZedBoard. Make sure that
your hardware is powered on and a USB Cable is connected to the host PC. Also,
ensure that you have a USB cable connected to the UART port of the ZedBoard.
Please check Appendix A, and Appendix B for more guidelines

1. Download the bitstream into the FPGA by selecting Xilinx Tools > Program
FPGA (FIGURE 37).

Xilinx Tools| Window Help

Generate linker script
Board Support Package Settings
Repositories

Program FPGA
Program Flash

XMD Console

Launch Shell

Configure JTAG Settings

System Generator Co-Debug Settings
Create Zynq Boot Image

Figure 37: Program FPGA

Sx&0K B ©=2

This opens the Program FPGA dialog box.

2. Ensure that the path to the bitstream that you created in this tutorial is
correct and then click Program.

Note: The DONE LED on the board turns blue if the programming is
successful.

3. Select and right-click the Zynq_Design application.

4. Select Debug As and Debug Configurations (FIGURE 38).

22 | VIVADO TUTORIAL

C/C++ - zyng_design_bsp/system.mss - Xilinx SDK
File Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help

i w |®VQV@ @vﬁﬁv@v@v qt&vov%v W = I%I @ ® 5~
[Project Explorer & = 84 systemxml ﬁm systemmss 5
= <‘;=={>| 7~ [TERTIDIR TR

ps/_afi_2 generic
ps/_afi_3 generic

4 & hw_platform_0

Ef?‘m't'c ps7 can 0 canps Documentation Examples
l New * heric
9 Ps Go Into neric
= pg .
B o Open in New Window cfg Documentatfon Examples
B 5 ® Copy e aps Documentat!on Examples
4 |15 7yng Paste CtrlsV aps Documentation Examples
b 4% Bil ® Delete Delete }ACPS Documentation Examples
b In SETEE » jops Documentation Examples
=D Move... ps Documentation Examples
b & ST Rename... F2 peric
4 ﬁ:?rn;f [:IepnsC Documentation Examples
ed Export..)
I & py neric
B "ﬂ Build Project heric
= Clean Project gic Documentation Examples
[eM & Refresh) F5 timer Documentation Examples
(i Y] Drezlhn s wdt Documentation Examples
Close Unrelated Projects .
neric
Build Configurations * heric
Make Targets * tps Documentation Examples
Index * bps Documentation Examples
Show in Remote Systems view
Convert To... ———
Run As , bard Support Package.
Debug As »| £ 1 Launch on Hardware (GDB)
Profile As v| & 2 Launch on Hardware (System Debugger)
e | & 3 Local C/C++ Application - |
Compare With , | & 4 Remote ARM Linux Application |
Restore from Local History... Debug Configurations... l\Q —

#* Run C/C++ Code Analysis

T
}cessing command line option -hwspec C:/tut

Figure 38: Launch on Hardware

5. Inthe Debug Configurations dialog box, right-click Xilinx C/C++ Application
(GDB) and select New.

VIVADO TUTORIAL | 23

@ Debug Configurations

Create, manage, and run configurations

0¥ %X B3~ Configure launch settings from this dialog:

type filter text
[€] C/C++ Application
[€] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[E] C/C++ Remote Application
B Launch Group
$7 Remote ARM Linux Application
[ﬁ Target Communication Framework

- Press the 'New' button to c..uration of the selected type.
- Press the 'Duplicate’ butto...y the selected configuration.
- Press the 'Delete’ button t..e the selected configuration.
-

.

5% - Press the 'Filter' button to configure filtering options.

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the

& Xilinx C/C++ applic ﬁ:n {GDRY) ‘Perspectives' preference page.
£ Xilinx C/C++ appli LT New I ger)
Duplicate
X Delete

Filter matched 9 of 9 items

®

Debug

Figure 39: Debug Configuration Dialog Box

6. In the Debug Configurations dialog box, click Debug.

3

STDIO Connection |[&] Remote Debug. ', [& Debugger Options| I Common

4@ Debug Configurations

Create, manage, and run configurations

IR B Name: Zyna_Design Debug
‘type filter text [Main % Source | % Device Initialization
[C/C++ Application -

Connect 1o gdbserver on a different machine.

[£1¢/C++ Attach to Application
[£]C/C++ Pastmortem Debugger
[€1¢/C+ + Remote Application

Remote GB Server
To open a gdbserver, Launch XMD on the remote machine, and conNect 1o the Processor.
XMD will then report the port at which the gdbserver is open.

Launch Group
& Remote ARM Linux Application
B8 Target Communication Framewark
= & Xilink C/C++ application (GDB)
&, 7ynq_Design Debug
& Xilink C/C+ + application (System Debugger)

IP Address:
Port 123

Filter matched 10 of 10 items
Figure 40: Run Debug Configurations

Close

7. The Confirm Perspective Switch dialog box opens. Click Yes.

]

@ Confirm Perspective Switch
@ This kind of launch is associated with the Debug perspective.

This Debug perspective is designed to support application debugging. It incorporates
views for displaying the debug stack, variables and breakpoint management.

Do you want to open this perspective now?

[Remember my decision

No]

||

Figure 41: Confirm Perspective Switch Dialog Box

| Yes

24 | VIVADO TUTORIAL

8. Set the terminal by selecting the Terminal 1 tab and clicking the Settings
button (FIGURE 42).

Overview | Source

£/ Problems £ Tasks| & Console | =1 Properties | # Terminal 1 £ o Glapl P x=-0
No Connection Selected

Settings |

Figure 42: Settings Button

9. Use the following settings for the ZedBoard (FIGURE 43). Click OK.

Terminal Settings @

View Settings:

View Title: Terminal 1

4

Encoding: [SO-8859-1

Connection Type:

serial 7] The Port should be the
Settings: é’Z’ port for the Cypress
Port: com1 - USB-to-Serial.

Baud Rate:

Data Bits:

Stop Bits:

Flow Control: |None

Timeout (sec): 5

| OK | l Cancel

Figure 43: Terminal Settings

10. Verify the Terminal connection by checking the status at the top of the tab
(FIGURE 44).

(2l Problems |] Tasks | & Console | = Properties [& Terminal 1 £3
Serial: (COM1, 115200, 8, 1, None, Mone - CONMECTED) - Encoding: (ISO-8859-1)

I

Figure 44: Terminal Connection Verification

VIVADO TUTORIAL | 25

11. In the Debug tab, expand the tree, and select the processor core on which the
program is to be run (FIGURE 45.

%5 Debug &3 i+ T =08

= GsD:B Zynqg_Design Debug [¥ilinx CJC++ application (GDE)]
= *MD Target Debug Agent (9710713 9143 PM) (Suspended)
(=g Thread [1](Suspended: Breakpoint hit,)
= E 001004F4
o arme-sdine-gabi-gdb (3/10/13 3:43 PM)
w1 ZiDropboeachoaliz013-2014\FallECES 22 Helloworldizyna_helloworidizyng_hellowarld, sdk)SDKIS0E_Exportl Zyng_DesigniDebugiZyng_Design.elf (9/10/13 9:

|~
v

Figure 45: Processor Core to Debug

12.If it is not already open, select . . /src/helloworld.c,line 41, and double
click that line to open the source file.

Add a Breakpoint
You add a breakpoint on line 43.

1. Select Navigate > Go To Line (FIGURE 46).

Navigate] Search Run Project Xilinx Tools Window

Go Into
Go To »
Open Declaration F3
Open Type Hierarchy F4
Open Call Hierarchy Ctrl+Alt+H
Open Include Browser Ctri+Alt+]
Toggle Source/Header Ctrl+Tab
(® Open Element... Ctrl+Shift+T
Open Type in Hierarchy... Ctrl+Shift+H
Open Element in Call Hierarchy...
Open Resource... Ctrl+Shift+R
Show In Alt+Shift+W »
Quick Outline Ctrl+O
£| Next Annotation Ctrl+.
+| Previous Annotation Ctrl+,
Last Edit Location Ctrl+Q
Go to Lineh Ctrl+L

Figure 46: Go to Line

26 | VIVADO TUTORIAL

2. Inthe Go To Line dialog box, type 43.

3. Double click on the left pane of line 43, which adds a breakpoint on that line
of source code (Figure 47).

I3 system.xml [, system.mss [l hellowarld.e 22
-

* uartns5s0 9600
® partlite Configurable only in HU design

T pa?_wart 115200 (wenfigursd by hootrom'hspl
M4

#include <stdio.h>
#include "platform.h”

void print (char *str):

“int main(]
¢
o init_platform(];

| print("Hello woridyniz«):

return 0:
¥
v

Figure 47: Add a Breakpoint

Step 3: Executing the Software
This step will take you through executing the code up to and past the break point.

1. Click the Resume button or press F8

2. Click the Step Over button or press F6

3. You should see “Hello World” in the terminal if everything worked correctly
(FIGURE 48).

& consale \Z, Tasks .}F Terminal 1 22 Ef._, Problems G Executables D MEmnory
Serial: (COME, 115200, &, 1, Mone, None - CONMECTED] - Encoding: (150-55859-1)
Hello World

Figure 48: Terminal Output

VIVADO TUTORIAL | 27

Part 3: Profiling an Application

Export the Design to the SDK Step 1

1-1. Export the design to the SDK, create the software BSP using the
standalone operating system; Enable the profiling options.

1-1-1. Export the hardware configuration by clicking File > Export > Export Hardware
1-1-2. Tick the box to Include Bitstream, and click OK

1-1-3. Launch SDK by clicking File > Launch SDK and click OK

1-1-4. In SDK, select File > New > Board Support Package.

1-1-5. Notice Standalone_bsp_0 in the Project name field and click Finish with default
settings.

A Board Support Package Settings window will appeatr.

1-1-6. Select the Overview > standalone entry in the left pane, click on the drop-down arrow of
the enable_sw_intrusive_profiling Value field and select true.

Board Support Package Settings &
Board Support Package Settings &
o
Control various settings of your Board Support Package.
Crverview
Configuration for OS: standalone
standalone
drivers Mame Yalue Default Type Description
Cpu_cortexad stdin ps7_uart_1 none peripheral stdin peripheral
stdout ps7_uart_1 nong peripheral stdout peripheral
> enablefswﬁintrusivefproﬁ\i false boolean Enable S/W Intrusive Profi
> false false boolean Enable MicroBlaze Except

Figure 3.1 Enable profiling in the board support package

1-1-7. Select the Overview > drivers > cpu_cortexa9 and add —pg in addition to the —g in the
extra_compiler_flags Value field.

28 | VIVADO TUTORIAL

a4 Cherview
standalone
4 drivers

Configuration for driv cpu_cortexad

Name Walue
compiler arm-xilinK-...
archiver arm-xilinK-...

compiler_flags
extra_compiler_flags

Figure 3.2 Adding profiling switch

1-1-8. Click OK to accept the settings and create the BSP.

Create the Application

Default

arm-xilin...
arm-xilin...

-02 -
g

Type
string
string
string
string

Step 2

2-1.

2-11.

2-1-2,

2-1-3.

2-1-4,

2-2.

Create the tutorial application.

Select File > New > Application Project.

Enter tutorial-profile as the project name, select the Use existing standalone_bsp 0

option, and click Next.

Select Hello World in the Available Templates pane and click Finish.

Replace the Hello World C program with the intended application you have.

A snippet of the source code is shown in the following figure.

7 systemhdf 52 | g, system.mss
T

& heloworld.c 52 |

void CallFunBig(void);
void CallFunsmall(void);
void CallFunMedium(void);
void print(char *str);

void CallFunBig()
{

Big\n\r");

mall\n\r");
5it+)

mall\n\r");
5it+)

int main()
init_platform();

print(“Hello from main\n\r");
CallFunBig();
CallFuntedium();
CallFunsmall();

Ll

]

Figure 3.3 Adding profiling switch

VIVADO TUTORIAL | 29

2-2-1. Save the program and it should compile successfully and generate the tutorial-profile.elf
file.

Run the Application and Profile Step 3

3-1. Place the board into the JTAG boot up mode. Program the PL section
and run the application.

3-1-1. Place the board in the JTAG boot up mode. Check Appendix A for Zedboard connection.
3-1-2. Power ON the board. (Check Appendix B for some information).

3-1-3. Select Xilinx Tools > Program FPGA and click on Program.

3-1-4. Right click on the tutorial-profile directory, and select C/C++ Build Settings.

3-1-5. Under the ARM gcc compiler group, select the Profiling sub-group, then check the
Enable Profiling box, and click OK.

& Tool Settings Build Steps | Build Artifactl [Binary Parsers | @ Error Parsers

B ARM gcc assembler Enabsle Profiling (-pg)
General

% ARM gcc compiler
& Symbols
2 Warnings
(2 Optimization
% Debugging
(2 Directories
& Miscellaneous

Figure 3.4 Compiler setting for enabling profiling

3-1-6. From the menu bar, Select Run > Run Configurations... and double click on Xilinx
C/C++ application to create a new configuration.

3-1-7. Click on the newly created tutorial-profile Debug configuration, and select the Profile
Options tab.

3-1-8. Click on the Enable Profiling check box, enter 100000 (100 kHz) in the Sampling
Frequency field, enter 0x10000000 in the scratch memory address field, and click Apply.

30 | VIVADO TUTORIAL

= [

ERINCE A MName: labé Debug

type filter text Main | Device Initializatio | % STDIO Connection Debugger Options| ™1
[&] C/C++ Application
[E] C/C++ Remote Application
B Launch Group
#. Remote ARM Linux Application Sampling Frequency (Hz):

[55] Target Communication Framework Histogram Bin Size (words): 4

4 & Xilinx C/C++ application (GDB) .
£, 1ab6 Debug Scratch memory address to collect profile data: | 0x10000000

[Z]Enable Profiling
Profiling Options

Figure 3.5 Profiling options

3-1-9. Click the Run button to download the application and execute it.

The program will run, and when execution has completed, a message will be displayed
indicating that the profiling results are being saved in gmon.out file at the
tutorial-profile\Debug directory.

3-1-10. Click OK.

3-2. Invoke gprof and analyze the results.

3-2-1. Expand the Debug folder under the tutorial-profile project in the Project Explorer view,
and double click on the gmon.out entry.

=-73F hw_platform_0
: @ ps7_init.c
[IL“nj ps7_init.h
(@ ps7_init.html
= 2] ps7_init.td
=] system.bit
i {5 system.xml
[SR&=A project1_profile
3%, Binaries
‘mt Indudes
=z Debug
= src
#--%5 projectl_profile.elf - [arm/le]
[gmon.out
@ makefile

e 5] project1_profile.elf.size
{ @ sources.mk
: &= src
= L‘H‘S standalone_bsp_0
#- 1 BSP Documentation
= ps7_cortexaS_0
. || libgen.log
= libgen.options
~|_@ Makefile
i, system.mss

Figure 3.6 Invoking gprof on gmon.out

3-2-2. The Gmon File Viewer dialog box will appear showing tutorial-profile.elf as the
corresponding binary file. Click OK.

VIVADO TUTORIAL | 31

3-2-3. Click on the Sort samples per function button (| o e S).

3-2-4. Click inthe %Time column to sort in the descending order (See Figure 3.7).

] sokLog | ® gprof 32 | el R R
gmon file: D:\a0-PersonalFiles-D\z0-FPGA_Projects\ENG3050-xilinxprojects\Vivado2014ZyncProf\project_1\project_1.sdk\project1_profile\Debug\gmon.out
program file: D:/a0-PersonalFiles-D/z0-FPGA_Projects/ENG3050-xlinxprojects/Vivado20 14ZyncProfjproject_1/project_1.sdk/project1_profile/Debug/projecti_profile.elf
16 bytes per bucket, each sample counts as 1.000ms
type filter text
Name (location) « I Samples l Calls I Time/Call I % Time ’
= Summary 19
CallFunBig 10 1 10.000ms 52.63% |
CallFunMedium 6 1 6.000ms B158%
CallFunSmall 2 1 2.000ms {i0.53%
IRQInterrupt 0 0 0.0%
XScuGic_Devicelnitialize 0 1 Ons 0.0%
XScuGic_DeviceInterruptHandler 0 13 Ons 0.0%
XScuGic_RegisterHandler 0 1 Ons 0.0%
XUartPs_SendByte 0 97 Ons 0.0%
Xil_L2CacheFlush 1 b.25%
_write 0 0 0.0%
cdeanup_platform 0 1 Ons 0.0%
cortexad_init 0 0 0.0%
disable_caches 0 1 Ons 0.0%
enable_caches 0 1 Ons 0.0%
init_platform 0 1 Ons 0.0%
init_uart 0 1 Ons 0.0%
main 0 0 0.0%
print 0 0 0.0%

Figure 3.7 Sorting results

3-2-5. Go back to the Run Configuration, and change the sampling frequency to 1000000 (1
MHZz) and profile the application again.

3-2-6. Invoke gprof, select the Sorts samples per function output, and sort the %Time
column.

Notice that the output has better resolution and reports more functions and more samples
per function calls.

3-2-7. Close the SDK and Vivado programs by selecting File > Exit in each program.

3-2-8. Turn OFF the power on the board.

Conclusion

This Tutorial led you through enabling the software BSP and the application settings for the
profiling.

32 | VIVADO TUTORIAL

APPENDIX A (Zedboard Connection)

As seen in the Figure below, connect the Zedboard with two micro USB cables.
1. The first cable to the JTAG micro USB port
2. The second cable to the UART port.

Also make sure that Jumpers 7,8,9,10,11,12 are connected to GND.

VIVADO TUTORIAL | 33

APPENDIX B

Also, when starting SDK make sure that the processor can be reset by including the
ps_init file as shown in the Figure below.

*

EEE =S aian

[ipe Fleer text

[| £fC++ Applcation

i [£] cfc++ Remote Apphoator

i~ Launch Group

.A Alemote ARM Linux Apclica

F Target Communizaton Frai

finrs)?"I CjC++ epplicaton (&
" £ e condawaton

ER

P S
T

_I FroyamiiEhGs:

34 | VIVADO TUTORIAL

